Williams, Kristine G; Smith, Gillian; Luhmann, Scott J; Mao, Jingnan; Gunn, Joseph D; Luhmann, Janet D
2013-05-01
Buckle fractures are inherently stable and at low risk for displacement. These advantages allow for treatment options that may create confusion for the practitioner. Accepted immobilization methods include circumferential cast, plaster or prefabricated splint, and soft bandaging. Despite mounting evidence for splinting, the questions of pain, preference, satisfaction, and convenience offer a challenge to changing practice. The purposes of this study were (1) to compare cast versus splint for distal radial buckle fractures in terms of parental and patient satisfaction, convenience, and preference and (2) to compare pain reported for cast versus splint. We conducted a prospective randomized trial of a convenience sample of patients 2 through 17 years with a radiologically confirmed distal radial buckle fracture. Subjects were randomly assigned to short-arm cast or prefabricated wrist splint. We assessed satisfaction, convenience, preference, and pain in the emergency department and at days 1, 3, 7, and 21 after immobilization. Ninety-four patients were enrolled. Compared with the cast group, those in the splint group reported higher levels of satisfaction, preference, and convenience on 10-point visual analog scale. Although pain scores were higher for those in the splint group, the difference was not statistically significant. With the exception of pain reported in the emergency department being higher for the splinted group, all other measures, including convenience, satisfaction, and preference, showed a clear trend favoring splints at almost every time period in the study. This study provides additional evidence that splinting is preferable to casting for the treatment of distal radial buckle fractures.
Temperature and boron dependencies of buckling and radial reflector saving for VVER lattices
Alvarez, C.
1990-01-01
The temperature and boron dependencies of buckling and radial reflectors savings are analyzed in this paper on the basis of the results from the calculations ZR-6M critical assembly. These dependencies are related to the physical behavior of temperature and boron reactivity coefficients for the cores of VVER-type critical facilities. As a byproduct, the parameter was also investigated and its dependence on water density was determined
Temperature and boron dependencies of buckling and radial reflector savings for VVER lattices
Alvarez, C.
1990-01-01
The temperature and boron dependencies of buckling and radial reflector savings are analyzed in this paper on the basis of the results from the calculations for the ZR-6M critical assembly. These dependencies are related to he physical behaviour of temperature and boron reactivity coefficients for the cores of VVER-type critical facilities. As a byproduct, the dp/dBg 2 parameter was also investigated and its dependence on water density was determined
Huang, Yonghui; Yang, Zhicheng; Liu, Airong; Fu, Jiyang
2018-05-28
The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling load among four distribution patterns. When the GPL weight fraction is constant, the thinner and larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of GPL's dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition, the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the results that are presented in this paper will be useful as a reference for the stability design of this type of arch in the future.
The incidence of associated fractures of the upper limb in fractures of the radial head
Kaas, Laurens; van Riet, Roger P.; Vroemen, Jos P. A. M.; Eygendaal, Denise
2008-01-01
Radial head fractures are common injuries. In American publications, one-third of the patients with these fractures have been shown to have associated injuries. The aim of this retrospective study is to describe the epidemiology of radial head fractures and associated fractures of the ipsilateral
Radial head fracture associated with posterior interosseous nerve injury
Bernardo Barcellos Terra
Full Text Available ABSTRACT Fractures of the radial head and radial neck correspond to 1.7-5.4% of all fractures and approximately 30% may present associated injuries. In the literature, there are few reports of radial head fracture with posterior interosseous nerve injury. This study aimed to report a case of radial head fracture associated with posterior interosseous nerve injury. CASE REPORT: A male patient, aged 42 years, sought medical care after falling from a skateboard. The patient related pain and limitation of movement in the right elbow and difficulty to extend the fingers of the right hand. During physical examination, thumb and fingers extension deficit was observed. The wrist extension showed a slight radial deviation. After imaging, it became evident that the patient had a fracture of the radial head that was classified as grade III in the Mason classification. The patient underwent fracture fixation; at the first postoperative day, thumb and fingers extension was observed. Although rare, posterior interosseous nerve branch injury may be associated with radial head fractures. In the present case, the authors believe that neuropraxia occurred as a result of the fracture hematoma and edema.
Lauritzen, J B; Schwarz, Peter; McNair, P
1993-01-01
Hip fractures are common in elderly women, and early risk assessment of future hip fractures is relevant in relation to prevention. We studied the predictive value of radial and humeral fractures in women. The influence of weather conditions on the risk was also studied. Women aged 20-99 years...
Rehabilitation for distal radial fractures in adults.
Handoll, Helen H G; Elliott, Joanne
2015-09-25
Fracture of the distal radius is a common clinical problem, particularly in older people with osteoporosis. There is considerable variation in the management, including rehabilitation, of these fractures. This is an update of a Cochrane review first published in 2002 and last updated in 2006. To examine the effects of rehabilitation interventions in adults with conservatively or surgically treated distal radial fractures. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL 2014; Issue 12), MEDLINE, EMBASE, CINAHL, AMED, PEDro, OTseeker and other databases, trial registers, conference proceedings and reference lists of articles. We did not apply any language restrictions. The date of the last search was 12 January 2015. Randomised controlled trials (RCTs) or quasi-RCTs evaluating rehabilitation as part of the management of fractures of the distal radius sustained by adults. Rehabilitation interventions such as active and passive mobilisation exercises, and training for activities of daily living, could be used on their own or in combination, and be applied in various ways by various clinicians. The review authors independently screened and selected trials, and reviewed eligible trials. We contacted study authors for additional information. We did not pool data. We included 26 trials, involving 1269 mainly female and older patients. With few exceptions, these studies did not include people with serious fracture or treatment-related complications, or older people with comorbidities and poor overall function that would have precluded trial participation or required more intensive treatment. Only four of the 23 comparisons covered by these 26 trials were evaluated by more than one trial. Participants of 15 trials were initially treated conservatively, involving plaster cast immobilisation. Initial treatment was surgery (external fixation or internal fixation) for all participants
Bilateral radial neck fractures – A Case Report
ABY Ng
2007-11-01
Full Text Available Radial head and neck fractures are the most frequently seen elbow fractures. The usual cause of this injury is a fall onto an outstretched hand with a partly flexed elbow. We report here an unusual case of bilateral non-displaced radial neck fractures in a patient who presented with complaints of pain in both elbows following a simple fall. This case highlights the need for a high index of suspicion in the diagnosis of multiple injuries, no matter how `trivial` the mechanism of injury.
Beni, Yaghoub Tadi; Zeverdejani, M Karimi; Mehralian, Fahimeh
2017-10-01
Protein microtubules (MTs) are one of the important intercellular components and have a vital role in the stability and strength of the cells. Due to applied external loads, protein microtubules may be involved buckling phenomenon. Due to impact of protein microtubules in cell reactions, it is important to determine their critical buckling load. Considering nature of protein microtubules, various parameters are effective on microtubules buckling. The small size of microtubules and also lack of uniformity of MTs properties in different directions caused the necessity of accuracy in the analysis of these bio-structure. In fact, microtubules must be considered as a size dependent cylinder, which behave as an orthotropic material. Hence, in the present work using first-order shear deformation model (FSDT), the buckling equations of anisotropic MTs are derived based on new modified couple stress theory (NMCST). After solving the stability equations, the influences of various parameters are measured on the MTs critical buckling load. Copyright © 2017 Elsevier Inc. All rights reserved.
Patrick R. Keller
2018-01-01
Full Text Available Posttraumatic proximal radioulnar synostosis (PPRUS is a severe complication of radial head and neck fractures known to occur after severe injury or operative fixation. Cases of PPRUS occurring after minimally displaced, nonoperatively treated radial neck injuries are, by contrast, extremely rare. Here, we present a pediatric case of PPRUS that developed after a nonoperatively treated minimally displaced radial neck fracture with concomitant olecranon fracture. While more cases are needed to establish the association between this pattern of injury and PPRUS, we recommend that when encountering patients with a minimally displaced radial neck fracture and a concomitant elbow injury, the rare possibility of developing proximal radioulnar synostosis should be considered.
Ozden, Hilmi; Demir, Ahmet; Guven, Gul
2008-01-01
PURPOSE: Radial nerve is closely in contact with the bone in sulcus nervi radialis (SNR). Location of SNR shows ethnic differences. Radial nerve is a big problem in humerus fractures and its surgery. In this study, we aimed to examine if humerus fractures of this region increases the probability...
2015-01-01
Radial head fracture is the most common type of elbow fracture in adults. It results from a fall on an outstretched hand. However, simultaneous bilateral radial head fractures are extremely rare. We report a case of simultaneous bilateral mason type IIb radial head fractures in a young female, which was treated nonoperatively with excellent results
Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes
Tiankui Guo
2017-10-01
Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.
Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets
Tian Jianjun; Pan Dean; Zhou Hao; Yin Fuzheng; Tao Siwu; Zhang Shengen; Qu Xuanhui
2009-01-01
Radially oriented ring 2:17 type SmCo magnets have different microstructure in the radial direction (easy magnetization) and axial direction (hard magnetization). The structure of the cross-section in radial direction is close-packed atomic plane, which shows cellular microstructure. The microstructure of the cross-section in axial direction consists of a mixture of rhombic microstructure and parallel lamella phases. So the magnets have obvious anisotropy of thermal expansion in different directions. The difference of the thermal expansion coefficients reaches the maximum value at 830-860 deg. C, which leads to radial cracks during quenching. The magnets have high brittlement because there are fewer slip systems in crystal structure. The fracture is brittle cleavage fracture.
Transfixation pinning and casting of radial-ulnar fractures in calves: A review of three cases
St-Jean, Guy; Debowes, Richard M.
1992-01-01
We reviewed the medical records of three calves with radial-ulnar fractures which were reduced and stabilized by transfixation pinning and casting. Multiple Steinmann pins were placed transversely through proximal and distal fracture fragments and the pin ends were incorporated in fiberglass cast material after fracture reduction. Cast material was placed from proximal to distal radius and served as an external frame to maintain pin position and fracture reduction.
A case report of an isolated fracture through the radial bicipital tuberosity
Kanta Imao
Full Text Available Introduction: Generally, anatomical reduction of shaft fractures through operative treatment is necessary to restore the anatomical relationship of the forearm bones. However, a number of nerves and vessels are located in the proximal radius, which complicates surgery. In this study, we aimed to reduce postoperative complications by using a posterior approach. Presentation of case: We describe an isolated fracture through the radial bicipital tuberosity in a 69-year-old man caused by direct blunt force and our management of the fracture. The patient underwent an operation for the fracture under brachial plexus block. The injury was explored using the posterior approach, and plate fixation was performed after confirming the absence of obstacles to rotation on pronation and supination. One year later, the patient did not have any difficulties in activities of daily living. Discussion: Since an isolated fracture through the radial bicipital tuberosity is more distal than the radial head and neck and more proximal than a common radius diaphysis fracture, we had to consider a different operative approach. The nerve and blood vessels of the forearm, such as the radial nerve and artery, run in a complicated fashion around the proximal radius; thus, we chose the posterior approach because of its simpler surgical technique and lower complication risk, compared with the anterior approach. Conclusion: Surgeons can obtain a favorable treatment result using the posterior approach to the fracture and reduce complications by ensuring with rigid fixation using a locking plate. Keywords: Radial bicipital tuberosity, Posterior approach, Posterior interosseous nerve, Shaft fracture
Radiographic loss of contact between radial head fracture fragments is moderately reliable
Bruinsma, Wendy E.; Guitton, Thierry; Ring, David; Eng, Kevin; Jokhi, Vispi; Oloruntoba, David O.; Jain, Sanjev; Melvanki, Parag; Frihagen, Frede; McGraw, Iain; Lenzlinger, Philipp; Ponsen, K. J.; Schmidt, Andrew; Ciritsis, Bernhard; Conflitti, Joseph M.; Turina, Matthias; Poolman, Rudolf W.; Liem, Ronald; Gulve, R. S.; Wagg, James; Kloen, Peter; Grosso, Elena; Mormino, Matt; Choudhari, Pradeep; Zura, Robert D.; Pesantez, Rodrigo; Thomas, George; Brink, Peter; Swiontkowski, Marc; Beingessner, Daphne; Schep, Niels; Kanakaris, Nikolaos; Peters, R. W.; Andrew, J.; Trenholm, I.; Mica, Ladislav; Verhofstad, M. H. J.; Taitsman, Lisa; Hernandez, Daniel; Harris, Ian; Egol, Kenneth; Jeray, Kyle; Borris, Lars C.; Barquet, Antonio; Kellam, James; Marsh, John L.; Hobby, Jonathan L.; Eygendaal, Denise; Goslings, J. C.; Kleinlugtenbelt, I. J. V.
2014-01-01
Loss of contact between radial head fracture fragments is strongly associated with other elbow or forearm injuries. If this finding has adequate interobserver reliability, it could help examiners identify and treat associated ligament injuries and fractures (eg, forearm interosseous ligament injury
Transfixation pinning and casting of radial-ulnar fractures in calves: A review of three cases.
St-Jean, G; Debowes, R M
1992-04-01
We reviewed the medical records of three calves with radial-ulnar fractures which were reduced and stabilized by transfixation pinning and casting. Multiple Steinmann pins were placed transversely through proximal and distal fracture fragments and the pin ends were incorporated in fiberglass cast material after fracture reduction. Cast material was placed from proximal to distal radius and served as an external frame to maintain pin position and fracture reduction.At the time of injury, the calves ranged in age from one day to two months and weighed from 37-102 kg. Two fractures were comminuted and one was transverse. All fractures were closed. After surgery, all calves could walk within 24 hours. Radiographic and clinical evidence of fracture healing was present five to seven weeks (mean 6) after surgery. At that time, the pins and cast material were removed. Return to normal function was rapid and judged to be excellent at follow-up evaluation five to nine months later.Advantages of transfixation pinning and casting in management of radial-ulnar fractures include flexibility in pin positioning, adequate maintenance of reduction, early return to weight-bearing status, preservation of joint mobility, and ease of ambulation. The inability to adjust fixation and alignment after cast application is a disadvantage of this technique compared with other external fixators. We concluded that transfixation pinning is a useful means of stabilizing radial-ulnar fractures in pediatric bovine patients.
Radial nerve palsy in mid/distal humeral fractures: is early exploration effective?
Keighley, Geffrey; Hermans, Deborah; Lawton, Vidya; Duckworth, David
2018-03-01
Radial nerve palsies are a common complication with displaced distal humeral fractures. This case series examines the outcomes of early operative exploration and decompression of the nerve with fracture fixation with the view that this provides a solid construct for optimisation of nerve recovery. A total of 10 consecutive patients with a displaced distal humeral fracture and an acute radial nerve palsy were treated by the senior author by open reduction and internal fixation of the distal humerus and exploration and decompression of the radial nerve. Motor function and sensation of the radial nerve was assessed in the post-operative period every 2 months or until full recovery of the radial nerve function had occurred. All patients (100%) had recovery of motor and sensation function of their upper limb in the radial nerve distribution over a 12-month period. Recovery times ranged between 4 and 32 weeks, with the median time to recovery occurring at 26 weeks and the average time to full recovery being 22.9 weeks. Wrist extension recovered by an average of 3 months (range 2-26 weeks) and then finger extension started to recover 2-6 weeks after this. Disability of the arm, shoulder and hand scores ranged from 0 to 11.8 at greater than 1 year post-operatively. Our study demonstrated that early operative exploration of the radial nerve when performing an open stabilization of displaced distal humeral fractures resulted in a 100% recovery of the radial nerve. © 2017 Royal Australasian College of Surgeons.
Trends in the United States in the treatment of distal radial fractures in the elderly.
Chung, Kevin C; Shauver, Melissa J; Birkmeyer, John D
2009-08-01
Traditionally, distal radial fractures in the elderly have been treated nonoperatively with casting. However, since the introduction of the volar locking plating system in 2000, there has been an interest in the use of more aggressive treatment methods. The purpose of the present study was to assess changing trends in the treatment of distal radial fractures in elderly patients in the United States. We evaluated a 5% sample of Medicare data from 1996 to 1997 and a 20% sample from 1998 to 2005. Information on four treatment methods (closed treatment, percutaneous pin fixation, internal fixation, and external fixation) was extracted from the dataset. Other available data were diagnosis, physician specialty, and patient age, sex, and race. We calculated frequencies and rates to compare the utilization of different treatments over time. Over the ten-year time period examined, the rate of internal fixation of distal radial fractures in the elderly increased fivefold, from 3% in 1996 to 16% in 2005. Closed treatment, however, remained the predominant method (used for 82% of the fractures in 1996 and 70% in 2005). Fractures in patients with an age of eighty-five years or more were significantly more likely to be treated in a closed fashion (p < 0.0001). There was a large variation among physician specialties with regard to the fixation methods that were used. Orthopaedic surgeons were significantly more likely to use closed treatment than hand surgeons were, whereas hand surgeons were significantly more likely to use internal fixation than orthopaedic surgeons were. Since 2000, although the majority of distal radial fractures are still treated nonoperatively, there has been an increase in the use of internal fixation and a concurrent decrease in the rate of closed treatment of distal radial fractures in the elderly in the United States.
ARTHROSCOPIC METHOD OF THE RADIAL HEAD FRACTURE OSTEOSYNTHESIS (СASE REPORT
I. A. Kuznetsov
2016-01-01
Full Text Available Radial head fractures constitute about 3% of all fractures and 30% within the group of elbow joint injuries. Conventional open surgical treatment is accompanied by an extensive soft tissue incision and sometimes by capsule release for adequate visualization. Arthroscopic methods feature relatively insignificant soft tissue trauma, allow to reduce pain syndrome in postoperative period and to accelerate rehabilitation. Besides, arthroscopy improves surgical view in cases of intraarticular fractures and facilitates a better anatomical reduction of articular surface. The authors demonstrate a clinical case of a patient with closed fractures of radial head and ulna coronoid process with displacement of left elbow joint fragments where arthroscopic surgery provided for good anatomical and functional results.
Functional Outcome of Internal Fixation of Radial and Ulna Fracture
mehrdad Mansouri
2006-02-01
Conclusion: Anatomic reduction and internal fixation is the standard method for treatment of fractures by displacing radios and ulna in adults. According to results, it seems more intension to motions specially pronation and muscle strengthening foream after surgery will have affect on improving patients’ function specially pronation and Grip strength.
Closed treatment of overriding distal radial fractures without reduction in children.
Crawford, Scott N; Lee, Lorrin S K; Izuka, Byron H
2012-02-01
Traditionally, distal radial fractures with marked displacement and angulation have been treated with closed or open reduction techniques. Reduction maneuvers generally require analgesia and sedation, which increase hospital time, cost, patient risk, and the surgeon's time. In our study, a treatment protocol for pediatric distal radial fractures was used in which the fracture was left shortened in an overriding position and a cast was applied without an attempt at anatomic fracture reduction. Consecutive patients three to ten years of age presenting between 2004 and 2009 with a closed overriding fracture of the distal radial metaphysis were followed prospectively. Our protocol consisted of no analgesia, no sedation, and a short arm fiberglass cast gently molded to correct only angulation. Patients were followed for at least one year. All parents or guardians were given a questionnaire assessing their satisfaction with the treatment. Financial analysis was performed with use of Current Procedural Terminology codes and the average total cost of care. Fifty-one children with an average age of 6.9 years were included in the study. Initial radial shortening averaged 5.0 mm. Initial sagittal and coronal angulation averaged 4.0° and 3.2°, respectively. The average duration of casting was forty-two days. Residual sagittal and coronal angulation at the time of final follow-up averaged 2.2° and 0.8°, respectively. All fifty-one patients achieved clinical and radiographic union with a full range of wrist motion. All parents and guardians answered the questionnaire and were satisfied with the treatment. Cost analysis demonstrated that closed reduction with the patient under conscious sedation or general anesthesia is nearly five to six times more expensive than the treatment used in this study. Adding percutaneous pin fixation increases costs nearly ninefold. This treatment protocol presents an alternative approach to overriding distal radial fractures in children and
CT evaluation of extensor tendon entrapment as a complication of a distal radial fracture in a child
Frawley, Kieran J.; Anton, Christopher G.; Zbojniewicz, Andrew M.; Cornwall, Roger
2011-01-01
Extensor indicis proprius (EIP) entrapment is a rare complication of a distal radial fracture. We report an 11-year-old with limited flexion of her index finger 1 year after a distal radial fracture. The utility of cross-sectional imaging in the diagnosis and preoperative planning of this complication is presented. (orig.)
Tendon transfers in radial nerve palsy with fractures of the humerus ...
regarding nerve repair or tendon transfers. b). Stabilisation of the fracture by internal fixation protects the radial nerve from further damage. c). Early exploration is technically easier and safer. Khan and Birch in their study of iatropathic injuries of peripheral nerves 26 out of 48 (56%) developed lesion following open reduction ...
Neck osteotomy for malunion of neglected radial neck fractures in children: a report of 2 cases.
Ceroni, Dimitri; Campos, José; Dahl-Farhoumand, Agnes; Holveck, Jérôme; Kaelin, André
2010-01-01
Radial neck fractures are a common injury in children as a result of a fall on an extended and supinated outstretched hand. We present 2 cases of osteotomy of the neck of the radius performed in 2 children with neglected radial neck fractures. Preoperatively, both patients complained of pain and severely reduced mobility of the elbow. Surgery was performed at 6 weeks and 3 months, respectively, after the initial injury and the 2 children were reviewed at 6 and 16 months follow-up. Osteotomies healed within the usual time and no avascular necrosis of the radial head, proximal radioulnar synostosis, or myositis ossificans were observed. The Mayo Elbow Performance Index Score improved significantly after the operation with the 2 patients rated as excellent. In this small series, we present a novel technique of proximal osteotomy of the radius to correct this deformity in children. Case series, level IV evidence.
The management of humeral shaft fractures with associated radial nerve palsy: a review of 117 cases.
Bumbasirević, Marko; Lesić, Aleksandar; Bumbasirević, Vesna; Cobeljić, Goran; Milosević, Ivan; Atkinson, Henry Dushan E
2010-04-01
This single center retrospective study reviews the management and outcomes of 117 consecutive patients with humeral shaft fractures and associated radial nerve palsy (RNP) treated over a 20-year period (1986-2006). A total of 101 fractures were managed conservatively and 16 fractures underwent external fixation for poor bony alignment. Sixteen grade 1 and 2 open fractures underwent wound toileting alone. No patients underwent initial radial nerve exploration or opening of the fracture sites. All patients achieved clinical and radiological bony union at a mean of 8 weeks (range 7-12 weeks). There were no complications or pin tract infections in the operated patients. A total of 111 cases had initial spontaneous RNP recovery at a mean of 6 weeks (range 3-24 weeks) with full RNP recovery at a mean of 17 weeks (range 3-70 weeks) post-injury. Fourteen patients had no clinical/EMG signs of nerve activity at 12 weeks and 6 subsequently failed to regain any radial nerve recovery; 2 had late explorations and the lacerated nerves underwent sural nerve cable neurorraphy; and 4 patients underwent delayed tendon transposition 2-3 years after initial injury, with good/excellent functional outcomes. Humeral fractures with associated RNP may be treated expectantly. With low rates of humeral nonunion, 95% spontaneous nerve recovery in closed fractures and 94% in grade 1 and 2 open fractures, one has the opportunity of waiting. If at 10-12 weeks there are no clinical/EMG signs of recovery, then nerve exploration/secondary reconstruction is indicated. Late tendon transfers may also give good/excellent functional results.
Pre-bent elastic stable intramedullary nail fixation for distal radial shaft fractures in children.
Ge, Yi-hua; Wang, Zhi-gang; Cai, Hai-qing; Yang, Jie; Xu, Yun-lan; Li, Yu-chan; Zhang, Yu-chen; Chen, Bo-chang
2010-08-01
To investigate the functional and radiographic outcomes of pre-bent elastic stable intramedullary nail in treatment of distal radial shaft fractures in children. From January 2006 to December 2008, 18 children with distal radial shaft fracture were treated by close reduction and internal fixation with a pre-bent elastic stable intramedullary nail. The age range was from 5 years to 15 years, with an average of 9 years and 8 months. The minimum follow-up was 12 months. All fractures maintained good alignment postoperatively, and 94.4% (17/18) of the patients regained a full range of rotation of the forearm. One patient has limitation of rotation to less than 10°, this had improved by final follow-up. Complications included soft tissue irritation at the site of nail insertion in one patient and transient scar hypersensitivity in another. Fixation with a pre-bent elastic stable intramedullary nail is an effective, safe and convenient method for treating distal radial shaft fractures in children. © 2010 Tianjin Hospital and Blackwell Publishing Asia Pty Ltd.
Influence of Immobilization Time on Functional Outcome in Radial Neck Fractures in Children.
Badoi, Adina; Frech-Dörfler, Martina; Häcker, Frank-Martin; Mayr, Johannes
2016-12-01
Background Radial neck fractures represent 20 to 30% of elbow fractures in children. Incorrect treatment can lead to significant permanent functional impairment. Posttraumatic avascular necrosis may cause a deformity of the radial head and neck. Deformation of the radial head and neck can be more severe after open rather than closed reduction or orthopedic treatment without reduction. The aim of our study was to analyze the influence of immobilization time on functional outcome. Patients and Methods Retrospective, descriptive study of all children who had been treated for a radial neck fracture between 1999 and 2013 at the University Children's Hospital Basel. Patients were allocated to two groups (group 1: patients treated between 1999 and 2008, group 2: patients treated between 2009 and 2013). The fractures were classified according to the classification of Metaizeau. The primary endpoint was the percentage of patients who reached the full range of elbow motion at the end of the treatment period or the last follow-up. Secondary endpoints were immobilization time and number of patients with persistent physical restrictions of the elbow range of motion as well as the type of restrictions and subjective complaints. Results A total of 67 patients treated for radial neck fracture were included in the first group (1999-2008). A total of 47 patients were allocated to the second group (2009-2013). Overall, 59 patients in group 1 and 39 patients in group 2 were treated nonoperatively. Average immobilization time was 22.7 days (range, 6-60 days) in group 1 and 13.2 days (range, 0-27 days) in group 2. Full range of motion was observed in 50 to 72.7% of patients in group 1 and in 71.4 to 92% of patients in group 2, depending on the grade of fracture displacement. Overall, 21 patients (31%) of group 1 showed a persistent functional restriction. In group 2, only six patients (12%) suffered from a persistent functional restriction of the elbow range of motion
Experimental and numerical study of radial lateral fracturing for coalbed methane
Fu, Xuan; Li, Gensheng; Huang, Zhongwei; Liang, Yuesong; Xu, Zhengming; Jin, Xiao
2015-01-01
Drilling ultra-short radius horizontal laterals in a vertical well and then operating hydraulic fracturing (radial lateral fracturing, abbreviated as RLF) is proposed as a prospective novel method to increase the single-well productivity for coalbed methane (CBM) development. The objective of this article is to find the best fracture network profile RLF can generate and what kind of formation is suitable for this fracturing technique. Experiments using a true tri-axial fracturing simulation system are designed to analyse the influence of different lateral length, count and azimuth on the fracturing initiation and propagation. A numerical simulation is also carried out to study the sensitivity of the coal integrity and in situ stress state on the fracture initiation type. Our work shows that: the best effect of RLF is achieved when it initiates from the bedding plane where the laterals lie and forms a fracture network with one main horizontal fracture connecting multiple vertical fractures; the breakdown and injection pressure will be decreased by increasing the lateral length and count; increasing the lateral length can enlarge the horizontal fracture area; the optimal lateral design for horizontal initiation is four laterals with the phase of 90° and each lateral is at 45° from the horizontal stress; RLF is suitable for the intact coal seams in which cracks or cleats are not well developed and the overburden stress should be close to or less than the maximum horizontal stress. This paper will provide the experimental support and theoretical bases for CBM RLF design. (paper)
Chen, Hongwei; Wang, Ziyang; Shang, Yongjun
2018-06-01
To compare clinical outcomes of unipolar and bipolar radial head prosthesis in the treatment of patients with radial head fracture. Medline, Cochrane, EMBASE, Google Scholar databases were searched until April 18, 2016 using the following search terms: radial head fracture, elbow fracture, radial head arthroplasty, implants, prosthesis, unipolar, bipolar, cemented, and press-fit. Randomized controlled trials, retrospective, and cohort studies were included. The Mayo elbow performance score (MEPS), disabilities of the arm, shoulder, and hand (DASH) score, radiologic assessment, ROM, and grip strength following elbow replacement were similar between prosthetic devices. The pooled mean excellent/good ranking of MEPS was 0.78 for unipolar and 0.73 for bipolar radial head arthroplasty, and the pooled mean MEPS was 86.9 and 79.9, respectively. DASH scores for unipolar and bipolar prosthesis were 19.0 and 16.3, respectively. Range of motion outcomes were similar between groups, with both groups have comparable risk of flexion arc, flexion, extension deficit, rotation arc, pronation, and supination (p values bipolar prosthesis). However, bipolar radial head prosthesis was associated with an increased chance of heterotopic ossification and lucency (p values ≤0.049) while unipolar prosthesis was not (p values ≥0.088). Both groups had risk for development of capitellar osteopenia or erosion/wear (p values ≤0.039). Unipolar and bipolar radial head prostheses were similar with respect to clinical outcomes. Additional comparative studies are necessary to further compare different radial head prostheses used to treat radial head fracture.
Post-buckling analysis of composite beams: A simple intuitive ...
and lateral displacement functions at any discrete location of the beam. ..... shells under combined axial compression and radial pressure. ... Razakamiadana A and Zidi M 1999 Buckling and post-buckling of concentric cylindrical tubes under.
Gökkus, Kemal; Sagtas, Ergin; Kesgin, Engin; Aydin, Ahmet Turan
2018-01-01
Intra-articular distal radius fractures have long been massively discussed in the literature, but regarding to fractures that possess rotated volar medial fragment in the joint a few amount papers has been written. In this article, we would like to emphasize the significance of the rotated palmar medial (lunate facet) fragment. A 39-year-old man fell from a height of about 3 m and landed on his right outstretched hand; within 40 min, he arrived at our clinic presenting with a severe pain and swelling in his right wrist. Initial X-rays of the wrist revealed dorsal subluxation of the radiocarpal joint with dorsal comminution of the radial articular surface and fracture of the radial styloid process, with (nearly inverted) ~ 140-150° rotation of the palmar medial fragment. With an additional volar approach, the fragment reduced and stabilized with two K-wires and wrist immobilized in external fixator. The patient returned to daily activities without any discomfort and pain after the 1 year from the surgery. Overlooking of palmar rotated osteochondral fragment will cause deficiency to build proper pre-operative strategy to approach the reduction of the fragment. The incompetence of reduction will deteriorate the articular surface and lead to early osteoarthritis of the wrist. The surgeon should detect this fragment and should be familiar with volar approaches of the wrist. Above average surgical experience would be needed for successful reduction.
Sreenivas, T; Menon, Jagdish; Nataraj, A R
2013-12-01
Heterotopic ossification around the elbow can lead to considerable functional disability. We describe a case of a 42-year-old man who developed heterotopic ossification of his elbow after closed reduction of the elbow dislocation and radial neck fracture and retrograde intramedullary nailing for radial neck fracture. During the follow-up after initial surgery, movements of the elbow were gradually deteriorated and diagnosed as heterotopic ossification of the elbow. Implant removal, radial head excision along with heterotopic mass, and also interposition of the anconeus muscle resulted in improvement of his elbow mobility. At 18 months of follow-up, patient had elbow flexion arc of 15°-110°, 70° of supination, and 50° of pronation without recurrence of heterotopic ossification. The uniqueness of this case lies in the treatment of heterotopic ossification of the elbow to prevent its recurrence, which was developed after retrograde intramedullary nailing for radial neck fracture following closed reduction.
JOHN WILLIAM BRANCH
2007-01-01
Full Text Available La creación de modelos de objetos reales es una tarea compleja para la cual se ha visto que el uso de técnicas tradicionales de modelamiento tiene restricciones. Para resolver algunos de estos problemas, los sensores de rango basados en láser se usan con frecuencia para muestrear la superficie de un objeto desde varios puntos de vista, lo que resulta en un conjunto de imágenes de rango que son registradas e integradas en un modelo final triangulado. En la práctica, debido a las propiedades reflectivas de la superficie, las oclusiones, y limitaciones de acceso, ciertas áreas de la superficie del objeto usualmente no son muestreadas, dejando huecos que pueden crear efectos indeseables en el modelo integrado. En este trabajo, presentamos un nuevo algoritmo para el llenado de huecos a partir de modelos triangulados. El algoritmo comienza localizando la frontera de las regiones donde están los huecos. Un hueco consiste de un camino cerrado de bordes de los triángulos en la frontera que tienen al menos un borde que no es compartido con ningún otro triangulo. El borde del hueco es entonces adaptado mediante un B-Spline donde la variación promedio de la torsión del la aproximación del B-spline es calculada. Utilizando un simple umbral de la variación promedio a lo largo del borde, se puede clasificar automáticamente, entre huecos reales o generados por intervención humana. Siguiendo este proceso de clasificación, se usa entonces una versión automatizada del interpolador de funciones de base radial para llenar el interior del hueco usando los bordes vecinos.
Mansat, Pierre
2016-01-01
Radial head arthroplasty is used to stabilize the joint after a complex acute radial head fracture that is not amenable for fixation or to treat sequelae of radial head fractures. Most of the currently used radial head prostheses are metallic monoblock implants that are not consistently adaptable and raise technical challenges since their implantation requires lateral elbow subluxation. Metallic modular radial head arthroplasty implants available in various head and stem sizes have been devel...
Sproule, James A
2011-01-01
Elastic stable intramedullary nail fixation has become established as an acceptable method of treatment for diaphyseal fractures of both forearm bones in the paediatric population. It is considered safe, minimally invasive and does not compromise physeal growth. We report a case of delayed rupture of extensor pollicis longus due to attrition over the sharp edges of a protruding nail end after elastic stable intramedullary nailing of a paediatric radial diaphyseal fracture.
Zollinger, Paul E; Kreis, Robert W; van der Meulen, Hub G; van der Elst, Maarten; Breederveld, Roelf S; Tuinebreijer, Wim E
2010-02-17
Operative and conservative treatment of wrist fractures might lead to complex regional pain syndrome (CRPS) type I.In our multicenter dose response study in which patients with distal radial fractures were randomly allocated to placebo or vitamin C in a daily dose of 200mg, 500mg or 1500mg during 50 days, an operated subgroup was analyzed.48 (of 427) fractures) were operated (11.2%). Twenty-nine patients (60%) were treated with external fixation, 14 patients (29%) with K-wiring according to Kapandji and five patients (10%) with internal plate fixation. The 379 remaining patients were treated with a plaster.In the operated group of patients who received vitamin C no CRPS (0/37) was seen in comparison with one case of CRPS (Kapandji technique) in the operated group who received placebo (1/11 = 9%, p=.23). There was no CRPS after external fixation.In the conservatively treated group 17 cases of CRPS (17/379 = 4.5%) occurred in comparison with one in case of CRPS in the operated group (1/48 = 2.1%, p=.71).External fixation doesn't necessarily lead to a higher incidence of CRPS in distal radial fractures. Vitamin C may also play a role in this. This subgroup analysis in operated distal radial fractures showed no CRPS occurrence with vitamin C prophylaxis.
Buckling determination in reflected systems, program FLUXFIT
Sotic, O [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)
1971-07-01
An improvement in accuracy of determining radial and axial buckling from foil activation distributions measured in reflected cylindrical systems is given. resultant activities are fitted to radial and axial spatial functions derived from homogeneous diffusion theory. A Fortran program FLUXFIT based on the derived method is included. (author)
Amir R. Kachooei
2017-11-01
Full Text Available Background: To study if patients that have a second radiograph 2 or more years after nonoperative treatment of an isolated radial head fracture have radiocapitellar osteoarthritis (RC OA. Methods: We used the database of 3 academic hospitals in one health system from 1988 to 2013 to find patients with isolated radial head fractures (no associated ligament injury or fracture that had a second elbow radiograph after more than 2 years from the initial injury. Of 887 patients with isolated radial head fractures, 54 (6% had an accessible second radiograph for reasons of a second injury (57%, pain (30%, or follow-up visit (13%. Two orthopedic surgeons independently classified the radial head fractures on the initial radiographs using the Broberg and Morrey modified Mason classification, and assessed the development of RC OA on the final radiograph using a binary system (yes/no. Results: Four out of 54 (7.5% patients had RC OA, one with isolated RC arthrosis that seemed related to capitellar cartilage injury, and 3 that presented with pain and had global OA (likely primary osteoarthritis. Conclusion: With the caveat that some percentage of patients may have left our health system during the study period, about 1 in 887 patients (0.1% returns with isolated radiocapitellar arthritis after an isolated radial head fracture, and this may relate to capitellar injury rather than attrition. Patients with isolated radial head fractures can consider post-traumatic radiocapitellar arthritis a negligible risk.
Burkhart, Klaus Josef; Mueller, Lars P; Krezdorn, David; Appelmann, Philipp; Prommersberger, Karl J; Sternstein, Werner; Rommens, Pol M
2007-12-01
Open reduction and internal fixation of radial neck fractures can lead to secondary loss of reduction and nonunion due to insufficient stability. Nevertheless, there are only a few biomechanical studies about the stability achieved by different osteosynthesis constructs. Forty-eight formalin-fixed, human proximal radii were divided into 6 groups according to their bone density (measured by dual-energy x-ray absorptiometry). A 2.7-mm gap osteotomy was performed to simulate an unstable radial neck fracture, which was fixed with 3 nonlocking implants: a 2.4-mm T plate, a 2.4-mm blade plate, and 2.0-mm crossed screws, and 3 locking plates: a 2.0-mm LCP T plate, a 2.0-mm 6x2 grid plate, and a 2.0-mm radial head plate. Implants were tested under axial (N/mm) and torsional (Ncm/ degrees ) loads with a servohydraulic materials testing machine. The radial head plate was significantly stiffer than all other implants under axial as well as under torsional loads, with values of 36 N/mm and 13 Ncm/ degrees . The second-stiffest implant was the blade plate, with values of 20 N/mm and 6 Ncm/ degrees . The weakest implants were the 2.0-mm LCP, with values of 6 N/mm and 2 Ncm/ degrees , and the 2.0-mm crossed screws, with values of 18 N/mm and 2 Ncm/ degrees . The 2.4-mm T plate, with values of 14 N/mm and 4 Ncm/ degrees , and the 2.0-mm grid plate, with values of 8 N/mm and 4 Ncm/ degrees came to lie in the midfield. The 2.0-mm angle-stable plates-depending on their design-allow fixation with comparable or even higher stability than the bulky 2.4-mm nonlocking implants and 2.0-mm crossed screws.
Circumferential buckling instability of a growing cylindrical tube
Moulton, D.E.; Goriely, A.
2011-01-01
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common
Ratajczak, Karina; Płomiński, Janusz
2015-01-01
The most common fracture of the distal end of the radius is Colles' fracture. Treatment modalities available for use in hand rehabilitation after injury include massage. The aim of this study was to evaluate the effect of isometric massage on the recovery of hand function in patients with Colles fractures. For this purpose, the strength of the finger flexors was assessed as an objective criterion for the evaluation of hand function. The study involved 40 patients, randomly divided into Group A of 20 patients and Group B of 20 patients. All patients received physical therapy and exercised individually with a physiotherapist. Isometric massage was additionally used in Group A. Global grip strength was assessed using a pneumatic force meter on the first and last day of therapy. Statistical analysis was performed using STATISTICA. Statistical significance was defined as a P value of less than 0.05. In both groups, global grip strength increased significantly after the therapy. There was no statistically significant difference between the groups. The men and women in both groups equally improved grip strength. A statistically significant difference was demonstrated between younger and older patients, with younger patients achieving greater gains in global grip strength in both groups. The incorporation of isometric massage in the rehabilitation plan of patients after a distal radial fracture did not significantly contribute to faster recovery of hand function or improve their quality of life.
