WorldWideScience

Sample records for radars radiometric sensors

  1. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2014-01-01

    Full Text Available Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar interferences and, then, separately matched filtering for each radar. Besides the detailed algorithm derivation, extensive numerical simulation examples are performed with the down-chirp and up-chirp waveforms, partially overlapped or inverse chirp rate linearly frequency modulation (LFM waveforms and orthogonal frequency division multiplexing (ODFM chirp diverse waveforms. The effectiveness of the algorithm is verified by the simulation results.

  2. RADIOMETRIC NORMALIZATION OF LARGE AIRBORNE IMAGE DATA SETS ACQUIRED BY DIFFERENT SENSOR TYPES

    Directory of Open Access Journals (Sweden)

    S. Gehrke

    2016-06-01

    Full Text Available Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere and temporally (unstable atmo-spheric properties and even changes in land coverage. We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor’s properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling – with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images – allows for adaptation to each sensor’s geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image’s histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in

  3. Radiometric, geometric, and image quality assessment of ALOS AVNIR-2 and PRISM sensors

    Science.gov (United States)

    Saunier, S.; Goryl, P.; Chander, G.; Santer, R.; Bouvet, M.; Collet, B.; Mambimba, A.; Kocaman, Aksakal S.

    2010-01-01

    The Advanced Land Observing Satellite (ALOS) was launched on January 24, 2006, by a Japan Aerospace Exploration Agency (JAXA) H-IIA launcher. It carries three remote-sensing sensors: 1) the Advanced Visible and Near-Infrared Radiometer type 2 (AVNIR-2); 2) the Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM); and 3) the Phased-Array type L-band Synthetic Aperture Radar (PALSAR). Within the framework of ALOS Data European Node, as part of the European Space Agency (ESA), the European Space Research Institute worked alongside JAXA to provide contributions to the ALOS commissioning phase plan. This paper summarizes the strategy that was adopted by ESA to define and implement a data verification plan for missions operated by external agencies; these missions are classified by the ESA as third-party missions. The ESA was supported in the design and execution of this plan by GAEL Consultant. The verification of ALOS optical data from PRISM and AVNIR-2 sensors was initiated 4 months after satellite launch, and a team of principal investigators assembled to provide technical expertise. This paper includes a description of the verification plan and summarizes the methodologies that were used for radiometric, geometric, and image quality assessment. The successful completion of the commissioning phase has led to the sensors being declared fit for operations. The consolidated measurements indicate that the radiometric calibration of the AVNIR-2 sensor is stable and agrees with the Landsat-7 Enhanced Thematic Mapper Plus and the Envisat MEdium-Resolution Imaging Spectrometer calibration. The geometrical accuracy of PRISM and AVNIR-2 products improved significantly and remains under control. The PRISM modulation transfer function is monitored for improved characterization.

  4. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  5. Pedestrian recognition using automotive radar sensors

    OpenAIRE

    A. Bartsch; F. Fitzek; R. H. Rasshofer

    2012-01-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insight...

  6. Sensor management in RADAR/IRST track fusion

    Science.gov (United States)

    Hu, Shi-qiang; Jing, Zhong-liang

    2004-07-01

    In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.

  7. Ultra-wideband radar sensors and networks

    Science.gov (United States)

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  8. Pedestrian recognition using automotive radar sensors

    Science.gov (United States)

    Bartsch, A.; Fitzek, F.; Rasshofer, R. H.

    2012-09-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insights into the object classification process. The impact of raw radar data properties can be directly observed in every layer of the classification system by avoiding machine learning and tracking. This gives information on the limiting factors of raw radar data in terms of classification decision making. To accomplish the very challenging distinction between pedestrians and static objects, five significant and stable object features from the spatial distribution and Doppler information are found. Experimental results with data from a 77 GHz automotive radar sensor show that over 95% of pedestrians can be classified correctly under optimal conditions, which is compareable to modern machine learning systems. The impact of the pedestrian's direction of movement, occlusion, antenna beam elevation angle, linear vehicle movement, and other factors are investigated and discussed. The results show that under real life conditions, radar only based pedestrian recognition is limited due to insufficient Doppler frequency and spatial resolution as well as antenna side lobe effects.

  9. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  10. Small battery operated unattended radar sensor for security systems

    Science.gov (United States)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  11. Wide Band and Wide Azimuth Beam Effect on High-resolution Synthetic Aperture Radar Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Hong Jun

    2015-06-01

    Full Text Available Passive corner reflectors and active transponders are often used as man-made reference targets in Synthetic Aperture Radar (SAR radiometric calibration, With the emergence of new radar systems and the increasing demand for greater accuracy, wide-band and wide-beam radars challenge the hypothesis that the Radar Cross Section (RCS of reference targets is constant. In this study, the FEKO electromagnetic simulation software is used to obtain the change curve of the target RCS as a function of frequency and aspect angle while incorporating high-resolution point-target SAR simulation, and quantitatively analyzing the effect of the modulation effect on SAR images. The simulation results suggest that the abovementioned factors affect the SAR calibration by more than 0.2 dB within a fractional bandwidth greater than 10% or azimuth beam width of more than 20°, which must be corrected in the data processing.

  12. Fusion of Radar and EO-sensors for Surveillance

    NARCIS (Netherlands)

    Kester, L.J.H.M.; Theil, A.

    2001-01-01

    Fusion of radar and EO-sensors is investigated for the purpose of surveillance in littoral waters is. All sensors are considered to be co-located with respect to the distance, typically 1 to 10 km, of the area under surveillance. The sensor suite is a coherent polarimetric radar in combination with

  13. SENSOR CORRECTION AND RADIOMETRIC CALIBRATION OF A 6-BAND MULTISPECTRAL IMAGING SENSOR FOR UAV REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    J. Kelcey

    2012-07-01

    Full Text Available The increased availability of unmanned aerial vehicles (UAVs has resulted in their frequent adoption for a growing range of remote sensing tasks which include precision agriculture, vegetation surveying and fine-scale topographic mapping. The development and utilisation of UAV platforms requires broad technical skills covering the three major facets of remote sensing: data acquisition, data post-processing, and image analysis. In this study, UAV image data acquired by a miniature 6-band multispectral imaging sensor was corrected and calibrated using practical image-based data post-processing techniques. Data correction techniques included dark offset subtraction to reduce sensor noise, flat-field derived per-pixel look-up-tables to correct vignetting, and implementation of the Brown- Conrady model to correct lens distortion. Radiometric calibration was conducted with an image-based empirical line model using pseudo-invariant features (PIFs. Sensor corrections and radiometric calibration improve the quality of the data, aiding quantitative analysis and generating consistency with other calibrated datasets.

  14. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    Science.gov (United States)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  15. Performance of UWB Array-Based Radar Sensor in a Multi-Sensor Vehicle-Based Suit for Landmine Detection

    NARCIS (Netherlands)

    Yarovoy, A.; Savelyev, T.; Zhuge, X.; Aubry, P.; Ligthart, L.; Schavemaker, J.G.M.; Tettelaar, P.; Breejen, E. de

    2008-01-01

    In this paper, integration of an UWB array-based timedomain radar sensor in a vehicle-mounted multi-sensor system for landmine detection is described. Dedicated real-time signal processing algorithms are developed to compute the radar sensor confidence map which is used for sensor fusion.

  16. English/Russian terminology on radiometric calibration of space-borne optoelectronic sensors

    Science.gov (United States)

    Privalsky, V.; Zakharenkov, V.; Humpherys, T.; Sapritsky, V.; Datla, R.

    The efficient use of data acquired through exo-atmospheric observations of the Earth within the framework of existing and newly planned programs requires a unique understanding of respective terms and definitions. Yet, the last large-scale document on the subject - The International Electrotechnical Vocabulary - had been published 18 years ago. This lack of a proper document, which would reflect the changes that had occurred in the area since that time, is especially detrimental to the developing international efforts aimed at global observations of the Earth from space such as the Global Earth Observations Program proposed by the U.S.A. at the 2003 WMO Congress. To cover this gap at least partially, a bi-lingual explanatory dictionary of terms and definitions in the area of radiometric calibration of space-borne IR sensors is developed. The objectives are to produce a uniform terminology for the global space-borne observations of the Earth, establish a unique understanding of terms and definitions by the radiometric communities, including a correspondence between the Russian and American terms and definitions, and to develop a formal English/Russian reference dictionary for use by scientists and engineers involved in radiometric observations of the Earth from space. The dictionary includes close to 400 items covering basic concepts of geometric, wave and corpuscular optics, remote sensing technologies, and ground-based calibration as well as more detailed treatment of terms and definitions in the areas of radiometric quantities, symbols and units, optical phenomena and optical properties of objects and media, and radiometric systems and their properties. The dictionary contains six chapters: Basic Concepts, Quantities, Symbols, and Units, Optical phenomena, Optical characteristics of surfaces and media, Components of Radiometric Systems, Characteristics of radiometric system components, plus English/Russian and Russian/Inglish indices.

  17. The moon as a radiometric reference source for on-orbit sensor stability calibration

    Science.gov (United States)

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  18. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    Science.gov (United States)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  19. A novel solution for car traffic control based on radiometric microwave devices

    Science.gov (United States)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  20. Noise Parameters of CW Radar Sensors Used in Active Defense Systems

    Directory of Open Access Journals (Sweden)

    V. Jenik

    2012-06-01

    Full Text Available Active defense represents an innovative way of protecting military vehicles. It is based on the employment of a set of radar sensors which detect an approaching threat missile and activate a suitable counter-measure. Since the radar sensors are supposed to detect flying missiles very fast and, at the same time, distinguish them from stationary or slow-moving objects, CW Doppler radar sensors can be employed with a benefit. The submitted article deals with a complex noise analysis of this type of sensors. The analysis considers the noise of linear and quasi-linear RF components, phase-noise of the local oscillator as well as the noise of low-frequency circuits. Since the incidence of the phase-noise depends strongly upon the time delay between the reference and the cross-talked signals, a new method of measuring noise parameters utilizing a reflecting wall has been developed and verified. The achieved results confirm potentially high influence of the phase-noise on the noise parameters of the mentioned type of radar sensors. Obtained results can be used for the analysis of noise parameters of the similar but even more complex sensors.

  1. Coherent and non-coherent processing of multiband radar sensor data

    Directory of Open Access Journals (Sweden)

    S. Tejero

    2006-01-01

    Full Text Available Increasing resolution is an attractive goal for all types of radar sensor applications. Obtaining high radar resolution is strongly related to the signal bandwidth which can be used. The currently available frequency bands however, restrict the available bandwidth and consequently the achievable range resolution. As nowadays more sensors become available e.g. on automotive platforms, methods of combining sensor information stemming from sensors operating in different and not necessarily overlapping frequency bands are of concern. It will be shown that it is possible to derive benefit from perceiving the same radar scenery with two or more sensors in distinct frequency bands. Beyond ordinary sensor fusion methods, radar information can be combined more effectively if one compensates for the lack of mutual coherence, thus taking advantage of phase information. At high frequencies, complex scatterers can be approximately modeled as a group of single scattering centers with constant delay and slowly varying amplitude, i.e. a set of complex exponentials buried in noise. The eigenanalysis algorithms are well known for their capability to better resolve complex exponentials as compared to the classical spectral analysis methods. These methods exploit the statistical properties of those signals to estimate their frequencies. Here, two main approaches to extend the statistical analysis for the case of data collected at two different subbands are presented. One method relies on the use of the band gap information (and therefore, coherent data collection is needed and achieves an increased resolution capability compared with the single-band case. On the other hand, the second approach does not use the band gap information and represents a robust way to process radar data collected with incoherent sensors. Combining the information obtained with these two approaches a robust estimator of the target locations with increased resolution can be built.

  2. Biologically Inspired Target Recognition in Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liang Qilian

    2010-01-01

    Full Text Available One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC. Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms to target detection in cognitive radar sensor network. Humans' information integration mechanisms have been modelled using maximum-likelihood estimation (MLE or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT is used to process the integrated data from MLE or soft-max. We apply fuzzy logic system (FLS to automatic target detection based on the AC power values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the existing 2D construction algorithm does not work in this study.

  3. Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    Directory of Open Access Journals (Sweden)

    Sigrid Roessner

    2011-06-01

    Full Text Available The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared and Hawk SWIR (Short Wave Infrared scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data.

  4. Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    Science.gov (United States)

    Rogaß, Christian; Spengler, Daniel; Bochow, Mathias; Segl, Karl; Lausch, Angela; Doktor, Daniel; Roessner, Sigrid; Behling, Robert; Wetzel, Hans-Ulrich; Kaufmann, Hermann

    2011-01-01

    The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME)—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data. PMID:22163960

  5. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  6. Gesture recognition for smart home applications using portable radar sensors.

    Science.gov (United States)

    Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip

    2014-01-01

    In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.

  7. Amplification of radar and lidar signatures using quantum sensors

    Science.gov (United States)

    Lanzagorta, Marco

    2013-05-01

    One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramat­ ically increase the performance of a wide variety of classical devices. These advances in quantum information science have had a considerable impact on the development of photonic-based quantum sensors. Even though quantum radar and quantum lidar remain theoretical proposals, preliminary results suggest that these sensors have the potential of becoming disruptive technologies able to revolutionize reconnaissance systems. In this paper we will discuss how quantum entanglement can be exploited to increase the radar and lidar signature of rectangular targets. In particular, we will show how the effective visibility of the target is increased if observed with an entangled multi-photon quantum sensor.

  8. Phase difference statistics related to sensor and forest parameters

    Science.gov (United States)

    Lopes, A.; Mougin, E.; Beaudoin, A.; Goze, S.; Nezry, E.; Touzi, R.; Karam, M. A.; Fung, A. K.

    1992-01-01

    The information content of ordinary synthetic aperture radar (SAR) data is principally contained in the radiometric polarization channels, i.e., the four Ihh, Ivv, Ihv and Ivh backscattered intensities. In the case of clutter, polarimetric information is given by the four complex degrees of coherence, from which the mean polarization phase differences (PPD), correlation coefficients or degrees of polarization can be deduced. For radiometric features, the polarimetric parameters are corrupted by multiplicative speckle noise and by some sensor effects. The PPD distribution is related to the sensor, speckle and terrain properties. Experimental results are given for the variation of the terrain hh/vv mean phase difference and magnitude of the degree of coherence observed on bare soil and on different pine forest stands.

  9. Balloon-borne pressure sensor performance evaluation utilizing tracking radars

    Science.gov (United States)

    Norcross, G. A.; Brooks, R. L.

    1983-01-01

    The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the Earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute significant height errors to their measurements of atmospheric constituent concentrations and properties. A series of radiosonde flights was conducted. In most cases, each flight consisted of two sondes attached to a single balloon and each flight was tracked by a highly accurate C-band radar. For the first 19 radiosonde flights, the standard aneroid cell baroswitch assembly used was the pressure sensor. The last 26 radiosondes were equipped with a premium grade aneroid cell baroswitch assembly sensor and with a hypsometer. It is shown that both aneroid cell baroswitch sensors become increasingly inaccurate with altitude. The hypsometer radar differences are not strongly dependent upon altitude and it is found that the standard deviation of the differences at 35 km is 0.179 km.

  10. 35-GHz radar sensor for automotive collision avoidance

    Science.gov (United States)

    Zhang, Jun

    1999-07-01

    This paper describes the development of a radar sensor system used for automotive collision avoidance. Because the heavy truck may have great larger radar cross section than a motorcyclist has, the radar receiver may have a large dynamic range. And multi-targets at different speed may confuse the echo spectrum causing the ambiguity between range and speed of target. To get more information about target and background and to adapt to the large dynamic range and multi-targets, a frequency modulated and pseudo- random binary sequences phase modulated continuous wave radar system is described. The analysis of this double- modulation system is given. A high-speed signal processing and data processing component are used to process and combine the data and information from echo at different direction and at every moment.

  11. Radiometric Calibration of Osmi Imagery Using Solar Calibration

    Directory of Open Access Journals (Sweden)

    Dong-Han Lee

    2000-12-01

    Full Text Available OSMI (Ocean Scanning Multi-Spectral Imager raw image data (Level 0 were acquired and radiometrically corrected. We have applied two methods, using solar & dark calibration data from OSMI sensor and comparing with the SeaWiFS data, to the radiometric correction of OSMI raw image data. First, we could get the values of the gain and the offset for each pixel and each band from comparing the solar & dark calibration data with the solar input radiance values, calculated from the transmittance, BRDF (Bidirectional Reflectance Distribution Function and the solar incidence angle (¥â,¥è of OSMI sensor. Applying this calibration data to OSMI raw image data, we got the two odd results, the lower value of the radiometric corrected image data than the expected value, and the Venetian Blind Effect in the radiometric corrected image data. Second, we could get the reasonable results from comparing OSMI raw image data with the SeaWiFS data, and get a new problem of OSMI sensor.

  12. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    Science.gov (United States)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and

  13. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    Science.gov (United States)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  14. ABSOLUTE RADIOMETRIC CALIBRATION OF THE GÖKTÜRK-2 SATELLITE SENSOR USING TUZ GÖLÜ (LANDNET SITE FROM NDVI PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    U. Sakarya

    2016-06-01

    Full Text Available TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP Project and AKTAR (Smart Agriculture Feasibility Project. The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for

  15. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches

    Directory of Open Access Journals (Sweden)

    Damien Vivet

    2013-08-01

    Full Text Available This paper is concerned with robotic applications using a ground-based radar sensor for simultaneous localization and mapping problems. In mobile robotics, radar technology is interesting because of its long range and the robustness of radar waves to atmospheric conditions, making these sensors well-suited for extended outdoor robotic applications. Two localization and mapping approaches using data obtained from a 360° field of view microwave radar sensor are presented and compared. The first method is a trajectory-oriented simultaneous localization and mapping technique, which makes no landmark assumptions and avoids the data association problem. The estimation of the ego-motion makes use of the Fourier-Mellin transform for registering radar images in a sequence, from which the rotation and translation of the sensor motion can be estimated. The second approach uses the consequence of using a rotating range sensor in high speed robotics. In such a situation, movement combinations create distortions in the collected data. Velocimetry is achieved here by explicitly analysing these measurement distortions. As a result, the trajectory of the vehicle and then the radar map of outdoor environments can be obtained. The evaluation of experimental results obtained by the two methods is presented on real-world data from a vehicle moving at 30 km/h over a 2.5 km course.

  16. A Radar-Enabled Collaborative Sensor Network Integrating COTS Technology for Surveillance and Tracking

    Directory of Open Access Journals (Sweden)

    R. Murat Demirer

    2012-01-01

    Full Text Available The feasibility of using Commercial Off-The-Shelf (COTS sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost ( < $50 US miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  17. Multimode Adaptable Microwave Radar Sensor Based on Leaky-Wave Antennas

    Czech Academy of Sciences Publication Activity Database

    Hudec, P.; Pánek, Petr; Jeník, V.

    2017-01-01

    Roč. 65, č. 9 (2017), s. 3464-3473 ISSN 0018-9480 Institutional support: RVO:67985882 Keywords : adaptable sensor * low-range radar * multimode sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 2.897, year: 2016

  18. Assessment of the Short-Term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors

    Science.gov (United States)

    Choi, Taeyoung; Xiong, Xiaxiong; Chander, G.; Angal, Amit

    2009-01-01

    The Landsat 7 (L7) Enhanced Thematic Mapper (ETM+) sensor was launched on April 15th, 1999 and has been in operation for over nine years. It has six reflective solar spectral bands located in the visible and shortwave infrared part of the electromagnetic spectrum (0.5 - 2.5 micron) at a spatial resolution of 30 m. The on-board calibrators are used to monitor the on-orbit sensor system changes. The ETM+ performs solar calibrations using on-board Full Aperture Solar Calibrator (FASC) and the Partial Aperture Solar Calibrator (PASC). The Internal Calibrator Lamp (IC) lamps, a blackbody and shutter optics constitute the on-orbit calibration mechanism for ETM+. On 31 May 2003, a malfunction of the scan-line corrector (SLC) mirror assembly resulted in the loss of approximately 22% of the normal scene area. The missing data affects most of the image with scan gaps varying in width from one pixel or less near the centre of the image to 14 pixels along the east and west edges of the image, creating a wedge-shaped pattern. However, the SLC failure has no impacts on the radiometric performance of the valid pixels. On December 18, 1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model (PFM) was launched on-board the NASA's EOS Terra spacecraft. Terra MODIS has 36 spectral bands with wavelengths ranging from 0.41 to 14.5 micron and collects data over a wide field of view angle (+/-55 deg) at three nadir spatial resolutions of 250 m, 500 in 1 km for bands 1 to 2, 3 to 7, and 8 to 36, respectively. It has 20 reflective solar bands (RSB) with spectral wavelengths from 0.41 to 2.1 micron. The RSB radiometric calibration is performed by using on-board solar diffuser (SD), solar diffuser stability monitor (SDSM), space-view (SV), and spectro-radiometric calibration assembly (SRCA). Through the SV port, periodic lunar observations are used to track radiometric response changes at different angles of incidence (AOI) of the scan mirror. As a part of the AM

  19. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    Directory of Open Access Journals (Sweden)

    Ji She

    2016-12-01

    Full Text Available Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  20. Low-Cost Radar Sensors for Personnel Detection and Tracking in Urban Areas

    Science.gov (United States)

    2007-01-31

    progress on the reserach grant "Low-Cost Radar Sensors for Personnel Detection and Tracking in Urban Areas" during the period 1 May 2005 - 31 December...The limitations of the proposed system resulting from DOA ambiguity of multiple moving targets are studied. 2. METHODOLOGY Our radar receiver

  1. Radiometric characterization of Landsat Collection 1 products

    Science.gov (United States)

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-09-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  2. A radar-enabled collaborative sensor network integrating COTS technology for surveillance and tracking.

    Science.gov (United States)

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R; Demirer, R Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  3. Technical Description of a Novel Sensor Network Architecture and Results of Radar and Optical Sensors contributing to a UK Cueing Experiment

    Science.gov (United States)

    Ladd, D.; Reeves, R.; Rumi, E.; Trethewey, M.; Fortescue, M.; Appleby, G.; Wilkinson, M.; Sherwood, R.; Ash, A.; Cooper, C.; Rayfield, P.

    The Science and Technology Facilities Council (STFC), Control Loop Concepts Limited (CL2), Natural Environment Research Council (NERC) and Defence Science and Technology Laboratory (DSTL), have recently participated in a campaign of satellite observations, with both radar and optical sensors, in order to demonstrate an initial network concept that enhances the value of coordinated observations. STFC and CL2 have developed a Space Surveillance and Tracking (SST) server/client architecture to slave one sensor to another. The concept was originated to enable the Chilbolton radar (an S-band radar on a 25 m diameter fully-steerable dish antenna called CASTR – Chilbolton Advanced Satellite Tracking Radar) which does not have an auto-track function to follow an object based on position data streamed from another cueing sensor. The original motivation for this was to enable tracking during re-entry of ATV-5, a highly manoeuvrable ISS re-supply vessel. The architecture has been designed to be extensible and allows the interface of both optical and radar sensors which may be geographically separated. Connectivity between the sensors is TCP/IP over the internet. The data transferred between the sensors is translated into an Earth centred frame of reference to accommodate the difference in location, and time-stamping and filtering are applied to cope with latency. The server can accept connections from multiple clients, and the operator can switch between the different clients. This architecture is inherently robust and will enable graceful degradation should parts of the system be unavailable. A demonstration was conducted in 2016 whereby a small telescope connected to an agile mount (an EO tracker known as COATS - Chilbolton Optical Advanced Tracking System) located 50m away from the radar at Chilbolton, autonomously tracked several objects and fed the look angle data into a client. CASTR, slaved to COATS through the server followed and successfully detected the objects

  4. Results from the radiometric validation of Sentinel-3 optical sensors using natural targets

    Science.gov (United States)

    Fougnie, Bertrand; Desjardins, Camille; Besson, Bruno; Bruniquel, Véronique; Meskini, Naceur; Nieke, Jens; Bouvet, Marc

    2016-09-01

    The recently launched SENTINEL-3 mission measures sea surface topography, sea/land surface temperature, and ocean/land surface colour with high accuracy. The mission provides data continuity with the ENVISAT mission through acquisitions by multiple sensing instruments. Two of them, OLCI (Ocean and Land Colour Imager) and SLSTR (Sea and Land Surface Temperature Radiometer) are optical sensors designed to provide continuity with Envisat's MERIS and AATSR instruments. During the commissioning, in-orbit calibration and validation activities are conducted. Instruments are in-flight calibrated and characterized primarily using on-board devices which include diffusers and black body. Afterward, vicarious calibration methods are used in order to validate the OLCI and SLSTR radiometry for the reflective bands. The calibration can be checked over dedicated natural targets such as Rayleigh scattering, sunglint, desert sites, Antarctica, and tentatively deep convective clouds. Tools have been developed and/or adapted (S3ETRAC, MUSCLE) to extract and process Sentinel-3 data. Based on these matchups, it is possible to provide an accurate checking of many radiometric aspects such as the absolute and interband calibrations, the trending correction, the calibration consistency within the field-of-view, and more generally this will provide an evaluation of the radiometric consistency for various type of targets. Another important aspect will be the checking of cross-calibration between many other instruments such as MERIS and AATSR (bridge between ENVISAT and Sentinel-3), MODIS (bridge to the GSICS radiometric standard), as well as Sentinel-2 (bridge between Sentinel missions). The early results, based on the available OLCI and SLSTR data, will be presented and discussed.

  5. Automation of radiometric testing

    International Nuclear Information System (INIS)

    Chekalin, A.S.; Temnik, A.K.; Butakova, G.E.; Goncharov, V.I.

    1983-01-01

    The main prerequisites for creation of automatic systems of radiometric testing as the means to increase the testing objectivity and quality have been considered, principles of their design being developed. The operating system is described for testing complex configuration products using RD-10R gamma flow detector as a sensor of initial information

  6. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    Directory of Open Access Journals (Sweden)

    Pottier E.

    2010-06-01

    Full Text Available SAR Polarimetry represents an active area of research in Active Earth Remote Sensing. This interest is clearly supported by the fact that nowadays there exists, or there will exist in a very next future, a non negligible quantity of launched Polarimetric SAR Spaceborne sensors. The ENVISAT satellite, developed by ESA, was launched on March 2002, and was the first Spaceborne sensor offering an innovative dualpolarization Advanced Synthetic Aperture Radar (ASAR system operating at C-band. The second Polarimetric Spaceborne sensor is ALOS, a Japanese Earth-Observation satellite, developed by JAXA and was launched in January 2006. This mission includes an active L-band polarimetric radar sensor (PALSAR whose highresolution data may be used for environmental and hazard monitoring. The third Polarimetric Spaceborne sensor is TerraSAR-X, a new German radar satellite, developed by DLR, EADS-Astrium and Infoterra GmbH, was launched on June 2007. This sensor carries a dual-polarimetric and high frequency X-Band SAR sensor that can be operated in different modes and offers features that were not available from space before. At least, the Polarimetric Spaceborne sensor, developed by CSA and MDA, and named RADARSAT-2 was launched in December 2007 The Radarsat program was born out the need for effective monitoring of Canada’s icy waters, and some Radarsat-2 capabilities that benefit sea- and river ice applications are the multi-polarization options that will improve ice-edge detection, ice-type discrimination and structure information. The many advances in these different Polarimetric Spaceborne platforms were developed to respond to specific needs for radar data in environmental monitoring applications around the world, like : sea- and river-ice monitoring, marine surveillance, disaster management, oil spill detection, snow monitoring, hydrology, mapping, geology, agriculture, soil characterisation, forestry applications (biomass, allometry, height

  7. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  8. Noise considerations for vital signs CW radar sensors

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Jensen, Thomas; Zhurbenko, Vitaliy

    2011-01-01

    and the underlying signal theory for such sensors. Then to point out and especially clarify one of the most important effects aiding the design of vital signs radars (VSR), a more detailed discussion concerning phase noise cancellation (or filtering) by range correlation is given. This discussion leads to some...... general conclusions about which system components are the most critical concerning noise contribution and thus detection accuracy and dynamic range....

  9. Wireless Sensor Network for Radiometric Detection and Assessment of Partial Discharge in High-Voltage Equipment

    Science.gov (United States)

    Upton, D. W.; Saeed, B. I.; Mather, P. J.; Lazaridis, P. I.; Vieira, M. F. Q.; Atkinson, R. C.; Tachtatzis, C.; Garcia, M. S.; Judd, M. D.; Glover, I. A.

    2018-03-01

    Monitoring of partial discharge (PD) activity within high-voltage electrical environments is increasingly used for the assessment of insulation condition. Traditional measurement techniques employ technologies that either require off-line installation or have high power consumption and are hence costly. A wireless sensor network is proposed that utilizes only received signal strength to locate areas of PD activity within a high-voltage electricity substation. The network comprises low-power and low-cost radiometric sensor nodes which receive the radiation propagated from a source of PD. Results are reported from several empirical tests performed within a large indoor environment and a substation environment using a network of nine sensor nodes. A portable PD source emulator was placed at multiple locations within the network. Signal strength measured by the nodes is reported via WirelessHART to a data collection hub where it is processed using a location algorithm. The results obtained place the measured location within 2 m of the actual source location.

  10. A Novel Low-Cost Dual-Wavelength Precipitation Radar Sensor Network, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote Sensing Solutions, Inc. (RSS) has developed a novel, practical design that will produce a low-cost precipitation radar / radiometer sensor. Operating in a...

  11. Radionuclide Sensors for Environmental Monitoring: From Flow Injection Solid-Phase Absorptiometry to Equilibration-Based Preconcentrating Minicolumn Sensors with Radiometric Detection

    International Nuclear Information System (INIS)

    Grate, Jay W.; Egorov, Oleg B.; O'Hara, Matthew J.; Devol, Timothy A.

    2008-01-01

    The development of in situ sensors for ultratrace detection applications in process control and environmental monitoring remains a significant challenge. Such sensors must meet difficult detection limit requirements while selectively detecting the analyte of interest in complex or otherwise challenging sample matrixes. Nowhere are these requirements more daunting than in the field of radionuclide sensing. The detection limit requirements can be extremely low. Nevertheless, a promising approach to radionuclide sensing based on preconcentrating minicolumn sensors has been developed. In addition, a method of operating such sensors, which we call equilibration-based sensing, has been developed that provides substantial preconcentration and a signal that is proportional to analyte concentration, while eliminating the need for reagents to regenerate the sorbent medium following each measurement. While this equilibration-based sensing method was developed for radionuclide sensing, it can be applied to nonradioactive species as well, given a suitable on-column detection system. By replacing costly sampling and laboratory analysis procedures, in situ sensors could have a significant impact on monitoring and long term stewardship applications. The aim of this review is to cover radionuclide sensors that combine some form of selective sorption with a radiometric detection method, and, as a primary aim, to comprehensively review preconcentrating minicolumn sensors for radionuclide detection. As a secondary aim, we will cover radionuclide sensors that combine sorption and scintillation in formats other than minicolumn sensors. We are particularly concerned with the detection of alpha- and beta-emitting radionuclides, which present particular challenges for measurements in liquid media

  12. Oblique Projection Polarization Filtering-Based Interference Suppressions for Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2010-01-01

    Full Text Available The interferences coming from the radar members degrade the detection and recognition performance of the radar sensor networks (RSNs if the waveforms of the radar members are nonorthogonal. In this paper, we analyze the interferences by exploring the polarization information of the electromagnetic (EM waves. Then, we propose the oblique projection polarization filtering- (OPPF- based scheme to suppress the interferences while keeping the amplitude and phase of its own return in RSNs, even if the polarized states of the radar members are not orthogonal. We consider the cooperative RSNs environment where the polarization information of each radar member is known to all. The proposed method uses all radar members' polarization information to establish the corresponding filtering operator. The Doppler-shift and its uncertainty are independent of the polarization information, which contributes that the interferences can be suppressed without the utilization of the spatial, the temporal, the frequency, the time-delay and the Doppler-shift information. Theoretical analysis and the mathematical deduction show that the proposed scheme is a valid and simple implementation. Simulation results also demonstrate that this method can obtain a good filtering performance when dealing with the problem of interference suppressions for RSNs.

  13. Development of Low-Noise Small-Area 24 GHz CMOS Radar Sensor

    Directory of Open Access Journals (Sweden)

    Min Yoon

    2016-01-01

    Full Text Available We present a low-noise small-area 24 GHz CMOS radar sensor for automotive collision avoidance. This sensor is based on direct-conversion pulsed-radar architecture. The proposed circuit is implemented using TSMC 0.13 μm RF (radio frequency CMOS (fT/fmax=120/140 GHz technology, and it is powered by a 1.5 V supply. This circuit uses transmission lines to reduce total chip size instead of real bulky inductors for input and output impedance matching. The layout techniques for RF are used to reduce parasitic capacitance at the band of 24 GHz. The proposed sensor has low cost and low power dissipation since it is realized using CMOS process. The proposed sensor showed the lowest noise figure of 2.9 dB and the highest conversion gain of 40.2 dB as compared to recently reported research results. It also showed small chip size of 0.56 mm2, low power dissipation of 39.5 mW, and wide operating temperature range of −40 to +125°C.

  14. Evaluation of relative radiometric correction techniques on Landsat 8 OLI sensor data

    Science.gov (United States)

    Novelli, Antonio; Caradonna, Grazia; Tarantino, Eufemia

    2016-08-01

    The quality of information derived from processed remotely sensed data may depend upon many factors, mostly related to the extent data acquisition is influenced by atmospheric conditions, topographic effects, sun angle and so on. The goal of radiometric corrections is to reduce such effects in order enhance the performance of change detection analysis. There are two approaches to radiometric correction: absolute and relative calibrations. Due to the large amount of free data products available, absolute radiometric calibration techniques may be time consuming and financially expensive because of the necessary inputs for absolute calibration models (often these data are not available and can be difficult to obtain). The relative approach to radiometric correction, known as relative radiometric normalization, is preferred with some research topics because no in situ ancillary data, at the time of satellite overpasses, are required. In this study we evaluated three well known relative radiometric correction techniques using two Landsat 8 - OLI scenes over a subset area of the Apulia Region (southern Italy): the IR-MAD (Iteratively Reweighted Multivariate Alteration Detection), the HM (Histogram Matching) and the DOS (Dark Object Subtraction). IR-MAD results were statistically assessed within a territory with an extremely heterogeneous landscape and all computations performed in a Matlab environment. The panchromatic and thermal bands were excluded from the comparisons.

  15. Detection scheme for a partially occluded pedestrian based on occluded depth in lidar-radar sensor fusion

    Science.gov (United States)

    Kwon, Seong Kyung; Hyun, Eugin; Lee, Jin-Hee; Lee, Jonghun; Son, Sang Hyuk

    2017-11-01

    Object detections are critical technologies for the safety of pedestrians and drivers in autonomous vehicles. Above all, occluded pedestrian detection is still a challenging topic. We propose a new detection scheme for occluded pedestrian detection by means of lidar-radar sensor fusion. In the proposed method, the lidar and radar regions of interest (RoIs) have been selected based on the respective sensor measurement. Occluded depth is a new means to determine whether an occluded target exists or not. The occluded depth is a region projected out by expanding the longitudinal distance with maintaining the angle formed by the outermost two end points of the lidar RoI. The occlusion RoI is the overlapped region made by superimposing the radar RoI and the occluded depth. The object within the occlusion RoI is detected by the radar measurement information and the occluded object is estimated as a pedestrian based on human Doppler distribution. Additionally, various experiments are performed in detecting a partially occluded pedestrian in outdoor as well as indoor environments. According to experimental results, the proposed sensor fusion scheme has much better detection performance compared to the case without our proposed method.

  16. Detection and Tracking of Road Barrier Based on Radar and Vision Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Taeryun Kim

    2016-01-01

    Full Text Available The detection and tracking algorithms of road barrier including tunnel and guardrail are proposed to enhance performance and reliability for driver assistance systems. Although the road barrier is one of the key features to determine a safe drivable area, it may be recognized incorrectly due to performance degradation of commercial sensors such as radar and monocular camera. Two frequent cases among many challenging problems are considered with the commercial sensors. The first case is that few tracks of radar to road barrier are detected due to material type of road barrier. The second one is inaccuracy of relative lateral position by radar, thus resulting in large variance of distance between a vehicle and road barrier. To overcome the problems, the detection and estimation algorithms of tracks corresponding to road barrier are proposed. Then, the tracking algorithm based on a probabilistic data association filter (PDAF is used to reduce variation of lateral distance between vehicle and road barrier. Finally, the proposed algorithms are validated via field test data and their performance is compared with that of road barrier measured by lidar.

  17. Radiometric calibration of a polarization-sensitive sensor

    International Nuclear Information System (INIS)

    Ahmad, S.P.; Markham, B.L.

    1992-01-01

    The radiometric accuracy of a sensor is adversely affected by scene polarization if its optical system is sensitive to polarization. Tests performed on the reflective bands of the NS001 Thematic Mapper simulator, an aircraft multispectral scanner, show that it is very sensitive to the polarization state of the incoming radiations. For 100 percent linearly polarized light, errors in the measured intensity vary from -40 to +40 percent, depending on the scan angle and spectral band. To estimate polarization-induced errors in the intensity measured at aircraft level, the intensity and polarization of the atmospheric radiances were simulated using a realistic earth-atmosphere radiative transfer model. For the polarization of atmospheric radiances in the solar meridian plane over a vegetated target, intensity errors may range from -10 to + 10 percent. The polarization-induced errors are highest in the shortest NS001 spectral band (0.450-0.525 microns) because of large atmospheric polarizations contributed by Rayleigh particles and small diluting effects caused by the small contributions of weakly polarized radiations coming from aerosols and the surface. Depending on the illumination and view angles, the errors in derived surface reflectance due to the radiance errors can be very large. In particular, for large off-nadir view angles in the forward scattered direction when the sun is low, the relative errors in the derived surface reflectance can be as large as 4 to 5 times the relative error in the radiances. Polarization sensitivity errors cannot be neglected for the shorter wavelengths when the surface reflectance contribution to atmospheric radiances is very small. 40 refs

  18. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time

    Science.gov (United States)

    Chen, X.; Vierling, Lee; Deering, D.

    2005-01-01

    Satellite data offer unrivaled utility in monitoring and quantifying large scale land cover change over time. Radiometric consistency among collocated multi-temporal imagery is difficult to maintain, however, due to variations in sensor characteristics, atmospheric conditions, solar angle, and sensor view angle that can obscure surface change detection. To detect accurate landscape change using multi-temporal images, we developed a variation of the pseudoinvariant feature (PIF) normalization scheme: the temporally invariant cluster (TIC) method. Image data were acquired on June 9, 1990 (Landsat 4), June 20, 2000 (Landsat 7), and August 26, 2001 (Landsat 7) to analyze boreal forests near the Siberian city of Krasnoyarsk using the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and reduced simple ratio (RSR). The temporally invariant cluster (TIC) centers were identified via a point density map of collocated pixel VIs from the base image and the target image, and a normalization regression line was created to intersect all TIC centers. Target image VI values were then recalculated using the regression function so that these two images could be compared using the resulting common radiometric scale. We found that EVI was very indicative of vegetation structure because of its sensitivity to shadowing effects and could thus be used to separate conifer forests from deciduous forests and grass/crop lands. Conversely, because NDVI reduced the radiometric influence of shadow, it did not allow for distinctions among these vegetation types. After normalization, correlations of NDVI and EVI with forest leaf area index (LAI) field measurements combined for 2000 and 2001 were significantly improved; the r 2 values in these regressions rose from 0.49 to 0.69 and from 0.46 to 0.61, respectively. An EVI "cancellation effect" where EVI was positively related to understory greenness but negatively related to forest canopy coverage was evident across a

  19. RADIOMETRIC BLOCK ADJUSMENT AND DIGITAL RADIOMETRIC MODEL GENERATION

    Directory of Open Access Journals (Sweden)

    A. Pros

    2013-05-01

    Full Text Available In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF. In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.

  20. Incorporating Satellite Precipitation Estimates into a Radar-Gauge Multi-Sensor Precipitation Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Yuxiang He

    2018-01-01

    Full Text Available This paper presents a new and enhanced fusion module for the Multi-Sensor Precipitation Estimator (MPE that would objectively blend real-time satellite quantitative precipitation estimates (SQPE with radar and gauge estimates. This module consists of a preprocessor that mitigates systematic bias in SQPE, and a two-way blending routine that statistically fuses adjusted SQPE with radar estimates. The preprocessor not only corrects systematic bias in SQPE, but also improves the spatial distribution of precipitation based on SQPE and makes it closely resemble that of radar-based observations. It uses a more sophisticated radar-satellite merging technique to blend preprocessed datasets, and provides a better overall QPE product. The performance of the new satellite-radar-gauge blending module is assessed using independent rain gauge data over a five-year period between 2003–2007, and the assessment evaluates the accuracy of newly developed satellite-radar-gauge (SRG blended products versus that of radar-gauge products (which represents MPE algorithm currently used in the NWS (National Weather Service operations over two regions: (I Inside radar effective coverage and (II immediately outside radar coverage. The outcomes of the evaluation indicate (a ingest of SQPE over areas within effective radar coverage improve the quality of QPE by mitigating the errors in radar estimates in region I; and (b blending of radar, gauge, and satellite estimates over region II leads to reduction of errors relative to bias-corrected SQPE. In addition, the new module alleviates the discontinuities along the boundaries of radar effective coverage otherwise seen when SQPE is used directly to fill the areas outside of effective radar coverage.

