WorldWideScience

Sample records for radar-c sir-c mission

  1. New Processing of Spaceborne Imaging Radar-C (SIR-C) Data

    Science.gov (United States)

    Meyer, F. J.; Gracheva, V.; Arko, S. A.; Labelle-Hamer, A. L.

    2017-12-01

    The Spaceborne Imaging Radar-C (SIR-C) was a radar system, which successfully operated on two separate shuttle missions in April and October 1994. During these two missions, a total of 143 hours of radar data were recorded. SIR-C was the first multifrequency and polarimetric spaceborne radar system, operating in dual frequency (L- and C- band) and with quad-polarization. SIR-C had a variety of different operating modes, which are innovative even from today's point of view. Depending on the mode, it was possible to acquire data with different polarizations and carrier frequency combinations. Additionally, different swaths and bandwidths could be used during the data collection and it was possible to receive data with two antennas in the along-track direction.The United States Geological Survey (USGS) distributes the synthetic aperture radar (SAR) images as single-look complex (SLC) and multi-look complex (MLC) products. Unfortunately, since June 2005 the SIR-C processor has been inoperable and not repairable. All acquired SLC and MLC images were processed with a course resolution of 100 m with the goal of generating a quick look. These images are however not well suited for scientific analysis. Only a small percentage of the acquired data has been processed as full resolution SAR images and the unprocessed high resolution data cannot be processed any more at the moment.At the Alaska Satellite Facility (ASF) a new processor was developed to process binary SIR-C data to full resolution SAR images. ASF is planning to process the entire recoverable SIR-C archive to full resolution SLCs, MLCs and high resolution geocoded image products. ASF will make these products available to the science community through their existing data archiving and distribution system.The final paper will describe the new processor and analyze the challenges of reprocessing the SIR-C data.

  2. Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements

    Science.gov (United States)

    Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.

    1995-01-01

    Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.

  3. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt

    Science.gov (United States)

    Schaber, G.G.; McCauley, J.F.; Breed, C.S.

    1997-01-01

    Bir Safsaf, within the hyperarid 'core' of the Sahara in the Western Desert of Egypt, was recognized following the SIR-A and SIR-B missions in the 1980s as one of the key localities in northeast Africa, where penetration of dry sand by radar signals delineates previously unknown, sand-buried paleodrainage valleys ('radar-rivers') of middle Tertiary to Quaternary age. The Bir Safsaf area was targeted as a focal point for further research in sand penetration and geologic mapping using the multifrequency and polarimetric SIR-C/X-SAR sensors. Analysis of the SIR-C/X-SAR data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat TM images by a relatively thin, but extensive blanket of blow sand. Basement rock units (granitoids and gneisses) and the fractures associated with them at Bir Safsaf are shown here for the first time to be clearly delineated using C- and L-band SAR images. The detectability of most geologic features is dependent primarily on radar frequency, as shown for wind erosion patterns in bedrock at X-band (3 cm wavelength), and for geologic units and sand and clay-filled fractures in weathered crystal-line basement rocks at C-band (6 cm) and L-band (24 cm). By contrast, Quaternary paleodrainage channels are detectable at all three radar frequencies owing, among other things, to an usually thin cover of blow sand. The SIR-C/X-SAR data investigated to date enable us to make specific recommendations about the utility of certain radar sensor configurations for geologic and paleoenvironmental reconnaissance in desert regions.Analysis of the shuttle imaging radar-C/X-synthetic aperture radar (SIR-C/X-SAR) data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and

  4. Bora Bora, Tahaa, and Raiatea, French Polynesia, Landsat and SIR-C Images Compared to SRTM Shaded

    Science.gov (United States)

    2005-01-01

    Bora Bora, Tahaa, and Raiatea (top to bottom) are Polynesian Islands about 220 kilometers (135 miles) west-northwest of Tahiti in the South Pacific. Each of the islands is surrounded by a coral reef and its associated islets ('motus') that enclose a lagoon. Actually, as seen here, Tahaa and Raiatea are close enough together to share a common lagoon and reef. These islands are volcanic in origin and were built up from the sea floor by lava extrusions millions of years ago. None is now active, and all are deeply eroded. This display compares three differing 'views from space' of these islands. On the left, an image from the Landsat 7 satellite shows the islands as they might have appeared to an astronaut in orbit in 1999 (but a little sharper and with atmospheric haze suppressed). In the middle is an image created from data gathered by the third-generation Shuttle Imaging Radar (SIR-C), flown in 1994. On the right is a graphic illustrating elevation data gathered by the Shuttle Radar Topography Mission (SRTM) in 2000. Each of these images shows very different information as compared to the other two. Landsat sees clouds, which are almost always above these islands, blocking the view of the terrain. It also readily sees through shallow water down to the reefs. SIR-C sees the waves and other effects of winds upon the ocean surface. It does not look through water to see the reefs, but it clearly separates land and water. It also provides a bolder (but distorted) view of the islands' topographic patterns. With the ability of radar to see through clouds and provision of its own illumination, the SIR-C view is not limited by clouds nor their shadows. SRTM was designed to provide new information that is missing in the Landsat and SIR-C views. Specifically, SRTM created the world's first near-global, detailed elevation model. Natural topographic shading in Landsat imagery and radar topographic shadowing of SIR-C give some evidence of the shape of the ground but do not

  5. Innovative operating modes and techniques for the spaceborne imaging radar-C instrument

    Science.gov (United States)

    Huneycutt, Bryan L.

    1990-01-01

    The operation of the spaceborne imaging radar-C (SIR-C) is discussed. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar which will be flown during at least two different seasons. The instrument has been designed to operate in innovative modes such as the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument has been designed to demonstrate innovative engineering techniques such as beam nulling for echo tracking, pulse-repetition frquency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.

  6. Development of SIR-C Ground Calibration Equipment

    Science.gov (United States)

    Freeman, A.; Azeem, M.; Haub, D.; Sarabandi, K.

    1993-01-01

    SIR-C/X-SAR is currently scheduled for launch in April 1994. SIR-C is an L-Band and C-Band, multi-polarization spaceborne SAR system developed by NASA/JPL. X- SAR is an X-Band SAR system developed by DARA/ASI. One of the problems involved in calibrating the SIR-C instrument is to make sure that the horizontal (H) and vertical (V) polarized beams are aligned in the azimuth direction, i.e.. that they are pointing in the same direction. This is important if the polarimetric performance specifications for the system are to be met. To solve this problem, we have designed and built a prototype of a low-cost ground receiver capable of recording received power from two antennas, one H-polarized, the other V-polarized. The two signals are mixed to audio then recorded on the left and right stereo channels of a standard audio cassette player. The audio cassette recording can then be played back directly into a Macintosh computer, where it is digitized. Analysis of.

  7. Classification of surface types using SIR-C/X-SAR, Mount Everest Area, Tibet

    Science.gov (United States)

    Albright, Thomas P.; Painter, Thomas H.; Roberts, Dar A.; Shi, Jiancheng; Dozier, Jeff; Fielding, Eric

    1998-01-01

    Imaging radar is a promising tool for mapping snow and ice cover in alpine regions. It combines a high-resolution, day or night, all-weather imaging capability with sensitivity to hydrologic and climatic snow and ice parameters. We use the spaceborne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) to map snow and glacial ice on the rugged north slope of Mount Everest. From interferometrically derived digital elevation data, we compute the terrain calibration factor and cosine of the local illumination angle. We then process and terrain-correct radar data sets acquired on April 16, 1994. In addition to the spectral data, we include surface slope to improve discrimination among several surface types. These data sets are then used in a decision tree to generate an image classification. This method is successful in identifying and mapping scree/talus, dry snow, dry snow-covered glacier, wet snow-covered glacier, and rock-covered glacier, as corroborated by comparison with existing surface cover maps and other ancillary information. Application of the classification scheme to data acquired on October 7 of the same year yields accurate results for most surface types but underreports the extent of dry snow cover.

  8. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    forthcoming Canadian RADARSAT satellite. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  9. Deforestation and Secondary Growth in Rondonia, Brazil from SIR-C SAR and Landsat.SPOT data

    Science.gov (United States)

    Rignot, Eric; Salas, William A.; Skole, David L.

    1996-01-01

    Covers problems with existing data collected with high-resolution optical sensors. They say active microwave sensors could complement other sensors in getting through things like cloud cover. They analyzed SIR-C data in combination with Landsat TM data, a 9-year time series of SPOT XS data, and a preliminary field survey. They report findings and draw conclusions, including that SARs operating at long radar wavelengths, with both like and cross-polarizations, are needed for tropical deforestation studies.

  10. Space Radar Image of Manaus, Brazil

    Science.gov (United States)

    1999-01-01

    These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those

  11. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    Science.gov (United States)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  12. Space Radar Image of Flevoland, Netherlands

    Science.gov (United States)

    1999-01-01

    This is a three-frequency false color image of Flevoland, The Netherlands, centered at 52.4 degrees north latitude, 5.4 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard space shuttle Endeavour on April 14, 1994. It was produced by combining data from the X-band, C-band and L-band radars. The area shown is approximately 25 kilometers by 28 kilometers (15-1/2 by 17-1/2 miles). Flevoland, which fills the lower two-thirds of the image, is a very flat area that is made up of reclaimed land that is used for agriculture and forestry. At the top of the image, across the canal from Flevoland, is an older forest shown in red; the city of Harderwijk is shown in white on the shore of the canal. At this time of the year, the agricultural fields are bare soil, and they show up in this image in blue. The changes in the brightness of the blue areas are equal to the changes in roughness. The dark blue areas are water and the small dots in the canal are boats. This SIR-C/X-SAR supersite is being used for both calibration and agricultural studies. Several soil and crop ground-truth studies will be conducted during the shuttle flight. In addition, about 10calibration devices and 10 corner reflectors have been deployed to calibrate and monitor the radar signal. One of these transponders can be seen as a bright star in the lower right quadrant of the image. This false-color image was made using L-band total power in the red channel, C-band total power in the green channel, and X-band VV polarization in the blue channel. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by

  13. Space Radar Image of Kilauea Volcano, Hawaii

    Science.gov (United States)

    1994-01-01

    radar missions to help in better understanding the processes responsible for volcanic eruptions and earthquakes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  14. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  15. Space Radar Image of Sydney, Australia

    Science.gov (United States)

    1994-01-01

    This spaceborne radar image is dominated by the metropolitan area of Australia's largest city, Sydney. Sydney Harbour, with numerous coves and inlets, is seen in the upper center of the image, and the roughly circular Botany Bay is shown in the lower right. The downtown business district of Sydney appears as a bright white area just above the center of the image. The Sydney Harbour Bridge is a white line adjacent to the downtown district. The well-known Sydney Opera House is the small, white dot to the right of the bridge. Urban areas appear yellow, blue and brown. The purple areas are undeveloped areas and park lands. Manly, the famous surfing beach, is shown in yellow at the top center of the image. Runways from the Sydney Airport are the dark features that extend into Botany Bay in the lower right. Botany Bay is the site where Captain James Cook first landed his ship, Endeavour, in 1770. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 20, 1994, onboard the space shuttle Endeavour. The area shown is 33 kilometers by 38kilometers (20 miles by 23 miles) and is centered at 33.9 degrees south latitude, 151.2 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequenciesand polarizations as follows: red is L-band, vertically transmittedand horizontally received; green is C-band, vertically transmitted and horizontally received; and blue is C-band, vertically transmittedand received. SIR-C/X-SAR, a joint mission of the German, Italianand United States space agencies, is part of NASA's Mission to Planet Earth. #####

  16. Space Radar Image of Chernobyl

    Science.gov (United States)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  17. Space Radar Image of Bebedauro, Brazil, seasonal

    Science.gov (United States)

    1994-01-01

    This is an X-band image showing seasonal changes at the hydrological test site of Bebedouro in Brazil. The image is centered at 9 degrees south latitude and 40.2 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994, during the first flight of the radar system, and on October 1, 1994, during the second mission. The swath width is approximately 16.5 kilometers (10.5 miles) wide. The image channels have the following color assignments: red represents data acquired on April 10; green represents data acquired on October 1; blue corresponds to the ratio of the two data sets. Agriculture plays an important economic and social role in Brazil. One of the major problems related to Brazilian agriculture is estimating the size of planting areas and their productivity. Due to cloud cover and the rainy season, which occurs from November through April, optical and infrared Earth observations are seldom used to survey the region. An additional goal of monitoring this region is to watch the floodplains of rivers like Rio Sao Francisco in order to determine suitable locations for additional agricultural fields. This area belongs to the semi-arid northeastern region of Brazil, where estimates have suggested that about 10 times more land could be used for agriculture, including some locations which could be used for irrigation projects. Monitoring of soil moisture during the important summer crop season is of high priority for the future development and productivity of this region. In April the area was covered with vegetation because of the moisture of the soil and only small differences could be seen in X-band data. In October the run-off channels of this hilly region stand out quite clearly because the greenish areas indicated much less soil moisture and water content in plants. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C

  18. Space Radar Image of County Kerry, Ireland

    Science.gov (United States)

    1994-01-01

    The Iveragh Peninsula, one of the four peninsulas in southwestern Ireland, is shown in this spaceborne radar image. The lakes of Killarney National Park are the green patches on the left side of the image. The mountains to the right of the lakes include the highest peaks (1,036 meters or 3,400 feet) in Ireland. The patchwork patterns between the mountains are areas of farming and grazing. The delicate patterns in the water are caused by refraction of ocean waves around the peninsula edges and islands, including Skellig Rocks at the right edge of the image. The Skelligs are home to a 15th century monastery and flocks of puffins. The region is part of County Kerry and includes a road called the 'Ring of Kerry' that is one of the most famous tourist routes in Ireland. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on April 12, 1994. The image is 82 kilometers by 42 kilometers (51 miles by 26 miles) and is centered at 52.0 degrees north latitude, 9.9 degrees west longitude. North is toward the lower left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, vertically transmitted and received; and blue is C-band, vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  19. Space Radar Image of Maui, Hawaii

    Science.gov (United States)

    1994-01-01

    .8 degrees North latitude, 156.4 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is the difference of the C-band and L-band channels. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  20. Space Radar Image of Harvard Forest

    Science.gov (United States)

    1999-01-01

    This is a radar image of the area surrounding the Harvard Forest in north-central Massachusetts that has been operated as a ecological research facility by Harvard University since 1907. At the center of the image is the Quabbin Reservoir, and the Connecticut River is at the lower left of the image. The Harvard Forest itself is just above the reservoir. Researchers are comparing the naturally occurring physical disturbances in the forest and the recent and projected chemical disturbances and their effects on the forest ecosystem. Agricultural land appears dark blue/purple, along with low shrub vegetation and some wetlands. Urban development is bright pink; the yellow to green tints are conifer-dominated vegetation with the pitch pine sand plain at the middle left edge of the image appearing very distinctive. The green tint may indicate pure pine plantation stands, and deciduous broadleaf trees appear gray/pink with perhaps wetter sites being pinker. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 42.50 degrees North latitude and 72.33 degrees West longitude and covers an area of 53 kilometers 63 by kilometers (33 miles by 39 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; and blue is C-band horizontally transmitted and horizontally received.

  1. Space Radar Image of Wenatchee, Washington

    Science.gov (United States)

    1994-01-01

    This spaceborne radar image shows a segment of the Columbia River as it passes through the area of Wenatchee, Washington, about 220 kilometers (136 miles) east of Seattle. The Wenatchee Mountains, part of the Cascade Range, are shown in green at the lower left of the image. The Cascades create a 'rain shadow' for the region, limiting rainfall east of the range to less than 26 centimeters (10 inches) per year. The radar's ability to see different types of vegetation is highlighted in the contrast between the pine forests, that appear in green and the dry valley plain that shows up as dark purple. The cities of Wenatchee and East Wenatchee are the grid-like areas straddling the Columbia River in the left center of the image. With a population of about 60,000, the region produces about half of Washington state's lucrative apple crop. Several orchard areas appear as green rectangular patches to the right of the river in the lower right center. Radar images such as these can be used to monitor land use patterns in areas such as Wenatchee, that have diverse and rapidly changing urban, agricultural and wild land pressures. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 10, 1994. The image is 38 kilometers by 45 kilometers (24 miles by 30 miles) and is centered at 47.3 degrees North latitude, 120.1 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  2. Space Radar Image of Manaus region of Brazil

    Science.gov (United States)

    1994-01-01

    the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  3. STS-68 Mission Insignia

    Science.gov (United States)

    1994-01-01

    This STS-68 patch was designed by artist Sean Collins. Exploration of Earth from space is the focus of the design of the insignia, the second flight of the Space Radar Laboratory (SRL-2). SRL-2 was part of NASA's Mission to Planet Earth (MTPE) project. The world's land masses and oceans dominate the center field, with the Space Shuttle Endeavour circling the globe. The SRL-2 letters span the width and breadth of planet Earth, symbolizing worldwide coverage of the two prime experiments of STS-68: The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instruments; and the Measurement of Air Pollution from Satellites (MAPS) sensor. The red, blue, and black colors of the insignia represent the three operating wavelengths of SIR-C/X-SAR, and the gold band surrounding the globe symbolizes the atmospheric envelope examined by MAPS. The flags of international partners Germany and Italy are shown opposite Endeavour. The relationship of the Orbiter to Earth highlights the usefulness of human space flights in understanding Earth's environment, and the monitoring of its changing surface and atmosphere. In the words of the crew members, the soaring Orbiter also typifies the excellence of the NASA team in exploring our own world, using the tools which the Space Program developed to explore the other planets in the solar system.

  4. Space Radar Image of Central Sumatra, Indonesia

    Science.gov (United States)

    1994-01-01

    This is a radar image of the central part of the island of Sumatra in Indonesia that shows how the tropical rainforest typical of this country is being impacted by human activity. Native forest appears in green in this image, while prominent pink areas represent places where the native forest has been cleared. The large rectangular areas have been cleared for palm oil plantations. The bright pink zones are areas that have been cleared since 1989, while the dark pink zones are areas that were cleared before 1989. These radar data were processed as part of an effort to assist oil and gas companies working in the area to assess the environmental impact of both their drilling operations and the activities of the local population. Radar images are useful in these areas because heavy cloud cover and the persistent smoke and haze associated with deforestation have prevented usable visible-light imagery from being acquired since 1989. The dark shapes in the upper right (northeast) corner of the image are a chain of lakes in flat coastal marshes. This image was acquired in October 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. Environmental changes can be easily documented by comparing this image with visible-light data that were acquired in previous years by the Landsat satellite. The image is centered at 0.9 degrees north latitude and 101.3 degrees east longitude. The area shown is 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is L-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  5. SirT1 confers hypoxia-induced radioresistance via the modulation of c-Myc stabilization on hepatoma cells

    International Nuclear Information System (INIS)

    Xie Yuexia; Zhang Jianghong; Shao Chunlin; Xu Yanwu

    2012-01-01

    Intratumoral hypoxia is an important contributory factor to tumor cell resistance to radiotherapy. SirT1, a nicotinamide adenine dinucleotide (NAD + )-dependent histone/protein deacetylase, has been linked to the decrease of radiation-induced DNA damage and seems to be critical for cancer therapy. The purpose of this study was to investigate the role of SirT1 in hypoxia-induced radiation response on hepatoma cells. It was found that the administration with resveratrol, a putative SirT1 activator, enhanced the resistance of HepG2 cells against radiation-induced DNA damage of MN formation under hypoxia condition; while nicotinamide, a well-known SirT1 inhibitor, sensitized this radiation damage. Nevertheless, pretreatment of cells with 10058-F4, a specific inhibitor of c-Myc, almost eliminated the nicotinamide-induced radiosensitive effect. Further studies revealed that resveratrol inhibited c-Myc protein accumulation via up-regulation of SirT1 expression and deacetylase activity, and this loss of c-Myc protein was abolished by inhibiting its degradation in the presence of MG132, a potent inhibitor of proteasome. In contrast, nicotinamide attenuated c-Myc protein degradation induced by radiation under hypoxia through inhibition of SirT1 deacetylase activity. Our findings suggest that SirT1 could serve as a novel potent target of radiation-induced DNA damage and thus as a potential strategy to advance the efficiency of radiation therapy in hepatoma entities. (author)

  6. PALEODRAINAGES OF THE EASTERN SAHARA - THE RADAR RIVERS REVISITED (SIR - A/B IMPLICATIONS FOR A MID - TERTIARY TRANS - AFRICAN DRAINAGE SYSTEM).

    Science.gov (United States)

    McCauley, John F.; Breed, Carlos S.; Schaber, Gerald G.; McHugh, William P.; Issawi, Bahay; Haynes, C. Vance; Grolier, Maurice J.; El Kilani, Ali

    1986-01-01

    A complex history of Cenozoic fluvial activity in the presently hyperarid eastern Sahara is inferred from Shuttle Imaging Radar (SIR) data and postflight field investigations in southwest Egypt and northwest Sudan. SIR images were coregistered with Landsat and existing maps as a guide to exploration of the buried paleodrainages (radar rivers) first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers: RR-1, RR-2, and RR-3. A generalized model of the radar rivers, based on field studies and regional geologic relations, shows apparent changes in river regimen since the large valleys were established during the late Paleogene-early Neogene eras. SIR-based mapping of these paleodrainages, although incomplete, reveals missing links in an area once thought to be devoid of master streams.

  7. BOREAS RSS-15 SIR-C and Landsat TM Biomass and Landcover Maps of the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Ranson, K. Jon

    2000-01-01

    As part of BOREAS, the RSS-15 team conducted an investigation using SIR-C, X-SAR, and Landsat TM data for estimating total above-ground dry biomass for the SSA and NSA modeling grids and component biomass for the SSA. Relationships of backscatter to total biomass and total biomass to foliage, branch, and bole biomass were used to estimate biomass density across the landscape. The procedure involved image classification with SAR and Landsat TM data and development of simple mapping techniques using combinations of SAR channels. For the SSA, the SIR-C data used were acquired on 06-Oct-1994, and the Landsat TM data used were acquired on 02-Sep-1995. The maps of the NSA were developed from SIR-C data acquired on 13-Apr-1994. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation

    International Nuclear Information System (INIS)

    Xie, Yuexia; Tu, Wenzhi; Zhang, Jianghong; He, Mingyuan; Ye, Shuang; Dong, Chen; Shao, Chunlin

    2015-01-01

    Highlights: • γ-Irradiation induced bystander effects between hepatoma cells and hepatocyte cells. • SirT1 played a protective role in regulating this bystander effect. • SirT1 contributed to the protective effects via elimination the accumulation of ROS. • The activity of c-Myc is critical for maintaining the protective role of SirT1. - Abstract: Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the bystander signaling processes, especially under hypoxic condition, are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 and SK-Hep-1 cells under either normoxia or hypoxia. This bystander response was dramatically diminished or enhanced when the SirT1 gene of irradiated hepatoma cells was overexpressed or knocked down, respectively, especially under hypoxia. Meanwhile, SirT1 knockdown promoted transcriptional activity for c-Myc and facilitated ROS accumulation. But both of the increased bystander responses and ROS generation due to SirT1-knockdown were almost completely suppressed by c-Myc interference. Moreover, ROS scavenger effectively abolished the RIBE triggered by irradiated hepatoma cells even with SirT1 depletion. These findings provide new insights that SirT1 has a profound role in regulating RIBE where a c-Myc-dependent release of ROS may be involved

  9. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuexia [Institute of Radiation Medicine, Fudan University, Shanghai (China); Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Tu, Wenzhi; Zhang, Jianghong; He, Mingyuan; Ye, Shuang; Dong, Chen [Institute of Radiation Medicine, Fudan University, Shanghai (China); Shao, Chunlin, E-mail: clshao@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2015-02-15

    Highlights: • γ-Irradiation induced bystander effects between hepatoma cells and hepatocyte cells. • SirT1 played a protective role in regulating this bystander effect. • SirT1 contributed to the protective effects via elimination the accumulation of ROS. • The activity of c-Myc is critical for maintaining the protective role of SirT1. - Abstract: Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the bystander signaling processes, especially under hypoxic condition, are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 and SK-Hep-1 cells under either normoxia or hypoxia. This bystander response was dramatically diminished or enhanced when the SirT1 gene of irradiated hepatoma cells was overexpressed or knocked down, respectively, especially under hypoxia. Meanwhile, SirT1 knockdown promoted transcriptional activity for c-Myc and facilitated ROS accumulation. But both of the increased bystander responses and ROS generation due to SirT1-knockdown were almost completely suppressed by c-Myc interference. Moreover, ROS scavenger effectively abolished the RIBE triggered by irradiated hepatoma cells even with SirT1 depletion. These findings provide new insights that SirT1 has a profound role in regulating RIBE where a c-Myc-dependent release of ROS may be involved.

  10. Tectonic geomorphology of the Andes with SIR-A and SIR-B

    Science.gov (United States)

    Bloom, Arthur L.; Fielding, Eric J.

    1986-01-01

    Data takes from SIR-A and SIR-B (Shuttle Imaging Radar) crossed all of the principal geomorphic provinces of the central Andes between 17 and 34 S latitude. In conjunction with Thematic Mapping images and photographs from hand-held cameras as well as from the Large Format Camera that was flown with SIR-B, the radar images give an excellent sampling of Andean geomorphology. In particular, the radar images show new details of volcanic rocks and landforms of late Cenozoic age in the Puna, and the exhumed surfaces of tilted blocks of Precambrian crystalline basement in the Sierras Pampeanas.

  11. Studies on the use of SIR-C and X-SAR data for identification, demarcation, and assessment of forest ecosystems. Final report; Untersuchungen zum Einsatz von SIR-C und X-SAR Daten fuer die Identifizierung, Abgrenzung und Beurteilung von Waldoekosystemen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Johlige, A.; Foerster, B.; Ammer, U.

    1997-12-31

    The purpose of the present evaluation was to use SIR-C and X-SAR data for forest surveying and assess their suitability for this task. Amongst other work this included the discrimination of forest and non-forest, demarcation of cleared areas within forests, discrimination of different forest types, and assessment of the influence of foliation. The chief steps of the study were the preparation of radar data, accompanying aerial photo evaluation for the extraction of training and verification areas, and detailed signature analysis. Evaluation trials in ``Oberpfaffenhofen`` supertest area yielded unsatisfactory results when it came to discriminating different forest ecosystems. This can be attributed to the very heterogeneous and small-scale structure of the area and the absence of topographically coded X, C, and L band data. In the second study area, located in the ``Bavarian Forest National Park``, geocoded data of all three bands were available in the form of combined products. This permitted using the mask of the local angles of incidence to reduce the influence of relief. In this case distinguishability within wooded regions was also enhanced. A general finding was that ground resolution as it presents to the user is clearly poorer than the nominal resolution. What impressed us most was the high degree of weather-independence of the radar data. All data handled in this study were recorded under conditions that would have made photography impossible. (orig.) [Deutsch] Ziel der Auswertung ist es SIR-C/X-SAR Daten fuer die Waldbeobachtung einzusetzen und ihre Eignung dafuer zu bewerten. Zu loesende Teilaufgaben waren u.a. die Wald-Nichtwaldtrennung, die Abtrennung unbestockter Flaechen im Wald, Unterscheidung verschiedener Waldtypen selbst und die Beurteilung des Einflusses des Belaubungszustndes. Die zentralen Arbeitsschritte waren die Aufbereitung der Radardaten, die begleitende Luftbildauswertung zur Extraktion von Trainings- und Verifizierungsgebieten und die

  12. Studies on the use of SIR-C and X-SAR data for identification, demarcation, and assessment of forest ecosystems. Final report; Untersuchungen zum Einsatz von SIR-C und X-SAR Daten fuer die Identifizierung, Abgrenzung und Beurteilung von Waldoekosystemen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Johlige, A; Foerster, B; Ammer, U

    1998-12-31

    The purpose of the present evaluation was to use SIR-C and X-SAR data for forest surveying and assess their suitability for this task. Amongst other work this included the discrimination of forest and non-forest, demarcation of cleared areas within forests, discrimination of different forest types, and assessment of the influence of foliation. The chief steps of the study were the preparation of radar data, accompanying aerial photo evaluation for the extraction of training and verification areas, and detailed signature analysis. Evaluation trials in ``Oberpfaffenhofen`` supertest area yielded unsatisfactory results when it came to discriminating different forest ecosystems. This can be attributed to the very heterogeneous and small-scale structure of the area and the absence of topographically coded X, C, and L band data. In the second study area, located in the ``Bavarian Forest National Park``, geocoded data of all three bands were available in the form of combined products. This permitted using the mask of the local angles of incidence to reduce the influence of relief. In this case distinguishability within wooded regions was also enhanced. A general finding was that ground resolution as it presents to the user is clearly poorer than the nominal resolution. What impressed us most was the high degree of weather-independence of the radar data. All data handled in this study were recorded under conditions that would have made photography impossible. (orig.) [Deutsch] Ziel der Auswertung ist es SIR-C/X-SAR Daten fuer die Waldbeobachtung einzusetzen und ihre Eignung dafuer zu bewerten. Zu loesende Teilaufgaben waren u.a. die Wald-Nichtwaldtrennung, die Abtrennung unbestockter Flaechen im Wald, Unterscheidung verschiedener Waldtypen selbst und die Beurteilung des Einflusses des Belaubungszustndes. Die zentralen Arbeitsschritte waren die Aufbereitung der Radardaten, die begleitende Luftbildauswertung zur Extraktion von Trainings- und Verifizierungsgebieten und die

  13. Space Radar Image of Bahia

    Science.gov (United States)

    1994-01-01

    limited by the nearly continuous cloud cover in the region and heavy rainfall, which occurs more than 150 days each year. The ability of the shuttle radars to 'see' through the forest canopy to the cultivated cacao below -- independent of weather or sunlight conditions --will allow researchers to distinguish forest from cabruca in unprecedented detail. This SIR-C/X-SAR image was produced by assigning red to the L-band, green to the C-band and blue to the X-band. The Una Reserve is located in the middle of the image west of the coastline and slightly northwest of Comandatuba River. The reserve's primary forests are easily detected by the pink areas in the image. The intensity of red in these areas is due to the high density of forest vegetation (biomass) detected by the radar's L-band (horizontally transmitted and vertically received) channel. Secondary forest is visible along the reserve's eastern border. The Serrado Mar mountain range is located in the top left portion of the image. Cabruca forest to the west of Una Reserve has a different texture and a yellow color. The removal of understory in cabruca forest reduces its biomass relative to primary forest, which changes the L-band and C-band penetration depth and returns, and produces a different texture and color in the image. The region along the Atlantic is mainly mangrove swamp, agricultural fields and urban areas. The high intensity of blue in this region is a result of increasing X-band return in areas covered with swamp and low vegetation. The image clearly separates the mangrove region (east of coastal Highway 001, shown in blue) from the taller and dryer forest west of the highway. The high resolution capability of SIR-C/X-SAR imaging and the sensitivity of its frequency and polarization channels to various land covers will be used for monitoring and mapping areas of importance for conservation. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar(SIR-C/X-SAR) is part of NASA's Mission to Planet Earth

  14. From ASCAT to Sentinel-1: Soil Moisture Monitoring using European C-Band Radars

    Science.gov (United States)

    Wagner, Wolfgang; Bauer-Marschallinger, Bernhard; Hochstöger, Simon

    2016-04-01

    The Advanced Scatterometer (ASCAT) is a C-Band radar instrument flown on board of the series of three METOP satellites. Albeit not operating in one of the more favorable longer wavelength ranges (S, L or P-band) as the dedicated Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions, it is one of main microwave sensors used for monitoring of soil moisture on a global scale. Its attractiveness for soil moisture monitoring applications stems from its operational status, high radiometric accuracy and stability, short revisit time, multiple viewing directions and long heritage (Wagner et al. 2013). From an application perspective, its main limitation is its spatial resolution of about 25 km, which does not allow resolving soil moisture patterns driven by smaller-scale hydrometeorological processes (e.g. convective precipitation, runoff patterns, etc.) that are themselves related to highly variable land surface characteristics (soil characteristics, topography, vegetation cover, etc.). Fortunately, the technique of aperture synthesis allows to significantly improve the spatial resolution of spaceborne radar instruments up to the meter scale. Yet, past Synthetic Aperture Radar (SAR) missions had not yet been designed to achieve a short revisit time required for soil moisture monitoring. This has only changed recently with the development and launch of SMAP (Entekhabi et al. 2010) and Sentinel-1 (Hornacek et al. 2012). Unfortunately, the SMAP radar failed only after a few months of operations, which leaves Sentinel-1 as the only currently operational SAR mission capable of delivering high-resolution radar observations with a revisit time of about three days for Europe, about weekly for most crop growing regions worldwide, and about bi-weekly to monthly over the rest of the land surface area. Like ASCAT, Sentinel-1 acquires C-band backscatter data in VV polarization over land. Therefore, for the interpretation of both ASCAT and Sentinel-1

  15. The SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  16. Hurricane Rita Track Radar Image with Topographic Overlay

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Animation About the animation: This simulated view of the potential effects of storm surge flooding on Galveston and portions of south Houston was generated with data from the Shuttle Radar Topography Mission. Although it is protected by a 17-foot sea wall against storm surges, flooding due to storm surges caused by major hurricanes remains a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments. About the image: The Gulf Coast from the Mississippi Delta through the Texas coast is shown in this satellite image from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) overlain with data from the Shuttle Radar Topography Mission (SRTM), and the predicted storm track for Hurricane Rita. The prediction from the National Weather Service was published Sept. 22 at 4 p.m. Central Time, and shows the expected track center in black with the lighter shaded area indicating the range of potential tracks the storm could take. Low-lying terrain along the coast has been highlighted using the SRTM elevation data, with areas within 15 feet of sea level shown in red, and within 30 feet in yellow. These areas are more at risk for flooding and the destructive effects of storm surge and high waves. Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial

  17. San Gabriel Mountains, California, Radar image, color as height

    Science.gov (United States)

    2000-01-01

    This topographic radar image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the

  18. What to Do Until the Money Runs Out: A Refinement Framework for Cognitive Engineering in the Real World

    Science.gov (United States)

    Shafto, Michael G.; Remington, Roger W.; Trimble, Jay W.

    1994-01-01

    A case study is presented to illustrate some of the problems of applying cognitive science to complex human-machine systems. Disregard for facts about human cognition often undermines the safety, reliability, and cost-effectiveness of complex systems. Yet single-point methods (for example, better user-interface design), whether rooted in computer science or in experimental psychology, fall far short of addressing systems-level problems in a timely way using realistic resources. A model-based methodology is proposed for organizing and prioritizing the cognitive engineering effort, focusing appropriate expertise on major problems first, then moving to more sophisticated refinements if time and resources permit. This case study is based on a collaborative effort between the Human Factors Division at NASA-Ames and the Spaceborne Imaging Radar SIR-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) Project at the Jet Propulsion Laboratory (JPL), California institute of Technology. The first SIR-C/X-SAR Shuttle mission flew successfully in April, 1994. A series of such missions is planned to provide radar data to study Earth's ecosystems, climatic and geological processes, hydrologic cycle, and ocean circulation. In addition to JPL and NASA personnel, the SIR-C/X-SAR operations team included Scientists and engineers from the German and Italian space agencies.

  19. Sensitivity of C-Band Polarimetric Radar-Based Drop Size Distribution Measurements to Maximum Diameter Assumptions

    Science.gov (United States)

    Carey, Lawrence D.; Petersen, Walter A.

    2011-01-01

    Mission (GPM/PMM Science Team)-funded study is to document the sensitivity of DSD measurements, including estimates of D0, from C-band Z(sub dr) and reflectivity to this range of D(sub max) assumptions. For this study, GPM Ground Validation 2DVD's were operated under the scanning domain of the UAHuntsville ARMOR C-band dual-polarimetric radar. Approximately 7500 minutes of DSD data were collected and processed to create gamma size distribution parameters using a truncated method of moments approach. After creating the gamma parameter datasets the DSD's were then used as input to a T-matrix model for computation of polarimetric radar moments at C-band. All necessary model parameterizations, such as temperature, drop shape, and drop fall mode, were fixed at typically accepted values while the D(sub max) assumption was allowed to vary in sensitivity tests. By hypothesizing a DSD model with D(sub max) (fit) from which the empirical fit to D0 = F[Z(sub dr)] was derived via non-linear least squares regression and a separate reference DSD model with D(sub max) (truth), bias and standard error in D0 retrievals were estimated in the presence of Z(sub dr) measurement error and hypothesized mismatch in D(sub max) assumptions. Although the normalized standard error for D0 = F[Z(sub dr)r] can increase slightly (as much as from 11% to 16% for all 7500 DSDs) when the D(sub max) (fit) does not match D(sub max) (truth), the primary impact of uncertainty in D(sub max) is a potential increase in normalized bias error in D0 (from 0% to as much as 10% over all 7500 DSDs, depending on the extent of the mismatch between D(sub max) (fit) and D(sub max) (truth)). For DSDs characterized by large Z(sub dr) (Z(sub dr) > 1.5 to 2.0 dB), the normalized bias error for D0 estimation at C-band is sometimes unacceptably large (> 10%), again depending on the extent of the hypothesized D(sub max) mismatch. Modeled errors in D0 retrievals from Z(sub dr) at C-band are demonstrated in detail and comparedo

  20. Paleodrainages of the Eastern Sahara - The radar rivers revisited (SIR-A/B implications for a mid-tertiary Trans-African drainage system)

    Science.gov (United States)

    Mccauley, J. F.; Breed, C. S.; Schaber, G. G.; Mchugh, W. P.; Haynes, C. C.

    1986-01-01

    The images obtained by the Shuttle Imaging Radar (SIR)-A and -B systems over the southwestern Egypt and northwestern Sudan were coregistered with the Landsat images and the existing maps to aid in extrapolations of the buried paleodrainages ('radar rivers'), first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers, RR-1 (broad, aggraded valleys filled with alluvium), RR-2 (braided channels inset in the RR-1 valleys), and RR-3 (narrow, long, bedrock-incised channels). A generalized model of the radar rivers, based on field studies and regional geologic relations, shows inferred changes in river regimen since the large valleys were established during the later Paleogene-early Neogene. It is suggested that a former Trans-African master stream system may have flowed from headwaters in the Red Sea Hills southwestward across North Africa, discharging into the Atlantic at the Paleo-Niger delta, prior to the Neogene domal uplifts and building of volcanic edifices across the paths of these ancient watercourses.

  1. Cometary Coma Chemical Composition (C4) Mission

    Science.gov (United States)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; hide

    1994-01-01

    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral

  2. Radar Image, Hokkaido, Japan

    Science.gov (United States)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62

  3. Analysis of data acquired by Shuttle Imaging Radar SIR-A and Landsat Thematic Mapper over Baldwin County, Alabama

    Science.gov (United States)

    Wu, S.-T.

    1985-01-01

    Seasonally compatible data collected by SIR-A and by Landsat 4 TM over the lower coastal plain in Alabama were coregistered, forming a SIR-A/TM multichannel data set with 30 m x 30 m pixel size. Spectral signature plots and histogram analysis of the data were used to observe data characteristics. Radar returns from pine forest classes correlated highly with the tree ages, suggesting the potential utility of microwave remote sensing for forest biomass estimation. As compared with the TM-only data set, the use of SIR-A/TM data set improved classification accuracy of the seven land cover types studied. In addition, the SIR-A/TM classified data support previous finding by Engheta and Elachi (1982) that microwave data appear to be correlated with differing bottomland hardwood forest vegetation as associated with varying water regimens (i.e., wet versus dry).

  4. Coherent Performance Analysis of the HJ-1-C Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Li Hai-ying

    2014-06-01

    Full Text Available Synthetic Aperture Radar (SAR is a coherent imaging radar. Hence, coherence is critical in SAR imaging. In a coherent system, several sources can degrade performance. Based on the HJ-1-C SAR system implementation and sensor characteristics, this study evaluates the effect of frequency stability and pulse-to-pulse timing jitter on the SAR coherent performance. A stable crystal oscillator with short-term stability of 10×1.0−10 / 5 ms is used to generate the reference frequency by using a direct multiplier and divider. Azimuth ISLR degradation owing to the crystal oscillator phase noise is negligible. The standard deviation of the pulse-to-pulse timing jitter of HJ-1-C SAR is lower than 2ns (rms and the azimuth random phase error in the synthetic aperture time slightly degrades the side lobe of the azimuth impulse response. The mathematical expressions and simulation results are presented and suggest that the coherent performance of the HJ-1-C SAR system meets the requirements of synthetic aperture radar imaging.

  5. Detection of hail signatures from single-polarization C-band radar reflectivity

    Science.gov (United States)

    Kunz, Michael; Kugel, Petra I. S.

    2015-02-01

    Five different criteria that estimate hail signatures from single-polarization radar data are statistically evaluated over a 15-year period by categorical verification against loss data provided by a building insurance company. The criteria consider different levels or thresholds of radar reflectivity, some of them complemented by estimates of the 0 °C level or cloud top temperature. Applied to reflectivity data from a single C-band radar in southwest Germany, it is found that all criteria are able to reproduce most of the past damage-causing hail events. However, the criteria substantially overestimate hail occurrence by up to 80%, mainly due to the verification process using damage data. Best results in terms of highest Heidke Skill Score HSS or Critical Success Index CSI are obtained for the Hail Detection Algorithm (HDA) and the Probability of Severe Hail (POSH). Radar-derived hail probability shows a high spatial variability with a maximum on the lee side of the Black Forest mountains and a minimum in the broad Rhine valley.

  6. San Andreas Fault, Southern California , Radar Image, Wrapped Color as Height

    Science.gov (United States)

    2000-01-01

    This topographic radar image vividly displays California's famous San Andreas Fault along the southwestern edge of the Mojave Desert, 75 kilometers (46 miles) north of downtown Los Angeles. The entire segment of the fault shown in this image last ruptured during the Fort Tejon earthquake of 1857. This was one of the greatest earthquakes ever recorded in the U.S., and it left an amazing surface rupture scar over 350 kilometers in length along the San Andreas. Were the Fort Tejon shock to happen today, the damage would run into billions of dollars, and the loss of life would likely be substantial, as the communities of Wrightwood, Palmdale, and Lancaster (among others) all lie upon or near the 1857 rupture area. The Lancaster/Palmdale area appears as bright patches just below the center of the image and the San Gabriel Mountains fill the lower left half of the image. At the extreme lower left is Pasadena. High resolution topographic data such as these are used by geologists to study the role of active tectonics in shaping the landscape, and to produce earthquake hazard maps.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters, or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 2400 meters (8000 feet) of total relief.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an

  7. Remembering Sir J C Bose

    Indian Academy of Sciences (India)

    for this wonderful gift to Indian science. I would like to end this review with another quote for C. N. R. Rao's inspiring foreword. 'The book brings out the spirit of J. C. Bose and the flavour of the great man. I do hope it will be read by a large number of people, particularly young people of India.' M S Swaminathan, UNESCO ...

  8. Space Radar Image of Central African Gorilla Habitat

    Science.gov (United States)

    1999-01-01

    This is a false-color radar image of Central Africa, showing the Virunga Volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. This C-band L-band image was acquired on April 12, 1994, on orbit 58 of space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). The area is centered at about 1.75 degrees south latitude and 29.5 degrees east longitude. The image covers an area 58 kilometers by 178 kilometers (48 miles by 178 miles). The false-color composite is created by displaying the L-band HH return in red, the L-band HV return in green and the C-band HH return in blue. The dark area in the bottom of the image is Lake Kivu, which forms the border between Zaire (to the left) and Rwanda (to the right). The airport at Goma, Zaire is shown as a dark line just above the lake in the bottom left corner of the image. Volcanic flows from the 1977 eruption of Mt. Nyiragongo are shown just north of the airport. Mt. Nyiragongo is not visible in this image because it is located just to the left of the image swath. Very fluid lava flows from the 1977 eruption killed 70 people. Mt. Nyiragongo is currently erupting (August 1994) and will be a target of observation during the second flight of SIR-C/X-SAR. The large volcano in the center of the image is Mt. Karisimbi (4,500 meters or 14,800 feet). This radar image highlights subtle differences in the vegetation and volcanic flows of the region. The faint lines shown in the purple regions are believed to be the result of agriculture terracing by the people who live in the region. The vegetation types are an important factor in the habitat of the endangered mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce vegetation maps of the area to aid in their study of the remaining 650 gorillas in the region. SIR-C was developed by NASA's Jet

  9. The Comet Radar Explorer Mission

    Science.gov (United States)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  10. Procalcitonin, C-reactive protein and serum lactate dehydrogenase in the diagnosis of bacterial sepsis, SIRS and systemic candidiasis.

    Science.gov (United States)

    Miglietta, Fabio; Faneschi, Maria Letizia; Lobreglio, Giambattista; Palumbo, Claudio; Rizzo, Adriana; Cucurachi, Marco; Portaccio, Gerolamo; Guerra, Francesco; Pizzolante, Maria

    2015-09-01

    The aim of this study was to evaluate procalcitonin (PCT), C-reactive protein (CRP), platelet count (PLT) and serum lactate dehydrogenase (LDH) as early markers for diagnosis of SIRS, bacterial sepsis and systemic candidiasis in intensive care unit (ICU) patients. Based on blood culture results, the patients were divided into a sepsis group (70 patients), a SIRS group (42 patients) and a systemic candidiasis group (33 patients). PCT, CRP, LDH and PLT levels were measured on day 0 and on day 2 from the sepsis symptom onset. PCT levels were higher in Gram negative sepsis than those in Gram positive sepsis, although the P value between the two subgroups is not significant (P=0.095). Bacterial sepsis group had higher PCT and CRP levels compared with the systemic candidiasis group, whereas PLT and LDH levels showed similar levels in these two subgroups. The AUC for PCT (AUC: 0.892, P candidiasis groups (P=0.093 N.S.). In conclusion, PCT can be used as a preliminary marker in the event of clinical suspicion of systemic candidiasis; however, low PCT levels (candidiasis and SIRS groups.

  11. SAC-C mission, an example of international cooperation

    Science.gov (United States)

    Colomb, F.; Alonso, C.; Hofmann, C.; Nollmann, I.

    In comp liance with the objectives established in the National Space Program, Argentina in Space 1997-2008 ((Plan Espacial Nacional, Argentina en el Espacio 1997-2008), the National Commission on Space Activities (Comisión Nacional de Actividades Espaciales - CONAE) undertook the design, construction, and launching of the SAC-C satellite in close collaboration with NASA. The purpose of this Mission is to carry out observations of interest both for the USA and Argentina, thus contributing effectively to NASA's Earth Science Program and to CONAE's National Space Program. The SAC-C is an international Earth observing satellite mission conceived as a partnership between CONAE and NASA, with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. A Delta II rocket successfully launched it on November 21st, 2000, from Vandenberg AFB, California, USA. Ten instruments on board the SAC-C perform different studies related to the ground and sea ecosystems, the atmosphere and the geomagnetic field. There are also technological experiments for determination of the satellite attitude and velocity as well as for the studies of the influence of space radiation on advanced electronic components . The inclusion of SAC-C in the AM Constellation, jointly with NASA satellites Landsat 7, EO 1 and Terra, is another example of important international cooperation which synergies the output of any single Mission. The Constellation has been working since March 2001 as a single mission and several cooperative activities have been undertaken including several jointly sponsored technical workshops and collaborative spacecraft navigation experiments. A flight campaign of the NASA AVIRIS instrument was performed in Argentine during January and February 2001, for calibration of SAC-C and EO 1 cameras and the development of joint scientific works. In Cordoba Space Center a jointly operated ground GPS reference

  12. SRTM Radar Image, Wrapped Color as Height/EarthKam Optical Honolulu, Hawaii

    Science.gov (United States)

    2000-01-01

    about EarthKAM is available at http://Earthkam.sdsc.edu/geo/ .The Shuttle Radar Topography Mission (SRTM) was carried onboard the Space Shuttle Endeavor, which launched on February 11,2000. It uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI)space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: 35 by 35 kilometers (22 by 22 miles) Location: 21.4 degrees North latitude, 157.8 degrees West longitude Orientation: North at top Original Data Resolution: SRTM, 30 meters (99 feet), EarthKAM Electronic Still Camera, 40 meters (132 feet) Date Acquired: SRTM, February 18, 2000; EarthKAM, February 12, 2000 Image: NASA/JPL/NIMA

  13. Combining C- and X-band Weather Radars for Improving Precipitation Estimates over Urban Areas

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk

    of future system state. Accurate and reliable weather radar measurements are, therefore, important for future developments and achievements within urban drainage. This PhD study investigates two types of weather radars. Both systems are in operational use in Denmark today. A network of meteorological C...... individually and owned by local water utility companies. Although the two radar systems use similar working principles, the systems have significant differences regarding technology, temporal resolution, spatial resolution, range and scanning strategy. The focus of the research was to combine the precipitation...

  14. VHF radar observation of atmospheric winds, associated shears and C2n at a tropical location: interdependence and seasonal pattern

    Directory of Open Access Journals (Sweden)

    A. R. Jain

    Full Text Available The turbulence refractivity structure constant (C2n is an important parameter of the atmosphere. VHF radars have been used extensively for the measurements of C2n. Presently, most of such observations are from mid and high latitudes and only very limited observations are available for equatorial and tropical latitudes. Indian MST radar is an excellent tool for making high-resolution measurements of atmospheric winds, associated shears and turbulence refractivity structure constant (C2n. This radar is located at Gadanki (13.45° N, 79.18° E, a tropical station in India. The objective of this paper is to bring out the height structure of C2n for different seasons using the long series of data (September 1995 – August 1999 from Indian MST radar. An attempt is also made to understand such changes in the height structure of C2n in relation to background atmospheric parameters such as horizontal winds and associated shears. The height structure of C2n, during the summer monsoon and post-monsoon season, shows specific height features that are found to be related to Tropical Easterly Jet (TEJ winds. It is important to examine the nature of the radar back-scatterers and also to understand the causative mechanism of such scatterers. Aspect sensitivity of the received radar echo is examined for this purpose. It is observed that radar back-scatterers at the upper tropospheric and lower stratospheric heights are more anisotropic, with horizontal correlation length of 10–20 m, as compared to those observed at lower and middle tropospheric heights.Key words. Meteorology and atmospheric dynamics (climatology; tropical meteorology; turbulence

  15. The SOLAR-C Mission: Science Objectives and Current Status

    Science.gov (United States)

    Suematsu, Y.; Solar-C Working Group

    2016-04-01

    The SOLAR-C is a Japan-led international solar mission for mid-2020s designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and to advance algorithms for predicting short and long term solar magnetic activities. For these purposes, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1"-0.3"), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. SOLAR-C will also contribute to understand the solar influence on the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions.

  16. GPM GROUND VALIDATION DUAL POLARIZED C-BAND DOPPLER RADAR KING CITY GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarized C-Band Doppler Radar King City GCPEx dataset has special Range Height Indicator (RHI) and sector scans of several dual...

  17. SAC-C Mission and the Morning Constellation

    Science.gov (United States)

    Colomb, F. R.; Alonso, C.; Hofmann, C.; Frulla, L.; Nollmann, I.; Milovich, J.; Kuba, J.; Ares, F.; Kalemkarian, M.

    2002-01-01

    SAC-C is an international Earth observing satellite mission conceived as a partnership between CONAE and NASA, but with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. A Delta II rocket successfully launched it on November 21st, 2000, from Vandenberg AFB, California, USA. SAC-C has been designed primarily to fulfill the requirements of countries with large extension of territory or scarcely populated like Argentina. Its design is a good compromise between resolution and swath width that makes SAC-C an appropriate tool for global and high dynamic phenomena studies. There are ten instruments on board of SAC-C that will perform different studies, the Multispectral Medium Resolution Scanner (MMRS), provided by CONAE, Argentina, will help in the studies about desertification processes evaluation and their evolution in time (i.e., Patagonia, Argentina), to identify and predict agriculture production, to monitor flood areas and to make studies in coastal and fluvial areas. The MMRS will be associated with a High Resolution Technological Camera (HRTC), also provided by CONAE that will permit improvement in the MMRS resolution in the areas where it will be required. A High Sensitivity Technological Camera (HSTC) is also included in the mission. SAC-C also carries instruments to monitor the condition and dynamics of the terrestrial and marine biosphere and environment (GPS OccuLtation and Passive reflection Experiment (GOLPE)) from NASA/JPL. The Magnetic Mapping Payload, (MMP) developed by the Danish Space Research Institute helps to better understand the Earth's magnetic field and related Sun -Earth interactions .Italian Star Tracker (IST) and Italian Navigation Experiment (INES) developed by the Italian Space Agency, constitute a technological payload that will permit testing a fully autonomous system for attitude and orbit determination. Influence of space radiation on advanced

  18. Shuttle imaging radar-A (SIR-A) data analysis. [geology of the Ozark Plateau of southern Missouri, land use in western Illinois, and vegetation types at Koonamore Station, Australia

    Science.gov (United States)

    Arvidson, R. E.

    1983-01-01

    The utility of shuttle imaging radar (SIR-A) data was evaluated in several geological and environmental contexts. For the Ozark Plateau of southern Missouri, SIR-A data were of little use in mapping structural features, because of generally uniform returns. For western Illinois, little was to be gained in terms of identifying land use categories by examining differences between overlapping passes. For southern Australia (Koonamore Station), information ion vegetation types that was not obtainable from LANDSAT MSS data alone was obtained. Specifically, high SIR-A returns in the Australian site were found to correlate with locations where shrubs increase surface roughness appreciably. The Australian study site results demonstrate the synergy of acquiring spectral reflectance and radar data over the same location and time. Such data are especially important in that region, since grazing animals have substantially altered and are continuing to alter the distribution of shrublands, grasslands, and soil exposures. Periodic, synoptic acquisition of MSS and SAR data would be of use in monitoring the dynamics of land-cover change in this environment.

  19. Thermal vacuum test of space equipment: tests of SIR-2 instrument Chandrayaan-1 mission

    Science.gov (United States)

    Sitek, P.

    2008-11-01

    We describe the reasons of proceeding Thermal-Vacuum tests for space electronic. We will answer on following questions: why teams are doing TV tests, what kind of phases should be simulated, which situations are the most critical during TV tests, what kind of results should be expected, which errors can be detect. As an example, will be shown TV-test of SIR-2 instrument for Chandrayaan-1 moon mission.