Bennett, J.G.; Fly, G.W.; Baker, W.E.
1984-01-01
The Steel Containment Buckling program is in its fourth phase of work directed at the evaluation of the effects of the structural failure mode of steel containments when the membrane stresses are compressive. The structural failure mode for this state of stress is instability or buckling. The program to date has investigated: (1) the effect on overall buckling capacity of the ASME area replacement method for reinforcing around circular penetrations; (2) a set of benchmark experiments on ring-stiffened shells having reinforced and framed penetrations; (3) large and small scale experiments on knuckle region buckling from internal pressure and post-buckling behavior to failure for vessel heads having torispherical geometries; and (4) buckling under time-dependent loadings (dynamic buckling). The first two investigations are complete, the knuckle buckling experimental efforts are complete with data analysis and reporting in progress, and the dynamic buckling experimental and analytical work is in progress
Habibi, M.; Rahmani, Y.; Bonn, D.; Ribe, N.M.
2010-01-01
Under appropriate conditions, a column of viscous liquid falling onto a rigid surface undergoes a buckling instability. Here we show experimentally and theoretically that liquid buckling exhibits a hitherto unsuspected complexity involving three different modes—viscous, gravitational, and
Circumferential buckling instability of a growing cylindrical tube
Moulton, D.E.
2011-03-01
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.
Buckling of Bucket Foundations
Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2012-01-01
In this paper, the risk of structural buckling during installation of large-diameter bucket foundations is addressed using numerical methods. Imperfect geometries are introduced based on the pre-buckling mode shapes from a linear Eigenvalue buckling analysis. Various imperfect geometries are intr...
Bove, Jeppe; Viberg, Bjarke; Wied Greisen, Pernille
Background: Recently there has been an increasing interest in open reduction and internal fixation of distal radius fractures. Even so further studies are still needed. Purpose: To document the functional outcome and identify complica- tions among patients treated with a volar locking plate (DVR...
Bentohami, Abdelali; de Korte, Niels; Sosef, Nico; Goslings, Johan Carel; Bijlsma, Taco; Schep, Niels
2014-01-20
Up to 30% of patients suffer from long-term functional restrictions following conservative treatment of distal radius fractures. Whether duration of cast immobilisation influences functional outcome remains unclear. The aim of the study is to evaluate whether the duration of immobilization of non or minimally displaced distal radial fractures can be safely reduced. We will compare three weeks of plaster cast immobilization with five weeks of plaster cast immobilization in adult patient with non or minimally displaced distal radial fractures. a prospective randomized clinical trial. adult (>18 years) (independent in activities of daily living) patients with a non/minimal displaced distal radius fracture (dorsal angulation 15°, ulnar positive variance immobilization versus five weeks of plaster cast immobilization.Main study parameters: primary outcome parameters: Patient related wrist evaluation (PRWE) Quick Disability of Arm, Shoulder and Hand (QUICKDASH) score after a one year follow-up, and secondary parameters: range of motion, pain level (VAS) and complications. The expectation of this study is that shorter duration of plaster cast immobilisation is beneficial for the patient with a distal radius fracture. This risk of specific complications is low and generally similar in both treatment options. Moreover, the burden of the study is not much higher compared to standard treatment. Follow-up is standardized according to current trauma guidelines. Literature indicates that both treatment options from the study are accepted for displaced distal radius fractures. No clear advantage for one treatment options is found at present in the literature, although there is no level I evidence present. This trial will provide level-1 evidence for the comparison of consolidation and functional outcome between two treatment options for non-displaced distal radial fractures. The gathered data may support the development of a clinical guideline for conservative treatment of
Gustafsson, E.; Nordqvist, R.
1993-10-01
The performance and results of a radially converging tracer test in a low-angle major fracture zone in crystalline rock are described. The extensive, about 100 m thick, zone 2 was encountered by means of borehole investigations at depths ranging from 100 to 250 metres at the Finnsjon site, central eastern Sweden. The zone studied (zone 2) consists of highly conductive, metre thick interconnected minor shear and fracture zones (sub-zones) with low conductive rock in between. The objective of the tracer test was primarily to determine flow and transport characteristics in a major fracture zone. Secondly new equipment, experimental design and methods of interpretation were developed, tested and improved. The converging flow field was created by pumping in a central borehole from a packed-off interval enclosing the whole thickness of zone 2. Tracer breakthrough was registered from all nine injection points, with first arrivals ranging from 24 to 3200 hours. Evaluated flow and transport parameters included; flow porosity, dispersivity, flow wetted surface, fracture aperture and hydraulic conductivity in fracture flow paths. Directional variations were found in the flow and transport parameters determined, which is concluded to be due to heterogeneity and/or anisotropy. This conditions is more pronounced at depth in zone 2. The results from the tracer test also clearly show that the upper boundary of zone 2 is highly conductive and consistent over hundreds of metres. Within zone 2, and between upper and lower margins, interconnected discrete minor shear and fracture zones (sub-zones) constitute flow paths of considerable variable residence times. The dispersion within the sub-zones of zone 2, expressed as Peclet numbers ranged from 16 to 40. Flow porosity was determined to be 0.001-0.05 in the upper sub-zone and 0.01-0.1 in the intermediate and lower ones and flow wetted surface area per volume of rock was calculated to be within 1-92 m 2 /m 3 . 68 refs, 61 figs, 40 tabs
Medlock, G; Smith, M; Johnstone, A J
2018-07-01
Purpose Multifragmentary intra-articular fractures displaced in multiple planes are a challenge. We use a reproducible technique of fracture and articular reduction using an initial volar approach targeting reduction in the volar lunate facet first with plate and unicortical locking screws. This creates a template for reduction in dorsal fragments through a dorsal approach. Our study investigated the radiological, clinical, and functional outcomes of patients treated with this technique. Materials and Methods We reviewed the postoperative radiographs and notes of 18 patients that had this method of fixation between the years 2008 and 2015, the mean age being 43. These patients were reviewed functionally on average 2 years and 3 months following their definitive operation. Results Normal alignment and length to the distal radius were restored with on average a 0.6 mm articular step. The average range of motion was 64% and preservation of grip strength was 71% compared with the uninjured wrist. Functional assessment averages were 29 for both the quick Disabilities of the Arm, Shoulder and Hand (DASH) and for Patient Rated Wrist Evaluation. The modified system of Green and O'Brien had results of good in 10, fair in 7, and poor in 1. With respect to the Gartland and Werley system, three patients had an excellent result, four had a good result, six had a fair result, and five had a poor result. The mean arthritic grading was 1 (grading 0-3) according to Knirk and Jupiter. Conclusion This reproducible technique provides an option for these devastating fractures providing a functioning wrist with all of the patients returning to their original form of employment.
Gupta Vinay
2013-06-01
Full Text Available 【Abstract】Dislocation of the radial head in adults is uncommon. A simultaneous dislocation of the radial head and fracture of the ipsilateral distal end of radius with no other associated injuries is extremely rare. As far as we know, such an injury after an unusual mode of injury has been seldom reported in the English literature. We report such a case without any associated injuries or comorbidity. Closed reduction was performed within two hours after injury and results were satisfactory. Immobilisation was continued for 3 weeks. Gradual mobilisation was started after removal of the plaster under the supervision of a physiotherapist. At 6 months’ follow-up, the patient had no residual pain at the elbow with full flexion & extension. Almost full supination with a restriction of last 10 degrees of pronation was achieved. There was no evidence of instability of the elbow. Key words: Radial heads; Dislocations; Radius fractures
Longitudinal recovery following distal radial fractures managed with volar plate fixation.
Stinton, S B; Graham, P L; Moloney, N A; Maclachlan, L R; Edgar, D W; Pappas, E
2017-12-01
To synthesise the literature and perform a meta-analysis detailing the longitudinal recovery in the first two years following a distal radius fracture (DRF) managed with volar plate fixation. Three databases were searched to identify relevant articles. Following eligibility screening and quality assessment, data were extracted and outcomes were assimilated at the post-operative time points of interest. A state-of-the-art longitudinal mixed-effects meta-analysis model was employed to analyse the data. The search identified 5698 articles, of which 46 study reports met the selection criteria. High levels of disability and impairment were reported in the immediate post-operative period with subsequently a rapid initial improvement followed by more gradual improvement for up to one year. The results highlight that the period associated with the greatest physical recovery is in the first three months and suggest that the endpoint of treatment outcomes is best measured at one year post-surgery. Clinically meaningful improvements in outcomes can be expected for 12 months, after which progress plateaus and reaches normal values. This paper adopted a novel approach to meta-analyses in that the research question was of a longitudinal nature, which required a unique method of statistical analysis. Cite this article: Bone Joint J 2017;99-B:1665-76. ©2017 The British Editorial Society of Bone & Joint Surgery.
Brehmer, Jess L; Husband, Jeffrey B
2014-10-01
There are relatively few studies in the literature that specifically evaluate accelerated rehabilitation protocols for distal radial fractures treated with open reduction and internal fixation (ORIF). The purpose of this study was to compare the early postoperative outcomes (at zero to twelve weeks postoperatively) of patients enrolled in an accelerated rehabilitation protocol with those of patients enrolled in a standard rehabilitation protocol following ORIF for a distal radial fracture. We hypothesized that patients with accelerated rehabilitation after volar ORIF for a distal radial fracture would have an earlier return to function compared with patients who followed a standard protocol. From November 2007 to November 2010, eighty-one patients with an unstable distal radial fracture were prospectively randomized to follow either an accelerated or a standard rehabilitation protocol after undergoing ORIF with a volar plate for a distal radial fracture. Both groups began with gentle active range of motion at three to five days postoperatively. At two weeks, the accelerated group initiated wrist/forearm passive range of motion and strengthening exercises, whereas the standard group initiated passive range of motion and strengthening at six weeks postoperatively. Patients were assessed at three to five days, two weeks, three weeks, four weeks, six weeks, eight weeks, twelve weeks, and six months postoperatively. Outcomes included Disabilities of the Arm, Shoulder and Hand (DASH) scores (primary outcome) and measurements of wrist flexion/extension, supination, pronation, grip strength, and palmar pinch. The patients in the accelerated group had better mobility, strength, and DASH scores at the early postoperative time points (zero to eight weeks postoperatively) compared with the patients in the standard rehabilitation group. The difference between the groups was both clinically relevant and statistically significant. Patients who follow an accelerated rehabilitation
Shama, Mohamed
2013-01-01
Buckling of Ship Structures presents a comprehensive analysis of the buckling problem of ship structural members. A full analysis of the various types of loadings and stresses imposed on ship plating and primary and secondary structural members is given. The main causes and consequences of the buckling mode of failure of ship structure and the methods commonly used to control buckling failure are clarified. This book contains the main equations required to determine the critical buckling stresses for both ship plating and the primary and secondary stiffening structural members. The critical buckling stresses are given for ship plating subjected to the induced various types of loadings and having the most common boundary conditions encountered in ship structures. The text bridges the gap existing in most books covering the subject of buckling of ship structures in the classical analytical format, by putting the emphasis on the practical methods required to ensure safety against buckling of ship structur...
Chen, Weiwei; Huang, Hao; Chen, Rong; Feng, Shangyuan; Yu, Yun; Lin, Duo; Lin, Jia
2014-11-01
This study aimed to assess, through surface-enhanced Raman scattering (SERS) spectroscopy, the incorporation of calcium hydroxyapatite (CHA ~960 cm-1) and other biochemical substances in the repair of complete radial fractures in rabbits treated with or without Huo-Xue-Hua-Yu decoction (HXHYD) therapy. A total of 18 rabbits with complete radial fractures were randomly divided into two groups; one group was treated with HXHYD therapy and the other without therapy acted as a control. The animals were sacrificed at 15, 30 and 45 d after surgery. Specimens were routinely prepared for SERS measurement and high quality SERS spectra from a mixture of bone tissues and silver nanoparticles were obtained. The mineral-to-matrix ratios from the control and treated groups were calculated. Results showed that both deposition content of CHA measured by SERS spectroscopy and the mineral-to-matrix ratio in the treated group were always greater than those of the control group during the experiment, demonstrating that HXHYD therapy is effective in improving fracture healing and that SERS spectroscopy might be a novel tool to assess fracture healing.
Chen, Weiwei; Huang, Hao; Yu, Yun; Lin, Duo; Chen, Rong; Feng, Shangyuan; Lin, Jia
2014-01-01
This study aimed to assess, through surface-enhanced Raman scattering (SERS) spectroscopy, the incorporation of calcium hydroxyapatite (CHA ∼960 cm −1 ) and other biochemical substances in the repair of complete radial fractures in rabbits treated with or without Huo–Xue–Hua–Yu decoction (HXHYD) therapy. A total of 18 rabbits with complete radial fractures were randomly divided into two groups; one group was treated with HXHYD therapy and the other without therapy acted as a control. The animals were sacrificed at 15, 30 and 45 d after surgery. Specimens were routinely prepared for SERS measurement and high quality SERS spectra from a mixture of bone tissues and silver nanoparticles were obtained. The mineral-to-matrix ratios from the control and treated groups were calculated. Results showed that both deposition content of CHA measured by SERS spectroscopy and the mineral-to-matrix ratio in the treated group were always greater than those of the control group during the experiment, demonstrating that HXHYD therapy is effective in improving fracture healing and that SERS spectroscopy might be a novel tool to assess fracture healing. (letter)
Shell Buckling Knockdown Factors
National Aeronautics and Space Administration — The Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment #: 07-010-E, was established in March of 2007 by the NESC in...
Fu, Michael C; Hendel, Michael D; Chen, Xiang; Warren, Russell F; Dines, David M; Gulotta, Lawrence V
2017-12-01
Radial nerve injury is a rare but clinically significant complication of revision shoulder arthroplasty and fixation of native and periprosthetic proximal humeral fractures. Understanding of the anatomic relationship between the radial nerve as it enters the humeral spiral groove and anterior shoulder landmarks in a deltopectoral approach is necessary to avoid iatrogenic radial nerve injury. Eight forequarter cadaveric specimens were dissected through a deltopectoral approach. Distances between the radial nerve entry into the proximal spiral groove and the coracoid process, distal lesser tuberosity/inferior subscapularis insertion, superior latissimus insertion, and inferior latissimus insertion were measured. Means, standard deviations, and ranges were determined for each distance. The radial nerve entry into the proximal spiral groove averaged 133.1 mm (range, 110.3-153.0 mm) from the coracoid process, 101.9 mm (range, 76.5-124.3 mm) from the distal lesser tuberosity/inferior subscapularis insertion, 81.0 mm (range, 63.4-101.5 mm) from the superior latissimus insertion, and 39.6 mm (range, 25.5-55.4 mm) from the inferior latissimus insertion. The proximal spiral groove was distal to the inferior latissimus insertion in all specimens. The risk of iatrogenic injury to the radial nerve at the spiral groove may be minimized through proper identification and protection or avoidance of circumferential fixation. However, if encircling fixation with cerclage cables is necessary, instrumentation proximal to the inferior edge of the latissimus dorsi insertion may reduce the risk of radial nerve injury. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Buckling strength of spherical shells under combined loads
Nagashima, H.; Kokubo, K.; Takayanagi, M.; Hayasaka, Y.; Kume, T.; Nagata, T.
1995-01-01
Many studies on buckling of cylindrical shells have been conducted, and many buckling evaluation equations have been proposed for actual plant designs; however, buckling of spherical shells under combined horizontal and vertical loads cannot be evaluated due to insufficient data. There is a particular lack of buckling data for spherical shells under lateral loads. To establish a method for estimating the buckling strength of spherical shells, we investigate the interactions between horizontal and vertical (compressive tensile) loads by conducting buckling tests. Applying several combinations of these loads in tests and using computer linear analysis, we obtain interaction curves. This study reports on the buckling tests conducted using spherical shell 1120 mm in dia., 0.7 mm thick and 696 mm high, which are shaped individually by press-forming and finally joined together by four meridional welds, using a specially made jig. Initial imperfections before testing and local deformations after each loading increment during testing are measured with special measuring equipment, and the interaction curve of horizontal and vertical loads and effect of imperfection on the buckling strength of spherical shells are obtained. Nonlinear FEM programs are developed using an 8-node isoparametric shell element and a four-node quadrilateral element of C 0 type with reduced integration based upon a Mindlin-Reissner theory which includes transverse shear. Actual initial imperfections are generally in irregular patterns. Thus, there may be several definitions of the equivalent magnitudes of initial imperfections related to buckling loads. Equivalent magnitudes have no practical meaning unless they can be obtained easily not only for small structures such as test shells but also for large actual structures. In the present study, we define the equivalent magnitude of initial imperfections as the maximum local ruggedness measured radially from a circular temperature having a radius equal
Krol, R. G.; Bhandari, M.; Goslings, J. C.; Poolman, R. W.; Scholtes, V. A. B.
2018-01-01
Objectives The patient-rated wrist evaluation (PRWE) and the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire are patient-reported outcome measures (PROMs) used for clinical and research purposes. Methodological high-quality clinimetric studies that determine the measurement properties of these PROMs when used in patients with a distal radial fracture are lacking. This study aimed to validate the PRWE and DASH in Dutch patients with a displaced distal radial fracture (DRF). Methods The intraclass correlation coefficient (ICC) was used for test-retest reliability, between PROMs completed twice with a two-week interval at six to eight months after DRF. Internal consistency was determined using Cronbach’s α for the dimensions found in the factor analysis. The measurement error was expressed by the smallest detectable change (SDC). A semi-structured interview was conducted between eight and 12 weeks after DRF to assess the content validity. Results A total of 119 patients (mean age 58 years (sd 15)), 74% female, completed PROMs at a mean time of six months (sd 1) post-fracture. One overall meaningful dimension was found for the PRWE and the DASH. Internal consistency was excellent for both PROMs (Cronbach’s α 0.96 (PRWE) and 0.97 (DASH)). Test-retest reliability was good for the PRWE (ICC 0.87) and excellent for the DASH (ICC 0.91). The SDC was 20 for the PRWE and 14 for the DASH. No floor or ceiling effects were found. The content validity was good for both questionnaires. Conclusion The PRWE and DASH are valid and reliable PROMs in assessing function and disability in Dutch patients with a displaced DRF. However, due to the high SDC, the PRWE and DASH are less useful for individual patients with a distal radial fracture in clinical practice. Cite this article: Y. V. Kleinlugtenbelt, R. G. Krol, M. Bhandari, J. C. Goslings, R. W. Poolman, V. A. B. Scholtes. Are the patient-rated wrist evaluation (PRWE) and the disabilities of the arm, shoulder and
Rutherford, D J; Bladon, B; Rogers, C W
2007-04-01
To describe outcomes for horses diagnosed with incomplete, non-displaced fractures of the frontal plane of the radial facet (INFR) of the third carpal bone (C3) treated by placement of a lag screw across the fracture under arthroscopic guidance. Horses (n=13) diagnosed with INFR and treated between December 1999 and January 2005 using a lag screw placed over the fracture were studied. For each case, five horses matched for sire, age and sex which were not known to have INFR were sought for comparison. Racing performance data were collected from a commercial online database. The racing performance of cases pre- and post-operatively, and of cases and matched horses in the post-operative period was compared. Sixteen INFR were found in the 13 horses. Radiographic evidence of healed fracture lines 2-4 months after surgery was seen in 11/16 (69%) fractures; 11/13 (85%) cases raced again after a median recovery period of 292 (range 149-681) days. Treatment was considered successful in 9/13 (69%) cases, which were still in training or had been retired for reasons other than lameness localised to the middle carpal joint at the end of the study period. Just 6/13 (46%) cases had raced prior to injury. The racing ability pre- and post-operatively of five cases was compared, three (60%) of which performed better post-operatively than they had before. There was no significant difference in racing longevity or ability post-operatively between patients and matched (control) horses. Post-operatively, there was little difference in the racing performance between horses diagnosed with INFR which had a lag screw placed across the fracture line and horses matched for sire, age and sex which were not known to have INFR. Horses which were diagnosed with INFR of C3 and had a lag screw placed across the fracture had a good prognosis for future racing performance.
Stone, C.M.; Nickell, R.E.
1977-01-01
Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading
Cellular buckling in long structures
Hunt, G.W.; Peletier, M.A.; Champneys, A.R.; Woods, P.D.; Wadee, M.A.; Budd, C.J.; Lord, G.J.
2000-01-01
A long structural system with an unstable (subcritical)post-buckling response that subsequently restabilizes typically deformsin a cellular manner, with localized buckles first forming and thenlocking up in sequence. As buckling continues over a growing number ofcells, the response can be described
Ridley, Taylor J; Freking, Will; Erickson, Lauren O; Ward, Christina Marie
2017-07-01
To determine whether there is a difference in the incidence of infection between exposed and buried K-wires when used to treat phalangeal, metacarpal, and distal radius fractures. We conducted a retrospective review identifying all patients aged greater than 16 years who underwent fixation of phalangeal, metacarpal, or distal radius fractures with K-wires between 2007 and 2015. We recorded patient demographic data, fracture location, number of K-wires used, whether K-wires were buried or left exposed, and duration of K-wire placement. A total of 695 patients met inclusion criteria. Surgeons buried K-wires in 207 patients and left K-wires exposed in 488. Infections occurred more frequently in exposed K-wire cases than in buried K-wire ones. Subgroup analysis based on fracture location revealed a significantly increased risk of being treated for infection when exposed K-wires were used for metacarpal fractures. Patients with exposed K-wires for fixation of phalangeal, metacarpal, or distal radius fractures were more likely to be treated for a pin-site infection than those with K-wires buried beneath the skin. Metacarpal fractures treated with exposed K-wires were 2 times more likely to be treated for a pin-site infection (17.6% of exposed K wire cases vs 8.7% of buried K wire cases). Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Creep buckling of shell structures
Miyazaki, Noriyuki; Hagihara, Seiya
2015-01-01
The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)
Butler, T.A.; Baker, W.E.
1987-01-01
Two aspects of buckling of a free-standing nuclear containment building were investigated in a combined experimental and analytical program. In the first part of the study, the response of a scale model of a containment building to dynamic base excitation is investigated. A simple harmonic signal was used for preliminary studies followed by experiments with scaled earthquake signals as the excitation source. The experiments and accompanying analyses indicate that the scale model response to earthquake-type excitations is very complex and that current analytical methods may require that a dynamic capacity reduction factor be incorporated. The second part of the study quantified the effects of framing at large penetrations on the static buckling capacity of scale model containments. Results show little effect from the framing for the scale models constructed from the polycarbonate, Lexan. However, additional studies with a model constructed of the prototypic steel material are recommended. (orig.)
Butler, T.A.; Baker, W.E.
1986-01-01
Two aspects of buckling of a free-standing nuclear steel containment building were investigated in a combined experimental and analytical program. In the first part of the study, the response of a scale model of a containment building to dynamic base excitation is investigated. A simple harmonic signal was used for preliminary studies followed by experiments with scaled earthquake signals as the excitation source. The experiments and accompanying analyses indicate that the scale model response to earthquake-type excitations is very complex and that current analytical methods may require a dynamic capacity reduction factor to be incorporated. The second part of the study quantified the effects of framing at large penetrations on the static buckling capacity of scale model containments. Results show little effect from the framing for the scale models constructed from the polycarbonate, Lexan. However, additional studies with a model constructed of the prototypic steel material are suggested
Thermal ratcheting and progressive buckling
Lebey, J.; Brouard, D.; Roche, R.L.
1983-01-01
Pure elastic buckling is not a frequent mode of failure and plastic deformations often occurs before buckling - like instability does. Elastic-plastic buckling is very difficult to analyse. The most important difficulty is the material modeling. In the elastic plastic buckling phenomena, small modifications of the material constitutive equation used are of great influence on the final result. When buckling cannot occurs, it is well known that distortion due to applied loads is greatly amplified when there is also some cyclic straining (like thermal stresses). This effect is called ratcheting - and thermal ratcheting when caused by cyclic thermal transients. As cyclic thermal stresses can be applied in addition of load able to cause buckling failure of a component, the question arise of the effect of cyclic thermal stresses on the critical buckling load. The aim of the work presented here is to answer that question: 'Is the critical buckling load reduced when cyclic straining is added'. It seems sensible to avoid premature computation based only on arbitrary assumptions and to prefer obtaining a sound experimental basis for analysis. Sufficient experimental knowledge is needed in order to check the validity of the material modeling (and imperfections) used in analysis. Experimental tests on buckling of compressed columns subjected to cyclic straining have been performed. These experiments are described and results are given. The most important result is cyclic straining reduces the critical buckling load. It appears that distortion can be increasing progressively during cyclic straining and that buckling can happen at last at compressive loads too small to cause buckling in the absence of cyclic straining. (orig./RW)
Kewel, M.; Renner, J.
2017-12-01
The variation of hydraulic properties during sliding events is of importance for source mechanics and analyses of the evolution in effective stresses. We conducted laboratory experiments on samples of Padang granite to elucidate the interrelation between shear displacement on faults and their hydraulic properties. The cylindrical samples of 30 mm diameter and 75 mm length were prepared with a ground sawcut, inclined 35° to the cylindrical axis and accessed by a central bore of 3 mm diameter. The conventional triaxial compression experiments were conducted at effective pressures of 30, 50, and 70 MPa at slip rates of 2×10-4 and 8×10-4 mm s-1. The nominally constant fluid pressure of 30 MPa was modulated by oscillations with an amplitude of up to 0.5 MPa. Permeability and specific storage capacity of the fault were determined using the oscillatory radial-flow method that rests on an analysis of amplitude ratio and phase shift between the oscillatory fluid pressure and the oscillatory fluid flow from and into the fault plane. This method allowed us to continuously monitor the hydraulic evolution during elastic loading and frictional sliding. The chosen oscillation period of 60 s guaranteed a resolution of hydraulic properties for slip increments as small as 20 μm. The determined hydraulic properties show a fairly uniform dependence on normal stress at hydrostatic conditions and initial elastic loading. The samples exhibited stable frictional sliding with modest strengthening with increasing strain. Since not all phase-shift values fell inside the theoretical range for purely radial pressure diffusion during frictional sliding, the records of equivalent hydraulic properties exhibit some gaps. In the phases with evaluable phase-shift values, permeability fluctuates by almost one order of magnitude over slip intervals of as little as 100 μm. We suppose that the observed fluctuations are related to comminution and reconfiguration of asperities on the fault planes
Barnes, Leslie Fink; Lombardi, Joseph; Gardner, Thomas R; Strauch, Robert J; Rosenwasser, Melvin P
2018-01-01
The aim of this study was to compare the complete visible surface area of the radial head, neck, and coronoid in the Kaplan and Kocher approaches to the lateral elbow. The hypothesis was that the Kaplan approach would afford greater visibility due to the differential anatomy of the intermuscular planes. Ten cadavers were dissected with the Kaplan and Kocher approaches, and the visible surface area was measured in situ using a 3-dimensional digitizer. Six measurements were taken for each approach by 2 surgeons, and the mean of these measurements were analyzed. The mean surface area visible with the lateral collateral ligament (LCL) preserved in the Kaplan approach was 616.6 mm 2 in comparison with the surface area of 136.2 mm 2 visible in the Kocher approach when the LCL was preserved. Using a 2-way analysis of variance, the difference between these 2 approaches was statistically significant. When the LCL complex was incised in the Kocher approach, the average visible surface area of the Kocher approach was 456.1 mm 2 and was statistically less than the Kaplan approach. The average surface area of the coronoid visible using a proximally extended Kaplan approach was 197.8 mm 2 . The Kaplan approach affords significantly greater visible surface area of the proximal radius than the Kocher approach.
Yang, Dian; Whitesides, George M.
2017-12-26
A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predetermined direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.
Computerized Buckling Analysis of Shells
1981-06-01
Simple Examples to Illu-trate Various Types of Buckling Column Buckling In order to make the discussion of the basic concepts introduced in connec...the optimum design of a square box column obtained from an "* analysis in which the effective width concept is used and collapse is assumed to occur...nology, Delft., pp 335-344 (1969). 120 Save, M., "Verification experimentale de l’analyse limite plastique des plaques et des coques en acier doux
Creep buckling analysis of shells
Stone, C.M.; Nickell, R.E.
1977-01-01
The current study was conducted in an effort to determine the degree of conservatism or lack of conservatism in current ASME design rules concerning time-dependent (creep) buckling. In the course of this investigation, certain observations were made concerning the numerical solution of creep buckling problems. It was demonstrated that a nonlinear finite element code could be used to solve the time-dependent buckling problem. A direct method of solution was presented which proved to be computationally efficient and provided answers which agreed very well with available analytical solutions. It was observed that the calculated buckling times could vary widely for small errors in computed displacements. The presence of high creep strain rates contributed to the prediction of early buckling times when calculated during the primary creep stage. The predicted time estimates were found to increase with time until the secondary stage was reached and the estimates approached the critical times predicted without primary creep. It can be concluded, therefore, that for most nuclear piping components, whose primary creep stage is small compared to the secondary stage, the effect of primary creep is negligible and can be omitted from the calculations. In an evaluation of the past and current ASME design rules for time-dependent, load controlled buckling, it was concluded that current use of design load safety factors is not equivalent to a safety factor of ten on service life for low creep exponents
Radiologic Findings in Hydrated Hydrogel Buckles
Lee, Sung Bok; Lee, Nam Ho; Jo, Young Joon; Kim, Jung Yeul; Lee, Yeon Hee; Kim, Song Soo
2008-01-01
Hydrogel buckles, which are used in scleral buckling surgery for retinal detachment, have been associated with late complications after successful retinal reattachment surgery, including strabismus, extraocular motility restriction, extrusion through the eyelid or conjunctiva, intraocular erosion, and scleral erosion. Hydrogel buckles sometimes appear as well-marginated, circumferential, lobulating, contoured cystic masses mimicking orbital cysts on orbital CT or MRI. We report the radiologic findings in 5 patients whose hydrogel buckles needed to be differentiated from orbital cysts
Radiologic Findings in Hydrated Hydrogel Buckles
Lee, Sung Bok; Lee, Nam Ho; Jo, Young Joon; Kim, Jung Yeul; Lee, Yeon Hee; Kim, Song Soo [Chungnam National University, Daejeon (Korea, Republic of)
2008-11-15
Hydrogel buckles, which are used in scleral buckling surgery for retinal detachment, have been associated with late complications after successful retinal reattachment surgery, including strabismus, extraocular motility restriction, extrusion through the eyelid or conjunctiva, intraocular erosion, and scleral erosion. Hydrogel buckles sometimes appear as well-marginated, circumferential, lobulating, contoured cystic masses mimicking orbital cysts on orbital CT or MRI. We report the radiologic findings in 5 patients whose hydrogel buckles needed to be differentiated from orbital cysts.
Buckling feedback of the spectral calculations
Jing Xingqing; Shan Wenzhi; Luo Jingyu
1992-01-01
This paper studies the problems about buckling feedback of spectral calculations in physical calculations of the reactor and presents a useful method by which the buckling feedback of spectral calculations is implemented. The effect of the buckling feedback in spectra and the broad group cross section, convergence of buckling feedback iteration and the effect of the spectral zones dividing are discussed in the calculations. This method has been used for the physical design of HTR-10 MW Test Module
Buckling of Aluminium Sheet Components
Hegadekatte, Vishwanath; Shi, Yihai; Nardini, Dubravko
Wrinkling is one of the major defects in sheet metal forming processes. It may become a serious obstacle to implementing the forming process and assembling the parts, and may also play a significant role in the wear of the tool. Wrinkling is essentially a local buckling phenomenon that results from compressive stresses (compressive instability) e.g., in the hoop direction for axi-symmetric systems such as beverage cans. Modern beverage can is a highly engineered product with a complex geometry. Therefore in order to understand wrinkling in such a complex system, we have started by studying wrinkling with the Yoshida buckling test. Further, we have studied the buckling of ideal and dented beverage cans under axial loading by laboratory testing. We have modelled the laboratory tests and also the imperfection sensitivity of the two systems using finite element method and the predictions are in qualitative agreement with experimental data.
Buckling a Semiflexible Polymer Chain under Compression
Ekaterina Pilyugina
2017-03-01
Full Text Available Instability and structural transitions arise in many important problems involving dynamics at molecular length scales. Buckling of an elastic rod under a compressive load offers a useful general picture of such a transition. However, the existing theoretical description of buckling is applicable in the load response of macroscopic structures, only when fluctuations can be neglected, whereas membranes, polymer brushes, filaments, and macromolecular chains undergo considerable Brownian fluctuations. We analyze here the buckling of a fluctuating semiflexible polymer experiencing a compressive load. Previous works rely on approximations to the polymer statistics, resulting in a range of predictions for the buckling transition that disagree on whether fluctuations elevate or depress the critical buckling force. In contrast, our theory exploits exact results for the statistical behavior of the worm-like chain model yielding unambiguous predictions about the buckling conditions and nature of the buckling transition. We find that a fluctuating polymer under compressive load requires a larger force to buckle than an elastic rod in the absence of fluctuations. The nature of the buckling transition exhibits a marked change from being distinctly second order in the absence of fluctuations to being a more gradual, compliant transition in the presence of fluctuations. We analyze the thermodynamic contributions throughout the buckling transition to demonstrate that the chain entropy favors the extended state over the buckled state, providing a thermodynamic justification of the elevated buckling force.
Radial head button holing: a cause of irreducible anterior radial head dislocation
Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)
2016-10-15
''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)
Plastic buckling of cylindrical shells
Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.
1994-01-01
Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads
Buckling shells are also swimmers
Quilliet, Catherine; Dyfcom Bubbleboost Team
We present an experimental and numerical study on the displacement of shells undergoing deformations in a fluid. When submitted to cycles of pressure difference between outside and inside, a shell buckles and debuckles, showing a succession of shapes and a dynamics that are different during the two phases. Hence such objects are likely to swim, including at low Reynolds (microscopic scale). We studied the swimming of buckling/debuckling shells at macroscopic scale using different approaches (force quantization, shape recording, displacement along a frictionless rail, study of external flow using PIV), and showed that inertia plays a role in propulsion, even in situations where dimensionless numbers correspond also to microswimmers in water. Different fluid viscosities were explored, showing an optimum for the displacement. Interestingly, the most favorable cases lead to displacements in the same direction and sense during both motor stroke (buckling phase) and recovery stroke (de-buckling phase). This work opens the route for the synthesis with high throughput of abusively simple synthetic swimmers, possibly gathered into nanorobots, actuated by a scalar field such as the pressure in echographic devices. Universite Grenoble Alpes, CNRS, European Research Council.
Kudo, Toshiya; Hara, Akira; Iwase, Hideaki; Ichihara, Satoshi; Nagao, Masashi; Maruyama, Yuichiro; Kaneko, Kazuo
2016-10-01
Previous reports have questioned whether an orthogonal or parallel configuration is superior for distal humeral articular fractures. In previous clinical and biomechanical studies, implant failure of the posterolateral plate has been reported with orthogonal configurations; however, the reason for screw loosening in the posterolateral plate is unclear. The purpose of this study was to evaluate biomechanical properties and to clarify the causes of posterolateral plate loosening using a humeral fracture model under axial compression on the radial or ulnar column separately. And we changed only the plate set up: parallel or orthogonal. We used artificial bone to create an Association for the Study of Internal Fixation type 13-C2.3 intra-articular fracture model with a 1-cm supracondylar gap. We used an anatomically-preshaped distal humerus locking compression plate system (Synthes GmbH, Solothurn, Switzerland). Although this is originally an orthogonal plate system, we designed a mediolateral parallel configuration to use the contralateral medial plate instead of the posterolateral plate in the system. We calculated the stiffness of the radial and ulnar columns and anterior movement of the condylar fragment in the lateral view. The parallel configuration was superior to the orthogonal configuration regarding the stiffness of the radial column axial compression. There were significant differences between the two configurations regarding anterior movement of the capitellum during axial loading of the radial column. The posterolateral plate tended to bend anteriorly under axial compression compared with the medial or lateral plate. We believe that in the orthogonal configuration axial compression induced more anterior displacement of the capitellum than the trochlea, which eventually induced secondary fragment or screw dislocation on the posterolateral plate, or nonunion at the supracondylar level. In the parallel configuration, anterior movement of the capitellum or
Dynamic plastic buckling of cylindrical and spherical shells
Jones, N.; Okawa, D.M.
1975-01-01
A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell in order to examine various features of plastic buckling and to assess the importance of several approximations with previous authors have introduced in dynamic plastic buckling studies. The influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. A summary of all previously published theoretical investigations known to the authors is undertaken for the dynamic plastic behavior of cylindrical shells and rings which are made from rigid-plastic, rigid-visco-plastic, elastic-plastic and elastic-visco-plastic materials and subjected to initial axisymmetric impulsive velocity fields. The theoretical predictions of the dominant motions, critical mode numbers, and threshold impulses are compared and critically reviewed. An experimental investigation was also undertaken into the dynamic plastic buckling of circular rings subjected to uniformly distributed external impulsive velocities. It appears that no experiments have been reported previously on mild steel cylindrical shells with an axial length (L) less than four times the shell radius (R). The experimental values of the average final radial deflections, critical mode numbers and dimensions of the permanent wrinkles in the mild steel and some aliminium 6,061 T6 specimens are compared with all the previously published theoretical predictions and experimental results on cylindrical shells with various axial lengths. (orig./HP) [de
Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Ouji, A. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Islamic Azad University, Larestan Branch, Larestan (Iran, Islamic Republic of)
2008-11-15
The buckling analysis of annular thick plates with lateral supports such as two-parameter elastic foundations or ring supports is investigated using an elasticity based hybrid numerical method. For this purpose, firstly, the displacement components are perturbed around the pre-buckling state, which is located using the elasticity theory. Then, by decomposing the plate into a set of sub-domain in the form of co-axial annular plates, the buckling equations are discretized through the radial direction using global interpolation functions in conjunction with the principle of virtual work. The resulting differential equations are solved using the differential quadrature method. The method has the capability of modeling the arbitrary boundary conditions either at the inner and outer edges of thin-to-thick plates and with different types of lateral restraints. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its accuracy and versatility for thin-to-thick plates.
Buckling Analysis of Edge Cracked Sandwich Plate
Rasha Mohammed Hussein
2016-07-01
Full Text Available This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.
Simplified dynamic buckling assessment of steel containments
Farrar, C.R.; Duffey, T.A.; Renick, D.H.
1993-01-01
A simplified, three-degree-of-freedom analytical procedure for performing a response spectrum buckling analysis of a thin containment shell is developed. Two numerical examples with R/t values which bound many existing steel containments are used to illustrate the procedure. The role of damping on incipient buckling acceleration level is evaluated for a regulatory seismic spectrum using the two numerical examples. The zero-period acceleration level that causes incipient buckling in either of the two containments increases 31% when damping is increased from 1% to 4% of critical. Comparisons with finite element results on incipient buckling levels are favorable
Elastic plastic buckling of elliptical vessel heads
Alix, M.; Roche, R.L.
1981-08-01
The risks of buckling of dished vessel head increase when the vessel is thin walled. This paper gives the last results on experimental tests of 3 elliptical heads and compares all the results with some empirical formula dealing with elastic and plastic buckling
A practical rule for progressive buckling
Clement, G.; Acker, D.; Lebey, J.
1989-01-01
Thin structures submitted to compressive loads must be carefully designed to avoid any risk of failure by buckling. When cyclic loadings are concerned, the question to assess their possible detrimental effect on the buckling resistance of thin structures arises. The aim of this paper is, first, to evidence that the critical buckling load may be notably lowered when cyclic strains are added to the compressive load and, secondly, to propose a practical rule of prevention against the failure due to the progressive buckling phenomenon. This rule is validated by the results of numerous tests related to the entire range of modes of buckling (i.e. from fully plastic to fully elastic). Practical cases of interest for its use would mainly be those where cyclic thermal stresses are involved. (orig.)
Review of strain buckling: analysis methods
Moulin, D.