  1. Empirical Radiometric Normalization of Road Points from Terrestrial Mobile Lidar System

    Directory of Open Access Journals (Sweden)

    Tee-Ann Teo

    2015-05-01

    Full Text Available Lidar data provide both geometric and radiometric information. Radiometric information is influenced by sensor and target factors and should be calibrated to obtain consistent energy responses. The radiometric correction of airborne lidar system (ALS converts the amplitude into a backscatter cross-section with physical meaning value by applying a model-driven approach. The radiometric correction of terrestrial mobile lidar system (MLS is a challenging task because it does not completely follow the inverse square range function at near-range. This study proposed a radiometric normalization workflow for MLS using a data-driven approach. The scope of this study is to normalize amplitude of road points for road surface classification, assuming that road points from different scanners or strips should have similar responses in overlapped areas. The normalization parameters for range effect were obtained from crossroads. The experiment showed that the amplitude difference between scanners and strips decreased after radiometric normalization and improved the accuracy of road surface classification.

  2. Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera

    Science.gov (United States)

    Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.

    2017-10-01

    Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.

  3. Impact of Soil Water Content on Landmine Detection Using Radar and Thermal Infrared Sensors

    National Research Council Canada - National Science Library

    Hong, Sung-ho

    2001-01-01

    .... The most important of these is water content since it directly influences the three other properties in this study, the ground penetrating radar and thermal infrared sensors were used to identify non...

  4. Radar operation in a hostile electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  5. Radiometric inter-sensor cross-calibration uncertainty using a traceable high accuracy reference hyperspectral imager

    Science.gov (United States)

    Gorroño, Javier; Banks, Andrew C.; Fox, Nigel P.; Underwood, Craig

    2017-08-01

    Optical earth observation (EO) satellite sensors generally suffer from drifts and biases relative to their pre-launch calibration, caused by launch and/or time in the space environment. This places a severe limitation on the fundamental reliability and accuracy that can be assigned to satellite derived information, and is particularly critical for long time base studies for climate change and enabling interoperability and Analysis Ready Data. The proposed TRUTHS (Traceable Radiometry Underpinning Terrestrial and Helio-Studies) mission is explicitly designed to address this issue through re-calibrating itself directly to a primary standard of the international system of units (SI) in-orbit and then through the extension of this SI-traceability to other sensors through in-flight cross-calibration using a selection of Committee on Earth Observation Satellites (CEOS) recommended test sites. Where the characteristics of the sensor under test allows, this will result in a significant improvement in accuracy. This paper describes a set of tools, algorithms and methodologies that have been developed and used in order to estimate the radiometric uncertainty achievable for an indicative target sensor through in-flight cross-calibration using a well-calibrated hyperspectral SI-traceable reference sensor with observational characteristics such as TRUTHS. In this study, Multi-Spectral Imager (MSI) of Sentinel-2 and Landsat-8 Operational Land Imager (OLI) is evaluated as an example, however the analysis is readily translatable to larger-footprint sensors such as Sentinel-3 Ocean and Land Colour Instrument (OLCI) and Visible Infrared Imaging Radiometer Suite (VIIRS). This study considers the criticality of the instrumental and observational characteristics on pixel level reflectance factors, within a defined spatial region of interest (ROI) within the target site. It quantifies the main uncertainty contributors in the spectral, spatial, and temporal domains. The resultant tool

  6. Comments on airborne ISR radar utilization

    Science.gov (United States)

    Doerry, A. W.

    2016-05-01

    A sensor/payload operator for modern multi-sensor multi-mode Intelligence, Surveillance, and Reconnaissance (ISR) platforms is often confronted with a plethora of options in sensors and sensor modes. This often leads an over-worked operator to down-select to favorite sensors and modes; for example a justifiably favorite Full Motion Video (FMV) sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. At best, sensors might be used in a serial monogamous fashion with some cross-cueing. The challenge is then to increase the utilization of the radar modes in a manner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into `super-modes'.

  7. Evaluation of the Radar Stage Sensor manufactured by Forest Technology Systems—Results of laboratory and field testing

    Science.gov (United States)

    Kunkle, Gerald A.

    2018-01-31

    Two identical Radar Stage Sensors from Forest Technology Systems were evaluated to determine if they are suitable for U.S. Geological Survey (USGS) hydrologic data collection. The sensors were evaluated in laboratory conditions to evaluate the distance accuracy of the sensor over the manufacturer’s specified operating temperatures and distance to water ranges. Laboratory results were compared to the manufacturer’s accuracy specification of ±0.007 foot (ft) and the USGS Office of Surface Water (OSW) policy requirement that water-level sensors have a measurement uncertainty of no more than 0.01 ft or 0.20 percent of the indicated reading. Both of the sensors tested were within the OSW policy requirement in both laboratory tests and within the manufacturer’s specification in the distance to water test over tested distances from 3 to 15 ft. In the temperature chamber test, both sensors were within the manufacturer’s specification for more than 90 percent of the data points collected over a temperature range of –40 to +60 degrees Celsius at a fixed distance of 8 ft. One sensor was subjected to an SDI-12 communication test, which it passed. A field test was conducted on one sensor at a USGS field site near Landon, Mississippi, from February 5 to March 29, 2016. Water-level measurements made by the radar during the field test were in agreement with those made by the Sutron Accubar Constant Flow Bubble Gauge.Upon the manufacturer’s release of updated firmware version 1.09, additional SDI-12 and temperature testing was performed to evaluate added SDI-12 functions and verify that performance was unaffected by the update. At this time, an Axiom data logger is required to perform a firmware update on this sensor. The data confirmed the results of the original test. Based on the test results, the Radar Stage Sensor is a suitable choice for USGS hydrologic data collection.

  8. JPSS-1 VIIRS Pre-Launch Radiometric Performance

    Science.gov (United States)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Jack; Lee, Shihyan; Schwarting, Tom

    2015-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 kilometers) cross-track scanning radiometer with spatial resolutions of 370 and 740 meters at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 microns to 12.01 microns]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  9. Testing and use of radar water level sensors by the U.S. Geological Survey

    Science.gov (United States)

    Fulford, Janice M.

    2016-01-01

    The United States Geological Survey uses water-level (or stage) measurements to compute streamflow at over 8000 stream gaging stations located throughout the United States (waterwatch.usgs.gov, 2016). Streamflow (or discharge) is computed at five minute to hourly intervals from a relationship between water level and discharge that is uniquely determined for each station. The discharges are posted hourly to WaterWatch (waterwatch. usgs.gov) and are used by water managers to issue flood warnings and manage water supply and by other users of water information to make decisions. The accuracy of the water-level measurement is vital to the accuracy of the computed discharge. Because of the importance of water-level measurements, USGS has an accuracy policy of 0.02 ft or 0.2 percent of reading (whichever is larger) (Sauer and Turnipseed, 2010). Older technologies, such as float and shaft-encoder systems, bubbler systems and submersible pressure sensors, provide the needed accuracy but often require extensive construction to install and are prone to malfunctioning and damage from floating debris and sediment. No stilling wells or orifice lines need to be constructed for radar installations. During the last decade testing by the USGS Hydrologic Instrumentation Facility(HIF) found that radar water-level sensors can provide the needed accuracy for water-level measurements and because the sensor can be easily attached to bridges, reduce the construction required for installation. Additionally, the non-contact sensing of water level minimizes or eliminates damage and fouling from floating debris and sediment. This article is a brief summary of the testing efforts by the USGS HIF and field experiences with models of radar water-level sensors in streamflow measurement applications. Any use of trade names in this article is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  10. Technical Description of Radar and Optical Sensors Contributing to Joint UK-Australian Satellite Tracking, Data-fusion and Cueing Experiment

    Science.gov (United States)

    Eastment, J.; Ladd, D.; Donnelly, P.; Ash, A.; Harwood, N.; Ritchie, I.; Smith, C.; Bennett, J.; Rutten, M.; Gordon, N.

    2014-09-01

    DSTL, DSTO, EOS and STFC have recently participated in a campaign of co-ordinated observations with both radar and optical sensors in order to demonstrate and to refine methodologies for orbit determination, data fusion and cross-sensor cueing. The experimental programme is described in detail in the companion paper by Harwood et al. At the STFC Chilbolton Observatory in Southern England, an S-band radar on a 25 m diameter fully-steerable dish antenna was used to measure object range and radar cross-section. At the EOS Space Systems facility on Mount Stromlo, near Canberra, Australia, an optical system comprising a 2 m alt / az observatory, with Coude path laser tracking at 400W power, was used to acquire, lock and laser track the cued objects, providing accurate orbit determinations for each. DSTO, located at Edinburgh, Australia, operated an optical system consisting of a small commercial telescope and mount, measuring the direction to the objects. Observation times were limited to the evening solar terminator period. Data from these systems was processed independently, using DSTL-developed and DSTO / EOS-developed algorithms, to perform orbit determination and to cross-cue: (i) the radar, based on the optical measurements; (ii) the optical system, based on the radar measurements; and (iii) the radar, using its own prior observations (self-cueing). In some cases, TLEs were used to initialise the orbit determination process; in other cases, the cues were derived entirely from sensor data. In all 3 scenarios, positive results were obtained for a variety of satellites in low earth orbits, demonstrating the feasibility of the different cue generation techniques. The purpose of this paper is to describe the technical characteristics of the radar and optical systems used, the modes of operation employed to acquire the observations, and details of the parameters measured and the data formats.

  11. Detecting payload performance based on relative radiometric characteristic: case of the optical sensors

    Science.gov (United States)

    Han, Jie; Li, Shengyang; Zhang, Tao; Qin, Bangyong

    2016-10-01

    In this paper, we propose a novel algorithm for accurately estimating the degree of radiometric non-uniformity in remote sensing images. The algorithm was tested on high-quality images and heavily striping images, and quantitative analyses were conducted to evaluate the performance for each band by measuring the radiometric non-uniformity of the images. The results demonstrated that the proposed algorithm exhibits high accuracy and stability compared with traditional algorithms. The radiometric performance of TianGong-1 short-wave infrared images was calculated using this new method, and it was highly correlated with the solar angle, pitch angle and refrigerator thermal according to the Apriori algorithm. Based on these results, we have proposed a strategy for restricting increases in striping.

  12. German Radar Observation Shuttle Experiment (ROSE)

    Science.gov (United States)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  13. The rapid terrain visualization interferometric synthetic aperture radar sensor

    Science.gov (United States)

    Graham, Robert H.; Bickel, Douglas L.; Hensley, William H.

    2003-11-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  14. A Maximum Likelihood Approach to Determine Sensor Radiometric Response Coefficients for NPP VIIRS Reflective Solar Bands

    Science.gov (United States)

    Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong

    2011-01-01

    Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.

  15. Radiometric Correction of Multitemporal Hyperspectral Uas Image Mosaics of Seedling Stands

    Science.gov (United States)

    Markelin, L.; Honkavaara, E.; Näsi, R.; Viljanen, N.; Rosnell, T.; Hakala, T.; Vastaranta, M.; Koivisto, T.; Holopainen, M.

    2017-10-01

    Novel miniaturized multi- and hyperspectral imaging sensors on board of unmanned aerial vehicles have recently shown great potential in various environmental monitoring and measuring tasks such as precision agriculture and forest management. These systems can be used to collect dense 3D point clouds and spectral information over small areas such as single forest stands or sample plots. Accurate radiometric processing and atmospheric correction is required when data sets from different dates and sensors, collected in varying illumination conditions, are combined. Performance of novel radiometric block adjustment method, developed at Finnish Geospatial Research Institute, is evaluated with multitemporal hyperspectral data set of seedling stands collected during spring and summer 2016. Illumination conditions during campaigns varied from bright to overcast. We use two different methods to produce homogenous image mosaics and hyperspectral point clouds: image-wise relative correction and image-wise relative correction with BRDF. Radiometric datasets are converted to reflectance using reference panels and changes in reflectance spectra is analysed. Tested methods improved image mosaic homogeneity by 5 % to 25 %. Results show that the evaluated method can produce consistent reflectance mosaics and reflectance spectra shape between different areas and dates.

  16. RADIOMETRIC CORRECTION OF MULTITEMPORAL HYPERSPECTRAL UAS IMAGE MOSAICS OF SEEDLING STANDS

    Directory of Open Access Journals (Sweden)

    L. Markelin

    2017-10-01

    Full Text Available Novel miniaturized multi- and hyperspectral imaging sensors on board of unmanned aerial vehicles have recently shown great potential in various environmental monitoring and measuring tasks such as precision agriculture and forest management. These systems can be used to collect dense 3D point clouds and spectral information over small areas such as single forest stands or sample plots. Accurate radiometric processing and atmospheric correction is required when data sets from different dates and sensors, collected in varying illumination conditions, are combined. Performance of novel radiometric block adjustment method, developed at Finnish Geospatial Research Institute, is evaluated with multitemporal hyperspectral data set of seedling stands collected during spring and summer 2016. Illumination conditions during campaigns varied from bright to overcast. We use two different methods to produce homogenous image mosaics and hyperspectral point clouds: image-wise relative correction and image-wise relative correction with BRDF. Radiometric datasets are converted to reflectance using reference panels and changes in reflectance spectra is analysed. Tested methods improved image mosaic homogeneity by 5 % to 25 %. Results show that the evaluated method can produce consistent reflectance mosaics and reflectance spectra shape between different areas and dates.

  17. FM-CW radar sensors for vital signs and motor activity monitoring

    Directory of Open Access Journals (Sweden)

    Octavian Adrian Postolache

    2011-12-01

    Full Text Available The article summarizes on-going research on vital signs and motor activity monitoring based on radar sensors embedded in wheelchairs, walkers and crutches for in home rehabilitation. Embedded sensors, conditioning circuits, real-time platforms that perform data acquisition, auto-identification, primary data processing and data communication contribute to convert daily used objects in home rehabilitation into smart objects that can be accessed by caregivers during the training sessions through human–machine interfaces expressed by the new generation of smart phones or tablet computers running Android OS or iOS operating systems. The system enables the management of patients in home rehabilitation by providing more accurate and up-to-date information using pervasive computing of vital signs and motor activity records.

  18. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  19. Characterization of the Sonoran desert as a radiometric calibration target for Earth observing sensors

    Science.gov (United States)

    Angal, Amit; Chander, Gyanesh; Xiong, Xiaoxiong; Choi, Tae-young; Wu, Aisheng

    2011-01-01

    To provide highly accurate quantitative measurements of the Earth's surface, a comprehensive calibration and validation of the satellite sensors is required. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) Characterization Support Team, in collaboration with United States Geological Survey, Earth Resources Observation and Science Center, has previously demonstrated the use of African desert sites to monitor the long-term calibration stability of Terra MODIS and Landsat 7 (L7) Enhanced Thematic Mapper plus (ETM+). The current study focuses on evaluating the suitability of the Sonoran Desert test site for post-launch long-term radiometric calibration as well as cross-calibration purposes. Due to the lack of historical and on-going in situ ground measurements, the Sonoran Desert is not usually used for absolute calibration. An in-depth evaluation (spatial, temporal, and spectral stability) of this site using well calibrated L7 ETM+ measurements and local climatology data has been performed. The Sonoran Desert site produced spatial variability of about 3 to 5% in the reflective solar regions, and the temporal variations of the site after correction for view-geometry impacts were generally around 3%. The results demonstrate that, barring the impacts due to occasional precipitation, the Sonoran Desert site can be effectively used for cross-calibration and long-term stability monitoring of satellite sensors, thus, providing a good test site in the western hemisphere.

  20. Improving ISR Radar Utilization (How I quit blaming the user and made the radar easier to use).

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-08-01

    In modern multi - sensor multi - mode Intelligence, Surveillance, and Reconnaissance ( ISR ) platforms, the plethora of options available to a sensor/payload operator are quite large, leading to an over - worked operator often down - selecting to favorite sensors an d modes. For example, Full Motion Video (FMV) is justifiably a favorite sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. The challenge is then to increase the utilization of the radar modes in a man ner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into 'super - modes'. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia Natio nal Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL850 00.

  1. Radiometric Correction of Close-Range Spectral Image Blocks Captured Using an Unmanned Aerial Vehicle with a Radiometric Block Adjustment

    Directory of Open Access Journals (Sweden)

    Eija Honkavaara

    2018-02-01

    Full Text Available Unmanned airborne vehicles (UAV equipped with novel, miniaturized, 2D frame format hyper- and multispectral cameras make it possible to conduct remote sensing measurements cost-efficiently, with greater accuracy and detail. In the mapping process, the area of interest is covered by multiple, overlapping, small-format 2D images, which provide redundant information about the object. Radiometric correction of spectral image data is important for eliminating any external disturbance from the captured data. Corrections should include sensor, atmosphere and view/illumination geometry (bidirectional reflectance distribution function—BRDF related disturbances. An additional complication is that UAV remote sensing campaigns are often carried out under difficult conditions, with varying illumination conditions and cloudiness. We have developed a global optimization approach for the radiometric correction of UAV image blocks, a radiometric block adjustment. The objective of this study was to implement and assess a combined adjustment approach, including comprehensive consideration of weighting of various observations. An empirical study was carried out using imagery captured using a hyperspectral 2D frame format camera of winter wheat crops. The dataset included four separate flights captured during a 2.5 h time period under sunny weather conditions. As outputs, we calculated orthophoto mosaics using the most nadir images and sampled multiple-view hyperspectral spectra for vegetation sample points utilizing multiple images in the dataset. The method provided an automated tool for radiometric correction, compensating for efficiently radiometric disturbances in the images. The global homogeneity factor improved from 12–16% to 4–6% with the corrections, and a reduction in disturbances could be observed in the spectra of the object points sampled from multiple overlapping images. Residuals in the grey and white reflectance panels were less than 5% of the

  2. A Vehicular Mobile Standard Instrument for Field Verification of Traffic Speed Meters Based on Dual-Antenna Doppler Radar Sensor.

    Science.gov (United States)

    Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue

    2018-04-05

    Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument.

  3. Radiosonde pressure sensor performance - Evaluation using tracking radars

    Science.gov (United States)

    Parsons, C. L.; Norcross, G. A.; Brooks, R. L.

    1984-01-01

    The standard balloon-borne radiosonde employed for synoptic meteorology provides vertical profiles of temperature, pressure, and humidity as a function of elapsed time. These parameters are used in the hypsometric equation to calculate the geopotential altitude at each sampling point during the balloon's flight. It is important that the vertical location information be accurate. The present investigation was conducted with the objective to evaluate the altitude determination accuracy of the standard radiosonde throughout the entire balloon profile. The tests included two other commercially available pressure sensors to see if they could provide improved accuracy in the stratosphere. The pressure-measuring performance of standard baroswitches, premium baroswitches, and hypsometers in balloon-borne sondes was correlated with tracking radars. It was found that the standard and premium baroswitches perform well up to about 25 km altitude, while hypsometers provide more reliable data above 25 km.

  4. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients

    Science.gov (United States)

    Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z.

    2014-11-01

    Nowadays remote sensing plays a very important role in many different study fields, i.e. environmental studies, hydrology, mineralogy, ecosystem studies, etc. One of the key areas of remote sensing applications is water quality monitoring. Understanding and monitoring of the water quality parameters and detecting different water contaminants is an important issue in water management and protection of whole environment and especially the water ecosystem. There are many remote sensing methods to monitor water quality and detect water pollutants. One of the most widely used method for substance detection with remote sensing techniques is based on usage of spectral reflectance coefficients. They are usually acquired using discrete methods such as spectrometric measurements. These however can be very time consuming, therefore image-based methods are used more and more often. In order to work out the proper methodology of obtaining spectral reflectance coefficients from hyperspectral and multispectral images, it is necessary to verify the impact of cameras radiometric resolution on the accuracy of determination of them. This paper presents laboratory experiments that were conducted using two monochromatic XEVA video sensors (400-1700 nm spectral data registration) with two different radiometric resolutions (12 and 14 bits). In view of determining spectral characteristics from images, the research team used set of interferometric filters. All data collected with multispectral digital video cameras were compared with spectral reflectance coefficients obtained with spectroradiometer. The objective of this research is to find the impact of cameras radiometric resolution on reflectance values in chosen wavelength. The main topic of this study is the analysis of accuracy of spectral coefficients from sensors with different radiometric resolution. By comparing values collected from images acquired with XEVA sensors and with the curves obtained with spectroradiometer it

  5. A 24-GHz Front-End Integrated on a Multilayer Cellulose-Based Substrate for Doppler Radar Sensors

    Directory of Open Access Journals (Sweden)

    Federico Alimenti

    2017-09-01

    Full Text Available This paper presents a miniaturized Doppler radar that can be used as a motion sensor for low-cost Internet of things (IoT applications. For the first time, a radar front-end and its antenna are integrated on a multilayer cellulose-based substrate, built-up by alternating paper, glue and metal layers. The circuit exploits a distributed microstrip structure that is realized using a copper adhesive laminate, so as to obtain a low-loss conductor. The radar operates at 24 GHz and transmits 5 mW of power. The antenna has a gain of 7.4 dBi and features a half power beam-width of 48 degrees. The sensor, that is just the size of a stamp, is able to detect the movement of a walking person up to 10 m in distance, while a minimum speed of 50 mm/s up to 3 m is clearly measured. Beyond this specific result, the present paper demonstrates that the attractive features of cellulose, including ultra-low cost and eco-friendliness (i.e., recyclability and biodegradability, can even be exploited for the realization of future high-frequency hardware. This opens opens the door to the implementation on cellulose of devices and systems which make up the “sensing layer” at the base of the IoT ecosystem.

  6. Radar coordination and resource management in a distributed sensor network using emergent control

    Science.gov (United States)

    Weir, B. S.; Sokol, T. M.

    2009-05-01

    As the list of anti-air warfare and ballistic missile defense missions grows, there is an increasing need to coordinate and optimize usage of radar resources across the netted force. Early attempts at this optimization involved top-down control mechanisms whereby sensors accept resource tasking orders from networked tracking elements. These approaches rely heavily on uncertain knowledge of sensor constraints and capabilities. Furthermore, advanced sensor systems may support self-defense missions of the host platform and are therefore unable to relinquish control to an external function. To surmount these issues, the use of bottom-up emergent control techniques is proposed. The information necessary to make quality, network-wide resource allocations is readily available to sensor nodes with access to a netted track picture. By assessing resource priorities relative to the network (versus local) track picture, sensors can understand the contribution of their resources to the netted force. This allows the sensors to apply resources where most needed and remove waste. Furthermore, simple local rules for resource usage, when properly constructed, allow sensors to obtain a globally optimal resource allocation without direct coordination (emergence). These results are robust to partial implementation (i.e., not all nodes upgraded at once) and failures on individual nodes (whether from casualty or reallocation to other sensor missions), and they leave resource control decisions in the hands of the sensor systems instead of an external function. This paper presents independent research and development work on emergent control of sensor resources and the impact to resource allocation and tracking performance.

  7. Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System

    Directory of Open Access Journals (Sweden)

    Susana Del Pozo

    2014-02-01

    Full Text Available Combinations of unmanned aerial platforms and multispectral sensors are considered low-cost tools for detailed spatial and temporal studies addressing spectral signatures, opening a broad range of applications in remote sensing. Thus, a key step in this process is knowledge of multi-spectral sensor calibration parameters in order to identify the physical variables collected by the sensor. This paper discusses the radiometric calibration process by means of a vicarious method applied to a high-spatial resolution unmanned flight using low-cost artificial and natural covers as control and check surfaces, respectively.

  8. The Importance of Post-Launch, On-Orbit Absolute Radiometric Calibration for Remote Sensing Applications

    Science.gov (United States)

    Kuester, M. A.

    2015-12-01

    Remote sensing is a powerful tool for monitoring changes on the surface of the Earth at a local or global scale. The use of data sets from different sensors across many platforms, or even a single sensor over time, can bring a wealth of information when exploring anthropogenic changes to the environment. For example, variations in crop yield and health for a specific region can be detected by observing changes in the spectral signature of the particular species under study. However, changes in the atmosphere, sun illumination and viewing geometries during image capture can result in inconsistent image data, hindering automated information extraction. Additionally, an incorrect spectral radiometric calibration will lead to false or misleading results. It is therefore critical that the data being used are normalized and calibrated on a regular basis to ensure that physically derived variables are as close to truth as is possible. Although most earth observing sensors are well-calibrated in a laboratory prior to launch, a change in the radiometric response of the system is inevitable due to thermal, mechanical or electrical effects caused during the rigors of launch or by the space environment itself. Outgassing and exposure to ultra-violet radiation will also have an effect on the sensor's filter responses. Pre-launch lamps and other laboratory calibration systems can also fall short in representing the actual output of the Sun. A presentation of the differences in the results of some example cases (e.g. geology, agriculture) derived for science variables using pre- and post-launch calibration will be presented using DigitalGlobe's WorldView-3 super spectral sensor, with bands in the visible and near infrared, as well as in the shortwave infrared. Important defects caused by an incomplete (i.e. pre-launch only) calibration will be discussed using validation data where available. In addition, the benefits of using a well-validated surface reflectance product will be

  9. THE EUROSDR PROJECT "RADIOMETRIC ASPECTS OF DIGITAL PHOTOGRAMMETRIC IMAGES" – RESULTS OF THE EMPIRICAL PHASE

    Directory of Open Access Journals (Sweden)

    E. Honkavaara

    2012-09-01

    Full Text Available This article presents the empirical research carried out in the context of the multi-site EuroSDR project "Radiometric aspects of digital photogrammetric images" and provides highlights of the results. The investigations have considered the vicarious radiometric and spatial resolution validation and calibration of the sensor system, radiometric processing of the image blocks either by performing relative radiometric block equalization or into absolutely reflectance calibrated products, and finally aspects of practical applications on NDVI layer generation and tree species classification. The data sets were provided by Leica Geosystems ADS40 and Intergraph DMC and the participants represented stakeholders in National Mapping Authorities, software development and research. The investigations proved the stability and quality of evaluated imaging systems with respect to radiometry and optical system. The first new-generation methods for reflectance calibration and equalization of photogrammetric image block data provided promising accuracy and were also functional from the productivity and usability points of view. The reflectance calibration methods provided up to 5% accuracy without any ground reference. Application oriented results indicated that automatic interpretation methods will benefit from the optimal use of radiometrically accurate multi-view photogrammetric imagery.

  10. Low-Cost Mini Radar: Design Prototyping and Tests

    Directory of Open Access Journals (Sweden)

    Dario Tarchi

    2017-01-01

    Full Text Available Radar systems are largely employed for surveillance of wide and remote areas; the recent advent of drones gives the opportunity to exploit radar sensors on board of unmanned aerial platforms. Nevertheless, whereas drone radars are currently available for military applications, their employment in the civilian domain is still limited. The present research focuses on design, prototyping, and testing of an agile, low-cost, mini radar system, to be carried on board of Remotely Piloted Aircraft (RPAs or tethered aerostats. In particular, the paper faces the challenge to integrate the in-house developed radar sensor with a low-cost navigation board, which is used to estimate attitude and positioning data. In fact, a suitable synchronization between radar and navigation data is essential to properly reconstruct the radar picture whenever the platform is moving or the radar is scanning different azimuthal sectors. Preliminary results, relative to tests conducted in preoperational conditions, are provided and exploited to assert the suitable consistency of the obtained radar pictures. From the results, there is a high consistency between the radar images and the picture of the current environment emerges; finally, the comparison of radar images obtained in different scans shows the stability of the platform.

  11. Millimeter-Wave Radar Field Measurements and Inversion of Cloud Parameters for the 1999 Mt. Washington Icing Sensors Project

    Science.gov (United States)

    Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)

    2001-01-01

    The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.

  12. Geometric Calibration and Radiometric Correction of LiDAR Data and Their Impact on the Quality of Derived Products

    Directory of Open Access Journals (Sweden)

    Wai-Yeung Yan

    2011-09-01

    Full Text Available LiDAR (Light Detection And Ranging systems are capable of providing 3D positional and spectral information (in the utilized spectrum range of the mapped surface. Due to systematic errors in the system parameters and measurements, LiDAR systems require geometric calibration and radiometric correction of the intensity data in order to maximize the benefit from the collected positional and spectral information. This paper presents a practical approach for the geometric calibration of LiDAR systems and radiometric correction of collected intensity data while investigating their impact on the quality of the derived products. The proposed approach includes the use of a quasi-rigorous geometric calibration and the radar equation for the radiometric correction of intensity data. The proposed quasi-rigorous calibration procedure requires time-tagged point cloud and trajectory position data, which are available to most of the data users. The paper presents a methodology for evaluating the impact of the geometric calibration on the relative and absolute accuracy of the LiDAR point cloud. Furthermore, the impact of the geometric calibration and radiometric correction on land cover classification accuracy is investigated. The feasibility of the proposed methods and their impact on the derived products are demonstrated through experimental results using real data.

  13. An interferometric radar sensor for monitoring the vibrations of structures at short ranges

    Directory of Open Access Journals (Sweden)

    Luzi Guido

    2018-01-01

    Full Text Available The Real-Aperture-Radar (RAR interferometry technique consolidated in the last decade as an operational tool for the monitoring of large civil engineering structures as bridges, towers, and buildings. In literature, experimental campaigns collected through a well-known commercial equipment have been widely documented, while the cases where different types of sensors have been tested are a few. On the bases of some experimental tests, a new sensor working at high frequency, providing some improved performances, is here discussed. The core of the proposed system is an off-the-shelf, linear frequency modulated continuous wave device. The development of this apparatus is aimed at achieving a proof-of-concept, tackling operative aspects related to the development of a low cost and reliable system. The capability to detect the natural frequencies of a lightpole has been verified; comparing the results of the proposed sensor with those ones obtained through a commercial system based on the same technique, a more detailed description of the vibrating structure has been achieved. The results of this investigation confirmed that the development of sensors working at higher frequencies, although deserving deeper studies, is very promising and could open new applications demanding higher spatial resolutions at close ranges.

  14. Phase coded, micro-power impulse radar motion sensor

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ''IF homodyne'' receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs

  15. Multiscale radar mapping of surface melt over mountain glaciers in High Mountain Asia

    Science.gov (United States)

    Steiner, N.; McDonald, K. C.

    2017-12-01

    Glacier melt dominates input for many hydrologic systems in the Himalayan Hindukush region that feed rivers that are critical for downstream ecosystems and hydropower generation in this highly populated area. Deviation in seasonal surface melt timing and duration with a changing climate has the potential to affect up to a billion people on the Indian Subcontinent. Satellite-borne microwave remote sensing has unique capabilities that allow monitoring of numerous landscape processes associated with snowmelt and freeze/thaw state, without many of the limitations in optical-infrared sensors such as solar illumination or atmospheric conditions. The onset of regional freeze/thaw and surface melting transitions determine important surface hydrologic variables like river discharge. Theses regional events are abrupt therefore difficult to observe with low-frequency observation sensors. Recently launched synthetic aperture radar (SAR) onboard the Sentinel-1 A and B satellites from the European Space Agency (ESA) provide wide-swath and high spatial resolution (50-100 m) C-Band SAR observations with observations frequencies not previously available, on the order of 8 to 16 days. The Sentinel SARs provide unique opportunity to study freeze/thaw and mountain glacier melt dynamics at process level scales, spatial and temporal. The melt process of individual glaciers, being fully resolved by imaging radar, will inform on the radiometric scattering physics associated with surface hydrology during the transition from melted to thawed state and during refreeze. Backscatter observations, along with structural information about the surface will be compared with complimentary coarse spatial resolution C-Band radar scatterometers, Advanced Scatterometer (ASCAT Met Op A+B), to understand the sub-pixel contribution of surface melting and freeze/thaw signals. This information will inform on longer-scale records of backscatter from ASCAT, 2006-2017. We present a comparison of polarimetric C

  16. Estimating Subcatchment Runoff Coefficients using Weather Radar and a Downstream Runoff Sensor

    DEFF Research Database (Denmark)

    Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate...... the runoff coefficients of the separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678 ha) located in the city of Aarhus, Denmark. The study has proven that it is possible to use corresponding measurements of the relative rainfall distribution over...... the catchment and downstream runoff measurements to identify the runoff coefficients at subcatchment level....

  17. Estimating subcatchment runoff coefficients using weather radar and a downstream runoff sensor.

    Science.gov (United States)

    Ahm, Malte; Thorndahl, Søren; Rasmussen, Michael R; Bassø, Lene

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients of the separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678 ha) located in the city of Aarhus, Denmark. The study has proven that it is possible to use corresponding measurements of the relative rainfall distribution over the catchment and downstream runoff measurements to identify the runoff coefficients at subcatchment level.

  18. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    Science.gov (United States)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  19. Maritime over the Horizon Sensor Integration: High Frequency Surface-Wave-Radar and Automatic Identification System Data Integration Algorithm.

    Science.gov (United States)

    Nikolic, Dejan; Stojkovic, Nikola; Lekic, Nikola

    2018-04-09

    To obtain the complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) which lies over the horizon (OTH) requires the integration of data obtained from various sensors. These sensors include: high frequency surface-wave-radar (HFSWR), satellite automatic identification system (SAIS) and land automatic identification system (LAIS). The algorithm proposed in this paper utilizes radar tracks obtained from the network of HFSWRs, which are already processed by a multi-target tracking algorithm and associates SAIS and LAIS data to the corresponding radar tracks, thus forming an integrated data pair. During the integration process, all HFSWR targets in the vicinity of AIS data are evaluated and the one which has the highest matching factor is used for data association. On the other hand, if there is multiple AIS data in the vicinity of a single HFSWR track, the algorithm still makes only one data pair which consists of AIS and HFSWR data with the highest mutual matching factor. During the design and testing, special attention is given to the latency of AIS data, which could be very high in the EEZs of developing countries. The algorithm is designed, implemented and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of HFSWRs consisting of two HFSWRs, several coastal sites with LAIS receivers and SAIS data provided by provider of SAIS data.

  20. Radiometric diagnosis of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Laszlo, A.

    1986-01-01

    The results of this study confirm that rapid radiometric diagnostic tests such as the NAP selective inhibition test for the M. tuberculosis complex followed by the radiometric drug susceptibility tests are extremely reliable and compare favourably with conventional methodologies. This study also shows that referred cultures growing on solid medium can be processed by radiometric procedures without prior subculture. This circumstance by itself shortens the time needed for reporting. (Auth.)

  1. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  2. Preliminary Evaluation of GAOFEN-3 Polarimetric and Radiometric Accuracy by Corner Reflectors in Inner Mongolia

    Science.gov (United States)

    Shi, L.; Ding, X.; Li, P.; Yang, J.; Zhao, L.; Yang, L.; Chang, Y.; Yan, L.

    2018-04-01

    On August 10, 2016, China launched its first C-band full polarimetric radar satellite, named Gaofen-3 (GF-3), for urban and agriculture monitoring, landslide detection, ocean applications, etc. According to the design specification, GF-3 is expected to work at -35 dB crosstalk and 0.5 dB channel imbalance, with less than 10 degree error. The absolute radiometric bias is expected to be less than 1.5 dB in a single scene and 2.0 dB when operating for a long time. To complete the calibration and evaluation, the Institute of Electronics, Chinese Academy Sciences (IECAS) built a test site at Inner Mongolia, and deployed active reflectors (ARs) and trihedral corner reflectors (CRs) to solve and evaluate the hardware distortion. To the best of the authors' knowledge, the product accuracy of GF-3 has not been comprehensively evaluated in any open publication. The remote sensing community urgently requires a detailed report about the product accuracy and stability, before any subsequent application. From June to August of 2017, IECAS begun its second round ground campaign and deployed 10 CRs to evaluate product distortions. In this paper, we exploit Inner Mongolia CRs to investigate polarimetric and radiometric accuracy of QPSI I Stripmap. Although some CRs found fall into AR side lobe, the rest CRs enable us to preliminarily evaluate the accuracy of some special imaging beams. In the experimental part, the image of July 6, 2017 was checked by 5 trihedral CRs and the integration estimation method demonstrated the crosstalk varying from -42.65 to -32.74 dB, and the channel imbalance varying from -0.21 to 0.47 with phase error from -2.4 to 0.2 degree. Comparing with the theoretical radar cross-section of 1.235 m trihedral CR, i.e. 35 dB, the radiometric error varies about 0.20 ± 0.29 dB in HH channel and 0.40 ± 0.20 dB in VV channel.

  3. The absolute radiometric calibration of the advanced very high resolution radiometer

    Science.gov (United States)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  4. The absolute radiometric calibration of the advanced very high resolution radiometer

    Science.gov (United States)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-10-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  5. Radiometric enrichment of nonradioactive ores

    International Nuclear Information System (INIS)

    Mokrousov, V.A.; Lileev, V.A.

    1979-01-01

    Considered are the methods of mineral enrichment based on the use of the radioation of various types. The physical essence of enrichment processes is presented, their classification is given. Described are the ore properties influencing the efficiency of radiometric enrichment, methods of the properties study and estimation of ore enrichment. New possibilities opened by radiometric enrichment in the technology of primary processing of mineral raw materials are elucidated. A considerable attention is paid to the main and auxiliary equipment for radiometric enrichment. The foundations of the safety engineering are presented in a brief form. Presented are also results of investigations and practical works in the field of enrichment of ores of non-ferrous, ferrous and non-metallic minerals with the help of radiometric methods

  6. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    Science.gov (United States)

    Lutz, Ronny; Loyola, Diego; Gimeno García, Sebastián; Romahn, Fabian

    2016-05-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud-fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) onboard the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud-top height (CTH), cloud-top pressure (CTP), cloud-top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than five years of GOME-2A data (April 2008 to June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing-angle-dependent and latitude-dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with colocated AVHRR (Advanced Very High Resolution Radiometer) geometrical cloud fractions shows a general good agreement with a mean difference of -0.15 ± 0.20. From an operational point of view, an advantage of the OCRA algorithm is its very fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud-fraction estimation for GOME-2 can be achieved with OCRA using polarization measurement devices (PMDs).

  7. Detecting weather radar clutter using satellite-based nowcasting products

    DEFF Research Database (Denmark)

    Jensen, Thomas B.S.; Gill, Rashpal S.; Overgaard, Søren

    2006-01-01

    This contribution presents the initial results from experiments with detection of weather radar clutter by information fusion with satellite based nowcasting products. Previous studies using information fusion of weather radar data and first generation Meteosat imagery have shown promising results...... for the detecting and removal of clutter. Naturally, the improved spatio-temporal resolution of the Meteosat Second Generation sensors, coupled with its increased number of spectral bands, is expected to yield even better detection accuracies. Weather radar data from three C-band Doppler weather radars...... Application Facility' of EUMETSAT and is based on multispectral images from the SEVIRI sensor of the Meteosat-8 platform. Of special interest is the 'Precipitating Clouds' product, which uses the spectral information coupled with surface temperatures from Numerical Weather Predictions to assign probabilities...

  8. Radiometric Cross-Calibration of GAOFEN-1 Wfv Cameras with LANDSAT-8 Oli and Modis Sensors Based on Radiation and Geometry Matching

    Science.gov (United States)

    Li, J.; Wu, Z.; Wei, X.; Zhang, Y.; Feng, F.; Guo, F.

    2018-04-01

    Cross-calibration has the advantages of high precision, low resource requirements and simple implementation. It has been widely used in recent years. The four wide-field-of-view (WFV) cameras on-board Gaofen-1 satellite provide high spatial resolution and wide combined coverage (4 × 200 km) without onboard calibration. In this paper, the four-band radiometric cross-calibration coefficients of WFV1 camera were obtained based on radiation and geometry matching taking Landsat 8 OLI (Operational Land Imager) sensor as reference. Scale Invariant Feature Transform (SIFT) feature detection method and distance and included angle weighting method were introduced to correct misregistration of WFV-OLI image pair. The radiative transfer model was used to eliminate difference between OLI sensor and WFV1 camera through the spectral match factor (SMF). The near-infrared band of WFV1 camera encompasses water vapor absorption bands, thus a Look Up Table (LUT) for SMF varies from water vapor amount is established to estimate the water vapor effects. The surface synchronization experiment was designed to verify the reliability of the cross-calibration coefficients, which seem to perform better than the official coefficients claimed by the China Centre for Resources Satellite Data and Application (CCRSDA).

  9. Distributed radar network for real-time tracking of bullet trajectory

    Science.gov (United States)

    Zhang, Yimin; Li, Xin; Jin, Yuanwei; Amin, Moeness G.; Eydgahi, Ali

    2009-05-01

    Gunshot detection, sniper localization, and bullet trajectory prediction are of significant importance in military and homeland security applications. While the majority of existing work is based on acoustic and electro-optical sensors, this paper develops a framework of networked radar systems that uses distributed radar sensor networks to achieve the aforementioned objectives. The use of radio frequency radar systems allows the achievement of subtime- of-flight tracking response, enabling to response before the bullet reaches its target and, as such, effectively leading to the reduction of injuries and casualties in military and homeland security operations. The focus of this paper is to examine the MIMO radar concept with concurrent transmission of low-correlation waveforms from multiple radar sets to ensure wide surveillance coverage and maintain a high waveform repetition frequency for long coherent time interval required to achieve return signal concentration.

  10. Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    Park, J.; Forman, B. A.

    2017-12-01

    Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.

  11. Innovative SAR/MTI Concepts for Digital Radar

    NARCIS (Netherlands)

    Wit, J.J.M. de

    2008-01-01

    Contemporary military operations make high demands on the capabilities of sensors. Modern sensors must have the capability to perform different tasks, such as ground surveillance and target tracking, simultaneously. Multifunction digital radar may provide the required capabilities and meet the

  12. JPSS-1 VIIRS Pre-Launch Radiometric Performance

    Science.gov (United States)

    Oudrari, Hassan; Mcintire, Jeffrey; Xiong, Xiaoxiong; Butler, James; Ji, Qiang; Schwarting, Tom; Zeng, Jinan

    2015-01-01

    The first Joint Polar Satellite System (JPSS-1 or J1) mission is scheduled to launch in January 2017, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the J1 spacecraft completed its sensor level performance testing in December 2014. VIIRS instrument is expected to provide valuable information about the Earth environment and properties on a daily basis, using a wide-swath (3,040 km) cross-track scanning radiometer. The design covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands, from 0.412 m to 12.01 m, and has spatial resolutions of 370 m and 740 m at nadir for imaging and moderate bands, respectively. This paper will provide an overview of pre-launch J1 VIIRS performance testing and methodologies, describing the at-launch baseline radiometric performance as well as the metrics needed to calibrate the instrument once on orbit. Key sensor performance metrics include the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field response, and stray light rejection. A set of performance metrics generated during the pre-launch testing program will be compared to the sensor requirements and to SNPP VIIRS pre-launch performance.