  20. Shaded Relief and Radar Image with Color as Height, Madrid, Spain

    Science.gov (United States)

    2002-01-01

    The white, mottled area in the right-center of this image from NASA's Shuttle Radar Topography Mission (SRTM) is Madrid, the capital of Spain. Located on the Meseta Central, a vast plateau covering about 40 percent of the country, this city of 3 million is very near the exact geographic center of the Iberian Peninsula. The Meseta is rimmed by mountains and slopes gently to the west and to the series of rivers that form the boundary with Portugal. The plateau is mostly covered with dry grasslands, olive groves and forested hills.Madrid is situated in the middle of the Meseta, and at an elevation of 646 meters (2,119 feet) above sea level is the highest capital city in Europe. To the northwest of Madrid, and visible in the upper left of the image, is the Sistema Central mountain chain that forms the 'dorsal spine' of the Meseta and divides it into northern and southern subregions. Rising to about 2,500 meters (8,200 feet), these mountains display some glacial features and are snow-capped for most of the year. Offering almost year-round winter sports, the mountains are also important to the climate of Madrid.Three visualization methods were combined to produce this image: shading and color coding of topographic height and radar image intensity. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and brown to white at the highest elevations. The shade image was combined with the radar intensity image in the flat areas.Elevation data used in this image was acquired by the SRTM aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to

  1. COMPARAÇÃO ENTRE DADOS ALTIMÉTRICOS SHUTTLE RADAR TOPOGRAPHY MISSION , CARTAS TOPOGRÁFICAS E GPS: NUMA ÁREA COM RELEVO ESCARPADO

    OpenAIRE

    Eduardo da Silva Pinheiro

    2006-01-01

    Shuttle Radar Topography Mission (SRTM) flown with Space Shuttle Endeavour, which was launched on 11 February 2000 , aimed to obtain the Earth digital elevation data (DEM). These data were acquired using Interferometric Synthetic Aperture Radar (InSAR) in C (5.6cm – 5.3GHz) and X (3.1cm – 9.6GHz) bands. This paper presents a comparative analysis of elevation data from SRTM and Topographic map (1:50.000) with Differential - GPS field data. The study was conducted in Planalto das Araucárias ar...

  2. Monitoring of the MU radar antenna pattern by Satellite Ohzora (EXOS-C)

    Science.gov (United States)

    Sato, T.; Inooka, Y.; Fukao, S.; Kato, S.

    1986-01-01

    As the first attempt among MST (mesosphere stratosphere troposphere) type radars, the MU (middle and upper atmosphere) radar features an active phased array system. Unlike the conventional large VHF radars, in which output power of a large vacuum tube is distributed to individual antenna elements, each of 475 solid state power amplifier feeds each antenna element. This system configuration enables very fast beam steering as well as various flexible operations by dividing the antenna into independent subarrays, because phase shift and signal division/combination are performed at a low signal level using electronic devices under control of a computer network. The antenna beam can be switched within 10 microsec to any direction within the zenith angle of 30 deg. Since a precise phase alignment of each element is crucial to realize the excellent performance of this system, careful calibration of the output phase of each power amplifier and antenna element was carried out. Among various aircraft which may be used for this purpose artificial satellites have an advantage of being able to make a long term monitoring with the same system. An antenna pattern monitoring system for the MU radar was developed using the scientific satellite OHZORA (EXOS-C). A receiver named MUM (MU radar antenna Monitor) on board the satellite measures a CW signal of 100 to 400 watts transmitted from the MU radar. The principle of the measurement and results are discussed.

  3. C. elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress.

    Science.gov (United States)

    Chiang, Wei-Chung; Tishkoff, Daniel X; Yang, Bo; Wilson-Grady, Joshua; Yu, Xiaokun; Mazer, Travis; Eckersdorff, Mark; Gygi, Steven P; Lombard, David B; Hsu, Ao-Lin

    2012-09-01

    FoxO transcription factors and sirtuin family deacetylases regulate diverse biological processes, including stress responses and longevity. Here we show that the Caenorhabditis elegans sirtuin SIR-2.4--homolog of mammalian SIRT6 and SIRT7 proteins--promotes DAF-16-dependent transcription and stress-induced DAF-16 nuclear localization. SIR-2.4 is required for resistance to multiple stressors: heat shock, oxidative insult, and proteotoxicity. By contrast, SIR-2.4 is largely dispensable for DAF-16 nuclear localization and function in response to reduced insulin/IGF-1-like signaling. Although acetylation is known to regulate localization and activity of mammalian FoxO proteins, this modification has not been previously described on DAF-16. We find that DAF-16 is hyperacetylated in sir-2.4 mutants. Conversely, DAF-16 is acetylated by the acetyltransferase CBP-1, and DAF-16 is hypoacetylated and constitutively nuclear in response to cbp-1 inhibition. Surprisingly, a SIR-2.4 catalytic mutant efficiently rescues the DAF-16 localization defect in sir-2.4 null animals. Acetylation of DAF-16 by CBP-1 in vitro is inhibited by either wild-type or mutant SIR-2.4, suggesting that SIR-2.4 regulates DAF-16 acetylation indirectly, by preventing CBP-1-mediated acetylation under stress conditions. Taken together, our results identify SIR-2.4 as a critical regulator of DAF-16 specifically in the context of stress responses. Furthermore, they reveal a novel role for acetylation, modulated by the antagonistic activities of CBP-1 and SIR-2.4, in modulating DAF-16 localization and function.

  4. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    Directory of Open Access Journals (Sweden)

    Marco Gabella

    2017-11-01

    Full Text Available The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1 the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE; (2 the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR; (3 a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which a technique based on co-kriging with external drift (CombiPrecip is used; (4 spaceborne observations, acquired by the dual-wavelength precipitation radar on board the Global Precipitation Measuring (GPM core satellite. There are obviously large differences in these sampling modes, which we have tried to minimize by integrating synchronous observations taken during the first 2 years of the GPM mission. The data comprises 327 “wet” overpasses of Switzerland, taken after the launch of GPM in February 2014. By comparing the GPM radar estimates with the MeteoSwiss products, a similar performance was found in terms of bias. On average (whole country, all days and seasons, both solid and liquid phases, underestimation is as large as −3.0 (−3.4 dB with respect to RADAR (GAUGE. GPM is not suitable for assessing what product is the best in terms of average precipitation over the Alps. GPM can nevertheless be used to evaluate the dispersion of the error around the mean, which is a measure of the geographical distribution of the error inside the country. Using 221 rain-gauge sites, the result is clear both in terms of correlation and in terms of scatter (a robust, weighted measure of the dispersion of the multiplicative error around the mean. The best agreement was observed between GPM and CombiPrecip, and, next, between GPM and RADAR, whereas a larger disagreement was found between GPM and GAUGE. Hence, GPM confirms that, for precipitation mapping in the Alpine region, the best results are obtained by combining ground-based radar with rain-gauge measurements using

  5. Shuttle Experimental Radar for Geological Exploration (SERGE) project: Field work relating to the Shuttle Experimental Radar A (SIR-A) in Brazil (phase 2)

    Science.gov (United States)

    Balieiro, M. G.; Martini, P. R.; Dossantos, J. R.; Demattos, J. T.

    1984-01-01

    The ground observations undertaken over the northern position of Minas Gerais State, and part of Distrito Federal from 7 to 12 December 1982, along the Space Shuttle 2 flying orbit 22 of November 1981 are described. Field data related mostly with lithology, geological structures and forest cover, and specific geomorphological and pedological aspects were collected. Ground data are applied to evaluate the SIR-A Experiment, developed in the Space Shuttle-2 mission for natural resources mapping and prospecting.

  6. GEOS-C altimeter attitude bias error correction. [gate-tracking radar

    Science.gov (United States)

    Marini, J. W.

    1974-01-01

    A pulse-limited split-gate-tracking radar altimeter was flown on Skylab and will be used aboard GEOS-C. If such an altimeter were to employ a hypothetical isotropic antenna, the altimeter output would be independent of spacecraft orientation. To reduce power requirements the gain of the altimeter antenna proposed is increased to the point where its beamwidth is only a few degrees. The gain of the antenna consequently varies somewhat over the pulse-limited illuminated region of the ocean below the altimeter, and the altimeter output varies with antenna orientation. The error introduced into the altimeter data is modeled empirically, but close agreements with the expected errors was not realized. The attitude error effects expected with the GEOS-C altimeter are modelled using a form suggested by an analytical derivation. The treatment is restricted to the case of a relatively smooth sea, where the height of the ocean waves are small relative to the spatial length (pulse duration times speed of light) of the transmitted pulse.

  7. Regulating repression: roles for the sir4 N-terminus in linker DNA protection and stabilization of epigenetic states.

    Directory of Open Access Journals (Sweden)

    Stephanie Kueng

    Full Text Available Silent information regulator proteins Sir2, Sir3, and Sir4 form a heterotrimeric complex that represses transcription at subtelomeric regions and homothallic mating type (HM loci in budding yeast. We have performed a detailed biochemical and genetic analysis of the largest Sir protein, Sir4. The N-terminal half of Sir4 is dispensable for SIR-mediated repression of HM loci in vivo, except in strains that lack Yku70 or have weak silencer elements. For HM silencing in these cells, the C-terminal domain (Sir4C, residues 747-1,358 must be complemented with an N-terminal domain (Sir4N; residues 1-270, expressed either independently or as a fusion with Sir4C. Nonetheless, recombinant Sir4C can form a complex with Sir2 and Sir3 in vitro, is catalytically active, and has sedimentation properties similar to a full-length Sir4-containing SIR complex. Sir4C-containing SIR complexes bind nucleosomal arrays and protect linker DNA from nucleolytic digestion, but less effectively than wild-type SIR complexes. Consistently, full-length Sir4 is required for the complete repression of subtelomeric genes. Supporting the notion that the Sir4 N-terminus is a regulatory domain, we find it extensively phosphorylated on cyclin-dependent kinase consensus sites, some being hyperphosphorylated during mitosis. Mutation of two major phosphoacceptor sites (S63 and S84 derepresses natural subtelomeric genes when combined with a serendipitous mutation (P2A, which alone can enhance the stability of either the repressed or active state. The triple mutation confers resistance to rapamycin-induced stress and a loss of subtelomeric repression. We conclude that the Sir4 N-terminus plays two roles in SIR-mediated silencing: it contributes to epigenetic repression by stabilizing the SIR-mediated protection of linker DNA; and, as a target of phosphorylation, it can destabilize silencing in a regulated manner.

  8. The SOLAR-C Mission: Plan B Payload Concept

    Science.gov (United States)

    Shimizu, T.; Sakao, T.; Katsukawa, Y.; Group, J. S. W.

    2012-08-01

    The telescope concepts for the SOLAR-C Plan B mission as of the time of the Hinode-3 meeting were briefly presented for having comments from the international solar physics community. The telescope candidates are 1) near IR-visible-UV telescope with 1.5m aperture and enhanced spectro-polarimetric capability, 2) UV/EUV high throughput spectrometer, and 3) next generation X-ray telescope.

  9. Investigating the backscatter contrast anomaly in synthetic aperture radar (SAR) imagery of the dunes along the Israel-Egypt border

    Science.gov (United States)

    Rozenstein, Offer; Siegal, Zehava; Blumberg, Dan G.; Adamowski, Jan

    2016-04-01

    The dune field intersected by the Israel-Egypt borderline has attracted many remote sensing studies over the years because it exhibits unique optical phenomena in several domains, from the visual to the thermal infrared. These phenomena are the result of land-use policies implemented by the two countries, which have differing effects on the two ecosystems. This study explores the surface properties that affect radar backscatter, namely the surface roughness and dielectric properties, in order to determine the cause for the variation across the border. The backscatter contrast was demonstrated for SIR-C, the first synthetic aperture radar (SAR) sensor to capture this phenomenon, as well as ASAR imagery that coincides with complementary ground observations. These field observations along the border, together with an aerial image from the same year as the SIR-C acquisition were used to analyze differences in vegetation patterns that can affect the surface roughness. The dielectric permittivity of two kinds of topsoil (sand, biocrust) was measured in the field and in the laboratory. The results suggest that the vegetation structure and spatial distribution differ between the two sides of the border in a manner that is consistent with the radar observations. The dielectric permittivity of sand and biocrust was found to be similar, although they are not constant across the radar spectral region (50 MHz-20 GHz). These findings support the hypothesis that changes to the vegetation, as a consequence of the different land-use practices in Israel and Egypt, are the cause for the radar backscatter contrast across the border.

  10. Sir Ronald Ross and the Malarial Parasite

    Indian Academy of Sciences (India)

    1997-08-20

    Aug 20, 1997 ... In 1857, a General in the Indian Army, Sir C C G Ross and his wife Matilda .... generally low-caste Indians who required a fee before drinking the water and ... nary demand being made upon their systems, as by fatigue, chill,.

  11. Nuclear reactor power as applied to a space-based radar mission

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project.

  12. Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data

    Directory of Open Access Journals (Sweden)

    E. E. Sano

    1999-12-01

    Full Text Available In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1 synthetic aperture radar (SAR data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80, while the wet season SAR data have somewhat higher secondary variation (R² = 0.59. This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.

  13. Dicty_cDB: Contig-U05087-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 0-436E16, WORKING DRAFT SEQU... 36 8.0 3 ( CO437185 ) GDBE43 Glycyphagus domesticus cDNA library...272 ) 1095460027623 Global-Ocean-Sampling_GS-31-01-01-1... 40 1.7 2 ( EU795122 ) Uncultured Rickettsiales ba...cterium HF4000_[384]00... 36 1.8 2 ( EU016573 ) Uncultured marine microorganism HF4000_009A22 fos... 36 1.8 ... BV673557 ) S215P60960FF4.T0 Clara Pan troglodytes troglodyte... 32 2.1 2 ( AM055412 ) Polyplastron multivesiculatu...9 ) SIR-67J15JR Sisymbrium irio BAC library SIR Sisym... 50 0.050 1 ( FH536934 )

  14. The mitochondrial SIR2 related protein 2 (SIR2RP2 impacts Leishmania donovani growth and infectivity.

    Directory of Open Access Journals (Sweden)

    Nimisha Mittal

    2017-05-01

    Full Text Available Leishmania donovani, a protozoan parasite is the major causative agent of visceral leishmaniasis. Increased toxicity and resistance to the existing repertoire of drugs has been reported. Hence, an urgent need exists for identifying newer drugs and drug targets. Previous reports have shown sirtuins (Silent Information Regulator from kinetoplastids as promising drug targets. Leishmania species code for three SIR2 (Silent Information Regulator related proteins. Here, we for the first time report the functional characterization of SIR2 related protein 2 (SIR2RP2 of L. donovani.Recombinant L. donovani SIR2RP2 was expressed in E. coli and purified. The enzymatic functions of SIR2RP2 were determined. The subcellular localization of LdSIR2RP2 was done by constructing C-terminal GFP-tagged full-length LdSIR2RP2. Deletion mutants of LdSIR2RP2 were generated in Leishmania by double targeted gene replacement methodology. These null mutants were tested for their proliferation, virulence, cell cycle defects, mitochondrial functioning and sensitivity to known SIR2 inhibitors.Our data suggests that LdSIR2RP2 possesses NAD+-dependent ADP-ribosyltransferase activity. However, NAD+-dependent deacetylase and desuccinylase activities were not detected. The protein localises to the mitochondrion of the promastigotes. Gene deletion studies showed that ΔLdSIR2RP2 null mutants had restrictive growth phenotype associated with accumulation of cells in the G2/M phase and compromised mitochondrial functioning. The null mutants had attenuated infectivity. Deletion of LdSIR2RP2 resulted in increased sensitivity of the parasites to the known SIR2 inhibitors. The sirtuin inhibitors inhibited the ADP-ribosyltransferase activity of recombinant LdSIR2RP2. In conclusion, sirtuins could be used as potential new drug targets for visceral leishmaniasis.

  15. An integrated radar model solution for mission level performance and cost trades

    Science.gov (United States)

    Hodge, John; Duncan, Kerron; Zimmerman, Madeline; Drupp, Rob; Manno, Mike; Barrett, Donald; Smith, Amelia

    2017-05-01

    A fully integrated Mission-Level Radar model is in development as part of a multi-year effort under the Northrop Grumman Mission Systems (NGMS) sector's Model Based Engineering (MBE) initiative to digitally interconnect and unify previously separate performance and cost models. In 2016, an NGMS internal research and development (IR and D) funded multidisciplinary team integrated radio frequency (RF), power, control, size, weight, thermal, and cost models together using a commercial-off-the-shelf software, ModelCenter, for an Active Electronically Scanned Array (AESA) radar system. Each represented model was digitally connected with standard interfaces and unified to allow end-to-end mission system optimization and trade studies. The radar model was then linked to the Air Force's own mission modeling framework (AFSIM). The team first had to identify the necessary models, and with the aid of subject matter experts (SMEs) understand and document the inputs, outputs, and behaviors of the component models. This agile development process and collaboration enabled rapid integration of disparate models and the validation of their combined system performance. This MBE framework will allow NGMS to design systems more efficiently and affordably, optimize architectures, and provide increased value to the customer. The model integrates detailed component models that validate cost and performance at the physics level with high-level models that provide visualization of a platform mission. This connectivity of component to mission models allows hardware and software design solutions to be better optimized to meet mission needs, creating cost-optimal solutions for the customer, while reducing design cycle time through risk mitigation and early validation of design decisions.

  16. Phased mission methodology. A state of the art report: Parts A, B and C

    International Nuclear Information System (INIS)

    Terpstra, K.; Van Driel, G.; Kafka, P.; Polke, H.

    1986-01-01

    A complex system has to perform a number of different tasks. Sometimes these tasks must be performed at the same time, but in a lot of cases the system has to perform its tasks subsequently. The execution of the different tasks is effected by parts of the system, so-called subsystems more or less dependent by means of processes and/or shared equipment. Examples of such complex systems can be found, for instance, in modern space travel, in nuclear power plants, in military weapon systems, etc. A phased mission is a task for a complex system to be performed in parts (subtasks), one part after the other. The present report covers the work carried out under the tripartite concert between the European Communities (CEC), the Gesellschaft fuer Reaktorsicherheit mbH (GRS) and the Netherlands Energy Research Foundation (ECN). The scope of the studies is to assess the practical usefulness of phased mission analyses. The present volume consists of three parts: Part A: Phased mission analysis. A review of mathematical modelling and of a number of existing computer programs; Part B: Example for the application of phased mission methods in reliability and risk studies; and, Part C: Calculation results for a phased mission - Part C1 - Phased mission calculation for a reference heat removal system - Part C2 - Application of phased mission methods in reliability and risk studies

  17. Monitoring flooding and vegetation on seasonally inundated floodplains with multifrequency polarimetric synthetic aperture radar

    Science.gov (United States)

    Hess, Laura Lorraine

    The ability of synthetic aperture radar to detect flooding and vegetation structure was evaluated for three seasonally inundated floodplain sites supporting a broad variety of wetland and upland vegetation types: two reaches of the Solimoes floodplain in the central Amazon, and the Magela Creek floodplain in Northern Territory, Australia. For each site, C- and L-band polarimetric Shuttle Imaging Radar-C (SIR-C) data was obtained at both high- and low-water stages. Inundation status and vegetation structure were documented simultaneous with the SIR-C acquisitions using low-altitude videography and ground measurements. SIR-C images were classified into cover states defined by vegetation physiognomy and presence of standing water, using a decision-tree model with backscattering coefficients at HH, VV, and HV polarizations as input variables. Classification accuracy was assessed using user's accuracy, producer's accuracy, and kappa coefficient for a test population of pixels. At all sites, both C- and L-band were necessary to accurately classify cover types with two dates. HH polarization was most. useful for distinguishing flooded from non-flooded vegetation (C-HH for macrophyte versus pasture, L-HH for flooded versus non-flooded forest), and cross-polarized L-band data provided the best separation between woody and non-woody vegetation. Increases in L-HH backscattering due to flooding were on the order of 3--4 dB for closed-canopy varzea and igapo forest, and 4--7 dB, for open Melaleuca woodland. The broad range of physiognomies and stand structures found in both herbaceous and woody wetland communities, combined with the variation in the amount of emergent canopy caused by water level fluctuations and phenologic changes, resulted in a large range in backscattering characteristics of wetland communities both within and between sites. High accuracies cannot be achieved for these communities using single-date, single-band, single-polarization data, particularly in the

  18. Ground and Space Radar Volume Matching and Comparison Software

    Science.gov (United States)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  19. Shaded Relief and Radar Image with Color as Height, Bosporus Strait and Istanbul, Turkey

    Science.gov (United States)

    2002-01-01

    close to Istanbul that could kill many more than the 1999 event.Three visualization methods were combined to produce this image: shading and color coding of topographic height and radar image intensity. The shade image was derived by computing topographic slope in the northwest-southeast direction. Northwest-facing slopes appear dark and southeast-facing slopes appear bright. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and brown to white at the highest elevations. The shade image was combined with the radar intensity image to add detail, especially in the flat areas.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: 2x2 degrees (168 by 222 kilometers; 104 by 138 miles) Location: 40-42 degrees North latitude, 28-30 degrees East longitude Orientation: North toward the top Image Data: shaded and colored SRTM elevation model, with SRTM radar intensity added Original Data Resolution: SRTM 1 arcsecond (about 30 meters or 98 feet) Date Acquired: February 2000 (SRTM))

  20. Pointing stability of Hinode and requirements for the next Solar mission Solar-C

    Science.gov (United States)

    Katsukawa, Y.; Masada, Y.; Shimizu, T.; Sakai, S.; Ichimoto, K.

    2017-11-01

    It is essential to achieve fine pointing stability in a space mission aiming for high resolutional observations. In a future Japanese solar mission SOLAR-C, which is a successor of the HINODE (SOLAR-B) mission, we set targets of angular resolution better than 0.1 arcsec in the visible light and better than 0.2 - 0.5 arcsec in EUV and X-rays. These resolutions are twice to five times better than those of corresponding instruments onboard HINODE. To identify critical items to achieve the requirements of the pointing stability in SOLAR-C, we assessed in-flight performance of the pointing stability of HINODE that achieved the highest pointing stability in Japanese space missions. We realized that one of the critical items that have to be improved in SOLAR-C is performance of the attitude stability near the upper limit of the frequency range of the attitude control system. The stability of 0.1 arcsec (3σ) is required in the EUV and X-ray telescopes of SOLAR-C while the HINODE performance is slightly worse than the requirement. The visible light telescope of HINODE is equipped with an image stabilization system inside the telescope, which achieved the stability of 0.03 arcsec (3σ) by suppressing the attitude jitter in the frequency range lower than 10 Hz. For further improvement, it is expected to suppress disturbances induced by resonance between the telescope structures and disturbances of momentum wheels and mechanical gyros in the frequency range higher than 100 Hz.

  1. FIREX mission requirements document for renewable resources

    Science.gov (United States)

    Carsey, F.; Dixon, T.

    1982-01-01

    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed.

  2. An Iraq C-130 Aviation Advisor Mission and Lessons for the Future

    National Research Council Canada - National Science Library

    Bauer, Michael J

    2007-01-01

    .... A review of lessons learned from the initial Iraq C-130 advisor mission provided insights into challenges stemming from differences in United States advisors and Iraqi airmen in language, culture...

  3. Nuclear reactor power as applied to a space-based radar mission

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  4. Radar spectrum opportunities for cognitive communications transmission

    OpenAIRE

    Wang, L; McGeehan, JP; Williams, C; Doufexi, A

    2008-01-01

    In relation to opportunistic access to radar spectrum, the impact of the radar on a communication system is investigated in this paper. This paper illustrates that by exploring the spatial and temporal opportunities in the radar spectrum and therefore improving the tolerance level to radar interference, a substantial increase on the throughput of a communication system is possible. Results are presented regarding the impact of swept radars on a WiMAX system. The results show the impact of SIR...

  5. I. T. - R. O. C. K. S. Comet Nuclei Sample Return Mission

    Science.gov (United States)

    Dalcher, N.

    2009-04-01

    Ices, organics and minerals recording the chemical evolution of the outer regions of the early solar nebula are the main constituents of comets. Because comets maintain the nearly pristine nature of the cloud where they formed, the analyses of their composition, structure, thermodynamics and isotope ratios will increase our understanding of the processes that occurred in the early phases of the solar system as well as the Interstellar Medium (ISM) Cloud that predated the formation of the solar nebula [1]. While the deep impact mission aimed at determining the internal structure of comet Temple1's nuclei [e.g. 3], the stardust mission sample return has dramatically increased our understanding of comets. Its first implications indicated that some of the comet material originated in the inner solar system and was later transported outward beyond the freezing line [4]. A wide range of organic compounds identified within different grains of the aerogel collectors has demonstrated the heterogeneity in their assemblages [5]. This suggests either many histories associated with these material or possibly analytical constraints imposed by capture heating of Wild2 material in silica aerogel. The current mission ROSETTA, will further expand our knowledge about comets considerably through rigorous in situ analyses of a Jupiter Family Comet (JFC). As the next generation of comet research post ROSETTA, we present the comet nuclei sample return mission IT - ROCKS (International Team - Return Of Comet's Key Samples) to return several minimally altered samples from various locations of comet 88P/Howell, a typical JFC. The mission scenario includes remote sensing of the comet's nucleus with onboard instruments similar to the ROSETTA instruments [6, 7, 8] (VIS, IR, Thermal IR, X-Ray, Radar) and gas/dust composition measurements including a plasma science package. Additionally two microprobes [9] will further investigate the physical properties of the comet's surface. Retrieving of the

  6. Delineation of major geologic structures in Turkey using SIR-B data

    Science.gov (United States)

    Toksoz, M. N.; Pettengill, G. H.; Ford, P.; Gulen, L.

    1984-01-01

    Shuttle Imaging Radar-B (SIR-B) images of well mapped segments of major faults, such as the North Anatolian Fault (NAF) and East Anatolian Fault (EAF) will be studied to identify the prominent signatures that characterize the fault zones for those specific regions. The information will be used to delineate the unmapped fault zones in areas with similar geological and geomorphological properties. The data obtained from SIR-B images will be compared and correlated with the LANDSAT thematic mapper and seismicity alignments based on well constrained earthquake epicenters.

  7. Challenges with space-time rainfall in urban hydrology highlighted with a semi-distributed model using C-band and X-band radar data

    Science.gov (United States)

    da Silva Rocha Paz, Igor; Ichiba, Abdellah; Skouri-Plakali, Ilektra; Lee, Jisun; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2017-04-01

    Climate change and global warming are expected to make precipitation events more frequent, more severe and more local. This may have serious consequences for human health, the environment, cultural heritage, economic activities, utilities and public service providers. Then precipitation risk and water management is a key challenge for densely populated urban areas. Applications derived from high (time and space) resolution observation of precipitations are to make our cities more weather-ready. Finer resolution data available from X-band dual radar measurements enhance engineering tools as used for urban planning policies as well as protection (mitigation/adaptation) strategies to tackle climate-change related weather events. For decades engineering tools have been developed to work conveniently either with very local rain gauge networks, or with mainly C-band weather radars that have gradually been set up for space-time remote sensing of precipitation. Most of the time, the C-band weather radars continue to be calibrated by the existing rain gauge networks. Inhomogeneous distributions of rain gauging networks lead to only a partial information on the rainfall fields. In fact, the statistics of measured rainfall is strongly biased by the fractality of the measuring networks. This fractality needs to be properly taken in to account to retrieve the original properties of the rainfall fields, in spite of the radar data calibration. In this presentation, with the help of multifractal analysis, we first demonstrate that the semi-distributed hydrological models statistically reduce the rainfall fields into rainfall measured by a much scarcer network of virtual rain gauges. For this purpose, we use C-band and X-band radar data. The first has a resolution of 1 km in space and 5 min in time and is in fact a product provided by RHEA SAS after treating the Météo-France C-band radar data. The latter is measured by the radar operated at Ecole des Ponts and has a resolution of

  8. Evaluating the Solar Slowly Varying Component at C-Band Using Dual- and Single-Polarization Weather Radars in Europe

    Directory of Open Access Journals (Sweden)

    M. Gabella

    2017-01-01

    Full Text Available Six C-band weather radars located in Europe (Finland, Netherlands, and Switzerland have been used to monitor the slowly varying solar emission, which is an oscillation with an amplitude of several decibels and a period of approximately 27 days. It is caused by the fact that the number of active regions that enhance the solar radio emission with respect to the quiet component, as seen from Earth, varies because of the Sun’s rotation about its axis. The analysis is based on solar signals contained in the polar volume data produced during the operational weather scan strategy. This paper presents hundreds of daily comparisons between radar estimates and the Sun’s reference signal, during the current active Sun period (year 2014. The Sun’s reference values are accurately measured by the Dominion Radio Astrophysical Observatory (DRAO at S-band and converted to C-band using a standard DRAO formula. Vertical and horizontal polarization receivers are able to capture the monthly oscillation of the solar microwave signal: the standard deviation of the log-transformed ratio between radars and the DRAO reference ranges from 0.26 to 0.4 dB. A larger coefficient (and a different value for the quiet Sun component in the standard formula improves the agreement.

  9. Lunar Penetrating Radar onboard the Chang'e-3 mission

    Science.gov (United States)

    Fang, Guang-You; Zhou, Bin; Ji, Yi-Cai; Zhang, Qun-Ying; Shen, Shao-Xiang; Li, Yu-Xi; Guan, Hong-Fei; Tang, Chuan-Jun; Gao, Yun-Ze; Lu, Wei; Ye, Sheng-Bo; Han, Hai-Dong; Zheng, Jin; Wang, Shu-Zhi

    2014-12-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.

  10. 3D Embedded Reconfigurable SoC for Expediting Magnetometric Space Missions

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the development of a state-of-the-art three-dimensional embedded reconfigurable System-on-Chip (SoC) for accelerating the design of future magnetometric space missions. This involves measurements of planetary magnetic fields or measurements of heliospheric physics events' signatures superimposed on the aggregate measurements of the stronger planetary fields. The functionality of the embedded core is fully customizable, therefore, its operation is independent of the magnetic sensor being used. Standard calibration procedures still apply for setting the magnetometer measurements to the desired initial state and removing any seriatim interference inferred by the adjacent environment. The system acts as a pathfinder for future high-resolution heliospheric space missions.

  11. Radar Observations of Asteroid 101955 Bennu and the OSIRIS-REx Sample Return Mission

    Science.gov (United States)

    Nolan, M. C.; Benner, L.; Giorgini, J. D.; Howell, E. S.; Kerr, R.; Lauretta, D. S.; Magri, C.; Margot, J. L.; Scheeres, D. J.

    2017-12-01

    On September 24, 2023, the OSIRIS-REx spacecraft will return a sample of asteroid (101955) Bennu to the Earth. We chose the target of this mission in part because of the work we did over more than a decade using the Arecibo and Goldstone planetary radars to observe this asteroid. We observed Bennu (then known as 1999 RQ36) at Arecibo and Goldstone in 1999 and 2005, and at Arecibo in 2011. Radar imaging from the first two observing epochs provided a shape and size for Bennu, which greatly simplified mission planning. We know that the spacecraft will encounter a roundish asteroid 500 m in diameter with a distinct equatorial ridge [Nolan et al., 2013]. Bennu does not have the dramatic concavities seen in Itokawa and comet 67P/Churyumov-Gerasimenko, the Hayabusa and Rosetta mission targets, respectively, which would have been obvious in radar imaging. Further radar ranging in 2011 provided a detection of the Yarkovsky effect, allowing us to constrain Bennu's mass and bulk density from radar measurement of non-gravitational forces acting on its orbit [Chesley et al., 2014]. The 2011 observations were particularly challenging, occurring during a management transition at the Arecibo Observatory, and would not have been possible without significant extra cooperation between the old and new managing organizations. As a result, we can predict Bennu's position to within a few km over the next 100 years, until its close encounter with the Earth in 2135. We know its shape to within ± 10 m (1σ) on the long and intermediate axes and ± 52 m on the polar diameter, and its pole orientation to within 5 degrees. The bulk density is 1260 ± 70 kg/m3 and the rotation is retrograde with a 4.297 ± 0.002 h period The OSIRIS-REx team is using these constraints to preplan the initial stages of proximity operations and dramatically reduce risk. The Figure shows the model and Arecibo radar images from 1999 (left), 2005 (center), and 2011 (right). Bennu is the faint dot near the center of

  12. Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula.

    Science.gov (United States)

    Mukul, Manas; Srivastava, Vinee; Jade, Sridevi; Mukul, Malay

    2017-02-08

    The Shuttle Radar Topography Mission (SRTM) Digital Terrain Elevation Data (DTED) are used with the consensus view that it has a minimum vertical accuracy of 16 m absolute error at 90% confidence (Root Mean Square Error (RMSE) of 9.73 m) world-wide. However, vertical accuracy of the data decreases with increase in slope and elevation due to presence of large outliers and voids. Therefore, studies using SRTM data "as is", especially in regions like the Himalaya, are not statistically meaningful. New data from ~200 high-precision static Global Position System (GPS) Independent Check Points (ICPs) in the Himalaya and Peninsular India indicate that only 1-arc X-Band data are usable "as is" in the Himalaya as it has height accuracy of 9.18 m (RMSE). In contrast, recently released (2014-2015) "as-is" 1-arc and widely used 3-arc C-Band data have a height accuracy of RMSE 23.53 m and 47.24 m and need to be corrected before use. Outlier and void filtering improves the height accuracy to RMSE 8 m, 10.14 m, 14.38 m for 1-arc X and C-Band and 3-arc C-Band data respectively. Our study indicates that the C-Band 90 m and 30 m DEMs are well-aligned and without any significant horizontal offset implying that area and length computations using both the datasets have identical values.

  13. Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR)

    Science.gov (United States)

    Basilevsky, A. T.; Keller, H. U.; Nathues, A.; Mall, U.; Hiesinger, H.; Rosiek, M.

    2004-12-01

    The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future.

  14. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    Science.gov (United States)

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  15. Lunar Penetrating Radar onboard the Chang'e-3 mission

    International Nuclear Information System (INIS)

    Fang Guang-You; Zhou Bin; Ji Yi-Cai; Zhang Qun-Ying; Shen Shao-Xiang; Li Yu-Xi; Guan Hong-Fei; Tang Chuan-Jun; Gao Yun-Ze; Lu Wei; Ye Sheng-Bo; Han Hai-Dong; Zheng Jin; Wang Shu-Zhi

    2014-01-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed

  16. SirT1 regulates energy metabolism and response to caloric restriction in mice.

    Directory of Open Access Journals (Sweden)

    Gino Boily

    Full Text Available The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction.

  17. A simulation study of the effects of land cover and crop type on sensing soil moisture with an orbital C-band radar

    Science.gov (United States)

    Dobson, M. C.; Ulaby, F. T.; Moezzi, S.; Roth, E.

    1983-01-01

    Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1 km, and 3 km by 3 km, and each is processed using more than 23 independent samples. Moisture classification errors are examined as a function of land-cover distribution, field-size distribution, and local topographic relief for the full test site and also for subregions of cropland, urban areas, woodland, and pasture/rangeland. Results show that a radar resolution of 100 m by 100 m yields the most robust classification accuracies.

  18. Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    Park, J.; Forman, B. A.

    2017-12-01

    Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.

  19. Probabilistic discrimination between liquid rainfall events, hailstorms, biomass burning and industrial fires from C-Band Radar Polarimetric Variables

    Science.gov (United States)

    Valencia, J. M.; Sepúlveda, J.; Hoyos, C.; Herrera, L.

    2017-12-01

    Characterization and identification of fire and hailstorm events using weather radar data in a tropical complex topography region is an important task in risk management and agriculture. Polarimetric variables from a C-Band Dual polarization weather radar have potential uses in particle classification, due to the relationship their sensitivity to shape, spatial orientation, size and fall behavior of particles. In this sense, three forest fires and two chemical fires were identified for the Áburra Valley regions. Measurements were compared between each fire event type and with typical data radar retrievals for liquid precipitation events. Results of this analysis show different probability density functions for each type of event according to the particles present in them. This is very important and useful result for early warning systems to avoid precipitation false alarms during fire events within the study region, as well as for the early detection of fires using radar retrievals in remote cases. The comparative methodology is extended to hailstorm cases. Complementary sensors like laser precipitation sensors (LPM) disdrometers and meteorological stations were used to select dates of solid precipitation occurrence. Then, in this dates weather radar data variables were taken in pixels surrounding the stations and solid precipitation polar values were statistically compared with liquid precipitation values. Spectrum precipitation measured by LPM disdrometer helps to define typical features like particles number, fall velocities and diameters for both precipitation types. In addition, to achieve a complete hailstorm characterization, other meteorological variables were analyzed: wind field from meteorological stations and radar wind profiler, profiling data from Micro Rain Radar (MRR), and thermodynamic data from a microwave radiometer.

  20. I. The effect of volcanic aerosols on ultraviolet radiation in Antarctica. II. A novel method for enhancing subsurface radar imaging using radar interferometry

    Science.gov (United States)

    Tsitas, Steven Ronald

    The theory of radiative transfer is used to explain how a stratospheric aerosol layer may, for large solar zenith angles, increase the flux of UV-B light at the ground. As previous explanations are heuristic and incomplete, I first provide a rigorous and complete explanation of how this occurs. I show that an aerosol layer lying above Antarctica during spring will decrease the integrated daily dose of biologically weighted irradiance, weighted by the erythema action spectrum, by only up to 5%. Thus after a volcanic eruption, life in Antarctica during spring will suffer the combined effects of the spring ozone hole and ozone destruction induced by volcanic aerosols, with the latter effect only slightly offset by aerosol scattering. I extend subsurface radar imaging by considering the additional information that may be derived from radar interferometry. I show that, under the conditions that temporal and spatial decorrelation between observations is small so that the effects of these decorrelations do not swamp the signature expected from a subsurface layer, the depth of burial of the lower surface may be derived. Also, the echoes from the lower and upper surfaces may be separated. The method is tested with images acquired by SIR-C of the area on the Egypt/Sudan border where buried river channels were first observed by SIR-A. Temporal decorrelation between the images, due to some combination of physical changes in the scene, changes in the spacecraft attitude and errors in the processing by NASA of the raw radar echoes into the synthetic aperture radar images, swamps the expected signature for a layer up to 40 meters thick. I propose a test to determine whether or not simultaneous observations are required, and then detail the radar system requirements for successful application of the method for both possible outcomes of the test. I also describe in detail the possible applications of the method. These include measuring the depth of burial of ice in the polar

  1. Basic Radar Altimetry Toolbox: Tools and Tutorial To Use Radar Altimetry For Cryosphere

    Science.gov (United States)

    Benveniste, J. J.; Bronner, E.; Dinardo, S.; Lucas, B. M.; Rosmorduc, V.; Earith, D.

    2010-12-01

    Radar altimetry is very much a technique expanding its applications. If quite a lot of efforts have been made for oceanography users (including easy-to-use data), the use of those data for cryosphere application, especially with the new ESA CryoSat-2 mission data is still somehow tedious, especially for new Altimetry data products users. ESA and CNES thus had the Basic Radar Altimetry Toolbox developed a few years ago, and are improving and upgrading it to fit new missions and the growing number of altimetry uses. The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data. The software is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason- 2, CryoSat and the future Saral missions, - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. It is an opportunity to teach remote sensing with practical training. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. About 1200 people downloaded it (Summer 2010), with many "newcomers" to altimetry among them, including teachers

  2. Space radar image of Mauna Loa, Hawaii

    Science.gov (United States)

    1995-01-01

    This image of the Mauna Loa volcano on the Big Island of Hawaii shows the capability of imaging radar to map lava flows and other volcanic structures. Mauna Loa has erupted more than 35 times since the island was first visited by westerners in the early 1800s. The large summit crater, called Mokuaweoweo Caldera, is clearly visible near the center of the image. Leading away from the caldera (towards top right and lower center) are the two main rift zones shown here in orange. Rift zones are areas of weakness within the upper part of the volcano that are often ripped open as new magma (molten rock) approaches the surface at the start of an eruption. The most recent eruption of Mauna Loa was in March and April 1984, when segments of the northeast rift zones were active. If the height of the volcano was measured from its base on the ocean floor instead of from sea level, Mauna Loa would be the tallest mountain on Earth. Its peak (center of the image) rises more than 8 kilometers (5 miles) above the ocean floor. The South Kona District, known for cultivation of macadamia nuts and coffee, can be seen in the lower left as white and blue areas along the coast. North is toward the upper left. The area shown is 41.5 by 75 kilometers (25.7 by 46.5 miles), centered at 19.5 degrees north latitude and 155.6 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 36th orbit on October 2, 1994. The radar illumination is from the left of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). The resulting color combinations in this radar image are caused by differences in surface roughness of the lava flows. Smoother flows

  3. Mission-profile-based stress analysis of bond-wires in SiC power modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2016-01-01

    This paper proposes a novel mission-profile-based reliability analysis approach for stress on bond wires in Silicon Carbide (SiC) MOSFET power modules using statistics and thermo-mechanical FEM analysis. In the proposed approach, both the operational and environmental thermal stresses are taken...... into account. The approach uses a two-dimension statistical analysis of the operating conditions in a real one-year mission profile sampled at time frames 5 minutes long. For every statistical bin corresponding to a given operating condition, the junction temperature evolution is estimated by a thermal network...... and the mechanical stress on bond wires is consequently extracted by finite-element simulations. In the final step, the considered mission profile is translated in a stress sequence to be used for Rainflow counting calculation and lifetime estimation....

  4. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  5. The SUVIT Instrument on the Solar-C Mission

    Science.gov (United States)

    Tarbell, Theodore D.; Ichimoto, Kiyoshi

    2014-06-01

    Solar-C is a new space mission being proposed to JAXA, with significant contributions anticipated from NASA, ESA, and EU countries. The main scientific objectives are to: reveal the mechanisms for heating and dynamics of the chromosphere and corona and acceleration of the solar wind; determine the physical origin of the large-scale explosions and eruptions that drive short-term solar, heliospheric, and geospace variability; use the solar atmosphere as a laboratory for understanding fundamental physical processes; make unprecedented observations of the polar magnetic fields. The unique approaches of Solar-C to achieve these goals are to: determine the properties and evolution of the 3-dimensional magnetic field, especially on small spatial scales, and for the first time observed in the crucial low beta plasma region; observe all the temperature regimes of the atmosphere seamlessly at the highest spatial resolution ever achieved; observe at high cadence the prevailing dynamics in all regions of the atmosphere; determine physical properties from high resolution spectroscopic measurements throughout the atmosphere and into the solar wind. The powerful suite of instruments onboard Solar-C will be sensitive to temperatures from the photosphere 5500 K) to solar flares 20 MK) with no temperature gap, with spatial resolution at all temperatures of 0.3″ or less (0.1″ in the lower atmosphere) and at high cadence. The purpose of the Solar UV-Visible-IR Telescope (SUVIT) is to obtain chromospheric velocity, temperature, density and magnetic field diagnostics over as wide arange of heights as possible, through high cadence spectral line profiles and vector spectro-polarimetry. SUVIT is a meter-class telescope currently under study at 1.4m in order to obtain sufficientresolution and S/N. SUVIT has two complementary focal plane packages, the Filtergraph that makes high cadence imaging observations with the highest spatial resolution and the Spectro-polarimeter that makes

  6. Extracting bird migration information from C-band Doppler weather radars

    NARCIS (Netherlands)

    van Gasteren, H.; Holleman, I.; Bouten, W.; van Loon, E.; Shamoun-Baranes, J.

    2008-01-01

    Although radar has been used in studies of bird migration for 60 years, there is still no network in Europe for comprehensive monitoring of bird migration. Europe has a dense network of military air surveillance radars but most systems are not directly suitable for reliable bird monitoring. Since

  7. An Overview of Scientific and Space Weather Results from the Communication/Navigation Outage Forecasting System (C/NOFS) Mission

    Science.gov (United States)

    Pfaff, R.; de la Beaujardiere, O.; Hunton, D.; Heelis, R.; Earle, G.; Strauss, P.; Bernhardt, P.

    2012-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory is described. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electromagnetic waves. The satellite was launched in April, 2008 into a low inclination (13 deg), elliptical (400 x 850 km) orbit. The satellite sensors measure the following parameters in situ: ambient and fluctuating electron densities, AC and DC electric and magnetic fields, ion drifts and large scale ion composition, ion and electron temperatures, and neutral winds. C/NOFS is also equipped with a GPS occultation receiver and a radio beacon. In addition to the satellite sensors, complementary ground-based measurements, theory, and advanced modeling techniques are also important parts of the mission. We report scientific and space weather highlights of the mission after nearly four years in orbit

  8. The Next Generation Airborne Polarimetric Doppler Radar

    Science.gov (United States)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    aircraft in its fleet for airborne atmospheric measurements, including dropsonde, and in situ sampling and remote sensing of clouds, chemistry and aerosols. Therefore, the addition of a precipitation radar to the NSF/NCAR C-130 platform will produce transformational change in its mission. This new design can be cloned for C-130s operated by a number of agencies, including NOAA and the Air Force hurricane reconnaissance fleet. This paper presents a possible configuration of a novel, airborne phased array radar (APAR) to be installed on the NSF/NCAR C-130 aircraft with improved spatial resolution and polarimetric capability to meet or exceed that of ELDORA. The preliminary design, an update of the APAR project, and a future plan will be presented. References: Bell, M. M. , M. T. Montgomery, 2008: Observed Structure, Evolution, and Potential Intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September. Monthly Weather Review, Vol. 136, Issue 6, pp. 2023-2046. Hildebrand, P. H., W.-C. Lee, C. A. Walther, C. Frush, M. Randall, E. Loew, R. Neitzel, R. Parsons, J. Testud, F. Baudin, and A. LeCornec, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High resolution observations from TOGA COARE. Bull. Amer. Metoro. Soc., 77, 213-232 Howard B. Bluestein, Roger M. Wakimoto, 2003: Mobile Radar Observations of Severe Convective Storms re Convective Storms. Meteorological Monographs, Vol. 30, Issue 52, pp. 105-105. Montgomery, M. T., M. M. Bell, S. D. Aberson, M. L. Black, 2006: Hurricane Isabel (2003): New Insights into the Physics of Intense Storms. Part I: Mean Vortex Structure and Maximum Intensity Estimates. Bull. of the American Meteorl. Soc., Vol. 87, Issue 10, pp. 1335-1347.

  9. Comparing and Merging Observation Data from Ka-Band Cloud Radar, C-Band Frequency-Modulated Continuous Wave Radar and Ceilometer Systems

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-12-01

    Full Text Available Field experiment in South China was undertaken to improve understanding of cloud and precipitation properties. Measurements of the vertical structures of non-precipitating and precipitating clouds were obtained using passive and active remote sensing equipment: a Ka-band cloud radar (CR system, a C-band frequency modulated continuous wave vertical pointing radar (CVPR, a microwave radiometer and a laser ceilometer (CEIL. CR plays a key role in high-level cloud observation, whereas CVPR is important for observing low- and mid-level clouds and heavy precipitation. CEIL helps us diminish the effects of “clear-sky” in the planetary boundary layer. The experiment took place in Longmen, Guangdong Province, China from May to September of 2016. This study focuses on evaluating the ability of the two radars to deliver consistent observation data and develops an algorithm to merge the CR, CVPR and CEIL data. Cloud echo base, thickness, frequency of observed cloud types and reflectivity vertical distributions are analyzed in the radar data. Comparisons between the collocated data sets show that reflectivity biases between the CR three operating modes are less than 2 dB. The averaged difference between CR and CVPR reflectivity can be reduced with attenuation correction to 3.57 dB from the original 4.82 dB. No systemic biases were observed between velocity data collected in the three CR modes and CVPR. The corrected CR reflectivity and velocity data were then merged with the CVPR data and CEIL data to fill in the gaps during the heavy precipitation periods and reduce the effects of Bragg scattering and fog on cloud observations in the boundary layer. Meanwhile, the merging of velocity data with different Nyquist velocities and resolutions diminishes velocity folding to provide fine-grain information about cloud and precipitation dynamics. The three daily periods in which low-level clouds tended to occur were at sunrise, noon and sunset and large

  10. Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

    Science.gov (United States)

    Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.

    1986-01-01

    Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.

  11. Chinese HJ-1C SAR And Its Wind Mapping Capability

    Science.gov (United States)

    Huang, Weigen; Chen, Fengfeng; Yang, Jingsong; Fu, Bin; Chen, Peng; Zhang, Chan

    2010-04-01

    Chinese Huan Jing (HJ)-1C synthetic aperture radar (SAR) satellite has been planed to be launched in 2010. HJ-1C satellite will fly in a sun-synchronous polar orbit of 500-km altitude. SAR will be the only sensor on board the satellite. It operates in S band with VV polarization. Its image mode has the incidence angles 25°and 47°at the near and far sides of the swath respectively. There are two selectable SAR modes of operation, which are fine resolution beams and standard beams respectively. The sea surface wind mapping capability of the SAR has been examined using M4S radar imaging model developed by Romeiser. The model is based on Bragg scattering theory in a composite surface model expansion. It accounts for contributions of the full ocean wave spectrum to the radar backscatter from ocean surface. The model reproduces absolute normalized radar cross section (NRCS) values for wide ranges of wind speeds. The model results of HJ-1C SAR have been compared with the model results of Envisat ASAR. It shows that HJ-1C SAR is as good as Envisat ASAR at sea surface wind mapping.

  12. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    Science.gov (United States)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  13. World in Mercator Projection, Shaded Relief and Colored Height

    Science.gov (United States)

    2003-01-01

    This image of the world was generated with data from the Shuttle Radar Topography Mission (SRTM). The SRTM Project has recently released a new global data set called SRTM30, where the original one arcsecond of latitude and longitude resolution (about 30 meters, or 98 feet, at the equator) was reduced to 30 arcseconds (about 928 meters, or 1496 feet.) This image was created from that data set and shows the world between 60 degrees south and 60 degrees north latitude, covering 80% of the Earth's land mass. The image is in the Mercator Projection commonly used for maps of the world.Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.Orientation: North toward the top, Mercator projection Image Data: shaded and colored SRTM

  14. World Globes, Shaded Relief and Colored Height

    Science.gov (United States)

    2003-01-01

    These images of the world were generated with data from the Shuttle Radar Topography Mission (SRTM). The SRTM Project has recently released a new global data set called SRTM30, where the original one arcsecond of latitude and longitude resolution (about 30 meters, or 98 feet, at the equator) was reduced to 30 arcseconds (about 928 meters, or 1496 feet.) These images were created from that data set and show the Earth as it would be viewed from a point in space centered over the Americas, Africa and the western Pacific.Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.Orientation: North toward the top Image Data: shaded and colored SRTM elevation model Original Data Resolution: SRTM 1 arcsecond (about 30 meters or 98 feet

  15. C2 Agility

    DEFF Research Database (Denmark)

    Mitchell, Dr. William; Alberts, David S.; Bernier, Francois

    of improving C2 Agility with empirical evidence obtained from a set of retrospective case studies and simulation-based experiments. Further, it identified next steps toward practical implementation in NATO operations and priorities for increasing the rigor and practicality of methods for measuring...... and improving C2 Agility. The 21st century military mission space is large and complex, characterized by extreme uncertainty, and exposed to increased public and media scrutiny. In addition to the high intensity combat operations traditionally associated with the military, potential missions include a wide...

  16. Model-Based GN and C Simulation and Flight Software Development for Orion Missions beyond LEO

    Science.gov (United States)

    Odegard, Ryan; Milenkovic, Zoran; Henry, Joel; Buttacoli, Michael

    2014-01-01

    For Orion missions beyond low Earth orbit (LEO), the Guidance, Navigation, and Control (GN&C) system is being developed using a model-based approach for simulation and flight software. Lessons learned from the development of GN&C algorithms and flight software for the Orion Exploration Flight Test One (EFT-1) vehicle have been applied to the development of further capabilities for Orion GN&C beyond EFT-1. Continuing the use of a Model-Based Development (MBD) approach with the Matlab®/Simulink® tool suite, the process for GN&C development and analysis has been largely improved. Furthermore, a model-based simulation environment in Simulink, rather than an external C-based simulation, greatly eases the process for development of flight algorithms. The benefits seen by employing lessons learned from EFT-1 are described, as well as the approach for implementing additional MBD techniques. Also detailed are the key enablers for improvements to the MBD process, including enhanced configuration management techniques for model-based software systems, automated code and artifact generation, and automated testing and integration.

  17. Broadview Radar Altimetry Toolbox

    Science.gov (United States)

    Garcia-Mondejar, Albert; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the frontend for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the dataformatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and specific

  18. G C Anupama | Speakers | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    As a core member of the India TMT project, Anupama is responsible for the delivery of 90 polished segments of the primary mirror of the Thirty Meter Telescope, as a part of India's in-kind contribution to the international project. She is a recipient of Government of Karnataka's Sir C.V. Raman Young Scientist Award (2001).

  19. Mapping coastal sea level at high resolution with radar interferometry: the SWOT Mission

    Science.gov (United States)

    Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.

    2017-12-01

    The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex

  20. Real field mission profile oriented design of a SiC-based PV-inverter application

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    This paper introduces a real field mission profile oriented design tool for the new generation of grid connected PV-inverters applications based on SiC-devices. The proposed design tool consists of a grid connected PV-inverter model, an ElectroThermal model, a converter safe operating area (SOA...... Zth_H in order to perform in a safe mode for the whole operating range. Furthermore, the proposed design tool considers the mission profile (the measured solar irradiance and ambient temperature) from the real field where the converter will operate. Thus, a realistic loading of the converter devices......) model, a mission profile model and an the evaluation block. The PV-system model involves a three level bipolar switch neutral point clamped (3L-BS NPC) inverter connected to the three phase grid through a LCL-filter. Moreover, the SOA model calculates the required converter heatsink thermal impedance...