1987-01-01
This report represents an attempt to review the mechanical analysis methods reported in the literature to account for the specific behaviour that we call buckling under strain. In this report, this expression covers all buckling mechanisms in which the strains imposed play a role, whether they act alone (as in simple buckling under controlled strain), or whether they act with other loadings (primary loading, such as pressure, for example). Attention is focused on the practical problems relevant to LMFBR reactors. The components concerned are distinguished by their high slenderness ratios and by rather high thermal levels, both constant and variable with time. Conventional static buckling analysis methods are not always appropriate for the consideration of buckling under strain. New methods must therefore be developed in certain cases. It is also hoped that this review will facilitate the coding of these analytical methods to aid the constructor in his design task and to identify the areas which merit further investigation
Bentohami, Abdelali; de Korte, Niels; Sosef, Nico; Goslings, Johan Carel; Bijlsma, Taco; Schep, Niels
2014-01-01
Up to 30% of patients suffer from long-term functional restrictions following conservative treatment of distal radius fractures. Whether duration of cast immobilisation influences functional outcome remains unclear. The aim of the study is to evaluate whether the duration of immobilization of non or
Bennert, Beatrice M; Kircher, Patrick R; Gutbrod, Andreas; Riechert, Juliane; Hatt, Jean-Michel
2016-06-01
Although plate fixation has advantages over other fixation methods for certain indications, it is rarely used in avian surgery, especially in birds that weigh less than 1000 g. Exceptionally small plating systems for these birds are required, which are relatively expensive and difficult to insert. To study avian fracture healing after repair using miniplates, we evaluated 2 steel miniplate systems in 27 pigeons ( Columba livia ) divided into 4 groups. In each pigeon, the left ulna and radius were transected and the ulna was repaired with a bone plate. In groups A and B, a 1.3-mm adaption plate was applied without and with a figure-of-eight bandage; in groups C and D, a 1.0-mm compression plate was applied without and with a bandage, respectively. Healing was evaluated with radiographs after 3, 14, and 28 days; flight tests were conducted after 14, 21, and 28 days; and the wing was macroscopically examined after euthanasia of birds on day 28. Fractures healed without bending or distortion of the plate in all 27 birds, and no significant differences in healing were found between treatment groups. At the end of the study, 23 pigeons (85.2%) showed good or very good flight ability. Results show the 1.3-mm adaption plate and the 1.0-mm compression plate meet the requirements for avian osteosynthesis and can be recommended for fracture repair of the ulna or other long bones in birds weighing less than 500 g. The application of a figure-of-eight bandage might be beneficial in fracture healing.
Local buckling of composite channel columns
Szymczak, Czesław; Kujawa, Marcin
2018-05-01
The investigation concerns local buckling of compressed flanges of axially compressed composite channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode of the member flange is defined by rotation angle a flange about the line of its connection with the web. The channel column under investigation is made of unidirectional fibre-reinforced laminate. Two approaches to member orthotropic material modelling are performed: the homogenization with the aid of theory of mixture and periodicity cell or homogenization upon the Voigt-Reuss hypothesis. The fundamental differential equation of local buckling is derived with the aid of the stationary total potential energy principle. The critical buckling stress corresponding to a number of buckling half-waves is assumed to be a minimum eigenvalue of the equation. Some numerical examples dealing with columns are given here. The analytical results are compared with the finite element stability analysis carried out by means of ABAQUS software. The paper is focused on a close analytical solution of the critical buckling stress and the associated buckling mode while the web-flange cooperation is assumed.
Macro stress mapping on thin film buckling
Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.
2002-11-06
Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.
Determination of buckling in the IPEN/MB-01 Reactor in cylindrical configuration
Purgato, Rafael Turrini; Bitelli, Ulysses d' Utra; Aredes, Vitor Ottoni; Silva, Alexandre F. Povoa da; Santos, Diogo Feliciano dos; Mura, Luis Felipe L.; Jerez, Rogerio, E-mail: rtpurgato@ipen.br, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2013-07-01
One of the key parameters in reactor physics is the buckling of a reactor core. It is related to important parameters such as reaction rates, nuclear power operation, fuel burning, among others. In a critical reactor, the buckling depends on the geometric and material characteristics of the reactor core. This paper presents the results of experimental buckling in the reactor IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts, it is a versatile nuclear facility which allows the simulation of all the characteristics of a large nuclear power reactor and ideal for this type of measurement. We conducted a mapping of neutron flux inside the reactor and thereby determined the total buckling of the cylindrical configuration. The reactor was operated for an hour. Then, the activation of the fuel rods was measured by gamma spectrometry on a rod scanner HPGe detector. We analyzed the gamma photons of the {sup 239}Np (276,6 keV) for neutron capture and the {sup 143}Ce (293,3 keV) for fission on both {sup 238}U and {sup 235}U, respectively. We analyzed the axial and radial directions. Other measurements were performed using wires and gold foils in the radial and axial directions of the reactor core. The results showed that the cylindrical configuration compared to standard rectangular configuration of the IPEN/MB-01 reactor has a higher neutron economy, since in this configuration there is less leakage of neutrons. The Buckling Total obtained from the three methods was 95.84 ± 2.67 m{sup -2}. (author)
Elastic buckling strength of corroded steel plates
structural safety assessment of corroded structures, residual strength should be ... Rahbar-Ranji (2001) has proposed a spectrum for random simulation of ... The main aim of the present work is to investigate the buckling strength of simply ...
Scleral buckle infection with Alcaligenes xylosoxidans
Chih-Kang Hsu
2014-01-01
Full Text Available We describe a rare case of extraocular inflammation secondary to scleral buckle infection with Alcaligenes xylosoxidans. A 60-year-old female with a history of retinal detachment repair with open-book technique of scleral buckling presented with purulent discharge and irritation in the right eye that had begun 4 weeks earlier and had been treated ineffectively at another hospital. Conjunctival erosion with exposure of the scleral buckle was noted. The scleral buckle was removed and cultured. The explanted material grew gram-negative rod later identified as A. xylosoxidans. On the basis of the susceptibility test results, the patient was treated by subconjunctival injection and fortified topical ceftazidime. After 4 weeks of treatment, the infection resolved.
FLEXURAL, TORSIONAL AND DISTORTIONAL BUCKLING OF ...
ABSTRACT. Instability is an important branch of structural mechanics which examines alternate ... equations in V and V representing flexural buckling about the two axis of symmetry; a fully. 4 ..... of Thin-Walled Space Systems, First. Edition ...
Computational modelling of buckling of woven fabrics
Anandjiwala, RD
2006-02-01
Full Text Available for reducing unit production cost is critically important if garment industries in developed countries are keen to improve their competitiveness vis-à-vis low labour cost countries. The mechanics of the buckling behaviour of woven fabric started... of woven fabric. INTRODUCTION The buckling, bending and drape behaviours of a woven fabric influence its performance during actual use and during the process of making-up into the end product. These properties are important, particularly when the fabric...
Buckling Behavior of Substrate Supported Graphene Sheets
Kuijian Yang
2016-01-01
Full Text Available The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm, both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems.
Ulnar nerve entrapment complicating radial head excision
Kevin Parfait Bienvenu Bouhelo-Pam
Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus
Dynamic buckling of inelastic structures
Pegon, P.; Guelin, P.
1983-01-01
The aim of this paper is to provide research engineers with a method of approach, qualitative feature and order of magnitude of the relevant parameters in the field of dynamic buckling of structures exhibiting constitutive irreversibility and geometrical, constitutive or loading imperfections. It is difficult to adjust some of the classical analysis of the quasi-static elastic case. There remain also some difficulties in justifying the choice of constitutive schemes and in dealing with general kinematic formulation. Moreover, the interpretation of dynamical experimental data is not an easy matter. Consequently, the attempts described here use a simple symbolic model including all essential physical aspects. This symbolic model, of discrete character, is an n-hinged strut with masses located at each n+1 joint. The constitutive properties of the strut and hinge are defined using the same method: a dash-pot is in parallel with a two fold element (spring and friction-slider in series). The intrinsic restrictions are: the two dimensionality assumption, however no additional hypothesis are made concerning the kinematic of the constitutive elements; the use of simple sources of intrinsic dissipation. The relevant question of the longitudinal-transverse coupling effects is studied. Then, after various validation, we verify that a Lagrange resolution of this n+1 body problem gives physical relevant qualitative results concerning rods and cylindrical shells subjected to impact loading. (orig./RW)
An experimental and theoretical investigation of creep buckling
Ohya, H.
1977-01-01
The purpose of the present paper is to investigate creep buckling phenomena and the methods of analysis. Creep buckling experiments were performed on aluminum alloy 2024-T4 cylindrical shells having radius to thickness ratios of 16, 25, 50 and 80, in single, double and triple step axial compression at 250 0 C. It was observed that buckling occurred at one of the edges and the buckling mode depended on the radius to thickness ratio and also on the applied stress level. Thicker cylinders buckled in axisymmetric mode. Thinner ones under higher applied stress levels buckled in the asymmetric mode, whereas they under lower applied stress levels buckled in the axisymmetric mode. Creep buckling times were obtained from end shortening record of the cylinders. Experimental results were compared with theoretical values obtained by the following two methods. One is a simplified method to estimate buckling times, proposed by Gerard et al., Papirno et al. and others. The method is based on the fact that the creep buckling solutions are analogous to those of plastic buckling under a certain assumption. It was found that the bukling times could be reasonably estimated by this simplified method. The other is a finite element computer program for axisymmetric thin shells. This program is based on the incremental theory and can treat thermoelastoplastic creep analysis of axisymmetric thin shells with large deflection. Creep deformation behavior of cylindrical shells under axial compression and buckling times were calculated by the program and the effects of plasticity on buckling times were also investigated
Creep buckling problems in fast reactor components
Ramesh, R.; Damodaran, S.P.; Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.
1995-01-01
Creep buckling analyses for two important components of 500 M We Prototype Fast Breeder Reactor (PFBR), viz. Intermediate Heat Exchanger (IHX) and Inner Vessel (IV), are reported. The INCA code of CASTEM system is used for the large displacement elasto-plastic-creep analysis of IHX shell. As a first step, INCA is validated for a typical benchmark problem dealing with the creep buckling of a tube under external pressure. Prediction of INCA is also compared with the results obtained using Hoff's theory. For IV, considering the prohibitively high computational cost for the actual analysis, a simplified analysis which involves only large displacement elastoplastic buckling analysis is performed using isochronous stress strain curve approach. From both of these analysis is performed using isochronous stress strain curve approach. From both of these analysis, it has been inferred that creep buckling failure mode is not of great concern in the design of PFBR components. It has also been concluded from the analysis that Creep Cross Over Curve given in RCC-MR is applicable for creep buckling failure mode also. (author). 8 refs., 9 figs., 1 tab
The cutting of metals via plastic buckling
Udupa, Anirudh; Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan
2017-06-01
The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.
Fracture mechanisms and fracture control in composite structures
Kim, Wone-Chul
Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally
Buckling of paramagnetic chains in soft gels
Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.
We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.
Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...
Sensitivity study of buckling strength for cylindrical shells
Kato, Hideo; Sasaki, Toru [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)
2001-09-01
Aiming at making clear buckling behavior of cylindrical shells under earthquake loadings, we investigated procedure of recent elastic-plastic buckling analysis by finite element method (FEM). Thereby it is confirmed that the buckling strength becomes as well as that of a shell with a cross section of a perfect cylinder, if we apply the first buckling eigenvector to imperfection mode and assume the maximum imperfection amplitude to be 1% of the wall thickness. And then, by carrying out sensitivity study of buckling with geometrical parameters, such as length (L), radius (R), wall thickness (t), and load parameter, such as pressure, we obtained several characteristics about buckling strength and buckling mode for cylindrical shells. From the geometrical parameter analysis, it is seen that bending buckling occurs for small R/t (thick wall) and elastic buckling occurs for 2{<=}L/R{<=}4 and R/t{>=}400. And from the load parameter analysis, it is shown that hoop stress caused by the inner pressure increases shear buckling strength but decreases bending buckling strength, and hoop stress by hydrostatic pressure changes buckling mode and generates local deformation. (author)
Scleral Buckle Infection With Pseudallescheria boydii.
Law, Janice C; Breazzano, Mark P; Eliott, Dean
2017-08-01
Pseudallescheria boydii is a ubiquitous fungus that infects soft tissues and is known to cause ocular disease, including keratitis and endophthalmitis, in rare cases. In immunocompromised hosts, P. boydii can disseminate to or from the eye and other organs with lethal consequences. Postoperative P. boydii infections have, in rare cases, complicated several types of ocular surgeries in immunocompetent patients, but never for a scleral buckle. The authors present the first case of an infected scleral buckle from P. boydii. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:676-678.]. Copyright 2017, SLACK Incorporated.
Buckling driven debonding in sandwich columns
Østergaard, Rasmus Christian
2008-01-01
results from two mechanisms: (a) interaction of local debond buckling and global buckling and (b) the development of a damaged zone at the debond crack tip. Based on the pronounced imperfection sensitivity, the author predicts that an experimental measurement of the strength of sandwich structures may......A compression loaded sandwich column that contains a debond is analyzed using a geometrically non-linear finite element model. The model includes a cohesive zone along one face sheet/core interface whereby the debond can extend by interface crack growth. Two geometrical imperfections are introduced...
Design rules against buckling of dished heads
Roche, R.L.; Alix, M.; Autrusson, B.
1984-01-01
The aim of this paper is to present the validation of the rules of the French code of presure vessels CODAP. First, it is shown that the theories of buckling cannot give alone a sufficient base of validation and that the experimental justification is necessary. Then, the admissible pressure values corresponding to the CODAP formules are compared with the experimental results. This comparison furnishes the safety margins given by the CODAP formules. Finally, buckling tests of torispherical shells carried out at the CEA Saclay (France) are presented. The results obtained can be represented by a simple semi-empiric formula [fr
Scleral buckle infection by Serratia species
Ramesh Venkatesh
2017-01-01
Full Text Available We describe a rare case of scleral buckle (SB infection with Serratia species. A 48-year-old male with a history of retinal detachment repair with scleral buckling presented with redness, pain, and purulent discharge in the left eye for 4 days. Conjunctival erosion with exposure of the SB and scleral thinning was noted. The SB was removed and sent for culture. Blood and chocolate agar grew Gram-negative rod-shaped bacillus identified as Serratia marcescens. On the basis of the susceptibility test results, the patient was treated with oral and topical antibiotics. After 6 weeks of the treatment, his infection resolved.
Scleral buckle infection by Serratia species.
Venkatesh, Ramesh; Agarwal, Manisha; Singh, Shalini; Mayor, Rahul; Bansal, Aditya
2017-01-01
We describe a rare case of scleral buckle (SB) infection with Serratia species. A 48-year-old male with a history of retinal detachment repair with scleral buckling presented with redness, pain, and purulent discharge in the left eye for 4 days. Conjunctival erosion with exposure of the SB and scleral thinning was noted. The SB was removed and sent for culture. Blood and chocolate agar grew Gram-negative rod-shaped bacillus identified as Serratia marcescens . On the basis of the susceptibility test results, the patient was treated with oral and topical antibiotics. After 6 weeks of the treatment, his infection resolved.
Mechanical model for filament buckling and growth by phase ordering.
Rey, Alejandro D; Abukhdeir, Nasser M
2008-02-05
A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.
Thermal-buckling analysis of an LMFBR overflow vessel
Severud, L.K.
1983-01-01
During a reactor scram, cold sodium flows into the hot overflow vessel. The effect on the vessel is a compressive thermal stress in a zone just above the sodium level. This condition must be sufficiently controlled to preclude thermal buckling. Also, under repeated scrams, the vessel should not suffer thermal stress low cycle fatigue. To evaluate the closeness to buckling and satisfaction of ASMA Code limits, a combination of simple approximations, detailed elastic shell buckling analyses, and correlations to results of thermal buckling tests were employed. This paper describes the analysis methods, special considerations, and evaluations accomplished for this FFTF vessel to assure satisfaction of ASME buckling design criteria, rules, and limits
Buckling Pneumatic Linear Actuators Inspired by Muscle
Yang, Dian; Verma, Mohit Singh; So, Ju-Hee; Mosadegh, Bobak; Keplinger, Christoph; Lee, Benjamin; Khashai, Fatemeh; Lossner, Elton Garret; Suo, Zhigang; Whitesides, George McClelland
2016-01-01
The mechanical features of biological muscles are difficult to reproduce completely in synthetic systems. A new class of soft pneumatic structures (vacuum-actuated muscle-inspired pneumatic structures) is described that combines actuation by negative pressure (vacuum), with cooperative buckling of beams fabricated in a slab of elastomer, to achieve motion and demonstrate many features that are similar to that of mammalian muscle.
Dynamic Pulse Buckling--Theory and Experiment
1983-02-01
34Buckling of Bars Subject to Axial Shock," Studii si Cercetari de Mecanica Applicata (Roumania), 7, 1, pp. 173-178, January 1956. 26. A.F. Schmitt, "A...Procopovici, "Transverse Deformation of an Elastic Bar Subjected to an Axial Impulsive Force," Studii si Ceretari de Mecanica Applicata. 8, 3, pp. 839
Method for Predicting Thermal Buckling in Rails
2018-01-01
A method is proposed herein for predicting the onset of thermal buckling in rails in such a way as to provide a means of avoiding this type of potentially devastating failure. The method consists of the development of a thermomechanical model of rail...
Purgato, Rafael Turrini
2014-07-01
One of the key parameters in reactor physics is the Buckling of a reactor core. It is related to important parameters such as reaction rates, nuclear power operation, fuel burning, among others. In a critical reactor, the Buckling depends on the geometric and material characteristics of the reactor core. This work presents the results of experimental Buckling in the reactor IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts, it is a versatile nuclear facility which allows the simulation of all the characteristics of a large nuclear power reactor and ideal for this type of measurement. We conducted a mapping of neutron flux inside the reactor and thereby determined the total Buckling of the cylindrical configuration. The reactor was operated for one hour. Then, the activity of the fuel rods was measured by gamma spectrometry on a rod scanner HPGe detector. We analyzed the gamma photons of the {sup 239}Np (276,6 keV) for neutron capture (n,γ) and the {sup 143}Ce (293,3 keV) for fission (n,f) on both {sup 238}U and {sup 235}U, respectively. We analyzed the axial and radial directions. Other measurements were performed using wires and gold foils in the radial and axial directions of the reactor core. The Buckling Total obtained from the three methods by weighted mean is 96,55 ± 7,47 m{sup -2}. The goal is to obtain experimental values of a set of experimental data to allow one direct comparison with values calculated by the codes used in reactor physics CITATION and MCNP. (author)
Management of post-traumatic elbow instability after failed radial head excision: A case report
Georgios Touloupakis
2017-02-01
Full Text Available Radial head excision has always been a safe commonly used surgical procedure with a satisfactory clinical outcome for isolated comminuted radial head fractures. However, diagnosis of elbow instability is still very challenging and often underestimated in routine orthopaedic evaluation. We present the case of a 21-years old female treated with excision after radial head fracture, resulting in elbow instability. The patient underwent revision surgery after four weeks. We believe that ligament reconstruction without radial head substitution is a safe alternative choice for Mason III radial head fractures accompanied by complex ligament lesions.
Purgato, Rafael Turrini
2014-01-01
One of the key parameters in reactor physics is the Buckling of a reactor core. It is related to important parameters such as reaction rates, nuclear power operation, fuel burning, among others. In a critical reactor, the Buckling depends on the geometric and material characteristics of the reactor core. This work presents the results of experimental Buckling in the reactor IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts, it is a versatile nuclear facility which allows the simulation of all the characteristics of a large nuclear power reactor and ideal for this type of measurement. We conducted a mapping of neutron flux inside the reactor and thereby determined the total Buckling of the cylindrical configuration. The reactor was operated for one hour. Then, the activity of the fuel rods was measured by gamma spectrometry on a rod scanner HPGe detector. We analyzed the gamma photons of the 239 Np (276,6 keV) for neutron capture (n,γ) and the 143 Ce (293,3 keV) for fission (n,f) on both 238 U and 235 U, respectively. We analyzed the axial and radial directions. Other measurements were performed using wires and gold foils in the radial and axial directions of the reactor core. The Buckling Total obtained from the three methods by weighted mean is 96,55 ± 7,47 m -2 . The goal is to obtain experimental values of a set of experimental data to allow one direct comparison with values calculated by the codes used in reactor physics CITATION and MCNP. (author)
The fluid mechanics of scleral buckling surgery for the repair of retinal detachment.
Foster, William Joseph; Dowla, Nadia; Joshi, Saurabh Y; Nikolaou, Michael
2010-01-01
Scleral buckling is a common surgical technique used to treat retinal detachments that involves suturing a radial or circumferential silicone element on the sclera. Although this procedure has been performed since the 1960s, and there is a reasonable experimental model of retinal detachment, there is still debate as to how this surgery facilitates the re-attachment of the retina. Finite element calculations using the COMSOL Multiphysics system are utilized to explain the influence of the scleral buckle on the flow of sub-retinal fluid in a physical model of retinal detachment. We found that, by coupling fluid mechanics with structural mechanics, laminar fluid flow and the Bernoulli effect are necessary for a physically consistent explanation of retinal reattachment. Improved fluid outflow and retinal reattachment are found with low fluid viscosity and rapid eye movements. A simulation of saccadic eye movements was more effective in removing sub-retinal fluid than slower, reading speed, eye movements in removing subretinal fluid. The results of our simulations allow us to explain the physical principles behind scleral buckling surgery and provide insight that can be utilized clinically. In particular, we find that rapid eye movements facilitate more rapid retinal reattachment. This is contradictory to the conventional wisdom of attempting to minimize eye movements.
Novel classification system of rib fractures observed in infants.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Pinto, Deborrah C; Greeley, Christopher; Donaruma-Kwoh, Marcella; Bista, Bibek
2013-03-01
Rib fractures are considered highly suspicious for nonaccidental injury in the pediatric clinical literature; however, a rib fracture classification system has not been developed. As an aid and impetus for rib fracture research, we developed a concise schema for classifying rib fracture types and fracture location that is applicable to infants. The system defined four fracture types (sternal end, buckle, transverse, and oblique) and four regions of the rib (posterior, posterolateral, anterolateral, and anterior). It was applied to all rib fractures observed during 85 consecutive infant autopsies. Rib fractures were found in 24 (28%) of the cases. A total of 158 rib fractures were identified. The proposed schema was adequate to classify 153 (97%) of the observed fractures. The results indicate that the classification system is sufficiently robust to classify rib fractures typically observed in infants and should be used by researchers investigating infant rib fractures. © 2013 American Academy of Forensic Sciences.
Phenomenology and control of buckling dynamics in multicomponent colloidal droplets
Pathak, Binita; Basu, Saptarshi
2015-06-01
Self-assembly of nano sized particles during natural drying causes agglomeration and shell formation at the surface of micron sized droplets. The shell undergoes sol-gel transition leading to buckling at the weakest point on the surface and produces different types of structures. Manipulation of the buckling rate with inclusion of surfactant (sodium dodecyl sulphate, SDS) and salt (anilinium hydrochloride, AHC) to the nano-sized particle dispersion (nanosilica) is reported here in an acoustically levitated single droplet. Buckling in levitated droplets is a cumulative, complicated function of acoustic streaming, chemistry, agglomeration rate, porosity, radius of curvature, and elastic energy of shell. We put forward our hypothesis on how buckling occurs and can be suppressed during natural drying of the droplets. Global precipitation of aggregates due to slow drying of surfactant-added droplets (no added salts) enhances the rigidity of the shell formed and hence reduces the buckling probability of the shell. On the contrary, adsorption of SDS aggregates on salt ions facilitates the buckling phenomenon with an addition of minute concentration of the aniline salt to the dispersion. Variation in the concentration of the added particles (SDS/AHC) also leads to starkly different morphologies and transient behaviour of buckling (buckling modes like paraboloid, ellipsoid, and buckling rates). Tuning of the buckling rate causes a transition in the final morphology from ring and bowl shapes to cocoon type of structure.
A strategy to compute plastic post-buckling of structures
Combescure, A.
1983-01-01
All the methods presented here give in some cases, some interesting computed solutions. It has been remarked that the different strategies do not always give the same post buckling path. More foundamentally, it has been observed that the post buckling path, when buckling is unstable, is characterized by a dynamic movement. All inertial effects are neglected in all the approaches presented here. So that the post buckling load deflections curve is valid only if there is a very little kinetic energy associated with the post buckling. The method is also, as it is presented, limited to a load depending of a simple parameter lambda. The case of more than one parameter is not very clear yet. In conclusion, the method presented here gives a way to solve class of the post buckling behavior of a structure. If the post buckling occurs with a small kinetic energy (displacement controlled buckling) and if the loads depend of only one parameter. These methods should give good results even into the plastic range. If the buckling is unstable and that a large kinetic energy is involved with the post buckling these methods are not realistic. (orig./RW)
An experimental and theoretical investigation of creep buckling
Ohya, H.
1977-01-01
Creep buckling is one of the failure modes which must be taken into consideration for the design of structures exposed to elevated temperatures. And, rules are provided in ASME Boiler and Pressure Vessel Code Case 1592 to prevent the creep buckling. However, methods of analysis are not provided in Code Case, and selecting the methods of analysis is left to owners and manufacturers. The purpose of the present paper is to investigate creep buckling phenomena and the methods of analysis. Creep buckling experiments were performed on aluminum alloy 2024-T4 cylindrical shells having radius to thickness ratios of 16, 25, 50 and 80, in single, double and triple step axial compression at 250 0 C. It was observed that buckling occurred at one of the edges and the buckling mode depended on the radius to thickness ratio and also on the applied stress level. Thicker cylinders buckled in axisymmetric mode. Thinner ones under higher applied stress levels buckled in the asymmetric mode, whereas under lower applied stress levels they buckled in the axisymmetric mode. Creep buckling times were obtained from end shortening record of the cylinders. Experimental results were compared with theoretical values obtained by two methods. (Auth.)
Transstyloid, transscaphoid, transcapitate fracture: a variant of scaphocapitate fractures.
Burke, Neil G
2014-01-01
Transstyloid, transscaphoid, transcapitate fractures are uncommon. We report the case of a 28-year-old man who sustained this fracture following direct trauma. The patient was successfully treated by open reduction internal fixation of the scaphoid and proximal capitate fragment, with a good clinical outcome at 1-year follow-up. This pattern is a new variant of scaphocapitate fracture as involves a fracture of the radial styloid as well.
Shear buckling of cylindrical vessels benchmark exercise
Dostal, M; Austin, N.; Combescure, A.; Peano, A.; Angeloni, P.
1987-01-01
In Liquid Metal Fast Breeder Reactors (LMFBR) potential shear buckling failures of the primary vessel, induced through seismic excitations, have to be considered. The problem is particularly severe in pool type reactors due to their large size, radius of approximately 10 m, coupled with small wall thicknesses of 50 mm and less. The object of this paper is to provide a comparison of three different computer codes capable of performing buckling analyses and to demonstrate on practical problems the level of accuracy that may be expected in design analyses. Three computer codes were examined ABAQUS, CASTEM (INCA/BILBO) and NOVNL and the computer results were compared directly with experimental data and other commonly used empirical formula. The joint effort was co-ordinated through the CEC Working Group on Codes and Standards AG2. (orig./GL)
On the dynamic buckling of thin shells
Combescure, A.; Hoffmann, A.; Homan, R.
1986-10-01
The shells of a pool type reactor like Super Phenix 1 or the Super Phenix 2 project are relatively thin compared to the diameter. Normal loads and mainly seismic loads due to strong fluid-structure interaction and giving pressure of the same order then static collapse pressure. This is a main difficulty for a good and safe design of LMFBR. The paper describes the experimental results obtained at CEA-DEMT on the seismic buckling of structures filled with fluid. A general tendency is given on all experimental results. The experimental results are analysed by two simple models and the main results are explained. A strategy to design a structure against dynamic buckling is then presented. 7 refs
Yield stress independent column buckling curves
Stan, Tudor‐Cristian; Jönsson, Jeppe
2017-01-01
of the yield stress is to some inadequate degree taken into account in the Eurocode by specifying that steel grades of S460 and higher all belong to a common set of “raised” buckling curves. This is not satisfying as it can be shown theoretically that the current Eurocode formulation misses an epsilon factor......Using GMNIA and shell finite element modelling of steel columns it is ascertained that the buckling curves for given imperfections and residual stresses are not only dependent on the relative slenderness ratio and the cross section shape but also on the magnitude of the yield stress. The influence...... in the definition of the normalised imperfection magnitudes. By introducing this factor it seems that the GMNIA analysis and knowledge of the independency of residual stress levels on the yield stress can be brought together and give results showing consistency between numerical modelling and a simple modified...
Micro-buckling in the nanocomposite structure of biological materials
Su, Yewang; Ji, Baohua; Hwang, Keh-Chih; Huang, Yonggang
2012-10-01
Nanocomposite structure, consisting of hard mineral and soft protein, is the elementary building block of biological materials, where the mineral crystals are arranged in a staggered manner in protein matrix. This special alignment of mineral is supposed to be crucial to the structural stability of the biological materials under compressive load, but the underlying mechanism is not yet clear. In this study, we performed analytical analysis on the buckling strength of the nanocomposite structure by explicitly considering the staggered alignment of the mineral crystals, as well as the coordination among the minerals during the buckling deformation. Two local buckling modes of the nanostructure were identified, i.e., the symmetric mode and anti-symmetric mode. We showed that the symmetric mode often happens at large aspect ratio and large volume fraction of mineral, while the anti-symmetric happens at small aspect ratio and small volume fraction. In addition, we showed that because of the coordination of minerals with the help of their staggered alignment, the buckling strength of these two modes approached to that of the ideally continuous fiber reinforced composites at large aspect ratio given by Rosen's model, insensitive to the existing "gap"-like flaws between mineral tips. Furthermore, we identified a mechanism of buckling mode transition from local to global buckling with increase of aspect ratio, which was attributed to the biphasic dependence of the buckling strength on the aspect ratio. That is, for small aspect ratio, the local buckling strength is smaller than that of global buckling so that it dominates the buckling behavior of the nanocomposite; for comparatively larger aspect ratio, the local buckling strength is higher than that of global buckling so that the global buckling dominates the buckling behavior. We also found that the hierarchical structure can effectively enhance the buckling strength, particularly, this structural design enables
Using Euler buckling springs for vibration isolation
Winterflood, J; Blair, D G
2002-01-01
Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance.
Using Euler buckling springs for vibration isolation
Winterflood, J; Barber, T; Blair, D G
2002-01-01
Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance
Buckling of stiff polymers: Influence of thermal fluctuations
Emanuel, Marc; Mohrbach, Hervé; Sayar, Mehmet; Schiessel, Helmut; Kulić, Igor M.
2007-12-01
The buckling of biopolymers is a frequently studied phenomenon The influence of thermal fluctuations on the buckling transition is, however, often ignored and not completely understood. A quantitative theory of the buckling of a wormlike chain based on a semiclassical approximation of the partition function is presented. The contribution of thermal fluctuations to the force-extension relation that allows one to go beyond the classical Euler buckling is derived in the linear and nonlinear regimes as well. It is shown that the thermal fluctuations in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to two dimensions as opposed to the three-dimensional case. The transition to a buckled state softens at finite temperature. We derive the scaling behavior of the transition shift with increasing ratio of contour length versus persistence length.
Buckling of Carbon Nanotubes: A State of the Art Review
Shima, Hiroyuki
2011-01-01
The nonlinear mechanical response of carbon nanotubes, referred to as their “buckling" behavior, is a major topic in the nanotube research community. Buckling means a deformation process in which a large strain beyond a threshold causes an abrupt change in the strain energy vs. deformation profile. Thus far, much effort has been devoted to analysis of the buckling of nanotubes under various loading conditions: compression, bending, torsion, and their certain combinations. Such extensive studies have been motivated by (i) the structural resilience of nanotubes against buckling and (ii) the substantial influence of buckling on their physical properties. In this contribution, I review the dramatic progress in nanotube buckling research during the past few years. PMID:28817032
Buckling instability in amorphous carbon films
Zhu, X D [CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Narumi, K [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Naramoto, H [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)
2007-06-13
In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 deg. C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with {pi}-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 {mu}m with a height of {approx}500 nm and a wavelength of {approx}8.2 {mu}m. However, the length decreases dramatically to 70 {mu}m as the deposition temperature is increased to 550 deg. C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542)
Buckling instability in amorphous carbon films
Zhu, X D; Narumi, K; Naramoto, H
2007-01-01
In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 deg. C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 μm with a height of ∼500 nm and a wavelength of ∼8.2 μm. However, the length decreases dramatically to 70 μm as the deposition temperature is increased to 550 deg. C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542)
Progressive buckling under both constant axial load and cyclic distortion
Clement, G.; Acker, D.; Lebey, J.
1988-09-01
Thin structures submitted to compressive loads must be carefully designed to avoid any risk of ruin by buckling. The aim of this paper is, first, to evidence that the critical buckling load may be notably lowered when cyclic strains are added to the compressive load and, secondly, to propose a practical rule of prevention against the ruin due to the progressive buckling phenomenon. This rule is validated by the results of numerous tests related to the entire range of modes of buckling (i.e. from fully plastic to fully elastic). Practical cases of interest for its use could mainly be those where cyclic thermal stresses are involved
Method for studying the plastic buckling of shells. Testing
Alix, M.; Combescure, A.; Hoffmann, A.; Roche, R.
1980-05-01
In this article a description is given of the method selected for studying the elasto-plastic buckling of shells of any shape. The emphasis is mainly on three points: the difficulty in making a strict formulation with respect to plasticity, the model selected (MOTAN model) is presented; the effect of so called 'non conservative' forces; and the effect of great deformations that might precede the buckling. The method is compared to tests: basket handle buckling of bottoms, buckling of elliptical bottoms under internal pressure, of compresses thin tubes, of metal drums, spherical diaphragm, shearing rings [fr
Purgato, Rafael Turrini; Bitelli, Ulysses d' Utra; Aredes, Vitor Ottoni; Silva, Alexandre F. Povoa da; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
This work presents the results of experimental Buckling in the IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts. It is a versatile nuclear facility, which allows for the simulation of all the characteristics of a nuclear power reactor making it an ideal test bed for this kind of measurement. A mapping of neutron flux inside the reactor is carried out in order to determine the total Buckling of the cylindrical configuration. The reactor was operated for one hour. Then, the activity of the fuel rods is measured by gamma ray spectrometry using a HPGe solid state detector and a suitable rod scanner. Photon energies of 276.6keV from {sup 239}Np (neutron capture (n,?) nuclear reaction) and 293.3keV from {sup 143}Ce (fission (n,f) nuclear reaction on both {sup 238}U and {sup 235}U) , are respectively along both axial and radial directions. Other measurements are performed using gold wires and foils along radial and axial directions of the reactor core. The three methods above resulted in a weighted average value of 93.18 ± 8.47 m-2 for the Total Buckling of this cylindrical core configuration with 28 control rods along its diameter with 568 fuel rods and only 271 pcm of excess reactivity. (author)
Esther Kim, BS
2018-04-01
Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re
Uncertainty modelling of critical column buckling for reinforced ...
Buckling is a critical issue for structural stability in structural design. In most of the buckling analyses, applied loads, structural and material properties are considered certain. However, in reality, these parameters are uncertain. Therefore, a prognostic solution is necessary and uncertainties have to be considered. Fuzzy logic ...
Post-Buckling Strength of Uniformly Compressed Plates
Bakker, M.C.M.; Rosmanit, M.; Hofmeyer, H.; Camotim, D; Silvestre, N; Dinis, P.B.
2006-01-01
In this paper it is discussed how existing analytical and semi-analytical formulas for describing the elastic-post-buckling behavior of uniformly compressed square plates with initial imperfections, for loads up to three times the buckling load can be simplified and improved. For loads larger than
Buckling of shells under internal pressure, practical formulas for sizing
Roche, R.; Alix, M.; Perez, A.; Autrusson, B.
1983-10-01
For metallic dished heads which have great diameter/thickness ratio, elastic plastic internal pressure buckling may occur. Recently, the French Pressure Vessel Code (CODAP) made available rules to assist the designer with this buckling problem. The aim of this paper is to give a comparison between these rules and available experimental results [fr
Dynamic shear-bending buckling experiments of cylindrical shells
Hagiwara, Y.; Akiyama, H.
1995-01-01
Dynamic experimental studies of the plastic shear/bending buckling of cylindrical shells were performed. They clarified the inelastic response reduction and the seismic margin of FBR reactor vessels. The test results were incorporated into the draft of the seismic buckling design guidelines of FBR. (author). 15 refs., 3 figs
The status of experimental buckling investigations of shells
Singer, J.
1982-01-01
The recent developments in shell buckling experiments are surveyed and related to a review of the progress in the seventies. Model fabrication, imperfection measurements, boundary conditions, nondestructive testing, combined loading, postbuckling behavior, composite shells and other aspects of shell buckling tests are discussed. The motivation for experiments and the conclusions drawn in the previous review are reassessed. (orig.)
Post buckling of three dimensional shells
Hoffman, A.; Combescure, A.; Verpeaux, A.
1984-01-01
The paper presented here gives a general description of the methods currently used in the CEASEMT System Computer Codes for the non linear analysis of thin shells. For post buckling two methods are presented: the first one is a controlled step by step calculation in order to obtain the load-displacement curve. The second consist of the calculation of a global parameter based on energetic consideration, which can be easily interpreted as a time of collapse of the structure. Some examples are given and compared with experimental values. (Author) [pt
Bending energy of buckled edge dislocations
Kupferman, Raz
2017-12-01
The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.
Post buckling of three dimensional shells
Hoffmann, A.; Combescure, A.; Verpeaux, A.
1984-10-01
The paper presented here gives a general description of the methods currently used in the CEASEMT System Computer Codes for the non linear analysis of thin shells. For post buckling two methods are presented: the first one is a controlled step by step calculation in order to obtain the load-displacement curve. The second consist of the calculation of a global parameter based on energetic consideration, which can be easily interpreted as a time of collapse of the structure. When dynamic loads are concerned like seismic loads this parameter can be very useful. Some examples are given and compared with experimental values
Management of post-traumatic elbow instability after failed radial head excision: A case report
Touloupakis, Georgios; Theodorakis, Emmanouil; Favetti, Fabio; Nannerini, Massimiliano
2017-01-01
Radial head excision has always been a safe commonly used surgical procedure with a satisfactory clinical outcome for isolated comminuted radial head fractures. However, diagnosis of elbow instability is still very challenging and often underestimated in routine orthopaedic evaluation. We present the case of a 21-years old female treated with excision after radial head fracture, resulting in elbow instability. The patient underwent revision surgery after four weeks. We believe that ligament r...
Experimental study on dynamic buckling phenomena for supercavitating underwater vehicle
Minho Chung
2012-09-01
Full Text Available Dynamic buckling, also known as parametric resonance, is one of the dynamic instability phenomena which may lead to catastrophic failure of structures. It occurs when compressive dynamic loading is applied to the structures. Therefore it is essential to establish a reliable procedure to test and evaluate the dynamic buckling behaviors of structures, especially when the structure is designed to be utilized in compressive dynamic loading environment, such as supercavitating underwater vehicle. In the line of thought, a dynamic buckling test system is designed in this work. Using the test system, dynamic buckling tests including beam, plate, and stiffened plate are carried out, and the dynamic buckling characteristics of considered structures are investigated experimentally as well as theoretically and numerically.
Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu
1992-08-01
This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.