  13. Indoor radar SLAM A radar application for vision and GPS denied environments

    NARCIS (Netherlands)

    Marck, J.W.; Mohamoud, A.A.; Houwen, E.H. van de; Heijster, R.M.E.M. van

    2013-01-01

    Indoor navigation especially in unknown areas is a real challenge. Simultaneous Localization and Mapping (SLAM) technology provides a solution. However SLAM as currently based on optical sensors, is unsuitable in vision denied areas, which are for example encountered by first responders. Radar can

  14. Radar Target Classification using Recursive Knowledge-Based Methods

    DEFF Research Database (Denmark)

    Jochumsen, Lars Wurtz

    The topic of this thesis is target classification of radar tracks from a 2D mechanically scanning coastal surveillance radar. The measurements provided by the radar are position data and therefore the classification is mainly based on kinematic data, which is deduced from the position. The target...... been terminated. Therefore, an update of the classification results must be made for each measurement of the target. The data for this work are collected throughout the PhD and are both collected from radars and other sensors such as GPS....

  15. Sterility test by radiometric technique

    International Nuclear Information System (INIS)

    Faruq, Muhammad

    1980-01-01

    Sterility test of pharmaceuticals can be carried out by the application of pharmacopoeia and radiometric technique. In Indonesia the application of pharmacopoeia technique is carried out through liquid germination for aerobacteria and for fungus and yeast. Radiometric technique is applied to autotrop and heterotrop bacteria. (SMN)

  16. A new ground-penetrating radar system for remote site characterization

    International Nuclear Information System (INIS)

    Davis, K.C.; Sandness, G.A.

    1994-08-01

    The cleanup of waste burial sites and military bombing ranges involves the risk of exposing field personnel to toxic chemicals, radioactive materials, or unexploded munitions. Time-consuming and costly measures are required to provide protection from those hazards. Therefore, there is a growing interest in developing remotely controlled sensors and sensor platforms that can be employed in site characterization surveys. A specialized ground-penetrating radar has been developed to operate on a remotely controlled vehicle for the non-intrusive subsurface characterization of buried waste sites. Improved radar circuits provide enhanced performance, and an embedded microprocessor dynamically optimizes operation. The radar unit is packaged to survive chemical contamination and decontamination

  17. A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in Ambient Assisted Living Applications

    Directory of Open Access Journals (Sweden)

    Giovanni Diraco

    2017-11-01

    Full Text Available Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation, this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing. The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase, with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively.

  18. A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in Ambient Assisted Living Applications.

    Science.gov (United States)

    Diraco, Giovanni; Leone, Alessandro; Siciliano, Pietro

    2017-11-24

    Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation), this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing). The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase), with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively.

  19. New age radiometric ore sorting - the elegant solution

    International Nuclear Information System (INIS)

    Gordon, H.P.; Heuer, T.

    2000-01-01

    Radiometric ore sorting technology and application are described in two parts. Part I reviews the history of radiometric sorting in the minerals industry and describes the latest developments in radiometric sorting technology. Part II describes the history, feasibility study and approach used in the application of the new technology at Rossing Uranium Limited. There has been little progress in the field of radiometric sorting since the late 1970s. This has changed with the development of a high capacity radiometric sorter designed to operate on low-grade ore in the +75mm / -300mm size fraction. This has been designed specifically for an application at Rossing. Rossing has a long history in radiometric sorting dating back to 1968 when initial tests were conducted on the Rossing prospect. Past feasibility studies concluded that radiometric sorting would not conclusively reduce the unit cost of production unless sorting was used to increase production levels. The current feasibility study shows that the application of new radiometric sorter technology makes sorting viable without increasing production, and significantly more attractive with increased production. A pilot approach to confirm sorter performance is described. (author)

  20. Calibrated infrared ground/air radiometric spectrometer

    Science.gov (United States)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  1. Broadband radiometric LED measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  2. Digital Airborne Photogrammetry—A New Tool for Quantitative Remote Sensing?—A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images

    Directory of Open Access Journals (Sweden)

    Nikolaj Veje

    2009-09-01

    Full Text Available The transition from film imaging to digital imaging in photogrammetric data capture is opening interesting possibilities for photogrammetric processes. A great advantage of digital sensors is their radiometric potential. This article presents a state-of-the-art review on the radiometric aspects of digital photogrammetric images. The analysis is based on a literature research and a questionnaire submitted to various interest groups related to the photogrammetric process. An important contribution to this paper is a characterization of the photogrammetric image acquisition and image product generation systems. The questionnaire revealed many weaknesses in current processes, but the future prospects of radiometrically quantitative photogrammetry are promising.

  3. Radiation effects on optical components of a laser radar sensor designed for remote metrology in ITER

    International Nuclear Information System (INIS)

    Menon, M.M.; Grann, E.B.; Slotwinski, A.

    1997-09-01

    A frequency modulated laser radar is being developed for in-vessel metrology and viewing of plasma-facing surfaces. Some optical components of this sensor must withstand intense gamma radiation (3 x 10 6 rad/h) during operation. The authors have tested the effect of radiation on a silica core polarization maintaining optical fiber and on TeO 2 crystals at doses up to ∼ 10 9 rad. Additional tests are planned for evaluating the performance of a complete acousto-optic (AO) scanning device. The progress made in these tests is also described

  4. Assessment of Bias in the National Mosaic and Multi-Sensor QPE (NMQ/Q2) Reanalysis Radar-Only Estimate

    Science.gov (United States)

    Nelson, B. R.; Prat, O. P.; Stevens, S. E.; Seo, D. J.; Zhang, J.; Howard, K.

    2014-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor QPE (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is nearly completed for the period covering from 2001 to 2012. Reanalysis data are available at 1-km and 5-minute resolution. An important step in generating the best possible precipitation data is to assess the bias in the radar-only product. In this work, we use data from a combination of rain gauge networks to assess the bias in the NMQ reanalysis. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network Daily (GHCN-D) are combined for use in the assessment. These rain gauge networks vary in spatial density and temporal resolution. The challenge hence is to optimally utilize them to assess the bias at the finest resolution possible. For initial assessment, we propose to subset the CONUS data in climatologically representative domains, and perform bias assessment using information in the Q2 dataset on precipitation type and phase.

  5. The Role of Cloud and Precipitation Radars in Convoys and Constellations

    Science.gov (United States)

    Tanelli, Simone; Durden, Stephen L.; Im, Eastwood; Sadowy, Gregory A.

    2013-01-01

    We provide an overview of which benefits a radar, and only a radar, can provide to any constellation of satellites monitoring Earth's atmosphere; which aspects instead are most useful to complement a radar instrument to provide accurate and complete description of the state of the troposphere; and finally which goals can be given a lower priority assuming that other types of sensors will be flying in formation with a radar.

  6. Broadband Radiometric LED Measurements

    OpenAIRE

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(��) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irr...

  7. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  8. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    Directory of Open Access Journals (Sweden)

    Davide O. Nitti

    2015-07-01

    Full Text Available This study explores the potential of Synthetic Aperture Radar (SAR to aid Unmanned Aerial Vehicle (UAV navigation when Inertial Navigation System (INS measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE UAV class, which permits heavy and wide payloads (as required by SAR and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM. A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  9. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  10. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors.

    Science.gov (United States)

    Ha, Keum-Won; Lee, Jeong-Yun; Kim, Jeong-Geun; Baek, Donghyun

    2018-04-01

    Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  11. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors

    Directory of Open Access Journals (Sweden)

    Keum-Won Ha

    2018-04-01

    Full Text Available Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs, the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  12. MicroRadarNet: A network of weather micro radars for the identification of local high resolution precipitation patterns

    Science.gov (United States)

    Turso, S.; Paolella, S.; Gabella, M.; Perona, G.

    2013-01-01

    In this paper, MicroRadarNet, a novel micro radar network for continuous, unattended meteorological monitoring is presented. Key aspects and constraints are introduced. Specific design strategies are highlighted, leading to the technological implementations of this wireless, low-cost, low power consumption sensor network. Raw spatial and temporal datasets are processed on-board in real-time, featuring a consistent evaluation of the signals from the sensors and optimizing the data loads to be transmitted. Network servers perform the final post-elaboration steps on the data streams coming from each unit. Final network products are meteorological mappings of weather events, monitored with high spatial and temporal resolution, and lastly served to the end user through any Web browser. This networked approach is shown to imply a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range monitoring strategy. Adoption of the TITAN storm identification and nowcasting engine is also here evaluated for in-loop integration within the MicroRadarNet data processing chain. A brief description of the engine workflow is provided, to present preliminary feasibility results and performance estimates. The outcomes were not so predictable, taking into account relevant operational differences between a Western Alps micro radar scenario and the long range radar context in the Denver region of Colorado. Finally, positive results from a set of case studies are discussed, motivating further refinements and integration activities.

  13. Advanced radiometric and interferometric milimeter-wave scene simulations

    Science.gov (United States)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  14. Radiometric weighing devices. Part 1 and 2

    International Nuclear Information System (INIS)

    Glaeser, M.

    1985-01-01

    Proceeding from the physical and mathematical fundamentals and from the types of radiometric weighing devices presently available, the radiation protection problems arising from the application of radiometric gages in industry and agriculture are discussed. Nuclear weighing devices have been found to be effective from economic point of view but in some cases gravimetric conveyor weighers are indispensable. Information and guidance is given especially for users of radiometric weighing devices. 91 refs., 69 figs., and 8 tabs

  15. Radiometric Cross-Calibration of the Chilean Satellite FASat-C Using RapidEye and EO-1 Hyperion Data and a Simultaneous Nadir Overpass Approach

    Directory of Open Access Journals (Sweden)

    Carolina Barrientos

    2016-07-01

    Full Text Available The absolute radiometric calibration of a satellite sensor is the critical factor that ensures the usefulness of the acquired data for quantitative applications on remote sensing. This work presents the results of the first cross-calibration of the sensor on board the Sistema Satelital de Observación de la Tierra (SSOT Chilean satellite or Air Force Satellite FASat-C. RapidEye-MSI was chosen as the reference sensor, and a simultaneous Nadir Overpass Approach (SNO was applied. The biases caused by differences in the spectral responses of both instruments were compensated through an adjustment factor derived from EO-1 Hyperion data. Through this method, the variations affecting the radiometric response of New AstroSat Optical Modular Instrument (NAOMI-1, have been corrected based on collections over the Frenchman Flat calibration site. The results of a preliminary evaluation of the pre-flight and updated coefficients have shown a significant improvement in the accuracy of at-sensor radiances and TOA reflectances: an average agreement of 2.63% (RMSE was achieved for the multispectral bands of both instruments. This research will provide a basis for the continuity of calibration and validation tasks of future Chilean space missions.

  16. Radiometric dating

    International Nuclear Information System (INIS)

    Das, N.R.

    2017-01-01

    Since the discovery of natural radioactivity in uranium, in the last decade of the nineteenth century, the nuclear property of radioactive decay of radionuclides at immutable rates has been effectively utilized in dating of varieties of naturally occurring geological matrices and the organisms which constantly replenish their "1"4C supply through respiration when alive on earth. During the period, applications of radiometric dating techniques have been extensively diversified and have enabled the geologists to indicate the absolute time scales of geological formations and the evolution of the solar system, the earth, meteorites, lunar rocks, etc. and the archaeologists to record the facts of history of several important events like dinosaur era, Iceman, the Shroud in Turin and many other ancient artefacts. In the development of dating methods, varieties of naturally occurring radio-isotopic systems with favorable half-lives ranging from about 10 years to over 100 billion years have been used as radiometric clocks. (author)

  17. Time-domain ultra-wideband radar, sensor and components theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2014-01-01

    This book presents the theory, analysis, and design of ultra-wideband (UWB) radar and sensor systems (in short, UWB systems) and their components. UWB systems find numerous applications in the military, security, civilian, commercial and medicine fields. This book addresses five main topics of UWB systems: System Analysis, Transmitter Design, Receiver Design, Antenna Design and System Integration and Test. The developments of a practical UWB system and its components using microwave integrated circuits, as well as various measurements, are included in detail to demonstrate the theory, analysis and design technique. Essentially, this book will enable the reader to design their own UWB systems and components. In the System Analysis chapter, the UWB principle of operation as well as the power budget analysis and range resolution analysis are presented. In the UWB Transmitter Design chapter, the design, fabrication and measurement of impulse and monocycle pulse generators are covered. The UWB Receiver Design cha...

  18. A new radiometric unit of measure to characterize SWIR illumination

    Science.gov (United States)

    Richards, A.; Hübner, M.

    2017-05-01

    We propose a new radiometric unit of measure we call the `swux' to unambiguously characterize scene illumination in the SWIR spectral band between 0.8μm-1.8μm, where most of the ever-increasing numbers of deployed SWIR cameras (based on standard InGaAs focal plane arrays) are sensitive. Both military and surveillance applications in the SWIR currently suffer from a lack of a standardized SWIR radiometric unit of measure that can be used to definitively compare or predict SWIR camera performance with respect to SNR and range metrics. We propose a unit comparable to the photometric illuminance lux unit; see Ref. [1]. The lack of a SWIR radiometric unit becomes even more critical if one uses lux levels to describe SWIR sensor performance at twilight or even low light condition, since in clear, no-moon conditions in rural areas, the naturally-occurring SWIR radiation from nightglow produces a much higher irradiance than visible starlight. Thus, even well-intentioned efforts to characterize a test site's ambient illumination levels in the SWIR band may fail based on photometric instruments that only measure visible light. A study of this by one of the authors in Ref. [2] showed that the correspondence between lux values and total SWIR irradiance in typical illumination conditions can vary by more than two orders of magnitude, depending on the spectrum of the ambient background. In analogy to the photometric lux definition, we propose the SWIR irradiance equivalent `swux' level, derived by integration over the scene SWIR spectral irradiance weighted by a spectral sensitivity function S(λ), a SWIR analog of the V(λ) photopic response function.

  19. 77 FR 48097 - Operation of Radar Systems in the 76-77 GHz Band

    Science.gov (United States)

    2012-08-13

    ... modify the emission limits for vehicular radar systems operating within the 76-77 GHz band. Specifically.... 15.253 of the rules for vehicular radar systems operating in the 76-77 GHz band. Vehicular radars can... sensors operating in the 76-77 GHz band, the spectrum shall be investigated up to 231 GHz. (f) Fundamental...

  20. Millimeter-wave silicon-based ultra-wideband automotive radar transceivers

    Science.gov (United States)

    Jain, Vipul

    Since the invention of the integrated circuit, the semiconductor industry has revolutionized the world in ways no one had ever anticipated. With the advent of silicon technologies, consumer electronics became light-weight and affordable and paved the way for an Information-Communication-Entertainment age. While silicon almost completely replaced compound semiconductors from these markets, it has been unable to compete in areas with more stringent requirements due to technology limitations. One of these areas is automotive radar sensors, which will enable next-generation collision-warning systems in automobiles. A low-cost implementation is absolutely essential for widespread use of these systems, which leads us to the subject of this dissertation---silicon-based solutions for automotive radars. This dissertation presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors. The first CMOS 22-29-GHz pulse-radar receiver front-end for ultra-wideband radars is presented. The chip includes a low noise amplifier, I/Q mixers, quadrature voltage-controlled oscillators, pulse formers and variable-gain amplifiers. Fabricated in 0.18-mum CMOS, the receiver achieves a conversion gain of 35-38.1 dB and a noise figure of 5.5-7.4 dB. Integration of multi-mode multi-band transceivers on a single chip will enable next-generation low-cost automotive radar sensors. Two highly-integrated silicon ICs are designed in a 0.18-mum BiCMOS technology. These designs are also the first reported demonstrations of mm-wave circuits with high-speed digital circuits on the same chip. The first mm-wave dual-band frequency synthesizer and transceiver, operating in the 24-GHz and 77-GHz bands, are demonstrated. All

  1. Observations and modeling of fog by cloud radar and optical sensors

    NARCIS (Netherlands)

    Li, Y.; Hoogeboom, P.; Russchenberg, H.

    2014-01-01

    Fog is a significant factor affecting the public traffic because visibility is reduced to a large extent. Therefore the determination of optical visibility in fog from radar instruments has received much interest. To observe fog with radar, high frequency bands (millimeter waves) have the best

  2. Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions

    Directory of Open Access Journals (Sweden)

    R. H. Rasshofer

    2005-01-01

    Full Text Available Automotive radar and lidar sensors represent key components for next generation driver assistance functions (Jones, 2001. Today, their use is limited to comfort applications in premium segment vehicles although an evolution process towards more safety-oriented functions is taking place. Radar sensors available on the market today suffer from low angular resolution and poor target detection in medium ranges (30 to 60m over azimuth angles larger than ±30°. In contrast, Lidar sensors show large sensitivity towards environmental influences (e.g. snow, fog, dirt. Both sensor technologies today have a rather high cost level, forbidding their wide-spread usage on mass markets. A common approach to overcome individual sensor drawbacks is the employment of data fusion techniques (Bar-Shalom, 2001. Raw data fusion requires a common, standardized data interface to easily integrate a variety of asynchronous sensor data into a fusion network. Moreover, next generation sensors should be able to dynamically adopt to new situations and should have the ability to work in cooperative sensor environments. As vehicular function development today is being shifted more and more towards virtual prototyping, mathematical sensor models should be available. These models should take into account the sensor's functional principle as well as all typical measurement errors generated by the sensor.

  3. Low Power CMOS Circuit Techniques for Optical Interconnects and High Speed Pulse Compression Radar

    OpenAIRE

    Li, Jun

    2015-01-01

    High performance computing and high resolution range sensor motivates the intelligent system innovations such as smart car, smart home/community and 3D motion games. Most importantly, 3D graphics technique requires high performance computation to provide high quality and vivid real-time videos. Accurate motion sensing requires high resolution radar sensor. However, in general, data transmission limits the large scale computation while high resolution radar signal processor limits the detectio...

  4. Assessing Radiometric Stability of the 17-Plus-Year TRMM Microwave Imager 1B11 Version-8 (GPM05 Brightness Temperature Product

    Directory of Open Access Journals (Sweden)

    Ruiyao Chen

    2017-12-01

    Full Text Available The NASA Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI has produced a 17-plus-year time-series of calibrated microwave radiances that have remarkable value for investigating the effects of the Earth’s climate change over the tropics. Recently, the Global Precipitation Measurement (GPM Inter-Satellite Radiometric Calibration (XCAL Working Group have performed various calibration and corrections that yielded the legacy TMI 1B11 Version 8 (also called GPM05 brightness temperature product, which will be released in late 2017 by the NASA Precipitation Processing System. Since TMI served as the radiometric transfer standard for the TRMM constellation microwave radiometer sensors, it is important to document its accuracy. In this paper, the various improvements applied to TMI 1B11 V8 are summarized, and the radiometric calibration stability is evaluated by comparisons with a radiative transfer model and by XCAL evaluations with the Global Precipitation Measuring Microwave Imager during their 13-month overlap period. Evaluation methods will be described and results will be presented, which demonstrate that TMI has achieved a radiometric stability level of a few deciKelvin over almost two decades.

  5. THz impulse radar for biomedical sensing: nonlinear system behavior

    Science.gov (United States)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  6. A low-cost, high-resolution, video-rate imaging optical radar

    Energy Technology Data Exchange (ETDEWEB)

    Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

    1998-04-01

    Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

  7. Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar

    Directory of Open Access Journals (Sweden)

    Xikun Hu

    2016-11-01

    Full Text Available The radar sensor described realizes healthcare monitoring capable of detecting subject chest-wall movement caused by cardiopulmonary activities and wirelessly estimating the respiration and heartbeat rates of the subject without attaching any devices to the body. Conventional single-tone Doppler radar can only capture Doppler signatures because of a lack of bandwidth information with noncontact sensors. In contrast, we take full advantage of impulse radio ultra-wideband (IR-UWB radar to achieve low power consumption and convenient portability, with a flexible detection range and desirable accuracy. A noise reduction method based on improved ensemble empirical mode decomposition (EEMD and a vital sign separation method based on the continuous-wavelet transform (CWT are proposed jointly to improve the signal-to-noise ratio (SNR in order to acquire accurate respiration and heartbeat rates. Experimental results illustrate that respiration and heartbeat signals can be extracted accurately under different conditions. This noncontact healthcare sensor system proves the commercial feasibility and considerable accessibility of using compact IR-UWB radar for emerging biomedical applications.

  8. KERNEL MAD ALGORITHM FOR RELATIVE RADIOMETRIC NORMALIZATION

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2016-06-01

    Full Text Available The multivariate alteration detection (MAD algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA. The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1 data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.

  9. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review

    Directory of Open Access Journals (Sweden)

    Changzhan Gu

    2016-07-01

    Full Text Available Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends.

  10. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    Science.gov (United States)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  11. The absolute calibration of KOMPSAT-3 and 3A high spatial resolution satellites using radiometric tarps and MFRSR measurments

    Science.gov (United States)

    Yeom, J. M.

    2017-12-01

    Recently developed Korea Multi-Purpose Satellite-3A (KOMPSAT-3A), which is a continuation of the KOMPSAT-1, 2 and 3 earth observation satellite (EOS) programs from the Korea Aerospace Research Institute (KARI) was launched on March, 25 2015 on a Dnepr-1 launch vehicle from the Jasny Dombarovsky site in Russia. After launched, KARI performed in-orbit-test (IOT) including radiometric calibration for 6 months from 14 Apr. to 4 Sep. 2015. KOMPSAT-3A is equipped with two distinctive sensors; one is a high resolution multispectral optical sensor, namely the Advances Earth Image Sensor System-A (AEISS-A) and the other is the Scanner Infrared Imaging System (SIIS). In this study, we focused on the radiometric calibration of AEISS-A. The multispectral wavelengths of AEISS-A are covering three visible regions: blue (450 - 520 nm), green (520 - 600 nm), red (630 - 690 nm), one near infrared (760 - 900 nm) with a 2.0 m spatial resolution at nadir, whereas the panchromatic imagery (450 - 900 nm) has a 0.5 m resolution. Those are the same spectral response functions were same with KOMPSAT-3 multispectral and panchromatic bands but the spatial resolutions are improved. The main mission of KOMPSAT-3A is to develop for Geographical Information System (GIS) applications in environmental, agriculture, and oceanographic sciences, as well as natural hazard monitoring.

  12. RADIOMETRIC TECHNIQUES IN HEAVY MINERAL EXPLORATION AND EXPLOITATION

    NARCIS (Netherlands)

    DEMEIJER, RJ; TANCZOS, IC; STAPEL, C

    1994-01-01

    In recent years the Environmental Research Group of the KVI has been developing a number of radiometric techniques that may be employed in mineral sand exploration. These techniques involve: radiometric fingerprinting for assessing sand provenances and mineralogical composition; thermoluminescence

  13. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    Science.gov (United States)

    Leonard, Regis F.; Bhasin, Kul B.

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure. (For individual items see A93-25777 to A93-25814)

  14. Micropower radar systems for law enforcement technology

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, S.G.; Mast, J.; Brase, J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  15. Condor equatorial electrojet campaign: Radar results

    International Nuclear Information System (INIS)

    Kudeki, E.; Fejer, B.G.; Farley, D.T.; Hanuise, C.

    1987-01-01

    A review of the experimental and theoretical background to the Condor equatorial electrojet compaign is followed by the presentation and discussion of VHF radar interferometer and HF radar backscatter data taken concurrently with two rocket in situ experiments reported in companion papers (Pfaff et al., this issue (a, b). Both experiments were conducted in strongly driven periods with the on-line radar interferometer displaying signatures of what has been interpreted in earlier radar work (Kudeki et al., 1982) as kilometer scale gradient drift waves. Low-frequency density fluctuations detected by in situ rocket sensors confirm the earlier interpretation. VHF radar/rocket data comparisons also indicate the existence of a turbulent layer in the upper portion of the daytime electrojet at about 108 km altitude driven purely by the two-stream instability. Nonlinear mode coupling of linearly growing two-stream waves to linearly damped 3-m vertical modes could account for the radar echoes scattered from this layer, which showed no indication of large-scale gradient drift waves. Nonlinear mode coupling may therefore compete with the wave-induced anomalous diffusion mechanism proposed recently by Sudan (1983) for the saturation of directly excited two-stream waves. Nighttime radar data show a bifurcated layer with the two parts having comparable echo strength but oppositely directed zonal drift velocities. The lower layer shows narrow backscatter spectra; the upper layer is characterized by kilometer scale waves and vertically propagating type 1 waves

  16. Shigaraki UAV-Radar Experiment (ShUREX): overview of the campaign with some preliminary results

    Science.gov (United States)

    Kantha, Lakshmi; Lawrence, Dale; Luce, Hubert; Hashiguchi, Hiroyuki; Tsuda, Toshitaka; Wilson, Richard; Mixa, Tyler; Yabuki, Masanori

    2017-12-01

    The Shigaraki unmanned aerial vehicle (UAV)-Radar Experiment (ShUREX) is an international (USA-Japan-France) observational campaign, whose overarching goal is to demonstrate the utility of small, lightweight, inexpensive, autonomous UAVs in probing and monitoring the lower troposphere and to promote synergistic use of UAVs and very high frequency (VHF) radars. The 2-week campaign lasting from June 1 to June 14, 2015, was carried out at the Middle and Upper Atmosphere (MU) Observatory in Shigaraki, Japan. During the campaign, the DataHawk UAV, developed at the University of Colorado, Boulder, and equipped with high-frequency response cold wire and pitot tube sensors (as well as an iMET radiosonde), was flown near and over the VHF-band MU radar. Measurements in the atmospheric column in the immediate vicinity of the radar were obtained. Simultaneous and continuous operation of the radar in range imaging mode enabled fine-scale structures in the atmosphere to be visualized by the radar. It also permitted the UAV to be commanded to sample interesting structures, guided in near real time by the radar images. This overview provides a description of the ShUREX campaign and some interesting but preliminary results of the very first simultaneous and intensive probing of turbulent structures by UAVs and the MU radar. The campaign demonstrated the validity and utility of the radar range imaging technique in obtaining very high vertical resolution ( 20 m) images of echo power in the atmospheric column, which display evolving fine-scale atmospheric structures in unprecedented detail. The campaign also permitted for the very first time the evaluation of the consistency of turbulent kinetic energy dissipation rates in turbulent structures inferred from the spectral broadening of the backscattered radar signal and direct, in situ measurements by the high-frequency response velocity sensor on the UAV. The data also enabled other turbulence parameters such as the temperature

  17. Adjustment of rainfall estimates from weather radars using in-situ stormwater drainage sensors

    DEFF Research Database (Denmark)

    Ahm, Malte

    importance as long as the estimated flow and water levels are correct. It makes sense to investigate the possibility of adjusting weather radar data to rainfall-runoff measurements instead of rain gauge measurements in order to obtain better predictions of flow and water levels. This Ph.D. study investigates......-rain gauge adjusted data is applied for urban drainage models, discrepancies between radar-estimated runoff and observed runoff still occur. The aim of urban drainage applications is to estimate flow and water levels in critical points in the system. The “true” rainfall at ground level is, therefore, of less...... how rainfall-runoff measurements can be utilised to adjust weather radars. Two traditional adjustments methods based on rain gauges were used as the basis for developing two radar-runoff adjustment methods. The first method is based on the ZR relationship describing the relation between radar...

  18. Image sensors for radiometric measurements in the ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desa, B.A.E.

    the sensors at a stabilised moderately cool temperature of 15 deg. C and to intelligently control the exposure time of the device, so as to reliably measure flux levels in the range 1 W/m super(2)/nm to 10/6 W/m super(2)/nm commonly encountered in the ocean...

  19. Tasmanian tin and tungsten granites - their radiometric characteristics

    International Nuclear Information System (INIS)

    Yeates, A.N.

    1982-01-01

    A radiometric survey of Tasmanian granites has shown, with one exception, that tin and tungsten-bearing granites have high radioactivity, largely owing to increased uranium. Many have a high uranium/thorium ratio as well. Radiometric measurements can also delineate different granite types within composite bodies

  20. Training course on radiometric prospecting techniques

    International Nuclear Information System (INIS)

    1979-01-01

    A training course on radiometric prospecting techniques was presented by the Atomic Energy Board in collaboration with the South African Geophysical Association and the Geological Society of South Africa. Various aspects related to uranium prospecting were discussed e.g. the uranium supply and demand position, the basic physics of radioactivity, uranium geochemistry, mineralogy and mobility, the instrumentation and techniques used in uranium exploration, for example, borehole logging, radon emanometry and airborne radiometric surveys and also data processing and interpretation methods

  1. Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data

    Directory of Open Access Journals (Sweden)

    Pablito M. López-Serrano

    2016-04-01

    Full Text Available Solar radiation is affected by absorption and emission phenomena during its downward trajectory from the Sun to the Earth’s surface and during the upward trajectory detected by satellite sensors. This leads to distortion of the ground radiometric properties (reflectance recorded by satellite images, used in this study to estimate aboveground forest biomass (AGB. Atmospherically-corrected remote sensing data can be used to estimate AGB on a global scale and with moderate effort. The objective of this study was to evaluate four atmospheric correction algorithms (for surface reflectance, ATCOR2 (Atmospheric Correction for Flat Terrain, COST (Cosine of the Sun Zenith Angle, FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes and 6S (Second Simulation of Satellite Signal in the Solar, and one radiometric correction algorithm (for reflectance at the sensor ToA (Apparent Reflectance at the Top of Atmosphere to estimate AGB in temperate forest in the northeast of the state of Durango, Mexico. The AGB was estimated from Landsat 5 TM imagery and ancillary information from a digital elevation model (DEM using the non-parametric multivariate adaptive regression splines (MARS technique. Field reference data for the model training were collected by systematic sampling of 99 permanent forest growth and soil research sites (SPIFyS established during the winter of 2011. The following predictor variables were identified in the MARS model: Band 7, Band 5, slope (β, Wetness Index (WI, NDVI and MSAVI2. After cross-validation, 6S was found to be the optimal model for estimating AGB (R2 = 0.71 and RMSE = 33.5 Mg·ha−1; 37.61% of the average stand biomass. We conclude that atmospheric and radiometric correction of satellite images can be used along with non-parametric techniques to estimate AGB with acceptable accuracy.

  2. RapidEye constellation relative radiometric accuracy measurement using lunar images

    Science.gov (United States)

    Steyn, Joe; Tyc, George; Beckett, Keith; Hashida, Yoshi

    2009-09-01

    The RapidEye constellation includes five identical satellites in Low Earth Orbit (LEO). Each satellite has a 5-band (blue, green, red, red-edge and near infrared (NIR)) multispectral imager at 6.5m GSD. A three-axes attitude control system allows pointing the imager of each satellite at the Moon during lunations. It is therefore possible to image the Moon from near identical viewing geometry within a span of 80 minutes with each one of the imagers. Comparing the radiometrically corrected images obtained from each band and each satellite allows a near instantaneous relative radiometric accuracy measurement and determination of relative gain changes between the five imagers. A more traditional terrestrial vicarious radiometric calibration program has also been completed by MDA on RapidEye. The two components of this program provide for spatial radiometric calibration ensuring that detector-to-detector response remains flat, while a temporal radiometric calibration approach has accumulated images of specific dry dessert calibration sites. These images are used to measure the constellation relative radiometric response and make on-ground gain and offset adjustments in order to maintain the relative accuracy of the constellation within +/-2.5%. A quantitative comparison between the gain changes measured by the lunar method and the terrestrial temporal radiometric calibration method is performed and will be presented.

  3. Determination of molybdenite leaching degree by x-ray radiometric analysis

    International Nuclear Information System (INIS)

    Bibinov, S.A.; Gladyshev, V.P.; Yarmolik, A.S.; Kim, A.Ch.; Sokur, N.P.

    1984-01-01

    A express chemical X-ray radiometric method for determination of leaching degree and analysis of molybdenite products is developed. The method comprises chemical preparation and the following X-ray radiometric determination of molyb bdenum. Total duration of the analysis is 1-1.5 h. The best reproductivity is btained at X-ray radiometric analysis as compared with the chemical one

  4. Radar automatic target recognition (ATR) and non-cooperative target recognition (NCTR)

    CERN Document Server

    Blacknell, David

    2013-01-01

    The ability to detect and locate targets by day or night, over wide areas, regardless of weather conditions has long made radar a key sensor in many military and civil applications. However, the ability to automatically and reliably distinguish different targets represents a difficult challenge. Radar Automatic Target Recognition (ATR) and Non-Cooperative Target Recognition (NCTR) captures material presented in the NATO SET-172 lecture series to provide an overview of the state-of-the-art and continuing challenges of radar target recognition. Topics covered include the problem as applied to th

  5. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    Science.gov (United States)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  6. Data acquisition and processing - helicopter radiometric survey, Krageroe, 1998

    CERN Document Server

    Beard, L P

    2000-01-01

    On 07 October 1998 a helicopter radiometric survey was flown in the vicinity of Krageroe municipality. The purpose of the survey was to provide radiometric information to help assess radon hazard from radioactive rocks in the area. A total of 60 line-kilometres of radiometric data were acquired in a single flight, covering an area of approximately 3 square km with a 50-m line spacing. The data were collected by Geological Survey of Norway (NGU) personnel and processed at NGU. Radiometric data were reduced using the three-channel procedure recommended by the International Atomic Energy Association. All data were gridded using square cells with 30-m sides and geophysical maps were produced at a scale of 1:5000. This report covers aspects of data acquisition and processing (Author)

  7. Data acquisition and processing - helicopter radiometric survey, Krageroe, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Beard, Les P.; Mogaard, John Olav

    2000-07-01

    On 07 October 1998 a helicopter radiometric survey was flown in the vicinity of Krageroe municipality. The purpose of the survey was to provide radiometric information to help assess radon hazard from radioactive rocks in the area. A total of 60 line-kilometres of radiometric data were acquired in a single flight, covering an area of approximately 3 square km with a 50-m line spacing. The data were collected by Geological Survey of Norway (NGU) personnel and processed at NGU. Radiometric data were reduced using the three-channel procedure recommended by the International Atomic Energy Association. All data were gridded using square cells with 30-m sides and geophysical maps were produced at a scale of 1:5000. This report covers aspects of data acquisition and processing (Author)

  8. Venus radar mapper attitude reference quaternion

    Science.gov (United States)

    Lyons, D. T.

    1986-01-01

    Polynomial functions of time are used to specify the components of the quaternion which represents the nominal attitude of the Venus Radar mapper spacecraft during mapping. The following constraints must be satisfied in order to obtain acceptable synthetic array radar data: the nominal attitude function must have a large dynamic range, the sensor orientation must be known very accurately, the attitude reference function must use as little memory as possible, and the spacecraft must operate autonomously. Fitting polynomials to the components of the desired quaternion function is a straightforward method for providing a very dynamic nominal attitude using a minimum amount of on-board computer resources. Although the attitude from the polynomials may not be exactly the one requested by the radar designers, the polynomial coefficients are known, so they do not contribute to the attitude uncertainty. Frequent coefficient updates are not required, so the spacecraft can operate autonomously.

  9. observation and analysis of the structure of winter precipitation-generating clouds using ground-based sensor measurements

    Science.gov (United States)

    Menéndez José Luis, Marcos; Gómez José Luis, Sánchez; Campano Laura, López; Ortega Eduardo, García; Suances Andrés, Merino; González Sergio, Fernández; Salvador Estíbaliz, Gascón; González Lucía, Hermida

    2015-04-01

    In this study, we used a 28-day database corresponding to December, January and February of 2011/2012 and 2012/2013 campaigns to analyze cloud structure that produced precipitation in the Sierra Norte near Madrid, Spain. We used remote sensing measurements, both active type like the K-band Micro Rain Radar (MRR) and passive type like the Radiometrics MP-3000A multichannel microwave radiometer. Using reflectivity data from the MRR, we determined the important microphysical parameters of Ice Water Content (IWC) and its integrated value over the atmospheric column, or Ice Water Path (IWP). Among the measurements taken by the MP-3000A were Liquid Water Path (LWP) and Integrated Water Vapor (IWV). By representing these data together, sharp declines in LWP and IWV were evident, coincident with IWP increases. This result indicates the ability of a K-band radar to measure the amount of ice in the atmospheric column, simultaneously revealing the Wegener-Bergeron-Findeisen mechanism. We also used a Present Weather Sensor (VPF-730; Biral Ltd., Bristol, UK) to determine the type and amount of precipitation at the surface. With these data, we used regression equations to establish the relationship between visibility and precipitation intensity. In addition, through theoretical precipitation visibility-intensity relationships, we estimated the type of crystal, degree of accretion (riming), and moisture content of fallen snow crystals.

  10. Radiometric analyzer

    International Nuclear Information System (INIS)

    Arima, S.; Oda, M.; Miyashita, K.; Takada, M.

    1977-01-01

    A radiometric analyzer for measuring the characteristic values of a sample by radiation includes a humer of radiation measuring subsystems having different ratios of sensitivities to the elements of the sample and linearizing circuits having inverse function characteristics of calibration functions which correspond to the radiation measuring subsystems. A weighing adder operates a desirable linear combination of the outputs of the linearizing circuits. Operators for operating between two or more different linear combinations are included

  11. Long-Term Quantitative Precipitation Estimates (QPE) at High Spatial and Temporal Resolution over CONUS: Bias-Adjustment of the Radar-Only National Mosaic and Multi-sensor QPE (NMQ/Q2) Precipitation Reanalysis (2001-2012)

    Science.gov (United States)

    Prat, Olivier; Nelson, Brian; Stevens, Scott; Seo, Dong-Jun; Kim, Beomgeun

    2015-04-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is completed for the period covering from 2001 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Several in-situ datasets are available to assess the biases of the radar-only product and to adjust for those biases to provide a multi-sensor QPE. The rain gauge networks that are used such as the Global Historical Climatology Network-Daily (GHCN-D), the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), and the Climate Reference Network (CRN), have different spatial density and temporal resolution. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. The objective of this work is threefold. First, we investigate how the different in-situ networks can impact the precipitation estimates as a function of the spatial density, sensor type, and temporal resolution. Second, we assess conditional and un-conditional biases of the radar-only QPE for various time scales (daily, hourly, 5-min) using in-situ precipitation observations. Finally, after assessing the bias and applying reduction or elimination techniques, we are using a unique in-situ dataset merging the different RG networks (CRN, ASOS, HADS, GHCN-D) to

  12. Design, Performance and Optimization for Multimodal Radar Operation

    Directory of Open Access Journals (Sweden)

    Surendra S. Bhat

    2012-09-01

    Full Text Available This paper describes the underlying methodology behind an adaptive multimodal radar sensor that is capable of progressively optimizing its range resolution depending upon the target scattering features. It consists of a test-bed that enables the generation of linear frequency modulated waveforms of various bandwidths. This paper discusses a theoretical approach to optimizing the bandwidth used by the multimodal radar. It also discusses the various experimental results obtained from measurement. The resolution predicted from theory agrees quite well with that obtained from experiments for different target arrangements.

  13. Radiometric and geometric assessment of data from the RapidEye constellation of satellites

    Science.gov (United States)

    Chander, Gyanesh; Haque, Md. Obaidul; Sampath, Aparajithan; Brunn, A.; Trosset, G.; Hoffmann, D.; Roloff, S.; Thiele, M.; Anderson, C.

    2013-01-01

    To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface using imagery acquired from multiple spaceborne imaging sensors. The RapidEye (RE) satellite constellation acquires high-resolution satellite images covering the entire globe within a very short period of time by sensors identical in construction and cross-calibrated to each other. To evaluate the RE high-resolution Multi-spectral Imager (MSI) sensor capabilities, a cross-comparison between the RE constellation of sensors was performed first using image statistics based on large common areas observed over pseudo-invariant calibration sites (PICS) by the sensors and, second, by comparing the on-orbit radiometric calibration temporal trending over a large number of calibration sites. For any spectral band, the individual responses measured by the five satellites of the RE constellation were found to differ B2B) alignment of the image data sets. The position accuracy was assessed by comparing the RE imagery against high-resolution aerial imagery, while the B2B characterization was performed by registering each band against every other band to ensure that the proper band alignment is provided for an image product. The B2B results indicate that the internal alignments of these five RE bands are in agreement, with bands typically registered to within 0.25 pixels of each other or better.

  14. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    Science.gov (United States)

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  15. Radiometric well logging instruments

    International Nuclear Information System (INIS)

    Davydov, A.V.

    1975-01-01

    The technical properties of well instruments for radioactive logging used in the radiometric logging complexes PKS-1000-1 (''Sond-1'') and PRKS-2 (''Vitok-2'') are described. The main features of the electric circuit of the measuring channels are given

  16. The radiometric industries of the countries of the European Community

    International Nuclear Information System (INIS)

    Roeper, Burkhardt

    1975-01-01

    The economic development of the radiometric industries in the EEC and the USA since 1960 is studied on the basis of sales statistics. The study covers the supply and the use of radioisotopes, the application of radiometric techniques, the scope and the development of the foreign trade as well as the structure of the firms concerned. The future need for radiometric apparatus is estimated as regards radiation protection, laboratories, industry, nuclear power plants and medicine

  17. Feasibility of automotive radar at frequencies beyond 100 GHz

    OpenAIRE

    Köhler, Mike; Hasch, Jürgen; Blöcher, Hans Ludwig; Schmidt, Lorenz-Peter

    2014-01-01

    Radar sensors are used widely in modern driver assistance systems. Available sensors nowadays often operate in the 77 GHz band and can accurately provide distance, velocity, and angle information about remote objects. Increasing the operation frequency allows improving the angular resolution and accuracy. In this paper, the technical feasibility to move the operation frequency beyond 100 GHz is discussed, by investigating dielectric properties of radome materials, the attenuation of rain and ...

  18. System overview and applications of a panoramic imaging perimeter sensor

    International Nuclear Information System (INIS)

    Pritchard, D.A.