  1. NON NEUROLOGICAL OUTCOME COMPARISON OF EARLY AND DELAYED SURGICAL STABILIZATION IN C-SPINE FRACTURES

    Directory of Open Access Journals (Sweden)

    T. G. B. Mahadewa

    2014-01-01

    Full Text Available Background: Non neurological outcome postsurgical stabilization in C-spine injury has not been reported. Non neurological outcome i.e. the risk of lung infection (pneumonia, systemic inflammation response syndrome (SIRS, length of postoperative care (LOPOC which can compromise the recovery process and treatment period. This study aims to investigate non neurological outcome comparison after early surgical stabilization (ESS and delayed surgical stabilization (DSS in patients with C-spine fractures. Methods: The author retrospectively reviews 59 of 108 consecutive patients who met the inclusion criteria with C-spine fractures who underwent surgical stabilization at the Sanglah General Hospital, between 2007 and 2010. Consisting of 25 patients underwent ESS and 34 patients were treated by DSS. The last follow up period range was 3-36 months. Non neurological outcome were evaluated and compared; the risk of pneumonia, SIRS and LOPOC. Results: Significant statistically between ESS and DSS in; the risk of pneumonia (ESS: DSS= 1:9 by Chi-square-test (p=0.023; the risk of SIRS (ESS: DSS= 1:11 by Chi-square-test (p=0.008; and the LOPOC (ESS: DSS= 6.84:9.97 by independent t-test (p=0.000. Application of ESS for C-spine fractures could provide early mobilization, prompt treatment and facilitate early rehabilitation thus significantly reduces complications due to prolong immobilization and reduces LOPOC. Conclussion: It can be concluded that the ESS strategy is effective and efficient thus may propose an option of surgical timing in C-spine fractures.

  2. NRL Radar Division C++ Coding Standard

    Science.gov (United States)

    2016-12-05

    files, sockets) the generated member functions have probably the wrong behavior and must be implemented. You have to decide if the resources pointed to...much more difficult to maintain, you should avoid it. Source CERN. CA10 Do not use asm (the assembler macro facility of C++). Source CERN. 31 CA11

  3. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  4. Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia.

    Science.gov (United States)

    Sepúlveda, J.; Hoyos Ortiz, C. D.

    2017-12-01

    An adequate quantification of precipitation over land is critical for many societal applications including agriculture, hydroelectricity generation, water supply, and risk management associated with extreme events. The use of rain gauges, a traditional method for precipitation estimation, and an excellent one, to estimate the volume of liquid water during a particular precipitation event, does not allow to fully capture the highly spatial variability of the phenomena which is a requirement for almost all practical applications. On the other hand, the weather radar, an active remote sensing sensor, provides a proxy for rainfall with fine spatial resolution and adequate temporary sampling, however, it does not measure surface precipitation. In order to fully exploit the capabilities of the weather radar, it is necessary to develop quantitative precipitation estimation (QPE) techniques combining radar information with in-situ measurements. Different QPE methodologies are explored and adapted to local observations in a highly complex terrain region in tropical Colombia using a C-Band radar and a relatively dense network of rain gauges and disdrometers. One important result is that the expressions reported in the literature for extratropical locations are not representative of the conditions found in the tropical region studied. In addition to reproducing the state-of-the-art techniques, a new multi-stage methodology based on radar-derived variables and disdrometer data is proposed in order to achieve the best QPE possible. The main motivation for this new methodology is based on the fact that most traditional QPE methods do not directly take into account the different uncertainty sources involved in the process. The main advantage of the multi-stage model compared to traditional models is that it allows assessing and quantifying the uncertainty in the surface rain rate estimation. The sub-hourly rainfall estimations using the multi-stage methodology are realistic

  5. Shaded Relief with Height as Color, Lake Balbina, near Manaus, Brazil

    Science.gov (United States)

    2002-01-01

    . The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation measurements. Colors range from blue at the lowest elevations to brown and white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on Feb. 11,2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect 3-D measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: 111 kilometers by 111 kilometers (69 miles by 69 miles) Location: 1.5 degrees South latitude, 59.5 degrees West longitude Orientation: North is at the top Date Acquired: February 2000 (SRTM)

  6. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    Science.gov (United States)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  7. Polarimetric rainfall retrieval from a C-Band weather radar in a tropical environment (The Philippines)

    Science.gov (United States)

    Crisologo, I.; Vulpiani, G.; Abon, C. C.; David, C. P. C.; Bronstert, A.; Heistermann, Maik

    2014-11-01

    We evaluated the potential of polarimetric rainfall retrieval methods for the Tagaytay C-Band weather radar in the Philippines. For this purpose, we combined a method for fuzzy echo classification, an approach to extract and reconstruct the differential propagation phase, Φ DP , and a polarimetric self-consistency approach to calibrate horizontal and differential reflectivity. The reconstructed Φ DP was used to estimate path-integrated attenuation and to retrieve the specific differential phase, K DP . All related algorithms were transparently implemented in the Open Source radar processing software wradlib. Rainfall was then estimated from different variables: from re-calibrated reflectivity, from re-calibrated reflectivity that has been corrected for path-integrated attenuation, from the specific differential phase, and from a combination of reflectivity and specific differential phase. As an additional benchmark, rainfall was estimated by interpolating the rainfall observed by rain gauges. We evaluated the rainfall products for daily and hourly accumulations. For this purpose, we used observations of 16 rain gauges from a five-month period in the 2012 wet season. It turned out that the retrieval of rainfall from K DP substantially improved the rainfall estimation at both daily and hourly time scales. The measurement of reflectivity apparently was impaired by severe miscalibration while K DP was immune to such effects. Daily accumulations of rainfall retrieved from K DP showed a very low estimation bias and small random errors. Random scatter was, though, strongly present in hourly accumulations.

  8. Shaded relief of Bahia State, Brazil

    Science.gov (United States)

    2000-01-01

    This topographic image is the first to show the full 240-kilometer-wide (150 mile)swath collected by the Shuttle Radar Topography Mission (SRTM). The area shown is in the state of Bahia in Brazil. The semi-circular mountains along the left side of the image are the Serra Da Jacobin, which rise to 1100 meters (3600 feet) above sea level. The total relief shown is approximately 800 meters (2600 feet). The top part of the image is the Sertao, a semi-arid region, that is subject to severe droughts during El Nino events. A small portion of the San Francisco River, the longest river (1609 kilometers or 1000 miles) entirely within Brazil, cuts across the upper right corner of the image. This river is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, drought and human influences on ecosystems.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations to reddish at the highest elevations. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging

  9. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors.

    Science.gov (United States)

    Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L

    2018-01-01

    Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP + oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.

  10. IDP: Image and data processing (software) in C++

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    IDP++(Image and Data Processing in C++) is a complied, multidimensional, multi-data type, signal processing environment written in C++. It is being developed within the Radar Ocean Imaging group and is intended as a partial replacement for View. IDP++ takes advantage of the latest object-oriented compiler technology to provide `information hiding.` Users need only know C, not C++. Signals are treated like any other variable with a defined set of operators and functions in an intuitive manner. IDP++ is being designed for real-time environment where interpreted signal processing packages are less efficient.

  11. Intercomparison of attenuation correction algorithms for single-polarized X-band radars

    Science.gov (United States)

    Lengfeld, K.; Berenguer, M.; Sempere Torres, D.

    2018-03-01

    Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing

  12. Serum inflammatory markers in the elderly: are they useful in differentiating sepsis from SIRS?

    Directory of Open Access Journals (Sweden)

    Mahshid Talebi-Taher

    2014-06-01

    Full Text Available Differentiating sepsis from other noninfectious causes of systemic inflammation is often difficult in the elderly. The aim of this study was to evaluate the ability of C-reactive protein (CRP, Erythrocyte Sedimentation Rate (ESR, procalcitonin (PCT, and Interleukin-6 (IL-6 to identify elderly patients with sepsis. In this single center prospective observational study, we included all consecutive elderly patients admitted with suspected sepsis and systemic inflammatory response syndrome (SIRS in an emergency department. Blood samples for measuring CRP, PCT, IL-6, ESR and white blood cells (WBC count were taken at first day of admission. Sensitivity, specificity, positive and negative predictive values were calculated for each inflammatory markers being studied. A total of 150 elderly patients aged 65 and older, 50 with sepsis and 50 with SIRS, and fifty individuals in a normal health status were included. CRP exhibited the greatest sensitivity (98% and negative predictive value (98.6% and performed best in differentiating patients with sepsis from those with SIRS. In a receiver operating characteristic curve analysis, IL-6 performed best in distinguishing between SIRS and the control group (AUC 0.75, 95% CI. On the other hand, both CRP and ESR appeared to be a more accurate diagnostic parameter for differentiating sepsis from SIRS among elderly patients.

  13. The α2C-adrenoceptor antagonist, ORM-10921, has antipsychotic-like effects in social isolation reared rats and bolsters the response to haloperidol.

    Science.gov (United States)

    Uys, Madeleine; Shahid, Mohammed; Sallinen, Jukka; Dreyer, Walter; Cockeran, Marike; Harvey, Brian H

    2016-11-03

    Early studies suggest that selective α2C-adrenoceptor (AR)-antagonism has anti-psychotic-like and pro-cognitive properties. However, this has not been demonstrated in an animal model of schizophrenia with a neurodevelopmental construct. The beneficial effects of clozapine in refractory schizophrenia and associated cognitive deficits have, among others, been associated with its α2C-AR modulating activity. Altered brain-derived neurotrophic factor (BDNF) has been linked to schizophrenia and cognitive deficits. We investigated whether the α2C-AR antagonist, ORM-10921, could modulate sensorimotor gating and cognitive deficits, as well as alter striatal BDNF levels in the social isolation reared (SIR) model of schizophrenia, comparing its effects to clozapine and the typical antipsychotic, haloperidol, the latter being devoid of α2C-AR-activity. Moreover, the ability of ORM-10921 to augment the effects of haloperidol on the above parameters was also investigated. Animals received subcutaneous injection of either ORM-10921 (0.01mg/kg), clozapine (5mg/kg), haloperidol (0.2mg/kg), haloperidol (0.2mg/kg)+ORM-10921 (0.01mg/kg) or vehicle once daily for 14days, followed by assessment of novel object recognition (NOR), prepulse inhibition (PPI) of startle response and striatal BDNF levels. SIR significantly attenuated NOR memory as well as PPI, and reduced striatal BDNF levels vs. social controls. Clozapine, ORM-10921 and haloperidol+ORM-10921, but not haloperidol alone, significantly improved SIR-associated deficits in PPI and NOR, with ORM-10921 also significantly improving PPI deficits vs. haloperidol-treated SIR animals. Haloperidol+ORM-10921 significantly reversed reduced striatal BDNF levels in SIR rats. α2C-AR-antagonism improves deficits in cognition and sensorimotor gating in a neurodevelopmental animal model of schizophrenia and bolsters the effects of a typical antipsychotic, supporting a therapeutic role for α2C-AR-antagonism in schizophrenia. Copyright

  14. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-01-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... to cancel Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C67, Airborne Radar Altimeter...

  15. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    Science.gov (United States)

    Passalacqua, Olivier; Ritz, Catherine; Parrenin, Frédéric; Urbini, Stefano; Frezzotti, Massimo

    2017-09-01

    Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF), which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice-bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km × 130 km area, with a N-S gradient and with values ranging from 48 to 60 mW m-2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.

  16. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For...

  17. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    Science.gov (United States)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  18. Laboratory polarization and permittivity measurements to interpret dust polarimetric observations and in-situ radar studies. Significance for Rosetta mission at 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Brouet, Yann; Hadamcik, Edith; Heggy, Essam; Hines, Dean; Lasue, Jérémie; Renard, Jean-Baptiste

    2015-08-01

    Polarimetric astronomical observations on dust clouds and regolithic surfaces require laboratory simulations on samples to provide information on properties (size distribution, porosity, refractive index) of the scattering media. Similarly, in-situ radar investigations in the solar system require laboratory studies on samples to infer physical properties (e.g. porosity, ice/dust ratio) of sub-surfaces and interiors. Recent developments are illustrated with present studies related to the Rosetta mission, which begun its rendezvous with comet 67P/Churyumov-Gerasimeko (C-G) and landed the Philae module on its nucleus in 2014.We will summarize laboratory simulations with the PROGRA2 suite of instruments that study (in the visible to near IR domain) the polarimetric properties of dust samples in microgravity conditions or on surfaces [1], with emphasis on the interpretation of polarimetric observations of C-G, during its previous perihelion passages from Earth observatories, and currently from HST [2,3]. The presence of large dust particles in the pre-perihelion coma previously inferred from remote observations agrees with Rosetta ground truth [4]. We will also present measurements on the permittivity (in the millimeter to meter domain) of various dust samples, with emphasis on porous samples [5,6]. Results provide constraints on the properties of the subsurface and interior of C-G, as explored by MIRO on Rosetta and CONSERT on Philae.Such studies are relevant for the interpretation of polarimetric observations of other dust clouds (e.g. debris disks, interplanetary dust cloud, clouds in planetary atmospheres) and surfaces (e.g. planets, moons), as well as for those of other radar characterization studies (e.g. Mars, moons, asteroids).[1] Levasseur-Regourd et al. In Polarization of stars and planetary systems, Cambridge UP, in press 2015.[2] Hadamcik et al. A&A 517 2010.[3] Hines and Levasseur-Regourd, PSS submitted 2015.[4] Schulz et al. Nature 518 2015.[5] Heggy et al

  19. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    Directory of Open Access Journals (Sweden)

    O. Passalacqua

    2017-09-01

    Full Text Available Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF, which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice–bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km  ×  130 km area, with a N–S gradient and with values ranging from 48 to 60 mW m−2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.

  20. Monsoon Convection during the South China Sea Monsoon Experiment Observed from Shipboard Radar and the TRMM Satellite

    Science.gov (United States)

    Rickenbach, Tom; Cifelli, Rob; Halverson, Jeff; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina; Liu, Ching-Hwang; hide

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed during the active monsoon periods in a southwesterly flow regime. Several examples of mesoscale convection will be shown from ship-based and spacebome radar reflectivity data during times of TRMM satellite overpasses. Further examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will be discussed. A strong waterspout was observed very near the ship from an isolated cell in the pre-monsoon period, and was well documented with photography, radar, sounding, and sounding data.

  1. Basic Radar Altimetry Toolbox: Tools and Tutorial to Use Cryosat Data

    Science.gov (United States)

    Benveniste, J.; Bronner, E.; Dinardo, S.; Lucas, B. M.; Rosmorduc, V.; Earith, D.; Niemeijer, S.

    2011-12-01

    Radar altimetry is very much a technique expanding its applications. Even If quite a lot of effort has been invested for oceanography users, the use of Altimetry data for cryosphere application, especially with the new ESA CryoSat-2 mission data is still somehow tedious for new Altimetry data products users. ESA and CNES therfore developed the Basic Radar Altimetry Toolbox a few years ago, and are improving and upgrading it to fit new missions and the growing number of altimetry uses. The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data. The software is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason- 2, CryoSat, the future Saral missions and is ready for adaptation to Sentinel-3 products - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. It is an opportunity to teach remote sensing with practical training. It has been available since April 2007, and had been demonstrated during training courses and scientific meetings. About 2000 people downloaded it (Summer 2011), with many "newcomers" to altimetry among them

  2. Preliminary radar systems analysis for Venus orbiter missions

    Science.gov (United States)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  3. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    Science.gov (United States)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on

  4. Shaded Relief with Height as Color, Iturralde Structure, Bolivia

    Science.gov (United States)

    2002-01-01

    An 8-kilometer (5-mile) wide crater of possible impact origin is shown in this view of an isolated part of the Bolivian Amazon from the Shuttle Radar Topography Mission. The circular feature at the center-left of the image, known as the Iturralde Structure, is possibly the Earth's most recent 'big' impact event recording collision with a meteor or comet that might have occurred between 11,000 and 30,000 years ago.Although the structure was identified on satellite photographs in the mid-1980s, its location is so remote that it has only been visited by scientific investigators twice, most recently by a team from NASA's Goddard Space Flight Center in September 2002. Lying in an area of very low relief, the landform is a quasi-circular closed depression only about 20 meters (66 feet) in depth, with sharply defined sub-angular 'rim' materials. It resembles a 'cookie cutter' in that its appearance 'cuts' the heavily vegetated soft-sediments and pampas of this part of Bolivia. The SRTM data have provided investigators with the first topographic map of the site and will allow studies of its three-dimensional structure crucial to determining whether it actually is of impact origin.Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with brown and green at the lower elevations, rising through yellow and brown to white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on Feb. 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. The Shuttle Radar Topography Mission was

  5. Prime mission results of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the version 5 GPM standard products

    Science.gov (United States)

    Furukawa, K.; Nio, T.; Oki, R.; Kubota, T.; Iguchi, T.

    2017-09-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR orbital check out was completed in May 2014. DPR products were released to the public on Sep. 2, 2014 and Normal Observation Operation period was started. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. The results of DPR trend monitoring, calibration and validation show that DPR kept its function and performance on orbit during the 3 years and 2 months prime mission period. The DPR Prime mission period was completed in May 2017. The version 5 GPM products were released to the public in 2017. JAXA confirmed that GPM/DPR total system performance and the GPM version 5 products achieved the success criteria and the performance indicators that were defined for the JAXA GPM/DPR mission.

  6. SRTM Colored Height and Shaded Relief: Lava plateaus in Argentina

    Science.gov (United States)

    2001-01-01

    All of the major landforms relate to volcanism and/or erosion in this Shuttle Radar Topography Mission scene of Patagonia, near La Esperanza, Argentina. The two prominent plateaus once formed a continuous surface that extended over much of this region. Younger volcanoes have grown through and atop the plateau, and one just south of this scene has sent a long, narrow flow down a stream channel (lower left). The topographic pattern shows that streams dominate the erosion processes in this arid environment even though wind is known to move substantial amounts of sediment here.Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color-coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 62.4 by 88.8 kilometers

  7. Reconnaissance geologic mapping of a portion of the rain‐forest‐covered Guiana Shield, Northwestern Brazil, using SIR-B and digital aeromagnetic data

    Science.gov (United States)

    Pellon de Miranda, Fernando; McCafferty, Anne E.; Taranik, James V.

    1994-01-01

    This paper documents the result of an integrated analysis of spaceborne radar (SIR-B) and digital aeromagnetic data carried out in the heavily forested Guiana Shield. The objective of the research is to interpret the geophysical data base to its limit to produce a reconnaissance geologic map as an aid to ground work planning in a worst‐case setting. Linear geomorphic features were identified based on the interpretation of the SIR-B image. Digital manipulation of aeromagnetic data allowed the development of a color‐shaded relief map of reduced‐to‐pole magnetic anomalies, a terrace‐magnetization map, and a map showing the location of maximum values of the horizontal component of the pseudogravity gradient (magnetization boundary lines). The resultant end product was a reconnaissance geologic map where broad terrane categories were delineated and geologic faults with both topographic and magnetic expression were defined. The availability of global spaceborne radar coverage in the 1990s and the large number of existing digital aeromagnetic surveys in northwestern Brazil indicate that this approach can be potentially useful for reconnaissance geologic mapping elsewhere in the Guiana Shield.

  8. Analysis of the Gran Desierto, Pinacte Region, Sonora, Mexico, via shuttle imaging radar

    Science.gov (United States)

    Greeley, R.; Christensen, P. R.; Mchone, J. F.; Asmerom, Y.; Zimbelman, J. R.

    1984-01-01

    The radar discriminability of geolian features and their geological setting as imaged by the SIR-A experiment is examined. The Gran Desierto and Pincate volcanio field of Sonora, Mexico was used to analyze the radar characteristics of the interplay of aeolian features and volcano terrain. The area in the Gran Desierto covers 4000 sq. km. and contains sand dunes of several forms. The Pincate volcanio field covers more than 2.000 sq. km. and consists primarily of basaltic lavas. Margins of the field, especially on the western and northern sides, include several maar and maar-like craters; thus obtaining information on their radar characteristics for comparison with impact craters.

  9. Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence

    Science.gov (United States)

    Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui

    2018-01-01

    This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.

  10. Potential for observing and discriminating impact craters and comparable volcanic landforms on Magellan radar images

    International Nuclear Information System (INIS)

    Ford, J.P.

    1989-01-01

    Observations of small terrestrial craters by Seasat synthetic aperture radar (SAR) at high resolution (approx. 25 m) and of comparatively large Venusian craters by Venera 15/16 images at low resolution (1000 to 2000 m) and shorter wavelength show similarities in the radar responses to crater morphology. At low incidence angles, the responses are dominated by large scale slope effects on the order of meters; consequently it is difficult to locate the precise position of crater rims on the images. Abrupt contrasts in radar response to changing slope (hence incidence angle) across a crater produce sharp tonal boundaries normal to the illumination. Crater morphology that is radially symmetrical appears on images to have bilateral symmetry parallel to the illumination vector. Craters are compressed in the distal sector and drawn out in the proximal sector. At higher incidence angles obtained with the viewing geometry of SIR-A, crater morphology appears less compressed on the images. At any radar incidence angle, the distortion of a crater outline is minimal across the medial sector, in a direction normal to the illumination. Radar bright halos surround some craters imaged by SIR-A and Venera 15 and 16. The brightness probably denotes the radar response to small scale surface roughness of the surrounding ejecta blankets. Similarities in the radar responses of small terrestrial impact craters and volcanic craters of comparable dimensions emphasize the difficulties in discriminating an impact origin from a volcanic origin in the images. Similar difficulties will probably apply in discriminating the origin of small Venusian craters, if they exist. Because of orbital considerations, the nominal incidence angel of Magellan radar at the center of the imaging swath will vary from about 45 deg at 10 deg N latitude to about 16 deg at the north pole and at 70 deg S latitude. Impact craters and comparable volcanic landforms will show bilateral symmetry

  11. Shaded Relief of Rio Sao Francisco, Brazil

    Science.gov (United States)

    2000-01-01

    This topographic image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The scrub forest terrain shows relief of about 400 meters (1300 feet). Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. This region has little topographic relief, but even subtle changes in topography have far-reaching effects on regional ecosystems. The image covers an area of 57 km x 79 km and represents one quarter of the 225 km SRTM swath. Colors range from dark blue at water level to white and brown at hill tops. The terrain features that are clearly visible in this image include tributaries of the Sao Francisco, the dark-blue branch-like features visible from top right to bottom left, and on the left edge of the image, and hills rising up from the valley floor. The San Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200

  12. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  13. Dual-polarization, wideband microstrip antenna array for airborne C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance of the...... of the basic stacked patch element, operating from 4.9 GHz to 5.7 GHz, and a 2×2 element test array of these, are described.......The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance...

  14. Soil Moisture Active Passive Mission L4_C Data Product Assessment (Version 2 Validated Release)

    Science.gov (United States)

    Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima; Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2016-01-01

    The SMAP satellite was successfully launched January 31st 2015, and began acquiring Earth observation data following in-orbit sensor calibration. Global data products derived from the SMAP L-band microwave measurements include Level 1 calibrated and geolocated radiometric brightness temperatures, Level 23 surface soil moisture and freezethaw geophysical retrievals mapped to a fixed Earth grid, and model enhanced Level 4 data products for surface to root zone soil moisture and terrestrial carbon (CO2) fluxes. The post-launch SMAP mission CalVal Phase had two primary objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product pertaining to the validated release. The L4_C validated product release effectively replaces an earlier L4_C beta-product release (Kimball et al. 2015). The validated release described in this report incorporates a longer data record and benefits from algorithm and CalVal refinements acquired during the SMAP post-launch CalVal intensive period. The SMAP L4_C algorithms utilize a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily net ecosystem CO2 exchange (NEE) and component carbon fluxes for vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape freeze/thaw (FT) controls on GPP and respiration (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and

  15. Phase diagrams for pseudo-binary carbide systems TiC-NbC, TiC-TaC, ZrC-NbC, ZrC-TaC and HfC-TaC

    International Nuclear Information System (INIS)

    Gusev, A.I.

    1985-01-01

    Parameters of interaction and energy of mutual exchange in the liquid and solid phases of pseudobinary TiC-NbC, TiC-TaC, ZrC-NbC, ZrC-TaC, HfC-TaC systems are calculated with account of dependence on composition and temperature. Positions of liquidus-solidus phase boundaries on the phase diagrams of the mentioned systems are calculated on the basis of the determined mutual exchange energies in approximati.on of subregular solutions. The existance of latent decomposition ranges in the solid phase on the phase diagrams of the investgated systems is established

  16. GN and C Subsystem Concept for Safe Precision Landing of the Proposed Lunar MARE Robotic Science Mission

    Science.gov (United States)

    Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.; hide

    2016-01-01

    The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.

  17. Spacecraft TT&C and information transmission theory and technologies

    CERN Document Server

    Liu, Jiaxing

    2015-01-01

    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  18. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    Science.gov (United States)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document

  19. CryoSat Level1b SAR/SARin BaselineC: Product Format and Algorithm Improvements

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Di Giacinto, Andrea; Bouffard, Jerome; Féménias, Pierre; Parrinello, Tommaso

    2015-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvements in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. The current IPF, Baseline B, was released in operation in February 2012. A reprocessing campaign followed, in order to reprocess the data since July 2010. After more than 2 years of development, the release in operations of Baseline C is expected in the first half of 2015. BaselineC Level1b products will be distributed in an updated format, including for example the attitude information (roll, pitch and yaw) and, for SAR/SARIN, the waveform length doubled with respect to Baseline B. Moreveor, various algorithm improvements have been identified: • a datation bias of about -0.5195 ms will be corrected (SAR/SARIn) • a range bias of about 0.6730 m will be corrected (SAR/SARIn) • a roll bias of 0.1062 deg and a pitch bias of 0.0520 deg • Surface sample stack weighting to filter out the single look echoes acquired at highest look angle, that results in a sharpening of the 20Hz waveforms With the operational release of BaselineC, the second CryoSat reprocessing campaign will be initiated, taking benefit of the upgrade implemented in the IPF1 processing chain but also at IPF2 level. The reprocessing campaign will cover the full Cryosat mission starting on 16th July 2010

  20. Trade-Space Analysis Tool for Constellations (TAT-C)

    Science.gov (United States)

    Le Moigne, Jacqueline; Dabney, Philip; de Weck, Olivier; Foreman, Veronica; Grogan, Paul; Holland, Matthew; Hughes, Steven; Nag, Sreeja

    2016-01-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: How many spacecraft should be included in the constellation? Which design has the best costrisk value? The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time.This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit Coverage, Reduction Metrics, and Cost Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance.TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model consisting of

  1. SIRS score on admission and initial concentration of IL-6 as severe acute pancreatitis outcome predictors.

    Science.gov (United States)

    Gregoric, Pavle; Pavle, Gregoric; Sijacki, Ana; Ana, Sijacki; Stankovic, Sanja; Sanja, Stankovic; Radenkovic, Dejan; Dejan, Radenkovic; Ivancevic, Nenad; Nenad, Ivancevic; Karamarkovic, Aleksandar; Aleksandar, Karamarkovic; Popovic, Nada; Nada, Popovic; Karadzic, Borivoje; Borivoje, Karadzic; Stijak, Lazar; Stefanovic, Branislav; Branislav, Stefanovic; Milosevic, Zoran; Zoran, Milosević; Bajec, Djordje; Djordje, Bajec

    2010-01-01

    Early recognition of severe form of acute pancreatitis is important because these patients need more agressive diagnostic and therapeutical approach an can develope systemic complications such as: sepsis, coagulopathy, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS), Multiple Organ Dysfunction Syndrome (MODS), Multiple Organ Failure (MOF). To determine role of the combination of Systemic Inflammatory Response Syndrome (SIRS) score and serum Interleukin-6 (IL-6) level on admission as predictor of illness severity and outcome of Severe Acute Pancreatitis (SAP). We evaluated 234 patients with first onset of SAP appears in last twenty four hours. A total of 77 (33%) patients died. SIRS score and serum IL-6 concentration were measured in first hour after admission. In 105 patients with SIRS score 3 and higher, initial measured IL-6 levels were significantly higher than in the group of remaining 129 patients (72 +/- 67 pg/mL, vs 18 +/- 15 pg/mL). All nonsurvivals were in the first group, with SIRS score 3 and 4 and initial IL-6 concentration 113 +/- 27 pg/mL. The values of C-reactive Protein (CRP) measured after 48h, Acute Physiology and Chronic Health Evaluation (APACHE II) score on admission and Ranson score showed the similar correlation, but serum amylase level did not correlate significantly with Ranson score, IL-6 concentration and APACHE II score. The combination of SIRS score on admission and IL-6 serum concentration can be early, predictor of illness severity and outcome in SAP.

  2. The low-order wavefront control system for the PICTURE-C mission: high-speed image acquisition and processing

    Science.gov (United States)

    Hewawasam, Kuravi; Mendillo, Christopher B.; Howe, Glenn A.; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. The PICTURE-C low-order wavefront control (LOWC) system will be used to correct time-varying low-order aberrations due to pointing jitter, gravity sag, thermal deformation, and the gondola pendulum motion. We present the hardware and software implementation of the low-order ShackHartmann and reflective Lyot stop sensors. Development of the high-speed image acquisition and processing system is discussed with the emphasis on the reduction of hardware and computational latencies through the use of a real-time operating system and optimized data handling. By characterizing all of the LOWC latencies, we describe techniques to achieve a framerate of 200 Hz with a mean latency of ˜378 μs

  3. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  4. Monsoon Convective During the South China Sea Monsoon Experiment: Observations from Ground-Based Radar and the TRMM Satellite

    Science.gov (United States)

    Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.

  5. MÉTODOS DE SENSORIAMENTO REMOTO APLICADOS À GEOMORFOLOGIA - METHODS IN REMOTESENSING APPLY IN GEOMORPHOLOGY

    Directory of Open Access Journals (Sweden)

    Thiago Morato de Carvalho

    2007-12-01

    Full Text Available The mean of this papper is to present the methodology used by SRTM products, like an essential tool toproducts in geomorphology. The mapping of Goiás State and Brasília D.C. from SIEG-GOIAS was usedlike example. The SRTM products were obtained by sensor SIR-C/X-SAR (Spaceborn Imaging RadarC-band/X-band Synthetic Aperture Radar on board of Endeavour space shuttle, during 2000, to mappingthe relief topography just the 80º. N an S parallels. The results showed which the SRTM images have agood utility to geomorphologic mappings in small and middle scales, like this application in the Goiás state,Brazil.

  6. Correlation between the 12C+12C, 12C+13C, and 13C+13C fusion cross sections

    Science.gov (United States)

    Notani, M.; Esbensen, H.; Fang, X.; Bucher, B.; Davies, P.; Jiang, C. L.; Lamm, L.; Lin, C. J.; Ma, C.; Martin, E.; Rehm, K. E.; Tan, W. P.; Thomas, S.; Tang, X. D.; Brown, E.

    2012-01-01

    The fusion cross section for 12C+13C has been measured down to Ec.m.=2.6 MeV, at which the cross section is of the order of 20 nb. By comparing the cross sections for the three carbon isotope systems, 12C+12C, 12C+13C, and 13C+13C, it is found that the cross sections for 12C+13C and 13C+13C provide an upper limit for the fusion cross section of 12C+12C over a wide energy range. After calibrating the effective nuclear potential for 12C+12C using the 12C+13C and 13C+13C fusion cross sections, it is found that a coupled-channels calculation with the ingoing wave boundary condition (IWBC) is capable of predicting the major peak cross sections in 12C+12C. A qualitative explanation for this upper limit is provided by the Nogami-Imanishi model and by level density differences among the compound nuclei. It is found that the strong resonance found at 2.14 MeV in 12C+12C exceeds this upper limit by a factor of more than 20. The preliminary result from the most recent measurement shows a much smaller cross section at this energy, which agrees with our predicted upper limit.

  7. Advanced Architectures for Modern Weather/Multifunction Radars

    Science.gov (United States)

    2017-03-01

    Radar (PAIR) system, a mobile , C-band, active phased array with multiple digital beams for imaging (under development). The digital transceiver... backend from Horus is also being used to drive row-based analog subarrays of the future Polarimetric Atmospheric Imaging Radar (PAIR, Fig. 6), which is

  8. CCSDS SM and C Mission Operations Interoperability Prototype

    Science.gov (United States)

    Lucord, Steven A.

    2010-01-01

    This slide presentation reviews the prototype of the Spacecraft Monitor and Control (SM&C) Operations for interoperability among other space agencies. This particular prototype uses the German Space Agency (DLR) to test the ideas for interagency coordination.

  9. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  10. Hepatitis C virus infection and risk of cancer: a population-based cohort study

    Directory of Open Access Journals (Sweden)

    Lars Haukali Omland

    2010-06-01

    Full Text Available Lars Haukali Omland1, Dora Körmendiné Farkas2, Peter Jepsen2,3, Niels Obel1, Lars Pedersen21Department of Infectious Diseases, Rigshospitalet, Denmark; 2Department of Clinical Epidemiology, 3Department of Medicine V (Hepatology and Gastroenterology, Aarhus University Hospital, DenmarkBackground: Hepatitis C virus (HCV infection is associated with an increased risk of primary liver cancer; however, 5- and 10-year risk estimates are needed. The association of HCV with non-Hodgkin lymphoma (NHL is uncertain and the association with other cancers is unknown.Method: We conducted a nationwide, population-based cohort study of 4,349 HCV-infected patients in Denmark, computing standardized incidence ratios (SIR of cancer incidence in HCV infected patients compared with cancer incidence of the general population. We calculated 5-and 10-year risks of developing cancer, stratifying our analyses based on the presence of HIV coinfection and cirrhosis.Results: We recorded an increased risk of primary liver cancer (SIR: 76.63 [95% CI: 51.69–109.40], NHL (SIR: 1.89 [95% CI: 0.39–5.52], and several smoking- and alcohol-related cancers in HCV infected patients without HIV coinfection. HCV-infected patients without HIV coinfection had a 6.3% (95% CI: 4.6%–8.7% risk of developing cancer and 2.0% (95% CI: 1.1%–3.8% risk of developing primary liver cancer within 10 years.Conclusion: We confirmed the association of HCV infection with primary liver cancer and NHL. We also observed an association between HCV infection and alcohol- and smoking-related cancers.Keywords: hepatitis C virus, non-Hodgkin lymphoma, standardized incidence ratio, cancer

  11. L’économie politique du désir dans le rituel et le militantisme au SriLanka

    Directory of Open Access Journals (Sweden)

    Wim Van Daele

    2013-03-01

    Full Text Available Le désir est au cœur des interactions complexes entre le développement et la religion. Cet article examine ses différentes expressions, comme étant une des préoccupations fondamentales de nombreuses religions, qui motivent à la fois le développement et les alternatives au développement. Au SriLanka, face au changement social, la forme néolibérale et mondialisée du développement est comprise et réinterprétée à travers des idiomes et des formations locales du désir. L’économie néolibérale cultive le désir et mène à un accroissement présumé de la présence des preta (fantômes affamés et avides qui se manifestent parfois au moment de la mort d’une personne. Les fantômes affamés, en tant que formations fétichisées du désir, trouvent un écho chez les consommateurs et les entrepreneurs, qui montrent unappétit insatiable vis-à-vis d’une richesse matérielle en constante croissance. Ainsi, l’apaisement ritualisé des fantômes affamés et le militantisme social de groupes tels que le Movement for National Land and Agricultural Reform (MONLAR sont clairement liés par leur préoccupation mutuelle face à l’insécurité existentielle des êtres humains et non humains, causée par un désir excessif et déséquilibré. L’action rituelle et le militantisme social divergent toutefois dans la formulation explicite de leurs préoccupations spécifiques concernant le désir. Le rituel matérialise et condense l’angoisse liée au désir, alors que le militantisme social décrit la fétichisation du désir en termes économiques, politiques et scientifiques plus abstraits.

  12. KARIN: The Ka-Band Radar Interferometer for the Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Esteban-Fernandez, Daniel; Peral, Eva; McWatters, Dalia; Pollard, Brian; Rodriguez, Ernesto; Hughes, Richard

    2013-01-01

    Over the last two decades, several nadir profiling radar altimeters have provided our first global look at the ocean basin-scale circulation and the ocean mesoscale at wavelengths longer than 100 km. Due to sampling limitations, nadir altimetry is unable to resolve the small wavelength ocean mesoscale and sub-mesoscale that are responsible for the vertical mixing of ocean heat and gases and the dissipation of kinetic energy from large to small scales. The proposed Surface Water and Ocean Topography (SWOT) mission would be a partnership between NASA, CNES (Centre National d'Etudes Spaciales) and the Canadian Space Agency, and would have as one of its main goals the measurement of ocean topography with kilometer-scale spatial resolution and centimeter scale accuracy. In this paper, we provide an overview of all ocean error sources that would contribute to the SWOT mission.

  13. GRGM900C: A Degree 900 Lunar Gravity Model from GRAIL Primary and Extended Mission Data

    Science.gov (United States)

    Lemoine, Frank G.; Goossens, Sander; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Bryant, D. Loomis; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; hide

    2014-01-01

    We have derived a gravity field solution in spherical harmonics to degree and order 900, GRGM900C, from the tracking data of the Gravity Recovery and Interior Laboratory (GRAIL) Primary (1 March to 29 May 2012) and Extended Missions (30 August to 14 December 2012). A power law constraint of 3.6 × 10(exp -4)/l(exp 2) was applied only for degree l greater than 600. The model produces global correlations of gravity, and gravity predicted from lunar topography of greater than or equal to 0.98 through degree 638. The model's degree strength varies from a minimum of 575-675 over the central nearside and farside to 900 over the polar regions. The model fits the Extended Mission Ka-Band Range Rate data through 17 November 2012 at 0.13 micrometers/s RMS, whereas the last month of Ka-Band Range-Rate data obtained from altitudes of 2-10 km fit at 0.98 micrometers/s RMS, indicating that there is still signal inherent in the tracking data beyond degree 900.

  14. Exploring Effects of C2 Warfare on C2 Ability in a Simulated Environment

    Science.gov (United States)

    2011-06-01

    Principal Axis Factoring, Oblimin rotation with Kaiser Normalization) included all prerequisites, but not the total value of C2 ability ( KMO = .84...Mission intent had the lowest value in this factor, a separate factor analysis was conducted on this factor ( KMO = .75; Bartlett’s test of

  15. Investigation into solubility and diffusion in SiC-NbC, SiC-TiC, SiC-ZrC systems

    International Nuclear Information System (INIS)

    Safaraliev, G.K.; Tairov, Yu.M.; Tsvetkov, V.F.; Shabanov, Sh.Sh.

    1991-01-01

    An investigation is carried out which demonstrates solid-phase interaction between SiC and NbC, TiC and ZrC monocrystals. The monocrystals are subjected to hot pressing in SiC powder with dispersity of 5x10 -6 m. The pressing temperature is 2270-2570 K and pressure is varied in the range of 20-40 MPa. Element composition and the distribution profile in a thin layer near the boundary of SiC-NbC, SiC-TiC and SiC-ZrC are investigated by the Anger spectroscopy method. The obtained results permit to make the conclusion in the possibility of solid solution formation in investigated systems

  16. Enhanced tactical radar correlator (ETRAC): true interoperability of the 1990s

    Science.gov (United States)

    Guillen, Frank J.

    1994-10-01

    The enhanced tactical radar correlator (ETRAC) system is under development at Westinghouse Electric Corporation for the Army Space Program Office (ASPO). ETRAC is a real-time synthetic aperture radar (SAR) processing system that provides tactical IMINT to the corps commander. It features an open architecture comprised of ruggedized commercial-off-the-shelf (COTS), UNIX based workstations and processors. The architecture features the DoD common SAR processor (CSP), a multisensor computing platform to accommodate a variety of current and future imaging needs. ETRAC's principal functions include: (1) Mission planning and control -- ETRAC provides mission planning and control for the U-2R and ASARS-2 sensor, including capability for auto replanning, retasking, and immediate spot. (2) Image formation -- the image formation processor (IFP) provides the CPU intensive processing capability to produce real-time imagery for all ASARS imaging modes of operation. (3) Image exploitation -- two exploitation workstations are provided for first-phase image exploitation, manipulation, and annotation. Products include INTEL reports, annotated NITF SID imagery, high resolution hard copy prints and targeting data. ETRAC is transportable via two C-130 aircraft, with autonomous drive on/off capability for high mobility. Other autonomous capabilities include rapid setup/tear down, extended stand-alone support, internal environmental control units (ECUs) and power generation. ETRAC's mission is to provide the Army field commander with accurate, reliable, and timely imagery intelligence derived from collections made by the ASARS-2 sensor, located on-board the U-2R aircraft. To accomplish this mission, ETRAC receives video phase history (VPH) directly from the U-2R aircraft and converts it in real time into soft copy imagery for immediate exploitation and dissemination to the tactical users.

  17. CryoSat Level1b SAR/SARin: quality improvements towards BaselineC

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouzinac, Catherine; Tagliani, Nicolas; Parrinello, Tommaso

    2014-05-01

    CryoSat was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvement in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. Towards the release of the BaselineC of the CryoSat Level1b SAR/SARin products, that is expected during 2014, several improvements have been identified: • a datation bias of about -0.5195 ms will be corrected • a range bias of about -0.6730 m will be corrected • the waveform length in the Level1b product will be doubled with respect to BaselineB • improved processing for 1Hz echoes to have sharper waveforms • surface sample stack weighting to filter out the single look echoes acquired at highest look angle, that results in a sharpening of the 20Hz waveforms This poster details the main improvements that are foreseen to be included in the CryoSat Level1b SAR/SARin products in BaselineC.

  18. SRTM Colored Height and Shaded Relief: Laguna Mellquina, Andes Mountains, Argentina

    Science.gov (United States)

    2001-01-01

    This depiction of an area south of San Martin de Los Andes, Argentina, is the first Shuttle Radar Topography Mission (SRTM) view of the Andes Mountains, the tallest mountain chain in the western hemisphere. This particular site does not include the higher Andes peaks, but it does include steep-sided valleys and other distinctive landforms carved by Pleistocene glaciers. Elevations here range from about 700 to 2,440 meters(2,300 to 8,000 feet). This region is very active tectonically and volcanically, and the landforms provide a record of the changes that have occurred over many thousands of years. Large lakes fill the broad mountain valleys, and the spectacular scenery here makes this area a popular resort destination for Argentinians.Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U

  19. SRTM Colored Height and Shaded Relief: Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    Science.gov (United States)

    2001-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet).Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies

  20. Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    Science.gov (United States)

    2002-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet). Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space

  1. A semi-urban case study of small scale variability of rainfall and run-off, with C- and X-band radars and the fully distributed hydrological model Multi-Hydro

    Science.gov (United States)

    Alves de Souza, Bianca; da Silva Rocha Paz, Igor; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    The complexity of urban hydrology results both from that of urban systems and the extreme rainfall variability. The latter can display strongly localised rain cells that can be extremely damaging when hitting vulnerable parts of urban systems. This paper investigates this complexity on a semi-urban sub-catchment - located in Massy (South of Paris, France) - of the Bievre river, which is known for its frequent flashfloods. Advanced geo-processing techniques were used to find the ideal pixel size for this 6.326km2 basin. C-band and X-band radar data are multifractally downscaled at various resolutions and input to the fully distributed hydrological model Multi-Hydro. The latter has been developed at Ecole des Ponts ParisTech. It integrates validated modules dealing with surface flow, saturated and unsaturated surface flow, and sewer flow. The C-band radar is located in Trappes, approx. 21km East of the catchment, is operated by Méteo-France and has a resolution of 1km x 1km x 5min. The X-band radar operated by Ecole des Ponts Paris Tech on its campus has a resolution of 125m x 125m x 3.4min. The performed multifractal downscaling enables both the generation of large ensemble realizations and easy change of resolution (e.g. down to 10 m in the present study). This in turn allows a detailed analysis of the impacts of small scale variability and the required resolution to obtain accurate simulations, therefore predictions. This will be shown on two rainy episodes over the chosen sub-catchment of the Bievre river.

  2. Ambae Island, Vanuatu (South Pacific)

    Science.gov (United States)

    2005-01-01

    The recently active volcano Mt. Manaro is the dominant feature in this shaded relief image of Ambae Island, part of the Vanuatu archipelago located 1400 miles northeast of Sydney, Australia. About 5000 inhabitants, half the island's population, were evacuated in early December from the path of a possible lahar, or mud flow, when the volcano started spewing clouds of steam and toxic gases 10,000 feet into the atmosphere. Last active in 1996, the 1496 meter (4908 ft.) high Hawaiian-style basaltic shield volcano features two lakes within its summit caldera, or crater. The ash and gas plume is actually emerging from a vent at the center of Lake Voui (at left), which was formed approximately 425 years ago after an explosive eruption. Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena

  3. Sinkhole investigated at B.C. Hydro's Bennett Dam

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The cause of a sinkhole which appeared in a roadway crossing an earth filled dam in B. C., was discussed. The hole measured 6 ft. across and 20 ft. deep, and occurred in B.C. Hydro's W.A.C. Bennett Dam which measures 600 ft. high, 2,600 ft. wide at the base and 35 ft. wide at the crest. The cause of the sinkhole is not known, but it is believed that a weakness in the dam may have found its way to the surface via a pipe connected to a bedrock settlement gauge buried within the dam. Sonar and ground penetrating radar were used to examine the area. The hole has been filled with gravel and monitoring continues. Experts do not anticipate immediate risk of dam failure. 1 fig

  4. Perspective View with Landsat Overlay, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    Most of the population of Utah lives just west of the Wasatch Mountains in the north central part of the state. This broad east-northeastward view shows that region with the cities of Ogden, Salt Lake City, and Provo seen from left to right. The Great Salt Lake (left) and Utah Lake (right) are quite shallow and appear greenish in this enhanced natural color view. Thousands of years ago ancient Lake Bonneville covered all of the lowlands seen here. Its former shoreline is clearly seen as a wave-cut bench and/or light colored 'bathtub ring' at several places along the base of the mountain front - evidence seen from space of our ever-changing planet.This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat 5 satellite image mosaic, and a false sky. Topographic expression is exaggerated four times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif

  5. Bali, Shaded Relief and Colored Height

    Science.gov (United States)

    2004-01-01

    The volcanic nature of the island of Bali is evident in this shaded relief image generated with data from the Shuttle Radar Topography Mission (SRTM).Bali, along with several smaller islands, make up one of the 27 Provinces of Indonesia. It lies over a major subduction zone where the Indo-Australian tectonic plate collides with the Sunda plate, creating one of the most volcanically active regions on the planet.The most significant feature on Bali is Gunung Agung, the symmetric, conical mountain at the right-center of the image. This 'stratovolcano,' 3,148 meters (10,308 feet) high, is held sacred in Balinese culture, and last erupted in 1963 after being dormant and thought inactive for 120 years. This violent event resulted in over 1,000 deaths, and coincided with a purification ceremony called Eka Dasa Rudra, meant to restore the balance between nature and man. This most important Balinese rite is held only once per century, and the almost exact correspondence between the beginning of the ceremony and the eruption is though to have great religious significance.Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot

  6. Davenport Ranges, Northern Territory, Australia, SRTM Shaded Relief and Colored Height

    Science.gov (United States)

    2005-01-01

    The Davenport Ranges of central Australia have been inferred to be among the oldest persisting landforms on Earth, founded on the belief that the interior of Australia has been tectonically stable for at least 700 million years. New rock age dating techniques indicate that substantial erosion has probably occurred over that time period and that the landforms are not nearly that old, but landscape evolution certainly occurs much slower here (at least now) than is typical across Earth's surface. Regardless of their antiquity, the Davenport Ranges exhibit a striking landform pattern as shown in this display of elevation data from the Shuttle Radar Topography Mission (SRTM). Quartzites and other erosion resistant strata form ridges within anticlinal (arched up) and synclinal (arched down) ovals and zigzags. These structures, if not the landforms, likely date back at least hundreds of millions of years, to a time when tectonic forces were active. Maximum local relief is only about 60 meters (about 200 feet), which is enough to contrast greatly with the extremely low relief surrounding terrain. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northeast-southwest (image top to bottom) direction, so that northeast slopes appear bright and southwest slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data

  7. Alpine Fault, New Zealand, SRTM Shaded Relief and Colored Height

    Science.gov (United States)

    2005-01-01

    The Alpine fault runs parallel to, and just inland of, much of the west coast of New Zealand's South Island. This view was created from the near-global digital elevation model produced by the Shuttle Radar Topography Mission (SRTM) and is almost 500 kilometers (just over 300 miles) wide. Northwest is toward the top. The fault is extremely distinct in the topographic pattern, nearly slicing this scene in half lengthwise. In a regional context, the Alpine fault is part of a system of faults that connects a west dipping subduction zone to the northeast with an east dipping subduction zone to the southwest, both of which occur along the juncture of the Indo-Australian and Pacific tectonic plates. Thus, the fault itself constitutes the major surface manifestation of the plate boundary here. Offsets of streams and ridges evident in the field, and in this view of SRTM data, indicate right-lateral fault motion. But convergence also occurs across the fault, and this causes the continued uplift of the Southern Alps, New Zealand's largest mountain range, along the southeast side of the fault. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast (image top to bottom) direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data

  8. Shaded Relief with Color as Height, St. Louis, Missouri

    Science.gov (United States)

    2002-01-01

    The confluence of the Mississippi, Missouri and Illinois rivers are shown in this view of the St. Louis area from the Shuttle Radar Topography Mission. The Mississippi flows from the upper left of the image and first meets the Illinois, flowing southward from the top right. It then joins the Missouri, flowing from the west across the center of the picture. The rivers themselves appear black here, and one can clearly see the green-colored floodplains in which they are contained. These floodplains are at particular risk during times of flooding. The Mississippi forms the state boundary between Illinois (to the right) and Missouri (to the left), with the city of St. Louis located on the Mississippi just below the point where it meets the Missouri. This location at the hub of the major American waterways helped establish St. Louis' reputation as the 'Gateway to the West.'Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping

  9. SRTM Perspective of Colored Height and Shaded Relief Laguna Mellquina, Andes Mountains, Argentina

    Science.gov (United States)

    2001-01-01

    This depiction of an area south of San Martin de Los Andes, Argentina, is the first Shuttle Radar Topography Mission (SRTM)view of the Andes Mountains, the tallest mountain chain in the western hemisphere. This particular site does not include the higher Andes peaks, but it does include steep-sided valleys and other distinctive landforms carved by Pleistocene glaciers. Elevations here range from about 700 to 2,440 meters (2,300 to 8,000 feet). This region is very active tectonically and volcanically, and the landforms provide a record of the changes that have occurred over many thousands of years. Large lakes fill the broad mountain valleys, and the spectacular scenery here makes this area a popular resort destination for Argentinians.Three visualization methods were combined to produce this image: shading, color coding of topographic height and a perspective view. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations. The perspective is toward the west, 20 degrees off horizontal with 2X vertical exaggeration. The back (west) edge of the data set forms a false skyline within the Andes Range.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved

  10. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast.

    Science.gov (United States)

    Hannan, Abdul; Abraham, Neethu Maria; Goyal, Siddharth; Jamir, Imlitoshi; Priyakumar, U Deva; Mishra, Krishnaveni

    2015-12-02

    Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD(+)-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Chlorpyrifos chronic toxicity in broilers and effect of vitamin C

    Directory of Open Access Journals (Sweden)

    A.M. Kammon

    2011-02-01

    Full Text Available An experiment was conducted to study chlorpyrifos chronic toxicity in broilers and the protective effect of vitamin C. Oral administration of 0.8 mg/kg body weight (bw (1/50 LD50 chlorpyrifos (Radar®, produced mild diarrhea and gross lesions comprised of paleness, flaccid consistency and slightly enlargement of liver. Histopathologically, chlorpyrifos produced degenerative changes in various organs. Oral administration of 100 mg/kg bw vitamin C partially ameliorated the degenerative changes in kidney and heart. There was insignificant alteration in biochemical and haematological profiles. It is concluded that supplementation of vitamin C reduced the severity of lesions induced by chronic chlorpyrifos toxicity in broilers.

  12. San Gabriel Mountains, California, Shaded relief, color as height

    Science.gov (United States)

    2000-01-01

    This topographic image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  13. A phase one AR/C system design

    Science.gov (United States)

    Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises

    1991-01-01

    The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.

  14. Discovery of scientific correspondence of P.P.C. Hoek (1851—1914), including three unpublished letters by Charles Darwin

    NARCIS (Netherlands)

    Pieters, Florence F.J.M.; Winthagen, Diny

    1990-01-01

    Recently the scientific correspondence of the Dutch zoologist P.P.C. Hoek (1851—1914) turned up in the Artis Library. This collection contains three hitherto unpublished letters from Charles Darwin. It appears that Charles Darwin recommended Hoek to the favour of Sir Charles Wyville Thomson upon

  15. A.C.R.O. activity report 2001

    International Nuclear Information System (INIS)

    2001-01-01

    As regards the environmental protection, the A.C.R.O. maintained in 2001 its programs of surveillance around the main western nuclear installations of France. The radioecological surveillance of the site of Cogema La-Hague for the dismantling of the former pipe of release in sea was one of the key points of this action environmental surveillance. The two accidents of atmospheric release in may and october 2001 at Cogema La Hague have shown the interest of an association as A.C.R.O.. It is thank to the measure, by our laboratory, of repercussions on environment of these incidents that it has been possible to bring to light a dysfunction of the measurement system of the gaseous effluents released by the facility operator. To improve the public information, A.C.R.O. concerns its main efforts on the development of the consumer technical information available on-line via its web site and in its regular publication 'the nuclear chronicle'. Besides, the participation of the A.C.R.O. to the radioecology North Cotentin group (within the framework of the continuation of its mission) but also at various local commissions of information (C.L.I.) as well as at the superior council of the safety and nuclear information ( C.S.S.I.N.) stays an essential action. Concerning the environmental protection, the A.C.R.O. maintains its programs of surveillance around the nuclear facilities of La Hague and Chinon and continues the surveillance of the site of Cogema La hague as regards the new pipe of release in sea. Among the new commitments for 2000, the participation to the radioecology North Cotentin group in the framework of the continuation of its mission and the participation to the international intercomparison 'N.O.R.C.O. 2000' punctuated the year. (N.C.)