Endoilluminator-assisted scleral buckling: Our results
Varun Gogia
2014-01-01
Full Text Available Aims: The aim was to evaluate the long-term surgical outcomes of endoillumination assisted scleral buckling (EASB in primary rhegmatogenous retinal detachment (RRD. Methods: Twenty-five eyes of 25 patients with primary RRD and proliferative vitreoretinopathy ≤C2 where any preoperative break could not be localised, were included. All patients underwent 25 gauge endoilluminator assisted rhegma localisation. Successful break determination was followed by cryopexy and standard scleral buckling under surgical microscope. Anatomical and functional outcomes were evaluated at the end of 2 years. Results: At least one intraoperative break could be localized in 23 of 25 (92% eyes. Median age of these patients was 46 years (range: 17-72. Thirteen eyes (56.52% were phakic, 8 (34.78% were pseudophakic and 2 (8.6% were aphakic. Anatomical success (attachment of retina was achieved in 22 (95.63% of 23 eyes with EASB. All eyes remained attached at the end of 2 years. Significant improvement in mean visual acuity (VA was achieved at the end of follow-up (1.09 ± 0.46 log of the minimum angle of resolution [logMAR] compared with preoperative VA (1.77 ± 0.28 logMAR (P < 0.001. Conclusion: EASB can be considered an effective alternative to vitreoretinal surgery in simple retinal detachment cases with the added advantage of enhanced microscopic magnification and wide field illumination.
Modeling shape selection of buckled dielectric elastomers
Langham, Jacob; Bense, Hadrien; Barkley, Dwight
2018-02-01
A dielectric elastomer whose edges are held fixed will buckle, given a sufficiently applied voltage, resulting in a nontrivial out-of-plane deformation. We study this situation numerically using a nonlinear elastic model which decouples two of the principal electrostatic stresses acting on an elastomer: normal pressure due to the mutual attraction of oppositely charged electrodes and tangential shear ("fringing") due to repulsion of like charges at the electrode edges. These enter via physically simplified boundary conditions that are applied in a fixed reference domain using a nondimensional approach. The method is valid for small to moderate strains and is straightforward to implement in a generic nonlinear elasticity code. We validate the model by directly comparing the simulated equilibrium shapes with the experiment. For circular electrodes which buckle axisymetrically, the shape of the deflection profile is captured. Annular electrodes of different widths produce azimuthal ripples with wavelengths that match our simulations. In this case, it is essential to compute multiple equilibria because the first model solution obtained by the nonlinear solver (Newton's method) is often not the energetically favored state. We address this using a numerical technique known as "deflation." Finally, we observe the large number of different solutions that may be obtained for the case of a long rectangular strip.
Buckling Optimization of Thick Stiffened Cylindrical Shell
Qasim Hassan Bader
2016-03-01
Full Text Available In this work the critical pressure due to buckling was calculated numerically by using ANSYS15 for both stiffened and un-stiffened cylinder for various locations and installing types , strengthening of the cylinder causes a more significant increase in buckling pressures than non reinforced cylinder . The optimum design of structure was done by using the ASYS15 program; in this step the number of design variables 21 DVs. These variables are Independent variables that directly affect. The design variables represented the thickness of the cylinder and( height and width of 10 stiffeners. State variables (SVs, these variables are dependent variables that change as a result of changing the DVs and are necessary to constrain the design. The objective function is the one variable in the optimization that needs to be minimized. In this case the state variable is critical pressure (CP and the objective function is the total (volume of the structure. The optimum weight of the structure with reasonable required conditions for multi types of structure was found. The result shows the best location of stiffener at internal side with circumferential direction. In this case the critical pressure can be increased about 18.6% and the total weight of the structure decreases to 15.8%.
Hagiwara, Yutaka; Yamamoto, Kohsuke; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi
1998-01-01
Plastic shear-bending buckling under seismic loadings is one of the major problems in the structural design of FBR main vessels. Pseudo-dynamic and dynamic buckling tests of cylinders were performed in order to study the effects of nonlinear seismic response on buckling strength, ductility, and plastic response reduction. The buckling strength formulae and the rule for ductility factors both derived from static tests were confirmed to be valid for the tests under dynamic loads. The displacement-constant rule for response reduction effect was modified by acceleration amplification factor in order to maintain applicability for various spectral profiles of seismic excitations. The response reduction estimated by the proposed rule was reasonably conservative for all cases of the pseudo-dynamic and the dynamic tests. Finally, a seismic safety assessment rule was proposed for plastic shear-bending buckling of cylinders, which include the proposed response reduction rule. (author)
Anterior transposition of the radial nerve--a cadaveric study.
Yakkanti, Madhusudhan R; Roberts, Craig S; Murphy, Joshua; Acland, Robert D
2008-01-01
The radial nerve is at risk during the posterior plating of the humerus. The purpose of this anatomic study was to assess the extent of radial nerve dissection required for anterior transposition through the fracture site (transfracture anterior transposition). A cadaver study was conducted approaching the humerus by a posterior midline incision. The extent of dissection of the nerve necessary for plate fixation of the humerus fracture was measured. An osteotomy was created to model a humeral shaft fracture at the spiral groove (OTA classification 12-A2, 12-A3). The radial nerve was then transposed anterior to the humeral shaft through the fracture site. The additional dissection of the radial nerve and the extent of release of soft tissue from the humerus shaft to achieve the transposition were measured. Plating required a dissection of the radial nerve 1.78 cm proximal and 2.13 cm distal to the spiral groove. Transfracture anterior transposition of the radial nerve required an average dissection of 2.24 cm proximal and 2.68 cm distal to the spiral groove. The lateral intermuscular septum had to be released for 2.21 cm on the distal fragment to maintain laxity of the transposed nerve. Transfracture anterior transposition of the radial nerve before plating is feasible with dissection proximal and distal to the spiral groove and elevation of the lateral intermuscular septum. Potential clinical advantages of this technique include enhanced fracture site visualization, application of broader plates, and protection of the radial nerve during the internal fixation.
Distortional buckling modes of semi-discretized thin-walled columns
Andreassen, Michael Joachim; Jönsson, Jeppe
2012-01-01
buckling, distortional buckling and local buckling are given and it is shown how the novel approach may be used to develop signature curves and elastic buckling curves. In order to assess the accuracy of the method some of the results are compared to results found using the commercial FE program Abaqus...
Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets
Rong Ming Lin
2015-04-01
Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.
Kim, D. H.; Ko, K. H.; Lee, J. H.
2002-01-01
This work was done as one of the pre-research of buckling behavior for LMR reactor vessel. For the reduced scale buckling test, the three types of test specimen(slenderness ratio 1.0, 2.0, 4.8) was selected. Using the buckling formulae by Okada and the elastic-plastic finite element method, the buckling characteristics are investigated. From the results of buckling load evaluations, as the slenderness ratio decreases, the buckling load increases and a deflection shape approaches shear buckling mode. As the slenderness increases, the deflection approaches bending buckling mode. In comparison of buckling loads, the calculated buckling loads by the elastic-plastic finite element method are in good agreement with those of the evaluation formulae considering with plastic effect
Elastic torsional buckling of thin-walled composite cylinders
Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.
1974-01-01
The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.
Dynamic plastic buckling of rings and cylindrical shells
Jones, N.; Okawa, D.M.
1975-01-01
A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell. This theoretical work is used to examine various features of plastic buckling and to assess the importance of several approximations which previous authors have introduced in dynamic plastic buckling studies. In particular, the influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. (Auth.)
On the buckling of an elastic rotating beam
Furta, Stanislaw D.; Kliem, Wolfhard; Pommer, Christian
1997-01-01
problem is integrated and this results in a second order differential equation of the Fuchs type, which allows an asymptotic expansion of the buckling equation. By means of Lyapunov and Chetaev functions, a rigorous proof is given that the loss of stability of the trivial equilibrium shape occurs for any......A nonlinear model is developed, which describes the buckling phenomena of an elastic beam clamped to the interior of a rotating wheel. We use a power series method to obtain an approximate expression of the buckling equation and compare this with previous results in the literature. The linearized...
Evaluation of design safety factors for time-dependent buckling
Stone, C.M.; Nickell, R.E.
1977-02-01
The ASME Boiler and Pressure Vessel Code rules concerning time-dependent (creep) buckling for Class 1 nuclear components have recently been changed. Previous requirements for a factor of ten on service life have been replaced with a factor of safety of 1.5 on loading for load-controlled buckling. This report examines the supposed equivalence of the two rules from the standpoint of materials behavior--specifically, the secondary creep strain rate exponent. The comparison is made using results obtained numerically for an axially-loaded, cylindrical shell with varying secondary creep exponents. A computationally efficient scheme for analyzing creep buckling problems is also presented
WELWING, Material Buckling for HWR with Annular Fuel Elements
Grosskopf, O.G.P.
1973-01-01
1 - Nature of the physical problem solved: WELWING was developed to calculate the material buckling of reactor systems consisting of annular fuel elements in heavy water as moderator for various moderator to fuel ratios. The moderator to fuel ratio for the maximum material buckling for the particular system is selected automatically and the corresponding material buckling is calculated. 2 - Method of solution: The method used is an analytical solution of the one-group diffusion equations with various corrections and approximations. 3 - Restrictions on the complexity of the problem: Up to 32 different materials in the fuel element may be used
Evaluation of buckling on containment metallic vessels
Silveira, Renato Campos da; Mattar Neto, Miguel
2000-01-01
The buckling analysis represents one of the most important aspects of the structural projects of nuclear power plants containment metallic vessels and in this work the Case N-284-1 ASME Code is used for evaluation of those structures submitted to this failure mode. From the stress analysis, performed by using finite element method on discrete structures with shell elements, the procedure of the Code Case are applied to the evaluation of the containment metallic vessel of the Angra 2 nuclear power plant submitted to the own weight, seismic loads and uplift in case of accident. A study of pressure vessel reinforced by rings submit ed to the external pressure. Conclusions and commentaries are established based on the obtained results
Buckling and stretching of thin viscous sheets
O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich
2016-11-01
Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.
Compressive buckling of a rectangular nanoplate
Bochkarev, A. O.
2018-05-01
This paper considers the constitutive relations of the nanoplate theory with surface stresses taken into account according to the original or complete Gurtin-Murdoch (GM) model and according to the simplified strain-consistent GM model (which does not include any non-strain terms in the surface stress-strain relation). It is shown that the potential energy of a deformed nanoplate according to both GM models preserves the classical structure using the redefined elastic moduli (effective tangential and flexural elastic properties, which contain the characteristics of bulk phase and a surface). This allows to apply the known solutions and methods from macroplates to nanoplates. As example, it is shown that the critical load of the compressive buckling of a nanoplate according to the complete and strain-consistent GM models has the difference between two solutions no more than 1.5%.
Buckling Response of Thick Functionally Graded Plates
BOUAZZA MOKHTAR
2014-11-01
Full Text Available In this paper, the buckling of a functionally graded plate is studied by using first order shear deformation theory (FSDT. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the equilibrium equations of the plates subjected to two types of thermal loading, linear temperature rise and gradient through the thickness are considered. The governing equations are reduced to linear differential equation with boundary conditions yielding a simple solution procedure. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the no shear deformation theory (classic plate theory, CPT.
Radial nerve dysfunction (image)
The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...
Outcome of management of distal radius fractures in ...
Background and Purpose: Distal radial fractures are common fractures of postmenopausal age group patients. They are often called fractures of osteoporosis. These fractures are considered to be one of the commonest minor injuries to cause major morbidity in the community. A lot of patient who need surgery, fail to afford ...
Buckling localization in a cylindrical panel under axial compression
Tvergaard, Viggo; Needleman, A.
2000-01-01
Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically high...
Uncertain Buckling Load and Reliability of Columns with Uncertain Properties
Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.
Continuous and finite element methods are utilized to determine the buckling load of columns with material and geometrical uncertainties considering deterministic, stochastic and interval models for the bending rigidity of columns. When the bending rigidity field is assumed to be deterministic, t....... for structural design, the lower bound is of crucial interest. The buckling load of fixed-free, simple-supported, pinned-fixed, fixed-fixed columns and a sample frame are calculated....
Benchmark study of shear buckling of a cylindrical vessel
Dostal, M.; Austin, N.M.; Peano, A.; Combescure, A.; Bastien, R.; Carnoy, E.G.
1986-01-01
The possibility of a buckling failure of the primary vessel subjected to seismic excitation has been considered, by all major designers of loop and pool type liquid metal cooled fast breeder reactors. The problem is particularly onerous in this type of reactor due to their large size, coupled with small wall thicknesses. This report details the results of the first phase in a joint European code validation exercise on the static shear buckling behaviour of thin, low aspect ratio stainless steel cylinders. Linear and non-linear finite element analyses were performed by four organizations using three different computer codes, i.e. NNC (UK)-ABAQUS, ISMES (Italy)-ABAQUS, CEA (France)-BILBO/INCA and NOVATOME (France)-NOVNL. The computed results were compared directly with experimental results. It was discovered that refined finite element models were essential if accurate buckling loads were to be calculated. Buckling analyses in 3D were therefore computationally expensive and 2D analyses, where applicable, proved an useful alternative. Traditional linear (Euler) bifurcation analysis seriously over-estimated the buckling loads by around 50 %. Extrapolation techniques can however be used to reduce this discrepancy. Elasto-plastic bifurcation analysis predicted conservative buckling loads close to the experimental value. Non-linear, large displacement analyses were performed on the vessel. The effect of geometrical imperfections in the vessel was considered. These analyses all over-estimated the experimental buckling load by 10 %-25 % and appeared to be largely insensitive to the initial imperfection size. Each of the codes appeared to predict reasonably well the final buckled geometry although the analytical load-deflection estimate did not agree exactly with the experiment
Thermal buckling comparative analysis using Different FE (Finite Element) tools
Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)
2009-12-19
High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)
Strengthening of Steel Columns under Load: Torsional-Flexural Buckling
Martin Vild
2016-01-01
Full Text Available The paper presents experimental and numerical research into the strengthening of steel columns under load using welded plates. So far, the experimental research in this field has been limited mostly to flexural buckling of columns and the preload had low effect on the column load resistance. This paper focuses on the local buckling and torsional-flexural buckling of columns. Three sets of three columns each were tested. Two sets corresponding to the base section (D and strengthened section (E were tested without preloading and were used for comparison. Columns from set (F were first preloaded to the load corresponding to the half of the load resistance of the base section (D. Then the columns were strengthened and after they cooled, they were loaded to failure. The columns strengthened under load (F had similar average resistance as the columns welded without preloading (E, meaning the preload affects even members susceptible to local buckling and torsional-flexural buckling only slightly. This is the same behaviour as of the tested columns from previous research into flexural buckling. The study includes results gained from finite element models of the problem created in ANSYS software. The results obtained from the experiments and numerical simulations were compared.
On buckling of double-shell-stiffened cylindrical steel structures
Chen, S.J.; Chiu, K.D.; Odar, E.
1981-01-01
Buckling analysis methods and acceptance criteria for single shells of various configurations are well documented and adequately covered by many codes. There are, however, no guidelines or criteria for large Double-Shell-Stiffened (DSS) structures, which have been used recently in nuclear power plant applications. The existing codes for buckling analysis cannot be directly utilized because of the uniqueness of structural configuration and complexity of loading. This paper discusses a method for determining the critical buckling loads for this type of structure under a multitude load and suggests buckling criteria for the design of DSS structures. The method commonly used to determine the critical buckling loads for a single shell with or without stiffeners applies reduction factors to the theoretical results. The capacity reduction factors, which are often obtained from experimental results, include plasticity corrections and account for the difference between actual and theoretical buckling loads resulting from the effects of imperfections and nonlinearities. The interaction formulas derived from experimental results can be used to compute the interaction effects of three stress components. This paper extends these concepts and discusses their applicability to a DSS cylindrical structure. (orig./HP)
Qi, Yi; Kim, Jihoon; Nguyen, Thanh D; Lisko, Bozhena; Purohit, Prashant K; McAlpine, Michael C
2011-03-09
The development of a method for integrating highly efficient energy conversion materials onto soft, biocompatible substrates could yield breakthroughs in implantable or wearable energy harvesting systems. Of particular interest are devices which can conform to irregular, curved surfaces, and operate in vital environments that may involve both flexing and stretching modes. Previous studies have shown significant advances in the integration of highly efficient piezoelectric nanocrystals on flexible and bendable substrates. Yet, such inorganic nanomaterials are mechanically incompatible with the extreme elasticity of elastomeric substrates. Here, we present a novel strategy for overcoming these limitations, by generating wavy piezoelectric ribbons on silicone rubber. Our results show that the amplitudes in the waves accommodate order-of-magnitude increases in maximum tensile strain without fracture. Further, local probing of the buckled ribbons reveals an enhancement in the piezoelectric effect of up to 70%, thus representing the highest reported piezoelectric response on a stretchable medium. These results allow for the integration of energy conversion devices which operate in stretching mode via reversible deformations in the wavy/buckled ribbons.
Buckling instability in ordered bacterial colonies
Boyer, Denis; Mather, William; Mondragón-Palomino, Octavio; Orozco-Fuentes, Sirio; Danino, Tal; Hasty, Jeff; Tsimring, Lev S.
2011-04-01
Bacterial colonies often exhibit complex spatio-temporal organization. This collective behavior is affected by a multitude of factors ranging from the properties of individual cells (shape, motility, membrane structure) to chemotaxis and other means of cell-cell communication. One of the important but often overlooked mechanisms of spatio-temporal organization is direct mechanical contact among cells in dense colonies such as biofilms. While in natural habitats all these different mechanisms and factors act in concert, one can use laboratory cell cultures to study certain mechanisms in isolation. Recent work demonstrated that growth and ensuing expansion flow of rod-like bacteria Escherichia coli in confined environments leads to orientation of cells along the flow direction and thus to ordering of cells. However, the cell orientational ordering remained imperfect. In this paper we study one mechanism responsible for the persistence of disorder in growing cell populations. We demonstrate experimentally that a growing colony of nematically ordered cells is prone to the buckling instability. Our theoretical analysis and discrete-element simulations suggest that the nature of this instability is related to the anisotropy of the stress tensor in the ordered cell colony.
Buckling instability in ordered bacterial colonies
Boyer, Denis; Mather, William; Mondragón-Palomino, Octavio; Danino, Tal; Hasty, Jeff; Orozco-Fuentes, Sirio; Tsimring, Lev S
2011-01-01
Bacterial colonies often exhibit complex spatio-temporal organization. This collective behavior is affected by a multitude of factors ranging from the properties of individual cells (shape, motility, membrane structure) to chemotaxis and other means of cell–cell communication. One of the important but often overlooked mechanisms of spatio-temporal organization is direct mechanical contact among cells in dense colonies such as biofilms. While in natural habitats all these different mechanisms and factors act in concert, one can use laboratory cell cultures to study certain mechanisms in isolation. Recent work demonstrated that growth and ensuing expansion flow of rod-like bacteria Escherichia coli in confined environments leads to orientation of cells along the flow direction and thus to ordering of cells. However, the cell orientational ordering remained imperfect. In this paper we study one mechanism responsible for the persistence of disorder in growing cell populations. We demonstrate experimentally that a growing colony of nematically ordered cells is prone to the buckling instability. Our theoretical analysis and discrete-element simulations suggest that the nature of this instability is related to the anisotropy of the stress tensor in the ordered cell colony
Buckled two-dimensional Xene sheets.
Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji
2017-02-01
Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.
Smith, Karl H.
2002-01-01
A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.
Management of post-traumatic elbow instability after failed radial head excision: A case report.
Touloupakis, Georgios; Theodorakis, Emmanouil; Favetti, Fabio; Nannerini, Massimiliano
2017-02-01
Radial head excision has always been a safe commonly used surgical procedure with a satisfactory clinical outcome for isolated comminuted radial head fractures. However, diagnosis of elbow instability is still very challenging and often underestimated in routine orthopaedic evaluation. We present the case of a 21-years old female treated with excision after radial head fracture, resulting in elbow instability. The patient underwent revision surgery after four weeks. We believe that ligament reconstruction without radial head substitution is a safe alternative choice for Mason III radial head fractures accompanied by complex ligament lesions. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Sirenomelia with radial dysplasia.
Kulkarni, M L; Abdul Manaf, K M; Prasannakumar, D G; Kulkarni, Preethi M
2004-05-01
Sirenomelia is a rare anomaly usually associated with other multiple malformations. In this communication the authors report a case of sirenomelia associated with multiple malformations, which include radial hypoplasia also. Though several theories have been proposed regarding the etiology of multiple malformation syndromes in the past, the recent theory of primary developmental defect during blastogenesis holds good in this case.
Radially truncated galactic discs
Grijs, R. de; Kregel, M.; Wesson, K H
2000-01-01
Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out
Critical thickness ratio for buckled and wrinkled fruits and vegetables
Dai, Hui-Hui; Liu, Yang
2014-11-01
This work aims at establishing the geometrical constraint for buckled and wrinkled shapes by modeling a fruit/vegetable with exocarp and sarcocarp as a hyperelastic layer-substrate structure subjected to uniaxial compression. A careful analysis on the derived bifurcation condition leads to the finding of a critical thickness ratio which separates the buckling and wrinkling modes, and remarkably, which is independent of the material stiffnesses. More specifically, it is found that if the thickness ratio is smaller than this critical value a fruit/vegetable should be in a buckled shape (under a sufficient stress); if a fruit/vegetable is in a wrinkled shape the thickness ratio is always larger than this critical value. To verify the theoretical prediction, we consider four types of buckled fruits/vegetables and four types of wrinkled fruits/vegetables with three samples in each type. The geometrical parameters for the 24 samples are measured and it is found that indeed all the data fall into the theoretically predicted buckling or wrinkling domains.
Engineering electronic states of periodic and quasiperiodic chains by buckling
Mukherjee, Amrita; Nandy, Atanu; Chakrabarti, Arunava
2017-07-01
The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, bending the segments more) absolutely continuous density of states is retained towards the edges of the band, while the central portion becomes fragmented and host subbands of narrowing widths containing extended, current carrying states, and multiple isolated bound states formed as a result of the bending. A switching ;on; and ;off; of the electronic transmission can thus be engineered by buckling. On the other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. We present exact results based on a real space renormalization group analysis, that is corroborated by explicit calculation of the two terminal electronic transport.
A strategy to compute plastic post-buckling of structures
Combescure, A.
1983-08-01
The paper gives a general framework to the different strategies used to compute the post-buckling of structures. Two particular strategies are studied in more details and it is shown how they can be applied in the plastic regime. All the methods suppose that the loads F are proportional to a simple parameter lambda; more precisely: eq (1) F = lambda F 0 . The paper shows how these methods can be implemented in a very simple way. In the elastic case we show the application of the method to the calculation of post buckling response of a clamped arch. The method is also applied to a very simple case of two bars which can be calculated analytically. In the plastic range, the method is applied to the post-buckling of an imperfect ring which can be calculated analytically. Another example is the comparison of the comparison of the computed post-buckling of a thin cylinder under axial compression, and of the experimental behavior on the same cylinder. The limitation of these types of strategies are also mentionned and the physical signifiance of calculations in the post-buckling regime are discussed
Isolated posterior dislocation of the radial head in an adult.
Negi A
1992-07-01
Full Text Available Isolated posterior dislocation of the radial head was detected on X-ray in a patient following a vehicular accident. Such a dislocation without an associated fracture is extremely rare in adults. Immobilization of the elbow in full pronation and 90 degrees flexion for 4 weeks normalized the position of the head of the radius.
Research on the Numerical Simulation of Sleeper in the Pipeline Global Buckling Controlling Practice
Liu Wen-Bin
2017-01-01
Full Text Available This paper analyzed the lateral buckling of pipelines located in Western Africa with ABAQUS software. The application of sleepers in practice is explored to guide the pipeline buckling controlling design.
Effect of corrosion on the buckling capacity of tubular members
Øyasæter, F. H.; Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.
2017-12-01
Offshore installations are subjected to harsh marine environment and often have damages from corrosion. Several experimental and numerical studies were performed in the past to estimate buckling capacity of corroded tubular members. However, these studies were either based on limited experimental tests or numerical analyses of few cases resulting in semi-empirical relations. Also, there are no guidelines and recommendations in the currently available design standards. To fulfil this research gap, a new formula is proposed to estimate the residual strength of tubular members considering corrosion and initial geometrical imperfections. The proposed formula is verified with results from finite element analyses performed on several members and for varying corrosion patch parameters. The members are selected to represent the most relevant Eurocode buckling curve for tubular members. It is concluded that corrosion reduces the buckling capacity significantly and the proposed formula can be easily applied by practicing engineers without performing detailed numerical analyses.
Buckling induced by cyclic straining: Analysis of simple models
Devos, J.; Gontier, C.; Hoffmann, A.
1983-01-01
Progressive buckling of a structure may occur under imposed loads below the critical value in cases where progressive distortion due to cyclic straining is possible. This interaction between ratchetting and buckling is usually not taken into account in design rules, such as the ASME rules. This paper presents the complete analysis of two simple cases and gives rules established on this basis. The first model is a modified version of SHANLEY's two bars; it is submitted to a constant axial compressive force F and a variable thermal stress Q. It simulates a compressed clamped-clamped beam subjected to a variable through-thickness thermal gradient. The second model is a refined version of the first taking into account strain-hardening of the deformable sections. One finds that progressive buckling is possible only if the applied force F is greater than SHANLEY's critical load and tangent moduli of the moment-curvature law, respectively. (orig./GL)
Vibrations of post-buckled rods: The singular inextensible limit
Neukirch, Sé bastien; Frelat, Joë l; Goriely, Alain; Maurini, Corrado
2012-01-01
The small-amplitude in-plane vibrations of an elastic rod clamped at both extremities are studied. The rod is modeled as an extensible, shearable, planar Kirchhoff elastic rod under large displacements and rotations, and the vibration frequencies are computed both analytically and numerically as a function of the loading. Of particular interest is the variation of mode frequencies as the load is increased through the buckling threshold. While for some modes there are no qualitative changes in the mode frequencies, other frequencies experience rapid variations after the buckling threshold, the thinner the rod, the more abrupt the variations. Eventually, a mismatch for half of the frequencies at buckling arises between the zero thickness limit of the extensible model and the inextensible model. © 2011 Elsevier Ltd. All rights reserved.
Buckling analysis of SMA bonded sandwich structure – using FEM
Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.
2018-03-01
Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.
Lower bound buckling loads for design of laminate composite cylinders
Croll, James G. A.; Wang, Hongtao
2017-01-01
Over a period of more than 45 years, an extensive research program has allowed a series of very simple propositions, relating to the safe design of shells experiencing imperfection sensitive buckling, to be recast in the form of a series of lemmas. These are briefly summarized and their practical use is illustrated in relation to the prediction of safe lower bounds to the imperfection sensitive buckling of axially loaded, fiber reinforced polymeric, laminated cylinders. With a fundamental aspect of the approach, sometimes referred to as the reduced stiffness method, being the delineation of the various shell membrane and bending stiffness (or perhaps more appropriately energy) components contributing to the buckling resistance, the method will be shown to also provide a powerful way of making rational design decisions to optimize the use of fiber reinforcement.
Finite element predictions of active buckling control of stiffened panels
Thompson, Danniella M.; Griffin, O. H., Jr.
1993-04-01
Materials systems and structures that can respond 'intelligently' to their environment are currently being proposed and investigated. A series of finite element analyses was performed to investigate the potential for active buckling control of two different stiffened panels by embedded shape memory alloy (SMA) rods. Changes in the predicted buckling load increased with the magnitude of the actuation level for a given structural concept. Increasing the number of actuators for a given concept yielded greater predicted increases in buckling load. Considerable control authority was generated with a small number of actuators, with greater authority demonstrated for those structural concepts where the activated SMA rods could develop greater forces and moments on the structure. Relatively simple and inexpensive analyses were performed with standard finite elements to determine such information, indicating the viability of these types of models for design purposes.
Bifurcations in the optimal elastic foundation for a buckling column
Rayneau-Kirkhope, Daniel; Farr, Robert; Ding, K.; Mao, Yong
2010-01-01
We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.
Bifurcations in the optimal elastic foundation for a buckling column
Rayneau-Kirkhope, Daniel, E-mail: ppxdr@nottingham.ac.u [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Farr, Robert [Unilever R and D, Olivier van Noortlaan 120, AT3133, Vlaardingen (Netherlands); London Institute for Mathematical Sciences, 22 South Audley Street, Mayfair, London (United Kingdom); Ding, K. [Department of Physics, Fudan University, Shanghai, 200433 (China); Mao, Yong [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)
2010-12-01
We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.
Shan, Jia
As its role in satisfying the energy demand of the U.S. and as a clean fuel has become more significant than ever, the shale gas production in the U.S. has gained increasing momentum over recent years. Thus, effective and environmentally friendly methods to extract shale gas are critical. Hydraulic fracturing has been proven to be efficient in the production of shale gas. However, environmental issues such as underground water contamination and high usage of water make this technology controversial. A potential technology to eliminate the environmental issues concerning water usage and contamination is to use blast fracturing, which uses explosives to create fractures. It can be further aided by HEGF and multi-pulse pressure loading technology, which causes less crushing effect near the wellbore and induces longer fractures. Radial drilling is another relatively new technology that can bypass damage zones due to drilling and create a larger drainage area through drilling horizontal wellbores. Blast fracturing and radial drilling both have the advantage of cost saving. The successful combination of blast fracturing and radial drilling has a great potential for improving U.S. shale gas production. An analytical productivity model was built in this study, considering linear flow from the reservoir rock to the fracture face, to analyze factors affecting shale gas production from radial lateral wells with shockwave completion. Based on the model analyses, the number of fractures per lateral is concluded to be the most effective factor controlling the productivity index of blast-fractured radial lateral wells. This model can be used for feasibility studies of replacing hydraulic fracturing by blast fracturing in shale gas well completions. Prediction of fracture geometry is recommended for future studies.
Buckle initiation and delamination of patterned ITO layers on a polymer substrate
Abdallah, Amir; Bouten, P.C.P.; Toonder, den J.M.J.; With, de G.
2011-01-01
Buckle initiation and delamination of patterned ITO layers on a polymer substrate were studied. Various buckle modes have been observed depending on the type of etch defects and the crack patterns. The buckle density was found to be dependent on the number of etch defects, imperfections, applied
'Trampoline fracture' of the proximal tibia in children: report of 3 cases and review of literature.
Bruyeer, E; Geusens, E; Catry, F; Vanstraelen, L; Vanhoenacker, F
2012-01-01
We present three cases of fracture of the proximal tibia in young children who were jumping on a trampoline. The typical radiological findings and the underlying mechanism of trauma are discussed. The key radiological features are: a transverse hairline fracture of the upper tibia often accompanied by a buckle fracture of the lateral or medial tibial cortex, buckling of the anterior upper tibial cortex and anterior tilting of the epiphyseal plate. New types of injuries related to specific recreational activities are recognized. It is often helpful to associate a typical injury with a particular activity. Trampoline related injuries have increased dramatically over the last years. The most common lesions are fractures and ligamentous injuries, in particular a transverse fracture of the proximal tibia. However the radiological findings can be very subtle and easily overlooked. It is therefore important to be aware of the typical history and radiological findings.
Determining the asymptotic buckling for the reference RB reactor lattice
Martinc, R.; Sotic, O.
1969-01-01
Material buckling was measured for reference lattice of the heavy water reflected system with 2% enriched uranium fuel. Experiments were done for cores with lattice pitch values: 8, 8√2, i 16 cm. Each of these cores had heavy water reflector, as well as active reflector - heavy water lattice with natural uranium fuel. The core was reflected by natural uranium lattice in order to approach asymptotic regime in the central zone. Buckling values obtained with the natural uranium lattice as reflector are, as a rule, lower then in case of heavy water reflector [sr
On the buckling behavior of piezoelectric nanobeams: An exact solution
Jandaghian, Ali Akbar; Rahmaini, Omid
2015-01-01
In this paper, thermoelectric-mechanical buckling behavior of the piezoelectric nanobeams is investigated based on the nonlocal theory and Euler-Bernoulli beam theory. The electric potential is assumed linear through the thickness of the nanobeam and the governing equations are derived by Hamilton's principle. The governing equations are solved analytically for different boundary conditions. The effects of the nonlocal parameter, temperature change, and external electric voltage on the critical buckling load of the piezoelectric nanobeams are discussed in detail. This study should be useful for the design of piezoelectric nanodevices.
Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.
McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek
2018-02-16
Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.
A review of analysis methods about thermal buckling
Moulin, D.; Combescure, A.; Acker, D.
1987-01-01
This paper highlights the main items emerging from a large bibliographical survey carried out on strain-induced buckling analysis methods applicable in the building of fast neutron reactor structures. The work is centred on the practical analysis methods used in construction codes to account for the strain-buckling of thin and slender structures. Methods proposed in the literature concerning past and present studies are rapidly described. Experimental, theoretical and numerical methods are considered. Methods applicable to design and their degree of validation are indicated
NASTRAN buckling study of a linear induction motor reaction rail
Williams, J. G.
1973-01-01
NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.
Variable stator radial turbine
Rogo, C.; Hajek, T.; Chen, A. G.
1984-01-01
A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.
Nilsson, Martin
2007-01-01
The demands for ride comfort quality in today's long haulage trucks are constantly growing. A part of the ride comfort problems are represented by internal vibrations caused by rotating mechanical parts. This thesis work focus on the vibrations generated from radial runout on the wheels. These long haulage trucks travel long distances on smooth highways, with a constant speed of 90 km/h resulting in a 7 Hz oscillation. This frequency creates vibrations in the cab, which can be found annoying....
Coufal, David
2017-01-01
Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016
Radial Field Piezoelectric Diaphragms
Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.
2002-01-01
A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.
Perceived radial translation during centrifugation
Bos, J.E.; Correia Grácio, B.J.
2015-01-01
BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation
Baumgarten, Lorenz; Kierfeld, Jan
2018-05-01
We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy
Analysis of Lateral Buckling of Bar with Axial Force Accumulation in Truss
Wattanamankong, Nuttapon; Petchsasithon, Arthit; Dhirasedh, Suwat
2017-06-01
This research studies the lateral buckling behavior in truss and lateral buckling coefficient of truss. Lateral buckling analysis of truss is performed by simulating the structural model with both end supports being pinned and roller-supports. The analysis is indirectly conducted using Elastic Theory to evaluate the length of lateral buckling by calculating the determinant of the Matrix [K]. Results from the analysis are marginally different from those obtained from finite element program and are considerably less than those obtained from Eurocode standard. This can be concluded that using elastic theory to evaluate lateral buckling coefficient of truss member will result in more economical section.
Two new methods for the determination of hydraulic fracture ...
2008-09-15
Sep 15, 2008 ... Flow is radial and divergent. • There is only a single fracture within the test segment. • The fracture and rock mass are rigid and the matrix is imper- meable. • The fracture aperture varies along the radius and is radically symmetrical about the borehole. • Advection, dispersion and diffusion are negligible due ...
Initial post dynamic buckling of a quadratic-cubic column ...
In this investigation, we determine the dynamic buckling load of an imperfect finite column resting on a mixed quadratic-cubic nonlinear elastic foundation trapped by an explicitly time dependent sinusoidally slowly varying dynamic load .The resultant coefficients are dynamically slowly varying and the formulation contains ...
Buckling behavior of origami unit cell facets under compressive loads
Kshad, Mohamed Ali Emhmed; Naguib, Hani E.
2018-03-01
Origami structures as cores for sandwich structures are designed to withstand the compressive loads and to dissipate compressive energy. The deformation of the origami panels and the unit cell facets are the primary factors behind the compressive energy dissipation in origami structures. During the loading stage, the origami structures deform through the folding and unfolding process of the unit cell facets, and also through the plastic deformation of the facets. This work presents a numerical study of the buckling behavior of different origami unit cell elements under compressive loading. The studied origami configurations were Miura and Ron-Resch-like origami structures. Finite element package was used to model the origami structures. The study investigated the buckling behavior of the unit cell facets of two types of origami structures Miura origami and Ron-Resch-Like origami structures. The simulation was conducted using ANSYS finite element software, in which the model of the unit cell represented by shell elements, and the eigenvalues buckling solver was used to predict the theoretical buckling of the unit cell elements.
Buckling of thin-walled beams under concentrated transverse loading
Menken, C.M.; Erp, van G.M.; Krupta, V.; Drdacky, M.
1991-01-01
The transversely loaded thin-walled beam under a non-uniform bending moment forms an example of the detrimental influence that a local effect may have on the overall behaviour. The local effect is the plate buckling in the region of maximum bending moment. The overall behaviour is the
Buckling of Thin Films in Nano-Scale
Li L.A.
2010-06-01
Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.
Local buckling failure analysis of high-strength pipelines
Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu
2017-01-01
Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.
Lateral-torsional buckling resistance of cellular beams
Sonck, Delphine; Belis, Jan
The evenly spaced circular web openings in I-section cellular beams have an advantageous effect on the material use if these beams are loaded in strong-axis bending. However, not all aspects of the behaviour of such beams have been studied adequately, such as the lateral–torsional buckling failure.
Buckling analysis for anisotropic laminated plates under combined inplane loads
Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.
1974-01-01
The buckling analysis presented considers rectangular flat or curved general laminates subjected to combined inplane normal and shear loads. Linear theory is used in the analysis. All prebuckling deformations and any initial imperfections are ignored. The analysis method can be readily extended to longitudinally stiffened structures subjected to combined inplane normal and shear loads.
An embeddable optical strain gauge based on a buckled beam.
Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie
2017-11-01
We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.
An embeddable optical strain gauge based on a buckled beam
Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie
2017-11-01
We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.
Buckling analysis of rectangular composite plates with rectangular ...
In aeronautical, marine and automobile industries the use of composite laminates .... load of fibre-reinforced plastic square panels using finite element method. .... lar cutout i.e d/b = 0.1 and β =0, the reduction in buckling load by increasing c/b ...
Studies of the Buckling of Composite Plates in Compression
Hayman, B.; Berggreen, Christian; Lundsgaard-Larsen, Christian
2011-01-01
As part of the Network of Excellence on Marine Structures (MARSTRUCT), a series of studies has been carried out into the buckling of glass-fibre-reinforced polymer plates with in-plane compression loading. The studies have included fabrication and testing of square, laminated panels with various...
Studies of the buckling of composite plates in compression
Hayman, B.; Berggreen, Christian; Lundsgaard-Larsen, Christian
2009-01-01
As part of the MARSTRUCT Network of Excellence on Marine Structures, a series of studies has been carried out into the buckling of glass fibre reinforced polymer plates with in-plane compression loading. The studies have included fabrication and testing of square, laminated panels with various...
Stretchable transistors with buckled carbon nanotube films as conducting channels
Arnold, Michael S; Xu, Feng
2015-03-24
Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.
On the dynamic buckling of a weakly damped nonlinear elastic ...
In this paper we determine the dynamic buckling load of a strictly nonlinear but weakly damped elastic oscillatory model structure subjected to small perturbations The loading history is explicitly time dependent and varies slowly with time over a natural period of oscillation of the structure. A multiple timing regular ...
Buckling instabilities of subducted lithosphere beneath the transition zone
Ribe, N.M.; Stutzmann, E.; Ren, Y.; Hilst, R.D. van der
2007-01-01
A sheet of viscous fluid poured onto a surface buckles periodically to generate a pile of regular folds. Recent tomographic images beneath subduction zones, together with quantitative fluid mechanical scaling laws, suggest that a similar instability can occur when slabs of subducted oceanic
Mallett, R.H.
1986-12-01
This report documents analytical and experimental results from a survey of the technical literature on buckling of thick-walled cylinders under external pressure. Based upon these results, a load factor is suggested for the design of waste package containers for disposal of high-level radioactive waste in repositories mined in salt formations. The load factor is defined as a ratio of buckling pressure to allowable pressure. Specifically, a load factor which ranges from 1.5 for plastic buckling to 3.0 for elastic buckling is included in a set of proposed buckling design criteria for waste disposal containers. Formulas are given for buckling design under axisymmetric conditions. Guidelines are given for detailed inelastic buckling analyses which are generally required for design of disposal containers
Radial reflection diffraction tomography
Lehman, Sean K.