    1995-01-01

    This paper presents an overview of the design and potential applications of a 360-degree scanning, multi-spectral intrusion detection sensor. This moderate-resolution, true panoramic imaging sensor is intended for exterior use at ranges from 50 to 1,500 meters. This Advanced Exterior Sensor (AES) simultaneously uses three sensing technologies (infrared, visible, and radar) along with advanced data processing methods to provide low false-alarm intrusion detection, tracking, and immediate visual assessment. The images from the infrared and visible detector sets and the radar range data are updated as the sensors rotate once per second. The radar provides range data with one-meter resolution. This sensor has been designed for easy use and rapid deployment to cover wide areas beyond or in place of typical perimeters, and tactical applications around fixed or temporary high-value assets. AES prototypes are in development. Applications discussed in this paper include replacements, augmentations, or new installations at fixed sites where topological features, atmospheric conditions, environmental restrictions, ecological regulations, and archaeological features limit the use of conventional security components and systems

  19. Characterization of the range effect in synthetic aperture radar images of concrete specimens for width estimation

    Science.gov (United States)

    Alzeyadi, Ahmed; Yu, Tzuyang

    2018-03-01

    Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.

  20. The radiometric performances of the Planetary Fourier Spectrometer for Mars exploration

    Science.gov (United States)

    Palomba, E.; Colangeli, L.; Formisano, V.; Piccioni, G.; Cafaro, N.; Moroz, V.

    1999-04-01

    The Planetary Fourier Spectrometer (PFS) is a Fourier transform interferometer, operating in the range 1.2-45 μm. The instrument, previously included in the payload of the failed mission Mars ‧96, is proposed for the future space mission Mars Express, under study by ESA. The present paper is aimed at presenting the radiometric performances of PFS. The two channels (LW and SW) forming PFS were analysed and characterised in terms of sensitivity and noise equivalent brightness. To cover the wide spectral range of PFS, different blackbodies were used for calibration. The built-in blackbodies, needed for the in-flight calibrations, were also characterised. The results show that the LW channel is comparable with IRIS Mariner 9 in terms of noise equivalent brightness. The SW channel performances, while satisfactorily, could be improved by lowering the sensor operative temperature. A simple model of the Mars radiance is used in order to calculate the signal-to-noise ratio on the spectra in typical observation conditions. The computed signal-to-noise ratio for the LW channel varies between 430 and 40, while for the SW channel it ranges from 150 to 30. The radiometric analyses confirm that PFS performances are compliant with the design requirements of the instrument. PFS is fully validated for future remote exploration of the atmosphere and the surface of Mars.

  1. Informational analysis for compressive sampling in radar imaging.

    Science.gov (United States)

    Zhang, Jingxiong; Yang, Ke

    2015-03-24

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation.

  2. Radiometric report for a blast furnace tracing with radioactive isotopes

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, M.

    1995-01-01

    One of the methods to monitor refractory wall of blast furnace is its tracing with radioactive isotopes. The tracer isotope can be detected by two ways: the external dosimetric measurement at the armour of the blast furnace and/or the radiometric measurement of the iron sample charge by charge. Any change in radiometric situation of tracer radioisotope is recorded in a radiometric report. This paper presents an original concept of radiometric report based upon PARADOX and CORELDRAW soft kits. Their advantage are: quick and easy changes, easy recording of current radioactivity of tracer isotope, short history of changes, visual mapping of the tracer isotope and others. In this way we monitored 6 blast furnaces and more than 180 radioactive sources

  3. Radiometric detection of yeasts in blood cultures of cancer patients

    International Nuclear Information System (INIS)

    Hopfer, R.L.; Orengo, A.; Chesnut, S.; Wenglar, M.

    1980-01-01

    During a 12-month period, 19,457 blood cultures were collected. Yeasts were isolated from 193 cultures derived from 76 cancer patients. Candida albicans or Candida tropicalis accounted for 79% of isolates. Of the three methods compared, the radiometric method required 2.9 days to become positive, blind subculture required 2.6 days, and Gram stains required 1 day. However, the radiometric method was clearly superior in detecting positive cultures, since 73% of all cultures were first detected radiometrically, 22% were detected by subculture, and only 5% were detected by Gram stain. Although 93% of the isolates were detected by aerobic culture, five (7%) isolates were obtained only from anaerobic cultures. Seven days of incubation appear to be sufficient for the radiometric detection of yeasts

  4. Comparison of HF radar measurements with Eulerian and Lagrangian surface currents

    Science.gov (United States)

    Röhrs, Johannes; Sperrevik, Ann Kristin; Christensen, Kai Håkon; Broström, Göran; Breivik, Øyvind

    2015-05-01

    High-frequency (HF) radar-derived ocean currents are compared with in situ measurements to conclude if the radar observations include effects of surface waves that are of second order in the wave amplitude. Eulerian current measurements from a high-resolution acoustic Doppler current profiler and Lagrangian measurements from surface drifters are used as references. Directional wave spectra are obtained from a combination of pressure sensor data and a wave model. Our analysis shows that the wave-induced Stokes drift is not included in the HF radar-derived currents, that is, HF radars measure the Eulerian current. A disputed nonlinear correction to the phase velocity of surface gravity waves, which may affect HF radar signals, has a magnitude of about half the Stokes drift at the surface. In our case, this contribution by nonlinear dispersion would be smaller than the accuracy of the HF radar currents, hence no conclusion can be made. Finally, the analysis confirms that the HF radar data represent an exponentially weighted vertical average where the decay scale is proportional to the wavelength of the transmitted signal.

  5. RADIOMETRIC CALIBRATION OF AIRBORNE LASER SCANNING DATA

    OpenAIRE

    Pilarska Magdalena

    2016-01-01

    Airborne laser scanning (ALS) is widely used passive remote sensing technique. The radiometric calibration of ALS data is presented in this article. This process is a necessary element in data processing since it eliminates the influence of the external factors on the obtained values of radiometric features such as range and incidence angle. The datasets were captured with three different laser scanners; since each of these operates at a different wavelength (532, 106 4 and 1550 nm) th...

  6. Assessment of sensors and aircraft for oil spill remote sensing

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fruhwirth, M.

    1993-01-01

    Environment Canada has assessed sensors and aircraft suitable for remote sensing, particularly the capability of sensors to detect oil and to discriminate oil from background targets. The assessment was based on past experience and technical considerations. The first sensor recommended for use is an infrared camera or an IR/UV system. This recommendation is based on the system's ability to detect oil and discriminate this from the background, and the low cost of these sensors. The laser fluorosensor is recommended as the second device, as it is the only unit capable of positively discriminating oil on water, among weeds, and in sediment or beach material. Cameras operating in the visible region of the spectrum are recommended for two functions: documentation and providing background or location imagery for other sensors. Imaging radars, be they SAR or SLAR, are recommended for long-range searches or for oil spill work at night or when fog is present. Radars are expensive and require dedicated aircraft. Passive microwave devices are currently being developed but have not been proven as an alternative to radar or for measuring slick thickness. A laser based thickness sensor is under development. Satellite systems were also assessed. Satellite sensors operating in the visible spectrum have only limited application to major oil spills. New radar sensors show limited potential. The major limitation of any satellite system is the limited coverage time that is a function of its orbit. A study of aircraft and aircraft modifications was carried out to catalog aircraft modifications necessary to operate oil spill remote sensors. A potential user could select modifications that are already approved and thus save the high costs of aircraft modification design. The modifications already approved in Canada and the US for a given aircraft provide criteria for the selection of an aircraft

  7. Application of microcomputer to X-ray radiometric ore separation

    International Nuclear Information System (INIS)

    Neverov, A.D.; Aleksandrov, P.S.; Kotler, N.I.

    1988-01-01

    The practical use of microcomputers as universal means for converting information for solving applied problems of X-ray radiometric ore separation method is considered. Laboratory tests of two metals - tungsten and tin manifested high efficiency of the developed system. X-ray radiometric separator software is developed

  8. PLEIADES-HR INNOVATIVE TECHNIQUES FOR RADIOMETRIC IMAGE QUALITY COMMISSIONING

    Directory of Open Access Journals (Sweden)

    G. Blanchet

    2012-07-01

    Full Text Available The first Pleiades-HR satellite, part of a constellation of two, has been launched on December 17, 2011. This satellite produces high resolution optical images. In order to achieve good image quality, Pleiades-HR should first undergo an important 6 month commissioning phase period. This phase consists in calibrating and assessing the radiometric and geometric image quality to offer the best images to end users. This new satellite has benefited from technology improvements in various fields which make it stand out from other Earth observation satellites. In particular, its best-in-class agility performance enables new calibration and assessment techniques. This paper is dedicated to presenting these innovative techniques that have been tested for the first time for the Pleiades- HR radiometric commissioning. Radiometric activities concern compression, absolute calibration, detector normalization, and refocusing operations, MTF (Modulation Transfer Function assessment, signal-to-noise ratio (SNR estimation, and tuning of the ground processing parameters. The radiometric performances of each activity are summarized in this paper.

  9. Guidance Trades for Interceptors Not Constrained by Ground-Based Radar

    National Research Council Canada - National Science Library

    Deutsch, Owen

    2000-01-01

    .... New space-based sensor systems such as SBIRS-low are seen as an adjunct that can be used to achieve range extension by cueing of radars and in some concepts, kinematic range extension of interceptors...

  10. Analysis of LARI sensor system: Final report

    International Nuclear Information System (INIS)

    Pfisterer, R.N.; Peterson, G.L.; Breault, R.P.

    1992-01-01

    Los Alamos National Labs (LANL) is developing a new space sensor for examination of global warming effects: this sensor is called LARI (for Los Alamos Radiometric Instrument) and is a next generation follow-on to the ERBE instrument launched several years ago. Breault Research Organization, Inc. (BRO) is pleased to offer engineering consulting services for the development of this sensor. The goal of the consultation is to assist LANL engineers with the conceptual design of the LARI instrument. While the contract specifically stated that computer analyses would not be performed, we felt that some minimum level of computation effort would add more substance to the conclusions

  11. Initial Radiometric Characteristics of KOMPSAT-3A Multispectral Imagery Using the 6S Radiative Transfer Model, Well-Known Radiometric Tarps, and MFRSR Measurements

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2017-02-01

    Full Text Available On-orbit radiometric characterization of the multispectral (MS imagery of the Korea Aerospace Research Institute (KARI’s Korea Multi-Purpose Satellite-3A (KOMPSAT-3A, which was launched on 25 March 2015, was conducted to provide quantitative radiometric information about KOMPSAT-3A. During the in-orbit test (IOT, vicarious radiometric calibration of KOMPSAT-3A was performed using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S radiative transfer model. The characteristics of radiometric tarps, the atmospheric optical depth from multi-filter rotating shadowband radiometer (MFRSR measurements, and sun–sensor–geometry were carefully considered, in order to calculate the exact top of atmosphere (TOA radiance received by KOMPSAT-3A MS bands. In addition, the bidirectional reflectance distribution function (BRDF behaviors of the radiometric tarps were measured in the laboratory with a two-dimensional hyperspectral gonioradiometer, to compensate for the geometry discrepancy between the satellite and the ASD FieldSpec® 3 spectroradiometer. The match-up datasets between the TOA radiance and the digital number (DN from KOMPSAT-3A were used to determine DN-to-radiance conversion factors, based on linear least squares fitting for two field campaigns. The final results showed that the R2 values between the observed and simulated radiances for the blue, green, red, and near-infrared (NIR bands, are greater than 0.998. An approximate error budget analysis for the vicarious calibration of KOMPSAT-3A showed an error of less than 6.8%. When applying the laboratory-based BRDF correction to the case of higher viewing zenith angle geometry, the gain ratio was improved, particularly for the blue (1.3% and green (1.2% bands, which exhibit high sensitivity to the BRDF of radiometric tarps during the backward-scattering phase. The calculated gain ratio between the first and second campaigns showed a less than 5% discrepancy, indicating that

  12. FMCW radar system for detection and classification of small vessels in high sea state conditions

    NARCIS (Netherlands)

    Wasselin, J.-P.; Mazuel, S.; Itcia, E.; Huizing, A.G.; Theil, A.

    2012-01-01

    The ROCKWELL COLLINS France radar department is currently developing a FMCW radar system for the detection and the classification of small maritime targets in the frame of the SISMARIS, SARGOS & I2C projects. Several test campaigns have been conducted since 2009 to develop a sensor as well as an

  13. Autonomous sensor manager agents (ASMA)

    Science.gov (United States)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  14. Phased Array Radar Network Experiment for Severe Weather

    Science.gov (United States)

    Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.

    2017-12-01

    Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.

  15. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  16. Panay carborne radiometric and geochemical surveys

    International Nuclear Information System (INIS)

    Santos, G. Jr.

    1981-09-01

    A carborne radiometric survey and stream sediments collection were conducted in Panay and Guimaras Islands. An area in Nabas, Aklan, situated in the northwestern tip of Panay (Buruanga Peninsula) which indicated 2 to 3 times above background radioactivity was delineated. Uranium content in the stream sediment samples collected from Buruanga Peninsula was generally higher than those obtained in other parts of the island. Radioactivity measurements and uranium content in stream sediments were found to be within background levels. It is recommended that follow-up radiometric and geochemical surveys be undertaken in Buruanga Peninsula and additional stream sediments samples be collected in Panay to achieve better sampling density and coverage. (author)

  17. A millimetre-wave MIMO radar system for threat detection in urban environments

    Science.gov (United States)

    Kirschner, A. J.; Guetlein, J.; Bertl, S.; Detlefsen, J.

    2012-10-01

    The European Defence Agency (EDA) engages countermeasures against Improvised Explosive Devices (IEDs) by funding several scientific programs on threat awareness, countermeasures IEDs or land-mine detection, in which this work is only one of numerous projects. The program, denoted as Surveillance in an urban environment using mobile sensors (SUM), covers the idea of equipping one or more vehicles of a patrol or a convoy with a set of sensors exploiting different physical principles in order to gain detailed insights of the road situation ahead. In order to give an added value to a conventional visual camera system, measurement data from an infra-red (IR) camera, a radiometer and a millimetre-wave radar are fused with data from an optical image and are displayed on a human-machine-interface (HMI) which shall assist the vehicle's co-driver to identify suspect objects or persons on or next to the road without forcing the vehicle to stop its cruise. This paper shall especially cover the role of the millimetre-wave radar sensor and its different operational modes. Measurement results are discussed. It is possible to alter the antenna mechanically which gives two choices for a field of view and angular resolution trade-off. Furthermore a synthetic aperture radar mode is possible and has been tested successfully. MIMO radar principles like orthogonal signal design were exploited tofrom a virtual array by 4 transmitters and 4 receivers. In joint evaluation, it was possible to detect e.g. grenade shells under cardboard boxes or covered metal barrels which were invisible for optical or infra-red detection.

  18. Detection and identification of human targets in radar data

    Science.gov (United States)

    Gürbüz, Sevgi Z.; Melvin, William L.; Williams, Douglas B.

    2007-04-01

    Radar offers unique advantages over other sensors, such as visual or seismic sensors, for human target detection. Many situations, especially military applications, prevent the placement of video cameras or implantment seismic sensors in the area being observed, because of security or other threats. However, radar can operate far away from potential targets, and functions during daytime as well as nighttime, in virtually all weather conditions. In this paper, we examine the problem of human target detection and identification using single-channel, airborne, synthetic aperture radar (SAR). Human targets are differentiated from other detected slow-moving targets by analyzing the spectrogram of each potential target. Human spectrograms are unique, and can be used not just to identify targets as human, but also to determine features about the human target being observed, such as size, gender, action, and speed. A 12-point human model, together with kinematic equations of motion for each body part, is used to calculate the expected target return and spectrogram. A MATLAB simulation environment is developed including ground clutter, human and non-human targets for the testing of spectrogram-based detection and identification algorithms. Simulations show that spectrograms have some ability to detect and identify human targets in low noise. An example gender discrimination system correctly detected 83.97% of males and 91.11% of females. The problems and limitations of spectrogram-based methods in high clutter environments are discussed. The SNR loss inherent to spectrogram-based methods is quantified. An alternate detection and identification method that will be used as a basis for future work is proposed.

  19. Análise comparativa de sensores de velocidade de deslocamento em função da superfície Analysis of speed sensors performance on different surfaces

    Directory of Open Access Journals (Sweden)

    José P. Molin

    2005-12-01

    Full Text Available Um dos fatores que influencia diretamente no desempenho de sistemas mecanizados é a velocidade de deslocamento pela sua importância no planejamento e na execução das operações agrícolas. O objetivo deste trabalho foi avaliar a acurácia de quatro sensores de velocidade, em condições de superfície asfáltica, solo com cobertura vegetal, aclives e declives, acelerações e desacelerações, submetidos a velocidades representativas para aplicações agrícolas. Foram ensaiados dois modelos comerciais de sensores de radar, um sensor de GPS e um sensor óptico. Foram identificadas diferenças significativas para as situações de solo com cobertura vegetal, acelerações e desacelerações. Para a superfície asfáltica, em situação de velocidade constante, os sensores avaliados não apresentaram desempenho com diferença significativa. Os sensores tipo radar demonstraram ser influenciados pela superfície com cobertura vegetal. Na superfície asfáltica, sob condições de aceleração e desaceleração, o sensor de GPS apresentou retardo nos valores de velocidade quando comparado com os demais.One of the factors that influence directly the performance of mechanized systems is the forward speed that is important on planning and managing agricultural operations. The objective of this work was to evaluate the accuracy of four speed sensors, on paved road, vegetated surface, hills, increasing and reducing representative speeds for agricultural applications. Two commercial radars, a GPS sensor and an optical sensor were tested. For the paved road surface, under constant speed, no significant differences were observed on the performance. Radars were influenced by the vegetated surface. On paved road and under acceleration and deceleration the GPS sensor presented delay on its speed values when compared with the other sensors.

  20. Distance Estimation by Fusing Radar and Monocular Camera with Kalman Filter

    OpenAIRE

    Feng, Yuxiang; Pickering, Simon; Chappell, Edward; Iravani, Pejman; Brace, Christian

    2017-01-01

    The major contribution of this paper is to propose a low-cost accurate distance estimation approach. It can potentially be used in driver modelling, accident avoidance and autonomous driving. Based on MATLAB and Python, sensory data from a Continental radar and a monocular dashcam were fused using a Kalman filter. Both sensors were mounted on a Volkswagen Sharan, performing repeated driving on a same route. The established system consists of three components, radar data processing, camera dat...

  1. Urease testing of mycobacteria with BACTEC radiometric instrumentation

    International Nuclear Information System (INIS)

    Damato, J.J.; Collins, M.T.; McClatchy, J.K.

    1982-01-01

    A total of 140 mycobacterial isolates from patients treated at Fitzsimons Army Medical Center or the National Jewish Hospital and Research Center and from animal specimens submitted to the National Veterinary Services Laboratory were tested by using a urease procedure modified for use with a BACTEC model 301. Mycobacterial suspensions were prepared by using Middlebrook 7H10 Tween broth. Of the 98 mycobacteria isolates which were urease positive utilizing standard methodology, all were positive using the radiometric procedures. Similarly, all 42 urease-negative isolates were also negative employing the new methodology. Although maximum radiometric readings were observed at 48 h, all positive strains were readily identified 24 h after inoculation without sacrificing either test sensitivity or specificity. Thus, urease testing of mycobacteria, using the modified BACTEC radiometric methodology, was as sensitive, as specific, and more rapid than conventional methods

  2. Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis

    Science.gov (United States)

    Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.

    2017-03-01

    Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.

  3. A simple radiometric in vitro assay for acetylcholinesterase inhibitors

    International Nuclear Information System (INIS)

    Guilarte, T.R.; Burns, H.D.; Dannals, R.F.; Wagner, H.N. Jr.

    1983-01-01

    A radiometric method for screening acetylcholinesterase inhibitors has been described. The method is based on the production of [ 14 C]carbon dioxide from the hydrolysis of acetylcholine. The inhibitory concentration at 50% (IC50) values for several known acetylcholinesterase inhibitors were in agreement with literature values. The new radiometric method is simple, inexpensive, and has the potential for automation

  4. Integrating Sensor-Collected Intelligence

    Science.gov (United States)

    2008-11-01

    APPENDIX H: ACRONYMS & GLOSSARY OF TERMS______________________________________________ KML Keyhole Markup Language L LADAR Laser Radar LAN Local... close to the sensor as possible. I endorse the Task Force’s findings and recommendations and encourage you to review the report. Dr. William...deeply-buried targets – require that the relevant sensors be in close proximity to the target. The task force discussed the requirements of close -in

  5. Laboratory-Based BRDF Calibration of Radiometric Tarps

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.

    2007-01-01

    The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.

  6. Radar adjusted data versus modelled precipitation: a case study over Cyprus

    Directory of Open Access Journals (Sweden)

    M. Casaioli

    2006-01-01

    Full Text Available In the framework of the European VOLTAIRE project (Fifth Framework Programme, simulations of relatively heavy precipitation events, which occurred over the island of Cyprus, by means of numerical atmospheric models were performed. One of the aims of the project was indeed the comparison of modelled rainfall fields with multi-sensor observations. Thus, for the 5 March 2003 event, the 24-h accumulated precipitation BOlogna Limited Area Model (BOLAM forecast was compared with the available observations reconstructed from ground-based radar data and estimated by rain gauge data. Since radar data may be affected by errors depending on the distance from the radar, these data could be range-adjusted by using other sensors. In this case, the Precipitation Radar aboard the Tropical Rainfall Measuring Mission (TRMM satellite was used to adjust the ground-based radar data with a two-parameter scheme. Thus, in this work, two observational fields were employed: the rain gauge gridded analysis and the observational analysis obtained by merging the range-adjusted radar and rain gauge fields. In order to verify the modelled precipitation, both non-parametric skill scores and the contiguous rain area (CRA analysis were applied. Skill score results show some differences when using the two observational fields. CRA results are instead quite in agreement, showing that in general a 0.27° eastward shift optimizes the forecast with respect to the two observational analyses. This result is also supported by a subjective inspection of the shifted forecast field, whose gross features agree with the analysis pattern more than the non-shifted forecast one. However, some open questions, especially regarding the effect of other range adjustment techniques, remain open and need to be addressed in future works.

  7. Signal processing techniques for damage detection with piezoelectric wafer active sensors and embedded ultrasonic structural radar

    Science.gov (United States)

    Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor

    2004-07-01

    Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.

  8. Sensors Applications, Volume 4, Sensors for Automotive Applications

    Science.gov (United States)

    Marek, Jiri; Trah, Hans-Peter; Suzuki, Yasutoshi; Yokomori, Iwao

    2003-07-01

    An international team of experts from the leading companies in this field gives a detailed picture of existing as well as future applications. They discuss in detail current technologies, design and construction concepts, market considerations and commercial developments. Topics covered include vehicle safety, fuel consumption, air conditioning, emergency control, traffic control systems, and electronic guidance using radar and video. Meeting the growing need for comprehensive information on the capabilities, potentials and limitations of modern sensor systems, Sensors Applications is a book series covering the use of sophisticated technologies and materials for the creation of advanced sensors and their implementation in the key areas process monitoring, building control, health care, automobiles, aerospace, environmental technology and household appliances.

  9. Experimental Implementation of a Passive Millimeter-Wave Fast Sequential Lobing Radiometric Seeker Sensor

    OpenAIRE

    Massimiliano Rossi; Riccardo Maria Liberati; Marco Frasca; Mauro Angelini

    2018-01-01

    The paper investigates the theory of operation of a passive millimeter-wave seeker sensor using a fast electronic sequential-lobing technique and the experimental validation obtained through laboratory trials. The paper analyzes in detail the theoretical performance of a difference channel sensor and a pseudo-monopulse sensor deriving agile formulas for the estimation of target angular tracking accuracy and the subsequent experimental validation.

  10. Radiometric measurement techniques in metallurgy and foundry technology

    International Nuclear Information System (INIS)

    1990-01-01

    The contributions contain informations concerning the present state and development of radiometric measurement techniques in metallurgy and foundry technology as well as their application to the solution of various problems. The development of isotope techniques is briefly described. Major applications of radiometric equipment in industrial measurement are presented together with the use of isotopes to monitor processes of industrial production. This is followed by a short description of numerous laboratory-scale applications. Another contribution deals with fundamental problems and methods of moisture measurement by neutrons. A complex moisture/density measurement device the practical applicability of which has been tested is described here. Possibilities for clay determination in used-up moulding materials are discussed in a further contribution. The clay content can be determined by real-time radiometric density measurement so that the necessary moisture or addition of fresh sand can be controlled. (orig.) With 20 figs., 9 tabs., 178 refs [de

  11. Experimental Implementation of a Passive Millimeter-Wave Fast Sequential Lobing Radiometric Seeker Sensor

    Directory of Open Access Journals (Sweden)

    Massimiliano Rossi

    2018-01-01

    Full Text Available The paper investigates the theory of operation of a passive millimeter-wave seeker sensor using a fast electronic sequential-lobing technique and the experimental validation obtained through laboratory trials. The paper analyzes in detail the theoretical performance of a difference channel sensor and a pseudo-monopulse sensor deriving agile formulas for the estimation of target angular tracking accuracy and the subsequent experimental validation.

  12. Coupled wave sensor technology

    International Nuclear Information System (INIS)

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided

  13. 'RADAR': Euratom's standard unattended data acquisition system

    International Nuclear Information System (INIS)

    Schwalbach, P.; Holzleitner, L.; Jung, S.; Chare, P.; Smejkal, A.; Swinhoe, M.; Kloeckner, W.

    2001-01-01

    Full text: The physical verification of nuclear material is an essential part of Euratom's inspection activities. Industrial plants handling large amounts of bulk material typically require large numbers of measurements. Modem plants, particularly plutonium-handling facilities, are normally automated and make it difficult for the inspector to access the material. Adapting to the plant requirements with respect to safety and security as well as economics (throughput), safeguards instrumentation is today often integrated into the plant. In order to optimize scarce inspection resources, the required measurements as well as the data analysis have to be done automatically as far as feasible. For automatic measurements Euratom has developed a new unattended data acquisition system, called RADAR (Remote Acquisition of Data and Review), which has been deployed to more than a dozen installations, handling more than 100 sensors (neutron and gamma radiations detectors, balances, seals, identity readers, switches, etc.). RADAR is the standard choice for new systems but is also replacing older automatic data systems slowly as they become outdated. RADAR and most of the associated analysis tools are the result of an in-house development, with the support of external software contractors where appropriate. Experience with turn-key systems led, in 1997, to the conclusion that in-house development would be a more effective use of resources than to buy third party products. RADAR has several layers, which will be discussed in detail in the presentation. The inner core of the package consists of services running under Windows NT. This core has watchdog and logging functions, contains a scheduler and takes care of replicating files across a network. Message and file exchange is based on TCP/IP. The replicator service contains compression and encryption facilities, the encryption is based on POP. With the help of routers, e.g. from CISCO, network connections to remote locations can be

  14. On the Use of a 77 GHz Automotive Radar as a Microwave Rain Gauge

    Directory of Open Access Journals (Sweden)

    S. Bertoldo

    2018-02-01

    Full Text Available The European Telecommunications Standards Institute (ETSI defines the frequency band of 77 GHz (W-band as the one dedicated to automatic cruise control long-range radars. A car can be thought as a moving integrated weather sensor since it can provide meteorological information exploiting the sensors installed on board. This work presents the preliminary analysis of how a 77 GHz mini radar can be used as a short range microwave rain gauge. After the discussion of the Mie scattering formulation applied to a microwave rain gauge working in the W-band, the proposal of a new Z-R equation to be used for correct rain estimation is given. Atmospheric attenuation and absorption are estimated taking into account the ITU-T recommendations. Functional requirements in adapting automatic cruise control long-range radar to a microwave rain gauge are analyzed. The technical specifications are determined in order to meet the functional requirements.

  15. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  16. Complex optimization of radiometric control and measurement systems

    International Nuclear Information System (INIS)

    Onishchenko, A.M.

    1995-01-01

    Fundamentals of a new approach to increase in the accuracy of radiometric systems of control and measurements are presented in succession. Block diagram of the new concept of radiometric system optimization is provided. The approach involving radical increase in accuracy and envisages ascertaining of controlled parameter by the totality of two intelligence signals closely correlated with each other. The new concept makes use of system analysis as a unified one-piece object, permitting euristic synthesis of the system. 4 refs., 3 figs

  17. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    Science.gov (United States)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  18. On the design and construction of drifting-mine test targets for sonar, radar and electro-optical detection experiments

    NARCIS (Netherlands)

    Dol, H.S.

    2014-01-01

    The timely detection of small hazardous objects at the sea surface, such as drifting mines, is challenging for ship-mounted sensor systems, both for underwater sensor systems like sonar and above-water sensor systems like radar and electro-optics (lidar, infrared/visual cameras). This is due to the

  19. Field Demonstration of the Ground to Space Laser Calibration: Illumination of NASA’s Earth Observing Sensors

    Data.gov (United States)

    National Aeronautics and Space Administration — We will capitalize on a NASA-NIST partnership to conduct a test illumination of an existing radiometric sensor on orbit. This preliminary demonstration would target...

  20. Radiometric-microbiologic assay fo vitamin B-6: analysis of plasma samples

    International Nuclear Information System (INIS)

    Guilarte, T.R.; McIntyre, P.A.

    1981-01-01

    A radiometric microbiologic assay for the analysis of vitamin B-6 in plasma was developed. The method is based on the measurement of 14CO2 generated from the metabolism of DL-l-14C-valine (L-l-14C-valine) by Kloeckera brevis. The assay is specific for the biologically active forms of the vitamin, that is, pyridoxine, pyridoxal and pyridoxamine, and their respective phosphorylated forms. The biologically inert vitamin B-6 metabolite (4-pyridoxic acid) did not generate a response at concentrations tested. The radiometric technique was shown to be sensitive to the 1 nanogram level. Reproducibility and recovery studies gave good results. Fifteen plasma samples were assayed using the radiometric and turbidimetric techniques. The correlation coefficient was r . 0.98. Turbid material or precipitated debris did not interfere with the radiometric microbiologic assay, thus allowing for simplification of assay procedure

  1. A portable W-band radar system for enhancement of infrared vision in fire fighting operations

    Science.gov (United States)

    Klenner, Mathias; Zech, Christian; Hülsmann, Axel; Kühn, Jutta; Schlechtweg, Michael; Hahmann, Konstantin; Kleiner, Bernhard; Ulrich, Michael; Ambacher, Oliver

    2016-10-01

    In this paper, we present a millimeter wave radar system which will enhance the performance of infrared cameras used for fire-fighting applications. The radar module is compact and lightweight such that the system can be combined with inertial sensors and integrated in a hand-held infrared camera. This allows for precise distance measurements in harsh environmental conditions, such as tunnel or industrial fires, where optical sensors are unreliable or fail. We discuss the design of the RF front-end, the antenna and a quasi-optical lens for beam shaping as well as signal processing and demonstrate the performance of the system by in situ measurements in a smoke filled environment.

  2. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    Fingas, M.; Fruhwirth, M.; Gamble, L.

    1992-01-01

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  3. Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary.

    Science.gov (United States)

    Yu, Zhibin; Zhao, Duo; Zhang, Zhiqiang

    2017-12-26

    Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k -th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences.

  4. Map of natural gamma radiation in Spain: radiometric characterization of different types of surfaces

    International Nuclear Information System (INIS)

    Suarez Mahou, E.; Fernandez Amigot, J.A.; Botas Medina, J.

    1997-01-01

    The gamma radioactivity flowing from ground and rocks is due to the presence in these of uranium, thorium and potassium-40. The method of radiometric characterization depends on the purpose of the undertaking. Radiometric characterization can be realized on big surfaces (tens or hundreds of square kilometres studied on a national scale), medium size surfaces (50 to 1000 square kilometres, for example, in epidemiological or biological studies in areas with a determined radiometric background) small surfaces of less than 50 square kilometres (industrial sites, pre-operational studies, etc.). This article considers aspects of radiometric characterization on surfaces of interest and describes the contribution of the MARNA (Natural Provisional Radiation Map of Spain) Project selection and radiometric characterization

  5. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    Science.gov (United States)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    Discharge estimation at a river site depends on local hydraulic conditions identified by recording water levels. In fact, stage monitoring is straightforward and relatively inexpensive compared with the cost necessary to carry out flow velocity measurements which are, however, limited to low flows and constrained by the accessibility of the site. In this context the mean flow velocity is hard to estimate for high flow, affecting de-facto the reliability of discharge assessment for extreme events. On the other hand, the surface flow velocity can be easily monitored by using radar sensors allowing to achieve a good estimate of discharge by exploiting the entropy theory applied to rivers hydraulic (Chiu,1987). Recently, a growing interest towards the use of Unmanned Aerial Vehicle (UVA), henceforth drone, for topographic applications is observed and considering their capability drones may be of a considerable interest for the hydrological monitoring and in particular for streamflow measurements. With this aim, for the first time, a miniaturized Doppler radar sensor, operating at 24 GHz, will be mounted on a drone to measure the surface flow velocity in rivers. The sensor is constituted by a single-board circuit (i.e. is a fully planar circuits - no waveguides) with the antenna on one side and the front-end electronic on the other side (Alimenti et al., 2007). The antenna has a half-power beam width of less than 10 degrees in the elevation plane and a gain of 13 dBi. The radar is equipped with a monolithic oscillator and transmits a power of about 4 mW at 24 GHz. The sensor is mounted with an inclination of 45 degrees with respect to the drone flying plane and such an angle is considered in recovering the surface speed of the water. The drone is a quadricopter that has more than 30 min, flying time before recharging the battery. Furthermore its flying plan can be scheduled with a suitable software and is executed thanks to the on-board sensors (GPS, accelerometers

  6. CLASSIFIER FUSION OF HIGH-RESOLUTION OPTICAL AND SYNTHETIC APERTURE RADAR (SAR SATELLITE IMAGERY FOR CLASSIFICATION IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    T. Alipour Fard

    2014-10-01

    Full Text Available This study concerned with fusion of synthetic aperture radar and optical satellite imagery. Due to the difference in the underlying sensor technology, data from synthetic aperture radar (SAR and optical sensors refer to different properties of the observed scene and it is believed that when they are fused together, they complement each other to improve the performance of a particular application. In this paper, two category of features are generate and six classifier fusion operators implemented and evaluated. Implementation results show significant improvement in the classification accuracy.

  7. Network connectivity paradigm for the large data produced by weather radar systems

    Science.gov (United States)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona

    2014-05-01

    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  8. Radiometric study of creep in ingot rolling

    International Nuclear Information System (INIS)

    Kubicek, P.; Zamyslovsky, Z.; Uherek, J.

    The radiometric study of creep during ingot rolling performed in the rolling mill of the Vitkovice Iron and Steel Works and the first results are described. Selected sites in 3 to 8 ton ingots were labelled with 2 to 3.7x10 5 Bq of 60 Co and after rolling into blocks, the transposition of the labelled sites of the ingots was investigated. The results indicate creep during rolling, local extension in certain sites under study and help to determine the inevitable bottom crop incurred in the forming. Finally, the requirements put on the radiometric apparatus for the next stages of technological research are presented. (author)

  9. Noise Parameters of CW Radar Sensors Used in Active Defense Systems

    Czech Academy of Sciences Publication Activity Database

    Jeník, V.; Hudec, P.; Pánek, Petr

    2012-01-01

    Roč. 21, č. 2 (2012), s. 632-639 ISSN 1210-2512 Institutional support: RVO:67985882 Keywords : radar * phase noise Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.687, year: 2012

  10. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps

    International Nuclear Information System (INIS)

    Georgiev, Georgi T.; Butler, James J.

    2008-01-01

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg., 10 deg., and 30 deg.; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 deg. incident angle and 12% at 30 deg. incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable

  11. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps.

    Science.gov (United States)

    Georgiev, Georgi T; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  12. Field radiometric methods of prospecting and exploration for uranium ores

    International Nuclear Information System (INIS)

    Gorbushina, L.V.; Savenko, E.I.; Serdyukova, A.S.

    1978-01-01

    The textbook includes two main chapters which describe gamma- and emanation field radiometric methods. The textbook is intended for geology and geophysics students having training practice in field radiometric methods and is additional to the course of lectures. The textbook can be used in the''Radiometry'' course which is studied in appropriate geological and technical colleges

  13. Itinerant radiometric laboratory (IRL-76)

    International Nuclear Information System (INIS)

    Dolgirev, E.I.; Domaratskij, V.P.; Kostikov, Yu.I.

    1978-01-01

    A mobile radiometric laboratory for routine radiation monitoring of the environment, personnel, and population is described. As compared to the previous models, this one incorporates a number of new features and is more informative and versatile. The design and main technical and operating characteristics of the laboratory are detailed

  14. Interim report - performance of laser and radar ranging devices in adverse environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas Hillier; Julian Ryde; Eleonora WidzykCapehart; Graham Brooker; Javier Martinez; Andrew Denman [CSIRO (Australia)

    2008-10-15

    CSIRO in conjunction with CRC Mining and the Australian Centre for Field Robotics (ACFR) conducted a series of controlled experiments to examine the performance of three scanning range devices: two scanning infrared laser range finders and millimetrewave radar. Within the controlled environment, the performance of the devices were tested in various rain, mist and dustcloud conditions. Subsequently, these sensors were installed on a P&H 2800BLE electric rope shovel at the Bracalba Quarry, near Caboolture, Queensland, and the system performance was evaluated. The three scanning range sensors tested as part of this study were: 1. A Riegl LMSQ120 scanning laser range finder; 2. A SICK LMS291S05 scanning laser range finder; and, 3. ACFR's prototype 95GHz millimetrewave radar (2D HSS). The range data from these devices is to be used to construct accurate models of the environment in which the electric rope shovel operates and to, subsequently, make control decisions for its operation. Of the currently available range sensing technologies, it is considered that the infrared laser range finders and millimetrewave radar offer the best means of obtaining this data. This report summarises the results of both the controlled (laboratory) and field testing and presents key findings on sensor performance that are likely to impact the creation of digital models of the terrain surrounding a mining shovel.

  15. The use of radiometric ore sorting on South African gold mines

    International Nuclear Information System (INIS)

    Boehme, R.C.; Freer, J.S.

    1982-01-01

    This paper refers to the radiometric sorting tests reported during the 7th CMMI Congress, and then describes the photometric and radiometric sorter installations in operation and under construction in South Africa at present. As radiometric sorting of gold ores uses the radiation from the uranium content as a tracer, it is essential that the sortability of the ore should be reliably determined before sorting is adopted. The method of obtaining the important ore characteristics is described, with examples. The possible increase in gold production from a hypothetical plant as a result of sorting is shown

  16. A novel method for destriping of OCM-2 data and radiometric performance analysis for improved ocean color data products

    Science.gov (United States)

    Singh, Rakesh Kumar; Shanmugam, Palanisamy

    2018-06-01

    Despite the capability of Ocean Color Monitor aboard Oceansat-2 satellite to provide frequent, high-spatial resolution, visible and near-infrared images for scientific research on coastal zones and climate data records over the global ocean, the generation of science quality ocean color products from OCM-2 data has been hampered by serious vertical striping artifacts and poor calibration of detectors. These along-track stripes are the results of variations in the relative response of the individual detectors of the OCM-2 CCD array. The random unsystematic stripes and bandings on the scene edges affect both visual interpretation and radiometric integrity of remotely sensed data, contribute to confusion in the aerosol correction process, and multiply and propagate into higher level ocean color products generated by atmospheric correction and bio-optical algorithms. Despite a number of destriping algorithms reported in the literature, complete removal of stripes without residual effects and signal distortion in both low- and high-level products is still challenging. Here, a new operational algorithm has been developed that employs an inverted gaussian function to estimate error fraction parameters, which are uncorrelated and vary in spatial, spectral and temporal domains. The algorithm is tested on a large number of OCM-2 scenes from Arabian Sea and Bay of Bengal waters contaminated with severe stripes. The destriping effectiveness of this approach is then evaluated by means of various qualitative and quantitative analyses, and by comparison with the results of the previously reported method. Clearly, the present method is more effective in terms of removing the stripe noise while preserving the radiometric integrity of the destriped OCM-2 data. Furthermore, a preliminary time-dependent calibration of the OCM-2 sensor is performed with several match-up in-situ data to evaluate its radiometric performance for ocean color applications. OCM-2 derived water

  17. Radiometric determination of monoethanolamine with 65ZnSo4

    International Nuclear Information System (INIS)

    Varadan, R.; Sriman Narayanan, S.; Rao, V.R.S.

    1984-01-01

    Determination of milligram amounts of monoethanolamine (MEA) with zinc(II) by radiometric titration is described. When MEA is added to a zinc(II) solution containing sulphate ions at 25 degC, a white solid complex is formed. The formation of this complex is employed for the radiometric determination of MEA with 65 Zn. The amount of MEA is directly proportional to the activity of the complex formed. The method is simple, rapid and accurate. (author)

  18. Ash content of lignites - radiometric analysis

    International Nuclear Information System (INIS)

    Leonhardt, J.; Thuemmel, H.W.

    1986-01-01

    The quality of lignites is governed by the ash content varying in dependence upon the geologic conditions. Setup and function of the radiometric devices being used for ash content analysis in the GDR are briefly described

  19. Automatic detection, tracking and sensor integration

    Science.gov (United States)

    Trunk, G. V.

    1988-06-01

    This report surveys the state of the art of automatic detection, tracking, and sensor integration. In the area of detection, various noncoherent integrators such as the moving window integrator, feedback integrator, two-pole filter, binary integrator, and batch processor are discussed. Next, the three techniques for controlling false alarms, adapting thresholds, nonparametric detectors, and clutter maps are presented. In the area of tracking, a general outline is given of a track-while-scan system, and then a discussion is presented of the file system, contact-entry logic, coordinate systems, tracking filters, maneuver-following logic, tracking initiating, track-drop logic, and correlation procedures. Finally, in the area of multisensor integration the problems of colocated-radar integration, multisite-radar integration, radar-IFF integration, and radar-DF bearing strobe integration are treated.