  16. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    2001-08-01

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  17. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  18. Proposed satellite position determination systems and techniques for Geostationary Synthetic Aperture Radar

    OpenAIRE

    Martin Fuster, Roger; Fernández Usón, Marc; Casado Blanco, David; Broquetas Ibars, Antoni

    2016-01-01

    This paper proposes two different calibration techniques for Geostationary Synthetic Aperture Radar (GEOSAR) missions requiring a high precision positioning, based on Active Radar Calibrators and Ground Based Interferometry. The research is enclosed in the preparation studies of a future GEOSAR mission providing continuous monitoring at continental scale. Peer Reviewed

  19. Determination of the Geographical Origin of All Commercial Hake Species by Stable Isotope Ratio (SIR) Analysis.

    Science.gov (United States)

    Carrera, Mónica; Gallardo, José M

    2017-02-08

    The determination of the geographical origin of food products is relevant to comply with the legal regulations of traceability, to avoid food fraud, and to guarantee food quality and safety to the consumers. For these reasons, stable isotope ratio (SIR) analysis using an isotope ratio mass spectrometry (IRMS) instrument is one of the most useful techniques for evaluating food traceability and authenticity. The present study was aimed to determine, for the first time, the geographical origin for all commercial fish species belonging to the Merlucciidae family using SIR analysis of carbon (δ 13 C) and nitrogen (δ 15 N). The specific results enabled their clear classification according to the FAO (Food and Agriculture Organization of the United Nations) fishing areas, latitude, and geographical origin in the following six different clusters: European, North African, South African, North American, South American, and Australian hake species.

  20. Positron-emitting resin microspheres as surrogates of 90Y SIR-Spheres: a radiolabeling and stability study

    International Nuclear Information System (INIS)

    Avila-Rodriguez, Miguel A.; Selwyn, Reed G.; Hampel, Joseph A.; Thomadsen, Bruce R.; DeJesus, Onofre T.; Converse, Alexander K.; Nickles, Robert J.

    2007-01-01

    Commercially available resin microspheres and SIR-Spheres were labeled with metallic positron emitters and evaluated as positron emission tomography (PET) imaging surrogates of 90 Y SIR-Spheres. Radiolabeling was performed using a batch method, and in vitro stability over 24 h was evaluated in saline at physiological pH at 37 o C. The activity per microsphere distribution, as evaluated by autoradiography, showed the activity per microsphere to be proportional to the square radius of the spheres, suggesting surface binding. The in vivo stability of radiolabeling was evaluated in rats by micro-PET imaging after the intravenous injection of labeled microspheres. The different resin microspheres and radionuclides evaluated in this study all showed good radiolabeling efficiency and in vitro stability. However, only resins labeled with 86 Y and 89 Zr proved to have the in vivo stability required for clinical applications

  1. P-band radar ice sounding in Antarctica

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kusk, Anders; Kristensen, Steen Savstrup

    2012-01-01

    In February 2011, the Polarimetric Airborne Radar Ice Sounder (POLARIS) was flown in Antarctica in order to assess the feasibility of a potential space-based radar ice sounding mission. The campaign has demonstrated that the basal return is detectable in areas with up to 3 km thick cold ice, in a...

  2. Sinkhole investigated at B.C. Hydro`s Bennett Dam

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-07-01

    The cause of a sinkhole which appeared in a roadway crossing an earth filled dam in B. C., was discussed. The hole measured 6 ft. across and 20 ft. deep, and occurred in B.C. Hydro`s W.A.C. Bennett Dam which measures 600 ft. high, 2,600 ft. wide at the base and 35 ft. wide at the crest. The cause of the sinkhole is not known, but it is believed that a weakness in the dam may have found its way to the surface via a pipe connected to a bedrock settlement gauge buried within the dam. Sonar and ground penetrating radar were used to examine the area. The hole has been filled with gravel and monitoring continues. Experts do not anticipate immediate risk of dam failure. 1 fig.

  3. CryoSat SAR/SARin Level1b products: assessment of BaselineC and improvements towards BaselineD

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2017-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvements in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. The current IPF, Baseline C, was released in operation in April 2015 and the second CryoSat reprocessing campaign was jointly initiated, taking benefit of the upgrade implemented in the IPF1 processing chain but also of some specific configurations for the calibration corrections. In particular, the CryoSat Level1b BaselineC products generated in the framework of the second reprocessing campaign include refined information for what concerns the mispointing angles and the calibration corrections. This poster will thus detail thus the evolutions that are currently planned for the CryoSat BaselineD SAR/SARin Level1b products and the corresponding quality improvements that are expected.

  4. Coastal flood inundation monitoring with Satellite C-band and L-band Synthetic Aperture Radar data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri

    2013-01-01

    Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm- and tidal-related flooding of spatially extensive coastal marshes within the north-central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L-Band SAR (PALSAR) (L-band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C-band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006-2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR- and ASAR-based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference-scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR-based inundation accuracies averaged 84% (n = 160), while ASAR-based mapping accuracies averaged 62% (n = 245).

  5. HfC plasma coating of C/C composites

    International Nuclear Information System (INIS)

    Boncoeur, M.; Schnedecker, G.; Lulewicz, J.D.

    1992-01-01

    The surface properties of C/C composites such as hardness and corrosion or erosion resistance can be modified by a ceramic coating applied by plasma torch. The technique of plasma spraying in controlled temperature and atmosphere, that was developed and patented by the CEA, makes it possible to apply coatings to the majority of metals and ceramics without affecting the characteristics of the composite. An example of hard deposit of HfC on a C/C composite is described. The characteristics of the deposit and of the bonding with the C/C composite were studied before and after a heat treatment under vacuum for 2 hours at 1000 C. 2 refs

  6. Measurement of low-mass e+e- pair production in 1 and 2 A GeV C-C collision with HADES

    International Nuclear Information System (INIS)

    Sudol, M.; Boyard, J.L.; Hennino, T.; Moriniere, E.; Ramstein, B.; Roy-Stephan, M.; Agakishiev, G.; Destefanis, M.; Gilardi, C.; Kirschner, D.; Kuehn, W.; Lange, J.S.; Metag, V.; Novotny, R.; Pechenov, V.; Pechenova, O.; Perez Cavalcanti, T.; Spataro, S.; Spruck, B.; Agodi, C.; Bellia, G.; Coniglione, R.; Finocchiaro, P.; Maiolino, C.; Piattelli, P.; Sapienza, P.; Balanda, A.; Dybczak, A.; Kozuch, A.; Otwinowski, J.; Przygoda, W.; Salabura, P.; Trebacz, R.; Wisniowski, M.; Wojcik, T.; Belver, D.; Cabanelas, P.; Duran, I.; Garzon, J.A.; Lamas-Valverde, J.; Marin, J.; Belyaev, A.; Chernenko, S.; Fateev, O.; Ierusalimov, A.; Zanevsky, Y.; Bielcik, J.; Braun-Munzinger, P.; Galatyuk, T.; Gonzalez-Diaz, D.; Heinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Lang, S.; Muench, M.; Palka, M.; Pietraszko, J.; Rustamov, A.; Schroeder, C.; Schwab, E.; Simon, R.; Traxler, M.; Yurevich, S.; Zumbruch, P.; Blanco, A.; Ferreira-Marques, R.; Fonte, P.; Lopes, L.; Mangiarotti, A.; Bortolotti, A.; Iori, I.; Michalska, B.; Christ, T.; Eberl, T.; Fabbietti, L.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Maier, L.; Sailer, B.; Schmah, A.; Weber, M.; Diaz, J.; Gil, A.; Dohrmann, F.; Grosse, E.; Kaempfer, B.; Kanaki, K.; Kotte, R.; Naumann, L.; Wuestenfeld, J.; Zhou, P.; Froehlich, I.; Heilmann, M.; Lorenz, M.; Markert, J.; Michel, J.; Muentz, C.; Pachmayer, Y.C.; Stroebele, H.; Sturm, C.; Tarantola, A.; Teilab, K.; Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Lapidus, K.; Reshetin, A.; Sadovsky, A.; Krasa, A.; Krizek, F.; Kugler, A.; Pospisil, V.; Sobolev, Yu.G.; Tlusty, P.; Wagner, V.; Mousa, J.; Parpottas, Y.; Tsertos, H.; Stroth, J.

    2009-01-01

    HADES is a secondary generation experiment operated at GSI Darmstadt with the main goal to study dielectron production in proton, pion and heavy ion induced reactions. The first part of the HADES mission is to reinvestigate the puzzling pair excess measured by the DLS collaboration in C+C and Ca+Ca collisions at 1 A GeV. For this purpose dedicated measurements with the C+C system at 1 and 2 A GeV were performed. The pair excess above a cocktail of free hadronic decays has been extracted and compared to the one measured by DLS. Furthermore, the excess is confronted with predictions of various model calculations. (orig.)

  7. Royal Jelly-Mediated Prolongevity and Stress Resistance in Caenorhabditis elegans Is Possibly Modulated by the Interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 Proteins.

    Science.gov (United States)

    Wang, Xiaoxia; Cook, Lauren F; Grasso, Lindsay M; Cao, Min; Dong, Yuqing

    2015-07-01

    Recent studies suggest that royal jelly (RJ) and its related substances may have antiaging properties. However, the molecular mechanisms underlying the beneficial effects remain elusive. We report that the effects of RJ and enzyme-treated RJ (eRJ) on life span and health span in Caenorhabditis elegans (C elegans) are modulated by the sophisticated interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 proteins. Dietary supplementation with RJ or eRJ increased C. elegans life span in a dose-dependent manner. The RJ and eRJ consumption increased the tolerance of C elegans to oxidative stress, ultraviolet irradiation, and heat shock stress. Our genetic analyses showed that RJ/eRJ-mediated life-span extension requires insulin/IGF-1 signaling and the activities of DAF-16, SIR-2.1, HCF-1, and FTT-2, a 14-3-3 protein. Earlier studies reported that DAF-16/FOXO, SIR-2.1/SIRT1, FTT-2, and HCF-1 have extensive interplays in worms and mammals. Our present findings suggest that RJ/eRJ-mediated promotion of longevity and stress resistance in C elegans is dependent on these conserved interplays. From an evolutionary point of view, this study not only provides new insights into the molecular mechanisms of RJ's action on health span promotion in C elegans, but also has imperative implications in using RJ/eRJ as nutraceuticals to delay aging and age-related disorders. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Genomic Targets and Features of BarA-UvrY (-SirA Signal Transduction Systems.

    Directory of Open Access Journals (Sweden)

    Tesfalem R Zere

    Full Text Available The two-component signal transduction system BarA-UvrY of Escherichia coli and its orthologs globally regulate metabolism, motility, biofilm formation, stress resistance, virulence of pathogens and quorum sensing by activating the transcription of genes for regulatory sRNAs, e.g. CsrB and CsrC in E. coli. These sRNAs act by sequestering the RNA binding protein CsrA (RsmA away from lower affinity mRNA targets. In this study, we used ChIP-exo to identify, at single nucleotide resolution, genomic sites for UvrY (SirA binding in E. coli and Salmonella enterica. The csrB and csrC genes were the strongest targets of crosslinking, which required UvrY phosphorylation by the BarA sensor kinase. Crosslinking occurred at two sites, an inverted repeat sequence far upstream of the promoter and a site near the -35 sequence. DNAse I footprinting revealed specific binding of UvrY in vitro only to the upstream site, indicative of additional binding requirements and/or indirect binding to the downstream site. Additional genes, including cspA, encoding the cold-shock RNA-binding protein CspA, showed weaker crosslinking and modest or negligible regulation by UvrY. We conclude that the global effects of UvrY/SirA on gene expression are primarily mediated by activating csrB and csrC transcription. We also used in vivo crosslinking and other experimental approaches to reveal new features of csrB/csrC regulation by the DeaD and SrmB RNA helicases, IHF, ppGpp and DksA. Finally, the phylogenetic distribution of BarA-UvrY was analyzed and found to be uniquely characteristic of γ-Proteobacteria and strongly anti-correlated with fliW, which encodes a protein that binds to CsrA and antagonizes its activity in Bacillus subtilis. We propose that BarA-UvrY and orthologous TCS transcribe sRNA antagonists of CsrA throughout the γ-Proteobacteria, but rarely or never perform this function in other species.

  9. C-reactive protein as predictor of recurrence in patients with rectal cancer undergoing chemoradiotherapy followed by surgery.

    Science.gov (United States)

    Toiyama, Yuji; Inoue, Yasuhiro; Saigusa, Susumu; Kawamura, Mikio; Kawamoto, Aya; Okugawa, Yoshinaga; Hiro, Jyunichiro; Tanaka, Koji; Mohri, Yasuhiko; Kusunoki, Masato

    2013-11-01

    The clinical significance of the systemic inflammatory response (SIR) in patients with rectal cancer undergoing neoadjuvant chemoradiotherapy (CRT), to the best of our knowledge, has not been thus far investigated. The neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and C-Reactive protein (CRP) levels for 84 patients with rectal cancer undergoing CRT were available as indicators of SIR status. The impact of SIR status on the prognosis of these patients was assessed. Elevated NLR, CRP, carcinoembryonic antigen (CEA) and pathological TNM stage III [ypN(+)] were identified as significant prognostic factors for poor overall survival (OS), with CRP and ypN(+) being validated as independent predictors of OS. Elevated CRP and CEA levels were significant predictive factors for poor disease-free survival (DFS), and an elevated CRP level was identified as the only independent predictive factor for DFS. In addition, an elevated CRP level predicted for poorer OS and DFS in patients with pathological TNM stage I-II [ypN(-)]. CRP is a promising predictor of recurrence and prognosis in patients with rectal cancer treated by CRT.

  10. Quantitative analysis of X-band weather radar attenuation correction accuracy

    NARCIS (Netherlands)

    Berne, A.D.; Uijlenhoet, R.

    2006-01-01

    At short wavelengths, especially C-, X-, and K-band, weather radar signals arc attenuated by the precipitation along their paths. This constitutes a major source of error for radar rainfall estimation, in particular for intense precipitation. A recently developed stochastic simulator of range

  11. Characterization of wetland, forest, and agricultural ecosystems in Belize with airborne radar (AIRSAR)

    Science.gov (United States)

    Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.

    1992-01-01

    The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.

  12. Microstrip Cross-coupled Interdigital SIR Based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    R. K. Maharjan

    2012-09-01

    Full Text Available A simple and compact 4.9 GHz bandpass filter for C-band applications is proposed. This paper presents a novel microstrip cross-coupled interdigital half-wavelength stepped impedance resonator (SIR based bandpass filter (BPF.The designed structure is similar to that of a combination of two parallel interdigital capacitors. The scattering parameters of the structure are measured using vector network analyzer (VNA. The self generated capacitive and inductive reactances within the interdigital resonators exhibited in a resonance frequency of 4.9 GHz. The resonant frequency and bandwidth of the capacitive cross-coupled resonator is directly optimized from the physical arrangement of the resonators. The measured insertion loss (S21 and return loss (S11 were 0.3 dB and 28 dB, respectively, at resonance frequency which were almost close to the simulation results.

  13. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  14. Performance comparison and selection criteria: an assessment for choosing the best flight detector for the SIR-2 NIR-spectrometer on Chandrayaan-1

    Science.gov (United States)

    Sitek, P.; Vilenius, E.; Mall, U.

    2008-01-01

    We describe the performance evaluation of a sample of InGaAs detectors from which the best unit had to be selected for the flight model of the SIR-2 NIR-spectrometer to be flown on the Chandrayaan-1 mission in 2008.

  15. SRTM Perspective View with Landsat Overlay: Mt. Pinos and San Joaquin Valley, California

    Science.gov (United States)

    2000-01-01

    Ask any astronomer where the best stargazing site in Southern California is, and chances are they'll say Mt. Pinos. In this perspective view generated from SRTM elevation data the snow-capped peak is seen rising to an elevation of 2,692 meters (8,831 feet), in stark contrast to the flat agricultural fields of the San Joaquin valley seen in the foreground. Below the summit, but still well away from city lights, the Mt. Pinos parking lot at 2,468 meters (8,100 feet) is a popular viewing area for both amateur and professional astronomers and astro-photographers. For visualization purposes, topographic heights displayed in this image are exaggerated two times.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.Distance to Horizon: 176 kilometers (109 miles) Location: 34.83 deg. North lat., 119.25 deg. West lon. View: Toward the Southwest Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat

  16. Optical tolerances for the PICTURE-C mission: error budget for electric field conjugation, beam walk, surface scatter, and polarization aberration

    Science.gov (United States)

    Mendillo, Christopher B.; Howe, Glenn A.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. Four leakage sources owing to the optical fabrication tolerances and optical coatings are: electric field conjugation (EFC) residuals, beam walk on the secondary and tertiary mirrors, optical surface scattering, and polarization aberration. Simulations and analysis of these four leakage sources for the PICTUREC optical design are presented here.

  17. The Ocean Surface Topography Sentinel-6/Jason-CS Mission

    Science.gov (United States)

    Giulicchi, L.; Cullen, R.; Donlon, C.; Vuilleumier@esa int, P.

    2016-12-01

    The Sentinel-6/Jason-CS mission consists of two identical satellites flying in sequence and designed to provide operational measurements of sea surface height significant wave high and wind speed to support operational oceanography and climate monitoring. The mission will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (launched in January 2016). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of spacecraft, measurement instrumentation design thus securing optimal operational and science data return. As a secondary objective the mission will also include Radio Occultation user services. Each satellite will be launched sequentially into the Jason orbit (up to 66 latitude) respectively in 2020 and 2025. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface elevation, wind speed and SWH) from the altimeter data require supporting measurements: a DORIS receiver for Precise Orbit Determination; The Climate Quality Advanced Microwave Radiometer (AMR-C) for high stability path delay correction. Orbit tracking data are also provided by GPS & LRA. An additional GPS receiver will be dedicated to radio-occultation measurements. The programme is a part of the European Community Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The Sentinel-6/Jason-CS in particular is a cooperative mission with contributions from NASA, NOAA, EUMETSAT, ESA, CNES and the European Union.

  18. Excitation functions of the systems 12C+14C and 13C+12C

    International Nuclear Information System (INIS)

    Haindl, E.

    1975-01-01

    The excitation functions of the systems 12 C+ 14 C and 13 C+ 12 C are investigated for different exit channels. The excitation functions measured do not show correlated structures as in the system 12 C+ 12 C. (WL/AK) [de

  19. Proceedings of the COST 75 final seminar on advanced weather radar systems; Beitraege des Instituts zum COST 75 final seminar on advanced weather radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, R.; Flender, F.; Hagen, M.; Hoeller, H.; Keil, C.; Meischner, P.

    1998-07-01

    Across Europe more than 110 weather radars are in operation. More than 60 of them are Doppler radars and this number is increasing steadily. Doppler systems are becoming an operational standard. Most systems operate in C-band, with the exception of the Spanish radar network which is composed of S-band Doppler radars. Radar product composites are available for Scandinavia and Central Europe. National networks exist for the UK, France and Spain. Europe further is fortunate to have 8 polarimetric Doppler radars used mainly for research. In Italy some of those systems are used also for operational nowcasting applications for dedicated customers. The Chilbolton multiparameter Doppler radar operates at S-band. (orig.)

  20. AN/UPX-41(C) Test Data Analysis of Impacts to Secondary Surveillance Radars.

    Science.gov (United States)

    2015-02-01

    In 2012, the Navy requested spectrum certification for the shipboard AN/UPX-41(C) Digital Interrogator System, Software Version 5.5 with Mode 5. Current operating conditions for the Navys AN/UPX-41(C) are the same as restrictions imposed on the AN...

  1. Galactic Observations of Terahertz C+ (GOT C+): Inner Galaxy Survey

    Science.gov (United States)

    Yorke, Harold; Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.

    To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM, called "dark gas" in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace such cloud transitions and evolution. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is a Caltech-JPL Postdoctoral Associate.

  2. The NASA Polarimetric Radar (NPOL)

    Science.gov (United States)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  3. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  4. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  5. An enhanced Planetary Radar Operating Centre (PROC)

    Science.gov (United States)

    Catallo, C.

    2010-12-01

    Planetary exploration by means of radar systems, mainly using GPRs is an important role of Italy and numerous scientific international space programs are carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three experiments under Italian leadership ( designed and manufactured by the Italian industry) provided by ASI within a NASA/ESA/ASI joint venture framework are successfully operating: MARSIS on-board MEX, SHARAD on-board MRO and CASSINI Radar on-board Cassini spacecraft: the missions have been further extended . Three dedicated operational centers, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD are operating from the missions beginning to support all the scientific communities, institutional customers and experiment teams operation Each center is dedicated to a single instrument management and control, data processing and distribution and even if they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). In order to harmonize operations either from logistics point of view and from HW/SW capabilities point of view PROC is designed and developed for offering improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. PROC is, therefore, conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs, such as Europa-Jupiter System Mission (EJSM) The paper describes how the new PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation aiding scientists to increase their knowledge in the field of surface

  6. 14 CFR Appendix C to Part 1215 - Typical User Activity Timeline

    Science.gov (United States)

    2010-01-01

    ... mission model. 3 years before launch (Ref. § 1215.109(c). Submit general user requirements to permit preliminary planning. Begin payment for pre-mission activities (Ref. § 1215.115(b)(5)). 18 months before...

  7. Command and Control Rapid Prototyping Continuum (C2RPC): The Framework for Achieving a New C2 Strategy

    Science.gov (United States)

    2011-06-01

    Sync Matrix Assessing J/ADOCS (Fires) TBMCS (ATO) Executing Monitoring (SA) C2 Strategy Objectives • Provide Expanded Mission Management...Computers, and Intelligence T&E Test and Evaluation PMW150 Program Warfare Office Command and Control TBMCS Theater Battle Management Core System POR

  8. SirR, a Novel Iron-Dependent Repressor in Staphylococcus epidermidis

    Science.gov (United States)

    Hill, Philip J.; Cockayne, Alan; Landers, Patrick; Morrissey, Julie A.; Sims, Catriona M.; Williams, Paul

    1998-01-01

    In Staphylococcus epidermidis and Staphylococcus aureus, a number of cell wall- and cytoplasmic membrane-associated lipoproteins are induced in response to iron starvation. To gain insights into the molecular basis of iron-dependent gene regulation in the staphylococci, we sequenced the DNA upstream of the 3-kb S. epidermidis sitABC operon, which Northern blot analysis indicates is transcriptionally regulated by the growth medium iron content. We identified two DNA sequences which are homologous to elements of the Corynebacterium diphtheriae DtxR regulon, which controls, in response to iron stress, for example, production of diphtheria toxin, siderophore, and a heme oxygenase. Upstream of the sitABC operon and divergently transcribed lies a 645-bp open reading frame (ORF), which codes for a polypeptide of approximately 25 kDa with homology to the DtxR family of metal-dependent repressor proteins. This ORF has been designated SirR (staphylococcal iron regulator repressor). Within the sitABC promoter/operator region, we also located a region of dyad symmetry overlapping the transcriptional start of sitABC which shows high homology to the DtxR operator consensus sequence, suggesting that this region, termed the Sir box, is the SirR-binding site. The SirR protein was overexpressed, purified, and used in DNA mobility shift assays; SirR retarded the migration of a synthetic oligonucleotide based on the Sir box in a metal (Fe2+ or Mn2+)-dependent manner, providing confirmatory evidence that this motif is the SirR-binding site. Furthermore, Southern blot analysis of staphylococcal chromosomal DNA with the synthetic Sir box as a probe confirmed that there are at least five Sir boxes in the S. epidermidis genome and at least three in the genome of S. aureus, suggesting that SirR controls the expression of multiple target genes. Using a monospecific polyclonal antibody raised against SirR to probe Western blots of whole-cell lysates of S. aureus, S. carnosus, S. epidermidis

  9. Exploring Vesta's Surface Roughness and Dielectric Properties Using VIR Spectrometer and Bistatic Radar Observations by the Dawn Mission

    Science.gov (United States)

    Palmer, E. M.; Heggy, E.; Capria, M. T.; Tosi, F.; Kofman, W. W.; Russell, C. T.

    2014-12-01

    Multiple lines of evidence from NASA's Dawn mission suggest transient volatile presence at the surface of asteroid Vesta. Radar remote sensing is a useful technique for the investigation of volatile content at the surface and shallow subsurface, but requires the use of accurate dielectric and topographic models in order to deconvolve the effect of surface roughness from the total observed radar backscatter. Toward this end, we construct a dielectric model for the dry, volatile-poor case of Vesta's surface to represent average surface conditions, and to assess the expected average range of dielectric properties due to known variations in mineralogy, temperature, and density as inferred from Dawn VIR data. We employ dielectric studies of lunar samples to serve as a suitable analog to the Vestan regolith, and in the case of 10-wavelength penetration depth of X-band frequency radar observations, our model yields ɛ' from 2.5 to 2.6 from the night to dayside of Vesta, and tan δ from 0.011 to 0.014. Our estimation of ɛ' corresponds to specular surface reflectivity of ~0.05. In addition to modeling, we have also conducted an opportunistic bistatic radar (BSR) experiment at Vesta using the communications antennas aboard Dawn and on Earth. In this configuration, Dawn transmits a continuous radar signal toward the Earth while orbiting Vesta. As the Dawn spacecraft passes behind Vesta (entering an occultation), the line of sight between Dawn and Earth intersects Vesta's surface, resulting in a reflection of radar waves from the surface and shallow subsurface, which are then received on Earth for analysis. The geometry of the Dawn BSR experiment results in high incidence angles on Vesta's surface, and leads to a differential Doppler shift of only a few 10s of Hz between the direct signal and the surface echo. As a consequence, this introduces ambiguity in the measurement of bandwidth and peak power of each surface echo. We report our interpretations of each surface echo in

  10. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  11. Maurice Couturier. Nabokov ou la cruauté du désir.

    Directory of Open Access Journals (Sweden)

    René Alladaye

    2006-04-01

    Full Text Available La lecture peut avoir partie liée avec la transgression. Maurice Couturier en apporte la preuve dans son dernier ouvrage, Nabokov ou la cruauté du désir, en enfreignant l’un des plus célèbres interdits nabokoviens, celui de la lecture psychanalytique de son œuvre. On se souvient des préfaces des romans où l’auteur ne se fait jamais faute de décourager la moindre velléité freudienne et d’une réponse des plus tranchantes administrée dans le cadre d’un entretien : « Laissons les crédules et les ...

  12. Total Synthesis of Zoanthamine Alkaloids, Part 2. Construction of the C1-C5, C6-C10 and C11-C24 Fragments of Zoanthamine

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Tedenborg, Lars; Somfai, Peter

    1997-01-01

    This paper describes the construction of three key intermediates for a projected total synthesis of the marine alkaloid zoanthamine. These building blocks, corresponding to the C1-C5, C6-C10 and C11-C24 fragments of the target molecule, are synthesised efficiently form (R)-hydroxymethyl-butyrolac......This paper describes the construction of three key intermediates for a projected total synthesis of the marine alkaloid zoanthamine. These building blocks, corresponding to the C1-C5, C6-C10 and C11-C24 fragments of the target molecule, are synthesised efficiently form (R...

  13. Determining the Local Abundance of Martian Methane and its 13-C/l2-C and D/H Isotopic Ratios for Comparison with Related Gas and Soil Analysis on the 2011 Mars Science Laboratory (MSL) Mission

    Science.gov (United States)

    Webster, Christopher R.; Mahaffy, Paul R.

    2011-01-01

    Understanding the origin of Martian methane will require numerous complementary measurements from both in situ and remote sensing investigations and laboratory work to correlate planetary surface geophysics with atmospheric dynamics and chemistry. Three instruments (Quadrupole Mass Spectrometer (QMS), Gas Chromatograph (GC) and Tunable Laser Spectrometer (TLS)) with sophisticated sample handling and processing capability make up the Sample Analysis at Mars (SAM) analytical chemistry suite on NASA s 2011 Mars Science Laboratory (MSL) Mission. Leveraging off the SAM sample and gas processing capability that includes methane enrichment, TLS has unprecedented sensitivity for measuring absolute methane (parts-per-trillion), water, and carbon dioxide abundances in both the Martian atmosphere and evolved from heated soil samples. In concert with a wide variety of associated trace gases (e.g. SO2, H2S, NH3, higher hydrocarbons, organics, etc.) and other isotope ratios measured by SAM, TLS will focus on determining the absolute abundances of methane, water and carbon dioxide, and their isotope ratios: 13C/12C and D/H in methane; 13C/12C and 18O/17O/16O in carbon dioxide; and 18O/17O/16O and D/H in water. Measurements near the MSL landing site will be correlated with satellite (Mars Express, Mars 2016) and ground-based observations.

  14. High temperature oxidation of carbide-carbon materials of NbC-C, NbC-TiC-C systems

    International Nuclear Information System (INIS)

    Afonin, Yu.D.; Shalaginov, V.N.; Beketov, A.R.

    1981-01-01

    The effect of titanium carbide additions on the oxidation of carbide - carbon composition NbC-TiC-C in oxygen under the pressure of 10 mm Hg and in the air at atmospheric pressure in the temperature range 800-1300 deg is studied. It is shown that the region of negative temperature coefficient during oxidation in the system NbC+C is determined by the processes of sintering and polymorphous transformation. The specific character of the oxide film, formed during oxidation of Nbsub(x)Tisub(y)C+C composites is connected with non-equilibrium nature of carbide grain in its composition. Carbon gasification takes place with the formation of carbon dioxide. Composite materials, containing titanium carbide in complex carbide up to 50-83 mol. %, are the most corrosion resisting ones [ru

  15. Perspective View with Landsat Overlay, Salt Lake City Olympics Venues, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This computer generated perspective image provides a northward looking 'view from space' that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling, and the nearby Snow Basin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City area ski resorts host the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and a Landsat 5 satellite image mosaic. Topographic expression is exaggerated four times.For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60

  16. France, Shaded Relief and Colored Height

    Science.gov (United States)

    2003-01-01

    This image of France was generated with data from the Shuttle Radar Topography Mission (SRTM). For this broad view the resolution of the data was reduced to 6 arcseconds (about 185 meters north-south and 127 meters east-west), resampled to a Mercator projection, and the French border outlined. Even at this decreased resolution the variety of landforms comprising the country is readily apparent.The upper central part of this scene is dominated by the Paris Basin, which consists of a layered sequence of sedimentary rocks. Fertile soils over much of the area make good agricultural land. The Normandie coast to the upper left is characterized by high, chalk cliffs, while the Brittany coast (the peninsula to the left) is highly indented where deep valleys were drowned by the sea, and the Biscay coast to the southwest is marked by flat, sandy beaches.To the south, the Pyrenees form a natural border between France and Spain, and the south-central part of the country is dominated by the ancient Massif Central. Subject to volcanism that has only subsided in the last 10,000 years, these central mountains are separated from the Alps by the north-south trending Rhone River Basin.Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D

  17. Perspective with Landsat Overlay, Mount Kilimanjaro, Tanzania

    Science.gov (United States)

    2002-01-01

    Mount Kilimanjaro (Kilima Njaro or 'shining mountain' in Swahili), the highest point in Africa, reaches 5,895 meters (19,340 feet) above sea level, tall enough to maintain a permanent snow cap despite being just 330 kilometers (210 miles) south of the equator. It is the tallest free-standing mountain on the Earth's land surface world, rising about 4,600 meters (15,000 feet) above the surrounding plain. Kilimanjaro is a triple volcano (has three peaks) that last erupted perhaps more than 100,000 years ago but still exudes volcanic gases. It is accompanied by about 20 other nearby volcanoes, some of which are seen to the west (left) in this view, prominently including Mount Meru, which last erupted only about a century ago. The volcanic mountain slopes are commonly fertile and support thick forests, while the much drier grasslands of the plains are home to elephants, lions, and other savanna wildlife.This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat 7 satellite image, and a false sky. Topographic expression is vertically exaggerated two times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and

  18. Mount Saint Helens, Washington, USA, SRTM Perspective: Shaded Relief and Colored Height

    Science.gov (United States)

    2004-01-01

    geometry of the surface as it would be viewed on a clear day. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's NASA's Science Mission Directorate, Washington, D.C. Size: View distance about 150 km (about 100 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: View Southeast Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  19. The Python ARM Radar Toolkit (Py-ART, a Library for Working with Weather Radar Data in the Python Programming Language

    Directory of Open Access Journals (Sweden)

    Jonathan J Helmus

    2016-07-01

    Full Text Available The Python ARM Radar Toolkit is a package for reading, visualizing, correcting and analysing data from weather radars. Development began to meet the needs of the Atmospheric Radiation Measurement Climate Research Facility and has since expanded to provide a general-purpose framework for working with data from weather radars in the Python programming language. The toolkit is built on top of libraries in the Scientific Python ecosystem including NumPy, SciPy, and matplotlib, and makes use of Cython for interfacing with existing radar libraries written in C and to speed up computationally demanding algorithms. The source code for the toolkit is available on GitHub and is distributed under a BSD license.

  20. Linear ketenimines. Variable structures of C,C-dicyanoketenimines and C,C-bis-sulfonylketenimines.

    Science.gov (United States)

    Finnerty, Justin; Mitschke, Ullrich; Wentrup, Curt

    2002-02-22

    C,C-dicyanoketenimines 10a-c were generated by flash vacuum thermolysis of ketene N,S-acetals 9a-c or by thermal or photochemical decomposition of alpha-azido-beta-cyanocinnamonitrile 11. In the latter reaction, 3,3-dicyano-2-phenyl-1-azirine 12 is also formed. IR spectroscopy of the keteniminines isolated in Ar matrixes or as neat films, NMR spectroscopy of 10c, and theoretical calculations (B3LYP/6-31G) demonstrate that these ketenimines have variable geometry, being essentially linear along the CCN-R framework in polar media (neat films and solution), but in the gas phase or Ar matrix they are bent, as is usual for ketenimines. Experiments and calculations agree that a single CN substituent as in 13 is not enough to enforce linearity, and sulfonyl groups are less effective that cyano groups in causing linearity. C,C-bis(methylsulfonyl)ketenimines 4-5 and a C-cyano-C-(methylsulfonyl)ketenimine 15 are not linear. The compound p-O2NC6H4N=C=C(COOMe)2 previously reported in the literature is probably somewhat linearized along the CCNR moiety. A computational survey (B3LYP/6-31G) of the inversion barrier at nitrogen indicates that electronegative C-substituents dramatically lower the barrier; this is also true of N-acyl substituents. Increasing polarity causes lower barriers. Although N-alkylbis(methylsulfonyl)ketenimines are not calculated to be linear, the barriers are so low that crystal lattice forces can induce planarity in N-methylbis(methylsulfonyl)ketenimine 3.

  1. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  2. Polarimetric C-Band SAR Observations of Sea Ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Thomsen, Bjørn Bavnehøj; Nghiem, S.V.; Kwok, R.

    1998-01-01

    The fully polarimetric EMISAR acquired C-band radar signatures of sea ice in the Greenland Sea during a campaign in March 1995. The authors present maps of polarimetric signatures over an area containing various kinds of ice and discuss the use of polarimetric SAR for identification of ice types...

  3. Foundation Investigation for Ground Based Radar Project-Kwajalein Island, Marshall Islands

    Science.gov (United States)

    1990-04-01

    iL_ COPY MISCELLANEOUS PAPER GL-90-5 i iFOUNDATION INVESTIGATION FOR GROUND BASED RADAR PROJECT--KWAJALEIN ISLAND, MARSHALL ISLANDS by Donald E...C!assification) Foundatioa Investigation for Ground Based Radar Project -- Kwajalein Island, Marshall Islands 12. PERSONAL AUTHOR(S) Yule, Donald E...investigation for the Ground Based Radar Project -- Kwajalein Island, Marshall Islands , are presented.- eophysical tests comprised of surface refrac- tion

  4. Shaded relief, color as height, Fiji

    Science.gov (United States)

    2000-01-01

    The Sovereign Democratic Republic of the Fiji Islands, commonly known as Fiji, is an independent nation consisting of some 332 islands surrounding the Koro Sea in the South Pacific Ocean. This topographic image shows Viti Levu, the largest island in the group. With an area of 10,429 square kilometers (about 4000 square miles), it comprises more than half the area of the Fiji Islands. Suva, the capital city, lies on the southeast shore. The Nakauvadra, the rugged mountain range running from north to south, has several peaks rising above 900 meters (about 3000 feet). Mount Tomanivi, in the upper center, is the highest peak at 1324 meters (4341 feet). The distinct circular feature on the north shore is the Tavua Caldera, the remnant of a large shield volcano that was active about 4 million years ago. Gold has been mined on the margin of the caldera since the 1930's. The Nadrau plateau is the low relief highland in the center of the mountain range. The coastal plains in the west, northwest and southeast account for only 15 percent of Viti Levu's area but are the main centers of agriculture and settlement.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations top ink at the highest elevations. This image contains about 1300 meters(4300 feet) of total relief.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect

  5. San Andreas Fault, Southern California, Shaded relief, wrapped color as height

    Science.gov (United States)

    2000-01-01

    This topographic image vividly displays California's famous San Andreas Fault along the southwestern edge of the Mojave Desert, 75 kilometers (46 miles) north of downtown Los Angeles. The entire segment of the fault shown in this image last ruptured during the Fort Tejon earthquake of 1857. This was one of the greatest earthquakes ever recorded in the U.S., and it left an amazing surface rupture scar over 350 kilometers in length along the San Andreas. Were the Fort Tejon shock to happen today, the damage would run into billions of dollars, and the loss of life would likely be substantial, as the communities of Wrightwood, Palmdale, and Lancaster (among others) all lie upon or near the 1857 rupture area. The San Gabriel Mountains fill the lower left half of the image. At the extreme lower left is Pasadena. High resolution topographic data such as these are used by geologists to study the role of active tectonics in shaping the landscape, and to produce earthquake hazard maps.This image was generated using topographic data from the Shuttle Radar Topography Mission. Colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters, or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 2400 meters (8000 feet) of total relief. For the shading, a computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three

  6. Weather Radar Estimations Feeding an Artificial Neural Network Model Weather Radar Estimations Feeding an Artificial Neural Network Model

    Directory of Open Access Journals (Sweden)

    Dawei Han

    2012-02-01

    Full Text Available The application of ANNs (Artifi cial Neural Networks has been studied by many researchers in modelling rainfall runoff processes. However, the work so far has been focused on the rainfall data from traditional raingauges. Weather radar is a modern technology which could provide high resolution rainfall in time and space. In this study, a comparison in rainfall runoff modelling between the raingauge and weather radar has been carried out. The data were collected from Brue catchment in Southwest of England, with 49 raingauges covering 136 km2 and two C-band weather radars. This raingauge network is extremely dense (for research purposes and does not represent the usual raingauge density in operational flood forecasting systems. The ANN models were set up with both lumped and spatial rainfall input. The results showed that raingauge data outperformed radar data in all the events tested, regardless of the lumped and spatial input. La aplicación de Redes Neuronales Artificiales (RNA en el modelado de lluvia-flujo ha sido estudiada ampliamente. Sin embargo, hasta ahora se han utilizado datos provenientes de pluviómetros tradicionales. Los radares meteorológicos son una tecnología moderna que puede proveer datos de lluvia de alta resolución en tiempo y espacio. Este es un trabajo de comparación en el modelado lluvia-flujo entre pluviómetros y radares meteorológicos. Los datos provienen de la cuenca del río Brue en el suroeste de Inglaterra, con 49 pluviómetros cubriendo 136 km2 y dos radares meteorológicos en la banda C. Esta red de pluviómetros es extremadamente densa (para investigación y no representa la densidad usual en sistemas de predicción de inundaciones. Los modelos de RNA fueron implementados con datos de entrada de lluvia tanto espaciados como no distribuidos. Los resultados muestran que los datos de los pluviómetros fueron mejores que los datos de los radares en todos los eventos probados.

  7. A Novel Method of SIR Measurement for Power Control in CDMA Systems

    International Nuclear Information System (INIS)

    Yu, J; Wu, S B; He, J Z

    2006-01-01

    CDMA is interference limited multiple access system. Power control is an effective way to reduce co-channel interference and solve the near-far problem. Consequently, it can improve the system capacity, and make higher data rate possible. CDMA2000 employs fast closed-loop power control in reverse link to combat channel fading, and the estimation of signal to interference ratio (SIR) is required for closed-loop power control. Transmitting power is adjusted by comparing the SIR estimation with SIR target. So, it is crucial to measure the SIR of received signal accurately. Traditional measurement methods mostly depend on pilot signal strongly, when the pilots are few, there is a greater error brought to the measurement of SIR. In this paper, we discuss the SIR measurement of the received signal under the fewer pilots condition (especially only one pilot symbol) and present a novel SIR measurement method. According to the simulation, the numerical results indicate that the SIR measured by the proposed method is more accurate than the SIR measured by conventional method under fewer pilots condition

  8. Ku/Ka/W-band Antenna for Electronically-Scanned Cloud and Precipitation Radar

    Data.gov (United States)

    National Aeronautics and Space Administration — Previously, cloud radars such as CloudSat have been separated from precipitation radars such as TRMM (Tropical Rainfall Measurement Mission) and GPM (Global...

  9. Measurement of low-mass e{sup +}e{sup -} pair production in 1 and 2 A GeV C-C collision with HADES

    Energy Technology Data Exchange (ETDEWEB)

    Sudol, M.; Boyard, J.L.; Hennino, T.; Moriniere, E.; Ramstein, B.; Roy-Stephan, M. [CNRS/IN2P3 - Univ. Paris Sud, Inst. de Physique Nucleaire (UMR 8608), Orsay Cedex (France); Agakishiev, G.; Destefanis, M.; Gilardi, C.; Kirschner, D.; Kuehn, W.; Lange, J.S.; Metag, V.; Novotny, R.; Pechenov, V.; Pechenova, O.; Perez Cavalcanti, T.; Spataro, S.; Spruck, B. [Justus Liebig Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Agodi, C.; Bellia, G.; Coniglione, R.; Finocchiaro, P.; Maiolino, C.; Piattelli, P.; Sapienza, P. [Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud, Catania (Italy); Balanda, A.; Dybczak, A.; Kozuch, A.; Otwinowski, J.; Przygoda, W.; Salabura, P.; Trebacz, R.; Wisniowski, M.; Wojcik, T. [Jagiellonian Univ. of Cracow, Smoluchowski Inst. of Physics, Krakow (Poland); Belver, D.; Cabanelas, P.; Duran, I.; Garzon, J.A.; Lamas-Valverde, J.; Marin, J. [Univ. of Santiago de Compostela, Santiago de Compostela (Spain); Belyaev, A.; Chernenko, S.; Fateev, O.; Ierusalimov, A.; Zanevsky, Y. [Joint Inst. of Nuclear Research, Dubna (Russian Federation); Bielcik, J.; Braun-Munzinger, P.; Galatyuk, T.; Gonzalez-Diaz, D.; Heinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Lang, S.; Muench, M.; Palka, M.; Pietraszko, J.; Rustamov, A.; Schroeder, C.; Schwab, E.; Simon, R.; Traxler, M.; Yurevich, S.; Zumbruch, P. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Blanco, A.; Ferreira-Marques, R.; Fonte, P.; Lopes, L.; Mangiarotti, A. [LIP-Lab. de Instrumentacao e Fisica Experimental de Particulas, Coimbra (Portugal); Bortolotti, A.; Iori, I.; Michalska, B. [Sezione di Milano, Istituto Nazionale di Fisica Nucleare, Milano (Italy); Christ, T.; Eberl, T.; Fabbietti, L.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Maier, L.; Sailer, B.; Schmah, A.; Weber, M. [Technische Univ. Muenchen, Munich (Germany); Diaz, J.; Gil, A. [Univ. de Valencia-CSIC, Valencia (Spain)] [and others

    2009-07-15

    HADES is a secondary generation experiment operated at GSI Darmstadt with the main goal to study dielectron production in proton, pion and heavy ion induced reactions. The first part of the HADES mission is to reinvestigate the puzzling pair excess measured by the DLS collaboration in C+C and Ca+Ca collisions at 1 A GeV. For this purpose dedicated measurements with the C+C system at 1 and 2 A GeV were performed. The pair excess above a cocktail of free hadronic decays has been extracted and compared to the one measured by DLS. Furthermore, the excess is confronted with predictions of various model calculations. (orig.)

  10. Shaded Relief with Color as Height, California Mosaic

    Science.gov (United States)

    2002-01-01

    The diversity of landforms that make up the state of California is evident in this new rendition of the 3-D topography of the state. The Central Valley, flanked on the east by the Sierra Nevada, dominates the scene with San Francisco and Monterey Bays clearly visible at left center. Other features of interest include Lake Tahoe at the edge to the right of San Francisco, Mono Lake below Lake Tahoe, and the Salton Sea at the lower right. The prominent sideways 'V' in the southern part of the state is the intersection of the Garlock and San Andreas Faults - to the east is the Mojave Desert. Offshore are the Channel Islands and to the right of them lies the city of Los Angeles.Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science

  11. Shaded Relief with Height as Color, Mount Meru, Tanzania

    Science.gov (United States)

    2002-01-01

    Mount Meru is an active volcano located just 70 kilometers (44 miles) west of Mount Kilimanjaro. It reaches 4,566 meters (14,978 feet) in height but has lost much of its bulk due to an eastward volcanic blast sometime in its distant past, perhaps similar to the eruption of Mount Saint Helens in Washington State in 1980. Mount Meru most recently had a minor eruption about a century ago. The several small cones and craters seen in the vicinity probably reflect numerous episodes of volcanic activity. Mount Meru is the topographic centerpiece of Arusha National Park. Its fertile slopes rise above the surrounding savanna and support a forest that hosts diverse wildlife, including nearly 400 species of birds, and also monkeys and leopards.Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in June. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to blue and white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space

  12. Mts. Agung and Batur, Bali, Shaded Relief and Colored Height

    Science.gov (United States)

    2004-01-01

    This perspective view shows the major volcanic group of Bali, one 13,000 islands comprising the nation of Indonesia. The conical mountain to the left is Gunung Agung, at 3,148 meters (10,308 feet) the highest point on Bali and an object of great significance in Balinese religion and culture. Agung underwent a major eruption in 1963 after more than 100 years of dormancy, resulting in the loss of over 1,000 lives.In the center is the complex structure of Batur volcano, showing a caldera (volcanic crater) left over from a massive catastrophic eruption about 30,000 years ago. Judging from the total volume of the outer crater and the volcano, that once lay above it, approximately 140 cubic kilometers(33.4 cubic miles) of material must have been produced by this eruption, making it one of the largest known volcanic events on Earth. Batur is still active and has erupted at least 22 times since the 1800's.Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National

  13. Ireland, Shaded Relief and Colored Height

    Science.gov (United States)

    2005-01-01

    The island of Ireland comprises a large central lowland of limestone with a relief of hills surrounded by a discontinuous border of coastal mountains which vary greatly in geological structure. The mountain ridges of the south are composed of old red sandstone separated by limestone river valleys. Granite predominates in the mountains of Galway, Mayo and Donegal in the west and north-west and in Counties Down and Wicklow on the east coast, while a basalt plateau covers much of the north-east of the country. The central plain, which is broken in places by low hills, is extensively covered with glacial deposits of clay and sand. It has considerable areas of bog and numerous lakes. The island has seen at least two general glaciations and everywhere ice-smoothed rock, mountain lakes, glacial valleys and deposits of glacial sand, gravel and clay mark the passage of the ice. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency

  14. Evaluation of I and C architecture alternatives required for the jupiter Icy moons orbiter (JIMO) reactor

    International Nuclear Information System (INIS)

    Muhlheim, M. D.; Wood, R. T.; Bryan, W. L.; Wilson Jr, T. L.; Holcomb, D. E.; Korsah, K.; Jagadish, U.

    2006-01-01

    This paper discusses alternative architectural considerations for instrumentation and control (I and C) systems in high-reliability applications to support remote, autonomous, inaccessible nuclear reactors, such as a space nuclear power plant (SNPP) for mission electrical power and space exploration propulsion. This work supported the pre-conceptual design of the reactor control system for the Jupiter Icy Moons Orbiter (JIMO) mission. Long-term continuous operation without intermediate maintenance cycles forces consideration of alternatives to commonly used active, N-multiple redundancy techniques for high-availability systems. Long space missions, where mission duration can exceed the 50% reliability limit of constituent components, can make active, N-multiple redundant systems less reliable than simplex systems. To extend a control system lifetime beyond the 50% reliability limits requires incorporation of passive redundancy of functions. Time-dependent availability requirements must be factored into the use of combinations of active and passive redundancy techniques for different mission phases. Over the course of a 12 to 20-year mission, reactor control, power conversion, and thermal management system components may fail, and the I and C system must react and adjust to accommodate these failures and protect non-failed components to continue the mission. This requires architectural considerations to accommodate partial system failures and to adapt to multiple control schemes according to the state of non-failed components without going through a complete shutdown and restart cycle. Relevant SNPP I and C architecture examples provide insights into real-time fault tolerance and long-term reliability and availability beyond time periods normally associated with terrestrial power reactor I and C systems operating cycles. I and C architectures from aerospace systems provide examples of highly reliable and available control systems associated with short- and long

  15. Cryosat Level1b SAR/Sarin: Improving the Quality of the Baseline C Products

    Science.gov (United States)

    Scagliola, M.; Fornari, M.; Tagliani, N.; Frommknecht, B.; Bouffard, J.; Parrinello, T.

    2014-12-01

    CryoSat was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvement in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. Towards the release of the BaselineC of the CryoSat Level1b SAR/SARin products, that is expected at the end of 2014, several improvements have been identified: a datation bias of about -0.5195 ms will be corrected a range bias of about 0.6730 m will be corrected The range window size will be doubled with respect to BaselineB, so that the in Level1b products the waveforms will be doubled too Improved processing for 1Hz echoes to have sharper waveforms Surface sample stack weighting to filter out the single look echoes acquired at highest look angle, that results in a sharpening of the 20Hz waveforms Additional auxiliary information related to the mispointing angles of the instrument as well as to the stacks of single look echoes will be added This poster details the main quality improvements that are foreseen to be included in the CryoSat Level1b SAR/SARin products in BaselineC.

  16. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    Science.gov (United States)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  17. Research at the Stanford Center for Radar Astronomy

    Science.gov (United States)

    1972-01-01

    The research is reported in the applications of radar and radio techniques to the study of the solar system, and to space programs. Experiments reported include: bistatic-radar on Apollo missions, development of an unmanned geophysical observatory in the Antartic, Bragg scattering probes of sea states, characteristics of dense solar wind disturbances, and satellite communications for Alaska.

  18. The Basic Radar Altimetry Toolbox for Sentinel 3 Users

    Science.gov (United States)

    Lucas, Bruno; Rosmorduc, Vinca; Niemeijer, Sander; Bronner, Emilie; Dinardo, Salvatore; Benveniste, Jérôme

    2013-04-01

    The Basic Radar Altimetry Toolbox (BRAT) is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2006 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales). The latest version of the software, 3.1, was released on March 2012. The tools enable users to interact with the most common altimetry data formats, being the most used way, the Graphical User Interface (BratGui). This GUI is a front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. The BratDisplay (graphic visualizer) can be launched from BratGui, or used as a stand-alone tool to visualize netCDF files - it is distributed with another ESA toolbox (GUT) as the visualizer. The most frequent uses of BRAT are teaching remote sensing, altimetry data reading (all missions from ERS-1 to Saral and soon Sentinel-3), quick data visualization/export and simple computation on the data fields. BRAT can be used for importing data and having a quick look at his contents, with several different types of plotting available. One can also use it to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BratGui involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas (MSS, -SSH, MSLA, editing of spurious data, etc.). The documentation collection includes the standard user manual explaining all the ways to interact with the set of software tools but the most important item is the Radar Altimeter Tutorial, that contains a strong introduction to

  19. Knowledge-based decision tree approach for mapping spatial distribution of rice crop using C-band synthetic aperture radar-derived information

    Science.gov (United States)

    Mishra, Varun Narayan; Prasad, Rajendra; Kumar, Pradeep; Srivastava, Prashant K.; Rai, Praveen Kumar

    2017-10-01

    Updated and accurate information of rice-growing areas is vital for food security and investigating the environmental impact of rice ecosystems. The intent of this work is to explore the feasibility of dual-polarimetric C-band Radar Imaging Satellite-1 (RISAT-1) data in delineating rice crop fields from other land cover features. A two polarization combination of RISAT-1 backscatter, namely ratio (HH/HV) and difference (HH-HV), significantly enhanced the backscatter difference between rice and nonrice categories. With these inputs, a QUEST decision tree (DT) classifier is successfully employed to extract the spatial distribution of rice crop areas. The results showed the optimal polarization combination to be HH along with HH/HV and HH-HV for rice crop mapping with an accuracy of 88.57%. Results were further compared with a Landsat-8 operational land imager (OLI) optical sensor-derived rice crop map. Spatial agreement of almost 90% was achieved between outputs produced from Landsat-8 OLI and RISAT-1 data. The simplicity of the approach used in this work may serve as an effective tool for rice crop mapping.

  20. First measurement of 153Sm in the SIR

    International Nuclear Information System (INIS)

    Michotte, C.; Ratel, G.; Lucas, L.