2012-12-18
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Edgard Novaes de França Bisneto
2010-01-01
Full Text Available OBJETIVO: Comparar os resultados do tratamento cirúrgico entre placa volar com estabilidade angular e placas ortogonais em fraturas instáveis de rádio distal em pacientes com mais de 60 anos. MÉTODOS: Pacientes foram divididos em dois grupos tratados com placa volar ou placas ortogonais. Resultados clínicos e radiográficos foram analisados prospectivamente. RESULTADOS: Os grupos de estudo apresentaram resultados clínicos e radiográficos semelhantes seis meses após a operação. No entanto três meses após a cirurgia, o grupo onde foi utilizada a placa volar obteve resultados superiores. CONCLUSÃO: Ambos os grupos apresentaram bons resultados funcionais. O tratamento cirúrgico facilita a reabilitação precoce. A técnica das placas ortogonais requer uma curva de aprendizado maior e apresentou mais complicações e piores resultados iniciais.OBJECTIVE: To compare the results from surgical treatment between volar plates with angular stability and orthogonal plates of unstable distal radius fractures in patients aged over 60 years. METHODS: Selected patients were randomized in two groups treated with volar plates or orthogonal plates. Clinic al and radiographic results were analyzed prospectively. RESULTS: The study groups presented similar clinical and radiographic results six months after the operation. However three months after surgery the volar plate group obtained superior results considering most of the parameters studied. CONCLUSION: Both the volar plates and the orthogonal plates presented good functional results. Surgical treatment enabled early rehabilitation for these patients. Orthogonal plate technique required a longer learning curve, presented more complications and worst early results.
Changing incidence and residual lifetime risk of common osteoporosis-related fractures
Lauritzen, J B; Schwarz, Peter; Lund, B
1993-01-01
1735 fractures of the distal radius, 747 fractures of the proximal humerus, 878 cervical and 635 trochanteric hip fractures were included. In men 273 cervical and 232 trochanteric hip fractures were included. The fractures were registered during the period 1976 to 1984 and changes in age.......05) during the observation period, while no significant decrease was found in the incidence of trochanteric fractures. No significant changes in incidence were observed in women with radial or humeral fractures, or in men with hip fractures. A women 60 years old with a life expectancy of 81 years had......Changes in incidence and lifetime risk of fractures are of major importance in the epidemiology of osteoporosis. We focused on hip fractures in women and men and on radial and humeral fractures in women. The study subjects comprised 4500 women and men 20 years old or more with fractures. In women...
Influence of bone mineral density and hip geometry on the different types of hip fracture.
Li, Yizhong; Lin, Jinkuang; Cai, Siqing; Yan, Lisheng; Pan, Yuancheng; Yao, Xuedong; Zhuang, Huafeng; Wang, Peiwen; Zeng, Yanjun
2016-01-01
The aim of this study was to assess the influence of bone mineral density and hip geometry on the fragility fracture of femoral neck and trochanteric region. There were 95 menopausal females of age ≥ 50 years with fragility fracture of hip, including 55 cases of femoral neck fracture and 40 cases of trochanteric fracture. Another 63 non-fractured females with normal bone mineral density (BMD) were chosen as control. BMD, hip axis length, neck-shaft angle and structural parameters including cross surface area, cortical thickness and buckling ratio were detected and compared. Compared with control group, the patients with femoral neck fracture or trochanteric fractures had significantly lower BMD of femoral neck, as well as lower cross surface area and cortical thickness and higher buckling ratio in femoral neck and trochanteric region. There were no significant differences of BMD and structural parameters in the femoral neck fracture group and intertrochanteric fracture group. Hip axis length and neck-shaft angle were not significantly different among three groups. The significant changes of BMD and proximal femur geometry were present in the fragility fracture of femoral neck and trochanteric region. The different types of hip fractures cannot be explained by these changes.
Influence of bone mineral density and hip geometry on the different types of hip fracture
Yizhong Li
2016-01-01
Full Text Available The aim of this study was to assess the influence of bone mineral density and hip geometry on the fragility fracture of femoral neck and trochanteric region. There were 95 menopausal females of age ≥ 50 years with fragility fracture of hip, including 55 cases of femoral neck fracture and 40 cases of trochanteric fracture. Another 63 non-fractured females with normal bone mineral density (BMD were chosen as control. BMD, hip axis length, neck-shaft angle and structural parameters including cross surface area, cortical thickness and buckling ratio were detected and compared. Compared with control group, the patients with femoral neck fracture or trochanteric fractures had significantly lower BMD of femoral neck, as well as lower cross surface area and cortical thickness and higher buckling ratio in femoral neck and trochanteric region. There were no significant differences of BMD and structural parameters in the femoral neck fracture group and intertrochanteric fracture group. Hip axis length and neck-shaft angle were not significantly different among three groups. The significant changes of BMD and proximal femur geometry were present in the fragility fracture of femoral neck and trochanteric region. The different types of hip fractures cannot be explained by these changes.
Fracture behavior of human molars.
Keown, Amanda J; Lee, James J-W; Bush, Mark B
2012-12-01
Despite the durability of human teeth, which are able to withstand repeated loading while maintaining form and function, they are still susceptible to fracture. We focus here on longitudinal fracture in molar teeth-channel-like cracks that run along the enamel sidewall of the tooth between the gum line (cemento-enamel junction-CEJ) and the occlusal surface. Such fractures can often be painful and necessitate costly restorative work. The following study describes fracture experiments made on molar teeth of humans in which the molars are placed under axial compressive load using a hard indenting plate in order to induce longitudinal cracks in the enamel. Observed damage modes include fractures originating in the occlusal region ('radial-median cracks') and fractures emanating from the margin of the enamel in the region of the CEJ ('margin cracks'), as well as 'spalling' of enamel (the linking of longitudinal cracks). The loading conditions that govern fracture behavior in enamel are reported and observations made of the evolution of fracture as the load is increased. Relatively low loads were required to induce observable crack initiation-approximately 100 N for radial-median cracks and 200 N for margin cracks-both of which are less than the reported maximum biting force on a single molar tooth of several hundred Newtons. Unstable crack growth was observed to take place soon after and occurred at loads lower than those calculated by the current fracture models. Multiple cracks were observed on a single cusp, their interactions influencing crack growth behavior. The majority of the teeth tested in this study were noted to exhibit margin cracks prior to compression testing, which were apparently formed during the functional lifetime of the tooth. Such teeth were still able to withstand additional loading prior to catastrophic fracture, highlighting the remarkable damage containment capabilities of the natural tooth structure.
Ahn, Seok Hwan; Nam, Ki Woo; Kim, Seon Jin; Kim, Jin Hwan; Kim, Hyun Soo; Do, Jae Yoon
2003-01-01
Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe Erosion-Corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, crack initiation/growth after ovalization, local buckling and crack initiating/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated
Radial semiconductor drift chambers
Rawlings, K.J.
1987-01-01
The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)
1983-01-01
There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water
Stone, M.B.; Abernathy, D.L.; Niedziela, J.L.; Overbay, M.A.
2015-01-01
We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. The collimator is composed of collimating blades (or septa). The septa are 12 micron thick Kapton foils coated on each side with 39 microns of enriched boron carbide ( 10 B 4 C with 10 B > 96%) in an ultra-high vacuum compatible binder. The collimator blades represent an additional 22 m 2 of surface area. In the article we present collimator's design and performance and methodologies for its effective use
An impact test system design and its applications to dynamic buckling of a spacer grid assembly
Liu, Sheng, E-mail: liusheng_05@126.com; Fan, Chenguang; Yang, Yiren
2016-11-15
This study is aimed at investigating the dynamic buckling load, dynamic stiffness, damping and buckling characteristics of the spacer grid assembly (SGA). A pendulum impact test system is designed to experiment the buckling of SGAs. Three criterions are discussed and compared to determine the buckling loads of SGAs: B-R criterion, energy criterion and extreme value criterion. Two approaches are applied to calculate the dynamic stiffness of SGAs: One method is natural period method based on the hypothesis of harmonic motion of the pendulum whose period is approximated because of the passivation and tailing of the impact force time history; and the other is energy method based on the conservation of mechanical energy. The equivalent viscous damping is defined as the resultant cause of dissipation and is obtained by the energy principle. The impact force time history loses its approximate symmetry after buckling occurs. The impact force and displacement reach their maxima almost at the same time at pre-buckling states but not post-buckling states. Vertical straps in SGA are found to be transversely shared by horizontal straps at the buckling position. The buckling of SGA results from the lack of strength of complete structure; and the strength of material has no effects on the buckling.
... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...
Antiproton compression and radial measurements
Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y
2008-01-01
Control of the radial proﬁle of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial proﬁle, and its relation to that of the electron plasma. We also measure the outer radial proﬁle by ejecting antiprotons to the trap wall using an octupole magnet.
Measurement of material buckling of subcritical assembly CAPITU
Pombo, J.B.S.M.
1976-11-01
Material buckling and cadmium ratio measurements for 5 lattices of the subcritical assembly CAPITU with UO 2 as fuel (French fuel elements) and D 2 O as moderator are reported. Flux shape method from foil activation data has been used. Some developed accessories, experimental procedures and the counting system used are also described. Flux distributions were analysed by least squares fitting method and by a moments method. Final results for material buckling were confronted with theoretical values and with values obtained by pulsed neutron techniques. A summary of the programs used for preliminary processing of counting data and for least squares fitting are included. Although the measurements involved some problems which were not definitively solved, results seem to be reasonably reliable and the methodology well implemented. (Author) [pt
Reversible patterning of spherical shells through constrained buckling
Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.
2017-07-01
Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.
Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams
Ebrahimi, Farzad; Reza Barati, Mohammad
2016-09-01
In this work, a size-dependent curved beam model is developed to take into account the effects of nonlocal stresses on the buckling behavior of curved magneto-electro-elastic FG nanobeams for the first time. The governing differential equations are derived based on the principle of virtual work and Euler-Bernoulli beam theory. The power-law function is employed to describe the spatially graded magneto-electro-elastic properties. By extending the radius of the curved nanobeam to infinity, the results of straight nonlocal FG beams can be rendered. The effects of magnetic potential, electric voltage, opening angle, nonlocal parameter, power-law index and slenderness ratio on buckling loads of curved MEE-FG nanobeams are studied.
Buckling transition and boundary layer in non-Euclidean plates.
Efrati, Efi; Sharon, Eran; Kupferman, Raz
2009-07-01
Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.
Buckling of long liquid-filled cylindrical shells
Saal, H.
1982-01-01
The experimental investigation confirms the stresses and displacements which result from a nonlinear analysis of the shell. The linear analysis gives a good approximation for the stresses and deformations which significantly deviate from those according to beam theory. This approximation is to the safe side - (remarkably only for the displacements and circumferential stresses). The application of an equivalent cylinder model to the determination of the buckling load gives rather good agreement with the experimental results. There is only little imperfection sensitivity in this load case as the experiments show. Again the theoretical buckling load which is based on the stresses and displacements from linear shell theory is on the safe side. (orig./RW)
Numerical Analysis Of Buckling Of Von Mises Planar Truss
Kalina Martin
2015-12-01
Full Text Available A computational algorithm of a discrete model of von Mises planar steel truss is presented. The structure deformation is evaluated by seeking the minimal potential energy. The critical force invented by mathematical solution was compared with solution by computer algorithm. Symmetric and asymmetric effects of initial shape of geometric imperfection of axis of struts are used in model. The shapes of buckling of von Mises planar truss of selected vertical displacement of top joint are shown.
Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders
Thornburgh, Robert P.; Hilburger, Mark W.
2010-01-01
Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.
Calculation of the geometric buckling for reactors of various shapes
Sjoestrand, N E
1958-05-15
A systematic investigation is made of the eleven coordinate systems in which the reactor equation {nabla}{sup 2}{phi} + B{sup 2}{phi} = 0 is separable. The fundamental solution and geometric buckling are given for those cases where the separated equations lead to known functions. It is especially shown that reactors of prolate and oblate spheroidal shape can be calculated in detail, and the results are given in extensive tables.
Scleral buckling for retinal detachment in patients with retinoblastoma
Buzney, S.M.; Pruett, R.C.; Regan, C.D.; Walton, D.S.; Smith, T.R.
1984-01-01
Three children (two girls and one boy) with bilateral retinoblastoma each developed a presumed rhegmatogenous retinal detachment in one eye. All three eyes had previously received radiation and cryotherapy. In each case the retinal detachment responded promptly to conventional surgical methods via scleral buckling in the area of treated retinoblastoma and presumed retinal break. All three eyes have retained useful vision for follow-up periods of 3.5 to 12 years
Scleral buckling for retinal detachment in patients with retinoblastoma
Buzney, S.M.; Pruett, R.C.; Regan, C.D.; Walton, D.S.; Smith, T.R.
1984-10-15
Three children (two girls and one boy) with bilateral retinoblastoma each developed a presumed rhegmatogenous retinal detachment in one eye. All three eyes had previously received radiation and cryotherapy. In each case the retinal detachment responded promptly to conventional surgical methods via scleral buckling in the area of treated retinoblastoma and presumed retinal break. All three eyes have retained useful vision for follow-up periods of 3.5 to 12 years.
Outpatient- and inpatient-based buckling surgery: a comparative study
Lee JC
2014-04-01
Full Text Available Jin Cheol Lee,* Yu Cheol Kim*Department of Ophthalmology, Keimyung University School of Medicine, Dongsan Medical Center, Daegu, Korea *Both authors contributed equally to this workPurpose: To evaluate the clinical outcomes of ambulatory buckling surgery, comparing outpatient- with inpatient-based surgery.Methods: The authors performed a retrospective study of 80 consecutive cases of rhegmato genous retinal detachment from January 2009 to December 2011 treated by scleral buckling surgery. Two groups of patients were defined according to inpatient (group 1 or outpatient (group 2 surgery, and a comparison of several parameters between these two groups was performed.Results: Of the 80 subjects in this study, the average age of group 1 (50 patients was 49.7 years, and that of group 2 (30 patients was 47.5 years. There were no statistically significant differences in the average logarithm of the minimum angle of resolution-visual acuity, the condition of the lens, or the presence of retinal lattice degeneration prior to the surgery between the groups. There were no statistically significant differences in the patterns of tear or retinal detachment or in surgical procedure between the groups. Comparing the best-corrected visual acuity after 6 months with that prior to the surgery, the changes in group 1 and group 2 were 0.26 and 0.31, respectively. The functional success rates of group 1 and group 2 after 6 months were 90% and 93%, respectively, and the anatomical success rates of group 1 and group 2 after 6 months were 94% and 96%, respectively, but these were also statistically insignificant.Conclusion: Hospitalization is not essential for buckling surgery in uncomplicated rhegmatogenous retinal detachment surgery.Keywords: ambulatory, scleral buckling, rhegmatogenous retinal detachment
Elastoplastic buckling of quasi axisymmetric shells of revolution
Combescure, A.
1987-01-01
This paper gives the formulation of a finite element which allows the computation of quasi axisymmetric shells of revolution. This element has two nodes and the displacement field is developped in Fourier series. In this paper, an emphasis is put on the elastic and plastic buckling formulation. Two examples are developped in details showing the applicability and the interest of such a finite element. (orig.)
Buckled graphene: A model study based on density functional theory
Khan, Yasser
2010-09-01
We make use of ab initio calculations within density functional theory to investigate the influence of buckling on the electronic structure of single layer graphene. Our systematic study addresses a wide range of bond length and bond angle variations in order to obtain insights into the energy scale associated with the formation of ripples in a graphene sheet. © 2010 Elsevier B.V. All rights reserved.
Buckled graphene: A model study based on density functional theory
Khan, Yasser; Mukaddam, Mohsin Ahmed; Schwingenschlö gl, Udo
2010-01-01
We make use of ab initio calculations within density functional theory to investigate the influence of buckling on the electronic structure of single layer graphene. Our systematic study addresses a wide range of bond length and bond angle variations in order to obtain insights into the energy scale associated with the formation of ripples in a graphene sheet. © 2010 Elsevier B.V. All rights reserved.
Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.
Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin
2016-07-01
Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radial expansion and multifragmentation
Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.
1998-01-01
The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei
Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates
Xiao, J; Huang, Y [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 (United States); Ryu, S Y; Paik, U [Division of Materials Science and Engineering, Hanyang University, 17 Hangdang-dong, Sungdong-gu, Seoul 133-791 (Korea, Republic of); Hwang, K-C [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Rogers, J A, E-mail: y-huang@northwestern.edu, E-mail: jrogers@uiuc.edu [Department of Materials Science and Engineering, Frederick-Seitz Materials Research Laboratory and Beckman Institute, University of Illinois at Urbana-Champaign, Illinois 61801 (United States)
2010-02-26
A continuum mechanics theory is established for the in-surface buckling of one-dimensional nanomaterials on compliant substrates, such as silicon nanowires on elastomeric substrates observed in experiments. Simple analytical expressions are obtained for the buckling wavelength, amplitude and critical buckling strain in terms of the bending and tension stiffness of the nanomaterial and the substrate elastic properties. The analysis is applied to silicon nanowires, single-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon nanotube bundles. For silicon nanowires, the measured buckling wavelength gives Young's modulus to be 140 GPa, which agrees well with the prior experimental studies. It is shown that the energy for in-surface buckling is lower than that for normal (out-of-surface) buckling, and is therefore energetically favorable.
Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates
Xiao, J; Huang, Y; Ryu, S Y; Paik, U; Hwang, K-C; Rogers, J A
2010-01-01
A continuum mechanics theory is established for the in-surface buckling of one-dimensional nanomaterials on compliant substrates, such as silicon nanowires on elastomeric substrates observed in experiments. Simple analytical expressions are obtained for the buckling wavelength, amplitude and critical buckling strain in terms of the bending and tension stiffness of the nanomaterial and the substrate elastic properties. The analysis is applied to silicon nanowires, single-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon nanotube bundles. For silicon nanowires, the measured buckling wavelength gives Young's modulus to be 140 GPa, which agrees well with the prior experimental studies. It is shown that the energy for in-surface buckling is lower than that for normal (out-of-surface) buckling, and is therefore energetically favorable.
Flexural-torsional buckling analysis of angle-bar stiffened plates
Ahmad, Rahbar Ranji [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-09-15
The interaction of flexural-torsional buckling modes is critical for stiffened plates with asymmetric stiffeners. However, this interaction is ignored in all design rules because it is complex to characterize. In the literature, the presence of an attached plate is ignored, and stiffened plate is treated as an ordinary asymmetric beam. In the flexural buckling mode, stiffener and the attached plate buckle together; in the torsional buckling mode, the attached plate cannot freely rotate with stiffener. Basic equations of the flexural-torsional buckling modes are deduced based on hybrid beam concept and a new strain distribution assumption for sideway bending of stiffeners. Elastic buckling stresses of different angle-bar stiffened plates are calculated and compared with those generated by the Finite element method (FEM) and those available in the literature. The present method has better agreements with FEM.
Pseudoaneurysm of the Radial Artery After a Bicycle Fall.
Ratschiller, Thomas; Müller, Hannes; Schachner, Thomas; Zierer, Andreas
2018-07-01
We report a case of a 64-year-old man who developed a painful pulsatile mass in the distal forearm after a bicycle fall with fracture of the wrist. Ultrasonography confirmed a 2.5-cm large pseudoaneurysm of the radial artery. The patient underwent surgical exploration. The pseudoaneurysm was resected and the defect in the arterial wall was reconstructed with an autologous saphenous vein patch. We suggest that the double arterial supply of the hand should be preserved whenever possible.
Buckling analysis of a cylindrical shell, under neutron radiation environment
Arani, A. Ghorbanpour; Ahmadi, M.; Ahmadi, A.; Rastgoo, A.; Sepyani, H.A.
2012-01-01
Highlights: ► The work investigates the buckling of a shell in the neutron radiation environment. ► Radiation induced porosity in elastic materials affects the material's properties. ► The data based technique was used to determine the volume fraction porosity. ► The theoretical formulations are presented based on the classical shell theory (CST). ► It was concluded that both T and neutron induced swelling have significant effects. - Abstract: This research investigates the buckling of a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. Radiation induced porosity in elastic materials affects the thermal, electrical and mechanical properties of the materials. In this study, the data based technique was used to determine the volume fraction porosity, P, of shell material. A least-squares fit of the Young's module data yielded the estimated Young's modulus. The shell assumed made of iron irradiated in the range of 2–15e−7 dPa/s at 345–650 °C and theoretical formulations are presented based on the classical shell theory (CST). The research deals with the problem theoretically; keeping in mind that one means of generating relevant design data is to investigate prototype structures. A parametric study is followed and the stability of shell is discussed. It is concluded that both temperature and neutron induced swelling have significant effects on the buckling load.
Nonlinear effects of high temperature on buckling of structural elements
Iyengar, N.G.R.
1975-01-01
Structural elements used in nuclear reactors are subjected to high temperatures. Since with increase in temperature there is a gradual fall in the elastic modulus and the stress-strain relationship is nonlinear at these operating load levels, a realistic estimate of the buckling load should include this nonlinearity. In this paper the buckling loads for uniform columns with circular and rectangular cross-sections and different boundary conditions under high temperature environment are estimated. The stress-strain relationship for the material has been assumed to follow inverse Ramberg-Osgood law. In view of the fact that no closed form solutions are possible, approximate methods like perturbation and Galerkin techniques are used. Further, the solution for general value for 'm' is quite involved. Results have been obtained with values for 'm' as 3 and 5. Studies reveal that the influence of material nonlinearity on the buckling load is of the softening type, and it increases with increase in the value of 'm'. The nonlinear effects are more for clamped boundaries than for simply supported boundaries. For the first mode analysis both the methods are powerful. It is, however, felt that for higher modes the Galerkin method might be better in view of its simplicity. This investigation may be considered as a step towards a more general solution
Fabrication and buckling dynamics of nanoneedle AFM probes
Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)
2011-04-29
A new method for the fabrication of high-aspect-ratio probes by electron beam induced deposition is described. This technique allows the fabrication of cylindrical 'nanoneedle' structures on the atomic force microscope (AFM) probe tip which can be used for accurate imaging of surfaces with high steep features. Scanning electron microscope (SEM) imaging showed that needles with diameters in the range of 18-100 nm could be obtained by this technique. The needles were shown to undergo buckling deformation under large tip-sample forces. The deformation was observed to recover elastically under vertical deformations of up to {approx} 60% of the needle length, preventing damage to the needle. A technique of stabilizing the needle against buckling by coating it with additional electron beam deposited carbon was also investigated; it was shown that coated needles of 75 nm or greater total diameter did not buckle even under tip-sample forces of {approx} 1.5 {mu}N.
Comparative thermal buckling analysis of functionally graded plate
Čukanović Dragan V.
2017-01-01
Full Text Available A thermal buckling analysis of functionally graded thick rectangular plates accord¬ing to von Karman non-linear theory is presented. The material properties of the functionally graded plate, except for the Poisson’s ratio, were assumed to be graded in the thickness direction, according to a power-law distribution, in terms of the volume fractions of the metal and ceramic constituents. Formulations of equilibrium and stability equations are derived using the high order shear deformation theory based on different types of shape functions. Analytical method for determination of the critical buckling temperature for uniform increase of temperature, linear and non-linear change of temperature across thickness of a plate is developed. Numeri¬cal results were obtained in МATLAB software using combinations of symbolic and numeric values. The paper presents comparative results of critical buckling tempera¬ture for different types of shape functions. The accuracy of the formulation presented is verified by comparing to results available from the literature.
Snap-Through Buckling Problem of Spherical Shell Structure
Sumirin Sumirin
2014-12-01
Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.
Buckling Experiment on Anisotropic Long and Short Cylinders
Atsushi Takano
2016-07-01
Full Text Available A buckling experiment was performed on anisotropic, long and short cylinders with various radius-to-thickness ratios. The 13 cylinders had symmetric and anti-symmetric layups, were between 2 and 6 in terms of the length-to-radius ratio, between 154 and 647 in radius-to-thickness ratio, and made of two kinds of carbon fiber reinforced plastic (CFRP prepreg with high or low fiber modulus. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length and compared with the test results. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length. The knockdown factor, defined as the ratio of the experimental value to the theoretical value, was found to be between 0.451 and 0.877. The test results indicated that a large length-to-radius ratio reduces the knockdown factor, but the radius-to-thickness ratio and other factors do not affect it.
Krausche, S.; Ohlsson, Johan
1998-04-01
The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs
Valenzuela, Javier
2001-01-01
A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.
Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan
2015-08-01
The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c
Sönmez, Ümit; Tutum, Cem Celal
2008-01-01
In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....
Elastic and plastic buckling of shells. The CEASEMT system. Available results. Comparison with tests
Hoffmann, A.; Roche, R.; Jeanpierre, F.; Goldstein, S.
1977-01-01
Specific routines for the analysis of elastic and elastic-plastic buckling have been written in the CEASEMT system of analysis by the finite element method. The basis of formulation are reviewed with emphasis on important points like: the correct and comprehensive formulation of the second order terms, the nonconservative loads. Some computational results are given and a comparison is made with experimental results (Euler type buckling of a long tube, elastic-plastic buckling of torispherical ends) [fr
Gerardo L. Gallucci
2014-06-01
Full Text Available Objetivo: Evaluar retrospectivamente los resultados clínicos y radiológicos de una serie consecutiva de pacientes con fracturas y luxofracturas de la cúpula radial a quienes se les realizó el reemplazo por una prótesis monopolar. Materiales y Métodos: Se incluyeron 20 pacientes. Criterios de inclusión: <18 años, con fracturas o luxofracturas de la cúpula radial, tratados con prótesis monoblock de titanio y seguimiento mínimo de un año. Quince eran mujeres, edad promedio 59 años. Siete eran fracturas aisladas y 13, luxofracturas. Se evaluaron el grado de aflojamiento protésico, la erosión capitelar, el ensanchamiento del espacio articular humeral lateral y las calcificaciones heterotópicas. El seguimiento fue de 26 meses. Resultados: La flexo-extensión fue de 139º-5º y la prono-supinación, de 79-79°. El arco total fue de 134°. Fuerza de puño: 84% del lado contralateral. El dolor según la escala analógica visual fue de 2, DASH: 11 puntos, 13 resultados excelentes y 6 buenos. Se detectó aflojamiento del implante (12 casos, aumento de la radiolucidez capitelar (4 casos y ensanchamiento del espacio ulnohumeral lateral (2 casos. Hubo 2 complicaciones: una neurodocitis cubital que debió ser operada y una extracción de implante por aflojamiento y dolor. Conclusiones: El reemplazo de la cúpula radial en lesiones no reconstruibles es una opción terapéutica viable, con buenos resultados funcionales a corto y mediano plazo. La recuperación de la estabilidad articular fue posible en todos los casos y el índice de aflojamiento protésico asintomático fue elevado.
Syaputra, Marhamni; Wella, Sasfan Arman; Wungu, Triati Dewi Kencana; Purqon, Acep; Suprijadi
2015-01-01
We study the hydrogenation structures possessed by silicene i.e. planar (PL), low buckled (LB) and high buckled (HB). On those structures we found the hydrogenation process occurs with some particular notes. Hydrogen stable position on the silicene surface is determined by its initial configuration. We only considered the fully hydrogenated case with the formula unit (SiH) n for all of these structures. Physical and electronic structure shift after the process are compared with hydrogenated graphene. Moreover, we observed a chemical process in the presence of hydrogen on the PL structure by nudged elastic band (NEB) which illustrates how hydrogen has a significant impact to the force barrier of the PL that changing it from its original structure
Stability of radial swirl flows
Dou, H S; Khoo, B C
2012-01-01
The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.
Investigation of scleral buckling by CO2 laser
Maswadi, S.
2001-05-01
This thesis investigates the effect of using the infrared wavelength CO 2 laser (10.6μm) as a localised heat source for inducing scleral buckling on eyes. Retinal detachment disease is a major cause of blindness and the scleral buckling is an important technique used in treatment. A radio-frequency excited 10.6λm laser source is used to heat collagen in the sclera above its shrinkage temperature so as to produce a localised indentation and deformation in the human eye (in vitro). Basic measurements of the onset shrinkage temperatures of porcine and human sclera are taken. Optical properties of sclera tissue at 10.6μm are also determined to provide information about the interaction of the CO 2 laser with the sclera. It is found that CO 2 laser radiation is highly absorbed by the scleral water. Optical diffraction technique is investigated to quantify in-plane deformation in the sclera tissue as result of heating by producing grating on porcine and human sclera using the ArF laser (193nm). Photothermal deflection technique is also used to investigate scleral ablation by using the TEA and Ultrapulse CO 2 laser. This technique provides a useful guide to the regime where ablation rather than heat shrinkage of collagen in the sclera will dominate using the Ultrapulse CO 2 laser. A quantitative assessment of buckling using the technique of projection moire interferometry is described which allows a non-contact measurement to be made of the out-of-plane displacement by laser radiation. In-plane surface strain (shrinkage) has also been demonstrated using in-situ optical microscopy of the laser treated eye. The moire method is suitable to obtain information on buckling in real time and to obtain a three-dimensional view of the eye surface as laser treatment proceeds. A theoretical heat flow model is described for predicting the temperature profile produced in the sclera using the Ultrapulse CO 2 laser. For appropriate exposure parameters the CO 2 laser is found to be an
Investigation of scleral buckling by CO{sub 2} laser
Maswadi, S
2001-05-01
This thesis investigates the effect of using the infrared wavelength CO{sub 2} laser (10.6{mu}m) as a localised heat source for inducing scleral buckling on eyes. Retinal detachment disease is a major cause of blindness and the scleral buckling is an important technique used in treatment. A radio-frequency excited 10.6{lambda}m laser source is used to heat collagen in the sclera above its shrinkage temperature so as to produce a localised indentation and deformation in the human eye (in vitro). Basic measurements of the onset shrinkage temperatures of porcine and human sclera are taken. Optical properties of sclera tissue at 10.6{mu}m are also determined to provide information about the interaction of the CO{sub 2} laser with the sclera. It is found that CO{sub 2} laser radiation is highly absorbed by the scleral water. Optical diffraction technique is investigated to quantify in-plane deformation in the sclera tissue as result of heating by producing grating on porcine and human sclera using the ArF laser (193nm). Photothermal deflection technique is also used to investigate scleral ablation by using the TEA and Ultrapulse CO{sub 2} laser. This technique provides a useful guide to the regime where ablation rather than heat shrinkage of collagen in the sclera will dominate using the Ultrapulse CO{sub 2} laser. A quantitative assessment of buckling using the technique of projection moire interferometry is described which allows a non-contact measurement to be made of the out-of-plane displacement by laser radiation. In-plane surface strain (shrinkage) has also been demonstrated using in-situ optical microscopy of the laser treated eye. The moire method is suitable to obtain information on buckling in real time and to obtain a three-dimensional view of the eye surface as laser treatment proceeds. A theoretical heat flow model is described for predicting the temperature profile produced in the sclera using the Ultrapulse CO{sub 2} laser. For appropriate exposure
Effect of scleral buckle removal on strabismus surgery outcomes after retinal detachment repair
Chang, Jee Ho; Hutchinson, Amy; Zhang, Monica; Lambert, Scott R.
2015-01-01
Background/Aims To investigate the effect of scleral buckle removal on the outcomes of strabismus surgery in patients with a prior history of retinal detachment surgery. Methods We reviewed the medical records of 18 patients who underwent strabismus surgery following a scleral buckling procedure at one institution. We investigated the effect of multiple variables on outcome, including: gender, age, surgeon, number of strabismus surgeries, adjustable suture use, previous pars plana vitrectomy, preoperative best-corrected visual acuity and time of surgery. Outcomes were considered successful if there was ≤ 10 prism diopter (PD) residual horizontal and/or ≤ 4 PD residual vertical deviation. Outcomes were analyzed statistically using Fisher's exact test and Mann-Whitney test. Results Strabismus surgery coupled with scleral buckle removal was associated with a higher rate of success (success with buckle removal, 62.5%; success without buckle removal, 10.0%; p=0.04). There were no significant difference in preoperative findings between the scleral buckle removal and non- removal groups. No retinal redetachments occurred after scleral buckle removal. Conclusion In our series, scleral buckle removal was associated with improved surgical outcome in patients with strabismus following a scleral buckling procedure. PMID:24299332
Ko, William L.; Jackson, Raymond H.
1991-01-01
Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.
... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...
Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios
2012-01-01
The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....
Rubens Camargo Siqueira
2007-03-01
Full Text Available PURPOSE: To compare the surgical results of vitrectomy with and without scleral buckling for rhegmatogenous retinal detachment (RD. METHODS: Fifty-one patients with rhegmatogenous retinal detachment with proliferative vitreoretinopathy (PVR at different stages were submitted to pars plana vitrectomy as the primary surgery, 23 patients (45.09% with scleral buckle (group I and 28 (54.90% without scleral buckle (group II. Visual acuity, anterior segment complications, intraocular pressure, strabismus and retina reattachment rate were evaluated in both groups. RESULTS: The anatomical success and postoperative complications were similar in both groups. Retinal reattachment was achieved in 20 of 23 eyes (87% of group I and in 24 of 28 eyes (85.7% of group II after the initial surgery (p=1.000. Elevated intraocular pressure was noted in 2 eyes (8.7% of group I and 1 eye (3.6% of group II (p=0.583. Corneal abnormalities were seen in 3 eyes (13% of group I and 2 eyes (7.19% of the group II (p=0.647. Visual acuity improved from a preoperative median of 20/200 to a median of 20/100 in group 1 and from 20/400 to 20/100 in group 2; the difference between the two groups was statistically significant (pOBJETIVOS: Comparar os resultados cirúrgicos da vitrectomia com e sem "buckle" escleral para descolamento da retina regmatogênico (DR. MÉTODOS: Cinqüenta e um pacientes com descolamento da retina regmatogênico com proliferação vitreorretiniana (PVR em diferentes estádios foram submetidos a vitrectomia pars plana como cirurgia primária; 23 pacientes (45,09% com buckle escleral (grupo 1 e 28 pacientes (54,90% sem "buckle" escleral (grupo 2. Acuidade visual, complicações do segmento anterior, pressão intra-ocular, estrabismo e razão do redescolamento da retina foram avaliados em ambos os grupos. RESULTADOS: O sucesso anatômico e complicações pós-operatórias foram semelhantes em ambos os grupos. A reaplicação da retina foi obtida em 20 dos 23
Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...
Radial retinotomy in the macula.
Bovino, J A; Marcus, D F
1984-01-01
Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.
Detonation in supersonic radial outflow
Kasimov, Aslan R.; Korneev, Svyatoslav
2014-01-01
We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations
Dedicated radial ventriculography pigtail catheter
Vidovich, Mladen I., E-mail: miv@uic.edu
2013-05-15
A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.
Evolution of normal stress and surface roughness in buckled thin films
Palasantzas, G; De Hosson, JTM
2003-01-01
In this work we investigate buckling of compressed elastic thin films, which are bonded onto a viscous layer of finite thickness. It is found that the normal stress exerted by the viscous layer on the elastic film evolves with time showing a minimum at early buckling stages, while it increases at
The Carnegie-Irvine Galaxy Survey. V. Statistical Study of Bars and Buckled Bars
Li, Zhao-Yu; Ho, Luis C.; Barth, Aaron J.
2017-08-01
Simulations have shown that bars are subject to a vertical buckling instability that transforms thin bars into boxy or peanut-shaped structures, but the physical conditions necessary for buckling to occur are not fully understood. We use the large sample of local disk galaxies in the Carnegie-Irvine Galaxy Survey to examine the incidence of bars and buckled bars across the Hubble sequence. Depending on the disk inclination angle (I), a buckled bar reveals itself as either a boxy/peanut-shaped bulge (at high I) or as a barlens structure (at low I). We visually identify bars, boxy/peanut-shaped bulges, and barlenses, and examine the dependence of bar and buckled bar fractions on host galaxy properties, including Hubble type, stellar mass, color, and gas mass fraction. We find that the barred and unbarred disks show similar distributions in these physical parameters. The bar fraction is higher (70%-80%) in late-type disks with low stellar mass (M * 1010.5 M ⊙), and decreases with higher gas mass ratio. These results suggest that bars are more difficult to grow in massive disks that are dynamically hotter than low-mass disks. However, once a bar forms, it can easily buckle in the massive disks, where a deeper potential can sustain the vertical resonant orbits. We also find a probable buckling bar candidate (ESO 506-G004) that could provide further clues to understand the timescale of the buckling process.
Buckling Response of a Large-Scale, Seamless, Orthogrid-Stiffened Metallic Cylinder
Rudd, Michelle Tillotson; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.
2018-01-01
Results from the buckling test of a compression-loaded 8-ft-diameter seamless (i.e., without manufacturing joints), orthogrid-stiffened metallic cylinder are presented. This test was used to assess the buckling response and imperfection sensitivity characteristics of a seamless cylinder. In addition, the test article and test served as a technology demonstration to show the application of the flow forming manufacturing process to build more efficient buckling-critical structures by eliminating the welded joints that are traditionally used in the manufacturing of large metallic barrels. Pretest predictions of the cylinder buckling response were obtained using a finite-element model that included measured geometric imperfections. The buckling load predicted using this model was 697,000 lb, and the test article buckled at 743,000 lb (6% higher). After the test, the model was revised to account for measured variations in skin and stiffener geometry, nonuniform loading, and material properties. The revised model predicted a buckling load of 754,000 lb, which is within 1.5% of the tested buckling load. In addition, it was determined that the load carrying capability of the seamless cylinder is approximately 28% greater than a corresponding cylinder with welded joints.
Numerical analysis of magnetoelastic coupled buckling of fusion reactor components
Demachi, K.; Yoshida, Y.; Miya, K.
1994-01-01
For a tokamak fusion reactor, it is one of the most important subjects to establish the structural design in which its components can stand for strong magnetic force induced by plasma disruption. A number of magnetostructural analysis of the fusion reactor components were done recently. However, in these researches the structural behavior was calculated based on the small deformation theory where the nonlinearity was neglected. But it is known that some kinds of structures easily exceed the geometrical nonlinearity. In this paper, the deflection and the magnetoelastic buckling load of fusion reactor components during plasma disruption were calculated
Flexural torsional buckling of uniformly compressed beam-like structures
Ferretti, M.
2018-02-01
A Timoshenko beam model embedded in a 3D space is introduced for buckling analysis of multi-store buildings, made by rigid floors connected by elastic columns. The beam model is developed via a direct approach, and the constitutive law, accounting for prestress forces, is deduced via a suitable homogenization procedure. The bifurcation analysis for the case of uniformly compressed buildings is then addressed, and numerical results concerning the Timoshenko model are compared with 3D finite element analyses. Finally, some conclusions and perspectives are drawn.
Geometric buckling measurements using the pulsed neutron source method
Sjoestrand, N G; Mednis, J; Nilsson, T
1959-03-15
The geometric buckling of cylindrical reactors with one or both ends rounded has been determined by pulsed source measurements with small polyethylene geometries. The results were in general accord with theoretical calculations. The diffusion parameters of polyethylene were also determined. The diffusion length was 2.12 {+-} 0.03 cm, and for the capture cross section of hydrogen a value of 0.337 {+-} 0.005 barns was found. The effect of control rods was studied using thin cadmium rods in water. Good agreement was found for axial, central rods, whereas the theoretical predictions for the effect of diagonal rods were too high.
Compressive buckling of black phosphorene nanotubes: an atomistic study
Nguyen, Van-Trang; Le, Minh-Quy
2018-04-01
We investigate through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of armchair and zigzag black phosphorene nanotubes. We focus especially on the effects of the tube’s diameter with fixed length-diameter ratio, effects of the tube’s length for a pair of armchair and zigzag tubes of equal diameters, and effects of the tube’s diameter with fixed lengths. Their Young’s modulus, critical compressive stress and critical compressive strain are studied and discussed for these 3 case studies. Compressive buckling was clearly observed in the armchair nanotubes. Local bond breaking near the boundary occurred in the zigzag ones under compression.