  20. Smart container UWB sensor system for situational awareness of intrusion alarms

    Science.gov (United States)

    Romero, Carlos E.; Haugen, Peter C.; Zumstein, James M.; Leach, Jr., Richard R.; Vigars, Mark L.

    2013-06-11

    An in-container monitoring sensor system is based on an UWB radar intrusion detector positioned in a container and having a range gate set to the farthest wall of the container from the detector. Multipath reflections within the container make every point on or in the container appear to be at the range gate, allowing intrusion detection anywhere in the container. The system also includes other sensors to provide false alarm discrimination, and may include other sensors to monitor other parameters, e.g. radiation. The sensor system also includes a control subsystem for controlling system operation. Communications and information extraction capability may also be included. A method of detecting intrusion into a container uses UWB radar, and may also include false alarm discrimination. A secure container has an UWB based monitoring system

  1. Design, manufacture, and calibration of infrared radiometric blackbody sources

    International Nuclear Information System (INIS)

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 μm. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 μm, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following

  2. Rainfall measurement based on in-situ storm drainage flow sensors

    DEFF Research Database (Denmark)

    Ahm, Malte; Rasmussen, Michael Robdrup

    2017-01-01

    Data for adjustment of weather radar rainfall estimations are mostly obtained from rain gauge observations. However, the density of rain gauges is often very low. Yet in many urban catchments, runoff sensors are typically available which can measure the rainfall indirectly. By utilising these sen......Data for adjustment of weather radar rainfall estimations are mostly obtained from rain gauge observations. However, the density of rain gauges is often very low. Yet in many urban catchments, runoff sensors are typically available which can measure the rainfall indirectly. By utilising...... these sensors, it may be possible to improve the ground rainfall estimate, and thereby improve the quantitative precipitation estimation from weather radars for urban drainage applications. To test the hypothesis, this paper presents a rainfall measurement method based on flow rate measurements from well......-defined urban surfaces. This principle was used to design a runoff measurement system in a parking structure in Aalborg, Denmark, where it was evaluated against rain gauges. The measurements show that runoff measurements from well-defined urban surfaces perform just as well as rain gauges. This opens up...

  3. The Radiometric Measurement Quantity for SAR Images

    OpenAIRE

    Döring, Björn J.; Schwerdt, Marco

    2013-01-01

    A Synthetic Aperture Radar (SAR) system measures among other quantities the terrain radar reflectivity. After image calibration, the pixel intensities are commonly expressed in terms of radar cross sections (for point targets) or as backscatter coefficients (for distributed targets), which are directly related. This paper argues that pixel intensities are not generally proportional to radar cross section or derived physical quantities. The paper further proposes to replace the inaccurate term...

  4. Radar Exploration of Cometary Nuclei

    Science.gov (United States)

    Gim, Yonggyu; Heggy, E.; Belton, M.; Weissman, P.; Asphaug, E.

    2012-10-01

    We have developed a mission formulation, based on the use of previously flown planetary radar sounding techniques, to image the 3D internal structure of the nucleus of a Jupiter-family comet (JFC). Believed to originate in the outer solar system and to be delivered recently to the inner solar system from the Kuiper Belt, JFCs are among the most primitive bodies accessible by spacecraft, and are indicated in the 2010 Decadal Survey as primary targets for primitive bodies sample return. We consider a sounder design operating at dual frequencies, 5 and 15 MHz center frequencies with 1 and 10 MHz bandwidths, respectively. Operating from close orbit about the nucleus of a spinning comet nucleus, CORE obtains a dense network of echoes that are used to image its interior structure to 10 m and to map the dielectric properties inside the nucleus to better than 200 m throughout. Clear images of internal structure and dielectric composition will reveal how the nucleus was formed and how it has evolved. Radiometric tracking of the spacecraft orbit will provide an interior mass distribution that constrains the radar-based models of interior composition. High-resolution visible and infrared color images provide surface and exterior boundary conditions for interior models and hypotheses. They present the geology and morphology of the nucleus surface at meter-scales, and the time-evolving activity, structure, and composition of the inner coma. By making global yet detailed connections from interior to exterior, the data from CORE will provide answers to fundamental questions about the earliest stages of planetesimal evolution and planet formation, will be an important complement to the Rosetta mission science, and will lay the foundation for comet nucleus sample return.

  5. A Compact, Versatile Six-Port Radar Module for Industrial and Medical Applications

    Directory of Open Access Journals (Sweden)

    Sarah Linz

    2013-01-01

    Full Text Available The Six-port receiver has been intensively investigated in the last decade to be implemented as an alternative radar architecture. Plenty of current scientific publications demonstrate the effectiveness and versatility of the Six-port radar for special industrial, automotive, and medical applications, ranging from accurate contactless vibration analysis, through automotive radar calibration, to remote breath and heartbeat monitoring. Its highlights, such as excellent phase discrimination, trivial signal processing, low circuit complexity, and cost, have lately drawn the attention of companies working with radar technology. A joint project involving the University of Erlangen-Nuremberg and InnoSenT GmbH (Innovative Sensor Technology led to the development of a highly accurate, compact, and versatile Six-port radar module aiming at a reliable high-integration of all subcomponents such as antenna, Six-port front-end, baseband circuitry, and digital signal processing in one single package. Innovative aspects in the RF front-end design as well as in the integration strategy are hereby presented, together with a system overview and measurement results.

  6. Sensors for advanced driver assistance systems; Sensoren fuer Fahrerassistenzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Ritschel, W.; Wixforth, T. [Hella KGaA Hueck und Co., Lippstadt (Germany)

    2004-07-01

    Essential safety applications and those aimed at driver convenience (blind spot surveillance, stop and go, pre-crash, parking assistant) can be effected in vehicles with the aid of radar sensors. The radar sensors used can be differentiated in terms of the bandwidth required (narrow band or ultra-wide band) and in terms of the modulation of the transmission signal (pulse modulation or CW). Ultra-wide band systems at the moment are not eligible for admission and do not conform with the present regulations in the European Union. The sensors currently being developed at hella for production use are characterized by the fact that they cover the primary applications in motor vehicles. In these cases the transmission signals radiated lie within the valid limits currently approved within the European Union. (orig.)

  7. Testing of X-ray radiometric enrichnment of polymetallic ores

    International Nuclear Information System (INIS)

    Eliseev, N.I.; Panova, N.I.; Kirbitova, N.V.; Shramm, E.O.; Efremov, Yu.G.

    1987-01-01

    Testing of X-ray radiometric method of sorting of polymetallic ores using the developed X-ray radiometric device was conducted. It was shown that introduction of preliminary concentration at the factory made the method of fragment separation to be the perspective one, enabling to elevate the factory production with respect to commercial ore and reduce the cost of ore processing. In the case of preliminary concentration, conducted at the mine, it is advisable to perform ore sorting in the flow formed to monolayer

  8. Remote sensing systems – Platforms and sensors: Aerial, satellites, UAVs, optical, radar, and LiDAR: Chapter 1

    Science.gov (United States)

    Panda, Sudhanshu S.; Rao, Mahesh N.; Thenkabail, Prasad S.; Fitzerald, James E.

    2015-01-01

    The American Society of Photogrammetry and Remote Sensing defined remote sensing as the measurement or acquisition of information of some property of an object or phenomenon, by a recording device that is not in physical or intimate contact with the object or phenomenon under study (Colwell et al., 1983). Environmental Systems Research Institute (ESRI) in its geographic information system (GIS) dictionary defines remote sensing as “collecting and interpreting information about the environment and the surface of the earth from a distance, primarily by sensing radiation that is naturally emitted or reflected by the earth’s surface or from the atmosphere, or by sending signals transmitted from a device and reflected back to it (ESRI, 2014).” The usual source of passive remote sensing data is the measurement of reflected or transmitted electromagnetic radiation (EMR) from the sun across the electromagnetic spectrum (EMS); this can also include acoustic or sound energy, gravity, or the magnetic field from or of the objects under consideration. In this context, the simple act of reading this text is considered remote sensing. In this case, the eye acts as a sensor and senses the light reflected from the object to obtain information about the object. It is the same technology used by a handheld camera to take a photograph of a person or a distant scenic view. Active remote sensing, however, involves sending a pulse of energy and then measuring the returned energy through a sensor (e.g., Radio Detection and Ranging [RADAR], Light Detection and Ranging [LiDAR]). Thermal sensors measure emitted energy by different objects. Thus, in general, passive remote sensing involves the measurement of solar energy reflected from the Earth’s surface, while active remote sensing involves synthetic (man-made) energy pulsed at the environment and the return signals are measured and recorded.

  9. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols

    Science.gov (United States)

    Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.

  10. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  11. Modeling response variation for radiometric calorimeters

    International Nuclear Information System (INIS)

    Mayer, R.L. II.

    1986-01-01

    Radiometric calorimeters are widely used in the DOE complex for accountability measurements of plutonium and tritium. Proper characterization of response variation for these instruments is, therefore, vital for accurate assessment of measurement control as well as for propagation of error calculations. This is not difficult for instruments used to measure items within a narrow range of power values; however, when a single instrument is used to measure items over a wide range of power values, improper estimates of uncertainty can result since traditional error models for radiometric calorimeters assume that uncertainty is not a function of sample power. This paper describes methods which can be used to accurately estimate random response variation for calorimeters used to measure items over a wide range of sample powers. The model is applicable to the two most common modes of calorimeter operation: heater replacement and servo control. 5 refs., 4 figs., 1 tab

  12. SIMBIOS Normalized Water-Leaving Radiance Calibration and Validation: Sensor Response, Atmospheric Corrections, Stray Light and Sun Glint. Chapter 14

    Science.gov (United States)

    Mueller, James L.

    2001-01-01

    This Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) contract supports acquisition of match up radiometric and bio-optical data for validation of Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and other ocean color satellites, and evaluation of uncertainty budgets and protocols for in situ measurements of normalized water leaving radiances.

  13. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    Science.gov (United States)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  14. GEOMETRIC AND RADIOMETRIC EVALUATION OF RASAT IMAGES

    Directory of Open Access Journals (Sweden)

    A. Cam

    2016-06-01

    Full Text Available RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space Technologies Research Institute (Ankara. RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD and RGB (15 m GSD bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  15. Radar and Infrared Sensors for Landmine Detection

    National Research Council Canada - National Science Library

    Borchers, Brian

    2001-01-01

    .... Data from the IR camera and GPR system, in conjunction with soil water content measurements have been used to help validate theoretical models of the performance of the IR and GPR sensors for landmine detection...

  16. Mapping Palaeohydrography in Deserts: Contribution from Space-Borne Imaging Radar

    Directory of Open Access Journals (Sweden)

    Philippe Paillou

    2017-03-01

    Full Text Available Space-borne Synthetic Aperture Radar (SAR has the capability to image subsurface features down to several meters in arid regions. A first demonstration of this capability was performed in the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission. Global coverage provided by recent SARs, such as the Japanese ALOS/PALSAR sensor, allowed the mapping of vast ancient hydrographic systems in Northern Africa. We present a summary of palaeohydrography results obtained using PALSAR data over large deserts such as the Sahara and the Gobi. An ancient river system was discovered in eastern Lybia, connecting in the past the Kufrah oasis to the Mediterranean Sea, and the terminal part of the Tamanrasett river was mapped in western Mauritania, ending with a large submarine canyon. In southern Mongolia, PALSAR images combined with topography analysis allowed the mapping of the ancient Ulaan Nuur lake. We finally show the potentials of future low frequency SAR sensors by comparing L-band (1.25 GHz and P-band (435 MHz airborne SAR acquisitions over a desert site in southern Tunisia.

  17. X-ray radiometric separation of low-grade tin ores

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, N.I.; Neverov, A.D.; Konovalov, V.M.; Mironov, I.I.; Zakharov, S.N.

    1984-10-01

    The investigations on evaluation of X-ray radiometric separation of off-grade tin ores of one of the deposits are carried out. The experiments have been performed at loboratory and pilot-commerical plants. /sup 241/Am has been used as a radiation source. In the course of facility commercial the ore has been separated by means of a device comprising a separator and gate separatin device. The results of X-ray radiometric separation have shown its high productive efficiency. Concentrates with higher tin content at high extraction from ores are obtained.

  18. X-ray radiometric separation of low-grade tin ores

    International Nuclear Information System (INIS)

    Kotler, N.I.; Neverov, A.D.; Konovalov, V.M.; Mironov, I.I.; Zakharov, S.N.

    1984-01-01

    The investigations on evaluation of X-ray radiometric separation of off-grade tin ores of one of the deposits are carried out. The experiments have been performed at loboratory and pilot-commerical plants. 241 Am has been used as a radiation source. In the course of facility commercial the ore has been separated by means of a device comprising a separator and gate separatin device. The results of X-ray radiometric separation have shown its high productive efficiency. Concentrates with higher tin content at high extraction from ores are obtained

  19. Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar

    Directory of Open Access Journals (Sweden)

    M. D. Shupe

    2012-06-01

    Full Text Available Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4–6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tethered-balloon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2–3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds.

  20. Collaborative, Rapid Mapping of Water Extents During Hurricane Harvey Using Optical and Radar Satellite Sensors

    Science.gov (United States)

    Muench, R.; Jones, M.; Herndon, K. E.; Bell, J. R.; Anderson, E. R.; Markert, K. N.; Molthan, A.; Adams, E. C.; Shultz, L.; Cherrington, E. A.; Flores, A.; Lucey, R.; Munroe, T.; Layne, G.; Pulla, S. T.; Weigel, A. M.; Tondapu, G.

    2017-12-01

    On August 25, 2017, Hurricane Harvey made landfall between Port Aransas and Port O'Connor, Texas, bringing with it unprecedented amounts of rainfall and flooding. In times of natural disasters of this nature, emergency responders require timely and accurate information about the hazard in order to assess and plan for disaster response. Due to the extreme flooding impacts associated with Hurricane Harvey, delineations of water extent were crucial to inform resource deployment. Through the USGS's Hazards Data Distribution System, government and commercial vendors were able to acquire and distribute various satellite imagery to analysts to create value-added products that can be used by these emergency responders. Rapid-response water extent maps were created through a collaborative multi-organization and multi-sensor approach. One team of researchers created Synthetic Aperture Radar (SAR) water extent maps using modified Copernicus Sentinel data (2017), processed by ESA. This group used backscatter images, pre-processed by the Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (HyP3), to identify and apply a threshold to identify water in the image. Quality control was conducted by manually examining the image and correcting for potential errors. Another group of researchers and graduate student volunteers derived water masks from high resolution DigitalGlobe and SPOT images. Through a system of standardized image processing, quality control measures, and communication channels the team provided timely and fairly accurate water extent maps to support a larger NASA Disasters Program response. The optical imagery was processed through a combination of various band thresholds by using Normalized Difference Water Index (NDWI), Modified Normalized Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI), and cloud masking. Several aspects of the pre-processing and image access were run on internal servers to expedite the provision of images to

  1. Collaborative, Rapid Mapping of Water Extents During Hurricane Harvey Using Optical and Radar Satellite Sensors

    Science.gov (United States)

    Muench, Rebekke; Jones, Madeline; Herndon, Kelsey; Schultz, Lori; Bell, Jordan; Anderson, Eric; Markert, Kel; Molthan, Andrew; Adams, Emily; Cherrington, Emil; hide

    2017-01-01

    On August 25, 2017, Hurricane Harvey made landfall between Port Aransas and Port O'Connor, Texas, bringing with it unprecedented amounts of rainfall and record flooding. In times of natural disasters of this nature, emergency responders require timely and accurate information about the hazard in order to assess and plan for disaster response. Due to the extreme flooding impacts associated with Hurricane Harvey, delineations of water extent were crucial to inform resource deployment. Through the USGS's Hazards Data Distribution System, government and commercial vendors were able to acquire and distribute various satellite imagery to analysts to create value-added products that can be used by these emergency responders. Rapid-response water extent maps were created through a collaborative multi-organization and multi-sensor approach. One team of researchers created Synthetic Aperture Radar (SAR) water extent maps using modified Copernicus Sentinel data (2017), processed by ESA. This group used backscatter images, pre-processed by the Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (HyP3), to identify and apply a threshold to identify water in the image. Quality control was conducted by manually examining the image and correcting for potential errors. Another group of researchers and graduate student volunteers derived water masks from high resolution DigitalGlobe and SPOT images. Through a system of standardized image processing, quality control measures, and communication channels the team provided timely and fairly accurate water extent maps to support a larger NASA Disasters Program response. The optical imagery was processed through a combination of various band thresholds and by using Normalized Difference Water Index (NDWI), Modified Normalized Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI), and cloud masking. Several aspects of the pre-processing and image access were run on internal servers to expedite the provision of

  2. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    Science.gov (United States)

    Gu, Changzhan; Li, Changzhi

    2015-03-16

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  3. The Radiometric Bode's law and Extrasolar Planets

    National Research Council Canada - National Science Library

    Lazio, T. J; Farrell, W. M; Dietrick, Jill; Greenlees, Elizabeth; Hogan, Emily; Jones, Christopher; Hennig, L. A

    2004-01-01

    We predict the radio flux densities of the extrasolar planets in the current census, making use of an empirical relation the radiometric Bode's law determined from the five "magnetic" planets in the solar system...

  4. Performance Analysis of Sensor Systems for Space Situational Awareness

    Science.gov (United States)

    Choi, Eun-Jung; Cho, Sungki; Jo, Jung Hyun; Park, Jang-Hyun; Chung, Taejin; Park, Jaewoo; Jeon, Hocheol; Yun, Ami; Lee, Yonghui

    2017-12-01

    With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a 1-m2 radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.

  5. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  6. Progress in coherent laser radar

    Science.gov (United States)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  7. Software Radar Technology

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-08-01

    Full Text Available In this paper, the definition and the key features of Software Radar, which is a new concept, are proposed and discussed. We consider the development of modern radar system technology to be divided into three stages: Digital Radar, Software radar and Intelligent Radar, and the second stage is just commencing now. A Software Radar system should be a combination of various modern digital modular components conformed to certain software and hardware standards. Moreover, a software radar system with an open system architecture supporting to decouple application software and low level hardware would be easy to adopt "user requirements-oriented" developing methodology instead of traditional "specific function-oriented" developing methodology. Compared with traditional Digital Radar, Software Radar system can be easily reconfigured and scaled up or down to adapt to the changes of requirements and technologies. A demonstration Software Radar signal processing system, RadarLab 2.0, which has been developed by Tsinghua University, is introduced in this paper and the suggestions for the future development of Software Radar in China are also given in the conclusion.

  8. Companies hone in on radar-docking technology

    Science.gov (United States)

    Howell, Elizabeth

    2009-11-01

    As NASA prepares to retire the Space Shuttle next year, two private space firms have tested docking technology that could be used on the next generation of US spacecraft. In September, Canadian firm Neptec tested a new radar system on the Space Shuttle Discovery that allows spacecraft to dock more easily. Meanwhile, Space Exploration Technologies (SpaceX) based in California has revealed that it tested out a new proximity sensor, dubbed "Dragoneye", on an earlier shuttle mission in July.

  9. Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements

    Directory of Open Access Journals (Sweden)

    Juha Lemmetyinen

    2018-01-01

    Full Text Available Current methods for retrieving SWE (snow water equivalent from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm. The use of SAR (Synthetic Aperture Radar at suitable frequencies has been suggested as a potential observation method to overcome the coarse resolution of passive microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable. Active microwave retrievals suffer, however, from the same difficulties as the passive case in separating impacts of scattering efficiency from those of snow mass. In this study, we explore the potential of applying active (radar and passive (radiometer microwave observations in tandem, by using a dataset of co-incident tower-based active and passive microwave observations and detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an effective correlation length for the snowpack (treated as a single layer, which matches the simulated microwave response of a semi-empirical radiative transfer model to observations. This effective parameter is derived from radiometer and radar observations at different frequencies and frequency combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer. Under dry snow conditions, correlations are found between the effective correlation length retrieved from active and passive measurements. Consequently, the derived effective correlation length from passive microwave observations is applied to parameterize the retrieval of SWE using radar, improving retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same concept can be applied to future radar

  10. Perspective of Australian uncooled IR sensor technology

    Science.gov (United States)

    Liddiard, Kevin C.

    2000-12-01

    This paper presents an overview of the development in Australia of resistance bolometer technology and associated uncooled infrared sensors. A summary is given of research achievements, with the aim of placing in historic perspective Australian work in comparison with overseas research and development. Extensive research in this field was carried out at the Defence Science and Technology Organisation (DSTO), Salisbury, South Australia, in collaboration with the Australian microelectronic and electro-optic industries, with supporting research in Australian universities. The DSTO research has a history covering five decades, commencing with simple thin film bolometers employed in radiometric sensors, followed by protracted R&D culminating in development of micromachined focal plane detector arrays for non-imaging sensors and lightweight thermal imagers. DSTO currently maintains a microbolometer processing capability for the purposes of research collaboration and support for commercial initiatives based on patented technology. Expertise in microbolometer design, performance and processing technology has transferred to Electro-optic Sensor Design (EOSD) through a licensing agreement. Contemporary development will be described.

  11. Combining millimeter-wave radar and communication paradigms for automotive applications : a signal processing approach.

    Science.gov (United States)

    2016-05-01

    As driving becomes more automated, vehicles are being equipped with more sensors generating even higher data rates. Radars (RAdio Detection and Ranging) are used for object detection, visual cameras as virtual mirrors, and LIDARs (LIght Detection and...

  12. High resolution radar satellite imagery analysis for safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Christian; Eineder, Michael [German Aerospace Center, Remote Sensing Technology Institute, Department of SAR Signal Processing, Wessling, (Germany); Rezniczek, Arnold [UBA GmbH, Herzogenrath, (Germany); Niemeyer, Irmgard [Forschungszentrum Juelich, Institue of Energy and Climate Research, IEK-6: Nuclear Waste Management and Reactor Safety, Juelich, (Germany)

    2011-12-15

    For monitoring nuclear sites, the use of Synthetic Aperture Radar (SAR) imagery shows essential promises. Unlike optical remote sensing instruments, radar sensors operate under almost all weather conditions and independently of the sunlight, i.e. time of the day. Such technical specifications are required both for continuous and for ad-hoc, timed surveillance tasks. With Cosmo-Skymed, TerraSARX and Radarsat-2, high-resolution SAR imagery with a spatial resolution up to 1m has recently become available. Our work therefore aims to investigate the potential of high-resolution TerraSAR data for nuclear monitoring. This paper focuses on exploiting amplitude of a single acquisition, assessing amplitude changes and phase differences between two acquisitions, and PS-InSAR processing of an image stack.

  13. Ultra-sensitive radionuclide spectrometry. Radiometrics and mass spectrometry synergy

    International Nuclear Information System (INIS)

    Povinec, P.P.

    2005-01-01

    Recent developments in radiometrics and mass spectrometry techniques for ultra-sensitive analysis of radionuclides in the marine environment are reviewed. In the radiometrics sector the dominant development has been the utilization of large HPGe detectors in underground laboratories with anti-cosmic or anti-Compton shielding for the analysis of short and medium-lived radionuclides in the environment. In the mass spectrometry sector, applications of inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS) for the analysis of long-lived radionuclides in the environment are the most important recent achievements. The recent developments do not only considerably decrease the detection limits for several radionuclides (up to several orders of magnitude), but they also enable to decrease sample volumes so that sampling, e.g., of the water column can be much easier and more effective. A comparison of radiometrics and mass spectrometry results for the analysis of radionuclides in the marine environment shows a reasonable agreement - within quoted uncertainties, for wide range of activities and different sample matrices analyzed. (author)

  14. Prediction of buried mine-like target radar signatures using wideband electromagnetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Warrick, A.L.; Azevedo, S.G.; Mast, J.E.

    1998-04-06

    Current ground penetrating radars (GPR) have been tested for land mine detection, but they have generally been costly and have poor performance. Comprehensive modeling and experimentation must be done to predict the electromagnetic (EM) signatures of mines to access the effect of clutter on the EM signature of the mine, and to understand the merit and limitations of using radar for various mine detection scenarios. This modeling can provide a basis for advanced radar design and detection techniques leading to superior performance. Lawrence Livermore National Laboratory (LLNL) has developed a radar technology that when combined with comprehensive modeling and detection methodologies could be the basis of an advanced mine detection system. Micropower Impulse Radar (MIR) technology exhibits a combination of properties, including wideband operation, extremely low power consumption, extremely small size and low cost, array configurability, and noise encoded pulse generation. LLNL is in the process of developing an optimal processing algorithm to use with the MIR sensor. In this paper, we use classical numerical models to obtain the signature of mine-like targets and examine the effect of surface roughness on the reconstructed signals. These results are then qualitatively compared to experimental data.

  15. Preliminary Assessment of Suomi-NPP VIIRS On-orbit Radiometric Performance

    Science.gov (United States)

    Oudrari, Hassan; DeLuccia, Frank; McIntire, Jeff; Moyer, David; Chiang, Vincent; Xiong, Xiao-xiong; Butler, James

    2012-01-01

    The Visible-Infrared Imaging Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polar-orbiting Partnership (NPP) spacecraft that was launched on October 28th 2011. VIIRS was designed to provide moderate and imaging resolution of most of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370.and 740 m at nadir for imaging and moderate bands, respectively. It has 22 spectral bands covering the spectrum between 0.412 11m and 12.01 11m, including 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and 1 day-night band (ON B). VIIRS observations are used to generate 22 environmental data products (EORs). This paper will briefly describe NPP VIIRS calibration strategies performed by the independent government team, for the initial on-orbit Intensive Calibration and Validation (ICV) activities. In addition, this paper will provide an early assessment of the sensor on-orbit radiometric performance, such as the sensor signal to noise ratios (SNRs), dual gain transition verification, dynamic range and linearity, reflective bands calibration based on the solar diffuser (SO) and solar diffuser stability monitor (SOSM), and emissive bands calibration based on the on-board blackbody calibration (OBC). A comprehensive set of performance metrics generated during the pre-launch testing program will be compared to VIIRS on-orbit early performance, and a plan for future cal/val activities and performance enhancements will be presented.

  16. Automotive sensors: past, present and future

    International Nuclear Information System (INIS)

    Prosser, S J

    2007-01-01

    This paper will provide a review of past, present and future automotive sensors. Today's vehicles have become highly complex sophisticated electronic control systems and the majority of innovations have been solely achieved through electronics and the use of advanced sensors. A range of technologies have been used over the past twenty years including silicon microengineering, thick film, capacitive, variable reluctance, optical and radar. The automotive sensor market continues to grow with respect to vehicle production level in recognition of the transition to electronically controlled electrically actuated systems. The environment for these sensors continues to be increasingly challenging with respect to robustness, reliability, quality and cost

  17. Automotive sensors: past, present and future

    Science.gov (United States)

    Prosser, S. J.

    2007-07-01

    This paper will provide a review of past, present and future automotive sensors. Today's vehicles have become highly complex sophisticated electronic control systems and the majority of innovations have been solely achieved through electronics and the use of advanced sensors. A range of technologies have been used over the past twenty years including silicon microengineering, thick film, capacitive, variable reluctance, optical and radar. The automotive sensor market continues to grow with respect to vehicle production level in recognition of the transition to electronically controlled electrically actuated systems. The environment for these sensors continues to be increasingly challenging with respect to robustness, reliability, quality and cost.

  18. Tsunami Arrival Detection with High Frequency (HF Radar

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  19. Radiometric determination in situ of the face grades in Witwatersrand gold and uranium mines

    International Nuclear Information System (INIS)

    Smit, C.J.B.

    1985-01-01

    A prototype collimated radiometric face scanner was tested in the Harmony Gold Mine. The results obtained during the pilot study indicate that in situ radiometric uranium assays are statistically indistinguishable from those obtained conventionally from channel chip samples. In addition, the study demonstrated that reasonably reliable gold estimates can be deduced from the radiometric measurements, by use of the ratio of gold to uranium within a mine. The instrumentation, calibration procedures, and background determination are described briefly

  20. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  1. Multielemental X-ray radiometric analysis of ferromanganese concretions

    International Nuclear Information System (INIS)

    Metelev, A.Yu.; Grigor'ev, A.I.; Rakita, K.A.; Mamaenko, M.V.; Ivanenko, V.V.

    1994-01-01

    Ferromanganese concretions are promising mineral resources of the ocean. Most often, they are analyzed by atomic-absorption, spectra, X-ray spectral, neutron-activation, and X-ray radiometric methods. Note that X-ray radiometric analysis (XRRA) allows the sufficiently rapid determination of a great number of elements in ferromanganese concretions. The possibility of using XRRA with saturated and thin layers was shown; however, the data on the precision and accuracy of the technique was not given. The purpose of this study is to evaluate the basic performance characteristics of the multielemental X-ray radiometric analysis of ferromanganese concretions (Pacific Ocean). Determinations for K,Ca and Ti content were made using a 55 Fe source and for Mn, Fe, Ni, Cu, Zn, Pb, Sr, Y, Zr, Nb, and Mo contents by using a 109 Cd source. The precision and accuracy of the method was investigated by using reference concretions; it was found the confidence intervals overlap for all of the elements except Ca and Pb. The relative standard deviation was 1-5%, indicating the high precision of the method. The described technique is successfully used on research vessels of the Far East Division of the Russian Academy of Sciences and in South Pacific Ocean geological expeditions of PO open-quotes Dal'morgeologiyaclose quotes

  2. Probabilistic discrimination between liquid rainfall events, hailstorms, biomass burning and industrial fires from C-Band Radar Polarimetric Variables

    Science.gov (United States)

    Valencia, J. M.; Sepúlveda, J.; Hoyos, C.; Herrera, L.

    2017-12-01

    Characterization and identification of fire and hailstorm events using weather radar data in a tropical complex topography region is an important task in risk management and agriculture. Polarimetric variables from a C-Band Dual polarization weather radar have potential uses in particle classification, due to the relationship their sensitivity to shape, spatial orientation, size and fall behavior of particles. In this sense, three forest fires and two chemical fires were identified for the Áburra Valley regions. Measurements were compared between each fire event type and with typical data radar retrievals for liquid precipitation events. Results of this analysis show different probability density functions for each type of event according to the particles present in them. This is very important and useful result for early warning systems to avoid precipitation false alarms during fire events within the study region, as well as for the early detection of fires using radar retrievals in remote cases. The comparative methodology is extended to hailstorm cases. Complementary sensors like laser precipitation sensors (LPM) disdrometers and meteorological stations were used to select dates of solid precipitation occurrence. Then, in this dates weather radar data variables were taken in pixels surrounding the stations and solid precipitation polar values were statistically compared with liquid precipitation values. Spectrum precipitation measured by LPM disdrometer helps to define typical features like particles number, fall velocities and diameters for both precipitation types. In addition, to achieve a complete hailstorm characterization, other meteorological variables were analyzed: wind field from meteorological stations and radar wind profiler, profiling data from Micro Rain Radar (MRR), and thermodynamic data from a microwave radiometer.

  3. Radiometric survey in sampling areas of Itataia mine ore and radiometric monitoring in Itataia project sites

    International Nuclear Information System (INIS)

    1982-07-01

    This radiometric survey was done by CDTN, in Itataia sites, on July/82 and it aimed fundamentally to evaluate local radiological conditions, as for aspect of occupational radiation protection. Besides of results obtained, this report has informations of general aspects that ought to serve as subsidies for elaboration of radiological protection program of local. (author) [pt

  4. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  5. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    Science.gov (United States)

    Justice, C.; Fusco, L.; Mehl, W.

    1985-01-01

    The NASA raw (BT) product, the radiometrically corrected (AT) product, and the radiometrically and geometrically corrected (PT) product of a TM scene were analyzed examine the frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band. The analyses were performed on a series of image subsets from the full scence. Results are presented from one 1024 c 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. From this cursory examination of one of the first seven channel TM data sets, it would appear that the radiometric performance of the system is most satisfactory and largely meets pre-launch specifications. Problems were noted with Band 5 Detector 3 and Band 2 Detector 4. Differences were observed between forward and reverse scan detector responses both for the BT and AT products. No systematic variations were observed between odd and even detectors.

  6. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  7. Fpga based L-band pulse doppler radar design and implementation

    Science.gov (United States)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed

  8. RADIOMETRIC CALIBRATION OF MARS HiRISE HIGH RESOLUTION IMAGERY BASED ON FPGA

    Directory of Open Access Journals (Sweden)

    Y. Hou

    2016-06-01

    Full Text Available Due to the large data amount of HiRISE imagery, traditional radiometric calibration method is not able to meet the fast processing requirements. To solve this problem, a radiometric calibration system of HiRISE imagery based on field program gate array (FPGA is designed. The montage gap between two channels caused by gray inconsistency is removed through histogram matching. The calibration system is composed of FPGA and DSP, which makes full use of the parallel processing ability of FPGA and fast computation as well as flexible control characteristic of DSP. Experimental results show that the designed system consumes less hardware resources and the real-time processing ability of radiometric calibration of HiRISE imagery is improved.

  9. Improved characterization of scenes with a combination of MMW radar and radiometer information

    Science.gov (United States)

    Dill, Stephan; Peichl, Markus; Schreiber, Eric; Anglberger, Harald

    2017-05-01

    For security related applications MMW radar and radiometer systems in remote sensing or stand-off configurations are well established techniques. The range of development stages extends from experimental to commercial systems on the civil and military market. Typical examples are systems for personnel screening at airports for concealed object detection under clothing, enhanced vision or landing aid for helicopter and vehicle based systems for suspicious object or IED detection along roads. Due to the physical principle of active (radar) and passive (radiometer) MMW measurement techniques the appearance of single objects and thus the complete scenario is rather different for radar and radiometer images. A reasonable combination of both measurement techniques could lead to enhanced object information. However, some technical requirements should be taken into account. The imaging geometry for both sensors should be nearly identical, the geometrical resolution and the wavelength should be similar and at best the imaging process should be carried out simultaneously. Therefore theoretical and experimental investigations on a suitable combination of MMW radar and radiometer information have been conducted. First experiments in 2016 have been done with an imaging linescanner based on a cylindrical imaging geometry [1]. It combines a horizontal line scan in azimuth with a linear motion in vertical direction for the second image dimension. The main drawback of the system is the limited number of pixel in vertical dimension at a certain distance. Nevertheless the near range imaging results where promising. Therefore the combination of radar and radiometer sensor was assembled on the DLR wide-field-of-view linescanner ABOSCA which is based on a spherical imaging geometry [2]. A comparison of both imaging systems is discussed. The investigations concentrate on rather basic scenarios with canonical targets like flat plates, spheres, corner reflectors and cylinders. First

  10. The perspectives of development of radiometric techniques for welded joints testing

    International Nuclear Information System (INIS)

    Troitskij, V.A.; Dovzhenko, V.N.

    1987-01-01

    The perspectives of development of radiometric techniques in non-destructive testing are presented. The problems of computer tomography, radiometric introscopy, electrorentgenography (xeroradiography) are reviewed. The aspects of application of low-silver detectors are also analysed. The studies on the problems mentioned above will be continued in order to eliminate expensive radiographic films and having in mind making the testing process faster. The design of individual dosemeters is also demonstrated. (author)

  11. Combined Lidar-Radar Remote Sensing: Initial Results from CRYSTAL-FACE and Implications for Future Spaceflight Missions

    Science.gov (United States)

    McGill, Matthew J.; Li, Li-Hua; Hart, William D.; Heymsfield, Gerald M.; Hlavka, Dennis L.; Vaughan, Mark A.; Winker, David M.

    2003-01-01

    In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter lidar and a 94-GHz cloud profiling radar in formation to provide complete global profiling of cloud and aerosol properties. The CRYSTAL-FACE field campaign, conducted during July 2002, provided the first high-altitude colocated measurements from lidar and cloud profiling radar to simulate these spaceborne sensors. The lidar and radar provide complementary measurements with varying degrees of measurement overlap. This paper presents initial results of the combined airborne lidar-radar measurements during CRYSTAL-FACE. The overlap of instrument sensitivity is presented, within the context of particular CRYSTAL-FACE conditions. Results are presented to quantify the portion of atmospheric profiles sensed independently by each instrument and the portion sensed simultaneously by the two instruments.

  12. Simulation and Prediction of Weather Radar Clutter Using a Wave Propagator on High Resolution NWP Data

    DEFF Research Database (Denmark)

    Benzon, Hans-Henrik; Bovith, Thomas

    2008-01-01

    for prediction of this type of weather radar clutter is presented. The method uses a wave propagator to identify areas of potential non-standard propagation. The wave propagator uses a three dimensional refractivity field derived from the geophysical parameters: temperature, humidity, and pressure obtained from......Weather radars are essential sensors for observation of precipitation in the troposphere and play a major part in weather forecasting and hydrological modelling. Clutter caused by non-standard wave propagation is a common problem in weather radar applications, and in this paper a method...... a high-resolution Numerical Weather Prediction (NWP) model. The wave propagator is based on the parabolic equation approximation to the electromagnetic wave equation. The parabolic equation is solved using the well-known Fourier split-step method. Finally, the radar clutter prediction technique is used...

  13. Evaluation of a radar-based proximity warning system for off-highway dump trucks.

    Science.gov (United States)

    Ruff, Todd

    2006-01-01

    A radar-based proximity warning system was evaluated by researchers at the Spokane Research Laboratory of the National Institute for Occupational Safety and Health to determine if the system would be effective in detecting objects in the blind spots of an off-highway dump truck. An average of five fatalities occur each year in surface mines as a result of an equipment operator not being aware of a smaller vehicle, person or change in terrain near the equipment. Sensor technology that can detect such obstacles and that also is designed for surface mining applications is rare. Researchers worked closely with the radar system manufacturer to test and modify the system on large, off-highway dump trucks at a surface mine over a period of 2 years. The final system was thoroughly evaluated by recording video images from a camera on the rear of the truck and by recording all alarms from the rear-mounted radar. Data show that the system reliably detected small vehicles, berms, people and other equipment. However, alarms from objects that posed no immediate danger were common, supporting the assertion that sensor-based systems for proximity warning should be used in combination with other devices, such as cameras, that would allow the operator to check the source of any alarm.

  14. Generic framework for vessel detection and tracking based on distributed marine radar image data

    Science.gov (United States)

    Siegert, Gregor; Hoth, Julian; Banyś, Paweł; Heymann, Frank

    2018-04-01

    Situation awareness is understood as a key requirement for safe and secure shipping at sea. The primary sensor for maritime situation assessment is still the radar, with the AIS being introduced as supplemental service only. In this article, we present a framework to assess the current situation picture based on marine radar image processing. Essentially, the framework comprises a centralized IMM-JPDA multi-target tracker in combination with a fully automated scheme for track management, i.e., target acquisition and track depletion. This tracker is conditioned on measurements extracted from radar images. To gain a more robust and complete situation picture, we are exploiting the aspect angle diversity of multiple marine radars, by fusing them a priori to the tracking process. Due to the generic structure of the proposed framework, different techniques for radar image processing can be implemented and compared, namely the BLOB detector and SExtractor. The overall framework performance in terms of multi-target state estimation will be compared for both methods based on a dedicated measurement campaign in the Baltic Sea with multiple static and mobile targets given.

  15. Modified and reverse radiometric flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Ba, H; Khin, M M; Aung, K; Thida, [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-06-01

    Determination of [sup 137]Cs and [sup 60]Co by using modified and reverse radiometric flow injection analysis is described. Two component RFIA was also realized using [sup 60]Co and [sup 137]Cs radionuclides. (author) 2 refs.; 5 figs.

  16. The stars: an absolute radiometric reference for the on-orbit calibration of PLEIADES-HR satellites

    Science.gov (United States)

    Meygret, Aimé; Blanchet, Gwendoline; Mounier, Flore; Buil, Christian

    2017-09-01

    The accurate on-orbit radiometric calibration of optical sensors has become a challenge for space agencies who gather their effort through international working groups such as CEOS/WGCV or GSICS with the objective to insure the consistency of space measurements and to reach an absolute accuracy compatible with more and more demanding scientific needs. Different targets are traditionally used for calibration depending on the sensor or spacecraft specificities: from on-board calibration systems to ground targets, they all take advantage of our capacity to characterize and model them. But achieving the in-flight stability of a diffuser panel is always a challenge while the calibration over ground targets is often limited by their BDRF characterization and the atmosphere variability. Thanks to their agility, some satellites have the capability to view extra-terrestrial targets such as the moon or stars. The moon is widely used for calibration and its albedo is known through ROLO (RObotic Lunar Observatory) USGS model but with a poor absolute accuracy limiting its use to sensor drift monitoring or cross-calibration. Although the spectral irradiance of some stars is known with a very high accuracy, it was not really shown that they could provide an absolute reference for remote sensors calibration. This paper shows that high resolution optical sensors can be calibrated with a high absolute accuracy using stars. The agile-body PLEIADES 1A satellite is used for this demonstration. The star based calibration principle is described and the results are provided for different stars, each one being acquired several times. These results are compared to the official calibration provided by ground targets and the main error contributors are discussed.

  17. Intensive probing of clear air convective fields by radar and instrumented drone aircraft.

    Science.gov (United States)

    Rowland, J. R.

    1972-01-01

    Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.

  18. Cassini RADAR Observations of Phoebe, Iapetus, Enceladus, and Rhea

    Science.gov (United States)

    Ostro, S. J.; West, R. D.; Janssen, M. A.; Zebker, H. A.; Wye, L. C.; Lunine, J. I.; Lopes, R. M.; Kelleher, K.; Hamilton, G. A.; Gim, Y.; Anderson, Y. Z.; Boehmer, R. A.; Lorenz, R. D.