    1999-01-01

    In June 1998, the NIST sent to the International Reference System (SIR) a solution of 153 Sm standardized in a 4π ionization chamber. As this radionuclide had not previously been measured in the SIR, the resulting equivalent activity A e,NIST is compared with the value calculated from the efficiency curve of the SIR. However, problems occurred owing to the presence of 154 Eu and 156 Eu impurities in the solution. The manner in which the final equivalent activity value for this solution of 153 Sm has been deduced is described in this report. (authors)

  1. Sentinel-3 SAR Altimetry Toolbox - Scientific Exploitation of Operational Missions (SEOM) Program Element

    Science.gov (United States)

    Benveniste, Jérôme; Lucas, Bruno; Dinardo, Salvatore

    2014-05-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage pioneered by ERS-1, ERS-2, Envisat and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the Sentinel-3 series is planned for launch in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales, the French Space Agency), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as net

  2. C. Gordon Fullerton

    Science.gov (United States)

    1989-01-01

    C. Gordon Fullerton is a research pilot at NASA's Dryden Flight Research Center, Edwards, California. His assignments include a variety of flight research and support activities piloting NASA's B-52 launch aircraft, the 747 Shuttle Carrier Aircraft (SCA), and other multi-engine and high performance aircraft. Fullerton, who has logged 382 hours in space flight, was a NASA astronaut from September 1969 until November 1986 when he joined the Flight Crew Branch at Dryden. In July 1988, he completed a 30-year career with the U.S. Air Force and retired as a colonel. As the project pilot on the NASA B-52 launch aircraft, Fullerton flew during the first six air launches of the commercially developed Pegasus space vehicle. He was involved in a series of development air launches of the X-38 Crew Recovery Vehicle and in the Pegasus launch of the X-43A Hyper-X advanced propulsion project. Fullerton also flies Dryden's DC-8 Airborne Science aircraft, regularly deployed worldwide to support a variety of research studies, including atmospheric physics, ground mapping and meteorology. In addition to these current activities, Fullerton has been involved in numerous other research programs at Dryden. He was the project pilot on the Propulsion Controlled Aircraft program, during which he successfully landed both a modified F-15 and an MD-11 transport with all control surfaces neutralized, using only engine thrust modulation for control. Assigned to evaluate the flying qualities of the Russian Tu-144 supersonic transport during two flights in 1998, he reached a speed of Mach 2 and became one of only two non-Russian pilots to fly that aircraft. He piloted a Convair 990 modified to test space shuttle landing gear components during many very high-speed landings. Other projects for which he has flown in the past include the C-140 JetStar Laminar Flow Control; F-111 Mission Adaptive Wing; F-14 Variable Sweep Flow Transition; Space Shuttle drag chute and F-111 crew module parachute tests

  3. Total Synthesis of Zoanthamine Alkaloids, Part 2. Construction of the C1-C5, C6-C10 and C11-C24 Fragments of Zoanthamine

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Tedenborg, Lars; Somfai, Peter

    1997-01-01

    This paper describes the construction of three key intermediates for a projected total synthesis of the marine alkaloid zoanthamine. These building blocks, corresponding to the C1-C5, C6-C10 and C11-C24 fragments of the target molecule, are synthesised efficiently form (R...

  4. Multilocus sequence typing (MLST methods for the emerging Campylobacter species C. hyointestinalis, C. lanienae, C. sputorum, C. concisus and C. curvus

    Directory of Open Access Journals (Sweden)

    William G Miller

    2012-04-01

    Full Text Available Multilocus sequence typing (MLST systems have been reported previously for multiple food- and food animal-associated Campylobacter species (e.g. C. jejuni, C. coli, C. lari and C. fetus to both differentiate strains and identify clonal lineages. These MLST methods focused primarily on campylobacters of human clinical (e.g. C. jejuni or veterinary (e.g. C. fetus relevance. However, other, emerging, Campylobacter species have been isolated increasingly from environmental, food animal or human clinical samples. We describe herein MLST methods for five emerging Campylobacter species: C. hyointestinalis, C. lanienae, C. sputorum, C. concisus and C. curvus. The concisus/curvus method uses the loci aspA, atpA, glnA, gltA, glyA, ilvD and pgm, whereas the other methods use the seven loci defined for C. jejuni (i.e., aspA, atpA, glnA, gltA, glyA, pgm, and tkt. Multiple food animal and human clinical C. hyointestinalis (n=48, C. lanienae (n=34 and C. sputorum (n=24 isolates were typed, along with 86 human clinical C. concisus and C. curvus isolates. A large number of sequence types (STs were identified using all four MLST methods. Similar to Campylobacter MLST methods described previously, these novel MLST methods identified mixed isolates containing two or more strains of the same species. Additionally, these methods speciated unequivocally isolates that had been typed ambiguously using other molecular-based speciation methods, such as 16S rDNA sequencing. Finally, the design of degenerate primer pairs for some methods permitted the typing of related species; for example, the C. hyointestinalis primer pairs could be used to type C. fetus strains. Therefore, these novel Campylobacter MLST methods will prove useful in speciating and differentiating strains of multiple, emerging Campylobacter species.

  5. Quantitative precipitation estimation in complex orography using quasi-vertical profiles of dual polarization radar variables

    Science.gov (United States)

    Montopoli, Mario; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Baldini, Luca

    2017-04-01

    Weather radars are nowadays a unique tool to estimate quantitatively the rain precipitation near the surface. This is an important task for a plenty of applications. For example, to feed hydrological models, mitigate the impact of severe storms at the ground using radar information in modern warning tools as well as aid the validation studies of satellite-based rain products. With respect to the latter application, several ground validation studies of the Global Precipitation Mission (GPM) products have recently highlighted the importance of accurate QPE from ground-based weather radars. To date, a plenty of works analyzed the performance of various QPE algorithms making use of actual and synthetic experiments, possibly trained by measurement of particle size distributions and electromagnetic models. Most of these studies support the use of dual polarization variables not only to ensure a good level of radar data quality but also as a direct input in the rain estimation equations. Among others, one of the most important limiting factors in radar QPE accuracy is the vertical variability of particle size distribution that affects at different levels, all the radar variables acquired as well as rain rates. This is particularly impactful in mountainous areas where the altitudes of the radar sampling is likely several hundred of meters above the surface. In this work, we analyze the impact of the vertical profile variations of rain precipitation on several dual polarization radar QPE algorithms when they are tested a in complex orography scenario. So far, in weather radar studies, more emphasis has been given to the extrapolation strategies that make use of the signature of the vertical profiles in terms of radar co-polar reflectivity. This may limit the use of the radar vertical profiles when dual polarization QPE algorithms are considered because in that case all the radar variables used in the rain estimation process should be consistently extrapolated at the surface

  6. Synthetic Swan band profile of (1,0) of 12C12C and (0,0) of 12C12C and 12C13C in comets

    International Nuclear Information System (INIS)

    Swamy, K.S.K.

    1987-01-01

    The statistical equilibrium calculations of the 12 C 13 C molecule based on the resonance fluorescence process give similar results to those of the normal molecule. Therefore the assumption that the observed intensities of bands of the normal and the isotopic molecule differ only by their abundance ratio is reasonable. The synthetic profile of the (1,0) Swan band of 12 C 13 C (0,0) band of 12 C 12 C and 12 C 13 C have been calculated. The relative merits of using the rotational structure of the (1,0) or (0,0) band for the determination of the isotopic ratio 12 C/ 13 C is discussed briefly. (author)

  7. Structural investigation of the Grenville Province by radar and other imaging and nonimaging sensors

    Science.gov (United States)

    Lowman, P. D., Jr.; Blodget, H. W.; Webster, W. J., Jr.; Paia, S.; Singhroy, V. H.; Slaney, V. R.

    1984-01-01

    The structural investigation of the Canadian Shield by orbital radar and LANDSAT, is outlined. The area includes parts of the central metasedimentary belt and the Ontario gneiss belt, and major structures as well-expressed topographically. The primary objective is to apply SIR-B data to the mapping of this key part of the Grenville orogen, specifically ductile fold structures and associated features, and igneous, metamorphic, and sedimentary rock (including glacial and recent sediments). Secondary objectives are to support the Canadian RADARSAT project by evaluating the baseline parameters of a Canadian imaging radar satellite planned for late in the decade. The baseline parameters include optimum incidence and azimuth angles. The experiment is to develop techniques for the use of multiple data sets.

  8. Measurement of Fragment Production Cross Sections in the $^{12}$C+$^{12}$C and $^{12}$C+$^{197}$Au Reactions at 62 $A$ MeV for Hadrontherapy and Space Radiation Protection

    CERN Document Server

    Tropea, S; Agodi, C; Blancato, A A; Bondì, M; Cappuzzello, F; Carbone, D; Cavallaro, M; Cirrone, G A P; Cuttone, G; Giacoppo, F; Nicolosi, D; Pandola, L; Raciti, G; Rapisarda, E; Romano, F; Sardina, D; Scuderi, V; Sfienti, C

    2014-01-01

    Over the last twenty years, there has been a renewed interest in nuclear fragmentation studies for both hadrontherapy applications and space radiation protection. In both fields, fragmentation cross sections are needed to predict the effects of the ions nuclear interactions within the patient’s and the astronaut’s body. Indeed, the Monte Carlo codes used in planning tumor treatments and space missions must be tuned and validated by experimental data. However, only a limited set of fragmentation cross sections are available in literature, especially at Fermi energies. Therefore, we have studied the production of secondary fragments in the 12 C+ 12 C and 12 C+ 197 Au reactions at 62 A MeV. In this work, the measured 4 He cross sections angular distributions at four selected angles are presented and compared.

  9. Lymphocyte integrin expression differences between SIRS and sepsis patients.

    Science.gov (United States)

    Heffernan, D S; Monaghan, S F; Ayala, Alfred

    2017-11-01

    Systemic Inflammatory Response Syndrome (SIRS) and sepsis remain leading causes of death. Despite many similarities, the two entities are very distinct clinically and immunologically. T-Lymphocytes play a key pivotal role in the pathogenesis and ultimately outcome following both SIRS and sepsis. Integrins are essential in the trafficking and migration of lymphocytes. They also serve vital roles in efficient wound healing and clearance of infections. Here, we investigate whether integrin expression, specifically β1 (CD29) and β2 (CD18), are disrupted in SIRS and sepsis, and assess differences in integrin expression between these two critically ill clinical categories. T-Lymphocytes were isolated from whole blood collected from ICU patients exhibiting SIRS or sepsis. Samples were analyzed for CD18 (β2) and CD29 (β1) on CD3 + T cells through flow cytometry. Septic patients were stratified into either exclusively abdominal or non-abdominal sources of sepsis. CD18 was almost ubiquitously expressed on CD3 + T cells irrespective of clinical condition. However, CD29 (β1 integrin) was lowest in SIRS patients (20.4% of CD3 + T cells) when compared with either septic patients (35.5%) or healthy volunteers (54.1%). Furthermore, there was evidence of compartmentalization in septic patients, where abdominal sources had a greater percentage of CD3 + CD29 + T cells (41.7%) when compared with those with non-abdominal sources (29.5%). Distinct differences in T-cell integrin expression exists between patients in SIRS versus sepsis, as well as relative to the source of sepsis. Further work is needed to understand cause and effect relative to the progression from SIRS into sepsis.

  10. Substrate-Mediated C-C and C-H Coupling after Dehalogenation.

    Science.gov (United States)

    Kong, Huihui; Yang, Sha; Gao, Hongying; Timmer, Alexander; Hill, Jonathan P; Díaz Arado, Oscar; Mönig, Harry; Huang, Xinyan; Tang, Qin; Ji, Qingmin; Liu, Wei; Fuchs, Harald

    2017-03-15

    Intermolecular C-C coupling after cleavage of C-X (mostly, X = Br or I) bonds has been extensively studied for facilitating the synthesis of polymeric nanostructures. However, the accidental appearance of C-H coupling at the terminal carbon atoms would limit the successive extension of covalent polymers. To our knowledge, the selective C-H coupling after dehalogenation has not so far been reported, which may illuminate another interesting field of chemical synthesis on surfaces besides in situ fabrication of polymers, i.e., synthesis of novel organic molecules. By combining STM imaging, XPS analysis, and DFT calculations, we have achieved predominant C-C coupling on Au(111) and more interestingly selective C-H coupling on Ag(111), which in turn leads to selective synthesis of polymeric chains or new organic molecules.

  11. Global and local missions of cAMP signaling in neural plasticity, learning and memory

    Directory of Open Access Journals (Sweden)

    Daewoo eLee

    2015-08-01

    Full Text Available The fruit fly Drosophila melanogaster has been a popular model to study cAMP signaling and resultant behaviors due to its powerful genetic approaches. All molecular components (AC, PDE, PKA, CREB, etc essential for cAMP signaling have been identified in the fly. Among them, adenylyl cyclase (AC gene rutabaga and phosphodiesterase (PDE gene dunce have been intensively studied to understand the role of cAMP signaling. Interestingly, these two mutant genes were originally identified on the basis of associative learning deficits. This commentary summarizes findings on the role of cAMP in Drosophila neuronal excitability, synaptic plasticity and memory. It mainly focuses on two distinct mechanisms (global versus local regulating excitatory and inhibitory synaptic plasticity related to cAMP homeostasis. This dual regulatory role of cAMP is to increase the strength of excitatory neural circuits on one hand, but to act locally on postsynaptic GABA receptors to decrease inhibitory synaptic plasticity on the other. Thus the action of cAMP could result in a global increase in the neural circuit excitability and memory. Implications of this cAMP signaling related to drug discovery for neural diseases are also described.

  12. Distinct Signaling Roles of cIMP, cCMP, and cUMP.

    Science.gov (United States)

    Seifert, Roland

    2016-10-04

    The cyclic purine nucleotide cIMP and the cyclic pyrimidine nucleotides cCMP and cUMP are emerging second messengers. These cNMPs show different biological effects, but the molecular mechanisms remain elusive. In this issue of Structure, Ng et al. (2016) provide structural evidence for distinct interactions of cIMP, cCMP, and cUMP with ion channels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Jupiter Trojan's Shallow Subsurface: Direct Observation By Radar Sounding

    Science.gov (United States)

    Herique, A.; Plettemeier, D.; Beck, P.; Michel, P.; Kumamoto, A.; Kofman, W. W.

    2017-12-01

    Most of the Jupiter's Trojan are classified as spectral type P or D from visible and near-IR observations. Still, major question remain regarding theire origin and geological evolution: What ices are present in their interior, and in what amount? What is the abundance and the nature of the organic fraction? Did they experience some level of differentiation powered by 26Al? Answering theses question is the goal of the Solar-Power Sail JAXA mission [1, 2]. This mission plans to study the surface by remote sensing in the optical in IR domain. This probe will carry a large-sized lander with a drill to sample the constitutive material at meter depth in order to complement physical and chemical properties measured by on-board instruments. The sample return is an option under study.Radar sounding of the shallow subsurface would be envisaged in complement to this payload. Sounding radar could provide the structure of the first tens of meters of the Trojan surface. It will allow identifying layering, ice lens, and embedded block. It also will enable to reconnect the surface with the deep interior in order to identify exogenous / pristine material. For the surface package, the drilling and the sample return, radar sounding is a unique opportunity to support the selection of the landing site and to provide the greater geological context of the samples that will be returned to Earth.In this paper, we will detail the objective of this instrument and then we will outline the proposed instrument, which is inheriting from the radar developed for the AIDA/AIM mission.[1] Mori, O. et al., Science experiments on a Jupiter Trojan Asteroid in the solar powerd sail mission. LPSC 2016 - 1822.[2] Okada, T. et al., Science and Exploration of a Jupiter Trojan Asteroid in the solar-power sail mission. LPSC 2017 - 1828.

  14. Validation of the Spanish SIRS with monolingual Hispanic outpatients.

    Science.gov (United States)

    Correa, Amor A; Rogers, Richard; Hoersting, Raquel

    2010-09-01

    Psychologists are faced with formidable challenges in making their assessment methods relevant to growing numbers of Hispanic clients for whom English is not the primary or preferred language. Among other clinical issues, the determination of malingering has profound consequences for clients. In this investigation, we evaluated a Spanish translation of the Structured Interview of Reported Symptoms (SIRS; Rogers, Bagby, & Dickens, 1992) with 80 Spanish-speaking Hispanic American outpatients. Using a between-subjects simulation design, the Spanish SIRS was found to produce reliable results with small standard errors of measurement. Regarding validity, very large effect sizes (mean Cohen's d= 2.00) were observed between feigners and honest responders for the SIRS primary scales. We consider the potential role of the Spanish SIRS with reference to Spanish translations for other assessment instruments.

  15. The BRAT and GUT Couple: Broadview Radar Altimetry and GOCE User Toolboxes

    Science.gov (United States)

    Benveniste, J.; Restano, M.; Ambrózio, A.

    2017-12-01

    The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools designed to facilitate the processing of radar altimetry data from previous and current altimetry missions, including Sentinel-3A L1 and L2 products. A tutorial is included providing plenty of use cases. BRAT's next release (4.2.0) is planned for October 2017. Based on the community feedback, the front-end has been further improved and simplified whereas the capability to use BRAT in conjunction with MATLAB/IDL or C/C++/Python/Fortran, allowing users to obtain desired data bypassing the data-formatting hassle, remains unchanged. Several kinds of computations can be done within BRAT involving the combination of data fields, that can be saved for future uses, either by using embedded formulas including those from oceanographic altimetry, or by implementing ad-hoc Python modules created by users to meet their needs. BRAT can also be used to quickly visualise data, or to translate data into other formats, e.g. from NetCDF to raster images. The GOCE User Toolbox (GUT) is a compilation of tools for the use and the analysis of GOCE gravity field models. It facilitates using, viewing and post-processing GOCE L2 data and allows gravity field data, in conjunction and consistently with any other auxiliary data set, to be pre-processed by beginners in gravity field processing, for oceanographic and hydrologic as well as for solid earth applications at both regional and global scales. Hence, GUT facilitates the extensive use of data acquired during GRACE and GOCE missions. In the current 3.1 version, GUT has been outfitted with a graphical user interface allowing users to visually program data processing workflows. Further enhancements aiming at facilitating the use of gradients, the anisotropic diffusive filtering, and the computation of Bouguer and isostatic gravity anomalies have been introduced. Packaged with GUT is also GUT's Variance-Covariance Matrix tool (VCM). BRAT and GUT toolboxes can be freely

  16. The Systemic Inflammatory Response Syndrome (SIRS in acutely hospitalised medical patients: a cohort study

    Directory of Open Access Journals (Sweden)

    Storgaard Merete

    2009-12-01

    Full Text Available Abstract Background Sepsis is an infection which has evoked a systemic inflammatory response. Clinically, the Systemic Inflammatory Response Syndrome (SIRS is identified by two or more symptoms including fever or hypothermia, tachycardia, tachypnoea and change in blood leucocyte count. The relationship between SIRS symptoms and morbidity and mortality in medical emergency ward patients is unknown. Methods We conducted a prospective cohort study of the frequency of SIRS and its relationship to sepsis and death among acutely hospitalised medical patients. In 437 consecutive patients, SIRS status, blood pressure, infection and comorbidity on admission was registered together with 28-day mortality. Results A hundred and fifty-four patients (35% had SIRS on admission, 211 patients (48% had no SIRS, and 72 patients (16% had insufficient data to evaluate their SIRS status. SIRS patients were 2.2 times more frequently infected, with 66/154 SIRS patients versus 41/211 non-SIRS patients: p Conclusion We found SIRS status on admission to be moderately associated with infection and strongly related to 28-day mortality.

  17. Development of Bread Board Model of TRMM precipitation radar

    Science.gov (United States)

    Okamoto, Ken'ichi; Ihara, Toshio; Kumagai, Hiroshi

    The active array radar was selected as a reliable candidate for the TRMM (Tropical Rainfall Measuring Mission) precipitation radar after the trade off studies performed by Communications Research Laboratory (CRL) in the US-Japan joint feasibility study of TRMM in 1987-1988. Main system parameters and block diagram for TRMM precipitation radar are shown as the result of feasibility study. CRL developed key devices for the active array precipitation radar such as 8-element slotted waveguide array antenna, the 5 bit PIN diode phase shifters, solid state power amplifiers and low noise amplifiers in 1988-1990. Integration of these key devices was made to compose 8-element Bread Board Model of TRMM precipitation radar.

  18. Cassini radar: Instrument description and performance status

    Science.gov (United States)

    Johnson, W. T. K.; Im, E.; Borgarelli, L.; ZampoliniFaustini, E.

    1995-01-01

    The spacecraft of the Cassini mission is planned to be launched towards Saturn in October 1997. The mission is designed to study the physical structure and chemical composition of Titan. The results of the tests performed on the Cassini radar engineering qualification model (EQM) are summarized. The approach followed in the verification and evaluation of the performance of the radio frequency subsystem EQM is presented. The results show that the instrument satisfies the most relevant mission requirements.

  19. Synthesis of the C(18)-C(34) fragment of amphidinolide C and the C(18)-C(29) fragment of amphidinolide F.

    Science.gov (United States)

    Roy, Sudeshna; Spilling, Christopher D

    2010-11-19

    A convergent synthesis of the C(18)-C(34) fragment of amphidinolide C and the C(18)-C(29) fragment of amphidinolide F is reported. The approach involves the synthesis of the common intermediate tetrahydrofuranyl-β-ketophosphonate via cross metathesis, Pd(0)-catalyzed cyclization, and hydroboration-oxidation. The β-ketophosphonate was coupled to three side chain aldehydes using a Horner-Wadsworth-Emmons (HWE) olefination reaction to give dienones, which were reduced with l-selectride to give the fragments of amphidinolide C and F.

  20. Why Y-c.c

    Czech Academy of Sciences Publication Activity Database

    Chodounský, David; Zapletal, Jindřich

    2015-01-01

    Roč. 166, č. 11 (2015), s. 1123-1149 ISSN 0168-0072 R&D Projects: GA ČR(CZ) GF15-34700L Institutional support: RVO:67985840 Keywords : c.c.c. partitions * proper forcing * forcing axiom Subject RIV: BA - General Mathematics Impact factor: 0.582, year: 2015 http://www.sciencedirect.com/science/article/pii/S0168007215000664

  1. Experimentelles FMCW-Radar zur hochfrequenten Charakterisierung von Windenergieanlagen

    Science.gov (United States)

    Schubert, Karsten; Werner, Jens; Schwartau, Fabian

    2017-09-01

    During the increasing dissemination of renewable energy sources the potential and actual interference effects of wind turbine plants became obvious. Turbines reflect the signals of weather radar and other radar systems. In addition to the static radar echoes, in particular the Doppler echoes are to be mentioned as an undesirable impairment Keränen (2014). As a result, building permit is refused for numerous new wind turbines, as the potential interference can not be reliably predicted. As a contribution to the improvement of this predictability, measurements are planned which aim at the high-frequency characterisation of wind energy installations. In this paper, a cost-effective FMCW radar is presented, which is operated in the same frequency band (C-band) as the weather radars of the German weather service. Here, the focus is on the description of the hardware design including the considerations used for its dimensioning.

  2. Estimating snow water equivalent (SWE) using interferometric synthetic aperture radar (InSAR)

    Science.gov (United States)

    Deeb, Elias J.

    Since the early 1990s, radar interferometry and interferometric synthetic aperture radar (InSAR) have been used extensively to measure changes in the Earth's surface. Previous research has presented theory for estimating snow properties, including potential for snow water equivalent (SWE) retrieval, using InSAR. The motivation behind using remote sensing to estimate SWE is to provide a more complete, continuous set of "observations" to assist in water management operations, climate change studies, and flood hazard forecasting. The research presented here primarily investigates the feasibility of using the InSAR technique at two different wavelengths (C-Band and L-Band) for SWE retrieval of dry snow within the Kuparuk watershed, North Slope, Alaska. Estimating snow distribution around meteorological towers on the coastal plain using a three-day repeat orbit of C-Band InSAR data was successful (Chapter 2). A longer wavelength L-band SAR is evaluated for SWE retrievals (Chapter 3) showing the ability to resolve larger snow accumulation events over a longer period of time. Comparisons of InSAR estimates and late spring manual sampling of SWE show a R2 = 0.61 when a coherence threshold is used to eliminate noisy SAR data. Qualitative comparisons with a high resolution digital elevation model (DEM) highlight areas of scour on windward slopes and areas of deposition on leeward slopes. When compared to a mid-winter transect of manually sampled snow depths, the InSAR SWE estimates yield a RMSE of 2.21cm when a bulk snow density is used and corrections for bracketing the satellite acquisition timing is performed. In an effort to validate the interaction of radar waves with a snowpack, the importance of the "dry snow" assumption for the estimation of SWE using InSAR is tested with an experiment in Little Cottonwood Canyon, Alta, Utah (Chapter 5). Snow wetness is shown to have a significant effect on the velocity of propagation within the snowpack. Despite the radar

  3. AN/FPS-108 COBRA DANE Space Surveillance Mission Evolution

    Science.gov (United States)

    Chorman, P.; Boggs, J.

    2013-09-01

    It has been ten years since the COBRA DANE radar was restored to continuous full power operations in a more dedicated role of space debris tracking. Over this time, the satellite catalog population has grown and the overall average RCS value of cataloged objects has decreased dramatically, due to a combination of breakups and collisions together with the increased sensitivity offered by COBRA DANE's support to the network. This shift in catalog composition places new challenges on COBRA DANE and other debris tracking radars (PARCS and Eglin/FPS-85) to consistently track the ever-increasing number of small objects. Space Surveillance Network radars now operate at the limits of their detection performance, tracking several thousand new objects in a size category that only the most powerful and sensitive radars can observe (i.e., COBRA DANE's inherent Spacetrack mission software functionality remained better tuned for its original support role against the larger (known) orbital objects than for its more modern role in acquiring and reporting small debris in an appreciable number -- that is, until now. Several newly-identified software changes offer promise of significantly increased data yield that will make COBRA DANE an even more important asset for this evolving mission. In the course of assisting JSpOC, AFSPC, and USSTRATCOM with the ongoing challenges of lost satellite management, it was discovered that the radar's performance is being artificially restricted by mission software, rather than by the system's overall architectural design (power-aperture envelope and radar resources). This paper captures specific opportunities to improve COBRA DANE's Spacetrack mission performance, several of which are currently implemented and slated to become operational with the next two software releases. With one of the more prominent enhancements, COBRA DANE will be capable of autonomously 'fence tasking' all newly acquired small objects. Under the current operating paradigm

  4. Identification of corn fields using multidate radar data

    International Nuclear Information System (INIS)

    Shanmugan, K.S.; Ulaby, F.T.; Narayanan, V.; Dobson, C.

    1983-01-01

    Airborne C- and L-band radar data acquired over a test site in western Kansas were analyzed to determine corn-field identification accuracies obtainable using single-channel, multichannel, and multidate radar data. An automated pattern-recognition procedure was used to classify 144 fields into three categories: corn, pasture land, and bare soil (including wheat stubble and fallow). Corn fields were identified with accuracies ranging from 85% for single channel, single-date data to 100% for single-channel, multidate data. The effects of radar parameters such as frequency, polarization, and look angle as well as the effects of soil moisture on the classification accuracy are also presented

  5. Alkane Activation at Ambient Temperatures: Unusual Selectivities, C-C, C-H Bond Scission versus C-C Bond Coupling

    NARCIS (Netherlands)

    Trionfetti, C.; Agiral, A.; Gardeniers, Johannes G.E.; Lefferts, Leonardus; Seshan, Kulathuiyer

    2008-01-01

    Activating bonds: A cold plasma generated by dielectric barrier discharge in a microreactor converts alkanes (C1–C3) at atmospheric pressure. Large amounts of products with higher molecular weight than the starting hydrocarbons are observed showing that C-H activation at lower T favourably leads to

  6. Cosmochemical implications of CONSERT permittivity characterization of 67P/C-G

    Science.gov (United States)

    Levasseur-Regourd, A.; Hérique, Alain; Kofman, Wlodek; Beck, Pierre; Bonal, Lydie; Buttarazzi, Ilaria; Heggy, Essam; Lasue, Jeremie; Quirico, Eric; Zine, Sonia

    2016-10-01

    Unique information about the internal structure of the nucleus of comet 67P/C-G was provided by the CONSERT bistatic radar on-board Rosetta and Philae [1]. Analysis of the propagation of its signal throughout the small lobe indicated that the real part of the permittivity at 90 MHz is of (1.27±0.05). The first interpretation of this value using dielectric properties of mixtures of dust and ices (H2O, CO2), led to the conclusion that the comet porosity ranges between 75-85%. In addition, the dust/ice ratio was found to range between 0.4-2.6 and the permittivity of dust (including 30% of porosity) was determined to be lower than 2.9.The dust permittivity estimate is now reduced by taking into account the updated values of nucleus density and of dust/ice ratio, in order of providing further insights into the nature of the constituents of comet 67P/C-G [2]. We adopt a systematic approach: i) determination of the dust permittivity as a function of the ice (I) to dust (D) and vacuum (V) volume fraction; ii) comparison with the permittivity of meteoritic, mineral and organic materials from literature and laboratory measurements; iii) test of several composition models of the nucleus, corresponding to cosmochemical end members of 67P/C-G. For each of these models the location in the ternary I/D/V diagram is calculated based on available dielectric measurements, and confronted to the locus of 67P/C-G. The number of compliant models is small and the cosmochemical implications of each are discussed [2]. An important fraction of carbonaceous material is required in the dust in order to match CONSERT permittivity observations, establishing that comets represent a massive carbon reservoir.Support from Centre National d'Études Spatiales (CNES, France) for this work, based on observations with CONSERT on board Rosetta, is acknowledged. The CONSERT instrument was designed, built and operated by IPAG, LATMOS and MPS and was financially supported by CNES, CNRS, UJF/UGA, DLR and MPS

  7. Discrimination of land cover from a multiparameter SAR data set

    International Nuclear Information System (INIS)

    Pierdicca, N.; Castracane, P.; Basili, P.; Ciotti, P.; Marzano, F.S.

    2001-01-01

    The identification of the most valuable radar observation parameters (e.g., frequency, polarisation, incidence angle) is important both for designing non-redundant high-performance sensors (i.e. selection of frequency bands and polarizations) and for specifying mission operation requirements (i.e. temporal sampling, incidence angle). Moreover, the task of classifying multiparameter SAR images may require to adopt a strategy that implies the selection of a number of features among those available from this kind of sensors. In this paper it has performed this kind of analysis in a specific area of interest to account for the particular conditions in which remotely sensed data are going to be used. The paper summarises the results of the analysis of the radar data acquired during the MAC Europe '91 and X-SAR/SIR-C campaigns over the Montespertoli test site in Italy. The analysis is based mainly on a statistical approach aiming at demonstrating what is the contribution of different measurements performed by the polarimetric SAR for discriminating the surface coverage. The work is intended to furnish a guideline to develop an optimal strategy for acquiring and processing polarimetric data to be used for land classification

  8. Change detection in a short time sequence of polarimetric C-band SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2016-01-01

    in the covariance matrix representation is carried out. The omnibus test statistic and its factorization detect if and when change(s) occur. The technique is demonstrated on airborne EMISAR C-band data but may be applied to ALOS, COSMO-SkyMed, RadarSat-2 Sentinel-1, TerraSAR-X, and Yaogan data also....

  9. C59N+ and C69N+: isoelectronic heteroanalogues of C60 and C70

    International Nuclear Information System (INIS)

    Lamparth, I.; Nuber, B.; Schick, G.; Skiebe, A.; Groesser, T.; Hirsch, A.

    1995-01-01

    Fragmentation reactions in the mass spectrometer were used to generate the first characterized nitrogen heterofullerene ions C 59 N + and C 69 N + from regioselectively synthesized oligoiminofullerenes. During this process one carbon atom in the fullerene core is removed and replaced with a nitrogen atom. C 59 N + has almost the same structure as the isoelectronic C 60 . (orig.)

  10. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  11. Structures, stabilities, aromaticity, and electronic properties of C66 fullerene isomers, anions (C662-, C664-, C666-), and metallofullerenes (Sc2-C66)

    International Nuclear Information System (INIS)

    Cui Yanhong; Tian, Wei Quan; Feng Jikang; Chen Deli

    2010-01-01

    Among all the 4478 classical isomers of C 66 , C 66 (C s :0060) with the lowest number of pentagon-pentagon fusions was predicted to be the most stable isomer, followed by isomers C 66 (C 2v :0011) and C 66 (C 2 :0083). The infrared spectra and aromaticity of the most stable isomers were predicted. The relative stabilities of C 66 isomers change with charges or doping of metals. The structures and relative stabilities of the most stable metallofullerenes were delineated and compared with experiment. Sc 2 -C 66 (C 2 :0083) was predicted to be the most stable metallofullerene, although Sc 2 -C 66 (C 2v :0011) was observed. Charge-transfer from Sc 2 to the fused pentagons and the bonding between these two moieties significantly decrease the strain energies caused by the pair of fused pentagons thereby stabilizing the fullerene cage.

  12. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile

    Science.gov (United States)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.

    2013-12-01

    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  13. The Orion GN and C Data-Driven Flight Software Architecture for Automated Sequencing and Fault Recovery

    Science.gov (United States)

    King, Ellis; Hart, Jeremy; Odegard, Ryan

    2010-01-01

    The Orion Crew Exploration Vehicle (CET) is being designed to include significantly more automation capability than either the Space Shuttle or the International Space Station (ISS). In particular, the vehicle flight software has requirements to accommodate increasingly automated missions throughout all phases of flight. A data-driven flight software architecture will provide an evolvable automation capability to sequence through Guidance, Navigation & Control (GN&C) flight software modes and configurations while maintaining the required flexibility and human control over the automation. This flexibility is a key aspect needed to address the maturation of operational concepts, to permit ground and crew operators to gain trust in the system and mitigate unpredictability in human spaceflight. To allow for mission flexibility and reconfrgurability, a data driven approach is being taken to load the mission event plan as well cis the flight software artifacts associated with the GN&C subsystem. A database of GN&C level sequencing data is presented which manages and tracks the mission specific and algorithm parameters to provide a capability to schedule GN&C events within mission segments. The flight software data schema for performing automated mission sequencing is presented with a concept of operations for interactions with ground and onboard crew members. A prototype architecture for fault identification, isolation and recovery interactions with the automation software is presented and discussed as a forward work item.

  14. Canonical analysis of sentinel-1 radar and sentinel-2 optical data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Larsen, Rasmus

    2017-01-01

    This paper gives results from joint analyses of dual polarimety synthetic aperture radar data from the Sentinel-1 mission and optical data from the Sentinel-2 mission. The analyses are carried out by means of traditional canonical correlation analysis (CCA) and canonical information analysis (CIA......). Where CCA is based on maximising correlation between linear combinations of the two data sets, CIA maximises mutual information between the two. CIA is a conceptually more pleasing method for the analysis of data with very different modalities such as radar and optical data. Although a little...

  15. Oxidation protection of multilayer CVD SiC/B/SiC coatings for 3D C/SiC composite

    International Nuclear Information System (INIS)

    Liu Yongsheng; Cheng Laifei; Zhang Litong; Wu Shoujun; Li Duo; Xu Yongdong

    2007-01-01

    A CVD boron coating was introduced between two CVD SiC coating layers. EDS and XRD results showed that the CVD B coating was a boron crystal without other impurity elements. SEM results indicated that the CVD B coating was a flake-like or column-like crystal with a compact cross-section. The crack width in the CVD SiC coating deposited on CVD B is smaller than that in a CVD SiC coating deposited on CVD SiC coating. After oxidation at 700 deg. C and 1000 deg. C, XRD results indicated that the coating was covered by product B 2 O 3 or B 2 O 3 .xSiO 2 film. The cracks were sealed as observed by SEM. There was a large amount of flake-like material on hybrid coating surface after oxidation at 1300 deg. C. Oxidation weight loss and residual flexural strength results showed that hybrid SiC/B/SiC multilayer coating provided better oxidation protection for C/SiC composite than a three layer CVD SiC coating at temperatures from 700 deg. C to 1000 deg. C for 600 min, but worse oxidation protection above 1000 deg. C due to the large amount of volatilization of B 2 O 3 or B 2 O 3 .xSiO 2

  16. Radar-Enabled Recovery of the Sutters Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia

    Science.gov (United States)

    Jenniskens, Petrus M.; Fries, Marc D.; Yin, Qing-Zhu; Zolensky, Michael E.; Krot, Alexander N.; Sandford, Scott A.; Sears, Derek; Beauford, Robert; Ebel, Denton S.; Friedrich, Jon M.; hide

    2012-01-01

    Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 +/- 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

  17. Shigaraki UAV-Radar Experiment (ShUREX): overview of the campaign with some preliminary results

    Science.gov (United States)

    Kantha, Lakshmi; Lawrence, Dale; Luce, Hubert; Hashiguchi, Hiroyuki; Tsuda, Toshitaka; Wilson, Richard; Mixa, Tyler; Yabuki, Masanori

    2017-12-01

    structure function parameter {C}_T^2 and refractive index structure function parameter {C}_n^2 to be measured by sensors on the UAV, along with radar-inferred refractive index structure function parameter {C}_{n,radar}^2 . The comprehensive dataset collected during the campaign (from the radar, the UAV, the boundary layer lidar, the ceilometer, and radiosondes) is expected to help obtain a better understanding of turbulent atmospheric structures, as well as arrive at a better interpretation of the radar data.

  18. SRTM mission-cross comparison of X adn C band data properties

    Science.gov (United States)

    Rosen, P.; Eineder, M.; Rabus, B.; Gurrola, E.; Hensley, S.; Knopfle, W.; Breit, H.; Roth, A.; Werner, M.

    2001-01-01

    This paper compares the specific properties of the X and C band data sets with respect to global coverage, height accuracy, sensor specific errors, product definition, product format and availability.

  19. Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Schneider, David J.; Hoblitt, Richard P.

    2013-01-01

    The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  20. Radar and Lidar Radar DEM

    Science.gov (United States)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  1. Generation of a C3c specific monoclonal antibody and assessment of C3c as a putative inflammatory marker derived from complement factor C3

    DEFF Research Database (Denmark)

    Palarasah, Yaseelan; Skjodt, Karsten; Brandt, Jette

    2010-01-01

    complex (C5b-C9) and quantification of complement split products by precipitation-in-gel techniques (e.g. C3d). We have developed a mouse monoclonal antibody (mAb) that is able to detect fluid phase C3c without interference from other products generated from the complement component C3. The C3c specific m....... The C3c mAb was confirmed to be C3c specific, as it showed no cross-reactivity with native (un-cleaved) C3, with C3b, iC3b, or with C3d. Also, no significant reaction was observed with C3 fragments in factor I deficient sera or plasma. This antibody forms the basis for the generation of a robust ELISA...... that allows for a quick and reliable evaluation of complement activation and consumption as a marker for inflammatory processes. We established the C3c plasma range in 100 healthy Danish blood donors with a mean of 3.47 μg/ml and a range of 2.12-4.92 μg/ml. We believe that such an antibody might...

  2. Anaglyph, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed

  3. Stereo Pair, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C

  4. An Experimental study of Fullerene (C60) Nano-fluids on Pool Boiling Conditions

    International Nuclear Information System (INIS)

    Melani, Ai; Shin, Byoong Su; Chang, Soon Heung

    2009-01-01

    Critical heat flux (CHF) is directly related to the performance of the system since CHF limits the heat transfer of a heat transfer system. Significant enhancement of CHF allows reliable operation of equipment with more margins to operational limit and more economic cost saving. The previous results show that the nano-fluids significantly enhanced pool boiling CHF compared to pure water. It was supposed that CHF enhancement was due to increased thermal conductivity of fluids, change of bubble shape and behavior, and nano-particle coating of the boiling surface. The previous researches also show that mainly the pool boiling experiment was employed metal particles. Fullerene (C 60 ) is a novel carbon allotrope that was first discovered in 1985 by a winner noble 'Sir Harold W.Kroto, Richard E. Smalley and Robert F.Curl Jr'. In this study we report the first CHF experiment in pool boiling conditions using Fullerene (C 60 ) nanofluids

  5. Volatility study of [C1C1im][NTf2] and [C2C3im][NTf2] ionic liquids

    International Nuclear Information System (INIS)

    Rocha, Marisa A.A.; Ribeiro, Filipe M.S.; Schröder, Bernd; Coutinho, João A.P.; Santos, Luís M.N.B.F.

    2014-01-01

    Highlights: • Vapor pressures of [C 1 C 1 im][NTf 2 ] and [C 2 C 3 im][NTf 2 ] ionic liquids are reported. • [C 1 C 1 im][NTf 2 ] presents higher enthalpy and entropy of vaporization than expected. • The high volatility of [C 2 C 3 im][NTf 2 ] is a result from its asymmetric character. -- Abstract: Vapor pressures of 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C 1 C 1 im][NTf 2 ]) and 1-ethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, ([C 2 C 3 im][NTf 2 ]) ionic liquids were measured as a function of temperature using a Knudsen effusion apparatus combined with a quartz crystal microbalance. Enthalpies and entropies of vaporization were derived from the fitting of vapor pressure and temperature results to the Clarke and Glew equation. [C 1 C 1 im][NTf 2 ] presents a higher enthalpy and entropy of vaporization than the neighboring members of the series. The enthalpy of vaporization of [C 2 C 3 im][NTf 2 ] lies in between the asymmetric and symmetric ionic liquid series, reflecting a decrease in the electrostatic interactions due to a decrease of the charge accessibility between the ionic pairs when the methyl group is replaced by an ethyl group. The obtained higher volatility of [C 2 C 3 im][NTf 2 ] arises from its asymmetric character, leading to an higher entropic contribution that compensates the enthalpic penalty. The border conditions ([C 1 C 1 im][NTf 2 ], [C 2 C 1 im][NTf 2 ] and [C 2 C 2 im][NTf 2 ]), topology ([C 2 C 3 im][NTf 2 ]) and symmetry/asymmetry of the ILs effect were evaluated and rationalized based on a comparative analysis of the thermodynamic properties, enthalpies and entropies of vaporization

  6. 33 CFR 147.817 - Sir Douglas Morpeth Tension Leg Platform safety zone.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sir Douglas Morpeth Tension Leg... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.817 Sir Douglas Morpeth Tension Leg Platform safety zone. (a) Description. The Sir Douglas Morpeth Tension Leg Platform (Morpeth...

  7. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  8. Scanning Radar Investigations to Characterize Cloud and Precipitation Processes for ASR

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, Chandrasekar [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical and Computer Engineering. Cooperative Inst. for Research in the Atmosphere (CIRA)

    2016-12-17

    The project conducted investigations in the following areas related to scanning radar retrievals: a) Development for Cloud drizzle separation studies for the ENA site based on Doppler Spectra b) Advanced radar retrieval for the SGP site c) Characterizing falling snow using multifrequency dual-polarization measurements d) BAECC field experiment. More details about these investigations can be found within each subtopic within the report.

  9. Challenges for Greenland-wide mass balance from Cryosat-2 radar-altimetry

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Forsberg, René; Sørensen, Louise Sandberg

    As the Greenland ice sheet warms, a change in the structure of the upper snow/firn occurs. This change further induces changes in the reflective properties of the firn seen from satellite radar altimetry. If not identified as changes in the reflective properties of the firn, these may be interpre......As the Greenland ice sheet warms, a change in the structure of the upper snow/firn occurs. This change further induces changes in the reflective properties of the firn seen from satellite radar altimetry. If not identified as changes in the reflective properties of the firn, these may...... be interpreted as actual surface elevation changes seen from the satellite radar altimetry (Nilsson et al., 2015).Here, we investigate how to correct the elevation change observed from the ESA Cryosat-2 radar altimetry mission to derive elevation change of the air/snow interface of the Greenland ice sheet....... The elevation change of this “real” physical surface is crucial, if the goal is to derive Greenland mass balance as done for LiDAR missions.The investigations look into waveform parameters to correct for the observed bias between Radar and LiDAR observations when using Croysat-2 level-2 data. Based...

  10. SRTM Perspective View with Landsat Overlay: San Jose, Costa Rica

    Science.gov (United States)

    2001-01-01

    This perspective view shows the capital city of San Jose, Costa Rica, in the right center of the image (gray area). Rising behind it are the volcanoes Irazu, 3402 meters high (11,161 feet) and Turrialba, 3330 meters high (10,925 feet.)Irazu is the highest volcano in Costa Rica and is located in the Irazu Volcano National Park, established in 1955. There have been at least 23 eruptions of Irazu since 1723, the most recent during 1963 to 1965. This activity sent tephra and secondary mudflows into cultivated areas, caused at least 40 deaths, and destroyed 400 houses and some factories.This image was generated in support of the Central American Commission for Environment and Development through an agreement with NASA. The Commission involves eight nations working to develop the Mesoamerican Biological Corridor, an effort to study and preserve some of the most biologically diverse regions of the planet.This three-dimensional perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced false-color Landsat 7 satellite image. Colors are from Landsat bands 5, 4, and 2 as red, green and blue, respectively. Topographic expression is exaggerated 2X.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM

  11. Budapest, Hungary, Perspective View, SRTM Elevation Model with Landsat Overlay

    Science.gov (United States)

    2004-01-01

    After draining the northern flank of the Alps Mountains in Germany and Austria, the Danube River flows east as it enters this west-looking scene (upper right) and forms the border between Slovakia and Hungary. The river then leaves the border as it enters Hungary and transects the Transdanubian Mountains, which trend southwest to northeast. Upon exiting the mountains, the river turns southward, flowing past Budapest (purplish blue area) and along the western margin of the Great Hungarian Plain.South and west of the Danube, the Transdanubian Mountains have at most only about 400 meters (about 1300 feet) of relief but they exhibit varied landforms, which include volcanic, tectonic, fluvial (river), and eolian (wind) features. A thick deposit of loess (dust deposits likely blown from ancient glacial outwash) covers much of this area, and winds from the northwest, funneled between the Alps and the Carpathian Mountains, are apparently responsible for a radial pattern of erosional streaks across the entire region.This image was generated from a Landsat satellite image draped over an elevation model produced by the Shuttle Radar Topography Mission (SRTM). The view uses a 3-times vertical exaggeration to enhance topographic expression. The false colors of the scene result from displaying Landsat bands 1, 4, and 7 in blue, green, and red, respectively. Band 1 is visible blue light, but bands 4 and 7 are reflected infrared light. This band combination maximizes color contrasts between the major land cover types, namely vegetation (green), bare ground (red), and water (blue). Shading of the elevation model was used to further highlight the topographic features.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space

  12. SRTM Anaglyph: Corral de Piedra, Argentina

    Science.gov (United States)

    2001-01-01

    Volcanism and erosion are prominently seen in this view of the eastern flank of the Andes Mountains taken by Shuttle Radar Topography Mission (SRTM). The area is southeast of San Martin de Los Andes, Argentina. Eroded peaks up to 2,210-meter-high (7,260-foot) are seen on the west (left), but much of the scene consists of lava plateaus that slope gently eastward. These lava flows were most likely derived from volcanic sources in the high mountains. However, younger and more localized volcanic activity is evident in the topographic data as a cone surrounding oval-shaped flow near the center of the scene.The plateaus are extensively eroded by the Rio Limay (bottom of the image) and the Rio Collon Cura and its tributaries (upper half). The larger stream channels have reached a stable level and are now cutting broad valleys. Few terraces between the levels of the high plateaus and lower valleys (bottom center and upper right of the volcanic cone) indicate that stream erosion had once temporarily reached a higher stable level before eroding down to its current level. In general, depositional surfaces like lava flows are progressively younger with increasing elevation, while erosional surfaces are progressively younger with decreasing elevation.This anaglyph was produced by first shading a preliminary SRTM elevation model. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle

  13. SRTM Colored Height and Shaded Relief: Pinon Canyon region, Colorado

    Science.gov (United States)

    2001-01-01

    Erosional features are prominent in this view of southern Colorado taken by the Shuttle Radar Topography Mission (SRTM). The area covers about 20,000 square kilometers and is located about 50 kilometers south of Pueblo, Colorado. The prominent mountains near the left edge of the image are the Spanish Peaks, remnants of a 20 million year old volcano. Rising 2,100 meters (7,000 ft) above the plains to the east, these igneous rock formations with intrusions of eroded sedimentary rock historically served as guiding landmarks for travelers on the Mountain Branch of the Santa Fe Trail.Near the center of the image is the Pinon Canyon Maneuver Site, a training area for soldiers of the U.S. Army from nearby Fort Carson. The site supports a diverse ecosystem with large numbers of big and small game, fisheries, non-game wildlife, forest, range land and mineral resources. It is bounded on the east by the dramatic topography of the Purgatoire River Canyon, a 100 meter (328 foot) deep scenic red canyon with flowing streams, sandstone formations, and exposed geologic processes.Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. Southern slopes appear bright and northern slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter

  14. Epitaxial growth of 3C-SiC by using C{sub 60} as a carbon source; Untersuchungen zum epitaktischen Wachstum von 3C-SiC bei Verwendung einer C{sub 60}-Kohlenstoffquelle

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Sascha

    2006-01-15

    Within this work epitaxial 3C-SiC-films were grown on Si(001) substrates and on ion beam synthesized 3C-SiC(001) pseudo substrates. A rather new process was used which is based on the simultaneous deposition of C60 and Si. In order to set up the necessary experimental conditions an ultra-high vacuum chamber has been designed and built. A RHEED system was used to examine SiC film growth in-situ. Using the described technique 3C-SiC films were grown void-free on Si(001) substrates. Deposition rates of C60 and Si were chosen adequately to maintain a Si:C ratio of approximately one during the deposition process. It was shown that stoichiometric and epitaxial 3C-SiC growth with the characteristic relationship (001)[110]Si(001)[110]3C-SiC could be achieved. TEM investigations revealed that the grown 3C-SiC films consist of individual grains that extend from the Si substrate to the film surface. Two characteristic grain types could be identified. The correlation between structure and texture of void-free grown 3C-SiC films and film thickness was studied by X-ray diffraction (XRD). Pole figure measurements showed that thin films only contain first-order 3C-SiC twins. With higher film thickness also second-order twins are found which are located as twin lamellae in grain type 2. Improvement of polar texture with increasing film thickness couldn't be observed in the investigated range of up to 550 nm. On ion beam synthesized 3C-SiC pseudo substrates homoepitaxial 3C-SiC growth could be demonstrated for the first time by using a C{sub 60} carbon source. In respect to the crystalline quality of the grown films the surface quality of the used substrates was identified as a crucial factor. Furthermore a correlation between the ratio of deposition rates of C{sub 60} and Si and 3C-SiC film quality could be found. Under silicon-rich conditions, i.e. with a Si:C ratio of slightly greater one, homoepitaxial 3C-SiC layer-by-layer growth can be achieved. Films grown under these

  15. Classification and correction of the radar bright band with polarimetric radar

    Science.gov (United States)

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  16. Multi-approach evaluations of a cascade-Organic Rankine Cycle (C-ORC) system driven by diesel engine waste heat: Part B-techno-economic evaluations

    International Nuclear Information System (INIS)

    Yu, Guopeng; Shu, Gequn; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2016-01-01

    Highlights: • A novel C-ORC system was proposed for recovering waste heat from a diesel engine. • Techno-economic evaluations were conducted to explore C-ORC’s practical benefits. • Toluene and R143a show the best economic performance for two ORC loops in C-ORC. • The best electricity production cost is 0.27 Dollar/kW h under engine conditions. - Abstract: A novel transcritical cascade-Organic Rankine Cycle (C-ORC) system was proposed for recovering multi-grade waste heat from a typical heavy-duty diesel engine. The C-ORC comprises a high temperature ORC loop (HT-Loop) and a low temperature ORC loop (LT-Loop) for recovering waste heat from engine exhaust gas (EG), exhaust gas recirculation (EGR), jacket water (JW) and charge air (CA) in a cascaded pattern. The basic thermodynamic evaluation on energy and exergy aspects were covered in the companion piece-‘Part A-thermodynamic evaluations’, indicating that the proposed C-ORC possesses great heat-recovery capacities and efficiency-promotion potentials. The techno-economic evaluations in Part B of this paper will further explore the performance of the C-ORC system based on costs and benefits in order to reveal its practical benefits. Four techno-economic indexes are mainly focused on: component-to-system cost ratio (CSCR), electricity production cost (EPC), depreciated payback period (DPP) and savings-to-investment ratio (SIR). Under rated engine conditions, working fluids were initially compared to find the most economical fluids for the HT-Loop and the LT-Loop respectively. Results indicated that toluene and R143a still make the perfect match for the C-ORC with the lowest EPC (0.27 Dollar/kW h), DPP (7.8 years) and the highest SIR (1.6). As to component-to-system cost ratio (CSCR), the cost of expanders and heat exchangers together account for more than 3/4 of the total system cost, and the expander of the LT-Loop is the most costly single component. The C-ORC’s techno-economic performance was

  17. The methylenetetrahydrofolate reductase c.c.677 C>T and c.c.1298 A>C polymorphisms in reproductive failures: Experience from an RSA and RIF study on a Polish population.

    Science.gov (United States)

    Nowak, Izabela; Bylińska, Aleksandra; Wilczyńska, Karolina; Wiśniewski, Andrzej; Malinowski, Andrzej; Wilczyński, Jacek R; Radwan, Paweł; Radwan, Michał; Barcz, Ewa; Płoski, Rafał; Motak-Pochrzęst, Hanna; Banasik, Małgorzata; Sobczyński, Maciej; Kuśnierczyk, Piotr

    2017-01-01

    Almost 1600 individuals from the Polish population were recruited to this study. Among them 319 were fertile couples, 289 were recurrent spontaneous abortion (RSA) couples, and 131 were in the group of recurrent implantation failure (RIF) following in vitro fertilization. The aim of this study was to evaluate the MTHFR c.c.677 C>T and c.c.1298 A>C polymorphisms' association with RSA and RIF. We used PCR-RFLP with HinfI (677 C>T) and MboII (1298 A>C) digestion. We observed a protective effect of the female AC genotype (OR = 0.64, p = 0.01) and the C allele (AC+CC genotypes; OR = 0.65, p = 0.009) against RSA. Moreover, 1298 AA/677 CT women were more frequent in RSA (31.14%) and RIF (25.20%) groups in comparison to fertile women (22.88%), although this difference was significant only in the case of RSA (p = 0.022, OR = 1.52). Male combined genotype analysis revealed no association with reproductive failure of their partners. Nevertheless, the female/male combination AA/AC of the 1298 polymorphism was more frequent in RSA couples (p = 0.049, OR = 1.49). However, the significant results became insignificant after Bonferroni correction. In addition, analysis of haplotypes showed significantly higher frequency of the C/C haplotype (1298 C/677 C) in the female control group than in the female RSA group (p = 0.03, OR = 0.77). Moreover, the association between elevated homocysteine (Hcy) level in plasma of RSA and RIF women and MTHFR polymorphisms was investigated but did not reveal significant differences. In conclusion, for clinical practice, it is better to check the homocysteine level in plasma and, if the Hcy level is increased, to recommend patients to take folic acid supplements rather than undergo screening of MTHFR for 1298 A>C and 677 C>T polymorphisms.

  18. Synthesis of the C(18)–C(34) Fragment of Amphidinolide C and the C(18)–C(29) Fragment of Amphidinolide F

    Science.gov (United States)

    Roy, Sudeshna; Spilling, Christopher D.