Impact of Holes on the Buckling of RHS Steel Column
Najla'a H. AL-Shareef
2018-03-01
Full Text Available This study presented an experimental and theoretical study on the effect of hole on the behavior of rectangular hollow steel columns subjected to axial compression load. Specimens were tested to investigated the ultimate capacity and the load- axial displacement behavior of steel columns. In this paper finite element analysis is done by using general purpose ANSYS 12.0 to investigate the behavior of rectangular hollow steel column with hole. In the experimental work, rectangular hollow steel columns with rounded corners were used in the constriction of the specimens which have dimensions of cross section (50*80mm and height of (250 and 500mm with thickness of (1.25,4 and 6mm with hole ((α*80*80mm when α is equal to (0.2,0.4,0.6 and 0.8. Twenty four columns under compression load were tested in order to investigate the effect of hole on the ultimate load of rectangular hollow steel column. The experimental results indicated that the typical failure mode for all the tested hollow specimen was the local buckling. The tested results indicated that the increasing of hole dimension leads to reduction in ultimate loads of tested column to 75%. The results show the reducing of load by 94.7% due to decreasing the thickness of column while the hole size is constant (0.2*80*80. The buckling load decreases by 84.62% when hole position changes from Lo=0.25L to 0.75L. Holes can be made in the middle of column with dimension up to 0.4 of column's length. The AISC (2005 presents the values closest to the experimental results for the nominal yielding compressive strength. The effect for increasing of slendeness ratio and thickness to area ratio(t/A leading to decreacing the critical stresses and the failure of column with large size of hole and (t/A ratio less than 0.74% was due to lacal buckling while the global buckling failure was abserve for column with small size of hole and (t/A ratio above than 0.74%. The compersion between the experimental
Geometric buckling measurements using the pulsed neutron source method
Sjoestrand, N.G.; Mednis, J.; Nilsson, T.
1959-03-01
The geometric buckling of cylindrical reactors with one or both ends rounded has been determined by pulsed source measurements with small polyethylene geometries. The results were in general accord with theoretical calculations. The diffusion parameters of polyethylene were also determined. The diffusion length was 2.12 ± 0.03 cm, and for the capture cross section of hydrogen a value of 0.337 ± 0.005 barns was found. The effect of control rods was studied using thin cadmium rods in water. Good agreement was found for axial, central rods, whereas the theoretical predictions for the effect of diagonal rods were too high
Radial nerve injury following elbow external fixator: report of three cases and literature review.
Trigo, Luis; Sarasquete, Juan; Noguera, Laura; Proubasta, Ignacio; Lamas, Claudia
2017-07-01
Radial nerve palsy is a rare but serious complication following elbow external fixation. Only 11 cases have been reported in the literature to date, but the incidence may be underreported. We present three new cases of this complication. We analyzed the three cases of radial palsy seen in our center following the application of an external fixator as treatment for complex elbow injuries. Mean patient age at surgery was 50 years. Two patients were female and one was male. In the three cases, the initial lesion was a posterior elbow dislocation, associated with a fracture of the radial shaft in one and a radial head fracture and coronoid fracture, respectively, in the other two. Due to persistent elbow instability, an external fixator was applied in all three cases. The fixator pins were introduced percutaneously in two cases and under direct vision in an open manner in the third case. Radial palsy was noted immediately postoperatively in all cases. It was permanent in two cases and temporary in the third. Radial nerve palsy after placement of an external elbow fixator was resolved in only 1 of our 3 cases and in 6 of the 11 cases in the literature to date. Although the event is rare, these alarming results highlight the need for recommendations to avoid this complication.
Buckling of a stiff thin film on an elastic graded compliant substrate
Chen, Zhou; Chen, Weiqiu; Song, Jizhou
2017-12-01
The buckling of a stiff film on a compliant substrate has attracted much attention due to its wide applications such as thin-film metrology, surface patterning and stretchable electronics. An analytical model is established for the buckling of a stiff thin film on a semi-infinite elastic graded compliant substrate subjected to in-plane compression. The critical compressive strain and buckling wavelength for the sinusoidal mode are obtained analytically for the case with the substrate modulus decaying exponentially. The rigorous finite element analysis (FEA) is performed to validate the analytical model and investigate the postbuckling behaviour of the system. The critical buckling strain for the period-doubling mode is obtained numerically. The influences of various material parameters on the results are investigated. These results are helpful to provide physical insights on the buckling of elastic graded substrate-supported thin film.
Thermal buckling behavior of defective CNTs under pre-load: A molecular dynamics study.
Mehralian, Fahimeh; Tadi Beni, Yaghoub; Kiani, Yaser
2017-05-01
Current study is concentrated on the extraordinary properties of defective carbon nanotubes (CNTs). The role of vacancy defects in thermal buckling response of precompressed CNTs is explored via molecular dynamics (MD) simulations. Defective CNTs are initially compressed at a certain ratio of their critical buckling strain and then undergo a uniform temperature rise. Comprehensive study is implemented on both armchair and zigzag CNTs with different vacancy defects including monovacancy, symmetric bivacancy and asymmetric bivacancy. The results reveal that defects have a pronounced impact on the buckling behavior of CNTs; interestingly, defective CNTs under compressive pre-load show higher resistance to thermal buckling than pristine ones. In the following, the buckling response of defective CNTs is shown to be dependent on the vacancy defects, location of defects and chirality. Copyright © 2017 Elsevier Inc. All rights reserved.
Micro-wrinkling and delamination-induced buckling of stretchable electronic structures
Oyewole, O. K.; Yu, D.; Du, J.; Asare, J.; Fashina, A.; Oyewole, D. O.; Anye, V. C.; Zebaze Kana, M. G.
2015-01-01
This paper presents the results of experimental and theoretical/computational micro-wrinkles and buckling on the surfaces of stretchable poly-dimethylsiloxane (PDMS) coated with nano-scale Gold (Au) layers. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. The critical stresses required for wrinkling and buckling are analyzed using analytical models. The possible interfacial cracking that can occur along with film buckling is also studied using finite element simulations of the interfacial crack growth. The implications of the results are discussed for potential applications of micro-wrinkles and micro-buckles in stretchable electronic structures and biomedical devices
Chad Correa
2017-09-01
Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior
Cox, B. S.; Groh, R. M. J.; Avitabile, D.; Pirrera, A.
2018-07-01
The buckling and post-buckling behaviour of slender structures is increasingly being harnessed for smart functionalities. Equally, the post-buckling regime of many traditional engineering structures is not being used for design and may therefore harbour latent load-bearing capacity for further structural efficiency. Both applications can benefit from a robust means of modifying and controlling the post-buckling behaviour for a specific purpose. To this end, we introduce a structural design paradigm termed modal nudging, which can be used to tailor the post-buckling response of slender engineering structures without any significant increase in mass. Modal nudging uses deformation modes of stable post-buckled equilibria to perturb the undeformed baseline geometry of the structure imperceptibly, thereby favouring the seeded post-buckling response over potential alternatives. The benefits of this technique are enhanced control over the post-buckling behaviour, such as modal differentiation for smart structures that use snap-buckling for shape adaptation, or alternatively, increased load-carrying capacity, increased compliance or a shift from imperfection sensitivity to imperfection insensitivity. Although these concepts are, in theory, of general applicability, we concentrate here on planar frame structures analysed using the nonlinear finite element method and numerical continuation procedures. Using these computational techniques, we show that planar frame structures may exhibit isolated regions of stable equilibria in otherwise unstable post-buckling regimes, or indeed stable equilibria entirely disconnected from the natural structural response. In both cases, the load-carrying capacity of these isolated stable equilibria is greater than the natural structural response of the frames. Using the concept of modal nudging it is possible to "nudge" the frames onto these equilibrium paths of greater load-carrying capacity. Due to the scale invariance of modal nudging
The buckling of fuel rods in transportation casks under hypothetical accident conditions
Bjorkman, G.S.
2004-01-01
The buckling analysis of fuel rods during an end drop impact of a spent fuel transportation cask has traditionally been performed to demonstrate the structural integrity of the fuel rod cladding or the integrity of the fuel geometry in criticality evaluations following a cask drop event. The actual calculation of the fuel rod buckling load, however, has been the subject of some controversy, with estimates of the critical buckling load differing by as much as a factor of 5. Typically, in the buckling analysis of a fuel rod, assumptions are made regarding the percentage of fuel mass that is bonded to or participates with the cladding during the buckling process, with estimates ranging from 0 to 100%. The greater the percentage of fuel mass that is assumed to be bonded to the cladding the higher the inertia loads on the cladding, and, therefore, the lower the ''g'' value at which buckling occurs. Current published solutions do not consider displacement compatibility between the fuel and the cladding. By invoking displacement compatibility between the fuel column and the cladding column, this paper presents an exact solution for the buckling of fuel rods under inertia loading. The results show that the critical inertia load magnitude for the buckling of a fuel rod depends on the weight of the cladding and the total weight of the fuel, regardless of the percentage of fuel mass that is assumed to be attached to or participate with the cladding in the buckling process. Therefore, 100% of the fuel always participates in the buckling of a fuel rod under inertia loading
Rivadeneira, Fernando; Zillikens, M Carola; De Laet, Chris Edh; Hofman, Albert; Uitterlinden, André G; Beck, Thomas J; Pols, Huibert Ap
2007-11-01
We studied HSA measurements in relation to hip fracture risk in 4,806 individuals (2,740 women). Hip fractures (n = 147) occurred at the same absolute levels of bone instability in both sexes. Cortical instability (propensity of thinner cortices in wide diameters to buckle) explains why hip fracture risk at different BMD levels is the same across sexes. Despite the sexual dimorphism of bone, hip fracture risk is very similar in men and women at the same absolute BMD. We aimed to elucidate the main structural properties of bone that underlie the measured BMD and that ultimately determines the risk of hip fracture in elderly men and women. This study is part of the Rotterdam Study (a large prospective population-based cohort) and included 147 incident hip fracture cases in 4,806 participants with DXA-derived hip structural analysis (mean follow-up, 8.6 yr). Indices compared in relation to fracture included neck width, cortical thickness, section modulus (an index of bending strength), and buckling ratio (an index of cortical bone instability). We used a mathematical model to calculate the hip fracture distribution by femoral neck BMD, BMC, bone area, and hip structure analysis (HSA) parameters (cortical thickness, section modulus narrow neck width, and buckling ratio) and compared it with prospective data from the Rotterdam Study. In the prospective data, hip fracture cases in both sexes had lower BMD, thinner cortices, greater bone width, lower strength, and higher instability at baseline. In fractured individuals, men had an average BMD that was 0.09 g/cm(2) higher than women (p men and women. No significant differences were observed between the areas under the ROC curves of BMD (0.8146 in women and 0.8048 in men) and the buckling ratio (0.8161 in women and 0.7759 in men). The buckling ratio (an index of bone instability) portrays in both sexes the critical balance between cortical thickness and bone width. Our findings suggest that extreme thinning of cortices in
Buckling of Single-Crystal Silicon Nanolines under Indentation
Min K. Kang
2008-01-01
Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.
Robust simulation of buckled structures using reduced order modeling
Wiebe, R.; Perez, R.A.; Spottswood, S.M.
2016-01-01
Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties. (paper)
Robust simulation of buckled structures using reduced order modeling
Wiebe, R.; Perez, R. A.; Spottswood, S. M.
2016-09-01
Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.
Buckling behavior analysis of spacer grid by lateral impact load
Yoon, Kyung Ho; Kang, Heung Seok; Kim, Hyung Kyu; Song, Kee Nam
2000-05-01
The spacer grid is one of the main structural components in the fuel assembly, Which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing it. In this report, free fall type shock tests on the several kinds of the specimens of the spacer grids were also carried out in order to compare the results among the candidate grids. A free fall carriage on the specimen accomplishes the test. In addition to this, a finite element method for predicting the critical impact strength of the spacer grids is described. FE method on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic impact analysis using ABAQUS/explicit code. The simulated results results also similarly predicted the local buckling phenomena and were found to give good correspondence with the shock test results
Nonlinear buckling analyses of a small-radius carbon nanotube
Liu, Ning; Li, Min; Jia, Jiao; Wang, Yong-Gang
2014-01-01
Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained
Buckling of an Elastic Ridge: Competition between Wrinkles and Creases
Lestringant, C.; Maurini, C.; Lazarus, A.; Audoly, B.
2017-04-01
We investigate the elastic buckling of a triangular prism made of a soft elastomer. A face of the prism is bonded to a stiff slab that imposes an average axial compression. We observe two possible buckling modes which are localized along the free ridge. For ridge angles ϕ below a critical value ϕ⋆≈9 0 ° , experiments reveal an extended sinusoidal mode, while for ϕ above ϕ⋆, we observe a series of creases progressively invading the lateral faces starting from the ridge. A numerical linear stability analysis is set up using the finite-element method and correctly predicts the sinusoidal mode for ϕ ≤ϕ⋆, as well as the associated critical strain ɛc(ϕ ). The experimental transition at ϕ⋆ is found to occur when this critical strain ɛc(ϕ ) attains the value ɛc(ϕ⋆)=0.44 corresponding to the threshold of the subcritical surface creasing instability. Previous analyses have focused on elastic crease patterns appearing on planar surfaces, where the role of scale invariance has been emphasized; our analysis of the elastic ridge provides a different perspective, and reveals that scale invariance is not a sufficient condition for localization.
Nonlinear Dynamic Buckling of Damaged Composite Cylindrical Shells
WANG Tian-lin; TANG Wen-yong; ZHANG Sheng-kun
2007-01-01
Based on the first order shear deformation theory(FSDT), the nonlinear dynamic equations involving transverse shear deformation and initial geometric imperfections were obtained by Hamilton's philosophy. Geometric deformation of the composite cylindrical shell was treated as the initial geometric imperfection in the dynamic equations, which were solved by the semi-analytical method in this paper. Stiffness reduction was employed for the damaged sub-layer, and the equivalent stiffness matrix was obtained for the delaminated area. By circumferential Fourier series expansions for shell displacements and loads and by using Galerkin technique, the nonlinear partial differential equations were transformed to ordinary differential equations which were finally solved by the finite difference method. The buckling was judged from shell responses by B-R criteria, and critical loads were then determined. The effect of the initial geometric deformation on the dynamic response and buckling of composite cylindrical shell was also discussed, as well as the effects of concomitant delamination and sub-layer matrix damages.
Nonlinear buckling analyses of a small-radius carbon nanotube
Liu, Ning, E-mail: liuxiao@ase.buaa.edu.cn; Li, Min; Jia, Jiao [School of Aeronautic Science and Engineering, Beihang University, Beijing 100091 (China); Wang, Yong-Gang [Department of Applied Mechanics, China Agricultural University, Beijing 100083 (China)
2014-04-21
Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained.
Crown sealing and buckling instability during water entry of spheres
Marston, J. O.
2016-04-05
We present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line. © 2016 Cambridge University Press.
Condenser tube buckling within tube-tubesheet joints
Willertz, L.E.; Kalnins, A.; Updike, D.P.
1991-01-01
The problem of the appearance of protrusions, or bumps, in the interior of roller-expanded tubes within a tubesheet is addressed. Such bumps have been observed in condensers of power plants. A brief history of the reported occurrences of the bumps is given. The hypothesis is advanced that the mechanics of the formation of the bumps is similar to a buckling problem that has 'bifurcation at infinity'. Following this hypothesis, a two-dimensional physical model is developed, and the application of this model to study a three-dimensional bump is proposed. It is proposed in this paper that an initial deviation from the circular shape of the tube required to produce a bump. It is shown that without such a deviation the tubes cannot buckle. An experiment with short tube segments has been performed that verifies some of the features of the observed condenser tube bumps. Exactly what force produced the initial deviation for the observed bumps is still unknown. Available evidence implicates the hydro-laser jet that is used in the cleaning of tubes and tubesheets. A scenario of how a bump could have been produced by the hydro-laser jet is proposed. (author)
Film stresses and electrode buckling in organic solar cells
Brand, Vitali
2012-08-01
We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.
Radial lean direct injection burner
Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier
2012-09-04
A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.
Cho, S H; Sung, Y M; Kim, M S
2012-10-01
The objective of this study was to review the prevalence and radiological features of rib fractures missed on initial chest CT evaluation, and to examine the diagnostic value of additional coronal images in a large series of trauma patients. 130 patients who presented to an emergency room for blunt chest trauma underwent multidetector row CT of the thorax within the first hour during their stay, and had follow-up CT or bone scans as diagnostic gold standards. Images were evaluated on two separate occasions: once with axial images and once with both axial and coronal images. The detection rates of missed rib fractures were compared between readings using a non-parametric method of clustered data. In the cases of missed rib fractures, the shapes, locations and associated fractures were evaluated. 58 rib fractures were missed with axial images only and 52 were missed with both axial and coronal images (p=0.088). The most common shape of missed rib fractures was buckled (56.9%), and the anterior arc (55.2%) was most commonly involved. 21 (36.2%) missed rib fractures had combined fractures on the same ribs, and 38 (65.5%) were accompanied by fracture on neighbouring ribs. Missed rib fractures are not uncommon, and radiologists should be familiar with buckle fractures, which are frequently missed. Additional coronal imagescan be helpful in the diagnosis of rib fractures that are not seen on axial images.
Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S
2017-05-01
Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.
Hazeltine, R.D.
1988-12-01
The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig
Huang, Shicheng; Tan, Likun; Hu, Nan; Grover, Hannah; Chu, Kevin; Chen, Zi
This reserach introduces a new numerical approach of calculating the post-buckling configuration of a thin rod embedded in elastic media. The theoretical base is the governing ODEs describing the balance of forces and moments, the length conservation, and the physics of bending and twisting by Laudau and Lifschitz. The numerical methods applied in the calculation are continuation method and Newton's method of iteration in combination with spectrum method. To the authors' knowledge, it is the first trial of directly applying the L-L theory to numerically studying the phenomenon of rod buckling in elastic medium. This method accounts for nonlinearity of geometry, thus is capable of calculating large deformation. The stability of this method is another advantage achieved by expressing the governing equations in a set of first-order derivative form. The wave length, amplitude, and decay effect all agree with the experiment without any further assumptions. This program can be applied to different occasions with varying stiffness of the elastic medai and rigidity of the rod.
Fracture Analysis of the FAA/NASA Wide Stiffened Panels
Seshadri, B. R.; Newman, J. C., Jr.; Dawicke, D. S.; Young, R. D.
1999-01-01
This paper presents the fracture analyses conducted on the FAA/NASA stiffened and unstiffened panels using the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. The STAGS code with the "plane-strain" core option was used in all analyses. Previous analyses of wide, flat panels have shown that the high-constraint conditions around a crack front, like plane strain, has to be modeled in order for the critical CTOA fracture criterion to predict wide panel failures from small laboratory tests. In the present study, the critical CTOA value was determined from a wide (unstiffened) panel with anti-buckling guides. The plane-strain core size was estimated from previous fracture analyses and was equal to about the sheet thickness. Rivet flexibility and stiffener failure was based on methods and criteria, like that currently used in industry. STAGS and the CTOA criterion were used to predict load-against-crack extension for the wide panels with a single crack and multiple-site damage cracking at many adjacent rivet holes. Analyses were able to predict stable crack growth and residual strength within a few percent (5%) of stiffened panel tests results but over predicted the buckling failure load on an unstiffened panel with a single crack by 10%.
Detonation in supersonic radial outflow
Kasimov, Aslan R.
2014-11-07
We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.
Kołakowski Zbigniew
2016-06-01
Full Text Available A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM or/and analytical-numerical method (ANM to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.
Effect of microscale gaseous thermal conduction on the thermal behavior of a buckled microbridge
Wang Jiaqi; Tang Zhenan; Li Jinfeng; Zhang Fengtian
2008-01-01
A microbridge is a basic micro-electro-mechanical systems (MEMS) device and has great potential for application in microsensors and microactuators. The thermal behavior of a microbridge is important for designing a microbridge-based thermal microsensor or microactuator. To study the thermal behavior of a microbridge consisting of Si 3 N 4 and polysilicon with a 2 µm suspended gap between the substrate and the microbridge while the microbridge is heated by an electrical current fed through the polysilicon, a microbridge model is developed to correlate theoretically the input current and the temperature distribution under the buckling conditions, especially considering the effects of the microscale gaseous thermal conduction due to the microbridge buckling. The calculated results show that the buckling of the microbridge changes the microscale gaseous thermal conduction, and thus greatly affects the thermal behavior of the microbridge. We also evaluate the effects of initial buckling on the temperature distribution of the microbridge. The experimental results show that buckling should be taken into account if the buckling is large. Therefore, the variation in gaseous thermal conduction and the suspended gap height caused by the buckling should be considered in the design of such thermomechanical microsensors and microactuators, which requires more accurate thermal behavior
The effect of thermal loads on buckling strength of cylindrical shells
Kawamoto, Y.; Kodama, T.; Matsuura, S.
1993-01-01
Nuclear power plant components must be designed taking account of strong seismic loads in countries with frequent earthquakes like Japan. When designing such thin-walled shell components as a main vessel of a fast breeder reactor (FBR), one should consider the possibility that buckling might occur. In Japan, a series of buckling research has been conducted under contract with the Ministry of International Trade and Industry to develop the aseismic design method for a demonstration FBR. This study has been also done as a part of them. The problem of thermal loads on buckling strength is one of the important problems in the buckling research for FBR because axial temperature gradient is produced in a main vessel and the significant thermal stress is shown. Some studies on the effect of thermal loads on buckling strength were carried out (Brochard, 1987), (Nakamura, 1987), but its effect in the actual vessel has not been evaluated quantitatively. We have already reported the effect of thermal loads on buckling strength of a pool-type reactor vessel. (Kawamoto ,1989) In this paper, we focus on a loop-type reactor vessel and investigate the effect of thermal loads accompanying with axial temperature change near the sodium level. And the reduction of buckling strength due to the thermal loads is quantitatively evaluated
Berggreen, Christian; Carlsson, Leif A.; Avilés, F.
2008-01-01
An experimental and numerical study of in-plane compression of foam core sandwich columns with implanted trough width face/core debond is presented. Experiments were conducted for columns with two different face thicknesses over different cores and debond lengths. The debonded region was monitore...
Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy
2018-06-01
The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.
Buckling behavior of fiber reinforced plastic–metal hybrid-composite beam
Eksi, Secil; Kapti, Akin O.; Genel, Kenan
2013-01-01
Highlights: ► We developed a new plastic–metal hybrid-composite tubular beam structure. ► This structure offers innovative design solutions with weight reduction. ► It prevents premature buckling without adding significant weight to the structure. ► The composite interaction gives better mechanical properties to the products. ► Buckling and bending loads of the beam increased 3.2 and 7.6 times, respectively. - Abstract: It is known that the buckling is characterized by a sudden failure of a structural member subjected to high compressive load. In this study, the buckling behavior of the aluminum tubular beam (ATB) was analyzed using finite element (FE) method, and the reinforcing arrangements as well as its combinations were decided for the composite beams based on the FE results. Buckling and bending behaviors of thin-walled ATBs with internal cast polyamide (PA6) and external glass and carbon fiber reinforcement polymers (GFRPs and CFRPs) were investigated systematically. Experimental studies showed that the 219% increase in buckling load and 661% in bending load were obtained with reinforcements. The use of plastics and metal together as a reinforced structure yields better mechanical performance properties such as high resistance to buckling and bending loads, dimensional stability and high energy absorption capacity, including weight reduction. While the thin-walled metallic component provides required strength and stiffness, the plastic component provides the support necessary to prevent premature buckling without adding significant weight to the structure. It is thought that the combination of these materials will offer a promising new focus of attention for designers seeking more appropriate composite beams with high buckling loads beside light weight. The developed plastic–metal hybrid-composite structure is promising especially for critical parts serving as a support member of vehicles for which light weight is a critical design
The Carnegie-Irvine Galaxy Survey. V. Statistical Study of Bars and Buckled Bars
Li, Zhao-Yu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai 200030 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Barth, Aaron J., E-mail: lizy@shao.ac.cn [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA, 92697-4575 (United States)
2017-08-10
Simulations have shown that bars are subject to a vertical buckling instability that transforms thin bars into boxy or peanut-shaped structures, but the physical conditions necessary for buckling to occur are not fully understood. We use the large sample of local disk galaxies in the Carnegie-Irvine Galaxy Survey to examine the incidence of bars and buckled bars across the Hubble sequence. Depending on the disk inclination angle ( i ), a buckled bar reveals itself as either a boxy/peanut-shaped bulge (at high i ) or as a barlens structure (at low i ). We visually identify bars, boxy/peanut-shaped bulges, and barlenses, and examine the dependence of bar and buckled bar fractions on host galaxy properties, including Hubble type, stellar mass, color, and gas mass fraction. We find that the barred and unbarred disks show similar distributions in these physical parameters. The bar fraction is higher (70%–80%) in late-type disks with low stellar mass ( M {sub *} < 10{sup 10.5} M {sub ⊙}) and high gas mass ratio. In contrast, the buckled bar fraction increases to 80% toward massive and early-type disks ( M {sub *} > 10{sup 10.5} M {sub ⊙}), and decreases with higher gas mass ratio. These results suggest that bars are more difficult to grow in massive disks that are dynamically hotter than low-mass disks. However, once a bar forms, it can easily buckle in the massive disks, where a deeper potential can sustain the vertical resonant orbits. We also find a probable buckling bar candidate (ESO 506−G004) that could provide further clues to understand the timescale of the buckling process.
Pediatric elbow fractures: a new angle on an old topic
Emery, Kathleen H.; Anton, Christopher G. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Zingula, Shannon N. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Salisbury, Shelia R. [Cincinnati Children' s Hospital Medical Center, Biostatistics and Epidemiology, Cincinnati, OH (United States); Tamai, Junichi [Cincinnati Children' s Hospital Medical Center, Department of Pediatric Orthopedics, Cincinnati, OH (United States)
2016-01-15
The three most common elbow fractures classically reported in pediatric orthopedic literature are supracondylar (50-70%), lateral condylar (17-34%), and medial epicondylar fractures (10%), with fractures of the proximal radius (including but not limited to fractures of the radial neck) being relatively uncommon (5-10%). Our experience at a large children's hospital suggests a different distribution. Our goals were (1) to ascertain the frequency of different elbow fracture types in a large pediatric population, and (2) to determine which fracture types were occult on initial radiographs but detected on follow-up. Review of medical records identified 462 children, median age 6 years and interquartile range for age of 4-8 years (range 0.8-18 years), who were diagnosed with elbow fractures at our institution over a 10-month period. Initial and follow-up radiographs were reviewed in blinded fashion independently by two experienced pediatric musculoskeletal radiologists to identify fracture types on initial and follow-up radiographs. The most common fractures included supracondylar (n = 258, 56%), radial neck (n = 80, 17%), and lateral condylar (n = 69, 15%). Additional fractures were seen on follow-up exams in 32 children. Of these, 25 had a different fracture type than was identified on initial radiographs. The most common follow-up fractures were olecranon (n = 23, 72%), coronoid process (n = 4, 13%) and supracondylar (n = 3, 9%). Olecranon fractures were significantly more common on follow-up radiographs than they were on initial radiographs (n = 33, 7%; P <.0001). Twenty-six children had more than one fracture type on the initial radiograph. The most common fracture combinations were radial neck with olecranon (n = 9) and supracondylar with lateral condylar (n = 9). Supracondylar fractures are the most frequent elbow fracture seen initially, followed by radial neck, lateral condylar, and olecranon fractures in a distribution different from what has been
Ipsilateral humeral neck and shaft fractures
Zhu Bin
2017-01-01
Full Text Available Background/Aim. Fractures of the proximal humerus or shaft are common, however, ipsilateral neck and shaft humerus fracture is a rare phenomenon. This combination injury is challenging for orthopaedic surgeons because of its complex treatment options at present. The purpose of this study was to review a series of ipsilateral humeral neck and shaft fractures to study the fracture pattern, complications and treatment outcomes of each treatment options used. Methods. A total of six patients (four female and two male with the average age of 42.8 years (range: 36–49 years was collected and reviewed retrospectively. Two of them were treated with double plates and four with antegrade intramedullary nail. According to the Neer’s classification, all proximal fractures were two-part surgical neck fractures. All humeral shaft fractures were located at the middle of one third. Five fractures were simple transverse (A3, one fragmented wedge fracture (B3. One patient had associated radial nerve palsy. Results. All surgical neck fractures except one united uneventfully in the average time span of 8.7 weeks. Four humeral shaft fractures healed in near anatomic alignment. The remaining two patients had the nonunion with no radiological signs of fracture healing. The average University of California, Los Angeles End-Results (UCLA score was 23.1. On the contrary, the average American Shoulder and Elbow Surgeon's (ASES score was 73.3. The patients treated with antegrade intramedullary nails presented 70.5 points. The ASES scores were 79 in the double plates group. Conclusions. Ipsilateral humeral shaft and neck fracture is extremely rare. Both antegrade intramedullar nailing and double plates result in healing of fractures. However the risk of complication is lower in the double plating group.
Dogra A
1995-04-01
Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.
Timoshenko beam model for buckling of piezoelectric nanowires with surface effects
2012-01-01
This paper investigates the buckling behavior of piezoelectric nanowires under distributed transverse loading, within the framework of the Timoshenko beam theory, and in the presence of surface effects. Analytical relations are given for the critical force of axial buckling of nanowires by accounting for the effects of surface elasticity, residual surface tension, and transverse shear deformation. Through an example, it is shown that the critical electric potential of buckling depends on both the surface stresses and piezoelectricity. This study may be helpful in the characterization of the mechanical properties of nanowires and in the calibration of the nanowire-based force sensors. PMID:22453063
Kokubo, K.; Nakagawa, M.; Kawamoto, Y.; Murakami, T.; Matuura, S.; Hagiwara, Y.
1991-01-01
Shaking table tests for small-scale models and pseudo-dynamic buckling tests for moderate-scale models are conducted in order to investigate nonlinear pre- and post-buckling characteristics of fast breeder reactor vessels under the seismic lateral load. Two types of ground acceleration waves are used in the experiments. Nonlinear one-degree-of-freedom numerical simulations are also conducted using the hysteresis rules obtained by the tests. Good agreements are obtained between the experiments and calculations. The design method for vessels based on the estimation of nonlinear buckling behaviors is considered. (author)
Buckling Analysis of Rectangular Plates with Variable Thickness Resting on Elastic Foundation
Viswanathan, K K; Aziz, Z A; Navaneethakrishnan, P V
2015-01-01
Buckling of rectangular plates of variable thickness resting in elastic foundation is analysed using a quintic spline approximation technique. The thickness of the plate varies in the direction of one edge and the variations are assumed to be linear, exponential and sinusoidal. The plate is subjected to in plane load of two opposite edges. The buckling load and the mode shapes of buckling are computed from the eigenvalue problem that arises. Detailed parametric studies are made with different boundary conditions and the results are presented through the diagram and discussed
Buckling Analysis of Single and Multi Delamination In Composite Beam Using Finite Element Method
Simanjorang, Hans Charles; Syamsudin, Hendri; Giri Suada, Muhammad
2018-04-01
Delamination is one type of imperfection in structure which found usually in the composite structure. Delamination may exist due to some factors namely in-service condition where the foreign objects hit the composite structure and creates inner defect and poor manufacturing that causes the initial imperfections. Composite structure is susceptible to the compressive loading. Compressive loading leads the instability phenomenon in the composite structure called buckling. The existence of delamination inside of the structure will cause reduction in buckling strength. This paper will explain the effect of delamination location to the buckling strength. The analysis will use the one-dimensional modelling approach using two- dimensional finite element method.
Combescure, A.
1983-05-01
The buckling of shells subjected to seismic type of loads is not very well known. To study this type of phenomenon, theoretical and experimental investigations on structures consisting of two shells separed by a thin fluid layer , and submitted to a seismic type of load have been performed. The objectives of these investigations are the following: study coupling between buckling modes vibrations modes and buckling, and the effects of this coupling on the level of pressure; study of the appearance on such structures of dynamic instabilities processes; qualification of computer codes of the CEASEMT system; and, qualification or criticism of the methodology used in the design based on a ''static equivalent'' idea
Jagla, E A
2004-01-01
I study the buckling transition under compression of a two-dimensional, hexagonal, regular elastic honeycomb. Under isotropic compression, the system buckles to a configuration consisting of a unit cell containing four of the original hexagons. This buckling pattern preserves the sixfold rotational symmetry of the original lattice but is chiral, and can be described as a combination of three different elemental distortions in directions rotated by 2π/3 from each other. Non-isotropic compression may induce patterns consisting of a single elemental distortion or a superposition of two of them. The numerical results compare very well with the outcome of a Landau theory of second-order phase transitions
Alternative Shape of Suction Caisson to Reduce Risk of Buckling under high Pressure
Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2013-01-01
Using large suction caissons for offshore wind turbines is an upcoming technology also referred to as bucket foundations. During operation the bucket foundation is loaded by a large overturning moment from the wind turbine and the wave loads. However, during installation the bucket is loaded...... cylindrical monopod foundation made of steel. In this paper, an alternative design/shape of the suction caisson, having a smaller risk of buckling under high pressure is presented. The risk of structural buckling is addressed using numerical methods to determine the buckling pressures of the re...
An epibulbar chocolate cyst: a rare complication of silicone-based scleral buckle.
Venkatesh, Pradeep; Gogia, Varun; Gupta, Shikha; Nayak, Bhagabat
2015-08-03
A patient with a history of vitreoretinal surgery presented with nasal dystopia, diplopia and epibulbar bluish black mass simulating a chocolate cyst in the right eye. After a non-conclusive ocular examination, he underwent CT of the orbit along with volume rendition and three-dimensional reconstruction, which demonstrated intact globe with laterally displaced band-buckle assembly along with peri-scleral buckle element (SBE) soft tissue proliferation. Imaging-assisted exploration of the lesion was performed and retained scleral buckle element (SBE) was removed in toto; thus relieving the patient long-standing dystopia. 2015 BMJ Publishing Group Ltd.
Vortex Whistle in Radial Intake
Tse, Man-Chun
2004-01-01
In a radial-to-axial intake with inlet guide vanes (IGV) at the entry, a strong flow circulation Gamma can be generated from the tangential flow components created by the IGVs when their setting exceed about halfclosing (approx. 45 deg...
Zehnder, Alan T
2012-01-01
Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering. He teaches applied mechanics and his research t...
View-Dependent Adaptive Cloth Simulation with Buckling Compensation.
Koh, Woojong; Narain, Rahul; O'Brien, James F
2015-10-01
This paper describes a method for view-dependent cloth simulation using dynamically adaptive mesh refinement and coarsening. Given a prescribed camera motion, the method adjusts the criteria controlling refinement to account for visibility and apparent size in the camera's view. Objectionable dynamic artifacts are avoided by anticipative refinement and smoothed coarsening, while locking in extremely coarsened regions is inhibited by modifying the material model to compensate for unresolved sub-element buckling. This approach preserves the appearance of detailed cloth throughout the animation while avoiding the wasted effort of simulating details that would not be discernible to the viewer. The computational savings realized by this method increase as scene complexity grows. The approach produces a 2× speed-up for a single character and more than 4× for a small group as compared to view-independent adaptive simulations, and respectively 5× and 9× speed-ups as compared to non-adaptive simulations.
Buckling Behavior of Cold-Formed Studs with Thermal Perforations
Garifullin Marsel
2016-01-01
Full Text Available Studies have shown that the optimal structural scheme for low-rise buildings that meets all regulatory requirements is a frame system. In this connection, thin-walled cold-formed steel (CFS profiles seem to be the best material for constructing light steel framed (LSF walls. The framework of LSF walls is usually constructed from CFS C-shaped profiles. To increase the thermal effectiveness of a wall, CFS profiles usually have thermal perforations and thus are called thermoprofiles. However, these openings have a negative impact on bearing capacity of profiles and require accurate evaluation. In this article a relatively new reticular-stretched thermoprofile with diamond-shaped openings is considered. The article deals with the buckling analysis of perforated CFS C-sections subjected to compression.
Helical Root Buckling: A Transient Mechanism for Stiff Interface Penetration
Silverberg, Jesse; Noar, Roslyn; Packer, Michael; Harrison, Maria; Cohen, Itai; Henley, Chris; Gerbode, Sharon
2011-03-01
Tilling in agriculture is commonly used to loosen the topmost layer of soil and promote healthy plant growth. As roots navigate this mechanically heterogeneous environment, they encounter interfaces between the compliant soil and the underlying compacted soil. Inspired by this problem, we used 3D time-lapse imaging of Medicago Truncatula plants to study root growth in two-layered transparent hydrogels. The layers are mechanically distinct; the top layer is more compliant than the bottom. We observe that the roots form a transient helical structure as they attempt to penetrate the bi-layer interface. Interpreting this phenotype as a form of buckling due to root elongation, we measured the helix size as a function of the surrounding gel modulus. Our measurements show that by twisting the root tip during growth, the helical structure recruits the surrounding medium for an enhanced penetration force allowing the plants access to the lower layer of gel.
Simplified vibrocreep buckling analysis of circular cylindrical shells
Simeonova, K.; Hadjikov, L.; Georgiev, K.; Iotov, I.
1981-01-01
The circular cylindrical shells are used as a mathematical model in the investigation of the reactions of the supporting elements in nuclear reactor core, airplane designing etc. The buckling in the process of vibrocreep is one of the possible catastrophes during the exploitation of those elements. The paper presents a simplified investigation of the vibro-creep stability of a shell axially pressed. The main simplification consists of the fact that the average process of vibro-creep is considered stationary. The modified constitutive equations of Maxwell-Gurevitch-Rabinovitch, concerning elasto-viscous and elasto-plastic material is used. The critical time is calculated after two criteria. Theoretical relations between the critical time and the dynamic loading velocity amplitude are obtained. Those relations are compared to relations experimentally proved. (orig.)
Electron transport in NH3/NO2 sensed buckled antimonene
Srivastava, Anurag; Khan, Md. Shahzad; Ahuja, Rajeev
2018-04-01
The structural and electronic properties of buckled antimonene have been analysed using density functional theory based ab-initio approach. Geometrical parameters in terms of bond length and bond angle are found close to the single ruffle mono-layer of rhombohedral antimony. Inter-frontier orbital analyses suggest localization of lone pair electrons at each atomic centre. Phonon dispersion along with high symmetry point of Brillouin zone does not signify any soft mode. With an electronic band gap of 1.8eV, the quasi-2D nano-surface has been further explored for NH3/NO2 molecules sensing and qualities of interaction between NH3/NO2 gas and antimonene scrutinized in terms of electronic charges transfer. A current-voltage characteristic has also been analysed, using Non Equilibrium Green's function (NEGF), for antimonene, in presence of incoming NH3/NO2 molecules.
Electrostatics-Driven Hierarchical Buckling of Charged Flexible Ribbons.
Yao, Zhenwei; Olvera de la Cruz, Monica
2016-04-08
We investigate the rich morphologies of an electrically charged flexible ribbon, which is a prototype for many beltlike structures in biology and nanomaterials. Long-range electrostatic repulsion is found to govern the hierarchical buckling of the ribbon from its initially flat shape to its undulated and out-of-plane twisted conformations. In this process, the screening length is the key controlling parameter, suggesting that a convenient way to manipulate the ribbon morphology is simply to change the salt concentration. We find that these shapes originate from the geometric effect of the electrostatic interaction, which fundamentally changes the metric over the ribbon surface. We also identify the basic modes by which the ribbon reshapes itself in order to lower the energy. The geometric effect of the physical interaction revealed in this Letter has implications for the shape design of extensive ribbonlike materials in nano- and biomaterials.
Mechanical test and fractal analysis on anisotropic fracture of cortical bone
Yin, Dagang [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Chen, Bin, E-mail: bchen@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Ye, Wei [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Gou, Jihua [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Fan, Jinghong [Division of Mechanical Engineering, Alfred University, Alfred, NY 14802 (United States)
2015-12-01
Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in
Mechanical test and fractal analysis on anisotropic fracture of cortical bone
Yin, Dagang; Chen, Bin; Ye, Wei; Gou, Jihua; Fan, Jinghong
2015-01-01
Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in
Radial head dislocation during proximal radial shaft osteotomy.
Hazel, Antony; Bindra, Randy R
2014-03-01
The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Outcome of limb fracture repair in rabbits: 139 cases (2007-2015).