    2005-12-01

    Operating in its scatterometry mode, the Cassini radar has obtained 2.2-cm-wavelength echo power spectra from Phoebe on the inbound and outbound legs of its flyby (subradar points at W. Long, Lat. = 245,-22 deg and 328,+27 deg), from Iapetus' leading side (66,+39 deg) and trailing side (296,+44 deg) on the inbound and outbound legs of orbit BC, from Enceladus during orbits 3 (0,0 deg) and 4 (70,-13 deg), and from Rhea during orbit 11 (64,-77 deg). Our echo spectra, obtained in the same linear (SL) polarization as transmitted, are broad, nearly featureless, and much stronger than expected if the echoes were due just to single backreflections. Rather, volume scattering from the subsurface probably is primarily responsible for the echoes. This conclusion is supported by the strong anticorrelation between our targets' radar albedos (radar cross section divided by target projected area) and disc brightness temperatures estimated from passive radiometric measurements obtained during each radar flyby. Taking advantage of the available information about the radar properties of the icy satellites of Saturn and Jupiter, especially the linear- and circular-polarization characteristics of groundbased echoes from the icy Galilean satellites (Ostro et al. 1992, J. Geophys. Res. 97, 18227-18244), we estimate our targets' 2.2-cm total-power (TP) albedos and compare them to Arecibo and Goldstone values for icy satellites at 3.5, 13, and 70 cm. Our four targets' albedos span an order of magnitude and decrease in the same order as their optical albedos: Enceladus/Rhea/Iapetus/Phoebe. This sequence most likely corresponds to increasing contamination of near-surface water ice, whose extremely low electrical loss at radio wavelengths permits the multiple scattering responsible for high radar albedos. Plausible candidates for contaminants causing variations in radar albedo include ammonia, silicates, and polar organics. Modeling of icy Galilean satellite echoes indicates that penetration

  19. Radiometric Cross-Calibration of GF-4 in Multispectral Bands

    Directory of Open Access Journals (Sweden)

    Aixia Yang

    2017-03-01

    Full Text Available The GaoFen-4 (GF-4, launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like the charge-coupled device (CCD onboard HuanJing-1 (HJ or the wide field of view sensor (WFV onboard GaoFen-1 (GF-1, GF-4 also has a wide field of view, which provides challenges for cross-calibration with narrow field of view sensors, like the Landsat series. A new technique has been developed and used to calibrate HJ-1/CCD and GF-1/WFV, which is verified viable. The technique has three key steps: (1 calculate the surface using the bi-directional reflectance distribution function (BRDF characterization of a site, taking advantage of its uniform surface material and natural topographic variation using Landsat Enhanced Thematic Mapper Plus (ETM+/Operational Land Imager (OLI imagery and digital elevation model (DEM products; (2 calculate the radiance at the top-of-the atmosphere (TOA with the simulated surface reflectance using the atmosphere radiant transfer model; and (3 fit the calibration coefficients with the TOA radiance and corresponding Digital Number (DN values of the image. This study attempts to demonstrate the technique is also feasible to calibrate GF-4 multispectral bands. After fitting the calibration coefficients using the technique, extensive validation is conducted by cross-validation using the image pairs of GF-4/PMS and Landsat-8/OLI with similar transit times and close view zenith. The validation result indicates a higher accuracy and frequency than that given by the China Centre for Resources Satellite Data and Application (CRESDA using vicarious calibration. The study shows that the new technique is also quite feasible for GF-4 multispectral bands as a routine long-term procedure.

  20. Spaceborne Radar for Mapping Forest and Land Use Changes

    DEFF Research Database (Denmark)

    Joshi, Neha Pankaj

    Degradation (REDD+). The implementation and effectiveness of such mechanisms relies partially on continuous observations of forests using satellite technology and partially on ground-based measurements of forest aboveground volume/biomass (AGV/AGB), carbon density and changes therein. Together, these means...... of forest monitoring enable the development of policies and measures to alter current trends in global forest and biodiversity loss. This thesis investigates the use of long wavelength (~23 cm, L-band) spaceborne radar, which has all-weather and canopy-penetration capabilities, acquired by the Advanced Land...... Observing Satellite (ALOS) for forest monitoring. Using a combination of local expert knowledge, plot inventories, and data from lidar and optical sensors, it aims to understand (1) whether forest disturbance dynamics may be detected with radar, and (2) what physical and macroecological properties influence...

  1. Introduction to sensors for ranging and imaging

    CERN Document Server

    Brooker, Graham

    2009-01-01

    ""This comprehensive text-reference provides a solid background in active sensing technology. It is concerned with active sensing, starting with the basics of time-of-flight sensors (operational principles, components), and going through the derivation of the radar range equation and the detection of echo signals, both fundamental to the understanding of radar, sonar and lidar imaging. Several chapters cover signal propagation of both electromagnetic and acoustic energy, target characteristics, stealth, and clutter. The remainder of the book introduces the range measurement process, active ima

  2. Effect of MODIS Terra Radiometric Calibration Improvements on Collection 6 Deep Blue Aerosol Products: Validation and Terra/Aqua Consistency

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.

    2015-01-01

    The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset <0.01. The analysis demonstrates both the efficacy of the new radiometric calibration efforts and that the C6 MODIS Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.

  3. Radiometric and dosimetric characteristics of HgI2 detectors

    International Nuclear Information System (INIS)

    Zaletin, V.M.; Krivozubov, O.V.; Torlin, M.A.; Fomin, V.I.

    1988-01-01

    The characteristics of HgI 2 detectors in x-ray and gamma detection in applications to radiometric and dosimetric monitoring and as portable instruments for such purposes was considered. Blocks with mosaic and sandwich structures were prepared and tested against each other and, for comparative purposes, against CdTe detectors for relative sensitivities at various gamma-quanta energies. Sensitivity dependencies on gamma radiation energy were plotted for the detector materials and structures as were current dependencies on the dose rate of x rays. Results indicated that the mercury iodide detectors could be used in radiometric and dosimetric measurements at gamma quantum energies up to and in excess of 1000 KeV

  4. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  5. A New Tool for Intelligent Parallel Processing of Radar/SAR Remotely Sensed Imagery

    Directory of Open Access Journals (Sweden)

    A. Castillo Atoche

    2013-01-01

    Full Text Available A novel parallel tool for large-scale image enhancement/reconstruction and postprocessing of radar/SAR sensor systems is addressed. The proposed parallel tool performs the following intelligent processing steps: image formation, for the application of different system-level effects of image degradation with a particular remote sensing (RS system and simulation of random noising effects, enhancement/reconstruction by employing nonparametric robust high-resolution techniques, and image postprocessing using the fuzzy anisotropic diffusion technique which incorporates a better edge-preserving noise removal effect and faster diffusion process. This innovative tool allows the processing of high-resolution images provided with different radar/SAR sensor systems as required by RS endusers for environmental monitoring, risk prevention, and resource management. To verify the performance implementation of the proposed parallel framework, the processing steps are developed and specifically tested on graphic processing units (GPU, achieving considerable speedups compared to the serial version of the same techniques implemented in C language.

  6. Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle

    DEFF Research Database (Denmark)

    Hermann, Dan; Galeazzi, Roberto; Andersen, Jens Christian

    2015-01-01

    This paper describes an obstacle detection system for a high-speed and agile unmanned surface vehicle (USV), running at speeds up to 30 m/s. The aim is a real-time and high performance obstacle detection system using both radar and vision technologies to detect obstacles within a range of 175 m. ...... performance using sensor fusion of radar and computer vision....

  7. Discrepancy between growth of Coccidioides immitis in bacterial blood culture media and a radiometric growth index

    International Nuclear Information System (INIS)

    Ampel, N.M.; Wieden, M.A.

    1988-01-01

    Spherules of Coccidioides immitis grew readily after inoculation in vented trypticase soy broth, biphasic brain heart infusion media, and aerobic tryptic soy broth bottles used in a radiometric system (BACTEC). However, visible growth was not accompanied by a significant radiometric growth index. Growth of C. immitis can be visually detected in routine bacterial blood culture media while the radiometric growth index remains negative

  8. Application of ranging technique of radar level meter for draft survey

    Directory of Open Access Journals (Sweden)

    SHEN Yijun

    2017-12-01

    Full Text Available [Objectives] This paper aims to solve the problems of the high subjectivity and low accuracy and efficiency of draft surveying relying on human visual inspection.[Methods] Radar-level oil and liquid measurement technology products are widely used in the petrochemical industry. A device is developed that uses radar to survey the draft of a boat, designed with data series optimization formulae to ensure that the data results are true and correct. At the same time, a test is designed to prove the accuracy of the results.[Results] According to the conditions of the ship,the device is composed of a radar sensor, triangular bracket and display,and is put to use in the test.[Conclusions] With 15 vessels as the research objects,the comparison experiment shows a difference in range between 0.001-0.022 meters, with an average difference rate of 0.028%, which meets the requirements for ship draft survey accuracy.

  9. A Study on Relative Radiometric Calibration without Calibration Field for YG-25

    Directory of Open Access Journals (Sweden)

    ZHANG Guo

    2017-08-01

    Full Text Available YG-25 is the first agility optical remote sensing satellite of China to acquire the sub-meter imagery of the earth. The side slither calibration technique is an on-orbit maneuver that has been used to flat-field image data acquired over the uniform calibration field. However, imaging to the single uniform calibration field cannot afford to calibrate the full dynamic response range of the sensor and reduces the efficiency. The paper proposes a new relative radiometric calibration method that a 90-degree yaw maneuver is performed over any non-uniform features of the Earth for YG-25. Meanwhile, we use an enhanced side slither image horizontal correction method based on line segment detector(LSDalgorithm to solve the side slither image over-shifted problem.The shifted results are compared with other horizontal correction method. The histogram match algorithm is used to calculate the relative gains of all detectors. The correctness and validity of the proposed method are validated by using the YG-25 on-board side slither data. The results prove that the mean streaking metrics of relative correction images of YG-25 is better 0.07%, the noticeable striping artifact and residual noise are removed, the calibration accuracy of side slither technique based on non-uniform features is superior to life image statistics of sensor's life span.

  10. SAR-EDU - An education initiative for applied Synthetic Aperture Radar remote sensing

    Science.gov (United States)

    Eckardt, Robert; Richter, Nicole; Auer, Stefan; Eineder, Michael; Roth, Achim; Hajnsek, Irena; Walter, Diana; Braun, Matthias; Motagh, Mahdi; Pathe, Carsten; Pleskachevsky, Andrey; Thiel, Christian; Schmullius, Christiane

    2013-04-01

    Since the 1970s, radar remote sensing techniques have evolved rapidly and are increasingly employed in all fields of earth sciences. Applications are manifold and still expanding due to the continuous development of new instruments and missions as well as the availability of very high-quality data. The trend worldwide is towards operational employment of the various algorithms and methods that have been developed. However, the utilization of operational services does not keep up yet with the rate of technical developments and the improvements in sensor technology. With the enhancing availability and variety of space borne Synthetic Aperture Radar (SAR) data and a growing number of analysis algorithms the need for a vital user community is increasing. Therefore the German Aerospace Center (DLR) together with the Friedrich-Schiller-University Jena (FSU) and the Technical University Munich (TUM) launched the education initiative SAR-EDU. The aim of the project is to facilitate access to expert knowledge in the scientific field of radar remote sensing. Within this effort a web portal will be created to provide seminar material on SAR basics, methods and applications to support both, lecturers and students. The overall intension of the project SAR-EDU is to provide seminar material for higher education in radar remote sensing covering the topic holistically from the very basics to the most advanced methods and applications that are available. The principles of processing and interpreting SAR data are going to be taught using test data sets and open-source as well as commercial software packages. The material that is provided by SAR-EDU will be accessible at no charge from a DLR web portal. The educational tool will have a modular structure, consisting of separate modules that broach the issue of a particular topic. The aim of the implementation of SAR-EDU as application-oriented radar remote sensing educational tool is to advocate the development and wider use of

  11. Radiometric determination of monoethanolamine with /sup 65/ZnSo/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Varadan, R; Sriman Narayanan, S; Rao, V R.S. [Indian Inst. of Tech., Bombay. Dept. of Chemistry

    1984-05-07

    Determination of milligram amounts of monoethanolamine (MEA) with zinc(II) by radiometric titration is described. When MEA is added to a zinc(II) solution containing sulphate ions at 25 degC, a white solid complex is formed. The formation of this complex is employed for the radiometric determination of MEA with /sup 65/Zn. The amount of MEA is directly proportional to the activity of the complex formed. The method is simple, rapid and accurate. 8 refs.

  12. Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry

    International Nuclear Information System (INIS)

    Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan

    2010-01-01

    Recent theoretical investigations have shown important radiometric disadvantages of interferential multiplexing in Fourier transform spectrometry that apparently can be applied even to coded aperture spectrometers. We have reexamined the methods of noninterferential multiplexing in order to assess their signal-to-noise ratio (SNR) performance, relying on a theoretical modeling of the multiplexed signals. We are able to show that quite similar SNR and radiometric disadvantages affect multiplex dispersive spectrometry. The effect of noise on spectral estimations is discussed.

  13. A New Empirical Model for Radar Scattering from Bare Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Nicolas Baghdadi

    2016-11-01

    Full Text Available The objective of this paper is to propose a new semi-empirical radar backscattering model for bare soil surfaces based on the Dubois model. A wide dataset of backscattering coefficients extracted from synthetic aperture radar (SAR images and in situ soil surface parameter measurements (moisture content and roughness is used. The retrieval of soil parameters from SAR images remains challenging because the available backscattering models have limited performances. Existing models, physical, semi-empirical, or empirical, do not allow for a reliable estimate of soil surface geophysical parameters for all surface conditions. The proposed model, developed in HH, HV, and VV polarizations, uses a formulation of radar signals based on physical principles that are validated in numerous studies. Never before has a backscattering model been built and validated on such an important dataset as the one proposed in this study. It contains a wide range of incidence angles (18°–57° and radar wavelengths (L, C, X, well distributed, geographically, for regions with different climate conditions (humid, semi-arid, and arid sites, and involving many SAR sensors. The results show that the new model shows a very good performance for different radar wavelengths (L, C, X, incidence angles, and polarizations (RMSE of about 2 dB. This model is easy to invert and could provide a way to improve the retrieval of soil parameters.

  14. AN/FSY-3 Space Fence System – Sensor Site One/Operations Center Integration Status and Sensor Site Two Planned Capability

    Science.gov (United States)

    Fonder, G. P.; Hack, P. J.; Hughes, M. R.

    This paper covers two topics related to Space Fence System development: Sensor Site One / Operations Center construction and integration status including risk reduction integration and test efforts at the Moorestown, NJ Integrated Test Bed (ITB); and the planned capability of Sensor Site Two. The AN/FSY-3 Space Fence System is a ground-based system of S-band radars integrated with an Operations Center designed to greatly enhance the Air Force Space Surveillance network. The radar architecture is based on Digital Beam-forming. This capability permits tremendous user-defined flexibility to customize volume surveillance and track sectors instantaneously without impacting routine surveillance functions. Space Fence provides unprecedented sensitivity, coverage and tracking accuracy, and contributes to key mission threads with the ability to detect, track and catalog small objects in LEO, MEO and GEO. The system is net-centric and will seamlessly integrate into the existing Space Surveillance Network, providing services to external users—such as JSpOC—and coordinating handoffs to other SSN sites. Sensor Site One construction on the Kwajalein Atoll is in progress and nearing completion. The Operations Center in Huntsville, Alabama has been configured and will be integrated with Sensor Site One in the coming months. System hardware, firmware, and software is undergoing integration testing at the Mooretown, NJ ITB and will be deployed at Sensor Site One and the Operations Center. The preliminary design for Sensor Site Two is complete and will provide critical coverage, timeliness, and operational flexibility to the overall system.

  15. Orthogonal on-off control of radar pulses for the suppression of mutual interference

    Science.gov (United States)

    Kim, Yong Cheol

    1998-10-01

    Intelligent vehicles of the future will be guided by radars and other sensors to avoid obstacles. When multiple vehicles move simultaneously in autonomous navigational mode, mutual interference among car radars becomes a serious problem. An obstacle is illuminated with electromagnetic pulses from several radars. The signal at a radar receiver is actually a mixture of the self-reflection and the reflection of interfering pulses emitted by others. When standardized pulse- type radars are employed on vehicles for obstacle avoidance and so self-pulse and interfering pulses have identical pulse repetition interval, this SI (synchronous Interference) is very difficult to separate from the true reflection. We present a method of suppressing such a synchronous interference. By controlling the pulse emission of a radar in a binary orthogonal ON, OFF pattern, the true self-reflection can be separated from the false one. Two range maps are generated, TRM (true-reflection map) and SIM (synchronous- interference map). TRM is updated for every ON interval and SIM is updated for every OFF interval of the self-radar. SIM represents the SI of interfering radars while TRM keeps a record of a mixture of the true self-reflection and SI. Hence the true obstacles can be identified by the set subtraction operation. The performance of the proposed method is compared with that of the conventional M of N method. Bayesian analysis shows that the probability of false alarm is improved by order of 103 to approximately 106 while the deterioration in the probability of detection is negligible.

  16. Using microwave Doppler radar in automated manufacturing applications

    Science.gov (United States)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help

  17. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    Science.gov (United States)

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  18. Use of Radiometric Survey Data for Environmental Study: The Case of Northern Sumatera

    International Nuclear Information System (INIS)

    Tjokrokardono, S; Ramadanus; Sustarman, H

    1998-01-01

    The convertion of old radiometric data obtained from former uranium exploration activities in northem sumatra into radiation exposure has been evaluated. The objective of the study is to find an alternative way for cheaper and faster compilation of radiation exposure database for environmental study purposes. The old radiometric data measure from the outcrops has been plotted 1;250.000, 1;100.000, and 1;50.000 map scales. The data are translated into 1;1000.000 map scale before they are converted into 1;1000.000 radiation exposure rate map using a graphic method. The radiation exposure rate in northem sumatera falls between 25 R/hour to 40 R/hour. The benefit offered using this method is that it provides a cheaper and faster production of radiation exposure rate map from old radiometric map. However, the problems arising from such a production is that the radiometric data provide unhomogeneous data distributions and densities among the area. As a conclusion it is recommended to recollect some of the data at designated area using well calibrated SPP2NF and gamma ray spectrometer instruments

  19. Anticipatory precrash restraint sensor feasibility study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.; Dress, W.B.

    1995-08-01

    This report explores feasibility of an anticipatory precrash restraint sensor. The foundation principle is the anticipation mechanism found at a primitive level of biological intelligence and originally formalized by the mathematical biologist Robert Rosen. A system based on formal anticipatory principles should significantly outperform conventional technologies. It offers the prospect of high payoff in prevention of death and injury. Sensors and processes are available to provide a good, fast, and inexpensive description of the present dynamical state of the vehicle to the embedded system model in the anticipation engine. The experimental part of this study found that inexpensive radar in a real-world setting does return useful data on target dynamics. The data produced by a radar system can be converted to target dynamical information by good, fast and inexpensive signal-processing techniques. Not only is the anticipatory sensor feasible, but further development under the sponsorship of the National Highway Traffic Safety Administration is necessary and desirable. There are a number of possible lines of follow-on investigation. The level of effort and expected benefits of various alternatives are discussed.

  20. Radiometric measuring method for egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Forberg, S; Svaerdstroem, K

    1973-02-01

    A description is given of a fast nondestructive radiometric method for registration of the thickness of egg shells of the tawny owl, hen, osprey, and Canada goose. Certain errors are discussed. Measurement of the thickness of egg shells (mineral content per cm/sup 2/) with an accuracy better than 1% is possible in less than one minute under field conditions. (auth)

  1. Sensors and sensor systems for guidance and navigation; Proceedings of the Meeting, Orlando, FL, Apr. 2, 3, 1991

    Science.gov (United States)

    Wade, Jack; Tuchman, Avi

    1991-07-01

    The present conference discusses wide field-of-view star-tracker cameras, discrete frequency vs radius reticle trackers, a sensor system for comet approach and landing, a static horizon sensor for a remote-sensing satellite, an improved ring laser gyro navigator, FM reticle trackers in the pupil plane, and the 2D encoding of images via discrete reticles. Also discussed are reduced-cost coil windings for interferometric fiber-optic gyro sensors, the ASTRO 1M space attitude-determination system, passive range-sensor refinement via texture and segmentation, a coherent launch-site atmospheric wind sounder, and a radar-optronic tracking experiment for short and medium range aerial combat. (For individual items see A93-27044 to A93-27046)

  2. Probabilities of False Alarm for Vital Sign Detection on the Basis of a Doppler Radar System

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Phuoc Van

    2018-02-01

    Full Text Available Vital detection on the basis of Doppler radars has drawn a great deal of attention from researchers because of its high potential for applications in biomedicine, surveillance, and finding people alive under debris during natural hazards. In this research, the signal-to-noise ratio (SNR of the remote vital-sign detection system is investigated. On the basis of different types of noise, such as phase noise, Gaussian noise, leakage noise between the transmitting and receiving antennae, and so on, the SNR of the system has first been examined. Then the research has focused on the investigation of the detection and false alarm probabilities of the system when the transmission link between the human and the radar sensor system took the Nakagami-m channel model. The analytical model for the false alarm and the detection probabilities of the system have been derived. The proposed theoretical models for the SNR and detection probability match with the simulation and measurement results. These theoretical models have the potential to be used as good references for the hardware development of the vital-sign detection radar sensor system.

  3. Radiometric microbiologic assay for the biologically active forms of niacin

    International Nuclear Information System (INIS)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-01-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced 14 CO 2 from L-[U- 14 C] malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 μg niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays

  4. Radiometric maps of Israel - Partial contribution to the understanding of potential radon emanations

    International Nuclear Information System (INIS)

    Vulkan, U.; Shirav, M.

    1997-01-01

    An airborne radiometric survey over parts of Israel was carried out in 1981. The system was comprised from 10 Nal 4 inch x 4 inch x 16 inch detectors, arranged in 4,4 and 2 sensors, with total volume of 1560 inch 3 , and one 4 inch x 4 inch x 16 inch uplooking Nal detector. Flight nominal height was 400 feet. It was found that the Mount Scopus Group (of Senonian origin) is the main source for high uranium - phosphorite rocks of this group contain up to 150 ppm U. Comparing the eU radiometric map with a map of potential radon emanation from rock units, reveals a fair correlation - high radon emanation usually follow the distribution of the Mount Scopus Group in Israel. The correlation between the two maps is excellent over arid terrain where soil cover is missing, whereas over semi-arid - humid areas (western and northern Israel), where soil and cultivation covers are developed, the eU levels over Mount Scopus Group's outcrops are much lower due to absorption of the radiation, and do not depict the full radon potential. Detailed mapping of radon hazards usually exhibit poor correlation between airborne eU data and direct pore radon measurements, even in arid terrain. This phenomenon is attributed to the fact that a radon ''source rock'' (e.g. phosphorite) could be covered with a few up to some tenths of meters of uranium-barren rock. About 0.5 meter cover is enough to absorb all radiation, causing very low airborne eU readings, while the radon free way in this rock is about 10 meters, yielding high pore radon levels when directly measured

  5. Digest of NASA earth observation sensors

    Science.gov (United States)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  6. Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    Science.gov (United States)

    Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.

    2011-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.

  7. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  8. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  9. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  10. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    2001-08-01

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  11. Revisiting the paper “Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective”

    DEFF Research Database (Denmark)

    Kustas, William P.; Nieto, Hector; Morillas, Laura

    2016-01-01

    The recent paper by Morillas et al. [Morillas, L. et al. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective, Remote Sens. Environ. 136, 234–246, 2013] evaluates the two-source model (TSM) of Norman et al. (1995) with re......The recent paper by Morillas et al. [Morillas, L. et al. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective, Remote Sens. Environ. 136, 234–246, 2013] evaluates the two-source model (TSM) of Norman et al. (1995......) with revisions by Kustas and Norman (1999) over a semiarid tussock grassland site in southeastern Spain. The TSM - in its current incarnation, the two-source energy balance model (TSEB) - was applied to this landscape using ground-based infrared radiometer sensors to estimate both the composite surface...... greenness and local leaf area index values as well as modifications to the coefficients of the soil resistance formulation to account for the very rough (rocky) soil surface conditions with a clumped canopy. This indicates that both limitations in remote estimates of biophysical indicators of the canopy...

  12. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  13. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  14. Radiometric titration of diethanolamine with 65ZnSO4 and determination of mono and diethanolamines in a mixture by a radiometric method

    International Nuclear Information System (INIS)

    Varadan, R.; Sriman Narayanan, S.; Rao, V.R.S.

    1984-01-01

    Radiometric titration of diethanolamine with 65 ZnSO 4 is reported. Determination of individual amounts of mono- and diethanolamines in a mixture is described. The procedure is simple, rapid and accurate. (author)

  15. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  16. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  17. Embedded DSP-based telehealth radar system for remote in-door fall detection.

    Science.gov (United States)

    Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique

    2015-01-01

    Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas.

  18. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    Science.gov (United States)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  19. Radiometric relations of a sugarcane crop

    International Nuclear Information System (INIS)

    Machado, E.C.; Pereira, A.R.; Camargo, M.B.P. de; Fahl, J.I.

    1985-01-01

    The radiometric relations of a sugarcane crop, cv. NA56-79, are studied during the period of maximum leaf area index. The coefficients of reflection, transmission and absorption of the incoming solar radiation were function of solar elevation and the waveband considered. The photosynthetically active radiation was always less reflected and transmitted but more absorved than the near infrared radiation. (M.A.C.) [pt

  20. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors

    Science.gov (United States)

    Chander, Gyanesh; Markham, Brian L.; Helder, Dennis L.

    2009-01-01

    This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.

  1. Radiometric calipers for borehole logging

    International Nuclear Information System (INIS)

    Charbucinski, J.; Wylie, A.W.; Jarrett, R.G.

    1976-01-01

    Two versions of a radiometric-type caliper for measuring borehole diameter are described. One, based on the bow-spring principle, is suitable for percussion (exploration) drill holes. The other, which utilizes hemispherical wall contactors actuated by springs, is suitable for blast holes. Both utilize low-power radioactive sources and employ a scintillation detector to measure the 'inverse-square law' response of the device to changes in borehole radius. The performance of the device is examined and examples of its use are illustrated. (author)

  2. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.

    Science.gov (United States)

    Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael

    2016-03-02

    Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.

  3. Radiometric microbiologic assay for the biologically active forms of niacin

    Energy Technology Data Exchange (ETDEWEB)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-05-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced /sup 14/CO/sub 2/ from L-(U-/sup 14/C) malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 ..mu..g niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays.

  4. Method for improving the use of PASCO brand spectrophotometer using DataStudio program applied to radiometric surveys for LAFTLA

    International Nuclear Information System (INIS)

    Bolanos Rodriguez, Gary

    2008-01-01

    Escuela de Ingenieria Electrica at the Universidad de Costa Rica has developed a procedure for the improved use of a PASCO brand Spectrophotometer of the Laboratorio de Fotonica y Tecnologia Laser Aplicada. The program has used DataStudio for the application in radiometric surveys in LAFTLA. Important conclusions have been obtained by the assembly of optical experiments, software and data collection and analysis, such as the behavior of a emitting source radiation known as black body and its relation to the temperature, wavelength and intensity of light. The user guide has been detailed exposing calibrations of the sensors, the definition of constants needed for obtaining parameters and assembly and commissioning of the equipment. (author) [es

  5. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  6. Recommendation on Transition from Primary/Secondary Radar to Secondary- Only Radar Capability

    Science.gov (United States)

    1994-10-01

    Radar Beacon Performance Monitor RCIU Remote Control Interface Unit RCL Remote Communications Link R E&D Research, Engineering and Development RML Radar...rate. 3.1.2.5 Maintenance The current LRRs have limited remote maintenance monitoring (RMM) capabilities via the Remote Control Interface Unit ( RCIU ...1, -2 and FPS-20 radars required an upgrade of some of the radar subsystems, namely the RCIU to respond as an RMS and the CD to interface with radar

  7. ANALYSIS OF THE RADIOMETRIC RESPONSE OF ORANGE TREE CROWN IN HYPERSPECTRAL UAV IMAGES

    Directory of Open Access Journals (Sweden)

    N. N. Imai

    2017-10-01

    Full Text Available High spatial resolution remote sensing images acquired by drones are highly relevant data source in many applications. However, strong variations of radiometric values are difficult to correct in hyperspectral images. Honkavaara et al. (2013 presented a radiometric block adjustment method in which hyperspectral images taken from remotely piloted aerial systems – RPAS were processed both geometrically and radiometrically to produce a georeferenced mosaic in which the standard Reflectance Factor for the nadir is represented. The plants crowns in permanent cultivation show complex variations since the density of shadows and the irradiance of the surface vary due to the geometry of illumination and the geometry of the arrangement of branches and leaves. An evaluation of the radiometric quality of the mosaic of an orange plantation produced using images captured by a hyperspectral imager based on a tunable Fabry-Pérot interferometer and applying the radiometric block adjustment method, was performed. A high-resolution UAV based hyperspectral survey was carried out in an orange-producing farm located in Santa Cruz do Rio Pardo, state of São Paulo, Brazil. A set of 25 narrow spectral bands with 2.5 cm of GSD images were acquired. Trend analysis was applied to the values of a sample of transects extracted from plants appearing in the mosaic. The results of these trend analysis on the pixels distributed along transects on orange tree crown showed the reflectance factor presented a slightly trend, but the coefficients of the polynomials are very small, so the quality of mosaic is good enough for many applications.

  8. Enhanced radiometric detection of Mycobacterium paratuberculosis by using filter-concentrated bovine fecal specimens

    International Nuclear Information System (INIS)

    Collins, M.T.; Kenefick, K.B.; Sockett, D.C.; Lambrecht, R.S.; McDonald, J.; Jorgensen, J.B.

    1990-01-01

    A commercial radiometric medium, BACTEC 12B, was modified by addition of mycobactin, egg yolk suspension, and antibiotics (vancomycin, amphotericin B, and nalidixic acid). Decontaminated bovine fecal specimens were filter concentrated by using 3-microns-pore-size, 13-mm-diameter polycarbonate filters, and the entire filter was placed into the radiometric broth. Comparison of the radiometric technique with conventional methods on 603 cattle from 9 Mycobacterium paratuberculosis-infected herds found that of 75 positive specimens, the radiometric technique detected 92% while conventional methods detected 60% (P less than 0.0005). Only 3.9% of radiometric cultures were contaminated. To measure the effect of filter concentration of specimens on the detection rate, 5 cattle with minimal and 5 with moderate ileum histopathology were sampled weekly for 3 weeks. M. paratuberculosis was detected in 33.3% of nonfiltered specimens and 76.7% of filtered specimens (P less than 0.005). Detection rates were directly correlated with the severity of disease, and the advantage of specimen concentration was greatest on fecal specimens from cattle with low-grade infections. Detection times were also correlated with infection severity: 13.4 +/- 5.9 days with smear-positive specimens, 27.9 +/- 8.7 days with feces from cows with typical subclinical infections, and 38.7 +/- 3.8 days with fecal specimens from cows with low-grade infections. Use of a cocktail of vancomycin, amphotericin B, and nalidixic acid for selective suppression of nonmycobacterial contaminants was better than the commercial product PANTA (Becton Dickinson Microbiologic Systems, Towson, Md.) only when specimens contained very low numbers of M. paratuberculosis

  9. Optical Imaging and Radiometric Modeling and Simulation

    Science.gov (United States)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  10. Coherent Performance Analysis of the HJ-1-C Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Li Hai-ying

    2014-06-01

    Full Text Available Synthetic Aperture Radar (SAR is a coherent imaging radar. Hence, coherence is critical in SAR imaging. In a coherent system, several sources can degrade performance. Based on the HJ-1-C SAR system implementation and sensor characteristics, this study evaluates the effect of frequency stability and pulse-to-pulse timing jitter on the SAR coherent performance. A stable crystal oscillator with short-term stability of 10×1.0−10 / 5 ms is used to generate the reference frequency by using a direct multiplier and divider. Azimuth ISLR degradation owing to the crystal oscillator phase noise is negligible. The standard deviation of the pulse-to-pulse timing jitter of HJ-1-C SAR is lower than 2ns (rms and the azimuth random phase error in the synthetic aperture time slightly degrades the side lobe of the azimuth impulse response. The mathematical expressions and simulation results are presented and suggest that the coherent performance of the HJ-1-C SAR system meets the requirements of synthetic aperture radar imaging.

  11. Structural investigation of the Grenville Province by radar and other imaging and nonimaging sensors

    Science.gov (United States)

    Lowman, P. D., Jr.; Blodget, H. W.; Webster, W. J., Jr.; Paia, S.; Singhroy, V. H.; Slaney, V. R.

    1984-01-01

    The structural investigation of the Canadian Shield by orbital radar and LANDSAT, is outlined. The area includes parts of the central metasedimentary belt and the Ontario gneiss belt, and major structures as well-expressed topographically. The primary objective is to apply SIR-B data to the mapping of this key part of the Grenville orogen, specifically ductile fold structures and associated features, and igneous, metamorphic, and sedimentary rock (including glacial and recent sediments). Secondary objectives are to support the Canadian RADARSAT project by evaluating the baseline parameters of a Canadian imaging radar satellite planned for late in the decade. The baseline parameters include optimum incidence and azimuth angles. The experiment is to develop techniques for the use of multiple data sets.

  12. Radiometric analyzer with plural radiation sources and detectors

    International Nuclear Information System (INIS)

    Arima, S.; Oda, M.; Miyashita, K.; Takada, M.

    1977-01-01

    A radiometric analyzer for measuring characteristics of a material by radiation comprises a plurality of systems in which each consists of a radiation source and a radiation detector which are the same in number as the number of elements of the molecule of the material and a linear calibration circuit having inverse response characteristics (calibration curve) of the respective systems of detectors, whereby the measurement is carried out by four fundamental rules by operation of the mutual outputs of said detector system obtained through said linear calibration circuit. One typical embodiment is a radiometric analyzer for hydrocarbons which measures the density of heavy oil, the sulfur content and the calorific value by three detector systems which include a γ-ray source (E/sub γ/ greater than 50 keV), a soft x-ray source (Ex approximately 20 keV), and a neutron ray source. 2 claims, 6 figures

  13. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  14. Social Radar

    Science.gov (United States)

    2012-01-01

    RTA HFM-201/RSM PAPER 3 - 1 © 2012 The MITRE Corporation. All Rights Reserved. Social Radar Barry Costa and John Boiney MITRE Corporation...defenders require an integrated set of capabilities that we refer to as a “ social radar.” Such a system would support strategic- to operational-level...situation awareness, alerting, course of action analysis, and measures of effectiveness for each action undertaken. Success of a social radar

  15. Radiometric flow injection analysis with an ASIA (Ismatec) analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Win, N; San, K; Han, B; Myoe, K M [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science

    1994-07-01

    Radiometric Flow Injection Analysis of a radioactive ([sup 131]I) sample is described. For analysis an ASIA (Ismatec) analyzer with a NaI(Tl) scintillation detector was used. (author) 5 refs.; 3 figs.

  16. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the

  17. Improved detection of Mycobacterium avium complex with the Bactec radiometric system

    International Nuclear Information System (INIS)

    Hoffner, S.E.

    1988-01-01

    A reconsideration of the laboratory methods used for primary isolation of mycobacteria other than Mycobacterium tuberculosis is needed due to the increasingly recognized importance of such mycobacterial infections in immunocompromised patients. One example of this is the severe opportunistic infections caused by Mycobacterium avium complex among AIDS patients. In this study, the Bactec radiometric system was compared to conventional culture on solid medium for the detection of M. avium complex in 3,612 selected clinical specimens, mainly of extrapulmonary origin. Of a total number of 63 M. avium complex isolates, the Bactec system detected 58 (92%), compared to 37 (59%) for conventional culture. A much more rapid detection was attained with radiometric technique than with conventional culture. The mean detection time for the cultures positive with both methods was 7.1 and 28.3 days, respectively. The Bactec radiometric system achieves a rapid and significantly more sensitive detection and seems to be an excellent complement to conventional culture in the laboratory diagnosis of infections with the M. avium complex

  18. Merging airborne and carborne radiometric data for surveying the Deir Az-Zor area, Syria

    International Nuclear Information System (INIS)

    Jubeli, Y.M.; Aissa, M.; Al-Hent, R.

    1997-01-01

    To complete the radiometric map of Syria, and to estimate the natural background radiation levels for environmental monitoring, a carborne survey was undertaken over the Deir Az-Zor area. This area was not covered by a previous airborne survey, except for peripheral regions in the south and west. To complete the radiometric map, results of the carborne and airborne surveys had to be merged. This paper presents the merging procedure which was used after normalizing the two data sets to match each other. No anomalies suitable for radioelement exploration were found. However, the overall radiometric maps resulting from the present work were consistent with the maps of the areas covered by the airborne survey. (author)

  19. Evaluation of Fog and Low Stratus Cloud Microphysical Properties Derived from In Situ Sensor, Cloud Radar and SYRSOC Algorithm

    Directory of Open Access Journals (Sweden)

    Jean-Charles Dupont

    2018-05-01

    Full Text Available The microphysical properties of low stratus and fog are analyzed here based on simultaneous measurement of an in situ sensor installed on board a tethered balloon and active remote-sensing instruments deployed at the Instrumented Site for Atmospheric Remote Sensing Research (SIRTA observatory (south of Paris, France. The study focuses on the analysis of 3 case studies where the tethered balloon is deployed for several hours in order to derive the relationship between liquid water content (LWC, effective radius (Re and cloud droplet number concentration (CDNC measured by a light optical aerosol counter (LOAC in situ granulometer and Bistatic Radar System for Atmospheric Studies (BASTA cloud radar reflectivity. The well-known relationship Z = α × (LWCβ has been optimized with α ϵ [0.02, 0.097] and β ϵ [1.91, 2.51]. Similar analysis is done to optimize the relationship Re = f(Z and CDNC = f(Z. Two methodologies have been applied to normalize the particle-size distribution measured by the LOAC granulometer with a visible extinction closure (R² ϵ [0.73, 0.93] and to validate the LWC profile with a liquid water closure using the Humidity and Temperature Profiler (HATPRO microwave radiometer (R² ϵ [0.83, 0.91]. In a second step, these relationships are used to derive spatial and temporal variability of the vertical profile of LWC, Re and CDNC starting from BASTA measurement. Finally, the synergistic remote sensing of clouds (SYRSOC algorithm has been tested on three tethered balloon flights. Generally, SYRSOC CDNC and Re profiles agreed well with LOAC in situ and BASTA profiles for the studied fog layers. A systematic overestimation of LWC by SYRSOC in the top half of the fog layer was found due to fog processes that are not accounted for in the cloud algorithm SYRSOC.

  20. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  1. Microsomal aryl hydrocarbon hydroxylase comparison of the direct, indirect and radiometric assays

    International Nuclear Information System (INIS)

    Denison, M.S.; Murray, M.; Wilkinson, C.F.

    1983-01-01

    The direct fluorometric assay of aryl hydrocarbon hydroxlyase has been compared to the more commonly used indirect fluorometric and radiometric assays. Although rat hepatic microsomal activities measured by the direct assay were consistently higher than those obtained by the other assays, the relative changes in activity following enzyme induction and/or inhibition were similar. The direct assay provides an accurate and rapid measure of aryl hydrocarbon hydroxylase activity and avoids several problems inherent in the indirect and radiometric assays. 2 tables

  2. Rapid radiometric method for detection of Salmonella in foods

    International Nuclear Information System (INIS)

    Stewart, B.J.; Eyles, M.J.; Murrell, W.G.

    1980-01-01

    A radiometric method for the detection of Salmonella in foods has been developed which is based on Salmonella poly H agglutinating serum preventing Salmonella from producing 14CO2 from [14C] dulcitol. The method will detect the presence or absence of Salmonella in a product within 30 h compared to 4 to 5 days by routine culture methods. The method has been evaluated against a routine culture method using 58 samples of food. The overall agreement was 91%. Five samples negative for Salmonella by the routine method were positive by the radiometric method. These may have been false positives. However, the routine method may have failed to detect Salmonella due to the presence of large numbers of lactose-fermenting bacteria which hindered isolation of Salmonella colonies on the selective agar plates

  3. Evaluation of the AN/SAY-1 Thermal Imaging Sensor System

    National Research Council Canada - National Science Library

    Smith, John G; Middlebrook, Christopher T

    2002-01-01

    The AN/SAY-1 Thermal Imaging Sensor System "TISS" was developed to provide surface ships with a day/night imaging capability to detect low radar reflective, small cross-sectional area targets such as floating mines...

  4. Enhance the accuracy of radar snowfall estimation with Multi new Z-S relationships in MRMS system

    Science.gov (United States)

    Qi, Y.

    2017-12-01

    Snow may have negative affects on roadways and human lives, but the result of the melted snow/ice is good for farm, humans, and animals. For example, in the Southwest and West mountainous area of United States, water shortage is a very big concern. However, snowfall in the winter can provide humans, animals and crops an almost unlimited water supply. So, using radar to accurately estimate the snowfall is very important for human life and economic development in the water lacking area. The current study plans to analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be evaluated with independent CoCoRaHS (Community Collaborative Rain, Hail & Snow Network) gauge observations and eventually implemented in the Multi-Radar Multi-Sensor system for improved quantitative precipitation estimation for snow. This study will analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be used to reduce the error of snowfall estimation in Multi Radar and Multi Sensors (MRMS) system, and tested in MRMS system and evaluated with the COCORaHS observations. Finally, it will be ingested in MRMS sytem, and running in NWS/NCAR operationally

  5. A Forest Fire Sensor Web Concept with UAVSAR

    Science.gov (United States)

    Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.

    2008-12-01

    We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.