    2010-01-01

    A convergent synthesis of the C(18)–C(34) fragment of amphidinolide C and the C(18)–C(29) fragment of amphidinolide F is reported. The approach involves the synthesis of the common intermediate tetrahydrofuranyl-β-ketophosphonate via cross metathesis, Pd(0)-catalyzed cyclization and hydroboration-oxidation. The β-ketophosphonate was coupled to three side chain aldehydes using a Horner-Wadsworth-Emmons (HWE) olefination reaction to give dienones, which were reduced with L-selectride to give the fragments of amphidinolide C and F. PMID:21028791

  19. Hemoglobin C, S-C, and E Diseases

    Science.gov (United States)

    ... quickly than others, resulting in chronic anemia. Hemoglobin C disease Hemoglobin C disease occurs mostly in blacks. ... a common complication of hemoglobin C disease. Hemoglobin S-C disease Hemoglobin S-C disease occurs in people who ...

  20. Intelligent Mission Controller Node

    National Research Council Canada - National Science Library

    Perme, David

    2002-01-01

    The goal of the Intelligent Mission Controller Node (IMCN) project was to improve the process of translating mission taskings between real-world Command, Control, Communications, Computers, and Intelligence (C41...

  1. The β-1,3-glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ha, Cheol Woong; Kim, Kwantae; Chang, Yeon Ji; Kim, Bongkeun; Huh, Won-Ki

    2014-07-01

    In Saccharomyces cerevisiae, the stability of highly repetitive rDNA array is maintained through transcriptional silencing. Recently, a β-1,3-glucanosyltransferase Gas1 has been shown to play a significant role in the regulation of transcriptional silencing in S. cerevisiae. Here, we show that the gas1Δ mutation increases rDNA silencing in a Sir2-dependent manner. Remarkably, the gas1Δ mutation induces nuclear localization of Msn2/4 and stimulates the expression of PNC1, a gene encoding a nicotinamidase that functions as a Sir2 activator. The lack of enzymatic activity of Gas1 or treatment with a cell wall-damaging agent, Congo red, exhibits effects similar to those of the gas1Δ mutation. Furthermore, the loss of Gas1 or Congo red treatment lowers the cAMP-dependent protein kinase (PKA) activity in a cell wall integrity MAP kinase Slt2-dependent manner. Collectively, our results suggest that the dysfunction of Gas1 plays a positive role in the maintenance of rDNA integrity by decreasing PKA activity and inducing the accumulation of Msn2/4 in the nucleus. It seems that nuclear-localized Msn2/4 stimulate the expression of Pnc1, thereby enhancing the association of Sir2 with rDNA and promoting rDNA stability. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Detecting weather radar clutter using satellite-based nowcasting products

    DEFF Research Database (Denmark)

    Jensen, Thomas B.S.; Gill, Rashpal S.; Overgaard, Søren

    2006-01-01

    This contribution presents the initial results from experiments with detection of weather radar clutter by information fusion with satellite based nowcasting products. Previous studies using information fusion of weather radar data and first generation Meteosat imagery have shown promising results...... for the detecting and removal of clutter. Naturally, the improved spatio-temporal resolution of the Meteosat Second Generation sensors, coupled with its increased number of spectral bands, is expected to yield even better detection accuracies. Weather radar data from three C-band Doppler weather radars...... Application Facility' of EUMETSAT and is based on multispectral images from the SEVIRI sensor of the Meteosat-8 platform. Of special interest is the 'Precipitating Clouds' product, which uses the spectral information coupled with surface temperatures from Numerical Weather Predictions to assign probabilities...

  3. Radar sensing via a Micro-UAV-borne system

    Science.gov (United States)

    Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine

    2017-04-01

    In recent years, the miniaturization of flight control systems and payloads has contributed to a fast and widespread diffusion of micro-UAV (Unmanned Aircraft Vehicle). While micro-UAV can be a powerful tool in several civil applications such as environmental monitoring and surveillance, unleashing their full potential for societal benefits requires augmenting their sensing capability beyond the realm of active/passive optical sensors [1]. In this frame, radar systems are drawing attention since they allow performing missions in all-weather and day/night conditions and, thanks to the microwave ability to penetrate opaque media, they enable the detection and localization not only of surface objects but also of sub-surface/hidden targets. However, micro-UAV-borne radar imaging represents still a new frontier, since it is much more than a matter of technology miniaturization or payload installation, which can take advantage of the newly developed ultralight systems. Indeed, micro-UAV-borne radar imaging entails scientific challenges in terms of electromagnetic modeling and knowledge of flight dynamics and control. As a consequence, despite Synthetic Aperture Radar (SAR) imaging is a traditional remote sensing tool, its adaptation to micro-UAV is an open issue and so far only few case studies concerning the integration of SAR and UAV technologies have been reported worldwide [2]. In addition, only early results concerning subsurface imaging by means of an UAV-mounted radar are available [3]. As a contribution to radar imaging via autonomous micro-UAV, this communication presents a proof-of-concept experiment. This experiment represents the first step towards the development of a general methodological approach that exploits expertise about (sub-)surface imaging and aerospace systems with the aim to provide high-resolution images of the surveyed scene. In details, at the conference, we will present the results of a flight campaign carried out by using a single radar

  4. C r C =

    Indian Academy of Sciences (India)

    Administrator

    C r. C. = CTPPY: concentration of TPPY; CAuNPs: concentration of Au NPs. The concentration of the Au NPs is calculated as follows: (1) The weight of Au (WAu) produced from the complete reduction of HAuCl4 is calculated by multiplying the mole of added HAuCl4 (weight of added. HAuCl4·4H2O divided by molecular ...

  5. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An

  6. Fourier spectroscopy of the 12C2, 13C2, and 12C13C (0-0) swan bands

    International Nuclear Information System (INIS)

    Amiot, C.

    1983-01-01

    The (0-0) band of the C 2 Swan electronic system d 3 Pi/sub g/→a 3 Pi/sub u/ has been recorded by Fourier spectroscopy. The three isotopes species 12 C 2 , 13 C 2 , and 12 C 13 C were investigated. The observed wavenumbers were reduced to molecular parameters using a nonlinear least-square fitting procedure. Well-known perturbations at N' = 47 and N' = 51 again observed in the e 12 C 2 d 3 Pi/sub g/ (v = 0) level. Perturbations of the same kind are present in the 13 C 2 spectrum at N' = 34 and N' = 44,48,52. The 12 C 13 C spectrum exhibits in the observed spectral range a unique perturbation for N' = 41

  7. Advanced C and C++ compiling

    CERN Document Server

    Stevanovic, Milan

    2014-01-01

    Learning how to write C/C++ code is only the first step. To be a serious programmer, you need to understand the structure and purpose of the binary files produced by the compiler: object files, static libraries, shared libraries, and, of course, executables.Advanced C and C++ Compiling explains the build process in detail and shows how to integrate code from other developers in the form of deployed libraries as well as how to resolve issues and potential mismatches between your own and external code trees.With the proliferation of open source, understanding these issues is increasingly the res

  8. Opportunities and challenges for evaluating precipitation estimates during GPM mission

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, E. [George Mason Univ. and NASA Goddard Space Flight Center, Greenbelt, MD (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Llort, X.; Sempere-Torres, D. [GRAHI/Univ. Politecnica de Catalunya, Barcelona (Spain)

    2006-10-15

    Data assimilation in conjunction with numerical weather prediction and a variety of hydrologic applications now depend on satellite observations of precipitation. However, providing values of precipitation is not sufficient unless they are accompanied by the associated uncertainty estimates. The main approach of quantifying satellite precipitation uncertainties generally requires establishment of reliable uncertainty estimates for the ground validation rainfall products. This paper discusses several of the relevant validation concepts evolving from the tropical rainfall measuring mission (TRMM) era to the global precipitation measurement mission (GPM) era in the context of determining and reducing uncertainties of ground and space-based radar rainfall estimates. From comparisons of probability distribution functions of rain rates derived from TRMM precipitation radar and co-located ground based radar data - using the new NASA TRMM radar rainfall products (version 6) - this paper provides (1) a brief review of the importance of comparing pdfs of rain rate for statistical and physical verification of space-borne radar estimates of precipitation; (2) a brief review of how well the ground validation estimates compare to the TRMM radar retrieved estimates; and (3) discussion on opportunities and challenges to determine and reduce the uncertainties in space-based and ground-based radar estimates of rain rate distributions. (orig.)

  9. Application of ground penetrating radar in placer mineral exploration for mapping subsurface sand layers: A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Barnwal, R.P.; Singh, V.K.; Gujar, A.R.; Rajamanickam, G.V.

    radar reflections using time-domain reflectometry and sedimentological analyses, Sedimentology, v. 47, p. 435-449. Jol, H.M. & Bristow, C.S., 2003. GPR in sediments: advice on data collection, basic processing and interpretation, a good practice... guide, In: Bristow, C.S. and Jol, H.M. (Eds.), GPR in sediments, Geological Society of London, Special Publication, 211. Neal, A., 2004. Ground Penetrating Radar and its use in sedimentology: Principles, Problems and Progress. Earth-Science Reviews...

  10. Oxidation behavior of TiC, ZrC, and HfC dispersed in oxide matrices

    International Nuclear Information System (INIS)

    Arun, R.; Subramanian, M.; Mehrotra, G.M.

    1990-01-01

    The oxidation behavior of hot pressed TiC-Al 2 O 3 , TiC-ZrO 2 , ZrC-ZrO 2 , and HfC-HfO 2 composites has been investigated at 1273 K. The oxidation of TiC, ZrC, and HfC in hot-pressed composites containing ZrO 2 and HfO 2 has been found to be extremely rapid. The kinetics of oxidation of TiC and a 90 wt% TiC-Al 2 O 3 composite appear to be faster compared to that of pure TiC. X-ray diffraction results for hot-pressed ZrC-HfO 2 and HfC-HfO 2 composites indicate partial stabilization of tetragonal ZrO 2 and HfO 2 phases in these composites

  11. Experimental test of General Relativity theory by radar observations of planets

    International Nuclear Information System (INIS)

    Afanas'eva, T.I.; Kislik, M.D.; Kolyuka, Yu.F.; Tikhonov, V.F.

    1991-01-01

    Basing on the radar observations of planets, carried out in the USSR and USA in 1964-1986, a particular relativistic effect has been tested, namely the (O-C) discrepancies in radar distances, arising in the construction of a unified theory of motion on interior planets in the Newtonian approximation. The results obtained confirm the validity of General Relativity to an accuracy of about 10 -2

  12. A New Empirical Model for Radar Scattering from Bare Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Nicolas Baghdadi

    2016-11-01

    Full Text Available The objective of this paper is to propose a new semi-empirical radar backscattering model for bare soil surfaces based on the Dubois model. A wide dataset of backscattering coefficients extracted from synthetic aperture radar (SAR images and in situ soil surface parameter measurements (moisture content and roughness is used. The retrieval of soil parameters from SAR images remains challenging because the available backscattering models have limited performances. Existing models, physical, semi-empirical, or empirical, do not allow for a reliable estimate of soil surface geophysical parameters for all surface conditions. The proposed model, developed in HH, HV, and VV polarizations, uses a formulation of radar signals based on physical principles that are validated in numerous studies. Never before has a backscattering model been built and validated on such an important dataset as the one proposed in this study. It contains a wide range of incidence angles (18°–57° and radar wavelengths (L, C, X, well distributed, geographically, for regions with different climate conditions (humid, semi-arid, and arid sites, and involving many SAR sensors. The results show that the new model shows a very good performance for different radar wavelengths (L, C, X, incidence angles, and polarizations (RMSE of about 2 dB. This model is easy to invert and could provide a way to improve the retrieval of soil parameters.

  13. De novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae

    Directory of Open Access Journals (Sweden)

    Maximilian Lauterbach

    2017-11-01

    Full Text Available C4 photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C4 from ancestral C3 photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C3 and C4 species have significantly increased our understanding of C4 functioning and evolution. In Chenopodiaceae, a family that is rich in C4 origins and photosynthetic types, the anatomy, physiology and phylogeny of C4, C2, and C3 species of Salsoleae has been studied in great detail, which facilitated the choice of six samples of five representative species with different photosynthetic types for transcriptome comparisons. mRNA from assimilating organs of each species was sequenced in triplicates, and sequence reads were de novo assembled. These novel genetic resources were then analyzed to provide a better understanding of differential gene expression between C3, C2 and C4 species. All three analyzed C4 species belong to the NADP-ME type as most genes encoding core enzymes of this C4 cycle are highly expressed. The abundance of photorespiratory transcripts is decreased compared to the C3 and C2 species. Like in other C4 lineages of Caryophyllales, our results suggest that PEPC1 is the C4-specific isoform in Salsoleae. Two recently identified transporters from the PHT4 protein family may not only be related to the C4 syndrome, but also active in C2 photosynthesis in Salsoleae. In the two populations of the C2 species S. divaricata transcript abundance of several C4 genes are slightly increased, however, a C4 cycle is not detectable in the carbon isotope values. Most of the core enzymes of photorespiration are highly increased in the C2 species compared to both C3 and C4 species, confirming a successful establishment of the C2 photosynthetic pathway. Furthermore, a function of PEP-CK in C2 photosynthesis

  14. Evaluation of Refractivity Profiles from CHAMP and SAC-C GPS Radio Occultation

    Science.gov (United States)

    Poli, Paul; Ao, Chi On; Joiner, Joanna; delaTorreJuarez, Manuel; Hoff, Raymond

    2002-01-01

    The GeoForschungsZentrum's Challenging Minisatellite Payload for Geophysical Research and Application (CHAMP, Germany-US) and the Comision Nacional de Actividades Especiales' Satelite de Aplicaciones Cientificas-C (SAC-C, Argentina-US) missions are the first missions to carry a second-generation Blackjack Global Positioning System (GPS) receiver. One of the new features of this receiver is its ability to sense the lower troposphere closer to the surface than the proof-of-concept GPS Meteorology experiment (GPS/MET). Since their launch, CHAMP and SAC-C have collected thousands of GPS radio occultations, representing a wealth of measurements available for data assimilation and Numerical Weather Prediction (NWP). In order to evaluate the refractivity data derived by the Jet Propulsion Laboratory (JPL) from raw radio occultation measurements, we use Data Assimilation Office (DAO) 6-hour forecasts as an independent state of the atmosphere. We compare CHAMP and SAC-C refractivity (processed by JPL) with refractivity calculated from the DAO global fields of temperature, water vapor content and humidity. We show statistics of the differences as well as histograms of the differences.

  15. Sinai Peninsula, Shaded Relief and Colored Height

    Science.gov (United States)

    2004-01-01

    The Sinai Peninsula, located between Africa and Asia, is a result of those two continents pulling apart from each other. Earth's crust is cracking, stretching, and lowering along the two northern branches of the Red Sea, namely the Gulf of Suez, seen here on the west (left), and the Gulf of Aqaba, seen to the east (right). This color-coded shaded relief image shows the triangular nature of the peninsula, with the coast of the Mediterranean Sea forming the northern side of the triangle. The Suez Canal can be seen as the narrow vertical blue line in the upper left connecting the Red Sea to the Mediterranean. The peninsula is divided into three distinct parts; the northern region consisting chiefly of sandstone, plains and hills, the central area dominated by the Tih Plateau, and the mountainous southern region where towering peaks abound. Much of the Sinai is deeply dissected by river valleys, or wadis, that eroded during an earlier geologic period and break the surface of the plateau into a series of detached massifs with a few scattered oases. Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed

  16. Perspective View with Landsat Overlay, Costa Rica

    Science.gov (United States)

    2002-01-01

    This perspective view shows the Caribbean coastal plain of Costa Rica, with the Cordillera Central rising in the background and the Pacific Ocean in the distance. The prominent river in the center of the image is the Rio Sucio, which merges with the Rio Sarapiqui at the bottom of the image and eventually joins with Rio San Juan on the Nicaragua border.Like much of Central America, Costa Rica is generally cloud covered so very little satellite imagery is available. The ability of the Shuttle Radar Topography Mission (SRTM) instrument to penetrate clouds and make three-dimensional measurements will allow generation of the first complete high-resolution topographic map of the entire region. These data were used to generate the image.This three-dimensional perspective view was generated using elevation data from SRTM and an enhanced false-color Landsat 7 satellite image. Colors are from Landsat bands 5, 4, and 2 as red, green and blue, respectively. Topographic expression is exaggerated two times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.Elevation data used in this image was acquired by the SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices

  17. Alcohol binding in the C1 (C1A + C1B) domain of protein kinase C epsilon

    Science.gov (United States)

    Pany, Satyabrata; Das, Joydip

    2015-01-01

    Background Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε. Methods In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. Results In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40 Å apart from each other indicating that these residues form two different alcohol binding sites. Conclusions The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists. PMID:26210390

  18. Human and Robotic Mission to Small Bodies: Mapping, Planning and Exploration

    Science.gov (United States)

    Neffian, Ara V.; Bellerose, Julie; Beyer, Ross A.; Archinal, Brent; Edwards, Laurence; Lee, Pascal; Colaprete, Anthony; Fong, Terry

    2013-01-01

    This study investigates the requirements, performs a gap analysis and makes a set of recommendations for mapping products and exploration tools required to support operations and scientific discovery for near- term and future NASA missions to small bodies. The mapping products and their requirements are based on the analysis of current mission scenarios (rendezvous, docking, and sample return) and recommendations made by the NEA Users Team (NUT) in the framework of human exploration. The mapping products that sat- isfy operational, scienti c, and public outreach goals include topography, images, albedo, gravity, mass, density, subsurface radar, mineralogical and thermal maps. The gap analysis points to a need for incremental generation of mapping products from low (flyby) to high-resolution data needed for anchoring and docking, real-time spatial data processing for hazard avoidance and astronaut or robot localization in low gravity, high dynamic environments, and motivates a standard for coordinate reference systems capable of describing irregular body shapes. Another aspect investigated in this study is the set of requirements and the gap analysis for exploration tools that support visualization and simulation of operational conditions including soil interactions, environment dynamics, and communications coverage. Building robust, usable data sets and visualisation/simulation tools is the best way for mission designers and simulators to make correct decisions for future missions. In the near term, it is the most useful way to begin building capabilities for small body exploration without needing to commit to specific mission architectures.

  19. Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1.

    Science.gov (United States)

    Zhao, Xuan; Lu, Lulu; Qi, Yonghao; Li, Miao; Zhou, Lijun

    2017-10-01

    The naturally occurring anthraquinone emodin has been serving primarily as an anti-bacterial and anti-inflammatory agent. However, little is known about its potential on anti-aging. This investigation examined the effect of emodin on lifespan and focused on its physiological molecular mechanisms in vivo. Using Caenorhabditis elegans (C. elegans) as an animal model, we found emodin could extend lifespan of worms and improve their antioxidant capacity. Our mechanistic studies revealed that emodin might function via insulin/IGF-1 signaling (IIS) pathway involving, specifically the core transcription factor DAF-16. Quantitative RT-PCR results illustrated that emodin up-regulated transcription of DAF-16 target genes which express antioxidants to promote antioxidant capacity and lifespan of worms. In addition, attenuated effect in sir-2.1 mutants suggests that emodin likely functioned in a SIR-2.1-dependent manner. Our study uncovers a novel role of emodin in prolonging lifespan and supports the understanding of emodin being a beneficial dietary supplement.

  20. Molecular resonances in sub-Coulomb energy region (12C-12C, 12C-24Mg, 12C-9Be systems)

    International Nuclear Information System (INIS)

    Takimoto, Kiyohiko; Shimomura, Susumu; Tanaka, Makoto; Murakami, Tetsuya; Fukada, Mamoru; Sakaguchi, Atsushi

    1982-01-01

    Molecular resonance in sub-Coulomb energy region was studied on 12 C- 12 C, 12 C- 24 Mg and 12 C- 9 Be systems. The excitation functions and the angular distributions were measured on the reactions 12 C( 12 C, 8 Besub(g,s,)) 16 Osub(g,s,), 24 Mg( 12 C, α) 32 S and 9 Be ( 12 C, 8 Besub(g,s,)) 13 Csub(g,s,). Sub-Coulomb resonances were observed in all systems and the contribution of the 12 Csub(2nd)*(0 + , 7.65 MeV) state is proposed. (author)

  1. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity.

    Science.gov (United States)

    Gallo, Christopher M; Smith, Daniel L; Smith, Jeffrey S

    2004-02-01

    The Saccharomyces cerevisiae Sir2 protein is an NAD(+)-dependent histone deacetylase (HDAC) that functions in transcriptional silencing and longevity. The NAD(+) salvage pathway protein, Npt1, regulates Sir2-mediated processes by maintaining a sufficiently high intracellular NAD(+) concentration. However, another NAD(+) salvage pathway component, Pnc1, modulates silencing independently of the NAD(+) concentration. Nicotinamide (NAM) is a by-product of the Sir2 deacetylase reaction and is a natural Sir2 inhibitor. Pnc1 is a nicotinamidase that converts NAM to nicotinic acid. Here we show that recombinant Pnc1 stimulates Sir2 HDAC activity in vitro by preventing the accumulation of NAM produced by Sir2. In vivo, telomeric, rDNA, and HM silencing are differentially sensitive to inhibition by NAM. Furthermore, PNC1 overexpression suppresses the inhibitory effect of exogenously added NAM on silencing, life span, and Hst1-mediated transcriptional repression. Finally, we show that stress suppresses the inhibitory effect of NAM through the induction of PNC1 expression. Pnc1, therefore, positively regulates Sir2-mediated silencing and longevity by preventing the accumulation of intracellular NAM during times of stress.

  2. The influence of percutaneous nephrolithotomy on human systemic stress response, SIRS and renal function.

    Science.gov (United States)

    Shen, Pengfei; Wei, Wuran; Yang, Xiaochun; Zeng, Hao; Li, Xiong; Yang, Jie; Wang, Jia; Huang, Jiaoti

    2010-10-01

    The objective of this study is to investigate the influences of percutaneous nephrolithotomy (PNL) and open surgery nephrolithotomy on the systemic stress response, SIRS and renal function. Forty patients with kidney calculi were enrolled in the study. Twenty cases were randomized to the PNL group and the other twenty cases to the open surgery group. Levels of C-reactive protein (CRP), interleukin-6(IL-6), β(2)-microglobulin (β(2)-MG), respiration rate, heart rate, body temperature and white blood cell counts were examined. CRP and IL-6 were measured in all patients pre-operatively and on post-operative days 1, 3 and 6, respectively. There was significant difference in their pre- and post-operation levels (P PNL group and 12 cases in open surgery group; there was significant difference between the two groups (P 0.05). Urine β(2)-MG levels were also measured. There was significant difference between pre- and the first day post-PNL (P PNL (P > 0.05). There was significant difference between pre- and first and third day post-open surgery (P 0.05). There was significant difference between two groups at the first, third and sixth days (P PNL group and open surgery group to some extent. The degree of stress response of PNL is lower than that of open surgery, proving the advantages of PNL with reference to serum immunology. There were cases in both the groups with SIRS, but the degree of SIRS in PNL group was lesser than the other group. Both the groups have no obvious effect on glomerular filtration function after operation and have effect on renal tubular reabsorption in the early stage after operation; but the recovery of the PNL group is faster than the open surgery group. It is thus shown that PNL is much safer and more feasible and has lesser effect on renal function.

  3. Borane-catalyzed cracking of C-C bonds in coal; Boran-katalysierte C-C-Bindungungsspaltung in Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Narangerel, J; Haenel, M W [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-09-01

    Coal, especially coking coal, was reacted with hydrogen at comparatively mild reaction conditions (150-280 degrees centigrade, 20 MPa hydrogen pressure) in the presence of catalysts consisting of borange reagents and certain transition metal halides to obtaine more than 80 percent of pyridine-soluble products. The influence of the degree of coalification, catalyst and temperature on the borane-catalyzed hydrogenolysis of C-C bonds in coal was investigated. (orig.) [Deutsch] Steinkohlen, insbesondere im Inkohlungsbereich der Fettkohlen (Kokskohlen), werden in Gegenwart von Katalysatoren aus Boran-Reagentien und bestimmten Uebergangsmetallhalogeniden mit Wasserstoff bei vergleichsweise milden Reaktionsbedingungen (250-280 C, 20 MPa Wasserstoffdruck) in zu ueber 80% pyridinloesliche Produkte umgewandelt. Der Einfluss von Inkohlungsgrad, Katalysator und Temperatur auf die Boran-katalysierte C-C-Bindungshydrogenolyse in Kohle wurde untersucht. (orig.)

  4. Determination of material properties for short fibre reinforced C/C-SiC

    Directory of Open Access Journals (Sweden)

    Hausherr J.-M.

    2015-01-01

    Full Text Available Determining the mechanical properties of short fibre reinforced CMC using standard sized coupons has always been a challenge due to a high statistical scattering of the measured values. Although the random orientation of short fibres results in a quasi-isotropic material behavior of 2D-structures with a sufficiently large volume, the small volume typical for test coupons usually results in a non-isotropic fibre orientation in the tested volume. This paper describes a method for manufacturing unidirectional oriented short fibre reinforced CMC materials and presents material properties of UD-C/C-SiC. After verifying the fibre orientation of the CMC using micro-computed tomography, coupons were extracted to determine the orthotropic material properties. These orthotropic material properties were then used to predict the properties of C/C-SiC with randomly distributed short fibres. To validate the method, micro-computed tomography is used to quantitatively determine the fibre orientation within coupons extracted from randomly distributed short fibre C/C-SiC. After mechanical three-point-bending tests, the measured stiffness and bending strength is compared with the predicted properties. Finally, the data are used to devise a method suited for reducing the inherent large spread of material properties associated with the measurement of CMC materials with randomly distributed short fibres.

  5. Mapping submarine sand waves with multiband imaging radar - 2. Experimental results and model comparison

    NARCIS (Netherlands)

    Vogelzang, J.; Wensink, G.J.; Calkoen, C.J.; Kooij, M.W.A. van der

    1997-01-01

    On August 16, 1989, and on July 12, 1991, experiments were performed to study the mapping of submarine sand waves with the airborne imaging radar, a polarimetric (and, in 1991, interferometric) airborne P, L, and C band synthetic aperture radar system. The experiments took place in an area 30 km off

  6. Synthesis of [5,6-13C2, 1-14C]olivetolic acid, methyl [1'-13C]olivetolate and [5,6-13C2, 1-14C]cannabigerolic acid

    International Nuclear Information System (INIS)

    Porwoll, J.P.; Leete, E.

    1985-01-01

    Potential advanced intermediates in the biosynthesis of delta 9 -tetrahydrocannabinol, the major psychoactive principle of marijuana, have been synthesized labeled with two contiguous 13 C atoms and 14 C. Methyl [5,6- 13 C 2 , 1- 14 C]olivetolate was prepared from lithium [ 13 C 2 ]acetylide and dimethyl [2- 14 C]malonate. Reaction with geranyl bromide afforded methyl [5,6- 13 C 2 , 1- 14 C]cannabigerolate, and hydrolysis of these methyl esters with lithium propyl mercaptide yielded the corresponding labeled acids. The 13 C- 13 C couplings observable in the 13 C NMR spectra of these 13 C-enriched compounds and their synthetic precursors are recorded. Methyl [1'- 14 C]olivetolate was prepared from 13 CO 2 to confirm assignments of the 13 C chemical shifts in the pentyl side chain of these compounds. (author)

  7. Cassini Radar EQM Model: Instrument Description and Performance Status

    Science.gov (United States)

    Borgarelli, L.; Faustini, E. Zampolini; Im, E.; Johnson, W. T. K.

    1996-01-01

    The spaeccraft of the Cassini Mission is planned to be launched towards Saturn in October 1997. The mission is designed to study the physical structure and chemical composition of Titan. The results of the tests performed on the Cassini radar engineering qualification model (EQM) are summarized. The approach followed in the verification and evaluation of the performance of the radio frequency subsystem EQM is presented. The results show that the instrument satisfies the relevant mission requirements.

  8. Developing Lightning Prediction Tools for the CCAFS Dual-Polarimetric Radar

    Science.gov (United States)

    Petersen, W. A.; Carey, L. D.; Deierling, W.; Johnson, E.; Bateman, M.

    2009-01-01

    NASA Marshall Space Flight Center and the University of Alabama Huntsville are collaborating with the 45th Weather Squadron (45WS) to develop improved lightning prediction capabilities for the new C-band dual-polarimetric weather radar being acquired for use by 45WS and launch weather forecasters at Cape Canaveral Air Force Station (CCAFS). In particular, these algorithms will focus on lightning onset, cessation and combined lightning-radar applications for convective winds assessment. Research using radar reflectivity (Z) data for prediction of lightning onset has been extensively discussed in the literature and subsequently applied by launch weather forecasters as it pertains to lightning nowcasting. Currently the forecasters apply a relatively straight forward but effective temperature-Z threshold algorithm for assessing the likelihood of lightning onset in a given storm. In addition, a layered VIL above the freezing level product is used as automated guidance for the onset of lightning. Only limited research and field work has been conducted on lightning cessation using Z and vertically-integrated Z for determining cessation. Though not used operationally vertically-integrated Z (basis for VIL) has recently shown promise as a tool for use in nowcasting lightning cessation. The work discussed herein leverages and expands upon these and similar reflectivity-threshold approaches via the application/addition of over two decades of polarimetric radar research focused on distinct multi-parameter radar signatures of ice/mixed-phase initiation and ice-crystal orientation in highly electrified convective clouds. Specifically, our approach is based on numerous previous studies that have observed repeatable patterns in the behavior of the vertical hydrometeor column as it relates to the temporal evolution of differential reflectivity and depolarization (manifested in either LDR or p(sub hv)), development of in-situ mixed and ice phase microphysics, electric fields, and

  9. ESA BRAT (Broadview Radar Altimetry Toolbox) and GUT (GOCE User Toolbox) toolboxes

    Science.gov (United States)

    Benveniste, J.; Ambrozio, A.; Restano, M.

    2016-12-01

    The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools designed to facilitate the processing of radar altimetry data from previous and current altimetry missions, including the upcoming Sentinel-3A L1 and L2 products. A tutorial is included providing plenty of use cases. BRAT's future release (4.0.0) is planned for September 2016. Based on the community feedback, the frontend has been further improved and simplified whereas the capability to use BRAT in conjunction with MATLAB/IDL or C/C++/Python/Fortran, allowing users to obtain desired data bypassing the data-formatting hassle, remains unchanged. Several kinds of computations can be done within BRAT involving the combination of data fields, that can be saved for future uses, either by using embedded formulas including those from oceanographic altimetry, or by implementing ad-hoc Python modules created by users to meet their needs. BRAT can also be used to quickly visualise data, or to translate data into other formats, e.g. from NetCDF to raster images. The GOCE User Toolbox (GUT) is a compilation of tools for the use and the analysis of GOCE gravity field models. It facilitates using, viewing and post-processing GOCE L2 data and allows gravity field data, in conjunction and consistently with any other auxiliary data set, to be pre-processed by beginners in gravity field processing, for oceanographic and hydrologic as well as for solid earth applications at both regional and global scales. Hence, GUT facilitates the extensive use of data acquired during GRACE and GOCE missions. In the current 3.0 version, GUT has been outfitted with a graphical user interface allowing users to visually program data processing workflows. Further enhancements aiming at facilitating the use of gradients, the anisotropic diffusive filtering, and the computation of Bouguer and isostatic gravity anomalies have been introduced. Packaged with GUT is also GUT's VCM (Variance-Covariance Matrix) tool for analysing GOCE

  10. A digital beamforming processor for the joint DoD/NASA space based radar mission

    Science.gov (United States)

    Fischman, Mark A.; Le, Charles; Rosen, Paul A.

    2004-01-01

    The Space Based Radar (SBR) program includes a joint technology demonstration between NASA and the Air Force to design a low-earth orbiting, 2x50 m L-band radar system for both Earth science and intelligence related observations.

  11. Is there 1.5-million-year-old ice near Dome C, Antarctica?

    Directory of Open Access Journals (Sweden)

    F. Parrenin

    2017-11-01

    Full Text Available Ice sheets provide exceptional archives of past changes in polar climate, regional environment and global atmospheric composition. The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC, reaching ∼ 800 000 years. Obtaining an older paleoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we use internal isochrones, identified from airborne radar coupled to ice-flow modelling to estimate the age of basal ice along transects in the Dome C area. Three glaciological properties are inferred from isochrones: surface accumulation rate, geothermal flux and the exponent of the Lliboutry velocity profile. We find that old ice (> 1.5 Myr, 1.5 million years likely exists in two regions: one ∼ 40 km south-west of Dome C along the ice divide to Vostok, close to a secondary dome that we name Little Dome C (LDC, and a second region named North Patch (NP located 10–30 km north-east of Dome C, in a region where the geothermal flux is apparently relatively low. Our work demonstrates the value of combining radar observations with ice flow modelling to accurately represent the true nature of ice flow, and understand the formation of ice-sheet architecture, in the centre of large ice sheets.

  12. Synthesis of [2-13C, 2-14C] 2-aminoethanol, [1-13C, 1-14C] 2-chloroethylamine, N,N'-bis([1-13C, 1-14C] 2-chloroethyl)-N-nitrosourea(BCNU) and N-([1-13C, 1-14C] 2-chloroethyl)-N-nitrosourea(CNU)

    International Nuclear Information System (INIS)

    Narayan, R.; Chang, C-j.

    1982-01-01

    [2- 13 C, 2- 14 C]2-Aminoethanol hydrochloride was prepared in good yield from Na*CN in a two step sequence by first converting the Na*CN to OHCH 2 *CN and then reducing the nitrile directly with a solution of borane-tetrahydrofuran complex. The reaction procedure was simple and the pure product could be obtained readily. Using this specifically labelled precursor, the synthesis of [1- 13 C, 1- 14 C]2-chloroethylamine hydrochloride, N-([1- 13 C, 1- 14 C]2-chloroethyl)-N-nitrosourea(CNU) and N,N'-bis([1- 13 C, 1- 14 C]2-chloroethyl)-N-nitrosourea(BCNU) in good yield without isotope scrambling was also reported. (author)

  13. Navy Needs to Establish Effective Metrics to Achieve Desired Outcomes for SPY1 Radar Sustainment (Redacted)

    Science.gov (United States)

    2016-08-01

    subsystems in the AEGIS Weapon System that searches, detects, and tracks air and surface targets to support Anti -Air Warfare and Ballistic Missile... System that searches, detects, and tracks air and surface targets to support Anti -Air Warfare and Ballistic Missile Defense missions. The SPY-1 radar...a series on SPY-1 radar spare parts. The SPY-1 radar is an advanced, automatic detect and track radar system . The SPY-1 radar is one of 13 major

  14. SIR-ZEE: plataforma tecnológica para el desarrollo local SIR-ZEE: technology platform for local development

    Directory of Open Access Journals (Sweden)

    Marlen Treviño Villalobos

    2012-11-01

    Full Text Available El Sistema de Información Regional de la Zona Económica Especial (SIR-ZEE nació en Costa Rica aproximadamente en 1998, cuando se concibió la idea de crear un sistema informático para recopilar, gestionar y ofrecer temáticas generadas en forma digital por diferentes entidades públicas y privadas. En el 2008, con los fondos del Programa de Regionalización Interuniversitaria del Consejo Nacional de Rectores, se aprobó la iniciativa SIR-ZEE, Plataforma Tecnológica para el Desarrollo Local, que buscó fortalecer las capacidades productivas y las capacidades de gobernabilidad en la Región Huetar Norte mediante el acceso a la información oportuna y relevante para el desarrollo económico local. Este artículo tiene como objetivo mostrar no solo la relevancia de un sistema de información en la planificación del desarrollo local, sino también que, en la actualidad, el SIR-ZEE se está convirtiendo en una ventaja competitiva para la Región Huetar Norte, ya que facilita el proceso de toma decisiones. Los principales resultados obtenidos al final de la iniciativa fueron una propuesta metodológica para la elaboración de planes estratégicos de desarrollo local en la Región Huetar Norte, la sensibilización de los actores locales sobre la participación ciudadana en las diferentes fases de la planificación, un diagnóstico territorial con el valor agregado de contar con la información georreferenciada y disponible en un sitio web, y avances en la elaboración del Plan estratégico de desarrollo local.The Regional Information System of the Special Economic Zone (SIR-ZEE was born about the year 1998 as a computer system to collect, manage and offer thematic generated in digital format by different public and private entities. In 2008, with the funds of Interuniversity Regionalization Program the National Council of Rectors approved the initiative SIR- ZEE: Platform Technology for Local Development which sought to strengthen productive

  15. Gas-phase reactivity of lanthanide cations with fluorocarbons: C-F versus C-H and C-C bond activation

    International Nuclear Information System (INIS)

    Cornehl, H.H.; Hornung, G.; Schwarz, H.

    1996-01-01

    The gas-phase reactivity of the fluorinated hydrocarbons CF 4 , CHF 3 , CH 3 F, C 2 F 6 , 1,1-C 2 H 4 F 2 , and C 6 F 6 with the lanthanide cations Ce + , Pr + , Sm + , Ho + , Tm + , and Yb + and the reactivity of C 6 H 5 F with all lanthanide cations Ln + (Ln = La-Lu, with the exception of Pm + ) have been examined by Fourier-transform ion cyclotron resonance mass spectrometry. The perfluorinated compounds tetrafluoromethane and hexafluoroethane as well as trifluoromethane do not react with any lanthanide cation. Selective activation of the strong C-F bonds in fluoromethane, 1,1-difluoroethane, hexafluorobenzene, and fluorobenzene appears as a general reaction scheme along the 4f row. Experimental evidence is given for a 'harpoon'-like mechanism for the F atom abstraction process which operates via an initial electron transfer from the lanthanide cation to the fluorinated substrate in the encounter complex Ln + RF. The most reactive lanthanides La + , Ce + , Gd + , and Tb + and also the formal closed-shell species Lu + exhibit additional C-H and C-C bond activation pathways in the reaction with fluorobenzene, namely dehydrohalogenation as well as loss of a neutral acetylene molecule. In the case of Tm + and Yb + the formation of neutral LnF 3 is observed in a multistep process via C-C coupling and charge transfer. 17 refs., 2 figs., 2 tabs

  16. Quick-Reaction Report on Modifying C-26 Aircraft for Counterdrug Missions

    Science.gov (United States)

    1994-03-23

    National Guard was modifying 76 OH-58 helicopters with thermal imagery system sensors to identify indoor marijuana crops, drug processing laboratories, or...interdiction of aircraft crossing the U.S./Mexican border and detection of marijuana growing areas. The Director, ANG, decided that the C-26, a medium-size

  17. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system

    Science.gov (United States)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele

    2016-04-01

    X-band radar system is able to provide information about direction and intensity of the sea surface currents and dominant waves in a range of few kilometers from the observation point (up to 3 nautical miles). This capability, together with their flexibility and low cost, makes these devices useful tools for the sea monitoring either coastal or off-shore area. The data collected from wave radar system can be analyzed by using the inversion strategy presented in [1,2] to obtain the estimation of the following sea parameters: peak wave direction; peak period; peak wavelength; significant wave height; sea surface current and bathymetry. The estimation of the significant wave height represents a limitation of the wave radar system because of the radar backscatter is not directly related to the sea surface elevation. In fact, in the last period, substantial research has been carried out to estimate significant wave height from radar images either with or without calibration using in-situ measurements. In this work, we will present two alternative approaches for the reconstruction of the sea surface elevation from wave radar images. In particular, the first approach is based on the basis of an approximated version of the modulation transfer function (MTF) tuned from a series of numerical simulation, following the line of[3]. The second approach is based on the inversion of radar images using a direct regularised least square technique. Assuming a linearised model for the tilt modulation, the sea elevation has been reconstructed as a least square fitting of the radar imaging data[4]. References [1]F. Serafino, C. Lugni, and F. Soldovieri, "A novel strategy for the surface current determination from marine X-band radar data," IEEE Geosci.Remote Sens. Lett., vol. 7, no. 2, pp. 231-235, Apr. 2010. [2]Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Serafino, F. (2014). Remocean System for the Detection of the Reflected Waves from the Costa

  18. Atmospheric histories and growth trends of C4F10, C5F12, C6F14, C7F16 and C8F18

    Directory of Open Access Journals (Sweden)

    R. F. Weiss

    2012-05-01

    Full Text Available Atmospheric observations and trends are presented for the high molecular weight perfluorocarbons (PFCs: decafluorobutane (C4F10, dodecafluoropentane (C5F12, tetradecafluorohexane (C6F14, hexadecafluoroheptane (C7F16 and octadecafluorooctane (C8F18. Their atmospheric histories are based on measurements of 36 Northern Hemisphere and 46 Southern Hemisphere archived air samples collected between 1973 to 2011 using the Advanced Global Atmospheric Gases Experiment (AGAGE "Medusa" preconcentration gas chromatography-mass spectrometry systems. A new calibration scale was prepared for each PFC, with estimated accuracies of 6.8% for C4F10, 7.8% for C5F12, 4.0% for C6F14, 6.6% for C7F16 and 7.9% for C8F18. Based on our observations the 2011 globally averaged dry air mole fractions of these heavy PFCs are: 0.17 parts-per-trillion (ppt, i.e., parts per 1012 for C4F10, 0.12 ppt for C5F12, 0.27 ppt for C6F14, 0.12 ppt for C7F16 and 0.09 ppt for C8F18. These atmospheric mole fractions combine to contribute to a global average radiative forcing of 0.35 mW m−2, which is 6% of the total anthropogenic PFC radiative forcing (Montzka and Reimann, 2011; Oram et al., 2012. The growth rates of the heavy perfluorocarbons were largest in the late 1990s peaking at 6.2 parts per quadrillion (ppq, i.e., parts per 1015 per year (yr for C4F10, at 5.0 ppq yr−1 for C5F12 and 16.6 ppq yr−1 for C6F14 and in the early 1990s for C7F16 at 4.7 ppq yr−1 and in the mid 1990s for C8F18 at 4.8 ppq yr−1. The 2011 globally averaged mean atmospheric growth rates of these PFCs are subsequently lower at 2.2 ppq yr−1 for C4F10, 1.4 ppq yr−1 for C5F12, 5.0 ppq yr−1 for C6F14, 3.4 ppq yr−1 for C7F16 and 0.9 ppq yr−1 for C8F18. The more recent slowdown in the growth rates suggests that emissions are declining as compared to the 1980s and 1990s.

  19. Site characterization and validation - Borehole radar investigations stage 3

    International Nuclear Information System (INIS)

    Sandberg, E.; Olsson, O.; Falk, L.

    1989-11-01

    The borehole radar investigation program Stage 3 of the SCV-site has comprised single hole reflection measurements with centre frequencies of 22 and 60 MHz. Single hole reflection measurement with both omni-directional and directional antennas have been performed in the boreholes C1, C2, C3 and the D-holes. Crosshole tomographic measurements as well as cross- hole reflection measurement have been made between the bore- holes C1-C2, W1-C1 and W1-C2. The range obtained in the single hole reflection measurements was approximately 100 m for the lower frequency and about 60-70 m for the centre frequency 60 MHz. In the crosshole measurements transmitter-receiver separations from 20 to 120 m have been used. The Stage 3 radar investigations have essentially confirmed the three dimensional description of the structures at the SCV-site. The conceptual model of the site which was produced based on the Stage 1 data included three major zones, two minor zones and a circular feature. The major features are considered to be the most significant at the site and are all observed in the Stage 3 boreholes close to their predicted locations. The circular feature has also been found in two of the additional tomograms at the predicted location. The results indicate that the zones are not homogeneous but rather that they are highly irregular containing parts of considerably increased fracturing and parts where their contrast to the background rock is quite small. The zones appear to be approximately planar at least at the scale of the site. At a smaller scale the zones can appear quite irregular

  20. A data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission

    Science.gov (United States)

    Entekhabi, D.; Jagdhuber, T.; Das, N. N.; Baur, M.; Link, M.; Piles, M.; Akbar, R.; Konings, A. G.; Mccoll, K. A.; Alemohammad, S. H.; Montzka, C.; Kunstmann, H.

    2016-12-01

    The active-passive soil moisture retrieval algorithm of NASA's SMAP mission depends on robust statistical estimation of active-passive covariation (β) and vegetation structure (Γ) parameters in order to provide reliable global measurements of soil moisture on an intermediate level (9km) compared to the native resolution of the radiometer (36km) and radar (3km) instruments. These parameters apply to the SMAP radiometer-radar combination over the period of record that was cut short with the end of the SMAP radar transmission. They also apply to the current SMAP radiometer and Sentinel 1A/B radar combination for high-resolution surface soil moisture mapping. However, the performance of the statistically-based approach is directly dependent on the selection of a representative time frame in which these parameters can be estimated assuming dynamic soil moisture and stationary soil roughness and vegetation cover. Here, we propose a novel, data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission. The algorithm does not depend on time series analyses and can be applied using minimum one pair of an active-passive acquisition. The algorithm stems from the physical link between microwave emission and scattering via conservation of energy. The formulation of the emission radiative transfer is combined with the Distorted Born Approximation of radar scattering for vegetated land surfaces. The two formulations are simultaneously solved for the covariation and vegetation structure parameters. Preliminary results from SMAP active-passive observations (April 13th to July 7th 2015) compare well with the time-series statistical approach and confirms the capability of this method to estimate these parameters. Moreover, the method is not restricted to a given frequency (applies to both L-band and C-band combinations for the radar) or incidence angle (all angles and not just the fixed 40° incidence

  1. State-space adjustment of radar rainfall and stochastic flow forecasting for use in real-time control of urban drainage systems

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Rasmussen, Michael R.

    2013-01-01

    Merging of radar rainfall data with rain gauge measurements is a common approach to overcome problems in deriving rain intensities from radar measurements. We extend an existing approach for adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as input...

  2. State-space adjustment of radar rainfall and stochastic flow forecasting for use in real-time control of urban drainage systems

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Rasmussen, Michael R.

    2012-01-01

    Merging of radar rainfall data with rain gauge measurements is a common approach to overcome problems in deriving rain intensities from radar measurements. We extend an existing approach for adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as input...

  3. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    Science.gov (United States)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental

  4. A specific assay for quantification of human C4c by use of an anti-C4c monoclonal antibody

    DEFF Research Database (Denmark)

    Pilely, Katrine; Skjoedt, Mikkel-Ole; Nielsen, Christian

    2014-01-01

    a mouse monoclonal antibody (mAb) that is able to detect fluid phase C4c without interference from other products generated from the complement component C4. The C4c specific mAb was tested in different enzyme-linked immunosorbent assay (ELISA) combinations with various types of in vitro activated sera...

  5. Early antihepatitis C virus response with second-generation C200/C22 ELISA

    NARCIS (Netherlands)

    van der Poel, C. L.; Bresters, D.; Reesink, H. W.; Plaisier, A. A.; Schaasberg, W.; Leentvaar-Kuypers, A.; Choo, Q. L.; Quan, S.; Polito, A.; Houghton, M.

    1992-01-01

    Detection of early antibody to hepatitis C virus (HCV) by a new second-generation C200/C22 anti-HCV enzyme-linked immunosorbent assay (ELISA) and a four-antigen recombinant immunoblot assay (4-RIBA) was compared with the first-generation anti-HCV C100 ELISA using sequential serum samples of 9

  6. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2014-01-01

    Full Text Available Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar interferences and, then, separately matched filtering for each radar. Besides the detailed algorithm derivation, extensive numerical simulation examples are performed with the down-chirp and up-chirp waveforms, partially overlapped or inverse chirp rate linearly frequency modulation (LFM waveforms and orthogonal frequency division multiplexing (ODFM chirp diverse waveforms. The effectiveness of the algorithm is verified by the simulation results.

  7. Digital processing of orbital radar data to enhance geologic structure - Examples from the Canadian Shield

    Science.gov (United States)

    Masuoka, Penny M.; Harris, Jeff; Lowman, Paul D., Jr.; Blodget, Herbert W.

    1988-01-01

    Various digital enhancement techniques for SAR are compared using SIR-B and Seasat images of the Canadian Shield. The three best methods for enhancing geological structure were found to be: (1) a simple linear contrast stretch; (2) a mean or median low-pass filter to reduce speckle prior to edge enhancement or a K nearest-neighbor average to cosmetically reduce speckle; and (3) a modification of the Moore-Waltz (1983) technique. Three look directions were coregistered and several means of data display were investigated as means of compensating for radar azimuth biasing.

  8. Despite phylogenetic effects, C3-C4 lineages bridge the ecological gap to C4 photosynthesis.

    Science.gov (United States)

    Lundgren, Marjorie R; Christin, Pascal-Antoine

    2017-01-01

    C 4 photosynthesis is a physiological innovation involving several anatomical and biochemical components that emerged recurrently in flowering plants. This complex trait evolved via a series of physiological intermediates, broadly termed 'C 3 -C 4 ', which have been widely studied to understand C 4 origins. While this research program has focused on biochemistry, physiology, and anatomy, the ecology of these intermediates remains largely unexplored. Here, we use global occurrence data and local habitat descriptions to characterize the niches of multiple C 3 -C 4 lineages, as well as their close C 3 and C 4 relatives. While C 3 -C 4 taxa tend to occur in warm climates, their abiotic niches are spread along other dimensions, making it impossible to define a universal C 3 -C 4 niche. Phylogeny-based comparisons suggest that, despite shifts associated with photosynthetic types, the precipitation component of the C 3 -C 4 niche is particularly lineage specific, being highly correlated with that of closely related C 3 and C 4 taxa. Our large-scale analyses suggest that C 3 -C 4 lineages converged toward warm habitats, which may have facilitated the transition to C 4 photosynthesis, effectively bridging the ecological gap between C 3 and C 4 plants. The intermediates retained some precipitation aspects of their C 3 ancestors' habitat, and likely transmitted them to their C 4 descendants, contributing to the diversity among C 4 lineages seen today. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Geometric factors in f.c.c. and b.c.c. metal-on-metal epitaxy

    International Nuclear Information System (INIS)

    Bruce, L.A.; Jaeger, H.

    1978-01-01

    Deposits of Ni, Au and Ag formed by condensing metal vapour in U.H.V. onto (001)W, held at a temperature Tsub(s) in the range 300K< Tsub(s)<1200 K, always form epitaxial layers. However, while Au and Ag form (001) epitaxial layers of f.c.c. single crystals, (001)d parallel to (001)s with, say, [110]d parallel to [010]s, Ni and Cu occur in two orthogonal domains, each characterized by an exclusive set of fault (or twin) planes. Within a fault plane, atoms are hexagonally close-packed and, within a domain, fault planes are normal to either [1-1-0]s or [1-10]s and a close-packed direction in the planes is normal to the substrate. The lateral stacking of the fault planes may range from random at low values of Tsub(s) to that of, say, (11-1-) planes in heavily faulted and/or twinned (110) epitaxed f.c.c. material, or of basal planes in (110) epitaxed h.c.p. material at high values of Tsub(s). The results are readily explained on the basis of a growth model developed for deposits of Ni and Cu on (001) Ag. (author)

  10. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    is the snow/air interface, whereas radar waves interact with the variable physical properties of the snow cover on the Arctic sea ice. In addition, radar elevation measurements may vary for different retracker algorithms, which determine the track point of the scattered echo power distribution. Since accurate...... knowledge of the reflection horizon is critical for sea ice thickness retrieval, validation data is necessary to investigate the penetration of radar waves into the snow for the upcoming CryoSat-2 mission. Furthermore, the combination of both optical and RF wavelengths might be used to derive snow thickness......, if radar altimeters are capable of measuring the distance to the snow-ice interface reliably. We present the results of aircraft campaigns in the Arctic with a scanning laser altimeter and the Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) of the European Space Agency. The elevation...

  11. Low dose irradiation performance of SiC interphase SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Lowden, R.A.; Strizak, J.; More, K.L.; Eatherly, W.S.; Bailey, J.; Williams, A.M.; Osborne, M.C.; Shinavski, R.J.

    1998-01-01

    Reduced oxygen Hi-Nicalon fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either 'porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1 x 10 25 n m -2 (E>0.1 MeV) in the temperature range of 260 to 1060 C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber. (orig.)

  12. Highly Stable [C60AuC60]+/- Dumbbells.

    Science.gov (United States)

    Goulart, Marcelo; Kuhn, Martin; Martini, Paul; Chen, Lei; Hagelberg, Frank; Kaiser, Alexander; Scheier, Paul; Ellis, Andrew M

    2018-05-17

    Ionic complexes between gold and C 60 have been observed for the first time. Cations and anions of the type [Au(C 60 ) 2 ] +/- are shown to have particular stability. Calculations suggest that these ions adopt a C 60 -Au-C 60 sandwich-like (dumbbell) structure, which is reminiscent of [XAuX] +/- ions previously observed for much smaller ligands. The [Au(C 60 ) 2 ] +/- ions can be regarded as Au(I) complexes, regardless of whether the net charge is positive or negative, but in both cases, the charge transfer between the Au and C 60 is incomplete, most likely because of a covalent contribution to the Au-C 60 binding. The C 60 -Au-C 60 dumbbell structure represents a new architecture in fullerene chemistry that might be replicable in synthetic nanostructures.

  13. SiC-SiC and C-SiC Honeycomb for Advanced Flight Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project builds upon the work done in Phase I with the development of a C-SiC CMC honeycomb material that was successfully tested for mechanical...

  14. Geim, Prof. Sir Andre Konstantin

    Indian Academy of Sciences (India)

    Fellow Profile. Elected: 2015 Honorary. Geim, Prof. Sir Andre Konstantin FRS. Date of birth: 21 October 1958. Address: Royal Society Research Professor, University of Manchester, Oxford Road, Manchester M13 9PL, UK Contact: Office: (+44-161) 275 4120. Email: geim@manchester.ac.uk. YouTube; Twitter; Facebook ...

  15. Sir John Meurig Thomas.

    Science.gov (United States)

    Thomas, John Meurig

    2013-10-11

    "My greatest achievement has been to combine being a teacher, a researcher, and a popularizer of science for over 50 years. My worst nightmare is to find myself dumbstruck when I am about to give a lecture …︁" This and more about Sir John Meurig Thomas can be found on page 10938. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. FMCW radar system for detection and classification of small vessels in high sea state conditions

    NARCIS (Netherlands)

    Wasselin, J.-P.; Mazuel, S.; Itcia, E.; Huizing, A.G.; Theil, A.