Sasai, Hiroshi; Fujita, Daisuke; Seto, Eiko; Denda, Yuki; Imai, Yutaro; Okamoto, Kanako; Okamura, Kensaku; Furuya, Masaru; Tani, Hiroyuki; Sasai, Kazumi
2018-02-15
OBJECTIVE To evaluate outcome of limb fracture repair in rabbits. DESIGN Retrospective case series. ANIMALS 139 client-owned rabbits with limb fractures treated between 2007 and 2015. PROCEDURES Medical records were reviewed for information on fracture location, fracture treatment, and time to fracture healing. RESULTS 25 rabbits had fractures involving the distal aspects of the limbs (ie, metacarpal or metatarsal bones, phalanges, and calcaneus or talus). Fractures were treated in 23 of these 25 rabbits (external coaptation, n = 17; external skeletal fixation, 4; and intramedullary pinning, 2) and healed in all 23, with a median healing time of 28 days (range, 20 to 45 days). One hundred ten rabbits had long bone fractures, and fractures were treated in 100 of the 110 (external skeletal fixation, n = 89; bone plating, 1; intramedullary pinning, 3; and external coaptation, 7). The percentage of fractures that healed was significantly lower for open (14/18) than for closed (26/26) tibial fractures and was significantly lower for femoral (19/26) and treated humeral (4/6) fractures than for radial (23/24) or closed tibial (26/26) fractures. Micro-CT was used to assess fracture realignment during external skeletal fixator application and to evaluate fracture healing. CONCLUSIONS AND CLINICAL RELEVANCE The prognosis for rabbits with limb fractures was good, with fractures healing in most rabbits following fracture repair (109/123). Micro-CT was useful in assessing fracture realignment and evaluating fracture healing.
Jiang, W.; Batra, R.C.
2009-01-01
We use molecular statics simulations with the embedded atom method potential to delineate yielding (material instability) and buckling (structural instability) in gold nanowires deformed axially in compression. It is found that both local (stacking faults) and global instabilities occur when the gold nanowire yields but only global instabilities occur when the nanowire buckles. Furthermore strong surface effects reorient the lattice structure which significantly increases Young's modulus in the axial direction and cause a nanowire of relatively small slenderness ratio (e.g., 14) to buckle. Upon complete unloading of the nanowires, the average axial stress and the total potential energy revert to their values in the reference configuration for the nanowires that buckled but not for the one that yielded.
The elastic buckling of super-graphene and super-square carbon nanotube networks
Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan
2010-01-01
The super-graphene (SG) and super-square (SS) carbon nanotube network are built by the straight single-walled carbon nanotubes and corresponding junctions. The elastic buckling behaviors of these carbon nanotube networks under different boundary conditions are explored through the molecular structural mechanics method. The following results are obtained: (a) The critical buckling forces of the SG and SS networks decrease as the side lengths or aspect ratios of the networks increase. The continuum plate theory could give good predictions to the buckling of the SS network but not the SG network with non-uniform buckling modes. (b) The carbon nanotube networks are more stable structures than the graphene structures with less carbon atoms.
Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory
Wang, C M; Zhang, Y Y; Ramesh, Sai Sudha; Kitipornchai, S
2006-01-01
This paper is concerned with the elastic buckling analysis of micro- and nano-rods/tubes based on Eringen's nonlocal elasticity theory and the Timoshenko beam theory. In the former theory, the small scale effect is taken into consideration while the effect of transverse shear deformation is accounted for in the latter theory. The governing equations and the boundary conditions are derived using the principle of virtual work. Explicit expressions for the critical buckling loads are derived for axially loaded rods/tubes with various end conditions. These expressions account for a better representation of the buckling behaviour of micro- and nano-rods/tubes where small scale effect and transverse shear deformation effect are significant. By comparing it with the classical beam theories, the sensitivity of the small scale effect on the buckling loads may be observed
So, Hongyun; Pisano, Albert P.
2013-01-01
© 2013, Springer-Verlag Berlin Heidelberg. This paper reports on a novel thermal actuator with sub-micron metallic structures and a buckling arm to operate with low voltages and to generate very large deflections, respectively. A lumped
a model for the determination of the critical buckling load of self
HP
Considering the widespread use of this type of structure and the critical role it ... proposed by the model for the critical buckling load of self- supporting lattice tower, whose equivalent solid beam- ... stiffness, both material and geometric, [5, 6].
Buckling rules in design codes: state of the art and future developments
Turbat, A. [FRAMATOME ANP, 69 - Lyon (France); Meziere, Y. [Electricite de France (EDF SEPTEN), 69 - Villeurbanne (France)
2001-07-01
Buckling, which can affect structures like bars, beams and shells when they are submitted to compressive stresses, can lead to unacceptable deformations and ruptures. Consequently, main Design Codes, especially those used in nuclear industry, include rules and analysis methods in order to prevent this phenomenon. In this paper, a review of buckling rules and/or analysis methods existing in ASME, RCC-M, RCC-MR and European Recommendations is performed. Then, these rules and methods are applied to the case of a cylinder filled with water and submitted to a seismic loading and results are compared. In the last part, current developments of methods to analyse creep buckling and dynamic buckling which should come and complete RCC-MR soon are presented. (author)
Buckling analysis for structural sections and stiffened plates reinforced with laminated composites.
Viswanathan, A. V.; Soong, T.-C.; Miller, R. E., Jr.
1972-01-01
A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked flat plate and beam elements. Plates are idealized as multilayered orthotropic elements; structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections and stiffened plates is investigated. Buckling loads are found as the lowest of all possible general and local failure modes and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections and stiffened plates including boron-reinforced structures are discussed. In general, correlations are reasonably good.
Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.
1971-01-01
A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.
Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder
Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.
2018-01-01
Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.
Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory
Kiani, Keivan [K.N. Toosi University of Technolog, Tehran (Iran, Islamic Republic of)
2015-10-15
Using nonlocal Euler-Bernoulli beam theory, buckling behavior of elastically embedded Doubly orthogonal single-walled carbon nanotubes (DOSWCNTs) is studied. The nonlocal governing equations are obtained. In fact, these are coupled fourth-order integroordinary differential equations which are very difficult to be solved explicitly. As an alternative solution, Galerkin approach in conjunction with assumed mode method is employed, and the axial compressive buckling load of the nanosystem is evaluated. For DOSWCNTs with simply supported tubes, the influences of the slenderness ratio, aspect ratio, intertube free space, small-scale parameter, and properties of the surrounding elastic matrix on the axial buckling load of the nanosystem are addressed. The proposed model could be considered as a pivotal step towards better understanding the buckling behavior of more complex nanosystems such as doubly orthogonal membranes or even jungles of carbon nanotubes.
On modelling of lateral buckling failure in flexible pipe tensile armour layers
Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.
2012-01-01
In the present paper, a mathematical model which is capable of representing the physics of lateral buckling failure in the tensile armour layers of flexible pipes is introduced. Flexible pipes are unbounded composite steel–polymer structures, which are known to be prone to lateral wire buckling...... when exposed to repeated bending cycles and longitudinal compression, which mainly occurs during pipe laying in ultra-deep waters. On the basis of multiple single wire analyses, the mechanical behaviour of both layers of tensile armour wires can be determined. Since failure in one layer destabilises...... the torsional equilibrium which is usually maintained between the layers, lateral wire buckling is often associated with a severe pipe twist. This behaviour is discussed and modelled. Results are compared to a pipe model, in which failure is assumed not to cause twist. The buckling modes of the tensile armour...
Buckling rules in design codes: state of the art and future developments
Turbat, A.; Meziere, Y.
2001-01-01
Buckling, which can affect structures like bars, beams and shells when they are submitted to compressive stresses, can lead to unacceptable deformations and ruptures. Consequently, main Design Codes, especially those used in nuclear industry, include rules and analysis methods in order to prevent this phenomenon. In this paper, a review of buckling rules and/or analysis methods existing in ASME, RCC-M, RCC-MR and European Recommendations is performed. Then, these rules and methods are applied to the case of a cylinder filled with water and submitted to a seismic loading and results are compared. In the last part, current developments of methods to analyse creep buckling and dynamic buckling which should come and complete RCC-MR soon are presented. (author)
Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures
Lindgaard, Esben; Lund, Erik
2011-01-01
This paper focuses on criterion functions for gradient based optimization of the buckling load of laminated composite structures considering different types of buckling behaviour. A local criterion is developed, and is, together with a range of local and global criterion functions from literature......, benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...... solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization. © 2010 Springer-Verlag....
Experimental tests on buckling of torispherical heads comparison with plastic bifurcation analysis
Roche, R.L.; Autrusson, B.
1984-06-01
Sixteen torispherical heads have been tested under internal pressure. All these heads were made by cold spinning from mild steel plates. Deflections on the axis and in the knuckle region have been recorded. As an practical result of these experiments, buckling pressure is given for each tested head. It is also indicated the maximum pressure reached during the tests, this pressure is very higher than the buckling pressure. It is also seen that buckling pressure is little sensitive to initial geometric imperfections. These experimental buckling pressure are compared with computation results obtained by plastic bifurcation analysis. Five different models of bifurcation matrix have been considered. If tangent matrix is unconservative, the use of tangent modulus (in lieu of YOUNG's modulus) is overconservative. Finally a mixing of tangent normal modulus and secant shearing modulus seems to be a good enough model (not to far from experimental results, and with not to large standard deviation)
Nonlinear mode interaction in equal-leg angle struts susceptible to cellular buckling.
Bai, L; Wang, F; Wadee, M A; Yang, J
2017-11-01
A variational model that describes the interactive buckling of a thin-walled equal-leg angle strut under pure axial compression is presented. A formulation combining the Rayleigh-Ritz method and continuous displacement functions is used to derive a system of differential and integral equilibrium equations for the structural component. Solving the equations using numerical continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear interaction between the weak-axis flexural buckling mode and the strong-axis flexural-torsional buckling mode for the first time-the resulting behaviour being highly unstable. Physical experiments conducted on 10 cold-formed steel specimens are presented and the results show good agreement with the variational model.
Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials
Ma, Teng
In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously
Belt Buckles-Increasing Awareness of Nickel Exposure in Children: A Case Report.
Goldenberg, Alina; Admani, Shehla; Pelletier, Janice L; Jacob, Sharon E
2015-09-01
Children, especially those with atopic dermatitis, are at risk for nickel sensitization and subsequent dermatitis from metal-containing objects, namely belt buckles. We describe allergic contact dermatitis in 12 children with peri-umbilical nickel dermatitis (with and without generalized involvement) caused by dimethylglyoxime-positive belt buckles. The patients' symptoms resolved with avoidance of the nickel-containing products. Copyright © 2015 by the American Academy of Pediatrics.
Raisic, N M; Popovic, D D; Takac, S M; Djordjevic, M M [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)
1960-03-15
The buckling in the bare heavy water natural uranium critical assembly was determined by measuring the thermal neutron flux distribution. The obtained value for the critical buckling at the temperature of 20 deg C is: B{sup 2} = (8.516 {+-} 0.02) m{sup -2}. The above error is a statistical one, obtained from several series of measurements. The possible systematic error was estimated as 0.1 m{sup -2}. (author)
Effect of geometrical imperfection on buckling failure of ITER VVPSS tank
Jha, Saroj Kumar; Gupta, Girish Kumar; Pandey, Manish Kumar; Bhattacharya, Avik; Jogi, Gaurav; Bhardwaj, Anil Kumar
2015-01-01
The 'Vacuum Vessel Pressure Suppression System' (VVPSS) is Part of ITER machine, which is designed to protect the ITER Vacuum Vessel and its connected systems, from an over-pressure situation. It is comprised of a partially evacuated tank of stainless steel approximately 46 meters long and 6 meters in diameter and thickness 30mm. It is to hold approximately 675 tonnes of water at room temperature to condense the steam resulting from the adverse water leakage into the Vacuum Vessel chamber. For any vacuum vessel, geometrical imperfection has significant effect on buckling failure and structural integrity. Major geometrical imperfection in VVPSS tank depends on form tolerances. To study the effect of geometrical imperfection on buckling failure of VVPSS tank, finite element analysis (FEA) has been performed in line with ASME section VIII division 2 part 5, 'design by analysis method'. Linear buckling analysis has been performed to get the buckled shape and displacement. Geometrical imperfection due to form tolerance is incorporated in FEA model of VVPSS tank by scaling the resulted buckled shape by a factor '60'. This buckled shape model is used as input geometry for plastic collapse and buckling failure assessment. Plastic collapse and buckling failure of VVPSS tank has been assessed by using the elastic-plastic analysis method. This analysis has been performed for different values of form tolerance. The results of analysis show that displacement and load proportionality factor (LPF) vary inversely with form tolerance. For higher values of form tolerance LPF reduces significantly with high values of displacement. (author)
Raisic, N.M.; Popovic, D.D.; Takac, S.M.; Djordjevic, M.M.
1960-01-01
The buckling in the bare heavy water natural uranium critical assembly was determined by measuring the thermal neutron flux distribution. The obtained value for the critical buckling at the temperature of 20 deg C is: B 2 = (8.516 ± 0.02) m -2 . The above error is a statistical one, obtained from several series of measurements. The possible systematic error was estimated as 0.1 m -2 . (author)
Mori, N.; Kobayashi, K.
1996-01-01
A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)
RADIAL STABILITY IN STRATIFIED STARS
Pereira, Jonas P.; Rueda, Jorge A.
2015-01-01
We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case
Perez, Nestor
2017-01-01
The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...
Ueng, Tzoushin; Towse, D.
1991-01-01
Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here
Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M
2016-02-01
After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.
Velocidades radiales en Collinder 121
Arnal, M.; Morrell, N.
Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.
Yas, M.H.; Samadi, N.
2012-01-01
This study deals with free vibrations and buckling analysis of nanocomposite Timoshenko beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. The SWCNTs are assumed to be aligned and straight with a uniform layout. Four different carbon nanotubes (CNTs) distributions including uniform and three types of functionally graded distributions of CNTs through the thickness are considered. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The governing equations are derived through using Hamilton's principle and then solved by using the generalized differential quadrature method (GDQM). Natural frequencies and critical buckling load are obtained for nanocomposite beams with different boundary conditions. Effects of several parameters, such as nanotube volume fraction, foundation stiffness parameters, slenderness ratios, CNTs distribution and boundary conditions on both natural frequency and critical buckling load are investigated. The results indicate that the above-mentioned parameters play a very important role on the free vibrations and buckling characteristics of the beam. Highlights: ► Beams with FG-X distribution have highest fundamental frequency. ► Beams with FG-X distribution have highest critical buckling load. ► Using elastic foundation, lead to increase the natural frequency. ► Using elastic foundation, lead to increase the critical buckling load. ► Increasing CNT volume fraction, lead to increase the natural frequency.
Benchmark study of shear buckling of a cylindrical vessel. Part 2
Combescure, A.; Bastien, R.; Carnoy, E.G.; Dostal, M.; Austin, N.M.; Peano, A.; Angeloni, P.
1988-01-01
In Liquid Metal Fast Breeder Reactors (LMFBR) potential shear buckling failures of the primary vessel, induced through seismic excitations, have to be considered. The primary vessel material, typically 316 stainless steel, has a low yield strength at the normal operating temperatures of around 400 0 C to 500 0 C. There characteristics tend to make the structure relatively flexible and subject to potential elasto-plastic shear buckling failure. The use of finite element techniques in buckling analyses is currently becoming more accepted. There are at present many finite element codes available which have the capacibility to solve buckling problems. The objective of the study reported herein was to follow on from the previous code validation exercise and investigate the ability of finite element codes to predict buckling behaviour in another test cylinder [a/h = 83, a/L = 1] where non-linear effects would be more significant and plastic shear buckling could be a failure mode. As before four organisations took part in the code validation exercise. NNC [UK] and ISMES [Italy] used the commercially available general purpose FE code ABAQUS. CEA [France] used INCA and BILBO which are members of the commercially available CASTEM suite of FE program. Novatome [France] used their in-house FE code NOVNL. The joint effort was co-ordinated by NNC with the assistance of the Commission of the European Communities Working on Codes and Standards AG2
Fleege, M.A.; Jebson, P.J.; Renfrew, D.L.; El-Khoury, G.Y.; Steyers, C.M. Jr.
1991-01-01
Fractures of the pisiform are often missed due to improper radiographic evaluation and a tendency to focus on other, more obvious injuries. Delayed diagnosis may result in disabling sequelae. A high index of clinical suspicion and appropriate radiographic examination will establish the correct diagnosis. Ten patients with pisiform fracture are presented. The anatomy, mechanism of injury, clinical presentation, radiographic features, and evaluation of this injury are discussed. (orig.)
Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.
1985-01-01
The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur
The radial distribution of the neutron field in the core of the Dalat Nuclear Research Reactor
Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)
1994-10-01
Determination of the radial distribution of the thermal neutron field in the core of the Dalat reactor is done by the Cu foil activation method. The measured data are fitted by the least square method to determine several physical parameters of the reactor, as follows: 1. Buckling B{sub r}{sup 2}=(84.6{+-}5.5)10{sup -4}/cm{sup 2}. 2. The effective radius R{sub eff}=(27.6{+-}1.0)cm. 3. The extrapolation distance {lambda}=(8.7{+-}1.0)cm. 4. The unequal coefficient of the effective multiplication K{sub r}=1.77{+-}0.11. (author). 2 refs., 4 figs., 1 tab.
Fracture analysis of HFIR beam tube caused by radiation embrittlement
Chang, S.J.
1994-01-01
With an attempt to estimate the neutron beam tube embrittlement condition for the Oak Ridge High Flux Isotope Reactor (HFIR), fracture mechanics calculations are carried out in this paper. The analysis provides some numerical result on how the tube has been structurally weakened. In this calculation, a lateral impact force is assumed. Numerical result is obtained on how much the critical crack size should be reduced if the beam tube has been subjected to an extended period of irradiation. It is also calculated that buckling strength of the tube is increased, not decreased, with irradiation
Mikulas, Martin M., Jr.; Nemeth, Michael P.; Oremont, Leonard; Jegley, Dawn C.
2011-01-01
Buckling loads for long isotropic and laminated cylinders are calculated based on Euler, Fluegge and Donnell's equations. Results from these methods are presented using simple parameters useful for fundamental design work. Buckling loads for two types of simply supported boundary conditions are calculated using finite element methods for comparison to select cases of the closed form solution. Results indicate that relying on Donnell theory can result in an over-prediction of buckling loads by as much as 40% in isotropic materials.
Buckling of Flat Thin Plates under Combined Loading
Ion DIMA
2015-03-01
Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.
Helical instability in film blowing process: Analogy to buckling instability
Lee, Joo Sung; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun
2017-12-01
The film blowing process is one of the most important polymer processing operations, widely used for producing bi-axially oriented film products in a single-step process. Among the instabilities observed in this film blowing process, i.e., draw resonance and helical motion occurring on the inflated film bubble, the helical instability is a unique phenomenon portraying the snake-like undulation motion of the bubble, having the period on the order of few seconds. This helical instability in the film blowing process is commonly found at the process conditions of a high blow-up ratio with too low a freezeline position and/or too high extrusion temperature. In this study, employing an analogy to the buckling instability for falling viscous threads, the compressive force caused by the pressure difference between inside and outside of the film bubble is introduced into the simulation model along with the scaling law derived from the force balance between viscous force and centripetal force of the film bubble. The simulation using this model reveals a close agreement with the experimental results of the film blowing process of polyethylene polymers such as low density polyethylene and linear low density polyethylene.
Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures
Elnaz Talebi
2014-01-01
Full Text Available The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core’s surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.
Thermal behavior of cylindrical buckling restrained braces at elevated temperatures.
Talebi, Elnaz; Tahir, Mahmood Md; Zahmatkesh, Farshad; Yasreen, Airil; Mirza, Jahangir
2014-01-01
The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.
Exceptional circles of radial potentials
Music, M; Perry, P; Siltanen, S
2013-01-01
A nonlinear scattering transform is studied for the two-dimensional Schrödinger equation at zero energy with a radial potential. Explicit examples are presented, both theoretically and computationally, of potentials with nontrivial singularities in the scattering transform. The singularities arise from non-uniqueness of the complex geometric optics solutions that define the scattering transform. The values of the complex spectral parameter at which the singularities appear are called exceptional points. The singularity formation is closely related to the fact that potentials of conductivity type are ‘critical’ in the sense of Murata. (paper)
Segal, N A; Nevitt, M C; Welborn, R D; Nguyen, U-S D T; Niu, J; Lewis, C E; Felson, D T; Frey-Law, L
2015-07-01
Hamstring coactivation during quadriceps activation is necessary to counteract the quadriceps pull on the tibia, but coactivation can be elevated with symptomatic knee osteoarthritis (OA). To guide rehabilitation to attenuate risk for mobility limitations and falls, this study evaluated whether higher antagonistic open kinetic chain hamstring coactivation is associated with knee joint buckling (sudden loss of support) and shifting (a sensation that the knee might give way). At baseline, median hamstring coactivation was assessed during maximal isokinetic knee extensor strength testing and at baseline and 24-month follow-up, knee buckling and shifting was self-reported. Associations between tertiles of co-activation and knee (1) buckling, (2) shifting and (3) either buckling or shifting were assessed using logistic regression, adjusted for age, sex, knee OA and pain. 1826 participants (1089 women) were included. Mean ± SD age was 61.7 ± 7.7 years, BMI was 30.3 ± 5.5 kg/m(2) and 38.2% of knees had OA. There were no consistent statistically significant associations between hamstring coactivation and ipsilateral prevalent or incident buckling or the combination of buckling and shifting. The odds ratios for incident shifting in the highest in comparison with the lowest tertile of coactivation had similar magnitudes in the combined and medial hamstrings, but only reached statistical significance for lateral hamstring coactivation, OR(95%CI) 1.53 (0.99, 2.36). Hamstring coactivation during an open kinetic chain quadriceps exercise was not consistently associated with prevalent or incident self-reported knee buckling or shifting in older adults with or at risk for knee OA. Copyright © 2015. Published by Elsevier Ltd.
Reliability of radiographic measurements for acute distal radius fractures
Watson, Narelle J.; Asadollahi, Saeed; Parrish, Frank; Ridgway, Jacqueline; Tran, Phong; Keating, Jennifer L.
2016-01-01
The management of distal radial fractures is guided by the interpretation of radiographic findings. The aim of this investigation was to determine the intra- and inter-observer reliability of eight traditionally reported anatomic radiographic parameters in adults with an acute distal radius fracture. Five observers participated. All were routinely involved in making treatment decisions based on distal radius fracture radiographs. Observers performed independent repeated measurements on 30 radiographs for eight anatomical parameters: dorsal shift (mm), intra-articular gap (mm), intra-articular step (mm), palmar tilt (degrees), radial angle (degrees), radial height (mm), radial shift (mm), ulnar variance (mm). Intraclass correlation coefficients (ICCs) and the magnitude of retest errors were calculated. Measurement reliability was summarised as high (ICC > 0.80), moderate (0.60–0.80) or low (<0.60). Intra-observer reliability was high for dorsal shift and palmar tilt; moderate for radial angle, radial height, ulnar variance and radial shift; and low for intra-articular gap and step. Inter-observer reliability was high for palmar tilt; moderate for dorsal shift, ulnar variance, radial angle and radial height; and low for radial shift, intra-articular gap and step. Error magnitude (95 % confidence interval) was within 1–2 mm for intra-articular gap and step, 2–4 mm for ulnar variance, 4–6 mm for radial shift, dorsal shift and radial height, and 6–8° for radial angle and palmar tilt. Based on previous reports of critical values for palmar tilt, ulnar variance and radial angle, error margins appear small enough for measurements to be useful in guiding treatment decisions. Our findings indicate that clinicians cannot reliably measure values ≤1 mm for intra-articular gap and step when interpreting radiographic parameters using the standardised methods investigated in this study. As a guide for treatment selection, palmar tilt, ulnar variance and radial angle
Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.
1988-01-01
Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)
Uebbing, Claire M
2011-02-01
Full Text Available Fracture blisters are a relatively uncommon complication of fractures in locations of the body, such as the ankle, wrist elbow and foot, where skin adheres tightly to bone with little subcutaneous fat cushioning. The blister that results resembles that of a second degree burn.These blisters significantly alter treatment, making it difficult to splint or cast and often overlying ideal surgical incision sites. Review of the literature reveals no consensus on management; however, most authors agree on early treatment prior to blister formation or delay until blister resolution before attempting surgical correction or stabilization. [West J Emerg Med. 2011;12(1;131-133.
Gong, Yinchun; Ai, Zhijiu; Sun, Xu; Fu, Biwei
2016-01-01
Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.
Sahmani, S.; Ansari, R.
2011-01-01
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis
Sahmani, S.; Ansari, R. [University of Guilan, Rasht (Iran, Islamic Republic of)
2011-09-15
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis.
Aillaud, P.; Buland, P.; Combescure, A.; Queval, J.C.; Garuti, G.
1983-08-01
The buckling of shells subjected to seismic type of loads is not very well known. To study this type of phenomenon we have performed theorical and experimental investigations on structures consisting of two shells separed by a thin fluid layer, and submitted to a seismic type of load. The objectives of these investigations are the following: study the coupling between buckling modes and vibrations modes and buckling of the effects of this coupling on the level of the pressure; study of the appearance on such structures of dynamic instabilities processes; qualification of computer codes of the CEASEMT system; and, qualification or criticism of the methodology used in the design based on a ''static equivalent'' idea. The experiments are made on two types of structures: spherical and cylindrical shells. The load applied on the shells consists of a permanent pressure and of a dynamic pressure due to fluid structure interaction. The systeme is put on the vibrating table and excitation is vertical for the hemispherical case, and horizontal for the cylindrical cases. Six models of each type are tested, with sinusoidal excitation at resonance. The tests on the spherical shells are presented and compared with calculations. The correlation is good and the main results is, as predicted by numerical calculation, that if the sum of the permanent and oscillatory pressure is greater than the static buckling load, the shells buckle. This results validates the static methodology. The tests on the cylindrical tanks will be exploited by the end of the year and presented in this paper
Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour
2018-01-01
Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.
Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.
2018-01-01
One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.
Baker, W.E.; Babock, C.D.; Bennett, J.G.
1983-01-01
Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to stimulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius. The results showed that the buckling load and mode for the shell having a penetration that did not cut a ring stiffener were essentially the same as those for the unpenetrated shell. The buckling loads for the penetrated shells in which stiffeners were interrupted were less than that for the unpenetrated shells. Results of all tests are compared to numerical solutions carried out using a nonlinear collapse analysis and to the predictions of ASME Code Case N-284
Cholesterol-Induced Buckling in Physisorbed Polymer-Tethered Lipid Monolayers
Christoph A. Naumann
2013-04-01
Full Text Available The influence of cholesterol concentration on the formation of buckling structures is studied in a physisorbed polymer-tethered lipid monolayer system using epifluorescence microscopy (EPI and atomic force microscopy (AFM. The monolayer system, built using the Langmuir-Blodgett (LB technique, consists of 3 mol % poly(ethylene glycol (PEG lipopolymers and various concentrations of the phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC, and cholesterol (CHOL. In the absence of CHOL, AFM micrographs show only occasional buckling structures, which is caused by the presence of the lipopolymers in the monolayer. In contrast, a gradual increase of CHOL concentration in the range of 0–40 mol % leads to fascinating film stress relaxation phenomena in the form of enhanced membrane buckling. Buckling structures are moderately deficient in CHOL, but do not cause any notable phospholipid-lipopolymer phase separation. Our experiments demonstrate that membrane buckling in physisorbed polymer-tethered membranes can be controlled through CHOL-mediated adjustment of membrane elastic properties. They further show that CHOL may have a notable impact on molecular confinement in the presence of crowding agents, such as lipopolymers. Our results are significant, because they offer an intriguing prospective on the role of CHOL on the material properties in complex membrane architecture.
Sawada, Hideyoshi; Shinohara, Takaaki; Natsume, Tadahiro; Hirata, Hitoshi
2016-11-01
Ulnar styloid fractures are often associated with distal radius fractures. However, controversy exists regarding whether to treat ulnar styloid fractures. This study aimed to evaluate clinical effects of internal fixation for ulnar styloid fractures after distal radius fractures were treated with the volar locking plate system. We used prospectively collected data of distal radius fractures. 111 patients were enrolled in this study. A matched case-control study design was used. We selected patients who underwent fixation for ulnar styloid fractures (case group). Three control patients for each patient of the case group were matched on the basis of age, sex, and fracture type of distal radius fractures from among patients who did not undergo fixation for ulnar styloid fractures (control group). The case group included 16 patients (7 men, 9 women; mean age: 52.6 years; classification of ulnar styloid fractures: center, 3; base, 11; and proximal, 2). The control group included 48 patients (15 men, 33 women; mean age: 61.1 years; classification of ulnar styloid fractures: center, 10; base, 31; and proximal, 7). For radiographic examination, the volar tilt angle, radial inclination angle, and ulnar variance length were measured, and the union of ulnar styloid fractures was judged. For clinical examination, the range of motions, grip strength, Hand20 score, and Numeric Rating Scale score were evaluated. There was little correction loss for each radiological parameter of fracture reduction, and these parameters were not significantly different between the groups. The bone-healing rate of ulnar styloid fractures was significantly higher in the case group than in the control group, but the clinical results were not significantly different. We revealed that there was no need to fix ulnar styloid fractures when distal radius fractures were treated via open reduction and internal fixation with a volar locking plate system. Copyright © 2016 The Japanese Orthopaedic Association
... is also an important factor when treating elbow fractures. Casts are used more frequently in children, as their risk of developing elbow stiffness is small; however, in an adult, elbow stiffness is much more likely. Rehabilitation directed by your doctor is often used to ...
... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields ...
... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Shoulder Fractures Email to a friend * required fields ...
Ito, Tomohiro; Morita, Hideyuki; Sugiyama, Akihisa; Kawamoto, Yoji; Sirai, Eiji; Ogo, Hideyasu
2004-01-01
When a thin walled cylindrical liquid storage tank is exposed to a very large seismic base excitation, buckling phenomena may be caused such as bending buckling where diamond buckling pattern or elephant foot bulge pattern will be found at the bottom portion, and shear buckling at the middle portion of the tank. In this study, dynamic buckling tests were performed using scale models of thin cylindrical liquid storage tanks for the nuclear power plants. The input seismic acceleration was increased until the elephant foot bulge occurred and the vibrational behavior before and after buckling was investigated. And the effects of static and dynamic liquid pressure on the bending buckling patterns and the buckling critical force was investigated by fundamental tests using small tank models. (author)
Non-drainage scleral buckling with solid silicone elements
Pukhraj Rishi
2014-01-01
Full Text Available Background: With the increasing number of cataract surgeries, incidence of posterior segment complications including rhegmatogenous retinal detachment (RRD is likely to rise. Scleral buckling (SB surgery is an effective and less expensive option. The primary advantage of non-drainage procedure is avoidance of possible complications associated with trans-choroidal drainage. The aim of present study is to describe the clinical profile of subjects undergoing non-drainage SB surgery with solid silicone elements for RRD and analyze their treatment outcomes. Materials and Methods: This was a retrospective, non-randomized, interventional study at a tertiary care center. Three hundred and six eyes of 298 patients undergoing non-drainage SB surgery with solid silicone elements from year 2000 to 2006 were included. Inclusion criteria were primary RRD, peripheral depressible retinal break, media clarity affording peripheral retinal view and proliferative vitreo-retinopathy (PVR up to grade C2. Uni- and multivariate analyses was done to analyze factors affecting anatomical and visual outcomes. Statistical analysis was performed using SPSS Version 10. Results: Mean follow-up was 303 ± 393.33 days. Primary anatomical success was obtained in 279 (91.2% eyes; primary functional success in 286 (93.5% eyes. PVR (grade B or C, intraocular pressure <10 mm Hg and the inability to find a retinal break were significantly associated with final anatomical failure. Baseline vision ≤3/60 was significantly associated with poor visual recovery. Conclusions: SB surgery is reasonably safe and highly efficacious. Solid silicone elements are effective in non-drainage SB surgery. However, case selection is important.
Radial smoothing and closed orbit
Burnod, L.; Cornacchia, M.; Wilson, E.
1983-11-01
A complete simulation leading to a description of one of the error curves must involve four phases: (1) random drawing of the six set-up points within a normal population having a standard deviation of 1.3 mm; (b) random drawing of the six vertices of the curve in the sextant mode within a normal population having a standard deviation of 1.2 mm. These vertices are to be set with respect to the axis of the error lunes, while this axis has as its origins the positions defined by the preceding drawing; (c) mathematical definition of six parabolic curves and their junctions. These latter may be curves with very slight curvatures, or segments of a straight line passing through the set-up point and having lengths no longer than one LSS. Thus one gets a mean curve for the absolute errors; (d) plotting of the actually observed radial positions with respect to the mean curve (results of smoothing)
Cholemari, Murali R.; Arakeri, Jaywant H.
2005-08-01
We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.
Damm, F.C.
1975-01-01
The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)
Stirling Engine With Radial Flow Heat Exchangers
Vitale, N.; Yarr, George
1993-01-01
Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.
2011-03-03
... of Army Corporal Frank W. Buckles, the Last Surviving American Veteran of World War I By the... Corporal Frank W. Buckles, the last surviving American veteran of World War I, and in remembrance of the generation of American veterans of World War I, I hereby order, by the authority vested in me by the...
Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.
1974-01-01
General-purpose program is intended for thermal stress and instability analyses of structures such as axially-stiffened curved panels. Two types of instability analyses can be effected by program: (1) thermal buckling with temperature variation as specified and (2) buckling due to in-plane biaxial loading.
Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio
Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong
2016-01-01
In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928
Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure
Dai, Zhongwei; Jin, Wencan; Yu, Jie-Xiang; Grady, Maxwell; Sadowski, Jerzy T.; Kim, Young Duck; Hone, James; Dadap, Jerry I.; Zang, Jiadong; Osgood, Richard M.; Pohl, Karsten
2017-12-01
The surface structure of black phosphorus materials is determined using surface-sensitive dynamical microspot low energy electron diffraction (μ LEED ) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (i) crystalline cleaved black phosphorus (BP) at 300 K and (ii) exfoliated few-layer phosphorene (FLP) of about 10 nm thickness which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 Å and 0.30 Å, respectively, is measured, which is one order of magnitude larger than previously reported. As direct evidence for large buckling, we observe a set of (for the flat surface forbidden) diffraction spots. Using first-principles calculations, we find that the presence of surface vacancies is responsible for the surface buckling in both BP and FLP, and is related to the intrinsic hole doping of phosphoresce materials previously reported.
Experimental tests on buckling of ellipsoidal vessel heads subjected to internal pressure
Roche, R.L.; Alix, M.
1980-05-01
Tests were performed on 17 ellipsoidal vessel heads of three different materials and different geometries. The results include the following: 1) Accurate definition of the geometry and particularly a direct measurement of the thickness along the meridian. 2) The properties of the material of each head, obtained from test specimens cut from the head itself after the test. 3) The recording of deflection/pressure curves with indication of the pressure at which buckling occurred. These results can be used for validation and qualification of methods for calculating the buckling load when plasticity occurs before buckling. It was possible to develop an empirical equation representing the experimental results obtained with satisfactory accuracy. This equation may be useful in pressure vessel design
Tuning and switching of band gap of the periodically undulated beam by the snap through buckling
Y. Li
2017-05-01
Full Text Available We propose highly tuning and switching band gaps of phononic crystals through the snap through buckling by investigating wave propagation in a designed tractable undulated beam with single material and periodically arched shape. A series of numerical analyses are conducted to offer a thorough understanding of the evolution of the band gaps as a function of the vertical applied load. We find out that the interesting snap through buckling induced by the vertical load can alter the width of the band gap of the undulated beam dramatically, even switch them on and off. Our researches show an effective strategy to tune the band gaps of phononic crystals through the snap through buckling behavior.
Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage
Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei
Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.
Effect of flurbiprofen sodium on pupillary dilatation during scleral buckling surgery
Roysarkar T
1994-01-01
Full Text Available Maintenance of pupillary dilatation is necessary for success of scleral buckling procedures. The efficacy of 0.03% flurbiprofen in preventing intraoperative miosis was evaluated by a prospective randomized, double-masked controlled trial of 60 patients. Thirty patients received 0.03% flurbiprofen 6 times at 15 minute intervals 90 minutes preoperatively in addition to the routine dilation regimen. The treated group had a mean pupillary decrease of 1.88 mm and the control group had a decrease of 1.57 mm (p > 0.05. Flurbiprofen did not affect the pupillary size at any step of the surgery. Factors such as age of the patient, lens status, number of cryo applications, duration of surgery, and the size and extent of buckle were assessed. The use of flurbiprofen did not affect the mean pupillary change for any of these groups. Preoperative use of flurbiprofen does not significantly decrease intraoperative miosis during scleral buckling procedures
Dynamic buckling and nonlinear response of FBR main vessels under earthquake loading
Hagiwara, Yutaka; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi.
1991-01-01
Pseudo-dynamic tests of cylindrical shells under high temperature were performed in order to study elasto-plastic shear-bending buckling and the nonlinear response of FBR main vessels under earthquake loading. The test results showed a response reduction effect due to pre-buckling plasticity, and a large seismic margin due to post-buckling energy absorption of the cylinders. A simple expression of the response reduction effect was proposed, as a contribution to the safe and effective seismic design of FBRs. Two methods for seismic margin evaluation were also proposed, and it was shown that appropriate seismic margins can be ensured, when the response reduction effect is incorporated into the seismic design. (author)
Non linear fe analysis on the static buckling behavior of the spacer grid structures
Song, K.N.; Yoon, K.H.
2001-01-01
In this study considered is the static buckling behavior of spacer grids in the fuel assembly, which are required to have a sufficient strength against an accident like earthquake. Special attention is given to the finite element modeling of the spot-welding and the constraints between the spacer strips assembled together: it is found that a proper treatment of the constraints is critical for accurate assessment of the buckling behavior including strain localization at the point of spot welding. The buckling strength of the 17 x 17 spacer grid, which is difficult to analyze due to a large number of degrees of freedom, is estimated from analysis for the smaller models 3 x 3, 5 x 5, 7 x 7, and 9 x 9 spacer grids. (authors)
Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams
Ebrahimi, Farzad; Reza Barati, Mohammad
2016-07-01
In this article, buckling behavior of nonlocal magneto-electro-elastic functionally graded (MEE-FG) beams is investigated based on a higher-order beam model. Material properties of smart nanobeam are supposed to change continuously throughout the thickness based on the power-law model. Eringen's nonlocal elasticity theory is adopted to capture the small size effects. Nonlocal governing equations of MEE-FG nanobeam are obtained employing Hamilton's principle and they are solved using the Navier solution. Numerical results are presented to indicate the effects of magnetic potential, electric voltage, nonlocal parameter and material composition on buckling behavior of MEE-FG nanobeams. Therefore, the present study makes the first attempt in analyzing the buckling responses of higher-order shear deformable (HOSD) MEE-FG nanobeams.
Viswanathan, A. V.; Tamekuni, M.
1973-01-01
Analytical methods based on linear theory are presented for predicting the thermal stresses in and the buckling of heated structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Uniaxially stiffened plates and shells of arbitrary cross section are typical examples. For the buckling analysis the structure or selected elements may be subjected to mechanical loads, in additional to thermal loads, in any desired combination of inplane transverse load and axial compression load. The analysis is also applicable to stiffened structures under inplane loads varying through the cross section, as in stiffened shells under bending. The buckling analysis is general and covers all modes of instability. The analysis has been applied to a limited number of problems and the results are presented. These while showing the validity and the applicability of the method do not reflect its full capability.