  6. Hybrid High-Fidelity Modeling of Radar Scenarios Using Atemporal, Discrete-Event, and Time-Step Simulation

    Science.gov (United States)

    2016-12-01

    10 Figure 1.8 High-efficiency and high-fidelity radar system simulation flowchart . 15 Figure 1.9...Methodology roadmaps: experimental-design flowchart showing hybrid sensor models integrated from three simulation categories, followed by overall...simulation display and output produced by Java Simkit program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 4.5 Hybrid

  7. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB Radar Systems

    Directory of Open Access Journals (Sweden)

    Jana Rovňáková

    2013-09-01

    Full Text Available In the case of through-the-wall localization of moving targets by ultra wideband (UWB radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  8. 79 GHz UWB automotive short range radar – Spectrum allocation and technology trends

    Directory of Open Access Journals (Sweden)

    H.-L. Bloecher

    2009-05-01

    Full Text Available Automotive UWB (Ultra-Wideband short range radar (SSR is on the market as a key technology for novel comfort and safety systems. SiGe based 79 GHz UWB SRR will be a definite candidate for the long term substitution of the 24 GHz UWB SRR. This paper will give an overview of the finished BMBF joint project KOKON and the recently started successing project RoCC, which concentrate on the development of this technology and sensor demonstrators. In both projects, the responsibilities of Daimler AG deal with application based sensor specification, test and evaluation of realized sensor demonstrators. Recent UWB SRR frequency regulation approaches and activitites will be introduced. Furthermore, some first results of Daimler activities within RoCC will be presented, dealing with the packaging and operation of these sensors within the complex car environment.

  9. Minimum redundancy MIMO radars

    OpenAIRE

    Chen, Chun-Yang; Vaidyanathan, P. P.

    2008-01-01

    The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, i...

  10. High speed radiometric measurements of IED detonation fireballs

    Science.gov (United States)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  11. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  12. Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    Science.gov (United States)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)

    1982-01-01

    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.

  13. Remote sensing, airborne radiometric survey and aeromagnetic survey data processing and analysis

    International Nuclear Information System (INIS)

    Dong Xiuzhen; Liu Dechang; Ye Fawang; Xuan Yanxiu

    2009-01-01

    Taking remote sensing data, airborne radiometric data and aero magnetic survey data as an example, the authors elaborate about basic thinking of remote sensing data processing methods, spectral feature analysis and adopted processing methods, also explore the remote sensing data combining with the processing of airborne radiometric survey and aero magnetic survey data, and analyze geological significance of processed image. It is not only useful for geological environment research and uranium prospecting in the study area, but also reference to applications in another area. (authors)

  14. Japan Tsunami Current Flows Observed by HF Radars on Two Continents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Awaji

    2011-08-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no detailed verification of flow patterns nor area measurements have been possible. Here we present unique HF-radar area observations of the tsunami signal seen in current velocities as the wave train approaches the coast. Networks of coastal HF-radars are now routinely observing surface currents in many countries and we report clear results from five HF radar sites spanning a distance of 8,200 km on two continents following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. We confirm the tsunami signal with three different methodologies and compare the currents observed with coastal sea level fluctuations at tide gauges. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. Data from these and other radars around the Pacific rim can be used to further develop radar as an important tool to aid in tsunami observation and warning as well as post-processing comparisons between observation and model predictions.

  15. SPHERICAL COVERAGE DUAL MODE SENSOR FOR UAS SEPARATION ASSURANCE, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is a dual-mode sensor for use aboard unmanned aircraft for safe operation in the NAS that: 1. Incorporates high resolution Millimeter Wave radar with high...

  16. Hardware test program for evaluation of baseline range/range rate sensor concept

    Science.gov (United States)

    Pernic, E.

    1985-01-01

    The test program Phase II effort provides additional design information in terms of range and range rate (R/R) sensor performance when observing and tracking a typical spacecraft target. The target used in the test program was a one-third scale model of the Hubble Space Telescope (HST) available at the MSFC test site where the tests were performed. A modified Bendix millimeter wave radar served as the R/R sensor test bed for evaluation of range and range rate tracking performance, and generation of radar signature characteristics of the spacecraft target. A summary of program test results and conclusions are presented along with detailed description of the Bendix test bed radar with accompaning instrumentation. The MSFC test site and facilities are described. The test procedures used to establish background levels, and the calibration procedures used in the range accuracy tests and RCS (radar cross section) signature measurements, are presented and a condensed version of the daily log kept during the 5 September through 17 September test period is also presented. The test program results are given starting with the RCS signature measurements, then continuing with range measurement accuracy test results and finally the range and range rate tracking accuracy test results.

  17. Radar sensing via a Micro-UAV-borne system

    Science.gov (United States)

    Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine

    2017-04-01

    In recent years, the miniaturization of flight control systems and payloads has contributed to a fast and widespread diffusion of micro-UAV (Unmanned Aircraft Vehicle). While micro-UAV can be a powerful tool in several civil applications such as environmental monitoring and surveillance, unleashing their full potential for societal benefits requires augmenting their sensing capability beyond the realm of active/passive optical sensors [1]. In this frame, radar systems are drawing attention since they allow performing missions in all-weather and day/night conditions and, thanks to the microwave ability to penetrate opaque media, they enable the detection and localization not only of surface objects but also of sub-surface/hidden targets. However, micro-UAV-borne radar imaging represents still a new frontier, since it is much more than a matter of technology miniaturization or payload installation, which can take advantage of the newly developed ultralight systems. Indeed, micro-UAV-borne radar imaging entails scientific challenges in terms of electromagnetic modeling and knowledge of flight dynamics and control. As a consequence, despite Synthetic Aperture Radar (SAR) imaging is a traditional remote sensing tool, its adaptation to micro-UAV is an open issue and so far only few case studies concerning the integration of SAR and UAV technologies have been reported worldwide [2]. In addition, only early results concerning subsurface imaging by means of an UAV-mounted radar are available [3]. As a contribution to radar imaging via autonomous micro-UAV, this communication presents a proof-of-concept experiment. This experiment represents the first step towards the development of a general methodological approach that exploits expertise about (sub-)surface imaging and aerospace systems with the aim to provide high-resolution images of the surveyed scene. In details, at the conference, we will present the results of a flight campaign carried out by using a single radar

  18. Performance Issues in High Performance Fortran Implementations of Sensor-Based Applications

    Directory of Open Access Journals (Sweden)

    David R. O'hallaron

    1997-01-01

    Full Text Available Applications that get their inputs from sensors are an important and often overlooked application domain for High Performance Fortran (HPF. Such sensor-based applications typically perform regular operations on dense arrays, and often have latency and through put requirements that can only be achieved with parallel machines. This article describes a study of sensor-based applications, including the fast Fourier transform, synthetic aperture radar imaging, narrowband tracking radar processing, multibaseline stereo imaging, and medical magnetic resonance imaging. The applications are written in a dialect of HPF developed at Carnegie Mellon, and are compiled by the Fx compiler for the Intel Paragon. The main results of the study are that (1 it is possible to realize good performance for realistic sensor-based applications written in HPF and (2 the performance of the applications is determined by the performance of three core operations: independent loops (i.e., loops with no dependences between iterations, reductions, and index permutations. The article discusses the implications for HPF implementations and introduces some simple tests that implementers and users can use to measure the efficiency of the loops, reductions, and index permutations generated by an HPF compiler.

  19. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  20. A contactless approach for respiratory gating in PET using continuous-wave radar.

    Science.gov (United States)

    Ersepke, Thomas; Büther, Florian; Heß, Mirco; Schäfers, Klaus P

    2015-08-01

    Respiratory gating is commonly used to reduce motion artifacts in positron emission tomography (PET). Clinically established methods for respiratory gating in PET require contact to the patient or a direct optical line between the sensor and the patient's torso and time consuming preparation. In this work, a contactless method for capturing a respiratory signal during PET is presented based on continuous-wave radar. The proposed method relies on the principle of emitting an electromagnetic wave and detecting the phase shift of the reflected wave, modulated due to the respiratory movement of the patient's torso. A 24 GHz carrier frequency was chosen allowing wave propagation through plastic and clothing with high reflections at the skin surface. A detector module and signal processing algorithms were developed to extract a quantitative respiratory signal. The sensor was validated using a high precision linear table. During volunteer measurements and [(18)F] FDG PET scans, the radar sensor was positioned inside the scanner bore of a PET/computed tomography scanner. As reference, pressure belt (one volunteer), depth camera-based (two volunteers, two patients), and PET data-driven (six patients) signals were acquired simultaneously and the signal correlation was quantified. The developed system demonstrated a high measurement accuracy for movement detection within the submillimeter range. With the proposed method, small displacements of 25 μm could be detected, not considerably influenced by clothing or blankets. From the patient studies, the extracted respiratory radar signals revealed high correlation (Pearson correlation coefficient) to those derived from the external pressure belt and depth camera signals (r = 0.69-0.99) and moderate correlation to those of the internal data-driven signals (r = 0.53-0.70). In some cases, a cardiac signal could be visualized, due to the representation of the mechanical heart motion on the skin. Accurate respiratory signals were

  1. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea

    Directory of Open Access Journals (Sweden)

    Sébastien Angelliaume

    2017-08-01

    Full Text Available Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur, the airborne system developed by ONERA (the French Aerospace Lab, during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on

  2. Achieving Real-Time Tracking Mobile Wireless Sensors Using SE-KFA

    Science.gov (United States)

    Kadhim Hoomod, Haider, Dr.; Al-Chalabi, Sadeem Marouf M.

    2018-05-01

    Nowadays, Real-Time Achievement is very important in different fields, like: Auto transport control, some medical applications, celestial body tracking, controlling agent movements, detections and monitoring, etc. This can be tested by different kinds of detection devices, which named "sensors" as such as: infrared sensors, ultrasonic sensor, radars in general, laser light sensor, and so like. Ultrasonic Sensor is the most fundamental one and it has great impact and challenges comparing with others especially when navigating (as an agent). In this paper, concerning to the ultrasonic sensor, sensor(s) detecting and delimitation by themselves then navigate inside a limited area to estimating Real-Time using Speed Equation with Kalman Filter Algorithm as an intelligent estimation algorithm. Then trying to calculate the error comparing to the factual rate of tracking. This paper used Ultrasonic Sensor HC-SR04 with Arduino-UNO as Microcontroller.

  3. Paleomagnetic, paleontologic and radiometric study of the Uquia Formation (Plio-Pleistocene) in Esquina Blanca (Jujuy)

    International Nuclear Information System (INIS)

    Walther, Ana M.; Orgeira, Maria J.; Vilas, Juan F.A.; Kelley, Shari; Jordan, Teresa

    1998-01-01

    A multidisciplinary study of the Uquia Formation has been performed. The results of the paleontologic, paleomagnetic, radiometric and stratigraphic analyses suggest that the superior levels of the formation are equivalent to the 'Marplatense Superior', while the basic ones should be considered older. Radiometric ages have been determined by fission tracks in zircons

  4. Radionuclide Sensors for Water Monitoring

    International Nuclear Information System (INIS)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2004-01-01

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for loW--level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements

  5. Radiometric titration of diethanolamine with /sup 65/ZnSO/sub 4/ and determination of mono and diethanolamines in a mixture by a radiometric method

    Energy Technology Data Exchange (ETDEWEB)

    Varadan, R.; Sriman Narayanan, S.; Rao, V.R.S. (Indian Inst. of Tech., Madras. Dept. of Chemistry)

    1984-08-16

    Radiometric titration of diethanolamine with /sup 65/ZnSO/sub 4/ is reported. Determination of individual amounts of mono- and diethanolamines in a mixture is described. The procedure is simple, rapid and accurate.

  6. Improving Radar Quantitative Precipitation Estimation over Complex Terrain in the San Francisco Bay Area

    Science.gov (United States)

    Cifelli, R.; Chen, H.; Chandrasekar, V.

    2017-12-01

    A recent study by the State of California's Department of Water Resources has emphasized that the San Francisco Bay Area is at risk of catastrophic flooding. Therefore, accurate quantitative precipitation estimation (QPE) and forecast (QPF) are critical for protecting life and property in this region. Compared to rain gauge and meteorological satellite, ground based radar has shown great advantages for high-resolution precipitation observations in both space and time domain. In addition, the polarization diversity shows great potential to characterize precipitation microphysics through identification of different hydrometeor types and their size and shape information. Currently, all the radars comprising the U.S. National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) network are operating in dual-polarization mode. Enhancement of QPE is one of the main considerations of the dual-polarization upgrade. The San Francisco Bay Area is covered by two S-band WSR-88D radars, namely, KMUX and KDAX. However, in complex terrain like the Bay Area, it is still challenging to obtain an optimal rainfall algorithm for a given set of dual-polarization measurements. In addition, the accuracy of rain rate estimates is contingent on additional factors such as bright band contamination, vertical profile of reflectivity (VPR) correction, and partial beam blockages. This presentation aims to improve radar QPE for the Bay area using advanced dual-polarization rainfall methodologies. The benefit brought by the dual-polarization upgrade of operational radar network is assessed. In addition, a pilot study of gap fill X-band radar performance is conducted in support of regional QPE system development. This paper also presents a detailed comparison between the dual-polarization radar-derived rainfall products with various operational products including the NSSL's Multi-Radar/Multi-Sensor (MRMS) system. Quantitative evaluation of various rainfall products is achieved

  7. kCCA Transformation-Based Radiometric Normalization of Multi-Temporal Satellite Images

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-03-01

    Full Text Available Radiation normalization is an essential pre-processing step for generating high-quality satellite sequence images. However, most radiometric normalization methods are linear, and they cannot eliminate the regular nonlinear spectral differences. Here we introduce the well-established kernel canonical correlation analysis (kCCA into radiometric normalization for the first time to overcome this problem, which leads to a new kernel method. It can maximally reduce the image differences among multi-temporal images regardless of the imaging conditions and the reflectivity difference. It also perfectly eliminates the impact of nonlinear changes caused by seasonal variation of natural objects. Comparisons with the multivariate alteration detection (CCA-based normalization and the histogram matching, on Gaofen-1 (GF-1 data, indicate that the kCCA-based normalization can preserve more similarity and better correlation between an image-pair and effectively avoid the color error propagation. The proposed method not only builds the common scale or reference to make the radiometric consistency among GF-1 image sequences, but also highlights the interesting spectral changes while eliminates less interesting spectral changes. Our method enables the application of GF-1 data for change detection, land-use, land-cover change detection etc.

  8. Synergism of optical and radar data for forest structure and biomass / Sinergismo entre dados ópticos e de radar da estrutura da floresta e biomassa

    Directory of Open Access Journals (Sweden)

    Sassan S. Saatchi

    2010-10-01

    Full Text Available AbstractThe structure of forests, the three-dimensional arrangement of individual trees, has a profound effect on how ecosystems function and carbon cycle, water and nutrients. Repeated optical satellite observations of vegetation patterns in two-dimensions have made significant contributions to our understanding of the state and dynamics of the global biosphere. Recent advances in Remote Sensing technology allow us to view the biosphere in three-dimensions and provide us with refined measurements of horizontal as well as vertical structure of forests. This paper provides an overview of the recent advances in fusion of optical and radar imagery in assessing terrestrial ecosystem structure and aboveground biomass. In particular, the paper will focus on radar and LIDAR sensors from recent and planned spaceborne missions and provide theoretical and practical applications of the measurements. Finally, the relevance of these measurements for reducing the uncertainties of terrestrial carbon cycle and the response of ecosystems to future climate will be discussed in details. ResumoA estrutura de florestas, o arranjo tridimensional de árvores individuais, tem um efeito profundo sobre o funcionamento dos ecossistemas e do ciclo do carbono, água e nutrientes. Repetidas observações de satélite óptico de padrões de vegetação em duas dimensões trouxeram contribuições significativas para a nossa compreensão do estado e da dinâmica da biosfera global. Recentes avanços na tecnologia de Sensoriamento Remoto nos permitem ver a biosfera em três dimensões e nos fornecer medições apuradas da estrutura horizontal, bem como a vertical das florestas. Esse artigo fornece uma visão geral dos recentes avanços na fusão de imagens ópticas e de radar para avaliar a estrutura do ecossistema terrestre e biomassa. Em particular, o trabalho concentra-se em sensores radar e LIDAR de recentes missões espaciais planejadas e fornece aplicações teóricas e

  9. Radiometric dating by alpha spectrometry on uranium series nuclides

    NARCIS (Netherlands)

    Wijk, Albert van der

    1987-01-01

    De Engelse titel van dit proegschrift \\"Radiometric Dating by Alpha Spectometry on Uranium Series Nuclides\\" kan in het Nederlands wellicht het best worden weergegeven door \\"ouderdomsdbepalingen door stralingsmeting aan kernen uit de uraniumreeks met behulp van alfaspectometrie\\". In dit laatste

  10. Multi-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands in southeastern Louisiana

    Science.gov (United States)

    Kwoun, Oh-Ig; Lu, Z.

    2009-01-01

    Using multi-temporal European Remote-sensing Satellites (ERS-1/-2) and Canadian Radar Satellite (RADARSAT-1) synthetic aperture radar (SAR) data over the Louisiana coastal zone, we characterize seasonal variations of radar backscat-tering according to vegetation type. Our main findings are as follows. First, ERS-1/-2 and RADARSAT-1 require careful radiometric calibration to perform multi-temporal backscattering analysis for wetland mapping. We use SAR backscattering signals from cities for the relative calibration. Second, using seasonally averaged backscattering coefficients from ERS-1/-2 and RADARSAT-1, we can differentiate most forests (bottomland and swamp forests) and marshes (freshwater, intermediate, brackish, and saline marshes) in coastal wetlands. The student t-test results support the usefulness of season-averaged backscatter data for classification. Third, combining SAR backscattering coefficients and an optical-sensor-based normalized difference vegetation index can provide further insight into vegetation type and enhance the separation between forests and marshes. Our study demonstrates that SAR can provide necessary information to characterize coastal wetlands and monitor their changes.

  11. Research and development cooperation project on environmental measurement using laser radar in fiscal 1995; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the purpose of contributing to the environmental management in Indonesia, Japan made R and D of a laser radar to measure the urban air pollution and an environmental network jointly with Indonesia in compliance with the actual situation of the country. At present, in developing countries, air pollution is becoming a big problem because of increases in population and in energy consumption in urban areas according to the industrial/economic growth. As for the laser radar, it is an active sensor with laser as light source and can observe in high resolution the three-dimensional space distribution such as density and composition of air pollutants. Japan is a leader in the development of laser technology which is a core technology for the laser radar and the preceding research. The equipment is installed at several points of urban areas in Indonesia, and at the same time, the observation network is constructed to collect, analyze and process data at the central processing center. This is a 4-year plan from fiscal 1993 to 1996. In fiscal 1995, negotiations with Indonesia and field surveys were conducted to determine sites for installation. A plan for system improvement was also decided on. 38 refs., 24 figs., 14 tabs.

  12. Substoichiometric method in the simple radiometric analysis

    International Nuclear Information System (INIS)

    Ikeda, N.; Noguchi, K.

    1979-01-01

    The substoichiometric method is applied to simple radiometric analysis. Two methods - the standard reagent method and the standard sample method - are proposed. The validity of the principle of the methods is verified experimentally in the determination of silver by the precipitation method, or of zinc by the ion-exchange or solvent-extraction method. The proposed methods are simple and rapid compared with the conventional superstoichiometric method. (author)

  13. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  14. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  15. CryoSat-2 satellite radar altimetry for river analysis and modelling

    DEFF Research Database (Denmark)

    Schneider, Raphael

    The global coverage of in situ observations of surface water dynamics is insufficient to effectively manage water resources. Moreover, the availability of these data is decreasing, due to the lack of gauging stations and data sharing. Satellite radar altimetry, initially developed to monitor ocean...... water levels, also offers measurements of water levels of rivers and lakes on a global scale. Because of the continuous upstart of new missions, and sensor and processing innovations, the importance of satellite altimetry data for the hydrologic community is increasing. CryoSat-2, launched......) and Synthetic Aperture Radar Interferometric (SARIn) mode. SAR and SARIn have reduced footprint size in the along-track direction owing to delay/Doppler processing, potentially increasing observation accuracy. Second, CryoSat-2 is placed on a unique long-repeat orbit with a cycle of 369 days. This is different...

  16. Sensor fusion for intelligent alarm analysis

    International Nuclear Information System (INIS)

    Nelson, C.L.; Fitzgerald, D.S.

    1996-01-01

    The purpose of an intelligent alarm analysis system is to provide complete and manageable information to a central alarm station operator by applying alarm processing and fusion techniques to sensor information. This paper discusses the sensor fusion approach taken to perform intelligent alarm analysis for the Advanced Exterior Sensor (AES). The AES is an intrusion detection and assessment system designed for wide-area coverage, quick deployment, low false/nuisance alarm operation, and immediate visual assessment. It combines three sensor technologies (visible, infrared, and millimeter wave radar) collocated on a compact and portable remote sensor module. The remote sensor module rotates at a rate of 1 revolution per second to detect and track motion and provide assessment in a continuous 360 degree field-of-regard. Sensor fusion techniques are used to correlate and integrate the track data from these three sensors into a single track for operator observation. Additional inputs to the fusion process include environmental data, knowledge of sensor performance under certain weather conditions, sensor priority, and recent operator feedback. A confidence value is assigned to the track as a result of the fusion process. This helps to reduce nuisance alarms and to increase operator confidence in the system while reducing the workload of the operator

  17. Characterizing vertical heterogeneity of permafrost soils in support of ABoVE radar retrievals

    Science.gov (United States)

    Tabatabaeenejad, A.; Chen, R. H.; Silva, A.; Schaefer, K. M.; Moghaddam, M.

    2017-12-01

    Permafrost-affected soils, including the top active layer and underlying permafrost, have unique seasonal variations in terms of soil temperature, soil moisture, and freeze/thaw-state profiles. The presence of a perennially frozen and impermeable substrate maintains the required temperature gradient for the descending thawing front, and causes meltwater to accumulate and form the saturated zone in the active layer. Radar backscattering measurements are sensitive to dielectric properties of subsurface soils, which are strongly correlated with unfrozen water content and soil texture/composition. To enable accurate radar retrievals, we need to properly characterize soil profile heterogeneity, which can be modeled with layered soil or depth-dependent functions. To this end, we first cross compare the measured radar backscatter and model-predicted radar backscatter using in-situ dielectric profile measurements as well as mathematical or hydrologic-based profile functions. Since radar signal's backscatter has limited penetration, to fully capture the true heterogeneity profile, we determine the optimal profile function by minimizing the error between predicted and measured radar backscatter signals as well as between in-situ and fitted profiles. The in-situ soil profile data (temperature, dielectric constant, unfrozen water content, organic/mineral soils) are collected from the Soil Moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) sensor networks and from the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in August 2017 (concurrent with the ABoVE August flights over Alaska North Slope) while the radar data are acquired by NASA's P-band AirMOSS and L-band UAVSAR as part of the ABoVE airborne campaign. The retrieval results using our new heterogeneity model will be compared with the results from retrievals that model soil as a layered medium. This analysis can advance the accuracy of retrieval of active layer properties using low-frequency SAR

  18. Limulus test for pyrogens and radiometric sterility tests on radiopharmaceuticals. Part of a coordinated programme

    International Nuclear Information System (INIS)

    Gopal, N.G.S.

    1976-10-01

    Sterility testing of radiopharmaceuticals prepared at BARC were carried out using the radiometric technique (Radiometric detection of the metabolic product 14 Co 2 ). Batches of different radiopharmaceuticals were tested for pyrogen using the limulus lysate method and the results were compared with the rabbit method. The results of sterility test on 202 batches of 19 different radiopharmaceuticals show that the radiometric method can be used for sterility testing of radiopharmaceuticals labelled with 35 S, 51 Cr, 57 Co, 59 Fe, 82 Br, 86 Rb, sup(99m)Tc, sup(113m)In, 125 I and 169 Yb. The radiometric test proves to be more rapid than the conventional one for the sterility testing of such radiopharmaceuticals. Detection time is between 6-21 hours. In the case of 131 I-labelled radiopharmaceuticals and in the case of chlormerodrin-Hg-203, it was found an interference due to volatile species (sup(131m)Xe in the case of 131 I and some volatile mercury form in the case of chlormerodrin). In these cases it would be possible to carry out the radiometric sterility test after separation of the microorganisms from the radioactive material (by filtration). The limulus lysate method can be employed for control of various pyrogen-prone raw materials and radiopharmaceuticals. Such method is the only method at present available for detecting the low level pyrogen contamination in intrathecal injections. The limulus test is more rapid than the rabbit test

  19. Planning a radar system for protection from the airborne threat

    International Nuclear Information System (INIS)

    Greneker, E.F.; McGee, M.C.

    1986-01-01

    A planning methodology for developing a radar system to protect nuclear materials facilities from the airborne threat is presented. Planning for physical security to counter the airborne threat is becoming even more important because hostile acts by terrorists are increasing and airborne platforms that can be used to bypass physical barriers are readily available. The comprehensive system planning process includes threat and facility surveys, defense hardening, analysis of detection and early warning requirements, optimization of sensor mix and placement, and system implementation considerations

  20. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  1. Determination of degree of compacting and of moisture content by radiometric probes

    International Nuclear Information System (INIS)

    Martinec, J.; Paul, P.

    1977-01-01

    A survey is given of radiometric probes used for measuring bulk density and moisture content. Surface probes are used in depths of up to 20 cm with an accuracy of 10%, drive-in probes are used to depths of up to 50 cm with a 4% error, depth probes are used for measuring in depths of 30 to 50 cm with an accuracy of roughly 5% and bulk density in depths of 10 to 150 cm may be measured with an accuracy of 2% using a lysimeter. Changes in the bulk density and soil moisture of the subsoil of an airport runway were studied radiometrically in dependence on time and depth. The dependence is represented graphically. The results of radiometric measurements were compared with the conventional method using a lysimeter probe; the comparison showed that the results were lower by about 7% for the moisture content and higher by about 8% for the bulk density. Radiometric measurements for determining bulk density and soil moisture are advantageous in that they allow the measurement of a great number of sites without any major disturbance of the measured material and results are available immediately on measurement. The economic effect is significant in a large number of measurements carried out on a surface having the same chemical composition and similar grain size which does not necessitate calibration of the instruments to be made more than once a week. The NZK-201 probe by Tesla does not provide sufficiently accurate information on the moisture and density of the earths probed

  2. Laboratory evaluation of the Design Analysis Associates DAA H-3613i radar water-level sensor—Results of temperature, distance, and SDI-12 tests

    Science.gov (United States)

    Carnley, Mark V.

    2016-09-30

    The Design Analysis Associates (DAA) DAA H-3613i radar water-level sensor (DAA H-3613i), manufactured by Xylem Incorporated, was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to manufacturer’s accuracy specifications for measuring a distance throughout the sensor’s operating temperature range, for measuring distances from 3 to 15 feet at ambient temperatures, and for compliance with the SDI-12 serial-to-digital interface at 1200-baud communication standard. The DAA H-3613i is a noncontact water-level sensor that uses pulsed radar to measure the distance between the radar and the water surface from 0.75 to 131 feet over a temperature range of −40 to 60 degrees Celsius (°C). Manufacturer accuracy specifications that were evaluated, the test procedures that followed, and the results obtained are described in this report. The sensor’s accuracy specification of ± 0.01 feet (± 3 millimeters) meets USGS requirements for a primary water-stage sensor used in the operation of a streamgage. The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during temperature testing at a distance of 8 feet from the target over its temperature-compensated operating range of −40 to 60 °C, except at 60 °C. At 60 °C, about half the measurements exceeded the manufacturer’s accuracy specification by not more than 0.005 feet.The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during distance-accuracy testing at the tested distances from 3 to 15 feet above the water surface at the HIF.

  3. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    Science.gov (United States)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    , occupy minimum cabin space and maximize scan coverage, a pod-based configuration was adopted. Currently, the radar system is capable of collecting observations between zenith and nadir in a fixed scanning mode. Measurements are corrected for aircraft attitude changes. The near-nadir and zenith pointing observations minimize the cross-track Doppler contamination in the radial velocity measurements. An extensive engineering monitoring mechanism is built into the recording system status such as temperature, pressure, various electronic components' status and receiver characteristics. Status parameters are used for real-time system stability estimates and correcting radar system parameters. The pod based radar system is mounted on a modified Gulfstream V aircraft, which is operated and maintained by the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation (NSF). The aircraft is called the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) (Laursen et al., 2006). It is also instrumented with high spectral resolution lidar (HSRL) and an array of in situ and remote sensors for atmospheric research. As part of the instrument suite for HIAPER, the NSF funded the development of the HIAPER Cloud Radar (HCR). The HCR is an airborne, millimeter-wavelength, dual-polarization, Doppler radar that serves the atmospheric science community by providing cloud remote sensing capabilities for the NSF/NCAR G-V (HIAPER) aircraft. An optimal radar configuration that is capable of maximizing the accuracy of both qualitative and quantitative estimated cloud microphysical and dynamical properties is the most attractive option to the research community. The Technical specifications of cloud radar are optimized for realizing the desired scientific performance for the pod-based configuration. The radar was both ground and flight tested and preliminary measurements of Doppler and polarization measurements were collected. HCR

  4. Evaluation of Two Absolute Radiometric Normalization Algorithms for Pre-processing of Landsat Imagery

    Institute of Scientific and Technical Information of China (English)

    Xu Hanqiu

    2006-01-01

    In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invariant features identified from multitemtween the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnormalized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference.

  5. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  6. ANALYZING SPECTRAL CHARACTERISTICS OF SHADOW AREA FROM ADS-40 HIGH RADIOMETRIC RESOLUTION AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    Y.-T. Hsieh

    2016-06-01

    Full Text Available The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i The DN values in shadow area are much lower than in nonshadow area; (ii DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv The shadow area NIR of vegetation category also shows a strong reflection; (v Generally, vegetation indexes (NDVI still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40 is potential for the extract land cover information of shadow areas.

  7. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images.

    Science.gov (United States)

    Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao

    2018-03-01

    We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.

  8. Monitoring the long term stability of the IRS-P6 AWiFS sensor using the Sonoran and RVPN sites

    Science.gov (United States)

    Chander, Gyanesh; Sampath, Aparajithan; Angal, Amit; Choi, Taeyoung; Xiong, Xiaoxiong

    2010-10-01

    This paper focuses on radiometric and geometric assessment of the Indian Remote Sensing (IRS-P6) Advanced Wide Field Sensor (AWiFS) sensor using the Sonoran desert and Railroad Valley Playa, Nevada (RVPN) ground sites. Imageto- Image (I2I) accuracy and relative band-to-band (B2B) accuracy were measured. I2I accuracy of the AWiFS imagery was assessed by measuring the imagery against Landsat Global Land Survey (GLS) 2000. The AWiFS images were typically registered to within one pixel to the GLS 2000 mosaic images. The B2B process used the same concepts as the I2I, except instead of a reference image and a search image; the individual bands of a multispectral image are tested against each other. The B2B results showed that all the AWiFS multispectral bands are registered to sub-pixel accuracy. Using the limited amount of scenes available over these ground sites, the reflective bands of AWiFS sensor indicate a long-term drift in the top-of-atmosphere (TOA) reflectance. Because of the limited availability of AWiFS scenes over these ground sites, a comprehensive evaluation of the radiometric stability using these sites is not possible. In order to overcome this limitation, a cross-comparison between AWiFS and Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) was performed using image statistics based on large common areas observed by the sensors within 30 minutes. Regression curves and coefficients of determination for the TOA trends from these sensors were generated to quantify the uncertainty in these relationships and to provide an assessment of the calibration differences between these sensors.

  9. Cross calibration of the Landsat-7 ETM+ and EO-1 ALI sensor

    Science.gov (United States)

    Chander, G.; Meyer, D.J.; Helder, D.L.

    2004-01-01

    As part of the Earth Observer 1 (EO-1) Mission, the Advanced Land Imager (ALI) demonstrates a potential technological direction for Landsat Data Continuity Missions. To evaluate ALI's capabilities in this role, a cross-calibration methodology has been developed using image pairs from the Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) and EO-1 (ALI) to verify the radiometric calibration of ALI with respect to the well-calibrated L7 ETM+ sensor. Results have been obtained using two different approaches. The first approach involves calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors. The second approach uses vicarious calibration techniques to compare the predicted top-of-atmosphere radiance derived from ground reference data collected during the overpass to the measured radiance obtained from the sensor. The results indicate that the relative sensor chip assemblies gains agree with the ETM+ visible and near-infrared bands to within 2% and the shortwave infrared bands to within 4%.

  10. Towards an integrated strategy for monitoring wetland inundation with virtual constellations of optical and radar satellites

    Science.gov (United States)

    DeVries, B.; Huang, W.; Huang, C.; Jones, J. W.; Lang, M. W.; Creed, I. F.; Carroll, M.

    2017-12-01

    The function of wetlandscapes in hydrological and biogeochemical cycles is largely governed by surface inundation, with small wetlands that experience periodic inundation playing a disproportionately large role in these processes. However, the spatial distribution and temporal dynamics of inundation in these wetland systems are still poorly understood, resulting in large uncertainties in global water, carbon and greenhouse gas budgets. Satellite imagery provides synoptic and repeat views of the Earth's surface and presents opportunities to fill this knowledge gap. Despite the proliferation of Earth Observation satellite missions in the past decade, no single satellite sensor can simultaneously provide the spatial and temporal detail needed to adequately characterize inundation in small, dynamic wetland systems. Surface water data products must therefore integrate observations from multiple satellite sensors in order to address this objective, requiring the development of improved and coordinated algorithms to generate consistent estimates of surface inundation. We present a suite of algorithms designed to detect surface inundation in wetlands using data from a virtual constellation of optical and radar sensors comprising the Landsat and Sentinel missions (DeVries et al., 2017). Both optical and radar algorithms were able to detect inundation in wetlands without the need for external training data, allowing for high-efficiency monitoring of wetland inundation at large spatial and temporal scales. Applying these algorithms across a gradient of wetlands in North America, preliminary findings suggest that while these fully automated algorithms can detect wetland inundation at higher spatial and temporal resolutions than currently available surface water data products, limitations specific to the satellite sensors and their acquisition strategies are responsible for uncertainties in inundation estimates. Further research is needed to investigate strategies for

  11. Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Schneider, David J.; Hoblitt, Richard P.

    2013-01-01

    The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  12. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  13. Synthetic impulse and aperture radar (SIAR) a novel multi-frequency MIMO radar

    CERN Document Server

    Chen, Baixiao

    2014-01-01

    Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing me

  14. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling.

    Science.gov (United States)

    Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun

    2017-10-26

    In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.

  15. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2017-10-01

    Full Text Available In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs under the condition of gain and phase uncertainties (GPU and mutual coupling (MC. GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA based on the instrumental sensors method (ISM. The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.

  16. Array-Based Ultrawideband through-Wall Radar: Prediction and Assessment of Real Radar Abilities

    Directory of Open Access Journals (Sweden)

    Nadia Maaref

    2013-01-01

    Full Text Available This paper deals with a new through-the-wall (TTW radar demonstrator for the detection and the localisation of people in a room (in a noncooperative way with the radar situated outside but in the vicinity of the first wall. After modelling the propagation through various walls and quantifying the backscattering by the human body, an analysis of the technical considerations which aims at defining the radar design is presented. Finally, an ultrawideband (UWB frequency modulated continuous wave (FMCW radar is proposed, designed, and implemented. Some representative trials show that this radar is able to localise and track moving people behind a wall in real time.

  17. preliminary geological and radiometric studies of granitoids of zing

    African Journals Online (AJOL)

    DJFLEX

    laboratory of Geology Department, Federal University of. Technology, Yola where they were thin sectioned and petrographically studied using a high magnification polarising microscope. Canada balsam was used as the mounting medium. Radiometric survey was carried out using a McPhar model TC-33A portable gamma ...

  18. Study of a new radiometric sterility test in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Sanchez P, A.R.

    1976-01-01

    A new radiometric method is studied for the determination of sterility. It is based on a culture marked with carbon-14 and the measurement by liquid scintillation of the radioactivity of the gaseous products released after a short period of incubation. The studied samples consisted in nonradioactive solutions and different radiopharmaceuticals, through a regulated current of nitrogen there is a transportation of gaseous and volatile products produced in each flask, which were received in a liquid scintillation vial. The experimental data permit to conclude that through the radiometric method the results can be obtained after 24 hours or less of incubation, instead of a period of several days which was necessary with the traditional process. Due to the sensitivity of the method it is possible to inoculate a minimum volume of sample, this is important in the case of the preparation of little parts for injection as it occurs generally with the pharmaceuticals. (author)

  19. Radiometric measurement independent of profile. Belt weighers

    International Nuclear Information System (INIS)

    Otto, J.

    1986-01-01

    Radiometric measuring techniques allow contactless determination of the material carried by belt conveyors. Data defining the material is obtained via attenuation of gamma rays passing through the material on the belt. The method applies the absorption law according to Lambert-Beer, which has to be corrected by a build-up factor because of the stray radiation induced by the Compton effect. The profile-dependent error observed with conventional radiometric belt weighers is caused by the non-linearity of the absorption law in connection with the simultaneous summation of the various partial rays in a detector. The scanning method allows separate evaluation of the partial rays' attenuation and thus yields the correct data of the material carried, regardless of the profile. The scanning method is applied on a finite number of scanning sections, and a residual error has to be taken into account. The stochastics of quantum emission and absorption leads to an error whose expectation value is to be taken into account in the scanning algorithm. As the conveyor belt is in motion during the process of measurements, only part of the material conveyed is irradiated. The resulting assessment error is investigated as a function of the autocorrelation function of the material on the belt. (orig./HP) [de

  20. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Koch, Wolfgang

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Waveform diversity and cognitive radar and Target tracking and data fusion.

  1. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    International Nuclear Information System (INIS)

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-01-01

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation

  2. Online Resource for Earth-Observing Satellite Sensor Calibration

    Science.gov (United States)

    McCorkel, J.; Czapla-Myers, J.; Thome, K.; Wenny, B.

    2015-01-01

    The Radiometric Calibration Test Site (RadCaTS) at Railroad Valley Playa, Nevada is being developed by the University of Arizona to enable improved accuracy and consistency for airborne and satellite sensor calibration. Primary instrumentation at the site consists of ground-viewing radiometers, a sun photometer, and a meteorological station. Measurements made by these instruments are used to calculate surface reflectance, atmospheric properties and a prediction for top-of-atmosphere reflectance and radiance. This work will leverage research for RadCaTS, and describe the requirements for an online database, associated data formats and quality control, and processing levels.

  3. Radiometric mass flow probes for belt weighers - the state of the art and possibilities of application

    International Nuclear Information System (INIS)

    Glaeser, M.

    1986-01-01

    The setup of radiometric belt weighers is described in principle and compared with conventional ones. Fields of application are mentioned and a list is given of equipment comercially available. The comparison shows that the radiometric systems are advantageous in general, but in special cases (measuring error lower than 1%, chemical composition varies several 10%) gravimetric systems are indispensable

  4. Assessment of Aero-radiometric Data of Southern Anambra Basin ...

    African Journals Online (AJOL)

    High-resolution aero-radiometric data from three radio-elements (Uranium, Potassium and Thorium) were used and processed independently to investigate the Southern Anambra basin for the prospect of producing radiogenic heat. The rock types in the study area were outlined while processing the elements in each rock ...

  5. Aerial gamma ray and magnetic survey: Green Bay Quadrangle, Wisconsin. Final report

    International Nuclear Information System (INIS)

    1978-04-01

    Data obtained from a high sensitivity airborne radiometric and magnetic survey of Green Bay Quadrangle in Wisconsin are presented. All data are presented as corrected profiles of all radiometric variables, magnetic data, radar and barometric altimeter data, air temperature and airborne Bismuth contributions. Radiometric data presented are corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are also presented on microfiche, and digital magnetic tapes. In addition, anomaly maps and interpretation maps are presented relating known geology or soil distribution to the corrected radiometric/magnetic data

  6. Aerial gamma ray and magnetic survey: Iron Mountain Quadrangle, Wisconsin/Michigan. Final report

    International Nuclear Information System (INIS)

    1978-04-01

    Data obtained from a high sensitivity airborne radiometric and magnetic survey of Iron Mountain Quadrangle in Wisconsin/Michigan are presented. All data are presented as corrected profiles of all radiometric variables, magnetic data, radar and barometric altimeter data, air temperature and airborne Bismuch contributions. Radiometric data presented are corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are also presented on microfiche, and digital magnetic tapes. In addition, anomaly maps and interpretation maps are presented relating known geology or soil distribution to the corrected radiometric/magnetic data

  7. Aerial gamma ray and magnetic survey: Eau Claire Quadrangle, Wisconsin/Minnesota. Final report

    International Nuclear Information System (INIS)

    1978-04-01

    Data obtained from a high sensitivity airborne radiometric and magnetic survey of the Eau Claire Quadrangle in Wisconsin/Minnesota are presented. All data are presented as corrected profiles of all radiometric variables, magnetic data, radar and barometric altimeter data, air temperature and airborne Bismuth contributions. Radiometric data presented are corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are also presented on microfiche, and digital magnetic tapes. In addition, anomaly maps and interpretation maps are presented relating known geology or soil distribution to the corrected radiometric/magnetic data

  8. Aerial gamma ray and magnetic survey: Rice Lake Quadrangle, Wisconsin. Final report

    International Nuclear Information System (INIS)

    1978-04-01

    Data obtained from a high sensitivity airborne radiometric and magnetic survey of the Rice Lake Quadrangle in Wisconsin are presented. All data are presented as corrected profiles of all radiometric variables, magnetic data, radar and barometric altimeter data, air temperature and airborne Bismuth contributions. Radiometric data presented are corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are also presented on microfiche, and digital magnetic tapes. In addition, anomaly maps and interpretation maps are presented relating known geology or soil distribution to the corrected radiometric/magnetic data

  9. From ASCAT to Sentinel-1: Soil Moisture Monitoring using European C-Band Radars

    Science.gov (United States)

    Wagner, Wolfgang; Bauer-Marschallinger, Bernhard; Hochstöger, Simon

    2016-04-01

    The Advanced Scatterometer (ASCAT) is a C-Band radar instrument flown on board of the series of three METOP satellites. Albeit not operating in one of the more favorable longer wavelength ranges (S, L or P-band) as the dedicated Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions, it is one of main microwave sensors used for monitoring of soil moisture on a global scale. Its attractiveness for soil moisture monitoring applications stems from its operational status, high radiometric accuracy and stability, short revisit time, multiple viewing directions and long heritage (Wagner et al. 2013). From an application perspective, its main limitation is its spatial resolution of about 25 km, which does not allow resolving soil moisture patterns driven by smaller-scale hydrometeorological processes (e.g. convective precipitation, runoff patterns, etc.) that are themselves related to highly variable land surface characteristics (soil characteristics, topography, vegetation cover, etc.). Fortunately, the technique of aperture synthesis allows to significantly improve the spatial resolution of spaceborne radar instruments up to the meter scale. Yet, past Synthetic Aperture Radar (SAR) missions had not yet been designed to achieve a short revisit time required for soil moisture monitoring. This has only changed recently with the development and launch of SMAP (Entekhabi et al. 2010) and Sentinel-1 (Hornacek et al. 2012). Unfortunately, the SMAP radar failed only after a few months of operations, which leaves Sentinel-1 as the only currently operational SAR mission capable of delivering high-resolution radar observations with a revisit time of about three days for Europe, about weekly for most crop growing regions worldwide, and about bi-weekly to monthly over the rest of the land surface area. Like ASCAT, Sentinel-1 acquires C-band backscatter data in VV polarization over land. Therefore, for the interpretation of both ASCAT and Sentinel-1

  10. Radar remote sensing in biology

    Science.gov (United States)

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  11. Radiometric--microbiologic assay of vitamin B-6: application to food analysis

    International Nuclear Information System (INIS)

    Guilarte, T.R.; Shane, B.; McIntyre, P.A.

    1981-01-01

    A radiometric microbiologic assay for vitamin B-6 was applied to food analysis. The method was shown to be specific, reproducible and simpler than the standard turbidimetric microbiologic technique. The analysis of seven commercially available breakfast cereals was compared to a high performance liquid chromatography method. Three out of the seven cereals agreed when assayed with both methods (P greater than 0.1). Four cereals, however, differed in value considerably (P less than 0.05). Further studies are required to determine whether these differences were due to different extraction procedures used. The study showed that the new radiometric-microbiologic method can be used to measure total vitamin B-6 or, combined with a column separation procedure, to analyze for specific forms of the vitamin

  12. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  13. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  14. Dual-wavelength millimeter-wave radar measurements of cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-04-01

    In April 1994, the University of Massachusetts` 33-GHz/95-GHz Cloud Profiling Radar System (CPRS) participated in the multi-sensor Remote Cloud Sensing (RCS) Intensive Operation Period (IOP), which was conducted at the Southern Great Plains Cloud and Radiation Testbed (CART). During the 3-week experiment, CPRS measured a variety of cloud types and severe weather. In the context of global warming, the most significant measurements are dual-frequency observations of cirrus clouds, which may eventually be used to estimate ice crystal size and shape. Much of the cirrus data collected with CPRS show differences between 33-GHz and 95-GHz reflectivity measurements that are correlated with Doppler estimates of fall velocity. Because of the small range of reflectivity differences, a precise calibration of the radar is required and differential attenuation must also be removed from the data. Depolarization, which is an indicator of crystal shape, was also observed in several clouds. In this abstract we present examples of Mie scattering from cirrus and estimates of differential attenuation due to water vapor and oxygen that were derived from CART radiosonde measurements.

  15. MER 1 MARS NAVCAM 3 RADIOMETRIC RDR SCI V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radiometrically calibrated MER-1 Navcam data. The calibration has removed bias, dark current, and flatfield effects from the raw Navcam data,...

  16. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  17. Pukaki 1-01 : initial luminescence dating and radiometric measurements

    International Nuclear Information System (INIS)

    Rieser, U.

    2001-01-01

    Core from Pukaki 1-01 was sampled for luminescence dating and radiometric measurements on 14 March 2001 in the dark room laboratory at Victoria University. Seven samples were taken to get an overview of the crater history, and laboratory work was completed in August 2001. (author). 2 figs., 3 tabs

  18. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  19. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  20. Performance of the Multi-Radar Multi-Sensor System over the Lower Colorado River, Texas

    Science.gov (United States)

    Bayabil, H. K.; Sharif, H. O.; Fares, A.; Awal, R.; Risch, E.

    2017-12-01

    Recently observed increases in intensities and frequencies of climate extremes (e.g., floods, dam failure, and overtopping of river banks) necessitate the development of effective disaster prevention and mitigation strategies. Hydrologic models can be useful tools in predicting such events at different spatial and temporal scales. However, accuracy and prediction capability of such models are often constrained by the availability of high-quality representative hydro-meteorological data (e.g., precipitation) that are required to calibrate and validate such models. Improved technologies and products such as the Multi-Radar Multi-Sensor (MRMS) system that allows gathering and transmission of vast meteorological data have been developed to provide such data needs. While the MRMS data are available with high spatial and temporal resolutions (1 km and 15 min, respectively), its accuracy in estimating precipitation is yet to be fully investigated. Therefore, the main objective of this study is to evaluate the performance of the MRMS system in effectively capturing precipitation over the Lower Colorado River, Texas using observations from a dense rain gauge network. In addition, effects of spatial and temporal aggregation scales on the performance of the MRMS system were evaluated. Point scale comparisons were made at 215 gauging locations using rain gauges and MRMS data from May 2015. Moreover, the effects of temporal and spatial data aggregation scales (30, 45, 60, 75, 90, 105, and 120 min) and (4 to 50 km), respectively on the performance of the MRMS system were tested. Overall, the MRMS system (at 15 min temporal resolution) captured precipitation reasonably well, with an average R2 value of 0.65 and RMSE of 0.5 mm. In addition, spatial and temporal data aggregations resulted in increases in R2 values. However, reduction in RMSE was achieved only with an increase in spatial aggregations.

  1. Merging Radar Quantitative Precipitation Estimates (QPEs) from the High-resolution NEXRAD Reanalysis over CONUS with Rain-gauge Observations

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Nickl, E.; Seo, D. J.; Kim, B.; Zhang, J.; Qi, Y.

    2015-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over the Continental United States (CONUS) is completed for the period covering from 2002 to 2011. While this constitutes a unique opportunity to study precipitation processes at higher resolution than conventionally possible (1-km, 5-min), the long-term radar-only product needs to be merged with in-situ information in order to be suitable for hydrological, meteorological and climatological applications. The radar-gauge merging is performed by using rain gauge information at daily (Global Historical Climatology Network-Daily: GHCN-D), hourly (Hydrometeorological Automated Data System: HADS), and 5-min (Automated Surface Observing Systems: ASOS; Climate Reference Network: CRN) resolution. The challenges related to incorporating differing resolution and quality networks to generate long-term large-scale gridded estimates of precipitation are enormous. In that perspective, we are implementing techniques for merging the rain gauge datasets and the radar-only estimates such as Inverse Distance Weighting (IDW), Simple Kriging (SK), Ordinary Kriging (OK), and Conditional Bias-Penalized Kriging (CBPK). An evaluation of the different radar-gauge merging techniques is presented and we provide an estimate of uncertainty for the gridded estimates. In addition, comparisons with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) are provided in order to give a detailed picture of the improvements and remaining challenges.

  2. Rapid radiometric methods to detect and differentiate Mycobacterium tuberculosis/M. bovis from other mycobacterial species

    International Nuclear Information System (INIS)

    Siddiqi, S.H.; Hwangbo, C.C.; Silcox, V.; Good, R.C.; Snider, D.E. Jr.; Middlebrook, G.

    1984-01-01

    Rapid methods for the differentiation of Mycobacterium tuberculosis/M. bovis (TB complex) from other mycobacteria (MOTT bacilli) were developed and evaluated in a three-phase study. In the first phase, techniques for identification of Mycobacterium species were developed by using radiometric technology and BACTEC Middlebrook 7H12 liquid medium. Based on 14 CO 2 evolution, characteristic growth patterns were established for 13 commonly encountered mycobacterial species. Mycobacteria belonging to the TB complex were differentiated from other mycobacteria by cellular morphology and rate of 14 CO 2 evolution. For further differentiation, radiometric tests for niacin production and inhibition by Q-nitro-alpha-acetyl amino-beta-hydroxy-propiophenone (NAP) were developed. In the second phase, 100 coded specimens on Lowenstein-Jensen medium were identified as members of the TB complex, MOTT bacilli, bacteria other than mycobacteria, or ''no viable organisms'' within 3 to 12 (average 6.4) days of receipt from the Centers for Disease Control. Isolation and identification of mycobacteria from 20 simulated sputum specimens were carried out in phase III. Out of 20 sputum specimens, 16 contained culturable mycobacteria, and all of the positives were detected by the BACTEC method in an average of 7.3 days. The positive mycobacterial cultures were isolated and identified as TB complex or MOTT bacilli in an average of 12.8 days. The radiometric NAP test was found to be highly sensitive and specific for a rapid identification of TB complex, whereas the radiometric niacin test was found to have some inherent problems. Radiometric BACTEC and conventional methodologies were in complete agreement in Phase II as well as in Phase III

  3. A contactless approach for respiratory gating in PET using continuous-wave radar

    Energy Technology Data Exchange (ETDEWEB)

    Ersepke, Thomas, E-mail: Thomas.Ersepke@rub.de; Büther, Florian; Heß, Mirco [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany and DFG EXC 1003, Cluster of Excellence ‘Cells in Motion,’ Münster 48149 (Germany)

    2015-08-15

    Purpose: Respiratory gating is commonly used to reduce motion artifacts in positron emission tomography (PET). Clinically established methods for respiratory gating in PET require contact to the patient or a direct optical line between the sensor and the patient’s torso and time consuming preparation. In this work, a contactless method for capturing a respiratory signal during PET is presented based on continuous-wave radar. Methods: The proposed method relies on the principle of emitting an electromagnetic wave and detecting the phase shift of the reflected wave, modulated due to the respiratory movement of the patient’s torso. A 24 GHz carrier frequency was chosen allowing wave propagation through plastic and clothing with high reflections at the skin surface. A detector module and signal processing algorithms were developed to extract a quantitative respiratory signal. The sensor was validated using a high precision linear table. During volunteer measurements and [{sup 18}F] FDG PET scans, the radar sensor was positioned inside the scanner bore of a PET/computed tomography scanner. As reference, pressure belt (one volunteer), depth camera-based (two volunteers, two patients), and PET data-driven (six patients) signals were acquired simultaneously and the signal correlation was quantified. Results: The developed system demonstrated a high measurement accuracy for movement detection within the submillimeter range. With the proposed method, small displacements of 25 μm could be detected, not considerably influenced by clothing or blankets. From the patient studies, the extracted respiratory radar signals revealed high correlation (Pearson correlation coefficient) to those derived from the external pressure belt and depth camera signals (r = 0.69–0.99) and moderate correlation to those of the internal data-driven signals (r = 0.53–0.70). In some cases, a cardiac signal could be visualized, due to the representation of the mechanical heart motion on the skin

  4. A new relative radiometric consistency processing method for change detection based on wavelet transform and a low-pass filter

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The research purpose of this paper is to show the limitations of the existing radiometric normalization approaches and their disadvantages in change detection of artificial objects by comparing the existing approaches,on the basis of which a preprocessing approach to radiometric consistency,based on wavelet transform and a spatial low-pass filter,has been devised.This approach first separates the high frequency information and low frequency information by wavelet transform.Then,the processing of relative radiometric consistency based on a low-pass filter is conducted on the low frequency parts.After processing,an inverse wavelet transform is conducted to obtain the results image.The experimental results show that this approach can substantially reduce the influence on change detection of linear or nonlinear radiometric differences in multi-temporal images.

  5. MOBILE MAPPING BY FMCW SYNTHETIC APERTURE RADAR OPERATING AT 300 GHZ

    Directory of Open Access Journals (Sweden)

    S. Palm

    2016-06-01

    Full Text Available While optical cameras or laser systems are widely used for mobile mapping low attention was payed for radar systems. Due to new semiconductor technologies, compact and leight weight SAR systems based on the Frequency Modulated Continuous Wave (FMCW principle in the millimeter wave domain can serve for mobile radar mapping on cars. For mapping of long stripes along roads in close range a special strategy for focusing of SAR images was developed. Hereby local adapted planes for processing are used considering the IMU data of the sensor. An experimental system was designed for high resolution radar mapping of urban scenes in close range geometry. This small and leight weighted system has a bandwidth of 30 GHz (5 mm resolution and operates with 300 GHz in the lower terahertz domain. Experiments with a van in an urban scenario were carried out for proof of applicability of an operating SAR system resolving objects in the subcentimeter domain. The results show that narrow cracks in the asphalt of the road are visible and the measuring of small metallic objects placed in the scene is possible. Based on this mobile mapping techniques a first result from an acquisition of vertical facade structure is shown.

  6. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  7. Electromagnetic characterization of white spruce at different moisture contents using synthetic aperture radar imaging

    Science.gov (United States)

    Ingemi, Christopher M.; Owusu Twumasi, Jones; Yu, Tzuyang

    2018-03-01

    Detection and quantification of moisture content inside wood (timber) is key to ensuring safety and reliability of timber structures. Moisture inside wood attracts insects and fosters the development of fungi to attack the timber, causing significant damages and reducing the load bearing capacity during their design life. The use of non-destructive evaluation (NDE) techniques (e.g., microwave/radar, ultrasonic, stress wave, and X-ray) for condition assessment of timber structures is a good choice. NDE techniques provide information about the level of deterioration and material properties of timber structures without obstructing their functionality. In this study, microwave/radar NDE technique was selected for the characterization of wood at different moisture contents. A 12 in-by-3.5 in-by-1.5 in. white spruce specimen (picea glauca) was imaged at different moisture contents using a 10 GHz synthetic aperture radar (SAR) sensor inside an anechoic chamber. The presence of moisture was found to increase the SAR image amplitude as expected. Additionally, integrated SAR amplitude was found beneficial in modeling the moisture content inside the wood specimen.

  8. Detection Thresholds of Falling Snow From Satellite-Borne Active and Passive Sensors

    Science.gov (United States)

    Skofronick-Jackson, Gail M.; Johnson, Benjamin T.; Munchak, S. Joseph

    2013-01-01

    There is an increased interest in detecting and estimating the amount of falling snow reaching the Earths surface in order to fully capture the global atmospheric water cycle. An initial step toward global spaceborne falling snow algorithms for current and future missions includes determining the thresholds of detection for various active and passive sensor channel configurations and falling snow events over land surfaces and lakes. In this paper, cloud resolving model simulations of lake effect and synoptic snow events were used to determine the minimum amount of snow (threshold) that could be detected by the following instruments: the W-band radar of CloudSat, Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR)Ku- and Ka-bands, and the GPM Microwave Imager. Eleven different nonspherical snowflake shapes were used in the analysis. Notable results include the following: 1) The W-band radar has detection thresholds more than an order of magnitude lower than the future GPM radars; 2) the cloud structure macrophysics influences the thresholds of detection for passive channels (e.g., snow events with larger ice water paths and thicker clouds are easier to detect); 3) the snowflake microphysics (mainly shape and density)plays a large role in the detection threshold for active and passive instruments; 4) with reasonable assumptions, the passive 166-GHz channel has detection threshold values comparable to those of the GPM DPR Ku- and Ka-band radars with approximately 0.05 g *m(exp -3) detected at the surface, or an approximately 0.5-1.0-mm * h(exp -1) melted snow rate. This paper provides information on the light snowfall events missed by the sensors and not captured in global estimates.

  9. Basing of principles and methods of operation of radiometric control and measurement systems

    International Nuclear Information System (INIS)

    Onishchenko, A.M.

    1995-01-01

    Six basic stages of optimization of radiometric systems, methods of defining the preset components of total error and the choice of principles and methods of measurement are described in succession. The possibility of simultaneous optimization of several stages, turning back to the already passed stages, is shown. It is suggested that components of the total error should be preset as identical ones for methodical, instrument, occasional and representativity errors and the greatest of the components should be decreased first of all. Comparative table for 64 radiometric methods of measurement by 11 indices of the methods quality is presented. 2 refs., 1 tab

  10. Survey of Ultra-wideband Radar

    Science.gov (United States)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  11. Localization Capability of Cooperative Anti-Intruder Radar Systems

    Directory of Open Access Journals (Sweden)

    Mauro Montanari

    2008-06-01

    Full Text Available System aspects of an anti-intruder multistatic radar based on impulse radio ultrawideband (UWB technology are addressed. The investigated system is composed of one transmitting node and at least three receiving nodes, positioned in the surveillance area with the aim of detecting and locating a human intruder (target that moves inside the area. Such systems, referred to also as UWB radar sensor networks, must satisfy severe power constraints worldwide imposed by, for example, the Federal Communications Commission (FCC and by the European Commission (EC power spectral density masks. A single transmitter-receiver pair (bistatic radar is considered at first. Given the available transmitted power and the capability of the receiving node to resolve the UWB pulses in the time domain, the surveillance area regions where the target is detectable, and those where it is not, are obtained. Moreover, the range estimation error for the transmitter-receiver pair is discussed. By employing this analysis, a multistatic system is then considered, composed of one transmitter and three or four cooperating receivers. For this multistatic system, the impact of the nodes location on area coverage, necessary transmitted power and localization uncertainty is studied, assuming a circular surveillance area. It is highlighted how area coverage and transmitted power, on one side, and localization uncertainty, on the other side, require opposite criteria of nodes placement. Consequently, the need for a system compromising between these factors is shown. Finally, a simple and effective criterion for placing the transmitter and the receivers is drawn.

  12. Synthetic-aperture radar imaging through dispersive media

    International Nuclear Information System (INIS)

    Varslot, Trond; Morales, J Héctor; Cheney, Margaret

    2010-01-01

    In this paper we develop a method for synthetic-aperture radar (SAR) imaging through a dispersive medium. We consider the case when the sensor and scatterers are embedded in a known homogeneous dispersive material, the scene to be imaged lies on a known surface and the radar antenna flight path is an arbitrary but known smooth curve. The scattering is modeled using a linearized (Born) scalar model. We assume that the measurements are polluted with additive noise. Furthermore, we assume that we have prior knowledge about the power-spectral densities of the scene and the noise. This leads us to formulate the problem in a statistical framework. We develop a filtered-back-projection imaging algorithm in which we choose the filter according to the statistical properties of the scene and noise. We present numerical simulations for a case where the scene consists of point-like scatterers located on the ground, and demonstrate how the ability to resolve the targets depends on a quantity which we call the noise-to-target ratio. In our simulations, the dispersive material is modeled with the Fung–Ulaby equations for leafy vegetation. However, the method is also applicable to other dielectric materials where the dispersion is considered relevant in the frequency range of the transmitted signals

  13. Monitoring of railway embankment settlement with fiber-optic pulsed time-of-flight radar.

    Science.gov (United States)

    Kilpelä, Ari; Lyöri, Veijo; Duan, Guoyong

    2012-12-01

    This paper deals with a fiber-optic pulsed time-of-flight (PTOF) laser radar used for monitoring the settlement of a railway embankment. The operating principle is based on evaluating the changes in the lengths of the fiber-optic cables embedded in the embankment by measuring the time separation of the optical pulses reflected from both ends of the sensor fiber. The advantage of this method is that it integrates the elongation of the whole sensor, and many sensor fibers can be connected in series. In a field test, seven polyurethane-coated optical cables were installed in a railway embankment and used as 20-m long sensors. The optical timing pulses were created using specially polished optical connectors. The measured precision was 0.28 ps, which corresponds 1.8 μstrain elongation using a 20 m long sensor fiber, using an averaged value of 10,000 pulses for a single measurement value. The averaged elongation value of all sensors was used for cancelling out the effect of temperature variation on the elongation value of each individual sensor. The functionality of the method was tested by digging away a 7.5 m long and approximately 18 mm high section of sand below one sensor. It was measured as a +3 mm change in the length of the sensor fiber, which matched well with the theoretically calculated elongation value, 2.9 mm. The sensor type proved to be strong but flexible enough for this type of use.

  14. Meteor detection on ST (MST) radars

    International Nuclear Information System (INIS)

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  15. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  16. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  17. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  18. Lack of clinical relevance in routine final subcultures of radiometrically negative BACTEC blood culture vials

    International Nuclear Information System (INIS)

    Plorde, J.J.; Carlson, L.G.; Dau, M.E.

    1982-01-01

    During a 38-month period, 10,106 blood specimens were received in the laboratory for culture. These were inoculated into 26,424 vials and processed using the BACTEC radiometric detection system. Of these vials, 1,914 were eventually found to be microbiologically positive. Isolates from 836 vials were judged to be contaminants. In the remaining 1,078 vials, growth was first detected visually or radiometrically in 1,062 and by final subculture in 16. Growth from these sixteen bottles represented 12 clinically significant bacteremic episodes in as many patients. In nine of these episodes, other culture vials from the same patient were positive radiometrically. Therefore, 358 of 361 (99.2%) bacteremic episodes were detected without the benefit of routine final subcultures. The three patients whose bacteremia was missed were diagnosed clinically and placed on appropriate therapy prior to the detection of the bacteremias by final subculture

  19. Signature modelling and radiometric rendering equations in infrared scene simulation systems

    CSIR Research Space (South Africa)

    Willers, CJ

    2011-09-01

    Full Text Available The development and optimisation of modern infrared systems necessitates the use of simulation systems to create radiometrically realistic representations (e.g. images) of infrared scenes. Such simulation systems are used in signature prediction...

  20. The use of radar for bathymetry assessment

    OpenAIRE

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered bathymetric data. The paper reviews the concepts of bathymetry assessment by radar, the radar imaging mechanism, and the possibilities and limitations of the use of radar data in rapid assessment.

  1. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    Science.gov (United States)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  2. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    Science.gov (United States)

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  3. Choosing of mode and calculation of multiple regression equation parameters in X-ray radiometric analysis

    International Nuclear Information System (INIS)

    Mamikonyan, S.V.; Berezkin, V.V.; Lyubimova, S.V.; Svetajlo, Yu.N.; Shchekin, K.I.

    1978-01-01

    A method to derive multiple regression equations for X-ray radiometric analysis is described. Te method is realized in the form of the REGRA program in an algorithmic language. The subprograms included in the program are describe. In analyzing cement for Mg, Al, Si, Ca and Fe contents as an example, the obtainment of working equations in the course of calculations by the program is shown to simpliy the realization of computing devices in instruments for X-ray radiometric analysis

  4. Determination of reliability of express forecasting evaluation of radiometric enriching ability of non-ferrous ores

    International Nuclear Information System (INIS)

    Kirpishchikov, S.P.

    1991-01-01

    Use of the data of nuclear physical methods of sampling and logging enables to improve reliability of evaluation of radiometric enriching ability of ores, as well as to evaluate quantitatively this reliability. This problem may be solved by using some concepts of geostatistics. The presented results enable to conclude, that the data of nuclear-physical methods of sampling and logging can provide high reliability of evaluation of radiometric enriching ability of non-ferrous ores and their geometrization by technological types

  5. Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia.

    Science.gov (United States)

    Sepúlveda, J.; Hoyos Ortiz, C. D.

    2017-12-01

    An adequate quantification of precipitation over land is critical for many societal applications including agriculture, hydroelectricity generation, water supply, and risk management associated with extreme events. The use of rain gauges, a traditional method for precipitation estimation, and an excellent one, to estimate the volume of liquid water during a particular precipitation event, does not allow to fully capture the highly spatial variability of the phenomena which is a requirement for almost all practical applications. On the other hand, the weather radar, an active remote sensing sensor, provides a proxy for rainfall with fine spatial resolution and adequate temporary sampling, however, it does not measure surface precipitation. In order to fully exploit the capabilities of the weather radar, it is necessary to develop quantitative precipitation estimation (QPE) techniques combining radar information with in-situ measurements. Different QPE methodologies are explored and adapted to local observations in a highly complex terrain region in tropical Colombia using a C-Band radar and a relatively dense network of rain gauges and disdrometers. One important result is that the expressions reported in the literature for extratropical locations are not representative of the conditions found in the tropical region studied. In addition to reproducing the state-of-the-art techniques, a new multi-stage methodology based on radar-derived variables and disdrometer data is proposed in order to achieve the best QPE possible. The main motivation for this new methodology is based on the fact that most traditional QPE methods do not directly take into account the different uncertainty sources involved in the process. The main advantage of the multi-stage model compared to traditional models is that it allows assessing and quantifying the uncertainty in the surface rain rate estimation. The sub-hourly rainfall estimations using the multi-stage methodology are realistic

  6. Marine parameters from synergy of optical and radar satellite data

    Science.gov (United States)

    Lehner, S.; Hoja, D.; Schulz-Stellenfleth, J.

    In 2001 the European Space Agency ESA will launch the earth observation satellite ENVISAT. It will carry several instruments that provide new opportunities to measure oceanographic variables. Together, they represent the main measurement techniques of satellite oceanography, and complement each other in an ideal manner. These instruments are to be used in synergy to: Improve the analysis of measured wind and ocean wave fields, and thereby improve weather forecasting at weather centers; Determine the extent and variables of sea ice and develop a five-day sea ice prediction model, to support maritime shipping and offshore activities; Monitor and map sediment and suspended matter transport in coastal regions, especially in areas with large river estuaries, which greatly affects shipping lanes, harbors, and dredging activities; Monitor hydrobiological and bio-geochemical variables related to water quality in coastal regions and large inland waters, which affects ecology, coastal development, aquaculture, drinking water supplies, and tourism. To prepare the oceanographic community to make best use of the ENVISAT sensors in the pre-launch phase, existing algorithms to derive marine parameters are used and validated using data from the ERS SAR, the ERS RA, SeaWiFS and IRS MOS sensors now in operation. Derived products are used to address problems that can best be tackled using the synergy of radar and optical data, such as the effect of surface slicks on radar wind measurements, of sea state on ocean color, of wind and waves on the resuspension of suspended matter, and of wind and waves on sea ice variables.

  7. Planar millimeter wave radar frontend for automotive applications

    Directory of Open Access Journals (Sweden)

    J. Grubert

    2003-01-01

    Full Text Available A fully integrated planar sensor for 77 GHz automotive applications is presented. The frontend consists of a transceiver multichip module and an electronically steerable microstrip patch array. The antenna feed network is based on a modified Rotman-lens and connected to the array in a multilayer approach offering higher integration. Furthermore, the frontend comprises a phase lock loop to allow proper frequency-modulated continuous wave (FMCW radar operation. The latest experimental results verify the functionality of this advanced frontend design featuring automatic cruise control, precrash sensing and cut-in detection. These promising radar measurements give reason to a detailed theoretical investigation of system performance. Employing commercially available MMIC various circuit topologies are compared based on signal-tonoise considerations. Different scenarios for both sequential and parallel lobing hint to more advanced sensor designs and better performance. These improvements strongly depend on the availability of suitable MMIC and reliable packaging technologies. Within our present approach possible future MMIC developments are already considered and, thus, can be easily adapted by the flexible frontend design. Es wird ein integrierter planarer Sensor für 77 GHz Radaranwendungen vorgestellt. Das Frontend besteht aus einem Sende- und Empfangs-Multi-Chip-Modul und einer elektronisch schwenkbaren Antenne. Das Speisenetzwerk der Antenne basiert auf einer modifizierten Rotman- Linse. Für eine kompakte Bauweise sind Antenne und Speisenetzwerk mehrlagig integriert. Weiterhin umfasst das Frontend eine Phasenregelschleife für eine präzise Steuerung des frequenzmodulierten Dauerstrichradars. Die aktuellen Messergebnisse bestätigen die Funktionalit¨at dieses neuartigen Frontend-Designs, das automatische Geschwindigkeitsregelung, Kollisionswarnung sowie Nahbereichsüberwachung ermöglicht. Die Qualität der Messergebnisse hat weiterf

  8. Radiometric geochronology of the Himalaya

    International Nuclear Information System (INIS)

    Saini, H.S.

    1982-01-01

    The radiometric age data obtained by different dating methods have been interpreted in terms of possible orogenic activities prevailing in the Himalaya. In general, the age data confirm four main events, the Precambrian, the Late Precambrian-Cambrian Assyntian (Caledonian), the Late Palaeozoic-Hercynian and the Late Cretaceous-Tertiary Himalayan orogeny. The mineral dates are particularly significant in delineating different phases of the last i.e. the Himalayan orogeny which indicates main activity of the young Himalayan metamorphism around 70 to 50 Ma and followed by a momentous phase of major uplift during 25 to 10 Ma, which was responsible for the rise of the deeper part of the Himalaya into great folds and thrust slices and the formation of nappe structures. (author)

  9. The Pelindaba facility for calibrating radiometric field instruments

    International Nuclear Information System (INIS)

    Corner, B.; Toens, P.D.; Van As, D.; Vleggaar, C.M.; Richards, D.J.

    1979-04-01

    The tremendous upsurge in uranium exploration activity, experienced in recent years, has made the need for the standardisation and calibration of radiometric field instruments apparent. In order to fulfill this need, construction of a calibration facility at the National Nuclear Research Centre, Pelindaba, was commenced in 1972 and has since been extended according the the requirements of the mining industry. The facility currently comprises 11 surface standard sources suitable for the calibration, in terms of radio-element concentration, of portable scintillometers and spectrometers, and single uranium and thorium model-borehole sources which make possible the accurate calibration of borehole logging instruments both for gross-count and spectrometric surveys. Portable potassium, uranium and thorium sources are also available for the purposes of establishing airborne-spectrometer stripping ratios. The relevant physico-chemical properties of the standards are presented in this report and calibration procedures and data reduction techniques recommended. Examples are given of in situ measurements, both on surface and down-the-hole, which show that the derived calibration constants yield radiometric grades which are, on average, accurate to within 5% of the true radio-element concentrations. A secondary facility comprising single borehole- and surface-uranium sources has also been constructed in Beaufort West in the southern Karoo [af

  10. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar.

    Science.gov (United States)

    Shin, Young Hoon; Seo, Jiwon

    2016-10-29

    People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker's vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing.

  11. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    Science.gov (United States)

    Trizna, D.; Hathaway, K.

    2007-05-01

    Two new radar systems have been developed for real-time measurement of near-shore processes, and results are presented for measurements of ocean wave spectra, near-shore sand bar structure, and ocean currents. The first is a non-coherent radar based on a modified version of the Sitex radar family, with a data acquisition system designed around an ISR digital receiver card. The card operates in a PC computer with inputs from a Sitex radar modified for extraction of analogue signals for digitization. Using a 9' antenna and 25 kW transmit power system, data were collected during 2007 at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC during winter and spring of 2007. The directional wave spectrum measurements made are based on using a sequence of 64 to 640 antenna rotations to form a snapshot series of radar images of propagating waves. A square window is extracted from each image, typically 64 x 64 pixels at 3-m resolution. Then ten sets of 64 windows are submitted to a three-dimensional Fast Fourier Transform process to generate radar image spectra in the frequency-wavenumber space. The relation between the radar image spectral intensity and wave spectral intensity derived from the FRF pressure gauge array was used for a test set of data, in order to establish a modulation transfer function (MTF) for each frequency component. For 640 rotations, 10 of such spectra are averaged for improved statistics. The wave spectrum so generated was compared for extended data sets beyond those used to establish the MTF, and those results are presented here. Some differences between the radar and pressure sensor data that are observed are found to be due to the influence of the wind field, as the radar echo image weakens for light winds. A model is developed to account for such an effect to improve the radar estimate of the directional wave spectrum. The radar ocean wave imagery is severely influenced only by extremely heavy rain-fall rates, so that

  12. Live demonstration: Screen printed, microwave based level sensor for automated drug delivery

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-02

    Level sensors find numerous applications in many industries to automate the processes involving chemicals. Recently, some commercial ultrasound based level sensors are also being used to automate the drug delivery process [1]. Some of the most desirable features of level sensors to be used for medical use are their non-intrusiveness, low cost and consistent performance. In this demo, we will present a completely new method of sensing the liquid level using microwaves. It is a common stereotype to consider microwaves sensing mechanism as being expensive. Unlike usual expensive, intrusive and bulky microwave methods of level sensing using guided radars, we will present an extremely low cost printed, non-intrusive microwave sensor to reliably sense the liquid level.

  13. Interception of LPI radar signals

    Science.gov (United States)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  14. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  15. Human walking estimation with radar

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2003-01-01

    Radar can be used to observe humans that are obscured by objects such as walls. These humans cannot be visually observed. The radar measurements are used to animate an obscured human in virtual reality. This requires detailed information about the motion. The radar measurements give detailed

  16. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  17. A review of recent developments in radiometric calibration facilities

    International Nuclear Information System (INIS)

    Corner, B.

    1984-01-01

    Two new developments concerning radiometric calibration facilities are described in this presentation. The first is the result of the international programme for the monitoring and cross-reference of existing calibration facilities, sponsored by the International Atomic Energy Agency. The second development that is discussed concerns the accuracy of the stripping ratios derived at Pelindaba and has important implications for in situ assaying

  18. Radar meteor rates and solar activity

    International Nuclear Information System (INIS)

    Prikryl, P.

    1983-01-01

    The short-term variation of diurnal radar meteor rates with solar activity represented by solar microwave flux Fsub(10.7), and sunspots relative number Rsub(z), is investigated. Applying the superposed-epoch analysis to the observational material of radar meteor rates from Christchurch (1960-61 and 1963-65), a decrease in the recorded radar rates is found during days of enhanced solar activity. No effect of geomagnetic activity similar to the one reported for the Swedish and Canadian radar meteor data was found by the author in the Christchurch data. A possible explanation of the absence of the geomagnetic effect on radar meteor rates from New Zealand due to a lower echo ceiling height of the Christchurch radar is suggested. The variation of the atmospheric parameters as a possible cause of the observed variation in radar meteor rates is also discussed. (author)

  19. Radiometric titration of thallium(III) with EDTA

    International Nuclear Information System (INIS)

    Rao, V.R.S.; Pulla Rao, Ch.; Tataiah, G.

    1978-01-01

    Radioactive solutions containing very small amounts of thallium(III) can be determined by radiometric titration using ammonia as hydrolysing agent. Aqueous solution of thallium(I) (both inactive and radioactive) is treated with bromine water till the appearance of the brown colour of bromine, and the solution is warmed to 80 deg C to expel the excess bromine. By this procedure all thallium(I) is quantitatively oxidised to thallium(III). An aqueous solution of ammonia is added to precipitate thallium(III) as thallic oxide. It is then filtered, washed with water to free it from bromide and then dissolved in 2N HCl and the solution is then standardised. 2 ml of this solution is transferred to a 20 ml volumetric flask, 1 ml of radioactive thallium(III) solution to be standardised is added as well as incremental amounts of EDTA solution and mixed thoroughly. Uncomplexed thallium(III) is then precipitated by the addition of an ammonia solution and diluted to 20 ml. Required amount of this mixture is centrifuged. The beta activity of the supernatant aliquot is measured using a GM counter. Quantitative determination of Tl(III) in the range of 1-10 μM can be carried out. The interference of cations such as Au(III), iron(III), Ga(III) can be eliminated by pretreatment of the Tl(III) solution before carrying out radiometric titration. The results obtained are reproducible and accurate to +-3%. (T.I.)

  20. Radiometric survey in mammography: problems and challenges; Levantamento radiometrico em mamografia: problemas e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, M.V.T.; Navarro, V.C.C.; Garcia, I.F.M.; Ferreira, M.J.; Macedo, E.M., E-mail: navarro@ifba.edu.br [Instituto Federal da Bahia (LABPROSAUD/IFBA), Salvador, BA (Brazil). Laboratorio de Produtos para a Saude

    2015-07-01

    In addition to being mandatory, the radiometric survey is a necessity, especially in the Brazilian reality with the construction of smaller and smaller rooms. However, calibration conditions, the instrumentation and its use, can produce underestimated factors. Measures made at Labprosaud/IFBA, with five different instruments and the ISO N 25 radiation quality, show the possibility of the values presented in the radiometric surveys are underestimated by up to 10 times. The results indicate the need for meters to be calibrated in ISO N qualities, in mammography energy range, in integrated dose mode and exposure times shorter or equal to 1 s. (author)

  1. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  2. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    International Nuclear Information System (INIS)

    Chiara, P.; Morelli, A.

    2010-01-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  3. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    Science.gov (United States)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  4. Classification and correction of the radar bright band with polarimetric radar

    Science.gov (United States)

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  5. Phase 1 report on sensor technology, data fusion and data interpretation for site characterization

    International Nuclear Information System (INIS)

    Beckerman, M.

    1991-10-01

    In this report we discuss sensor technology, data fusion and data interpretation approaches of possible maximal usefulness for subsurface imaging and characterization of land-fill waste sites. Two sensor technologies, terrain conductivity using electromagnetic induction and ground penetrating radar, are described and the literature on the subject is reviewed. We identify the maximum entropy stochastic method as one providing a rigorously justifiable framework for fusing the sensor data, briefly summarize work done by us in this area, and examine some of the outstanding issues with regard to data fusion and interpretation. 25 refs., 17 figs

  6. Distributed sensor management for space situational awareness via a negotiation game

    Science.gov (United States)

    Jia, Bin; Shen, Dan; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2015-05-01

    Space situational awareness (SSA) is critical to many space missions serving weather analysis, communications, and navigation. However, the number of sensors used in space situational awareness is limited which hinders collision avoidance prediction, debris assessment, and efficient routing. Hence, it is critical to use such sensor resources efficiently. In addition, it is desired to develop the SSA sensor management algorithm in a distributed manner. In this paper, a distributed sensor management approach using the negotiation game (NG-DSM) is proposed for the SSA. Specifically, the proposed negotiation game is played by each sensor and its neighboring sensors. The bargaining strategies are developed for each sensor based on negotiating for accurately tracking desired targets (e.g., satellite, debris, etc.) . The proposed NG-DSM method is tested in a scenario which includes eight space objects and three different sensor modalities which include a space based optical sensor, a ground radar, or a ground Electro-Optic sensor. The geometric relation between the sensor, the Sun, and the space object is also considered. The simulation results demonstrate the effectiveness of the proposed NG-DSM sensor management methods, which facilitates an application of multiple-sensor multiple-target tracking for space situational awareness.

  7. Forest Biomass Mapping From Lidar and Radar Synergies

    Science.gov (United States)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  8. 46 CFR 184.404 - Radars.

    Science.gov (United States)

    2010-10-01

    ... within one mile of land must be fitted with a FCC Type Accepted general marine radar system for surface... Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD...

  9. Radar network communication through sensing of frequency hopping

    Science.gov (United States)

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  10. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  11. ISTEF Laser Radar Program

    National Research Council Canada - National Science Library

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  12. Blood culture cross contamination associated with a radiometric analyzer

    International Nuclear Information System (INIS)

    Griffin, M.R.; Miller, A.D.; Davis, A.C.

    1982-01-01

    During a 9-day period in August 1980 in a New Jersey hospital, three pairs of consecutively numbered blood cultures from different patients were identified as positive for the same organism, for each pair, both cultures were positive in the same atmosphere, both organisms had the same sensitivities, and the second of each pair grew at least 2 days after the first and was the only positive blood culture obtained from the patient. When the hospital laboratory discontinued use of its radiometric culture analyzer for 15 days, no more consecutive pairs of positive cultures occurred. Subsequent use of the machine for 9 days with a new power unit but the original circuit boards resulted in one more similar consecutive pair (Staphylococcus epidermidis). After replacement of the entire power unit, there were no further such pairs. Examination of the machine by the manufacturer revealed a defective circuit board which resulted in inadequate needle sterilization. Laboratories which utilize radiometric analyzers should be aware of the potential for cross contamination. Recognition of such events requires alert microbiologists and infection control practitioners and a record system in the bacteriology laboratory designed to identify such clusters

  13. Validation of an Inertial Sensor System for Swing Analysis in Golf

    Directory of Open Access Journals (Sweden)

    Paul Lückemann

    2018-02-01

    Full Text Available Wearable inertial sensor systems are an upcoming tool for self-evaluation in sports, and can be used for swing analysis in golf. The aim of this work was to determine the validity and repeatability of an inertial sensor system attached to a player’s glove using a radar system as a reference. 20 subjects performed five full swings with each of three different clubs (wood, 7-iron, wedge. Clubhead speed was measured simultaneously by both sensor systems. Limits of Agreement were used to determine the accuracy and precision of the inertial sensor system. Results show that the inertial sensor system is quite accurate but with a lack of precision. Random error was quantified to approximately 17 km/h. The measurement error was dependent on the club type and was weakly negatively correlated to the magnitude of clubhead speed.

  14. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation

    Science.gov (United States)

    2009-09-01

    Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and

  15. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  16. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  17. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  18. Analysis of Properties of Reflectance Reference Targets for Permanent Radiometric Test Sites of High Resolution Airborne Imaging Systems

    Directory of Open Access Journals (Sweden)

    Eero Ahokas

    2010-08-01

    Full Text Available Reliable and optimal exploitation of rapidly developing airborne imaging methods requires geometric and radiometric quality assurance of production systems in operational conditions. Permanent test sites are the most promising approach for cost-efficient performance assessment. Optimal construction of permanent radiometric test sites for high resolution airborne imaging systems is an unresolved issue. The objective of this study was to assess the performance of commercially available gravels and painted and unpainted concrete targets for permanent, open-air radiometric test sites under sub-optimal climate conditions in Southern Finland. The reflectance spectrum and reflectance anisotropy and their stability were characterized during the summer of 2009. The management of reflectance anisotropy and stability were shown to be the key issues for better than 5% reflectance accuracy.

  19. Pocket radar guide key facts, equations, and data

    CERN Document Server

    Curry, G Richard

    2010-01-01

    ThePocket Radar Guideis a concise collection of key radar facts and important radar data that provides you with necessary radar information when you are away from your office or references. It includes statements and comments on radar design, operation, and performance; equations describing the characteristics and performance of radar systems and their components; and tables with data on radar characteristics and key performance issues.It is intended to supplement other radar information sources by providing a pocket companion to refresh memory and provide details whenever you need them such a

  20. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.