    2012-01-01

    The ROCKWELL COLLINS France radar department is currently developing a FMCW radar system for the detection and the classification of small maritime targets in the frame of the SISMARIS, SARGOS & I2C projects. Several test campaigns have been conducted since 2009 to develop a sensor as well as an

  17. Using Small UAS for Mission Simulation, Science Validation, and Definition

    Science.gov (United States)

    Abakians, H.; Donnellan, A.; Chapman, B. D.; Williford, K. H.; Francis, R.; Ehlmann, B. L.; Smith, A. T.

    2017-12-01

    Small Unmanned Aerial Systems (sUAS) are increasingly being used across JPL and NASA for science data collection, mission simulation, and mission validation. They can also be used as proof of concept for development of autonomous capabilities for Earth and planetary exploration. sUAS are useful for reconstruction of topography and imagery for a variety of applications ranging from fault zone morphology, Mars analog studies, geologic mapping, photometry, and estimation of vegetation structure. Imagery, particularly multispectral imagery can be used for identifying materials such as fault lithology or vegetation type. Reflectance maps can be produced for wetland or other studies. Topography and imagery observations are useful in radar studies such as from UAVSAR or the future NISAR mission to validate 3D motions and to provide imagery in areas of disruption where the radar measurements decorrelate. Small UAS are inexpensive to operate, reconfigurable, and agile, making them a powerful platform for validating mission science measurements, and also for providing surrogate data for existing or future missions.

  18. Quantification of C=C and C=O Surface Carbons in Detonation Nanodiamond by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J -F; Fang, X -W; Schmidt-Rohr, K

    2014-05-08

    The ability of solid-state 13C NMR to detect and quantify small amounts of sp2-hybridized carbon on the surface of ~5 nm diameter nanodiamond particles is demonstrated. The C=C carbon fraction is only 1.1 ± 0.4% in pristine purified detonation nanodiamond, while a full single-layer graphitic or “bucky diamond” shell would contain ca. 25% of all C in a 5 nm diameter particle. Instead of large aromatic patches repeatedly proposed in the recent literature, sp3-hybridized CH and COH carbons cover most of the nanodiamond particle surface, accounting for ~5% each. C=O and COO groups also seen in X-ray absorption near-edge structure spectroscopy (XANES) but not detected in previous NMR studies make up ca. 1.5% of all C. They are removed by heat treatment at 800 °C, which increases the aromatic fraction. 13C{1H} NMR demonstrates that the various sp2-hybridized carbons are mostly not protonated, but cross-polarization shows that they are separated from 1H by only a few bond lengths, which proves that they are near the protonated surface. Together, the observed C–H, C–OH, C=O, and C=C groups account for 12–14% of all C, which matches the surface fraction expected for bulk-terminated 5 nm diameter diamond particles.

  19. A comparative study of low energy radiation responses of SiC, TiC and ZrC

    International Nuclear Information System (INIS)

    Jiang, M.; Xiao, H.Y.; Zhang, H.B.; Peng, S.M.; Xu, C.H.; Liu, Z.J.; Zu, X.T.

    2016-01-01

    In this study, an ab initio molecular dynamics method is employed to compare the responses of SiC, TiC and ZrC to low energy irradiation. It reveals that C displacements are dominant in the cascade events of the three carbides. The associated defects in SiC are mainly Frenkel pairs and antisite defects, whereas damage end states in TiC and ZrC generally consist of Frenkel pairs and very few antisite defects are created. It is proposed that the susceptibility to antisite formation in SiC contributes to its crystalline-to-amorphous transformation under irradiation that is observed experimentally. The stronger radiation tolerance of TiC and ZrC than SiC can be originated from their different electronic structures, i.e., the C> and C> bonds are a mixture of covalent, metallic, and ionic character, whereas the C> bond is mainly covalent. The presented results provide underlying mechanisms for defect generation in SiC, TiC and ZrC, and advance the fundamental understanding of the radiation resistances of carbide materials.

  20. Forensic Application of FM-CW and Pulse Radar

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Koppenjan; R. S. Freeland; M. L. Miller; R. E. Yoder

    2003-01-01

    Ground-penetrating radar (GPR) technology has supplied vital assistance in criminal investigations. However, law enforcement personnel desire further developments such that the technology is rapidly deployable, and that it provides both a simple user interface and sophisticated target identification. To assist in the development of target identification algorithms, our efforts involve gathering background GPR data for the various site conditions and circumstances that often typify clandestine burials. For this study, forensic anthropologists established shallow-grave plots at The University of Tennessee Anthropological Research Facility (ARF) that are specific to GPR research. These plots contain donated human cadavers lying in various configurations and depths, surrounded by assorted construction material and backfill debris. We scanned the plots using two GPR technologies: (1) a multi-frequency synthetic-aperture FM-CW radar (200-700 MHz) (GPR-X) developed by the U.S. Department of Energy's (DOE) Special Technologies Laboratory (STL), Bechtel Nevada (Koppenjan et al., 2000), and (2) a commercial pulse radar (SIR-20) manufactured by Geophysical Survey Systems, Inc. (400 and 900 MHz)(GSSI). The sweep-frequency data show the large biological mass decomposing within the torso as encircled ''hot spots.'' The 400-MHz pulse radar exhibit major horizontal reflectors above the body, with shadow reflectors (horizontal multiples) occurring beneath the body at 60 cm depth. The 400-MHz antenna was able to discern the grave walls and folded tarp covering the lower body. Under these moist, clay-rich conditions, the 900-MHz antenna was able to penetrate slightly beyond 30 cm beneath the concrete layer. However, neither system was able to penetrate beyond a one meter depth in the moist, clay-rich soil (fine, mixed, thermic Typic Paleudalf). Example scans from each system are provided, along with a discussion of the survey protocol and general performance.

  1. Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals

    Science.gov (United States)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-01-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to approximately100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  2. Signal compression in radar using FPGA

    Directory of Open Access Journals (Sweden)

    Enrique Escamilla Hemández

    2010-01-01

    Full Text Available El presente artículo muestra la puesta en práctica de hardware para realizar el procesamiento en tiempo real de la señal de radar usando una técnica simple, rápida basada en arquitectura de FPGA (Field Programmable Gate Array. El proceso incluye diversos procedimientos de enventanado durante la compresión del pulso del radar de apertura sintética (SAR. El proceso de compresión de la señal de radar se hace con un filtro acoplado. que aplica funciones clásicas y nuevas de enventanado, donde nos centramos en obtener una mejor atenuación para los valores de lóbulos laterales. La arquitectura propuesta explota los recursos de computación paralela de los dispositivos FPGA para alcanzar una mejor velocidad de cómputo. Las investigaciones experimentales han demostrado que los mejores resultados para el funcionamiento de la compresión del pulso se han obtenido usando las funciones atómicas, mejorando el funcionamiento del sistema del radar en presencia de ruido, y consiguiendo una pequeña degradación en la resolución de rango. La puesta en práctica del tratamiento de señales en el sistema de radar en tiempo real se discute y se justifica la eficiencia de la arquitectura de hardware propuesta.

  3. Compact U-Slotted Antenna for Broadband Radar Applications

    Directory of Open Access Journals (Sweden)

    S. Costanzo

    2013-01-01

    Full Text Available The original U-shaped patch antenna is properly modified in this work to provide a compact and broadband antenna configuration with reduced cross-polar effects, well suitable for modern radar applications. The proposed antenna layout is applied to design, realize, and test two different prototypes working at P-band and C-band, typically adopted for ground-penetrating radar. The experimental results successfully demonstrate a large operating bandwidth between 15% and 20%, a significant reduction of size (about half of the standard configuration, and a low cross-polarization level within the operating frequency range.

  4. Essential oils from Calyptranthes concinna, C. lucida and C. rubella (Myrtaceae Óleos essenciais de Calyptranthes concinna, C. lucida and C. rubella (Myrtaceae

    Directory of Open Access Journals (Sweden)

    Renata Pereira Limberger

    2002-09-01

    Full Text Available Essential oils from Calyptranthes concinna, C. lucida and C. rubella, collected in Southern Brazil, were analyzed by GC and GC/MS. Sixty-two compounds were identified representing about 98% of the oil contents. All samples were rich in cyclic sesquiterpenes (more than 90 %, mainly those from cadinane, bisabolane and germacrane cyclization pathway. The mainly components characterized were bicyclogermacrene (22.1% in C. concinna;11.7% in C. rubella, cis-calamenene (10.3% in C. concinna, beta-caryophyllene (16.5% in C. rubella; 9.4% in C. lucida, beta-bisabolene (25.5% in C. lucida, spathulenol (15.4% in C. rubella and caryophyllene oxide (7.6% in C. concinna.Os óleos essenciais de Calyptranthes concinna, C. lucida e C. rubella, coletadas no sul do Brasil, foram analisados por GC/FID e GC/MS. Sessenta e dois constituintes foram identificados representando cerca de 98% do óleo. Todas as amostras mostraram-se ricas em sesquiterpenos cíclicos (mais de 90%, principalmente aquelas da via de ciclização dos cadinanos, bisabolanos e germacranos. Os principais constituintes caracterizados foram biciclogermacreno (22,1% em C. concinna; 11,7% em C. rubella, cis-calameneno (10,3% em C. concinna, betacariofileno (16,5% em C. rubella; 9,4% em C. lucida, beta-bisaboleno (25,5% em C. lucida, espatulenol (15,4% em C. rubella e óxido de cariofileno (7,6% em C. concinna.

  5. Thermal effect of TiC in the Mo/TiC/SiC system at elevated temperature

    International Nuclear Information System (INIS)

    Roger, Jerome; Audubert, Fabienne; Le Petitcorps, Yann

    2010-01-01

    In this study, we examined the effect induced by the addition of a TiC interlayer on the stability of the Mo/SiC system at high temperature. Indeed, Mo/SiC couple is unstable at high temperature with formation of Mo 2 C and Mo 5 Si 3 C x phases. In order to limit the degradation of Mo mechanical properties, a TiC film was inserted between Mo and SiC. Samples used in this work were prepared on metallic wires substrates, SiC and TiC being deposited by CVD. The protection given by TiC layer was considered in the 1473-1673 K temperature range and for TiC thicknesses up to about 60 μm. From our results, TiC is not effective enough to mitigate C and Si atoms diffusion. Nevertheless, a notable reduction of the reaction extent is obtained at any temperatures. The so-observed effect depends on the TiC thickness and the temperature. In actual fact, TiC efficiency increases when temperature and/or TiC layer thickness increases without reaching a complete protection.

  6. The Λc(2860), Λc(2880), Ξc(3055) and Ξc(3080) as D-wave baryon states in QCD

    Science.gov (United States)

    Wang, Zhi-Gang

    2018-01-01

    In this article, we tentatively assign the Λc (2860), Λc (2880), Ξc (3055) and Ξc (3080) to be the D-wave baryon states with the spin-parity JP = 3/2+, 5/2 +, 3/2+ and 5/2+, respectively, and study their masses and pole residues with the QCD sum rules in a systematic way by constructing three-types interpolating currents with the quantum numbers (Lρ ,Lλ) = (0 , 2), (2 , 0) and (1 , 1), respectively. The present predictions favor assigning the Λc (2860), Λc (2880), Ξc (3055) and Ξc (3080) to be the D-wave baryon states with the quantum numbers (Lρ ,Lλ) = (0 , 2) and JP = 3/2+, 5/2+, 3/2+ and 5/2+, respectively. While the predictions for the masses of the (Lρ ,Lλ) = (2 , 0) and (1 , 1) D-wave Λc and Ξc states can be confronted to the experimental data in the future.

  7. Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders

    Science.gov (United States)

    Safaeinili, A.

    2003-12-01

    Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides the opportunity to collect data in a manner that enables Radio Reflection Tomographic (RRT) reconstruction of the body in the same manner that a medical ultrasound probe can image the interior of our body. This paper provides an overview of current technical capabilities and challenges and the potential of radio sounders in the investigation of planets and small bodies.

  8. Sir Karl Popper and Education

    Science.gov (United States)

    McNamara, D. R.

    1978-01-01

    Sir Karl Popper is one of England's most distinguished contemporary philosophers and it is surprising that his thought has not permeated and informed educational discussion. This paper suggests that educationists have much to learn from Karl Popper's writings and explores ways in which his ideas can illuminate and advance discussion about…

  9. Thomas, Prof. Sir John Meurig

    Indian Academy of Sciences (India)

    Thomas, Prof. Sir John Meurig FRS. Date of birth: 15 December 1932. Address: Department of Materials Science and, Metallurgy, New Museums Site, 27, Babbage ... Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on the teaching of the theory of evolution more.

  10. Beginning C

    CERN Document Server

    Horton, Ivor

    2013-01-01

    Beginning C, 5th Edition teaches you how to program using the widely-available C language. You'll begin from first-principles and progress through step-by-step examples to become a competent, C-language programmer. All you need are this book and any of the widely available free or commercial C or C++ compilers, and you'll soon be writing real C programs. C is a foundational language that every programmer ought to know. C is the basis for C# used in Microsoft .NET programming. It is the basis for Objective-C used in programming for the iPhone, the iPad, and other Apple devices. It is the basis

  11. sir, besoin, dépendance : l'addiction comme (épreuve de la modernité

    Directory of Open Access Journals (Sweden)

    Rita Di Lorenzo

    2016-04-01

    Full Text Available La frontière entre la santé et la pathologie est un lieu fascinant et dangereux, au caractère poreux et riche de familiarités des deux côtés, inavouées et coûteuses. Le terme d’addiction semble s’installer précisément sur cette frontière, gagnant en étendue médiatique ce qu’il perd en précision nosographique ; ainsi, aujourd’hui, nous serions « tous addicts » – au sucre, au téléphone portable, au chocolat, au café, aux soldes, à la chirurgie esthétique, à Facebook, à l’amour, cette liste pouvant être continuée par chacun d’entre nous puisque nous avons tous fait, nous faisons et ferons tous, l’expérience de la force des (mauvaises habitudes, du désir, voire de la pulsion, de l’abus et de la dépendance. Notre société contemporaine semble stimuler cette expérience, en multipliant tant les objets addictogènes que les comportements addictifs : d’une part par le statut attribué aux biens sériels, d’autre part par la dimension pulsionnelle revendiquée dans les habitudes de consommation. Société du plaisir, peut-être plus hédoniste qu’épicurienne, l’époque contemporaine impose le plaisir et son désir comme nouvelle norme. Dès lors, quel est notre rapport à la pulsion, au désir compulsif, au dépassement des limites imposées aux besoins et aux envies socialement acceptables ? Comment notre société régule le désir ? Comment la politique et les médias concourent-ils à le structurer, voire à le prescrire ? Quels mécanismes à l’œuvre dans l’addiction contredisent cette prescription, et surtout : s’agit-il véritablement d’une contradiction ? Notre culture de performance et satisfaction rapides peut effectivement expliquer certaines dépendances induites par leur objet ; néanmoins, la véritable addiction mentale se nourrit d’éléments plus profondément constitutifs de l’identité de l’homme moderne et contemporain : avant tout, la fragilité des acquis, la

  12. Orbital radar studies of paleodrainages in the central Namib Desert

    Science.gov (United States)

    Lancaster, N.; Schaber, G.G.; Teller, J.T.

    2000-01-01

    Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area. (C) Elsevier Science Inc., 2000.Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area.

  13. SystemC and systemC-AMS in practice systemC 2.3, 2.2 and systemC-AMS 1.0

    CERN Document Server

    Banerjee, Amal

    2013-01-01

    This book describes how engineers can make optimum use of the two industry standard analysis/design tools, SystemC and SystemC-AMS.  The authors use a system-level design approach, emphasizing how SystemC and SystemC-AMS features can be exploited most effectively to analyze/understand a given electronic system and explore the design space. The approach taken by this book enables system engineers to concentrate on only those SystemC/SystemC-AMS features that apply to their particular problem, leading to more efficient design. The presentation includes numerous, realistic and complete examples,

  14. Radar-based rainfall estimation: Improving Z/R relations through comparison of drop size distributions, rainfall rates and radar reflectivity patterns

    Science.gov (United States)

    Neuper, Malte; Ehret, Uwe

    2014-05-01

    The relation between the measured radar reflectivity factor Z and surface rainfall intensity R - the Z/R relation - is profoundly complex, so that in general one speaks about radar-based quantitative precipitation estimation (QPE) rather than exact measurement. Like in Plato's Allegory of the Cave, what we observe in the end is only the 'shadow' of the true rainfall field through a very small backscatter of an electromagnetic signal emitted by the radar, which we hope has been actually reflected by hydrometeors. The meteorological relevant and valuable Information is gained only indirectly by more or less justified assumptions. One of these assumptions concerns the drop size distribution, through which the rain intensity is finally associated with the measured radar reflectivity factor Z. The real drop size distribution is however subject to large spatial and temporal variability, and consequently so is the true Z/R relation. Better knowledge of the true spatio-temporal Z/R structure therefore has the potential to improve radar-based QPE compared to the common practice of applying a single or a few standard Z/R relations. To this end, we use observations from six laser-optic disdrometers, two vertically pointing micro rain radars, 205 rain gauges, one rawindsonde station and two C-band Doppler radars installed or operated in and near the Attert catchment (Luxembourg). The C-band radars and the rawindsonde station are operated by the Belgian and German Weather Services, the rain gauge data was partly provided by the French, Dutch, Belgian, German Weather Services and the Ministry of Agriculture of Luxembourg and the other equipment was installed as part of the interdisciplinary DFG research project CAOS (Catchment as Organized Systems). With the various data sets correlation analyzes were executed. In order to get a notion on the different appearance of the reflectivity patterns in the radar image, first of all various simple distribution indices (for example the

  15. Constitutive Relation of Engineering Material Based on SIR Model and HAM

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2014-01-01

    Full Text Available As an epidemic mathematical model, the SIR model represents the transition of the Susceptible, Infected, and Recovered. The profound implication of the SIR model is viewed as the propagation and dynamic evolutionary process of the different internal components and the characteristics in a complex system subject to external effect. The uniaxial stress-strain curve of engineering material represents the basic constitutive relation, which also represents the damage propagation in the units of the damaged member. Hence, a novel dynamic stress-strain model is established based on the SIR model. The analytical solution and the approximate solution for the proposed model are represented according to the homotopy analysis method (HAM, and the relationship of the solution and the size effect and the strain rate is discussed. In addition, an experiment on the size effect of confined concrete is carried out and the solution of SIR model is suitable for simulation. The results show that the mechanical mechanism of the parameters of the uniaxial stress-strain model proposed in this paper reflects the actual characteristics of the materials. The solution of the SIR model can fully and accurately show the change of the mechanical performance and the influence of the size effect and the strain rate.

  16. Hot pressing of B4C/SiC composites

    International Nuclear Information System (INIS)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O.

    2005-01-01

    B 4 C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B 4 C/SiC composite samples were lower than monolithic B 4 C in all experimental conditions. (authors)

  17. Characterization of hydrometeors in Sahelian convective systems with an X-band radar and comparison with in situ measurements. Part I : Sensitivity of polarimetric radar particle identification retrieval and case study evaluation

    OpenAIRE

    Cazenave, Frédéric; Gosset, Marielle; Kacou, M.; Alcoba, M.; Fontaine, E.; Duroure, C.; Dolan, B.

    2016-01-01

    The particle identification scheme developed by Dolan and Rutledge for X-band polarimetric radar is tested for the first time in Africa and compared with in situ measurements. The data were acquired during the Megha-Tropiques mission algorithm-validation campaign that occurred in Niger in 2010. The radar classification is compared with the in situ observations gathered by an instrumented aircraft for the 13 August 2010 squall-line case. An original approach has been developed for the radar-in...

  18. Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration: A review

    Science.gov (United States)

    Pettinelli, Elena; Cosciotti, Barbara; Di Paolo, Federico; Lauro, Sebastian Emanuel; Mattei, Elisabetta; Orosei, Roberto; Vannaroni, Giuliano

    2015-09-01

    The first European mission dedicated to the exploration of Jupiter and its icy moons (JUpiter ICy moons Explorer—JUICE) will be launched in 2022 and will reach its final destination in 2030. The main goals of this mission are to understand the internal structure of the icy crusts of three Galilean satellites (Europa, Ganymede, and Callisto) and, ultimately, to detect Europa's subsurface ocean, which is believed to be the closest to the surface among those hypothesized to exist on these moons. JUICE will be equipped with the 9 MHz subsurface-penetrating radar RIME (Radar for Icy Moon Exploration), which is designed to image the ice down to a depth of 9 km. Moreover, a parallel mission to Europa, which will host onboard REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) equipped with 9MHz and 60MHz antennas, has been recently approved by NASA. The success of these experiments strongly relies on the accurate prediction of the radar performance and on the optimal processing and interpretation of radar echoes that, in turn, depend on the dielectric properties of the materials composing the icy satellite crusts. In the present review we report a complete range of potential ice types that may occur on these icy satellites to understand how they may affect the results of the proposed missions. First, we discuss the experimental results on pure and doped water ice in the framework of the Jaccard theory, highlighting the critical aspects in terms of a lack of standard laboratory procedures and inconsistency in data interpretation. We then describe the dielectric behavior of extraterrestrial ice analogs like hydrates and icy mixtures, carbon dioxide ice and ammonia ice. Building on this review, we have selected the most suitable data to compute dielectric attenuation, velocity, vertical resolution, and reflection coefficients for such icy moon environments, with the final goal being to estimate the potential capabilities of the radar missions as a

  19. Sri Lanka, Colored Height

    Science.gov (United States)

    2005-01-01

    Jaffna peninsula. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C. Location: 8.0 degrees North latitude, 80.7 degrees East longitude Orientation: North toward the top, Mercator projection Size: 275.6 by 482.4 kilometers (165.4 by 299.0 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  20. Preparation and oxidation protection of CVD SiC/a-BC/SiC coatings for 3D C/SiC composites

    International Nuclear Information System (INIS)

    Liu Yongsheng; Zhang Litong; Cheng Laifei; Yang Wenbin; Zhang Weihua; Xu Yongdong

    2009-01-01

    An amorphous boron carbide (a-BC) coating was prepared by LPCVD process from BCl 3 -CH 4 -H 2 -Ar system. XPS result showed that the boron concentration was 15.0 at.%, and carbon was 82.0 at.%. One third of boron was distributed to a bonding with carbon and 37.0 at.% was dissolved in graphite lattice. A multiple-layered structure of CVD SiC/a-BC/SiC was coated on 3D C/SiC composites. Oxidation tests were conducted at 700, 1000, and 1200 deg. C in 14 vol.% H 2 O/8 vol.% O 2 /78 vol.% Ar atmosphere up to 100 h. The 3D C/SiC composites with the modified coating system had a good oxidation resistance. This resulted in the high strength retained ratio of the composites even after the oxidation.

  1. Architecture for a 1-GHz Digital RADAR

    Science.gov (United States)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  2. The C.E.B.A. Mini Module on the STS-107 Mission: Data of Ground Experiments and Preliminary Results of the third Spaceflight of an Artificial Aquatic Ecosystem

    Science.gov (United States)

    Bluem, V.; Paris, F.; Bungart, S.

    The C.E.B.A.S MINI MODULE is the miniaturized version of an artificial aquatic ecosystem consisting of four subcomponents: a ZOOLOGICAL COMPONENT (aquarium for animals), a BOTANICAL COMPONENT (higher water plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition, control unit). It has a total volume of 8.6 liters and contains the ovoviviparous teleost Xiphophorus helleri (swordtail), larvae of the ovuliparous cichlid fish Oreochromis mossambicus, the pulmonate water snail Biomphalaria glabrata, the rootless (non-graivitropic) higher water plant Ceratophyllum demersum (hornweed) and special strains of ammonia oxidizing bacteria. This device was already flown twice successfully in space with the space shuttle missions STS- 89 and STS-90 (NEUROLAB) in 1998. It will fly a third time with the STS-107-mission the launch of which has been repeatedly shifted December 222, April 2001, October 2001) and is now finally scheduled for June 2002. The main focus of scientific interest in the past missions were system performance, reproductive biology (reproductive function of adult females including endocrine system, fertilization, gonadal development in juveniles), vestibular and immunological research in X. helleri, embryology and shell formation in B. glabrata, general morphology and physiology of C. demersum and groth rates of the bacteria. The standard load of the system were 4 adult and 200 neonate X. helleri, 30 adult B. glabrata and 30 g of C. demersum. The evaluation of these experiments showed that all reproductive functions and the immune system of the fishes snails remained undisturbed in space, that the snails developed normally and exhibited no disturbance of shell formation and that the plants showed growth and photosynthesis rates comparable to those on Earth. So, as a logical continuation, the main topics for the STS-107 mission are the remaining important questions in X. helleri biology: puberty, male sexual

  3. Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar

    Directory of Open Access Journals (Sweden)

    Ramesh K. Ningthoujam

    2016-07-01

    Full Text Available Assessments of forest cover, forest carbon stocks and carbon emissions from deforestation and degradation are increasingly important components of sustainable resource management, for combating biodiversity loss and in climate mitigation policies. Satellite remote sensing provides the only means for mapping global forest cover regularly. However, forest classification with optical data is limited by its insensitivity to three-dimensional canopy structure and cloud cover obscuring many forest regions. Synthetic Aperture Radar (SAR sensors are increasingly being used to mitigate these problems, mainly in the L-, C- and X-band domains of the electromagnetic spectrum. S-band has not been systematically studied for this purpose. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest characterisation. The Michigan Microwave Canopy Scattering (MIMICS-I radiative transfer model is utilised to understand the scattering mechanisms in forest canopies at S-band. The MIMICS-I model reveals strong S-band backscatter sensitivity to the forest canopy in comparison to soil characteristics across all polarisations and incidence angles. Airborne S-band SAR imagery over the temperate mixed forest of Savernake Forest in southern England is analysed for its information content. Based on the modelling results, S-band HH- and VV-polarisation radar backscatter and the Radar Forest Degradation Index (RFDI are used in a forest/non-forest Maximum Likelihood classification at a spatial resolution of 6 m (70% overall accuracy, κ = 0.41 and 20 m (63% overall accuracy, κ = 0.27. The conclusion is that S-band SAR such as from NovaSAR-S is likely to be suitable for monitoring forest cover and its changes.

  4. Interfacial characterization of CVI-SiC/SiC composites

    International Nuclear Information System (INIS)

    Yang, W.; Kohyama, A.; Noda, T.; Katoh, Y.; Hinoki, T.; Araki, H.; Yu, J.

    2002-01-01

    The mechanical properties of the interfaces of two families of chemical vapor infiltration SiC/SiC composites, advanced Tyranno-SA and Hi-Nicalon fibers reinforced SiC/SiC composites with various carbon and SiC/C interlayers, were investigated by single fiber push-out/push-back tests. Interfacial debonding and fibers sliding mainly occurred adjacent to the first carbon layer on the fibers. The interfacial debonding strengths and frictional stresses for both Tyranno-SA/SiC and Hi-Nicalon/SiC composites were correlated with the first carbon layer thickness. Tyranno-SA/SiC composites exhibited much larger interfacial frictional stresses compared to Hi-Nicalon/SiC composites. This was assumed to be mainly contributed by the rather rough surface of the Tyranno-SA fiber

  5. Management of C2-C3 fracture subluxation by anterior cervical approach and C2-C3 trans-cortical screw placement

    Directory of Open Access Journals (Sweden)

    Agrawal Amit

    2018-03-01

    Full Text Available Cervical spine injuries are the major cause of morbidity and mortality in trauma victims. Upper cervical spine injuries account for about 24% of acute fractures and dislocations and one third of fractures occur at the level of C2, while one half of injuries occur at the C6 or C7 levels. In contrast to this approach we used the transverse cervical, platysma splitting incision at a lower (C3-C4 disc to expose the upper cervical spine particularly lower border of C3 (entry point for the screw.

  6. Effective modern C++ 42 specific ways to improve your use of C++11 and C++14

    CERN Document Server

    Meyers, Scott

    2015-01-01

    At first glance, C++11 and C++14 are defined by the new features they introduce, e.g., auto type declarations, move semantics, lambda expressions, and concurrency support. Information on these features is easy to come by, but learning to apply them effectively (such that the resulting software is correct, efficient, maintainable, and portable) is more challenging. That’s the role of this book. It describes how to write effective software using C++11 and C++14, i.e., using modern C++. Topics include: * The pros and cons of uniform initialization, noexcept specifications, perfect forwarding, and smart pointer make functions. * The relationships among std::move, std::forward, rvalues references, and universal references. * The most effective forms of lambda capture. * How best practices in “old” C++ programming (i.e., C++98) require revision for modern C++. Effective Modern C++ follows the proven format of Scott Meyers’ earlier Effective books (Effective C++, More Effective C++, and Effective STL), but c...

  7. On the sintering behaviour of steel bonded TiC-Cr3C2 and TiC-Cr3C2-WC mixed carbides

    International Nuclear Information System (INIS)

    Stojanov, L.G.; Exner, H.E.

    1978-01-01

    Powder mixtures of TiC+Cr 3 C 2 and TiC+Cr 3 C 2 + WC were hot pressed to nearly full density. The lattice parameter of the resulting cubic mixed crystal decreases linearly with increasing additions of Cr 3 C 2 and (Cr 3 C 2 +WC 1:1). Microhardness increases with Cr 3 C 2 content up to 20 wt.%. By addition of WC, microhardness is increased further and reaches a maximum value of approx. 38 000 MN/m 2 for 20 wt.% Cr 3 C 2 and 20 wt.% WC. From these solid solutions powder compositions of Ferro-TiC type were produced by milling with 55 wt.% Fe and 0.4 wt.% C. The sintering behaviour of these powders was studied in a vacuum dilatometer. The pronounced increase of shrinkage by Cr 3 C 2 and higher amounts of Cr 3 C 2 +WC dissolved in TiC previous to binder phase melting is attributed to the increased solubility of the carbide in solid iron. Presintering at 700 0 C in hydrogen has a negative influence on sintering activity and requires much higher temperatures for complete densification during subsequent vacuum sintering. (orig.) [de

  8. Irradiation effect on Nite-SiC/SiC composites

    International Nuclear Information System (INIS)

    Hinoki, T.; Choi, Y.B.; Kohyama, A.; Ozawa, K.

    2007-01-01

    Full text of publication follows: Silicon carbide (SiC) and SiC composites are significantly attractive materials for nuclear application in particular due to exceptional low radioactivity, excellent high temperature mechanical properties and chemical stability. Despite of the excellent potential of SiC/SiC composites, the prospect of industrialization has not been clear mainly due to the low productivity and the high material cost. Chemical vapor infiltration (CVI) method can produce the excellent SiC/SiC composites with highly crystalline and excellent mechanical properties. It has been reported that the high purity SiC/SiC composites reinforced with highly crystalline fibers and fabricated by CVI method is very stable to neutron irradiation. However the production cost is high and it is difficult to fabricate thick and dense composites by CVI method. The novel processing called Nano-powder Infiltration and Transient Eutectic Phase (NITE) Processing has been developed based on the liquid phase sintering (LPS) process modification. The NITE processing can achieve both the excellent material quality and the low processing cost. The productivity of the processing is also excellent, and various kinds of shape and size of SiC/SiC composites can be produced by the NITE processing. The NITE processing can form highly crystalline matrix, which is requirement for nuclear application. The objective of this work is to understand irradiation effect of the NITESiC/SiC composites. The SiC/SiC composites used were reinforced with high purity SiC fibers, Tyranno TM SA and fabricated by the NITE method. The NITE-SiC/SiC composite bars and reference monolithic SiC bars fabricated by CVI and NITE were irradiated at up to 1.0 dpa and 600-1000 deg. C at JMTR, Japan. Mechanical properties of non-irradiated and irradiated NITESiC/ SiC composites bars were evaluated by tensile tests. Monolithic SiC bars were evaluated by flexural tests. The fracture surface was examined by SEM. Ultimate

  9. Studying of the function of expected ABC transporter Rv1458c-Rv1457c-Rv1456c in mycobacteria; Studium funkcie predpokladaneho ABC transportera Rv1458c-Rv1457c-Rv1456c v mykobakteriach

    Energy Technology Data Exchange (ETDEWEB)

    Sarkan, M; Mikusova, K; Kordulakova, J [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra biochemie, 84215 Bratislava (Slovakia)

    2012-04-25

    The bacterium Mycobacterium tuberculosis - the originator of tuberculosis in humans - is characterized by a complex cell wall, which is responsible for a high bacteria resistant to adverse external environmental conditions, as well as to the common antibiotics. The structure of the cell wall components and enzymes involved into its biosynthesis are relatively well described, but there is no information on the transfer of intermediate products of its biosynthetic across the plasmatic membrane. Orthologues of genes rv1459c-rv1458c-rv1457c-rv1456c of M. tuberculosis are in the same configuration in genomes of all previously sequenced mycobacterial strains. Rv1459c gene encodes a probable glycosyltransferases and genes rv1458c, rv1457c rv1456c code nucleotide binding and transmembrane subunits of expected ABC transporter. In our work we focused on the study of the function of expected ABC transporter Rv1458c-Rv1457c-Rv1456c, through analysis of phenotypes of strains M. Smegmatis. They have orthologues of genes encoding the transmembrane subunits of this transporter suspended by fragment encoding resistance to kanamycin. (authors)

  10. Water stress detection in the Amazon using radar

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  11. Modeling C-band single scattering properties of hydrometeors using discrete-dipole approximation and T-matrix method

    International Nuclear Information System (INIS)

    Tyynelae, Jani; Nousiainen, Timo; Goeke, Sabine; Muinonen, Karri

    2009-01-01

    We study the applicability of the discrete-dipole approximation by modeling centimeter (C-band) radar echoes for hydrometeors, and compare the results to exact theories. We use ice and water particles of various shapes with varying water-content to investigate how the backscattering, extinction, and absorption cross sections change as a function of particle radius. We also compute radar parameters, such as the differential reflectivity, the linear depolarization ratio, and the copolarized correlation coefficient. We find that using discrete-dipole approximation (DDA) to model pure ice and pure water particles at the C-band, is a lot more accurate than particles containing both ice and water. For coated particles, a large grid-size is recommended so that the coating is modeled adequately. We also find that the absorption cross section is significantly less accurate than the scattering and backscattering cross sections. The accuracy of DDA can be increased by increasing the number of dipoles, but also by using the filtered coupled dipole-option for the polarizability. This halved the relative errors in cross sections.

  12. Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    Science.gov (United States)

    Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.

    2011-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.

  13. Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects

    Directory of Open Access Journals (Sweden)

    Sanna Kaasalainen

    2015-01-01

    Full Text Available Research activities combining lidar and radar remote sensing have increased in recent years. The main focus in combining lidar-radar forest remote sensing has been on the retrieval of the aboveground biomass (AGB, which is a primary variable related to carbon cycle in land ecosystems, and has therefore been identified as an essential climate variable. In this review, we summarize the studies combining lidar and radar in estimating forest AGB. We discuss the complementary use of lidar and radar according to the relevance of the added value. The most promising prospects for combining lidar and radar data are in the use of lidar-derived ground elevations for improving large-area biomass estimates from radar, and in upscaling of lidar-based AGB data across large areas covered by spaceborne radar missions.

  14. Dicty_cDB: CHH542 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 35.1 UCRCS08_0003L02_f Parent Washington Navel Orange Callus cDNA Library UCRCS08...cDNA library - UCR Poncirus trifoliata cDNA clone UCRPT01_02_C04, mRNA sequence. 40 0.002 2 CV714035 |CV7140

  15. Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM)

    Indian Academy of Sciences (India)

    project was to collect near-global topographic data with absolute horizontal and ...... Lemoine F G, Kenyon S C, Factor J K, Trimmer R G, Pavlis. N K, Chinn D S, Cox C M, ... Razali N M and Wah Y B 2011 Power comparisons of Shapiro–Wilk ...

  16. SRTM Colored Height and Shaded Relief: Corral de Piedra, Argentina

    Science.gov (United States)

    2001-01-01

    Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 57.6 x 40.5 kilometers ( 35.7 x 25.1 miles) Location: 40.4 deg. South lat., 70.8 deg. West lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  17. The life cycle management of the analogical I and C in NPP modernization project

    International Nuclear Information System (INIS)

    Wang Hongtao

    2014-01-01

    The existing NPPS (nuclear power plants) are subject for the ageing and obsolete problems of the analogue I and C systems. The large scope I and C upgrade project based on the DCS technology has the following challenged characteristics: the complicated technology, the broad impacts, the big investment and the long implementation period. This document gives a preliminary introduction and analysis from the aspects including the motives for the upgrade, I and C design base, the digital technology characteristics, I and C function analysis, I and C safety classification, I and C architecture, life-cycle-management mission for the related stages. Considering the experiences and lessons learned from the similar I and C upgrade projects in foreign NPPS, the conclusion and recommendation is given for I and C modernization based on the digital technology. (author)

  18. Measurements of psi -> K-Lambda(Xi)over-bar(+) + c.c. and psi -> gamma K-Lambda(Xi)over-bar(+) + c.c.

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Duan, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2015-01-01

    Using a sample of 1.06 x 10(8) psi(3686) events produced in e(+)e(-) collisions at root s = 3.686 GeV and collected with the BESIII detector at the BEPCII collider, we present studies of the decays psi(3686) -> K-Lambda(Xi) over bar (+) + c.c. and psi(3686) -> gamma K-Lambda(Xi) over bar (+) + c.c.

  19. $\\chi^{\\vphantom\\dagger}_{c0}(3915)$ As the Lightest $c\\bar c s \\bar s$ State

    CERN Document Server

    Lebed, Richard F.

    2016-05-23

    The state $\\chi^{\\vphantom\\dagger}_{c0}(3915)$ has recently been demoted by the Particle Data Group from its previous status as the conventional $c\\bar c$ $2 {}^3P_0$ state, largely due to the absence of expected $D\\bar D$ decays. We propose that $\\chi^{\\vphantom\\dagger}_{c0}(3915)$ is actually the lightest $c\\bar c s \\bar s$ state, and calculate the spectrum of such states using the diquark model, identifying many of the observed charmoniumlike states that lack open-charm decay modes as $c\\bar c s \\bar s$. Among other results, we argue that $Y(4140)$ is a $J^{PC} = 1^{++}$ $c\\bar c s \\bar s$ state that has been not been seen in two-photon fusion largely as a consequence of the Landau-Yang theorem.

  20. Isomerisation of c4-c6 aldoses with zeolites

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to isomerization of C4-C6 aldoses to their corresponding C4-C6 ketoses. In particular, the invention concerns isomerization of C4-C6 aldoses over solid zeolite catalysts free of any metals other than aluminum, in the presence of suitable solvent(s) at suitable elevated...... temperatures. C6 and C5 aldose sugars such as glucose and xylose, which are available in large amounts from biomass precursors, are isomerized to fructose and xylulose respectively, in a one or two-step process over inexpensive commercially available zeolite catalysts, containing aluminum as the only metal...

  1. Database development for understanding the wet deposition and dispersion processes after the Fukushima nuclear plant accident. Radar data

    International Nuclear Information System (INIS)

    Yatagai, Akiyo; Takara, Kaoru; Ishihara, Masahito; Ishikawa, Hirohiko; Watanabe, Akira; Murata, Ken T.

    2015-01-01

    This manuscript describes datasets of meteorological information being developed for understanding the dispersion and deposition process of radionuclides associated with the Fukushima accident in March 2011. Among several products, this paper reports mainly our original radar data images including the X-band radar data from Fukushima University as well as the three-dimensional reflectivity data from the Japan Meteorological Agency C-band radar network. (author)

  2. Review of the thermodynamics of the U--C, Pu--C, and U--Pu--C systems

    International Nuclear Information System (INIS)

    Tetenbaum, M.; Sheth, A.; Olson, W.

    1975-06-01

    Thermodynamic properties such as enthalpy, heat capacity, entropy, heat and free energy of formation, and vaporization behavior are presented for the U--C, Pu--C, and U--Pu--C systems. These properties are of interest to scientists and engineers involved in the expanding field of advanced fuel LMFBR systems. The information on these systems has been derived largely from the discussions of the IAEA Panel on the assessment of thermodynamic properties of the U--C, Pu--C, and U--Pu--C systems. (U.S.)

  3. King, Prof. Sir David Anthony

    Indian Academy of Sciences (India)

    Elected: 1998 Honorary. King, Prof. Sir David Anthony Sc.D., FRS. Date of birth: 12 August 1939. Address: Chief Scientific Adivser & Head, Office of Science and Innovation, London SW1H 0ET, U.K.. Contact: Office: (+44-020) 7215 3821. Fax: (+44-020) 7215 0314. Email: mpst.king@dti.gsi.gov.uk, dak10@cus.cam.ac.uk.

  4. BURNER RIG TESTING OF A500 C/SiC

    Science.gov (United States)

    2018-03-17

    AFRL-RX-WP-TR-2018-0071 BURNER RIG TESTING OF A500® C /SiC Larry P. Zawada Universal Technology Corporation Jennifer Pierce UDRI...TITLE AND SUBTITLE BURNER RIG TESTING OF A500® C /SiC 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...test program characterized the durability behavior of A500® C /SiC ceramic matrix composite material at room and elevated temperature. Specimens were

  5. χ_{c1} and χ_{c2} Resonance Parameters with the Decays χ_{c1,c2}→J/ψμ^{+}μ^{-}.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Atzeni, M; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bordyuzhin, I; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Chapman, M G; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hu, W; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Keizer, F; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Kress, F; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Luchinsky, A; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malecki, B; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombächer, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pisani, F; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Weisser, C; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, M; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-12-01

    The decays χ_{c1}→J/ψμ^{+}μ^{-} and χ_{c2}→J/ψμ^{+}μ^{-} are observed and used to study the resonance parameters of the χ_{c1} and χ_{c2} mesons. The masses of these states are measured to be m(χ_{c1})=3510.71±0.04(stat)±0.09(syst)  MeV and m(χ_{c2})=3556.10±0.06(stat)±0.11(syst)  MeV, where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m(χ_{c2})-m(χ_{c1})=45.39±0.07(stat)±0.03(syst)  MeV. The natural width of the χ_{c2} meson is measured to be Γ(χ_{c2})=2.10±0.20(stat)±0.02(syst)  MeV. These results are in good agreement with and have comparable precision to the current world averages.

  6. Transport properties at 3C-SiC interfaces

    OpenAIRE

    Eriksson, Gustav Jens Peter

    2011-01-01

    For years cubic (3C) silicon carbide (SiC) has been believed to be a very promising wide bandgap semiconductor for high frequency and high power electronics. However, 3C-SiC is fraught with large concentrations of various defects, which have so far hindered the achievement of the predicted properties at a macroscopic level. These defects have properties that are inherently nanoscale and that will have a strong influence on the electrical behavior of the material, particularly at interfaces c...

  7. The Radar Correlation and Interpolation (C&I) Algorithms Deployed in the ASR-9 Processor Augmentation Card (9PAC)

    National Research Council Canada - National Science Library

    Elkin, G

    2001-01-01

    .... The increased processing speed and memory size of the 9PAC hardware made it possible for new surveillance algorithms to be developed in software in order to provide improved primary radar and beacon...

  8. Porous SiC/SiC composites development for industrial application

    International Nuclear Information System (INIS)

    Maeta, S.; Hinoki, T.

    2014-01-01

    Silicon carbide (SiC) is promising structural materials in nuclear fields due to an excellent irradiation resistance and low activation characteristics. Conventional SiC fibers reinforced SiC matrix (SiC/SiC composites) fabricated by liquid phase sintering (LPS-SiC/SiC composites) have been required high cost and long processing time. And microstructure and mechanical property data of finally obtained LPS-SiC/SiC composites are easily scattered, because quality of the composites depend on personal skill. Thus, conventional LPS-SiC/SiC composites are inadequate for industrial use. In order to overcome these issues, the novel “porous SiC/SiC composites” have been developed by means of liquid phase sintering fabrication process. The composites consist of porous SiC matrix and SiC fibers without conventional carbon interfacial layer. The composites don’t have concerns of the degradation interfacial layer at the severe accident. Porous SiC/SiC composites preform was prepared with a thin sheet shape of SiC, sintering additives and carbon powder mixture by tape casting process which was adopted because of productive and high yielding rate fabrication process. The preform was stacked with SiC fibers and sintered in hot-press at the high temperature in argon environment. The sintered preform was decarburized obtain porous matrix structure by heat-treatment in air. Moreover, mechanical property data scattering of the obtained porous SiC/SiC composites decreased. In the flexural test, the porous SiC/SiC composites showed pseudo-ductile behavior with sufficient strength even after heat treatment at high temperature in air. From these conclusions, it was proven that porous SiC/SiC composites were reliable material at severe environment such as high temperature in air, by introducing tape casting fabrication process that could produce reproducible materials with low cost and simple way. Therefore development of porous SiC/SiC composites for industrial application was

  9. Mechanical behavior of SiCf/SiC composites with alternating PyC/SiC multilayer interphases

    International Nuclear Information System (INIS)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui

    2013-01-01

    Highlights: ► Superior combination of flexural strength and fracture toughness of the 3D SiC/SiC composite was achieved by interface tailoring. ► Resulted composite possesses a much higher flexural strength and fracture toughness than its counterparts in literatures. ► Mechanisms that PyC/SiC multilayer coatings improve the mechanical properties were illustrated. -- Abstract: In order to tailor the fiber–matrix interface of continuous silicon carbide fiber reinforced silicon carbide (SiC f /SiC) composites for improved fracture toughness, alternating pyrolytic carbon/silicon carbide (PyC/SiC) multilayer coatings were applied to the KD-I SiC fibers using chemical vapor deposition (CVD) method. Three dimensional (3D) KD-I SiC f /SiC composites reinforced by these coated fibers were fabricated using a precursor infiltration and pyrolysis (PIP) process. The interfacial characteristics were determined by the fiber push-out test and microstructural examination using scanning electron microscopy (SEM). The effect of interface coatings on composite mechanical properties was evaluated by single-edge notched beam (SENB) test and three-point bending test. The results indicate that the PyC/SiC multilayer coatings led to an optimum interfacial bonding between fibers and matrix and greatly improved the fracture toughness of the composites.

  10. Study on the shipboard radar reconnaissance equipment azimuth benchmark method

    Science.gov (United States)

    Liu, Zhenxing; Jiang, Ning; Ma, Qian; Liu, Songtao; Wang, Longtao

    2015-10-01

    The future naval battle will take place in a complex electromagnetic environment. Therefore, seizing the electromagnetic superiority has become the major actions of the navy. Radar reconnaissance equipment is an important part of the system to obtain and master battlefield electromagnetic radiation source information. Azimuth measurement function is one of the main function radar reconnaissance equipments. Whether the accuracy of direction finding meets the requirements, determines the vessels successful or not active jamming, passive jamming, guided missile attack and other combat missions, having a direct bearing on the vessels combat capabilities . How to test the performance of radar reconnaissance equipment, while affecting the task as little as possible is a problem. This paper, based on radar signal simulator and GPS positioning equipment, researches and experiments on one new method, which povides the azimuth benchmark required by the direction-finding precision test anytime anywhere, for the ships at jetty to test radar reconnaissance equipment performance in direction-finding. It provides a powerful means for the naval radar reconnaissance equipments daily maintenance and repair work[1].

  11. Efficient C/C++ programming smaller, faster, better

    CERN Document Server

    Heller, Steve

    1994-01-01

    Efficient C/C++ Programming describes a practical, real-world approach to efficient C/C++ programming. Topics covered range from how to save storage using a restricted character set and how to speed up access to records by employing hash coding and caching. A selective mailing list system is used to illustrate rapid access to and rearrangement of information selected by criteria specified at runtime.Comprised of eight chapters, this book begins by discussing factors to consider when deciding whether a program needs optimization. In the next chapter, a supermarket price lookup system is used to

  12. SiC/SiC Cladding Materials Properties Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormal operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.

  13. Nanosized f.c.c. thallium inclusions in aluminium

    International Nuclear Information System (INIS)

    Johnson, E.; Johansen, A.; Thoft, N.B.; Andersen, H.H.; Sarholt-Kristensen, L.

    1993-01-01

    Ion implantation of pure aluminium with thallium induces the formation of nanosized crystalline inclusions of thallium with a f.c.c. structure. The size of the inclusions depends on the implantation conditions and subsequent annealing treatments and is typically in the range from 1 to 10 nm. The inclusions are aligned topotactically with the aluminium matrix with a cube-cube orientation relationship and they have a truncated octahedral shape bounded by {111} and {001} planes. The lattice parameter of the f.c.c. thallium inclusions is 0.484 ± 0.002 nm, which is slightly but significantly larger than in the high-pressure f.c.c. thallium phase known to be stable above 3.8 GPa. (Author)

  14. Microscopic investigation of the 12C + 12C interaction

    International Nuclear Information System (INIS)

    Baye, D.; Pecher, N.; Brussels Univ.

    1982-01-01

    The 12 C + 12 C system is studied in the framework of the generator coordinate method. Each 12 C nucleus is described by a closed psub(3/2) subshell. Phase shifts and resonances are determined for several effective two-body interactions involving a spin-orbit term. The existence and properties of simple local equivalent potentials for the 12 C + 12 C collision are discussed. The 12 C + 12 C system is too light to be well described by potentials independent of the angular momentum or weakly dependent on it. (orig.)

  15. Radar Polarimetry: Theory, Analysis, and Applications

    Science.gov (United States)

    Hubbert, John Clark

    The fields of radar polarimetry and optical polarimetry are compared. The mathematics of optic polarimetry are formulated such that a local right handed coordinate system is always used to describe the polarization states. This is not done in radar polarimetry. Radar optimum polarization theory is redeveloped within the framework of optical polarimetry. The radar optimum polarizations and optic eigenvalues of common scatterers are compared. In addition a novel definition of an eigenpolarization state is given and the accompanying mathematics is developed. The polarization response calculated using optic, radar and novel definitions is presented for a variety of scatterers. Polarimetric transformation provides a means to characterize scatters in more than one polarization basis. Polarimetric transformation for an ensemble of scatters is obtained via two methods: (1) the covariance method and (2) the instantaneous scattering matrix (ISM) method. The covariance method is used to relate the mean radar parameters of a +/-45^circ linear polarization basis to those of a horizontal and vertical polarization basis. In contrast the ISM method transforms the individual time samples. Algorithms are developed for transforming the time series from fully polarimetric radars that switch between orthogonal states. The transformed time series are then used to calculate the mean radar parameters of interest. It is also shown that propagation effects do not need to be removed from the ISM's before transformation. The techniques are demonstrated using data collected by POLDIRAD, the German Aerospace Research Establishment's fully polarimetric C-band radar. The differential phase observed between two copolar states, Psi_{CO}, is composed of two phases: (1) differential propagation phase, phi_{DP}, and (2) differential backscatter phase, delta. The slope of phi_{DP } with range is an estimate of the specific differential phase, K_{DP}. The process of estimating K_{DP} is complicated when

  16. Kinetics for exchange of imino protons in the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix and in two similar helices that contain a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and an extra adenine, d(C-G-C-A-G-A-A-T-T-C-G-C-G).

    Science.gov (United States)

    Pardi, A; Morden, K M; Patel, D J; Tinoco, I

    1982-12-07

    The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.

  17. Accuracy analysis of the 2014–2015 Global Shuttle Radar ...

    Indian Academy of Sciences (India)

    1KIIT University, Bhubaneswar 751 024, India. 2Continental ... Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in Earth. Sciences ..... tional GNSS Service in a changing landscape of Global. Navigation ...

  18. A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC.

    Science.gov (United States)

    Jiang, M; Zheng, J W; Xiao, H Y; Liu, Z J; Zu, X T

    2017-08-24

    ZrC and TiC have been proposed to be alternatives to SiC as fuel-cladding and structural materials in nuclear reactors due to their strong radiation tolerance and high thermal conductivity at high temperatures. To unravel how the presence of defects affects the thermo-physical properties under irradiation, first-principles calculations based on density function theory were carried out to investigate the mechanical and thermal properties of defective ZrC, TiC and SiC. As compared with the defective SiC, the ZrC and TiC always exhibit larger bulk modulus, smaller changes in the Young's and shear moduli, as well as better ductility. The total thermal conductivity of ZrC and TiC are much larger than that of SiC, implying that under radiation environment the ZrC and TiC will exhibit superior heat conduction ability than the SiC. One disadvantage for ZrC and TiC is that their Debye temperatures are generally lower than that of SiC. These results suggest that further improving the Debye temperature of ZrC and TiC will be more beneficial for their applications as fuel-cladding and structural materials in nuclear reactors.

  19. Electronic structure of C28, Pa at sign C28, and U at sign C28

    International Nuclear Information System (INIS)

    Zhao, K.; Pitzer, R.M.

    1996-01-01

    Electronic structure calculations, including relativistic core potentials and the spin-orbit interaction, have been carried out on the C 28 , Pa at sign C 28 , and U at sign C 28 species. Excitation energies, spin-orbit splittings, the electron affinity, and the ionization potential are computed for C 28 . The ground state of C 28 is described well by the Hartree-Fock wave functions, but other states are not. The computed electron affinity and ionization potential are similar to those of C 60 . Strong metal-cage binding is found for Pa at sign C 28 and U at sign C 28 , similar to that in U(C 8 H 8 ) 2 . The ground electronic states depend on the order of the lowest-energy cage π * and metal 5f orbitals, with (π * ) 1 and (π * ) 1 (5f) 1 found to be the ground electronic configurations for the two complexes. U at sign C 28 is found to be diamagnetic. 30 refs., 1 fig., 13 tabs

  20. Implementación de un modelo para el cálculo del excedente hídrico por geoprocessamiento de datos meteorológicos

    Directory of Open Access Journals (Sweden)

    Viviana Aguilar Muñoz

    2015-01-01

    Full Text Available Este trabajo tuvo como objetivo la aplicación de una metodologia para el cálculo y espacialización del excedente hídrico por geoprocesamiento de datos meteorológicos en Sistemas de Información Geográfica. En el experimento se utilizaron datos de precipitación y de temperatura de puestos de adquisición, así como datos de elevación del proyecto Shuttle Radar Topography Mission, SRTM, para la cidudad Santiago de Cali, Colômbia. La preparación de los datos de entrada consistió en la generación de superficies mensuales de las variables meteorológicas apatir de las observaciones puntuales. El algoritmo para cálculo del excedente hídrico se basó en desarrollos preexistentes, que utilizan las ecuaciones del balance hídrico de Thornthwaite & Mather. Se constató un buen desempeño de los algoritmos, además de su aplicabilidad. Sin embargo, los resultados del excedente obtenidos en este trabajo para la ciudad de Cali no son concluyentes, toda vez que los datos meteorológicos de entrada no atendieron algunas premisas básicas en relación a su distribución espacial y precisión.

  1. Dicty_cDB: VHJ195 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available -B/AFN547Q.Seq.d/ 1342 0.0 SLE172 (SLE172Q) /CSM/SL/SLE1-C/SLE172Q.Seq.d/ 1102 0.0 SLD492 (SLD492Q) /CSM/SL/SLD4-D/SLD492...8502 ) Dictyostelium discoideum cDNA clone:dda28m11, 5' ... 839 0.0 2 ( AU052538 ) Dictyostelium discoideum slug cDNA, clone SLD492...2597 ) Dictyostelium discoideum slug cDNA, clone SLD569. 113 2e-20 1 ( AU061182 ) Dictyostelium discoideum slug cDNA, clone SLD492

  2. Stack Characterization in CryoSat Level1b SAR/SARin Baseline C

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Di Giacinto, Andrea; Bouffard, Jerome; Féménias, Pierre; Parrinello, Tommaso

    2015-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. CryoSat is the first altimetry mission operating in SAR mode and it carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. The current CryoSat IPF (Instrument Processing Facility), Baseline B, was released in operation in February 2012. After more than 2 years of development, the release in operations of the Baseline C is expected in the first half of 2015. It is worth recalling here that the CryoSat SAR/SARin IPF1 generates 20Hz waveforms in correspondence of an approximately equally spaced set of ground locations on the Earth surface, i.e. surface samples, and that a surface sample gathers a collection of single-look echoes coming from the processed bursts during the time of visibility. Thus, for a given surface sample, the stack can be defined as the collection of all the single-look echoes pointing to the current surface sample, after applying all the necessary range corrections. The L1B product contains the power average of all the single-look echoes in the stack: the multi-looked L1B waveform. This reduces the data volume, while removing some information contained in the single looks, useful for characterizing the surface and modelling the L1B waveform. To recover such information, a set of parameters has been added to the L1B product: the stack characterization or beam behaviour parameters. The stack characterization, already included in previous Baselines, has been reviewed and expanded in Baseline C. This poster describes all the stack characterization parameters, detailing what they represent and how they have been computed. In details, such parameters can be summarized in: - Stack

  3. 90Sr content in 90Y-labeled SIR-spheres and Zevalin.

    Science.gov (United States)

    Metyko, John; Erwin, William; Poston, John; Jimenez, Sandra

    2014-11-01

    Three different 90Y internally administered radionuclide therapies are currently used in both standard-of-care and clinical trial procedures atMD Anderson Cancer Center. TheraSphere and SIR-Spheres therapies utilize 90Y-labeled microspheres, while Zevalin is an 90Y-labeled radioimmunotherapeutic agent. Several publications have indicated radionuclidic impurities resulting from 90Y production methods. The 90Y in SIR-Spheres and Zevalin are produced from a 90Sr/90Y generator, which leaves measurable quantities of 90Sr in the final product. TheraSphere 90Y is produced in a nuclear reactor which results in a large number of impurities, most notably 88Y and 91Y. Product information sheets reference these impurities with specific limits given. These limits represent a tiny fraction of the total product activity, and in the case of TheraSphere and SIR-Spheres gamma-emitting impurities, this has been verified in the literature. An analysis of 90Sr impurities in SIR-Spheres and Zevalin is presented in this paper. Impurity quantities were found to be within the vendors’ documented limits.

  4. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach

  5. Search for the rare decays J /ψ →D0e+e-+c .c . and ψ (3686 )→D0e+e-+c .c .

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Kiese, P.; Kliemt, R.; Kloss, B.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, J. J.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2017-12-01

    Using the data samples of (1310.6 ±7.2 )×106 J /ψ events and (448.1 ±2.9 )×106 ψ (3686 ) events collected with the BESIII detector, we search for the rare decays J /ψ →D0e+e-+c .c . and ψ (3686 )→D0e+e-+c .c . No significant signals are observed and the corresponding upper limits on the branching fractions at the 90% confidence level are determined to be B (J /ψ →D0e+e-+c .c .)<8.5 ×10-8 and B (ψ (3686 )→D0e+e-+c .c .)<1.4 ×10-7 , respectively. Our limit on B (J /ψ →D0e+e-+c .c .) is more stringent by 2 orders of magnitude than the previous results, and B (ψ (3686 )→D0e+e-+c .c .) is measured for the first time.

  6. Dicty_cDB: CHR636 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available p 8. 48 0.50 1 CO165293 |CO165293.1 FLD1_53_C12.g1_A029 Root flooded Pinus taeda cDNA clone FLD1_53_C12_A029... 5', mRNA sequence. 46 2.0 1 CO165215 |CO165215.1 FLD1_53_C12.b1_A029 Root floode

  7. Specification for a surface-search radar-detection-range model

    Science.gov (United States)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  8. Theoretical study of actinide monocarbides (ThC, UC, PuC, and AmC)

    Science.gov (United States)

    Pogány, Peter; Kovács, Attila; Visscher, Lucas; Konings, Rudy J. M.

    2016-12-01

    A study of four representative actinide monocarbides, ThC, UC, PuC, and AmC, has been performed with relativistic quantum chemical calculations. The two applied methods were multireference complete active space second-order perturbation theory (CASPT2) including the Douglas-Kroll-Hess Hamiltonian with all-electron basis sets and density functional theory with the B3LYP exchange-correlation functional in conjunction with relativistic pseudopotentials. Beside the ground electronic states, the excited states up to 17 000 cm-1 have been determined. The molecular properties explored included the ground-state geometries, bonding properties, and the electronic absorption spectra. According to the occupation of the bonding orbitals, the calculated electronic states were classified into three groups, each leading to a characteristic bond distance range for the equilibrium geometry. The ground states of ThC, UC, and PuC have two doubly occupied π orbitals resulting in short bond distances between 1.8 and 2.0 Å, whereas the ground state of AmC has significant occupation of the antibonding orbitals, causing a bond distance of 2.15 Å.

  9. The Ocean Surface Topography SENTINEL-6/JASON-CS Mission

    Science.gov (United States)

    Cullen, R.

    2015-12-01

    The Sentinel-6/Jason-CS mission will consist of 2 spacecraft and will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (expected March 2015). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of platform, measurement instrumentation design thus securing optimal operational and science data return. The programme is a part of the EC Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The programme brings together: ESA for development, procurement & early orbit activities; EUMETSAT for mission management, ground segment, flight ops, contributing funding of the 1st satellite and participation in funding for the 2nd satellite; NASA for the US payload and launcher procurement in addition to funding US science opportunities; EC for funding the operations and participation in funding (with EUMETSAT) for the 2nd satellite; NOAA are expected to provide US ground stations & operations services; CNES for mission expertise and provision of the POD service. The consortium plan to procure 2 satellites with the 1st planned for launch readiness in the 1st half of 2020 with the 2nd satellite 5 years later. The first major commitment to funding was given by the ESA member states that approved the programme in June 2014 and in addition the European Commission funding is also fully secure. The design is based on a platform derived from CryoSat-2 adjusted to the specific requirements of the higher orbit. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface

  10. A simple, versatile, low-cost and remotely operated apparatus for [11C]acetate, [11C]choline, [11C]methionine and [11C]PIB synthesis

    International Nuclear Information System (INIS)

    Cheung Manki; Ho Chilai

    2009-01-01

    A simple, efficient and remotely operated synthesis apparatus for carrying out routine [ 11 C]carboxylation, on-column and bubbling [ 11 C]methylation was essential for reliable, day-to-day production of [ 11 C]-labelled PET radiopharmaceuticals. We developed an in-house apparatus specifically applied to the synthesis of [ 11 C]acetate, [ 11 C]choline, [ 11 C]methionine and 2-(4'-N-[ 11 C]methylaminophenyl)-6-hydroxybenzothiazole ([ 11 C]PIB), where high radiochemical purity (≥97%) and moderate radiochemical yields (18% for [ 11 C]PIB, 41-55% for the others) could be achieved. These findings provided evidence that this was a fast, versatile and reliable apparatus suitable for a PET/CT centre with limited financial budget and hot cell space for synthesis of [ 11 C]-labelled radiopharmaceuticals

  11. Rain/snow radar remote sensing with two X-band radars operating over an altitude gradient in the French Alps

    Science.gov (United States)

    Delrieu, Guy; Cazenave, Frédéric; Yu, Nan; Boudevillain, Brice; Faure, Dominique; Gaussiat, Nicolas

    2017-04-01

    Operating weather radars in high-mountain regions faces the following well-known dilemma: (1) installing radar on top of mountains allows for the detection of severe summer convective events over 360° but may give poor QPE performance during a very significant part of the year when the 0°C isotherm is located below or close to the radar altitude; (2) installing radar at lower altitudes may lead to better QPE over sensitive areas such as cities located in valleys, but at the cost of reduced visibility and detection capability in other geographical sectors. We have the opportunity to study this question in detail in the region of Grenoble (an Alpine city of 500 000 inhabitants with an average altitude of 210 m asl) with a pair of X-band polarimetric weather radars operated respectively by Meteo-France on top of Mount Moucherotte (1920 m asl) and by IGE on the Grenoble Campus (213 m asl). The XPORT radar (IGE) performs a combination of PPIs at elevations of 3.5, 7.5, 15 and 25° complemented by two RHIs in the vertical plane passing by the two radar sites, in order to document the 4D precipitation variability within the Grenoble intermountain valley. In the proposed communication, preliminary results of this experiment (started in September 2016) will be presented with highlights on (1) the calibration of the two radar systems, (2) the characterization of the melting layer during significant precipitation events (>5mm/day) occurring in autumn, winter and spring; (3) the simulation of the relative effects of attenuation and non-uniform beam filling at X-band and (4) the possibility to use the mountain returns for quantifying the attenuation by the rain and the melting layer.

  12. Detection of hail through the three-body scattering signatures and its effects on radar algorithms observed in Romania

    OpenAIRE

    CARBUNARU, DANIEL VICTOR; SASU, MONICA; BURCEA, SORIN; BELL, AURORA

    2014-01-01

    The Romanian National Meteorological Administration (NMA) radar network consists of five S-band and four C-band radars. Observation of convection in Romania through the Doppler radar network offered a new perspective in understanding the climatologic risk of certain regions and mesoscale environments. Highly organized convective systems, such as supercells, are better observed and their subsequent threat can be better anticipated during the nowcasting process using Doppler velocity fields and...

  13. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    Science.gov (United States)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  14. C Borges

    Indian Academy of Sciences (India)

    C Borges. Articles written in Pramana – Journal of Physics. Volume 60 Issue 4 April 2003 pp 817-828. Study of deconfinement in NA50 · Paula bordalo M C Abreu B Alessandro C Alexa R Arnaldi M Atayan C Baglin A Baldit M Bedjidian S Beolé V Boldea Paula Bordalo S R Borenstein C Borges A Bussiére L Capelli C ...

  15. Behaviors of 14C-butachlor, 14C-chlorpyrifos and 14C-DDT in Rana japonica japonica Guenther

    International Nuclear Information System (INIS)

    Zhang Yiqiang; Zhong Chuangguang; Zhao Xiaokui; Chen Shunhua

    2002-01-01

    The research on the behaviors of 14 C-butachlor, 14 C-chlorpyrifos and 14 C-DDT in the frog Rana japonica japonica Guenther was carried out. After administrated per os to the frogs in doses of 380, 347, 363 Bq/g, 14 C-butachlor, 14 C-chlorpyrifos and 14 C-DDT, were distributed respectively to various organs within 24 h with specific accumulating organs as gallbladder, intestine and intestine, relevantly to the pesticides described. Compared to that in gallbladder and intestine, the radioactivity of many organs was extremely low, and this might due to the characters of the pesticides. Analysis of the metabolites of 14 C-DDT in frog at 24 th hr demonstrated that DDT was difficult to be degraded. Most 14 C-butachlor, 14 C-chlorpyrifos 14 C-DDT in liver and fat or ovary of frog was extractable with acetone. However, there were some differences between the pesticides, and the organs as well. And 14 C-butachlor, 14 C-chlorpyrifos or 14 C-DDT were better bound in liver than in fat

  16. Search for C+ C clustering in Mg ground state

    Indian Academy of Sciences (India)

    2017-01-04

    Jan 4, 2017 ... Finite-range knockout theory predictions were much larger for (12C,212C) reaction, indicating a very small 12C−12C clustering in 24Mg. (g.s.) . Our present results contradict most of the proposed heavy cluster (12C+12C) structure models for the ground state of 24Mg. Keywords. Direct nuclear reactions ...

  17. Thermal fatigue behavior of C/C composites modified by SiC-MoSi2-CrSi2 coating

    International Nuclear Information System (INIS)

    Chu Yanhui; Fu Qiangang; Li Hejun; Li Kezhi

    2011-01-01

    Highlights: → The low-density C/C composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation. → The thermal fatigue behavior of the modified C/C composites was studied after undergoing thermal cycling for 20 times under the different environments. → The decrease of the flexural strength of the modified C/C composites during thermal cycle in air was primarily attributed to the partial oxidation of the modified C/C samples. - Abstract: Carbon/carbon (C/C) composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation, and their thermal fatigue behavior under thermal cycling in Ar and air environments was investigated. The modified C/C composites were characterized by scanning electron microscopy and X-ray diffraction. Results of tests show that, after 20-time thermal cycles between 1773 K and room temperature in Ar environment, the flexural strength of modified C/C samples decreased lightly and the percentage of remaining strength was 94.92%. While, after thermal cycling between 1773 K and room temperature in air for 20 times, the weight loss of modified C/C samples was 5.1%, and the flexural strength of the modified C/C samples reduced obviously and the percentage of remaining strength was only 75.22%. The fracture mode of modified C/C samples changed from a brittle behavior to a pseudo-plastic one as the service environment transformed from Ar to air. The decrease of the flexural strength during thermal cycle in air was primarily attributed to the partial oxidation of modified C/C samples.

  18. Hot pressing of B{sub 4}C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O. [Ystanbul Technical University, Faculty of Chemistry and Metallurgy, Materials and Metallurgical Engineering Dept., Maslak-Ystanbul (Turkey)

    2005-07-01

    B{sub 4}C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B{sub 4}C/SiC composite samples were lower than monolithic B{sub 4}C in all experimental conditions. (authors)

  19. Studies on the selectivity of the reaction of (CO){sub 5}W=C(aryl)H with enynes: transfer of the carbene ligand to the C=C Bond versus insertion of the C triple bond C into the W=C Bond

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H.; Volkland, H.P.; Stumpf, R.

    1996-10-01

    The strongly electrophilic monophenylcarbene complex [(CO){sub 5}W=C(Ph)H] (2a) reacts with the enynes H-C triple bond C-R(R=-C(Me)=CH{sub 2})(3), -C{sub 6}H{sub 4}-CH=CH{sub 2}-p (5) and subsequently with PMe{sub 3} to form the C{sub a}lpha-PMe{sub 3} adducts of the vinylidene complexes [(CO){sub 5}W-{l_brace}C(PMe{sub 3})=CH-C{sub 3}H{sub 3}(Me)Ph{r_brace}] (4) and [(CO){sub 5}W {l_brace}C(PMe{sub 3})=CH-C{sub 6}H{sub 4}-C{sub 3}H{sub 4}Ph{r_brace}] (6). The reaction very likely proceeds by transfer of the carbene ligand to the C=C bond of the enyne to form a cyclopropyl-substituted alkyne complex which is in equilibrium with its vinylidene isomer.

  20. Objective-C

    CERN Document Server

    DeVoe, Jiva

    2011-01-01

    A soup-to-nuts guide on the Objective-C programming language. Objective-C is the language behind Cocoa and Cocoa Touch, which is the Framework of applications written for the Macintosh, iPod touch, iPhone, and iPad platforms. Part of the Developer Reference series covering the hottest Apple topics, this book covers everything from the basics of the C language to advanced aspects of Apple development. You'll examine Objective-C and high-level subjects of frameworks, threading, networking, and much more.: Covers the basics of the C language and then quickly moves onto Objective-C and more advanc

  1. Fracture behavior of C/SiC composites at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dong Hyun; Lee, Jeong Won; Kim, Jae Hoon; Shin, Ihn Cheol; Lim, Byung Joo [Chungnam National University, Daejeon (Korea, Republic of)

    2017-08-15

    The fracture behavior of carbon fiber-reinforced silicon carbide (C/SiC) composites used in rocket nozzles has been investigated under tension, compression, and fracture conditions at room temperature, 773 K and 1173 K. The C/SiC composites used in this study were manufactured by liquid silicon infiltration process at ~1723 K. All experiments were conducted using two types of specimens, considering fiber direction and oxidation condition. Experimental results show that temperature, fiber direction, and oxidation condition affect the behavior of C/SiC composites. Oxidation was found to be the main factor that changes the strength of C/SiC composites. By applying an anti-oxidation coating, the tensile and compressive strengths of the C/SiC composites increased with temperature. The fracture toughness of the C/SiC composites also increased with increase temperature. A fractography analysis of the fractured specimens was conducted using a scanning electron microscope.

  2. Volume properties and refraction of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids lysine, threonine, and oxyproline (C60(C6H13N2O2)2, C60(C4H8NO3)2, and C60(C5H9NO2)2) at 25°C

    Science.gov (United States)

    Semenov, K. N.; Ivanova, N. M.; Charykov, N. A.; Keskinov, V. A.; Kalacheva, S. S.; Duryagina, N. N.; Garamova, P. V.; Kulenova, N. A.; Nabieva, A.

    2017-02-01

    Concentration dependences of the density of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids are studied by pycnometry. Concentration dependences of the average molar volumes and partial volumes of components (H2O and corresponding bisadducts) are calculated for C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems at 25°C. Concentration dependences of the indices of refraction of C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems are determined at 25°C. The concentration dependences of specific refraction and molar refraction of bisadducts and aqueous solutions of them are calculated.

  3. Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory

    Science.gov (United States)

    Verma, Anand Mohan; Kishore, Nanda

    2017-02-01

    The hydrolysis of cellulose fraction of biomass yields C6 glucose which further can be transformed into long-chain hydrocarbons by C-C coupling. In this study, C6 glucose is transformed into three chain alkanes, namely, C9, C12 and C15 using C-C coupling reactions under the gas and aqueous phase milieus. The geometry optimisation and vibrational frequency calculations are carried out at well-known hybrid-GGA functional, B3LYP with the basis set of 6-31+g(d,p) under the density functional theory framework. The single point energetics are calculated at M05-2X/6-311+g(3df,2p) level of theory. All thermochemical properties are calculated over a wide range of temperature between 300 and 900 K at an interval of 100 K. The thermochemistry suggested that the aqueous phase behaviour is suitable for the hydrolysis of sugar into long-chain alkanes compared to gas-phase environment. The hydrodeoxygenation reactions under each reaction pathway are found as most favourable reactions in both phases; however, aqueous phase dominates over gas phase in all discussed thermodynamic parameters.

  4. San Andreas Fault in the Carrizo Plain

    Science.gov (United States)

    2000-01-01

    The 1,200-kilometer (800-mile)San Andreas is the longest fault in California and one of the longest in North America. This perspective view of a portion of the fault was generated using data from the Shuttle Radar Topography Mission (SRTM), which flew on NASA's Space Shuttle last February, and an enhanced, true-color Landsat satellite image. The view shown looks southeast along the San Andreas where it cuts along the base of the mountains in the Temblor Range near Bakersfield. The fault is the distinctively linear feature to the right of the mountains. To the left of the range is a portion of the agriculturally rich San Joaquin Valley. In the background is the snow-capped peak of Mt. Pinos at an elevation of 2,692 meters (8,831 feet). The complex topography in the area is some of the most spectacular along the course of the fault. To the right of the fault is the famous Carrizo Plain. Dry conditions on the plain have helped preserve the surface trace of the fault, which is scrutinized by both amateur and professional geologists. In 1857, one of the largest earthquakes ever recorded in the United States occurred just north of the Carrizo Plain. With an estimated magnitude of 8.0, the quake severely shook buildings in Los Angeles, caused significant surface rupture along a 350-kilometer (220-mile) segment of the fault, and was felt as far away as Las Vegas, Nev. This portion of the San Andreas is an important area of study for seismologists. For visualization purposes, topographic heights displayed in this image are exaggerated two times.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60

  5. Mass spectra for q c q ¯ c ¯, s c s ¯ c ¯, q b q ¯ ¯, s b s ¯ ¯ tetraquark states with JP C=0++ and 2++

    Science.gov (United States)

    Chen, Wei; Chen, Hua-Xing; Liu, Xiang; Steele, T. G.; Zhu, Shi-Lin

    2017-12-01

    We have studied the mass spectra of the hidden-charm/bottom q c q ¯c ¯, s c s ¯c ¯ and q b q ¯b ¯, s b s ¯b ¯ tetraquark states with JP C=0++ and 2++ in the framework of QCD sum rules. We construct ten scalar and four tensor interpolating currents in a systematic way and calculate the mass spectra for these tetraquark states. The X*(3860 ) may be either an isoscalar tetraquark state or χc 0(2 P ). If the X*(3860 ) is a tetraquark candidate, our results prefer the 0++ option over the 2++ one. The X (4160 ) may be classified as either the scalar or tensor q c q ¯c ¯ tetraquark state, while the X (3915 ) favors a 0++ q c q ¯c ¯ or s c s ¯c ¯ tetraquark assignment over the tensor one. The X (4350 ) cannot be interpreted as a s c s ¯c ¯ tetraquark with either JP C=0++ or 2++.

  6. A high-protein diet during hospitalization is associated with an accelerated decrease in soluble urokinase plasminogen activator receptor levels in acutely ill elderly medical patients with SIRS

    DEFF Research Database (Denmark)

    Tavenier, Juliette; Haupt, Thomas Huneck; Andersen, Aino L

    2017-01-01

    inflammation in healthy elderly. We hypothesized that nutritional support and resistance training would accelerate the resolution of inflammation in hospitalized elderly patients with SIRS. Acutely admitted patients aged >65 years with SIRS were randomized to an intervention consisting of a high-protein diet...... (1.7 g/kg per day) during hospitalization, and daily protein supplement (18.8 g) and 3 weekly resistance training sessions for 12 weeks after discharge (Intervention, n=14), or to standard-care (Control, n=15). Plasma levels of the inflammatory biomarkers soluble urokinase plasminogen activator...... receptor (suPAR), interleukin-6, C-reactive protein (CRP), and albumin were measured at admission, discharge, and 4 and 13 weeks after discharge. The Intervention group had an earlier decrease in suPAR levels than the Control group: -15.4% vs. +14.5%, P=.007 during hospitalization, and -2.4% vs. -28.6%, P...

  7. Caffeine-11C, ephedrine-11C and methylephedrine-11C: synthesis and distribution in mice

    International Nuclear Information System (INIS)

    Saji, Hideo; Ido, Tatsuo; Iwata, Ren; Suzuki, Kazutoshi; Tamate, Kazuhiko

    1978-01-01

    Caffeine, ephedrine and methylephedrine were labeled with carbon-11 by the action of methyliodide- 11 C on theophylline, norephedrine and ephedrine, respectively. Caffeine- 11 C was prepared in 44 min. with a radiochemical yield of 40%, ephedrine- 11 C in 45 min. with a 11% radiochemical yield and methylephedrine- 11 C in 36 min. with a 43% radiochemical yield. When injected in mice intravenously, these products show a high uptake in the liver, the kidney and the blood for caffeine- 11 C and in the liver and the kidney for ephedrine- 11 C and methylephedrine- 11 C. The brain uptake for these products was found to be 2.4 to 3.9% of the injected dose per gram at 5 min. after injection. These studies in mice have demonstrated that these products are potentially useful agents for the dynamic studies of the brain. (auth.)

  8. Sim3C: simulation of Hi-C and Meta3C proximity ligation sequencing technologies.

    Science.gov (United States)

    DeMaere, Matthew Z; Darling, Aaron E

    2018-02-01

    Chromosome conformation capture (3C) and Hi-C DNA sequencing methods have rapidly advanced our understanding of the spatial organization of genomes and metagenomes. Many variants of these protocols have been developed, each with their own strengths. Currently there is no systematic means for simulating sequence data from this family of sequencing protocols, potentially hindering the advancement of algorithms to exploit this new datatype. We describe a computational simulator that, given simple parameters and reference genome sequences, will simulate Hi-C sequencing on those sequences. The simulator models the basic spatial structure in genomes that is commonly observed in Hi-C and 3C datasets, including the distance-decay relationship in proximity ligation, differences in the frequency of interaction within and across chromosomes, and the structure imposed by cells. A means to model the 3D structure of randomly generated topologically associating domains is provided. The simulator considers several sources of error common to 3C and Hi-C library preparation and sequencing methods, including spurious proximity ligation events and sequencing error. We have introduced the first comprehensive simulator for 3C and Hi-C sequencing protocols. We expect the simulator to have use in testing of Hi-C data analysis algorithms, as well as more general value for experimental design, where questions such as the required depth of sequencing, enzyme choice, and other decisions can be made in advance in order to ensure adequate statistical power with respect to experimental hypothesis testing.

  9. Combined Lidar-Radar Remote Sensing: Initial Results from CRYSTAL-FACE and Implications for Future Spaceflight Missions

    Science.gov (United States)

    McGill, Matthew J.; Li, Li-Hua; Hart, William D.; Heymsfield, Gerald M.; Hlavka, Dennis L.; Vaughan, Mark A.; Winker, David M.

    2003-01-01

    In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter lidar and a 94-GHz cloud profiling radar in formation to provide complete global profiling of cloud and aerosol properties. The CRYSTAL-FACE field campaign, conducted during July 2002, provided the first high-altitude colocated measurements from lidar and cloud profiling radar to simulate these spaceborne sensors. The lidar and radar provide complementary measurements with varying degrees of measurement overlap. This paper presents initial results of the combined airborne lidar-radar measurements during CRYSTAL-FACE. The overlap of instrument sensitivity is presented, within the context of particular CRYSTAL-FACE conditions. Results are presented to quantify the portion of atmospheric profiles sensed independently by each instrument and the portion sensed simultaneously by the two instruments.

  10. C&S Enterprise, L.L.C.

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against C & S Enterprise, L.L.C. (“Respondent”), a business located at 2454 480th Ave, Deep River, IA 52222, for alleged violations of the Clean Water Act at property owned by Resp

  11. Generation of Anaphylatoxins by Human β-Tryptase from C3, C4, and C51

    Science.gov (United States)

    Fukuoka, Yoshihiro; Xia, Han-Zhang; Sanchez-Muñoz, Laura B.; Dellinger, Anthony L.; Escribano, Luis; Schwartz, Lawrence B.

    2009-01-01

    Both mast cells and complement participate in innate and acquired immunity. The current study examines whether β-tryptase, the major protease of human mast cells, can directly generate bioactive complement anaphylatoxins. Important variables included pH, monomeric vs tetrameric forms of β-tryptase, and the β-tryptase-activating polyanion. The B12 mAb was used to stabilize β-tryptase in its monomeric form. C3a and C4a were best generated from C3 and C4, respectively, by monomeric β-tryptase in the presence of low molecular weight dextran sulfate or heparin at acidic pH. High molecular weight polyanions increased degradation of these anaphylatoxins. C5a was optimally generated from C5 at acidic pH by β-tryptase monomers in the presence of high molecular weight dextran sulfate and heparin polyanions, but also was produced by β-tryptase tetramers under these conditions. Mass spectrometry verified that the molecular mass of each anaphylatoxin was correct. Both β-tryptase-generated C5a and C3a (but not C4a) were potent activators of human skin mast cells. These complement anaphylatoxins also could be generated by β-tryptase in releasates of activated skin mast cells. Of further biologic interest, β-tryptase also generated C3a from C3 in human plasma at acidic pH. These results suggest β-tryptase might generate complement anaphylatoxins in vivo at sites of inflammation, such as the airway of active asthma patients where the pH is acidic and where elevated levels of β-tryptase and complement anaphylatoxins are detected. PMID:18424754

  12. Developments in target micro-Doppler signatures analysis: radar imaging, ultrasound and through-the-wall radar

    OpenAIRE

    Clemente, C.; Balleri, A.; Woodbridge, K.; Soraghan, J. J.

    2013-01-01

    Target motions, other than the main bulk translation of the target, induce Doppler modulations around the main Doppler shift that form what is commonly called a target micro-Doppler signature. Radar micro-Doppler signatures are generally both target and action speci c and hence can be used to classify and recognise targets as well as to identify possible threats. In recent years, research into the use of micro-Doppler signatures for target classi cation to address many defence and security ch...

  13. Thermochemical instability effects in SiC-based fibers and SiC{sub f}/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H.; Jones, R.H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1997-08-01

    Thermochemical instability in irradiated SiC-based fibers with an amorphous silicon oxycarbide phase leads to shrinkage and mass loss. SiC{sub f}/SiC composites made with these fibers also exhibit mass loss as well as severe mechanical property degradation when irradiated at 800{degrees}C, a temperature much below the generally accepted 1100{degrees}C threshold for thermomechanical degradation alone. The mass loss is due to an internal oxidation mechanism within these fibers which likely degrades the carbon interphase as well as the fibers in SiC{sub f}/SiC composites even in so-called {open_quotes}inert{close_quotes} gas environments. Furthermore, the mechanism must be accelerated by the irradiation environment.

  14. Synthesis of [21-14C]-fusarin C by enzymic demethylation and remethylation with [14C]-diazomethane

    International Nuclear Information System (INIS)

    Lu, S.-J.; Li, M.H.

    1989-01-01

    Fusarin C, a potent mutagen isolated from Fusarium moniliforme culture extracts, has been prepared radiolabeled in two steps by enzymic hydrolysis of the 21-methyl ester group, using phenobarbital induced microsomal preparations, followed by remethylation using [ 14 F]-diazomethane. Yields, based upon fusarin C, were essentially quantitative and approximately 10% of the [ 14 C]-methyl-nitrosourea, converted to diazomethane, reacted to yield [ 14 C]-fusarin C. (author)

  15. State-space adjustment of radar rainfall and skill score evaluation of stochastic volume forecasts in urban drainage systems

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Rasmussen, Michael Robdrup

    2013-01-01

    Merging of radar rainfall data with rain gauge measurements is a common approach to overcome problems in deriving rain intensities from radar measurements. We extend an existing approach for adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as input...... improves runoff forecasts compared with using the original radar data and that rain gauge measurements as forecast input are also outperformed. Combining the data merging approach with short-term rainfall forecasting algorithms may result in further improved runoff forecasts that can be used in real time...

  16. ANALYSIS OF DEBRIS FLOW DISASTER DUE TO HEAVY RAIN BY X-BAND MP RADAR DATA

    Directory of Open Access Journals (Sweden)

    M. Nishio

    2016-06-01

    Full Text Available On August 20 of 2014, Hiroshima City (Japan was struck by local heavy rain from an autumnal rain front. The resultant debris flow disaster claimed 75 victims and destroyed many buildings. From 1:30 am to 4:30 am on August 20, the accumulated rainfall in Hiroshima City exceeded 200 mm. Serious damage occurred in the Asakita and Asaminami wards of Hiroshima City. As a disaster prevention measure, local heavy rain (localized torrential rains is usually observed by the Automated Meteorological Data Acquisition System (AMeDAS operated by the Japan Meteorological Agency (JMA and by the C-band radar operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT of Japan, with spatial resolutions of 2.5 km and 1 km, respectively. The new X-band MP radar system enables more detailed rainfall observations than the C-band radar. In fact, this radar can observe local rainfall throughout Japan in near-real time over a minimum mesh size of 250 m. A fine-scale accumulated rainfall monitoring system is crucial for disaster prevention, and potential disasters can be alerted by the hazard levels of the accumulated rainfall.

  17. Demonstration of SiC Pressure Sensors at 750 C

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2014-01-01

    We report the first demonstration of MEMS-based 4H-SiC piezoresistive pressure sensors tested at 750 C and in the process confirmed the existence of strain sensitivity recovery with increasing temperature above 400 C, eventually achieving near or up to 100% of the room temperature values at 750 C. This strain sensitivity recovery phenomenon in 4H-SiC is uncharacteristic of the well-known monotonic decrease in strain sensitivity with increasing temperature in silicon piezoresistors. For the three sensors tested, the room temperature full-scale output (FSO) at 200 psig ranged between 29 and 36 mV. Although the FSO at 400 C dropped by about 60%, full recovery was achieved at 750 C. This result will allow the operation of SiC pressure sensors at higher temperatures, thereby permitting deeper insertion into the engine combustion chamber to improve the accurate quantification of combustor dynamics.

  18. Detección de movimiento mediante técnicas radar CW-FM en banda W

    OpenAIRE

    Vargas González, Daniel

    2014-01-01

    Aplicació de diverses tècniques de detecció i localització per detectar moviments amb un radar C2-FM que opera en banda W. [ANGLÈS] Integration of a SAR adquisition system using a FM-CW 94 GHz radar and test the system by different measurement campaigns with the aim of detecting micrometic displacements using a phase analysis of the recived signal [CASTELLÀ[ Integración de un sistema de adquisición SAR mediante el uso de un radar FM-CW a 94 GHz y probar la validez del mencionado sistema...

  19. UAV-based Radar Sounding of Antarctic Ice

    Science.gov (United States)

    Leuschen, Carl; Yan, Jie-Bang; Mahmood, Ali; Rodriguez-Morales, Fernando; Hale, Rick; Camps-Raga, Bruno; Metz, Lynsey; Wang, Zongbo; Paden, John; Bowman, Alec; Keshmiri, Shahriar; Gogineni, Sivaprasad

    2014-05-01

    We developed a compact radar for use on a small UAV to conduct measurements over the ice sheets in Greenland and Antarctica. It operates at center frequencies of 14 and 35 MHz with bandwidths of 1 MHz and 4 MHz, respectively. The radar weighs about 2 kgs and is housed in a box with dimensions of 20.3 cm x 15.2 cm x 13.2 cm. It transmits a signal power of 100 W at a pulse repletion frequency of 10 kHz and requires average power of about 20 W. The antennas for operating the radar are integrated into the wings and airframe of a small UAV with a wingspan of 5.3 m. We selected the frequencies of 14 and 35 MHz based on previous successful soundings of temperate ice in Alaska with a 12.5 MHz impulse radar [Arcone, 2002] and temperate glaciers in Patagonia with a 30 MHz monocycle radar [Blindow et al., 2012]. We developed the radar-equipped UAV to perform surveys over a 2-D grid, which allows us to synthesize a large two-dimensional aperture and obtain fine resolution in both the along- and cross-track directions. Low-frequency, high-sensitivity radars with 2-D aperture synthesis capability are needed to overcome the surface and volume scatter that masks weak echoes from the ice-bed interface of fast-flowing glaciers. We collected data with the radar-equipped UAV on sub-glacial ice near Lake Whillans at both 14 and 35 MHz. We acquired data to evaluate the concept of 2-D aperture synthesis and successfully demonstrated the first successful sounding of ice with a radar on an UAV. We are planning to build multiple radar-equipped UAVs for collecting fine-resolution data near the grounding lines of fast-flowing glaciers. In this presentation we will provide a brief overview of the radar and UAV, as well as present results obtained at both 14 and 35 MHz. Arcone, S. 2002. Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. Journal of Glaciology, 48, 317-334. Blindow, N., C. Salat, and G. Casassa. 2012. Airborne GPR sounding of

  20. Dicty_cDB: VSI127 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available w*nwnw*iksccnchtkftrvngfiqkcfwc*c**tses s*twcnnsicwirkykn*itpsiwr*itn*kffkkesirwy...ii*yqyrkw*qnw*yyw*nwnw*iksccnchtkftrvngfiqkcfwc*c**tses s*twcnnsicwirkykn*itpsiwr*itn*kffkkesirwyssylfrs**ys...scsqnfis rkc*ny*sntkdwcsw*TSCFLTSKINEWCFSRIRRKIKIIYRIFFKKK--- ---lnk**ii*yqyrkw*qnw*yyw*nwnw*iksccnchtkftrvngfiqkcfwc*c**t sess*twcnn

  1. Dicty_cDB: VHE759 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 5 CX072513 |CX072513.1 UCRCS08_28E10_g Parent Washington Navel Orange Callus cDNA Library UCRCS08-2 Citrus s...72512.1 UCRCS08_28E10_b Parent Washington Navel Orange Callus cDNA Library UCRCS08-2 Citrus sinensis cDNA cl...inensis cDNA clone UCRCS08-28E10-J20-1-4.g, mRNA sequence. 46 1.5 1 CX072512 |CX0

  2. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    Dias, Ricardo Rodrigues

    2009-01-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H 2 PtCl 6 .6H 2 O (Aldrich), SnCl 2 .2H 2 O (Aldrich),and RhCl 2 .XH 2 O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40 0 , 47 0 , 67 0 and 82 0 , which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34 0 and 52 0 that were identified as a SnO 2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  3. Understanding NEOs: The Role of Characterization Missions

    Science.gov (United States)

    Morrison, David

    2007-10-01

    NEOs are important from multiple perspectives, including science, hazard mitigation, space resources, and as targets for human missions. Much can be learned from ground-based studies, especially with radar, but the unique value of in situ investigation has been shown by missions such as NEAR-Shoemaker and Hayabusa to asteroids Eros and Itokawa, and Deep Impact and Stardust to comets. The next mission targets are likely to be NEAs in the subkilometer size range. Because these smaller objects are much more numerous, they are the objects we most need to understand from a defense perspective, and they are also the most likely targets for early human missions. However, there are unique challenges in sending spacecraft to investigate sub-km asteroids. Reconnaissance flybys are of little use, orbiting requires active control, and landing on such a low-gravity surface is perhaps better described as docking. Yet we need to operate close to the target, and probably to land, to obtain crucial information about interior structure. This paper deals primarily with small landers like the Near Earth Asteroid Trailblazer Mission (NEAT) studied at Ames Research Center. The NEAT objectives are to provide global reconnaissance (shape, mass, density, dynamical state), in situ surface characterization, and long-term precision tracking. Alternative approaches use deep-penetrating radar and electromagnetic sounding to probe interior structure. A third class of missions is ballistic impactors such as the ESA Don Quijote, which test one of the technologies for deflecting small asteroids. If the targets are selected for their accessibility, such missions could be implemented with low-cost launchers such as Pegasus, Falcon, or Minotaur. Such missions will have high science return. But from the perspective of defense, we have not yet developed a consensus strategy for the role of such characterization missions.

  4. Study of the unimolecular decompositions of the (C3H6)+2 and (c-C3H6)+2 complexes

    International Nuclear Information System (INIS)

    Tzeng, W.; Ono, Y.; Linn, S.H.; Ng, C.Y.

    1985-01-01

    The major product channels identified in the unimolecular decompositions ofC 3 H + 6 xC 3 H 6 and c-C 3 H + 6 xc-C 3 H 6 in the total energy [neutral (C 3 H 6 ) 2 or (c-C 3 H 6 ) 2 heat of formation plus excitation energy] range of approx.230--450 kcal/mol are C 3 H + 7 +C 3 H 5 , C 4 H + 7 +C 2 H 5 , C 4 H + 8 +C 2 H 4 , and C 5 H + 9 +CH 3 . The measured appearance energy for C 4 H + 7 (9.54 +- 0.04 eV) from (C 3 H 6 ) 2 is equal to the thermochemical threshold for the formation of C 4 H + 7 +C 2 H 5 from (C 3 H 6 ) 2 , indicating that the exit potential energy barrier for the ion--molecule reaction C 3 H + 6 +C 3 H 6 →C 4 H + 7 +C 2 H 5 is negligible. There is evidence that the formations of C 4 H + 7 +C 2 H 4 +H from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 also proceed with high probabilities when they are energetically allowed. The variations of the relative abundances for C 4 H + 7 ,C 4 H + 8 , and C 5 H + 9 from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 as a function of ionizing photon energy are in qualitative agreement, suggesting that (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 rearrange to similar C 6 H + 12 isomers prior to fragmentation. The fact that C 6 H + 11 is found to be a primary ion from the unimolecular decomposition of (c-C 3 H 6 ) + 2 but not (C 3 H 6 ) + 2 supports the conclusion that the distribution of C 6 H + 12 collision complexes involved in the C 3 H + 6 +C 3 H 6 reactions is different from that in the cyclopropane ion--molecule reactions

  5. Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; dos Santos, Jéssica Diane; de Barros, Patrícia Pimentel; Prata, Márcia Cristina de Azevedo; Anbinder, Ana Lia; Fuchs, Beth Burgwyn; Jorge, Antonio Olavo Cardoso; Mylonakis, Eleftherios; Junqueira, Juliana Campos

    2015-01-01

    In this study, we evaluated the interactions between Candida albicans, Candida krusei and Candida glabrata in mixed infections. Initially, these interactions were studied in biofilms formed in vitro. CFU/mL values of C. albicans were lower in mixed biofilms when compared to the single biofilms, verifying 77% and 89% of C. albicans reduction when this species was associated with C. glabrata and C. krusei, respectively. After that, we expanded this study for in vivo host models of experimental candidiasis. G. mellonella larvae were inoculated with monotypic and heterotypic Candida suspensions for analysis of survival rate and quantification of fungal cells in the haemolymph. In the groups with single infections, 100% of the larvae died within 18 h after infection with C. albicans. However, interaction groups achieved 100% mortality after 72 h of infection by C. albicans-C. glabrata and 96 h of infection by C. albicans-C. krusei. C. albicans CFU/mL values from larvae hemolymph were lower in the interacting groups compared with the monoespecies group after 12 h of infection. In addition, immunosuppressed mice were also inoculated with monotypic and heterotypic microbial suspensions to induce oral candidiasis. C. albicans CFU/mL values recovered from oral cavity of mice were higher in the group with single infection by C. albicans than the groups with mixed infections by C. albicans-C. glabrata and C. albicans-C. krusei. Moreover, the group with single infection by C. albicans had a higher degree of hyphae and epithelial changes in the tongue dorsum than the groups with mixed infections. We concluded that single infections by C. albicans were more harmful for animal models than mixed infections with non-albicans species, suggesting that C. albicans establish competitive interactions with C. krusei and C. glabrata during biofilm formation and development of experimental candidiasis. PMID:26146832

  6. Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis.

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; dos Santos, Jéssica Diane; de Barros, Patrícia Pimentel; Prata, Márcia Cristina de Azevedo; Anbinder, Ana Lia; Fuchs, Beth Burgwyn; Jorge, Antonio Olavo Cardoso; Mylonakis, Eleftherios; Junqueira, Juliana Campos

    2015-01-01

    In this study, we evaluated the interactions between Candida albicans, Candida krusei and Candida glabrata in mixed infections. Initially, these interactions were studied in biofilms formed in vitro. CFU/mL values of C. albicans were lower in mixed biofilms when compared to the single biofilms, verifying 77% and 89% of C. albicans reduction when this species was associated with C. glabrata and C. krusei, respectively. After that, we expanded this study for in vivo host models of experimental candidiasis. G. mellonella larvae were inoculated with monotypic and heterotypic Candida suspensions for analysis of survival rate and quantification of fungal cells in the haemolymph. In the groups with single infections, 100% of the larvae died within 18 h after infection with C. albicans. However, interaction groups achieved 100% mortality after 72 h of infection by C. albicans-C. glabrata and 96 h of infection by C. albicans-C. krusei. C. albicans CFU/mL values from larvae hemolymph were lower in the interacting groups compared with the monoespecies group after 12 h of infection. In addition, immunosuppressed mice were also inoculated with monotypic and heterotypic microbial suspensions to induce oral candidiasis. C. albicans CFU/mL values recovered from oral cavity of mice were higher in the group with single infection by C. albicans than the groups with mixed infections by C. albicans-C. glabrata and C. albicans-C. krusei. Moreover, the group with single infection by C. albicans had a higher degree of hyphae and epithelial changes in the tongue dorsum than the groups with mixed infections. We concluded that single infections by C. albicans were more harmful for animal models than mixed infections with non-albicans species, suggesting that C. albicans establish competitive interactions with C. krusei and C. glabrata during biofilm formation and development of experimental candidiasis.

  7. Dicty_cDB: SHJ446 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available X4, complete sequence. 42 0.41 8 CX076494 |CX076494.1 UCRCS08_50C12_g Parent Washington Navel Orange Callus ... |CX076493.1 UCRCS08_50C12_b Parent Washington Navel Orange Callus cDNA Library U

  8. Whither Sir William?

    Directory of Open Access Journals (Sweden)

    Stephen J. Greenberg, MSLS, PhD

    2017-04-01

    Full Text Available There are times when something is simply so familiar that we can no longer see it at all. It can be a story, or a concept, or even a flesh-and-blood person. Familiarity breeds not only contempt, but a kind of invisibility as well. For too many of us, such is the case with Sir William Osler. In his time (1849–1919, many considered him to be one of the greatest practitioners, teachers, and writers ever in the field of medicine. He was instrumental in the founding of the Medical Library Association (MLA and was elected its second president.

  9. SIRS Digues 2.0: A Cooperative Software For Levees Management

    Directory of Open Access Journals (Sweden)

    Moins Isabelle

    2016-01-01

    Full Text Available SIRS Digues is a computing tool that makes informations on levees more durable and accessible in order to enhance their management. The first version of the software, which was IRSTEA’s initiative, was deployed in 2004. The second version was released in 2015. This article aims at pointing out the innovative aspects of this last version. They concern thematic and functionalities, computing technics and architecture, and last but not least, the business model chosen in order to build a long lasting software. The software’s kernel is sketched to propose a general description of levees: it focuses on description of the levees and linked objects, on disorders that affects them, on works... Most of these topics were already broached by the first version. The kernel of the version 2 may be extended using optional thematic modules. These modules concern: vegetation monitoring, reporting (in coherence with current French regulatory requirements, riverbanks, riverbed... Main functionnalities perfomed by SIRS Digues V1 and V2 are : data structuring and centralisation, quick access to relevant data, reporting and mapping, etc. SIRS Digues 2.0 updates and improves already existing functionalities of the first version. SIRS Digues V2 relies on an documentoriented NoSQL database, CouchDB, and on geospatial libraries, Geotoolkit and Apache-SIS. SIRS Digues V2 was released with a copyleft license. Copyrights belong to the French levees managers’ society, “France Digues”, which acts as a cooperative. Members put their heads together in order to gather their financial capacities and fund software development. France Digues has got the technical and thematic expertise and supply various services to the members. This business model aims to ensure accessibility, durability and adaptability of the software.

  10. Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry†

    Science.gov (United States)

    Mandrell, Robert E.; Harden, Leslie A.; Bates, Anna; Miller, William G.; Haddon, William F.; Fagerquist, Clifton K.

    2005-01-01

    Multiple strains of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis isolated from animal, clinical, or food samples have been analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Whole bacterial cells were harvested from colonies or confluent growth on agar and transferred directly into solvent and then to a spot of dried 3-methoxy-4-hydroxycinnamic acid (matrix). Multiple ions in the 5,000- to 15,000-Da mass range were evident in spectra for each strain; one or two ions in the 9,500- to 11,000-Da range were consistently high intensity. “Species-identifying” biomarker ions (SIBIs) were evident from analyses of multiple reference strains for each of the six species, including the genome strains C. jejuni NCTC 11168 and C. jejuni RM1221. Strains grown on nine different combinations of media and atmospheres yielded SIBI masses within ±5 Da with external instrument calibration. The highest-intensity C. jejuni SIBIs were cytosolic proteins, including GroES, HU/HCj, and RplL. Multiple intraspecies SIBIs, corresponding probably to nonsynonymous nucleotide polymorphisms, also provided some intraspecies strain differentiation. MALDI-TOF MS analysis of 75 additional Campylobacter strains isolated from humans, poultry, swine, dogs, and cats revealed (i) associations of SIBI type with source, (ii) strains previously speciated incorrectly, and (iii) “strains” composed of more than one species. MALDI-TOF MS provides an accurate, sensitive, and rapid method for identification of multiple Campylobacter species relevant to public health and food safety. PMID:16204551

  11. Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Mandrell, Robert E; Harden, Leslie A; Bates, Anna; Miller, William G; Haddon, William F; Fagerquist, Clifton K

    2005-10-01

    Multiple strains of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis isolated from animal, clinical, or food samples have been analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Whole bacterial cells were harvested from colonies or confluent growth on agar and transferred directly into solvent and then to a spot of dried 3-methoxy-4-hydroxycinnamic acid (matrix). Multiple ions in the 5,000- to 15,000-Da mass range were evident in spectra for each strain; one or two ions in the 9,500- to 11,000-Da range were consistently high intensity. "Species-identifying" biomarker ions (SIBIs) were evident from analyses of multiple reference strains for each of the six species, including the genome strains C. jejuni NCTC 11168 and C. jejuni RM1221. Strains grown on nine different combinations of media and atmospheres yielded SIBI masses within +/-5 Da with external instrument calibration. The highest-intensity C. jejuni SIBIs were cytosolic proteins, including GroES, HU/HCj, and RplL. Multiple intraspecies SIBIs, corresponding probably to nonsynonymous nucleotide polymorphisms, also provided some intraspecies strain differentiation. MALDI-TOF MS analysis of 75 additional Campylobacter strains isolated from humans, poultry, swine, dogs, and cats revealed (i) associations of SIBI type with source, (ii) strains previously speciated incorrectly, and (iii) "strains" composed of more than one species. MALDI-TOF MS provides an accurate, sensitive, and rapid method for identification of multiple Campylobacter species relevant to public health and food safety.

  12. Access control within military C4ISR systems

    Science.gov (United States)

    Maschino, Mike

    2003-07-01

    Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) tactical battlefield systems must provide the right information and resources to the right individuals at the right time. At the same time, the C4ISR system must enforce access controls to prevent the wrong individuals from obtaining sensitive information, or consuming scarce resources. Because lives, missions and property depend upon them, these access control mechanisms must be effective, reliable, efficient and flexible. The mechanisms employed must suit the nature of the items that are to be protected, as well as the varieties of access policies that must be enforced, and the types of access that will be made to these items. Some access control technologies are inherently centralized, while others are suitable for distributed implementation. The C4ISR architect must select from among the available technologies a combination of mechanisms that eases the burden of policy administration, but is inherently survivable, accurate, resource efficient, and which provides low latency. This paper explores various alternative access enforcement mechanisms, and assesses their effectiveness in managing policy-driven access control within the battlespace.

  13. Potential Hazards Relating to Pyrolysis of c-C4F8O, n-C4F10 and c-C4F8 in selected gaseous diffusion plant operations

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    2000-01-01

    As part of a program intended to replace the present evaporative coolant at the gaseous diffusion plants (GDPs) with a non-ozone-depleting alternate, a series of investigations of the suitability of candidate substitutes is under way. This report summarizes studies directed at estimating the chemical and thermal stability of three candidate coolants, c-C 4 F 8 O, n-C 4 F 10 and c-C 4 4F 8 , in a few specific environments to be found in gaseous diffusion plant operations

  14. Modeling Sub-500MHz Space-Borne Radar Signal Propagation in Complex Media

    Data.gov (United States)

    National Aeronautics and Space Administration — Space-borne radar platforms are becoming increasingly prevalent in current and planned missions by NASA and partner organizations (e.g. the European Space Agency...

  15. Oceanographic data collected from the Sir John Franklin in the Beaufort Sea, September 1989

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, R W; Carmack, E C; O' Brien, M C; McLaughlin, F A; Minkley, B G; Berger-North, K

    1989-09-01

    The data reported here were collected from the Canadian Coast Guard ship Sir John Franklin during a cruise to the Canadian Beaufort Sea from August 21 to Sept 5, 1989. The cruise had two broad objectives: to collect chemical and conductivity temperature depth (CTD) data at a deep station in the Canadian Basin, and to survey intensively the shelf break with the Mackenzie Canyon as a focus. Conductivity temperature depth was measured using a CTD guideline system. Water samples consisting of hydrocast for 6 shelf edge stations at 200 m depth and one deep station at 3200 m depth were tested for salinity, temperature, dissolved oxygen, nutrients, and chlorophyll a. In addition, samples were collected for analysis of tritium, C-14, and oxygen isotope composition and acoustic profiles were run. Isotope composition and acoustic profile data are not included in this report.

  16. Dicty_cDB: VSD136 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 8 |CB290208.1 UCRCS01_01aa10_g1 Washington Navel orange cold acclimated flavedo & albedo cDNA library Citrus....1 UCRCS01_04cd07_g1 Washington Navel orange cold acclimated flavedo & albedo cDNA library Citrus sinensis c

  17. Dicty_cDB: SHJ838 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 4 CV164410 |CV164410.1 rsmsxl_003361.y1.scf cDNA Library of Salvia miltiorrhiza S...alvia miltiorrhiza cDNA 5', mRNA sequence. 54 6e-09 3 CV172465 |CV172465.1 rsmsxlre_008717.z1.scf cDNA Libra

  18. Dicty_cDB: CHN523 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available -09 5 CV164410 |CV164410.1 rsmsxl_003361.y1.scf cDNA Library of Salvia miltiorrhiza Salvia miltiorrhiza cDNA... 5', mRNA sequence. 54 5e-09 3 CV172465 |CV172465.1 rsmsxlre_008717.z1.scf cDNA L

  19. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  20. Dicty_cDB: Contig-U03072-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available verselong Onychiurus arcticus d... 38 0.010 2 ( CF439672 ) EST676017 normalized cDNA library of ...ornis cDN... 68 8e-07 1 ( BU884919 ) R017H10 Populus root cDNA library Populus tremula... 68 8e-07 1 ( ...us dormant bud cDNA library Populus ... 60 2e-04 1 ( CK110478 ) N067A08 Populus bark cDNA library Populus tremul...04 1 ( BU887484 ) R062A08 Populus root cDNA library Populus tremula... 60 2e-04 1 ( BU880608 ) UM52TC12 Populus flower cDNA library...us tremula cambium cDNA library Po... 60 2e-04 1 ( BU819297 ) UA42BPA08 Populus tremula cambium cDNA library