Micro-buckling of periodically layered composites in regions of stress concentration
Poulios, Konstantinos; Niordson, Christian Frithiof
2016-01-01
-buckling related failure in regions of stress concentrations. A series of parametric studies show the effect of non-uniform stress distributions due to bending loads and the presence of geometrical features such as notches and holes on the initiation of micro-buckling. The contribution of the bending stiffness...... of the reinforcing layers on the resistance against micro-buckling introduces a dependence on the layer thickness, resulting in size-scale dependent strength limits. Therefore, both the shape and dimensions of the considered geometrical features and the layering thickness of the micro-structure are varied as part...... of the parametric studies. Moreover, the impact of imperfections in the composite micro-structure on the strength of the considered specimens is investigated....
Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics
Wu, Meng-Yin; Chang, Tzu-Hsuan; Ma, Zhenqiang [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhao, Juan [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Xu, Feng; Jacobberger, Robert M.; Arnold, Michael S., E-mail: michael.arnold@wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2015-08-03
Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >10{sup 4} and a field-effect mobility of 5 cm{sup 2} V{sup −1} s{sup −1} under elongation and demonstrate invariant performance over 1000 stretching cycles.
Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics
Wu, Meng-Yin; Chang, Tzu-Hsuan; Ma, Zhenqiang; Zhao, Juan; Xu, Feng; Jacobberger, Robert M.; Arnold, Michael S.
2015-01-01
Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >10 4 and a field-effect mobility of 5 cm 2 V −1 s −1 under elongation and demonstrate invariant performance over 1000 stretching cycles
Effect of load eccentricity on the buckling of thin-walled laminated C-columns
Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert
2018-01-01
The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.
Thermoelastic buckling of plates in a cylindrical geometry against an elastic back support
Simmons, L.D.; Wierman, R.W.
1980-01-01
A plate which is fixed at its edges to a strong edge support structure will develop large compressive stresses when heated from ambient temperature more rapidly than the support structure. Determining the response of the plate to this situation requires stability analysis to ascertain whether the plate might buckle, or whether the constrained thermal expansion will lead to compressive stresses exceeding the yield point because it did not buckle. A special case is considered here, both analytically and experimentally, in which the plate is curved slightly into a cylindrical shape and the convex face of the plate is against a supporting surface. This case is more complex because the buckling mode will be a harmonic rather than the fundamental mode which is usually encountered
Baker, W.E.; Bennett, J.G.; Babcock, C.D.
1983-01-01
Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to simulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius
Shannon, Hannah L; Deluce, Simon R; Giles, Joshua W; Johnson, James A; King, Graham J W
2015-02-01
A number of radial head implants are in clinical use for the management of radial head fractures and their sequelae. However, the optimal shape of a radial head implant to ensure proper tracking relative to the capitellum has not been established. This in vitro biomechanical study compared radiocapitellar joint kinematics for 3 radial head implant designs as well as the native head. Eight cadaveric upper extremities were tested using a forearm rotation simulator with the elbow at 90° of flexion. Motion of the radius relative to the capitellum was optically tracked. A stem was navigated into a predetermined location and cemented in place. Three unipolar implant shapes were tested: axisymmetric, reverse-engineered patient-specific, and population-based quasi-anatomic. The patient-specific and quasi-anatomic implants were derived from measurements performed on computed tomography models. Medial-lateral and anterior-posterior translation of the radial head with respect to the capitellum varied with forearm rotation and radial head condition. A significant difference in medial-lateral (P = .03) and anterior-posterior (P = .03) translation was found between the native radial head and the 3 implants. No differences were observed among the radial head conditions except for a difference in medial-lateral translation between the axisymmetric and patient-specific implants (P = .04). Radiocapitellar kinematics of the tested radial head implants were similar in all but one comparison, and all had different kinematics from the native radial head. Patient-specific radial head implants did not prove advantageous relative to conventional implant designs. The shape of the fixed stem unipolar radial head implants had little influence on radiocapitellar kinematics when optimally positioned in this testing model. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Bimalleolar ankle fracture with proximal fibular fracture
Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.
2005-01-01
A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular
Misuse of booster cushions - an observation study of children's performance during buckling up.
Osvalder, Anna-Lisa; Bohman, Katarina
2008-10-01
Booster cushions are effective tools to protect children from injuries in car crashes, but there remains a large amount of misuse. The aim of this study was to assess potential misuse of booster cushions in an observational laboratory study, and to identify whether booster cushion design, age or clothing had any effect. 130 Swedish children from the ages of 4-12 years participated. Each child buckled up on an integrated and on an aftermarket booster cushion in the rear seat. The older children also buckled up with seat belt only. Interviews, observations and body measurements were performed. Time to buckle up and amount of belt slack were registered. Photographs were taken to document misuse. Results showed that 77% failed to perform correct belt routing on the aftermarket cushion, independent of age, although they were familiar with this system. The misuse rate for the integrated cushion was only 4%. No misuse was found for seat belt only. Few children tightened the belt. The belt slack increased when wearing winter jackets. This indicates the importance of adding pretensioners to the rear seat. Sled tests with HIII&TNO 6y dummies were also performed for the most frequent misuse situations found. The main conclusion is that an integrated booster cushion has many advantages compared to an aftermarket cushion regarding both safety and comfort. It is easy and quick to handle, has few possibilities for misuse, has an intuitive design, the buckling up sequence is equal to buckling up with an ordinary seat belt, and younger children can buckle up correctly.
Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test
Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.
2018-01-01
The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by
Zerna, W.; Mungan, I.; Steffen, W.
1980-01-01
The equations of the bending and stability theories for the orthotropic shell are solved using the FEM. A biaxial material law for concrete and a nearly bilinear stress-strain diagram for reinforcing steel were considered. Taking a layered ring element the influence of bending moments together with the membrane forces can be followed under increasing load up to failure of concrete or steel. At each level the bucking factor can be calculated considering the stress dependent buckling stiffness. The method of calculation is applied to a cooling tower shell under dead load acting simultaneously with an axi-symmetric loading to compensate for the wind effect. Due to orthotropy and descending tangent modulus at the ultimate load the buckling load factor drops to the half of the value obtained assuming a linear elastic behaviour. Additional parametric studies demonstrate the effect of some hypothetic cracks of different position and depth of the bifurcation results. The variation of the safety factors against buckling and ultimate load is obtained by changing the shell thickness. For the shell investigated it turns out that the buckling safety is influenced much more than the safety against material failure if the wall thickness is varied. It is recommended to split the buckling analysis of reinforced concrete shells in two parts. For shells of parts of a shell under only slightly disturbed membrane stress state the buckling analysis governs, otherwise the ultimate state considering the geometric and material nonlinearities is decisive to obtain not only the wall thickness but also the amount of reinforced necessary. (orig./HP) [de
Okajima, Kenji; Imai, Junichi; Tanaka, Tadatsugu; Iida, Toshiaki
Damage to piles in the liquefied ground is frequently reported. Buckling by the excess vertical load could be one of the causes of the pile damage, as well as the lateral flow of the ground and the lateral load at the pile head. The buckling mechanism is described as a complicated interaction between the pile deformation by the vertical load and the earth pressure change cased by the pile deformation. In this study, series of static buckling model tests of a pile were carried out in dried sand ground with various thickness of the layer. Finite element analysis was applied to the test results to verify the effectiveness of the elasto-plastic finite element analysis combining the implicit-explicit mixed type dynamic relaxation method with the return mapping method to the pile buckling problems. The test results and the analysis indicated the possibility that the buckling load of a pile decreases greatly where the thickness of the layer increases.
Acoustic, electromagnetic, neutron emissions from fracture and earthquakes
Lacidogna, Giuseppe; Manuello, Amedeo
2015-01-01
This book presents the relevant consequences of recently discovered and interdisciplinary phenomena, triggered by local mechanical instabilities. In particular, it looks at emissions from nano-scale mechanical instabilities such as fracture, turbulence, buckling and cavitation, focussing on vibrations at the TeraHertz frequency and Piezonuclear reactions. Future applications for this work could include earthquake precursors, climate change, energy production, and cellular biology. A series of fracture experiments on natural rocks demonstrates that the TeraHertz vibrations are able to induce fission reactions on medium weight elements accompanied by neutron emissions. The same phenomenon appears to have occurred in several different situations, particularly in the chemical evolution of the Earth and Solar System, through seismicity (rocky planets) and storms (gaseous planets). As the authors explore, these phenomena can also explain puzzles related to the history of our planet, like the ocean formation or th...
Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik
2015-01-01
Robust design of laminated composite structures is considered in this work. Because laminated composite structures are often thin walled, buckling failure can occur prior to material failure, making it desirable to maximize the buckling load. However, as a structure always contains imperfections...... and “worst” shape imperfection optimizations to design robust composite structures. The approach is demonstrated on an U-profile where the imperfection sensitivity is monitored, and based on the example it can be concluded that robust designs can be obtained....
Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates
Vlček, Marián
2015-07-01
A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.
Creep buckling: an experiment, an 'exact' solution and some simple thoughts
Heller, P.; Anderson, R.G.
1986-01-01
The paper presents attempts to analyse and understand a carefully conducted creep buckling experiment. The analysis was conducted using the ABAQUS Finite Element Code coupled to a number of plausible creep laws. The results show good agreement between ABAQUS runs and experimental deflections but it is difficult to reproduce the early loads. A simple model of buckling analysis for n-power creep laws is derived as an aid to understanding the development of the deflections for non-linear creep laws. In particular, the model suggests why deflections develop so rapidly and how the creep deflection development relates to the elastic behaviour. (author)
Stress analysis and torsional buckling analysis of U-shaped bellows
Watanabe, Osamu; Ohtsubo, Hideomi.
1986-01-01
This paper presents analysis of elastic stress and torsional buckling of U-shaped bellows using ring elements. The expansion joint is considered to be composed of the two toroidal sections and inner-connecting annular plates. The general thin shell theory is employed to derive strain-displacement relations of shells and plates, valid for any loadings. Numerical examples under internal pressure or axial loading are described and compared with the results of existing appropriate analysis. The fundamental aspects of torsional buckling, which have not been studied previously, will also be investigated. (author)
Experimental and modelling buckling of wood-based columns under repeated loading
Nafa Z.
2010-06-01
Full Text Available Collapse of timber constructions can appear under the effect of load that exceeds the resistance of a carrying element or under the effect of a geometrical instability like buckling. In addition, loading can be constant or varying for example loads due to wind or earthquakes. The aim of this paper is to study the behaviour and the lifetime of columns in wood or based-wood material such as glulam (GL or laminated veneer lumber (LVL under repeated loading leading to buckling.
A study of the effects of penetration framing on steel containment buckling capacity
Baker, W.E.; Butler, T.A.
1987-05-01
Polycarbonate cylinders modeling steel containment structures were tested to study the effects of different framing designs around large penetrations on the static buckling capacity of containments. Two of the four models had equipment hatch penetrations and two had personnel airlock penetrations. Both types of models were tested with axial and shear loads as framing was incrementally added. Results indicate that, for the models constructed of polycarbonate, buckling is influenced minimally with added framing. Numerical results support the experimental results. Extrapolation of the results to containment constructed under field conditions with prototypic steel materials is discussed and further testing is recommended
Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates
Vlček, Mariá n; Luká č, František; Vlach, Martin; Prochá zka, Ivan; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid; Gemma, Ryota; Čí žek, Jakub
2015-01-01
A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.
BUCKL: a program for rapid calculation of x-ray deposition
Cole, R.K. Jr.
1970-07-01
A computer program is described which has the fast execution time of exponential codes but also evaluates the effects of fluorescence and scattering. The program makes use of diffusion calculations with a buckling correction included to approximate the effects of finite transverse geometry. Theory and derivations necessary for the BUCKL code are presented, and the code results are compared with those of earlier codes for a variety of problems. Inputs and outputs of the program are described, and a FORTRAN listing is provided. Shortcomings of the program are discussed and suggestions are provided for possible future improvement. (U.S.)
MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK
2007-02-14
This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global
Miannay, D.P.
1995-01-01
This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped
Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...
ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...
Radial velocities of RR Lyrae stars
Hawley, S.L.; Barnes, T.G. III
1985-01-01
283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references
Concepts of radial and angular kinetic energies
Dahl, Jens Peder; Schleich, W.P.
2002-01-01
We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...
Stewart, Suzanne; Richardson, Dean; Boston, Ray; Schaer, Thomas P
2015-11-01
To determine (1) survival to discharge of horses with radial fractures (excluding osteochondral fragmentation of the distal aspect of the radius and stress fractures); and (2) risk factors affecting survival to hospital discharge in conservative and surgically managed fractures. Case series. Horses (n = 54). Medical records (1990-June 2012) and radiographs of horses admitted with radial fracture were reviewed. Horses with osteochondral fragmentation of the distal aspect of the radius or stress fractures were excluded. Evaluated risk factors were age, fracture configuration, surgical repair method, surgical duration, hospitalization time, implant failure rate, and surgical site infection (SSI) rate. Of 54 horses, overall survival to discharge was 50%. Thirteen (24%) were euthanatized on admission because of (1) fracture severity; (2) presence of an open fracture; or (3) financial constraints. Fourteen (26%) horses with minimally displaced incomplete fractures were conservatively managed and 12 (86%) survived to discharge. Twenty-seven (50%) horses had surgical treatment by open reduction and internal fixation (ORIF) and 15 (56%) survived to hospital discharge. Open fractures were significantly more likely to develop SSI (P = .008), which also resulted in a 17-fold increase in implant failure (P horses with an open fracture did not survive to discharge. Outcome was also adversely affected by age (P 168 minutes (P fractures is good. Young horses have a good prognosis survival to discharge for ORIF, whereas ORIF in adult horses has a poor prognosis and SSI strongly correlates with catastrophic implant failure. © Copyright 2015 by The American College of Veterinary Surgeons.
Random fields of initial out of straightness leading to column buckling
Kala, Zdeněk; Valeš, Jan; Jönsson, Jeppe
2017-01-01
The elastic load-carrying capacity and buckling trajectory of steel columns under compression with open and hollow cross-sections, whose axis is curved by spatial random fields, are studied in the article. As a result of the spatial curvature of the axis the cross-sections are subjected to compre...
Liang, Xu; Hu, Shuling; Shen, Shengping
2015-01-01
The symmetry breaking of inversion in solid crystals will induce electric polarization in all solid crystals, which is well known as flexoelectricity. At the nanometer scale, due to the large ratio of surface to volume, piezoelectric structures always exhibit distinct mechanical and electrical behaviors compared with their bulk counterparts. In the current work, the effects of surface and flexoelectricity on the buckling and vibration of piezoelectric nanowires is investigated based on a continuum framework and the Euler–Bernoulli beam hypothesis. Analytical solutions of the electric field in the piezoelectric nanobeam subjected to electrical and mechanical loads are obtained with the surface, flexoelectric and nonlocal electric effects. Numeric simulations demonstrate that the Young’s modulus and bending rigidity of PZT and BaTiO 3 (BT) nanowires are enhanced by flexoelectricity. In addition, the critical buckling voltage is calculated with consideration of the effects of surface and flexoelectricity, and it is found that the effects of surface piezoelectricity, flexoelectricity and residual surface stress play significant roles in determining the critical buckling voltage. Results obtained for the first resonance frequency also indicate that the effects of surface and flexoelectricity are more significant at a narrow range of beam thickness. The first resonance frequency of PZT and BT nanowires is also influenced by the residual surface stress and external applied voltage. The current work is expected to provide a fundamental study on the buckling and vibration behaviors of piezoelectric nanobeams, and it might also be helpful in devising piezoelectric nanowire-based nanoelectronics. (paper)
Post-Buckled Precompressed (PBP) piezoelectric actuators for UAV flight control
Vos, R.; Barrett, R.; Krakers, L.; Van Tooren, M.
2006-01-01
This paper presents the use of a new class of flight control actuators employing Post-Buckled Precompressed (PBP) piezoelectric elements in morphing wing Uninhabited Aerial Vehicles (UAVs). The new actuator relieson axial compression to amplify deflections and control forces simultaneously. Two
Asymptotic solution on the dynamic buckling of a column stressed by ...
This paper analysis the dynamic stability of a dynamically oscillatory system with slowly varying time dependent parameters. It utilizes the concept of multiple times scaling in an asymptotic evaluation of the dynamic buckling load of the imperfect elastic structure under investigation. Unlike most similar investigations to date ...
Relevance of capsid structure in the buckling and maturation of spherical viruses
Aznar, María; Luque, Antoni; Reguera, David
2012-01-01
The shape and mechanical properties of viral capsids play an important role in several biological processes during the virus life cycle. In particular, to become infective, many viruses require a maturation stage where the capsid undergoes a buckling transition, from an initial spherical procapsid into a final icosahedral faceted shell. Here we study, using a minimal physical model, how the capsid shape and the buckling transition depend on the triangulation number T and the icosahedral class P of the virus structure. We find that, for small shells, capsids with P = 1 are most likely to produce polyhedral shapes that minimize their energy and accumulated stress, whereas viruses with P = 3 prefer to remain spherical. For big capsids, all shells are more stable adopting an icosahedral shape, in agreement with continuum elastic theory. Moreover, spherical viruses show a buckling transition to polyhedral shells under expansion, in consonance with virus maturation. The resulting icosahedral shell is mechanically stiffer, tolerates larger expansions and withstands higher internal pressures before failing, which could explain why some dsDNA viruses, which rely on the pressurization of their genetic material to facilitate the infection, undergo a buckling transition. We emphasize that the results are general and could also be applied to non-biological systems. (paper)
Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard
2015-10-23
Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.
Buckling tests of sandwich cylindrical shells with and without cut-outs
Bisagni, C.; Davidson, B.D.; Czabaj, M.W.; Ratcliffe, J.G.
2016-01-01
The results of buckling tests performed during the project DESICOS funded by the European Commission in the FP7 Programme are here presented. The tested structures are sandwich cylindrical shells that consist of reduced models of a component of the Ariane 5 launcher: the Dual Launch System. In
A proposal for the calculation of the critical buckling of a PWR or undermoderated lattice
Benoist, P.
1989-01-01
A method improving the calculation of the critical buckling of a PWR or undermorated lattice is proposed. This method takes into account the lattice heterogeneity with more detail than the existing ones; it lies on some approximations. The method requires a relatively small inplementational effort. It could be used in the calculation of fast reactors [fr
Modelling of the stiffness evolution of truss core structures damaged by plastic buckling
Šiška, Filip; Stratil, Luděk; Dlouhý, Ivo; Barnett, M.R.
2015-01-01
Roč. 100, AUG (2015), s. 1-11 ISSN 0168-874X R&D Projects: GA MŠk EE2.3.20.0197 Institutional support: RVO:68081723 Keywords : beam theory * plastic buckling * finite element * beam-columns * truss-coredlaminates Subject RIV: JI - Composite Materials Impact factor: 2.175, year: 2015
Advanced control techniques for post-buckled precompressed (PBP) flight control actuators
Groen, M.; Van Schravendijk, M.; Barrett, R.; Vos, R.
2009-01-01
The dynamic response of a new class of flight control actuators that rely on post-buckled recompressed (PBP) piezoelectric elements is investigated. While past research has proven that PBP actuators are capable of generating deflections three times higher than conventional bimorph actuators, this
Post-Buckling Analysis of Curved Honeycomb Sandwich Panels Containing Interfacial Disbonds
Pineda, Evan J.; Bednarcyk, Brett A.; Krivanek, Thomas K.
2016-01-01
A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance plan for the next-generation Space Launch System heavy lift launch vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method incorporating geometric nonlinearity. In a predetermined circular region, facesheet and core nodes were detached to simulate a disbond, between the outer mold line facesheet and honeycomb core, induced via low-speed impact. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements and obtain realistic stresses in the core. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. Significant changes in the slope of the edge load-deflection response were used to determine the onset of global buckling and corresponding buckling load. Finally, several studies were conducted to determine the sensitivity of the numerical predictions to refinement in the finite element mesh.
Selective buckling via states of self-stress in topological metamaterials.
Paulose, Jayson; Meeussen, Anne S; Vitelli, Vincenzo
2015-06-23
States of self-stress--tensions and compressions of structural elements that result in zero net forces--play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices.
On the buckling of hexagonal boron nitride nanoribbons via structural mechanics
Giannopoulos, Georgios I.
2018-03-01
Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.
Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model
Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu
2014-09-01
The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.
Lindgaard, Esben; Lund, Erik
2012-01-01
This paper presents a novel FEM-based approach for fiber angle optimal design of laminated composite structures exhibiting complicated nonlinear buckling behavior, thus enabling design of lighter and more cost-effective structures. The approach accounts for the geometrically nonlinear behavior of...
Out-of-plane buckling of roller bent wide flange arches - imperfections and finite element modeling
Spoorenberg, R.C.; Snijder, H.H.; Hoenderkamp, J.C.D.; Beg, D.; Chan, S.L.; Shu, G.P.
2012-01-01
Steel arches are used more and more in contemporary architecture, combining structural efficiency with architectural merits. If lateral supports are absent, these arches are prone to out-of-plane buckling. Arches are often made by cold bending wide flange beams at ambient temperature. This
Yokoyama T
2015-01-01
Full Text Available Toshiyuki Yokoyama, Koki Kanbayashi, Tamaki YamaguchiDepartment of Ophthalmology, Juntendo University Nerima Hospital, Tokyo, JapanPurpose: To assess the treatment of pediatric patients with rhegmatogenous retinal detachment (RRD by scleral buckling with chandelier illumination.Methods: Three eyes were treated in three patients, healthy boys aged 7 years, 12 years, and 11 years, with RRD, macular involvement, and small retinal holes, of which two were preoperatively undetectable. Conventional scleral buckling with cryoretinopexy was performed under the contact lens for vitreous surgery or noncontact wide-angle viewing system using 27-gauge twin chandelier illumination.Results: The only known predisposing factor for retinal detachment was myopia stronger than 3 D with lattice retinal degeneration in two of the three patients. Retinal reattachment was achieved in all cases without intra- or postoperative complications. However, visual recovery was limited in one of the three patients.Conclusion: Scleral buckling with chandelier illumination is effective for pediatric RRD, especially if the retinal hole is difficult to detect preoperatively. However, visual recovery was sometimes limited because of macular involvement due to late diagnosis, which is one of the characteristic features of pediatric RRD.Keywords: pediatric rhegmatogenous retinal detachment, chandelier illumination, scleral buckling
Thornton, W. A.; Majumder, D. K.
1974-01-01
The investigation reported demonstrates that in the case considered perturbation methods can be used in a straightforward manner to obtain reanalysis information. A perturbation formula for the buckling loads of a general shell of revolution is derived. The accuracy of the obtained relations and their range of application is studied with the aid of a specific example involving a particular stiffened shell of revolution.
Buckling Analysis of Bucket Foundations for Wind Turbines in Deep Water
Madsen, Søren; Andersen, Lars; Ibsen, Lars Bo
2011-01-01
Using large suction caissons for offshore wind turbines is an upcoming technology also referred to as bucket foundations. The bucket foundation does not require heavy installation equipment, but since it is constructed as a thin steel shell structure, instability, in form of buckling, becomes...
Mori, H; Waters, T; Saotome, N; Nagamine, T; Sato, Y
2016-01-01
Passive vibration isolators are desired to have both high static stiffness to support large static load and low local stiffness to reduce the displacement transmissibility at frequencies greater than resonance. Utilization of a vertical buckled beam as a spring component is one way to realize such a stiffness characteristic since it exhibits a smaller ratio of local stiffness to static stiffness than that of a linear spring. This paper investigates the behaviour of a vibration isolator using inclined beams as well as vertical ones and examines the effect of beam inclination for the purpose of improving the isolation performance. The experimental system investigated has an isolated mass which is supported by a combination of two types of beams: buckled beams and constraining beams. The buckled beams can be inclined from the vertical by attachment devices, and the constraining beams are employed to prevent off-axis motion of the isolated mass. The results demonstrate that the inclination of the buckled beams reduces the resonance frequency and improves the displacement transmissibility at frequencies greater than resonance. (paper)
Experimental tests on buckling of ellipsoidal vessel heads under internal pressure
Alix, Michel; Roche, Roland.
1979-01-01
Seventeen heads made out of metal sheets -by cold working- were tested. Three different metals were used - carbon steel, austenitic steel, and aluminium alloy. Nominal dimensions were: diameter D 500 mm height H 50 and 100 mm thickness to diameter ratio t/D in the range 0.001-0.005. The heads had a good axisymmetric shape, but that the thickness was varying along the ellipse. Material characteristic of each head was given by a tensile test (strain-stress curve). The obtained results are mainly the pressure deflexion recordings, strain measurements and visual observations of the geometrical changes. For thin heads, buckling is a very fast event and the first folding occurs sudently, with a strong perturbation on the pressure-deflexion curve. For the thickest heads, circular waves are slowly forming. In all of these tests, yielding occured before buckling and it was possible to increase the pressure beyond the first buckling pressure without failure. The experimental results agree very well (+-5% except one head) with the empirical formula Psub(c)=70000.(sigma y+sigma u/2)(t/D)sup(5/3)((D/H) 2 -8)sup(-2/3). The following notations being used: Psub(c): critical buckling pressure; sigma y: yield strength; sigma u: ultimate stress (same unit); t: knuckle thickness; D: mean diameter; H: height (same unit) [fr
Laboratory testing of cement grouting of fractures in welded tuff
Sharpe, C.J.; Daemen, J.J.
1991-03-01
Fractures in the rock mass surrounding a repository and its shafts, access drifts, emplacement rooms and holes, and exploratory or in-situ testing holes, may provide preferential flowpaths for the flow of groundwater or air, potentially containing radionuclides. Such cracks may have to be sealed. The likelihood that extensive or at least local grouting will be required as part of repository sealing has been noted in numerous publications addressing high level waste repository closing. The objective of this work is to determine the effectiveness of fracture sealing (grouting) in welded tuff. Experimental work includes measurement of intact and fracture permeability under various normal stresses and injection pressures. Grout is injected into the fractures. The effectiveness of grouting is evaluated in terms of grout penetration and permeability reduction, compared prior to and after grouting. Analysis of the results include the effect of normal stress, injection pressure, fracture roughness, grout rheology, grout bonding, and the radial extent of grout penetration. Laboratory experiments have been performed on seventeen tuff cylinders with three types of fractures: (1) tension induced cracks, (2) natural fractures, and (3) sawcuts. Prior to grouting, the hydraulic conductivity of the intact rock and of the fractures is measured under a range of normal stresses. The surface topography of the fracture is mapped, and the results are used to determine aperture distributions across the fractures. 72 refs., 76 figs., 25 tabs
Buckling Capacity Curves for Steel Spherical Shells Loaded by the External Pressure
Błażejewski, Paweł; Marcinowski, Jakub
2015-03-01
Assessment of buckling resistance of pressurised spherical cap is not an easy task. There exist two different approaches which allow to achieve this goal. The first approach involves performing advanced numerical analyses in which material and geometrical nonlinearities would be taken into account as well as considering the worst imperfections of the defined amplitude. This kind of analysis is customarily called GMNIA and is carried out by means of the computer software based on FEM. The other, comparatively easier approach, relies on the utilisation of earlier prepared procedures which enable determination of the critical resistance pRcr, the plastic resistance pRpl and buckling parameters a, b, h, l 0 needed to the definition of the standard buckling resistance curve. The determination of the buckling capacity curve for the particular class of spherical caps is the principal goal of this work. The method of determination of the critical pressure and the plastic resistance were described by the authors in [1] whereas the worst imperfection mode for the considered class of spherical shells was found in [2]. The determination of buckling parameters defining the buckling capacity curve for the whole class of shells is more complicated task. For this reason the authors focused their attention on spherical steel caps with the radius to thickness ratio of R/t = 500, the semi angle j = 30o and the boundary condition BC2 (the clamped supporting edge). Taking into account all imperfection forms considered in [2] and different amplitudes expressed by the multiple of the shell thickness, sets of buckling parameters defining the capacity curve were determined. These parameters were determined by the methods proposed by Rotter in [3] and [4] where the method of determination of the exponent h by means of additional parameter k was presented. As a result of the performed analyses the standard capacity curves for all considered imperfection modes and amplitudes 0.5t, 1.0t, 1.5t
A New Tree-Type Fracturing Method for Stimulating Coal Seam Gas Reservoirs
Qian Li
2017-09-01
Full Text Available Hydraulic fracturing is used widely to stimulate coalbed methane production in coal mines. However, some factors associated with conventional hydraulic fracturing, such as the simple morphology of the fractures it generates and inhomogeneous stress relief, limit its scope of application in coal mines. These problems mean that gas extraction efficiency is low. Conventional fracturing may leave hidden pockets of gas, which will be safety hazards for subsequent coal mining operations. Based on a new drilling technique applicable to drilling boreholes in coal seams, this paper proposes a tree-type fracturing technique for stimulating reservoir volumes. Tree-type fracturing simulation experiments using a large-scale triaxial testing apparatus were conducted in the laboratory. In contrast to the single hole drilled for conventional hydraulic fracturing, the tree-type sub-boreholes induce radial and tangential fractures that form complex fracture networks. These fracture networks can eliminate the “blank area” that may host dangerous gas pockets. Gas seepage in tree-type fractures was analyzed, and gas seepage tests after tree-type fracturing showed that permeability was greatly enhanced. The equipment developed for tree-type fracturing was tested in the Fengchun underground coal mine in China. After implementing tree-type fracturing, the gas extraction rate was around 2.3 times greater than that for traditional fracturing, and the extraction rate remained high for a long time during a 30-day test. This shortened the gas drainage time and improved gas extraction efficiency.
... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...
Lateral-Torsional Buckling Instability Caused by Individuals Walking on Wood Composite I-Joists
Villasenor Aguilar, Jose Maria
Recent research has shown that a significant number of the falls from elevation occur when laborers are working on unfinished structures. Workers walking on wood I-joists on roofs and floors are prone to fall hazards. Wood I-joists have been replacing dimension lumber for many floor systems and a substantial number of roof systems in light-frame construction. Wood I-joists are designed to resist axial stresses on the flanges and shear stresses on the web while minimizing material used. However, wood I-joists have poor resistance to applied lateral and torsional loads and are susceptible to lateral-torsional buckling instability. Workers walking on unbraced or partially braced wood I-joists can induce axial and lateral forces as well as twist. Experimental testing demonstrated that workers cause lateral-torsional buckling instability in wood I-joists. However, no research was found related to the lateral-torsional buckling instability induced by individuals walking on the wood I-joists. Furthermore, no research was found considering the effects of the supported end conditions and partial bracing in the lateral-torsional buckling instability of wood I-joists. The goal of this research was to derive mathematical models to predict the dynamic lateral-torsional buckling instability of wood composite I-joists loaded by individuals walking considering different supported end conditions and bracing system configurations. The dynamic lateral-torsional buckling instability was analyzed by linearly combining the static lateral-torsional buckling instability with the lateral bending motion of the wood Ijoists. Mathematical models were derived to calculate the static critical loads for the simply supported end condition and four wood I-joist hanger supported end conditions. Additionally, mathematical models were derived to calculate the dynamic maximum lateral displacements and positions of the individual walking on the wood Ijoists for the same five different supported end
Maleckis, Kaspars; Deegan, Paul; Poulson, William; Sievers, Cole; Desyatova, Anastasia; MacTaggart, Jason; Kamenskiy, Alexey
2017-11-01
High failure rates of Peripheral Arterial Disease (PAD) stenting appear to be associated with the inability of certain stent designs to accommodate severe biomechanical environment of the femoropopliteal artery (FPA) that bends, twists, and axially compresses during limb flexion. Twelve Nitinol stents (Absolute Pro, Supera, Lifestent, Innova, Zilver, Smart Control, Smart Flex, EverFlex, Viabahn, Tigris, Misago, and Complete SE) were quasi-statically tested under bench-top axial and radial compression, axial tension, bending, and torsional deformations. Stents were compared in terms of force-strain behavior, stiffness, and geometrical shape under each deformation mode. Tigris was the least stiff stent under axial compression (6.6N/m axial stiffness) and bending (0.1N/m) deformations, while Smart Control was the stiffest (575.3N/m and 105.4N/m, respectively). Under radial compression Complete SE was the stiffest (892.8N/m), while Smart Control had the lowest radial stiffness (211.0N/m). Viabahn and Supera had the lowest and highest torsional stiffness (2.2μNm/° and 959.2μNm/°), respectively. None of the 12 PAD stents demonstrated superior characteristics under all deformation modes and many experienced global buckling and diameter pinching. Though it is yet to be determined which of these deformation modes might have greater clinical impact, results of the current analysis may help guide development of new stents with improved mechanical characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
PENG Fan; FU YiMing; CHEN YaoJun
2008-01-01
The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated. The viscoelastic behavior of laminas is modeled by Schapery's integral constitutive equation with growing ma-trix cracks. The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from meso-mechanics approach, and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress. The gov-erning equations for pre-buckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Karman-Donnell geometrically nonlinear relationship. Corresponding solution strategy is constructed by inte-grating finite-difference technique, trigonometric series expansion method and Taylor's numerical recursive scheme for convolution integration. The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parame-ters and parameters of damage evolution as well as boundary conditions. The nu-merical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads, and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells, also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.
Radial electric fields for improved tokamak performance
Downum, W.B.
1981-01-01
The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport
Hewes, R.C.; Miller, T.R.
1988-01-01
To profile optimally each portion of the meniscus, the authors use the multiangle, multisection feature of a General Electric SIGNA 1.5-T imager to produce radial images centered on each meniscus. A total of 12-15 sections are imaged at 10 0 -15 0 intervals of each meniscus, yielding perpendicular images of the entire meniscus, comparable with the arthrographic tangential views. The authors review their technique and demonstrate correlation cases between the radial gradient recalled acquisition in a steady state sequences, sagittal and coronal MR images, and arthrograms. Radial images should be a routine part of knee MR imaging
Radial pattern of nuclear decay processes
Iskra, W.; Mueller, M.; Rotter, I.; Technische Univ. Dresden
1994-05-01
At high level density of nuclear states, a separation of different time scales is observed (trapping effect). We calculate the radial profile of partial widths in the framework of the continuum shell model for some 1 - resonances with 2p-2h nuclear structure in 16 O as a function of the coupling strength to the continuum. A correlation between the lifetime of a nuclear state and the radial profile of the corresponding decay process is observed. We conclude from our numerical results that the trapping effect creates structures in space and time characterized by a small radial extension and a short lifetime. (orig.)
Webb, Lawrence X
2002-01-01
Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.
Radial pseudoaneurysm following diagnostic coronary angiography
Shankar Laudari
2015-06-01
Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50
Biomechanical investigation of impact induced rib fractures of a porcine infant surrogate model.
Blackburne, William B; Waddell, J Neil; Swain, Michael V; Alves de Sousa, Ricardo J; Kieser, Jules A
2016-09-01
This study investigated the structural, biomechanical and fractographic features of rib fractures in a piglet model, to test the hypothesis that fist impact, apart from thoracic squeezing, may result in lateral costal fractures as observed in abused infants. A mechanical fist with an accelerometer was constructed and fixed to a custom jig. Twenty stillborn piglets in the supine position were impacted on the thoracic cage. The resultant force versus time curves from the accelerometer data showed a number of steps indicative of rib fracture. The correlation between impact force and number of fractures was statistically significant (Pearson׳s r=0.528). Of the fractures visualized, 15 completely pierced the parietal pleura of the thoracic wall, and 5 had butterfly fracture patterning. Scanning electron microscopy showed complete bone fractures, at the zone of impact, were normal to the axis of the ribs. Incomplete vertical fractures, with bifurcation, occurred on the periphery of the contact zone. This work suggests the mechanism of rib failure during a fist impact is typical of the transverse fracture pattern in the anterolateral region associated with cases of non-accidental rib injury. The impact events investigated have a velocity of ~2-3m/s, approximately 2×10(4) times faster than previous quasi-static axial and bending tests. While squeezing the infantile may induce buckle fractures in the anterior as well as posterior region of the highly flexible bones, a fist punch impact event may result in anterolateral transverse fractures. Hence, these findings suggest that the presence of anterolateral rib fractures may result from impact rather than manual compression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Radial transport with perturbed magnetic field
Hazeltine, R. D. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)
2015-05-15
It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.
Radial transport with perturbed magnetic field
Hazeltine, R. D.
2015-01-01
It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order
Low-intensity pulsed ultrasound: Fracture healing
Mundi Raman
2009-01-01
trials, seven were included for the final review. The types of fractures studied among these seven trials included lateral malleolar, radial, and tibial fractures. Three of the seven trials found that LIPUS significantly reduces healing time compared to placebo, whereas the other four did not find a statistically significant difference. There is a substantial level of inconsistency in the findings of several RCTs evaluating the efficacy of LIPUS as an adjunct for fracture healing. Although LIPUS has proven to be effective in certain trials for accelerating fracture healing, no definitive statement can be made regarding its universal use for all fracture types and methods of fracture care. Future high-quality RCTs with larger sample sizes may help to elucidate the specific indications that warrant or dismiss the need for LIPUS therapy.
Stability of radial and non-radial pulsation modes of massive ZAMS models
Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.
1987-01-01
The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star
Fresh fractures of the scaphoid : A rationale method of treatment
Chari P
2006-01-01
Full Text Available Background : Scaphoid, among all carpal bones, is very vulnerable for fracture due to its unique shape and situation with greater articular surface. All scaphoid fractures are being treated with below elbow POP thumb spica casts keeping hand in ball throwing position. A few scaphoid fractures through the waist take longer time to unite, if not end in nonunion. These fractures were found to be displaced unimpacted trans-scaphoid fractures through the waist. Method : The effect of various positions of hand, wrist and forearm over unimpacted displaced scaphoid fractures through the waist were studied on dissected hand specimens and in patients with skiagrams. It was observed that possible radial deviation of hand over neutrally held wrist and forearm would result in anatomical reduction with impaction between the fragments. Added compression effect at site of fracture, necessary for early fracture healing, is produced by passively abducting the first metacarpal bone. Results : Of 68 scaphoid fractures under study, 24 and 41 were displaced and undisplaced ones through the waist respectively. All of them united in eight to ten weeks time as any fracture, when immobilised undisturbed with anatomic reduction and added compression between the fragments except one displaced fracture which took eight more weeks of immobilization for union and revascularilization of proximal fragment. Conclusion : This study showed that all scaphoid fractures in particular those through waist when rigidly immobilized unite as any fracture in eight to ten weeks provided the proximal fragment maintains proper blood supply. Otherwise it would further eight week of immobilization for the proximal fragment to get revascularize following union.
21 CFR 866.4800 - Radial immunodiffusion plate.
2010-04-01
...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use...
Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin
2003-01-01
We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed
Chen, P
2000-01-01
...., excursions from one buckled state to the other. First, a large displacements small strains structural dynamic formulation is developed that accounts for the given temperature effects and relies on a higher-order shear modeling...
Spela Stunf
2011-01-01
Full Text Available Pre-existing scleral pathology is an important risk factor for globe rupture during scleral buckling procedures. We report here, the surgical management of an unexpected scleral pathology found at the scleral buckling procedure in a retinal detachment patient. A 77-year-old white female with retinal detachment underwent a scleral buckling procedure. The surgery was converted into a scleral graft procedure, as extreme scleral thinning was found intraoperatively. An alcohol-preserved donor sclera graft was used. The second surgery for definitive retinal alignment was performed two weeks later. The presented case of an unexpected scleral pathology in a retinal detachment patient was managed with a combination of scleral grafting and pars plana vitrectomy, without any major complications. The anatomical outcome was excellent and the scleral rupture was prevented; the visual outcome was satisfactory. A conversion of the scleral buckling procedure into a scleral graft procedure has proved to be safe and effective for unexpected scleral pathology.
Barrett, R.; McMurtry, R.; Vos, R.; Tiso, P.; De Breuker, R.
2005-01-01
This paper describes a new class of flight control actuators using Post-Buckled Precompressed (PBP) piezoelectric elements. These actuators are designed to produce significantly higher deflection and force levels than conventional piezoelectric actuator elements. Classical laminate plate theory
Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array
Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen
2015-07-01
In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the
Traumatic thoracolumbar spine fractures
J. Siebenga (Jan)
2013-01-01
textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture