WorldWideScience

Sample records for radar test equipment

  1. Study on the shipboard radar reconnaissance equipment azimuth benchmark method

    Science.gov (United States)

    Liu, Zhenxing; Jiang, Ning; Ma, Qian; Liu, Songtao; Wang, Longtao

    2015-10-01

    The future naval battle will take place in a complex electromagnetic environment. Therefore, seizing the electromagnetic superiority has become the major actions of the navy. Radar reconnaissance equipment is an important part of the system to obtain and master battlefield electromagnetic radiation source information. Azimuth measurement function is one of the main function radar reconnaissance equipments. Whether the accuracy of direction finding meets the requirements, determines the vessels successful or not active jamming, passive jamming, guided missile attack and other combat missions, having a direct bearing on the vessels combat capabilities . How to test the performance of radar reconnaissance equipment, while affecting the task as little as possible is a problem. This paper, based on radar signal simulator and GPS positioning equipment, researches and experiments on one new method, which povides the azimuth benchmark required by the direction-finding precision test anytime anywhere, for the ships at jetty to test radar reconnaissance equipment performance in direction-finding. It provides a powerful means for the naval radar reconnaissance equipments daily maintenance and repair work[1].

  2. Shuttle orbiter Ku-band radar/communications system design evaluation. Deliverable test equipment evaluation

    Science.gov (United States)

    Maronde, R. G.

    1980-07-01

    The Ku-band test equipment, known as the Deliverable System Test equipment (DSTE), is reviewed and evaluated. The DSTE is semiautomated and computer programs were generated for 14 communication mode tests and 17 radar mode tests. The 31 test modules provide a good cross section of tests with which to exercise the Ku-band system; however, it is very limited when being used to verify Ku-band system performance. More detailed test descriptions are needed, and a major area of concern is the DSTE sell-off procedure which is inadequate.

  3. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  4. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  5. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  6. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For...

  7. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-01-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... to cancel Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C67, Airborne Radar Altimeter...

  8. Grimsel test site. Analysis of radar measurements performed at the Grimsel rock laboratory in October 1985

    International Nuclear Information System (INIS)

    Falk, L.; Magnusson, K.A.; Olsson, O.; Ammann, M.; Keusen, H.R.; Sattel, G.

    1988-02-01

    In October 1985 Swedish Geological Co. conducted a radar reflection survey at Grimsel Test Site to map discontinuities in the rock mass of the Underground Seismic (US) test field. These measurements first designed as a test of the equipment at that specific site allowed a comprehensive interpretation of the geometrical structure of the test field. The geological interpretation of the radar reflectors observed is discussed and a possible way is shown to construct a geological model of a site using the combination of radar results and geological information. Additionally to these results the report describes the radar equipment and the theoretical background for the analysis of the data. The main geological features in the area under investigation, situated in the 'Zentraler Aaregranit', are lamprophyre dykes and fracture/shear zones. Their position and strike have been determined using single- and crosshole radar data, SABIS data (accoustic televiewer) as well as existing geological information from the boreholes or the drifts under the assumption of steep dipping elements (70 to 90 o ). (author) 10 refs., 32 figs., 17 tabs

  9. On construction method of shipborne and airborne radar intelligence and related equipment knowledge graph

    Science.gov (United States)

    Hao, Ruizhe; Huang, Jian

    2017-08-01

    Knowledge graph construction in military intelligence domain is sprouting but technically immature. This paper presents a method to construct the heterogeneous knowledge graph in the field of shipborne and airborne radar and equipment. Based on the expert knowledge and the up-to-date Internet open source information, we construct the knowledge graph of radar characteristic information and the equipment respectively, and establish relationships between two graphs, providing the pipeline and method for the intelligence organization and management in the context of the crowding battlefields big data.

  10. Radar Location Equipment Development Program: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  11. Radar Location Equipment Development Program: Phase I

    International Nuclear Information System (INIS)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2 0 , respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1 0 in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs

  12. Design and testing of Ground Penetrating Radar equipment dedicated for civil engineering applications: ongoing activities in Working Group 1 of COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Manacorda, Guido; Persico, Raffaele

    2015-04-01

    This work aims at presenting the ongoing research activities carried out in Working Group 1 'Novel GPR instrumentation' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Working Group 1 (WG1) of the Action focuses on the development of innovative GPR equipment dedicated for civil engineering applications. It includes three Projects. Project 1.1 is focused on the 'Design, realisation and optimisation of innovative GPR equipment for the monitoring of critical transport infrastructures and buildings, and for the sensing of underground utilities and voids.' Project 1.2 is concerned with the 'Development and definition of advanced testing, calibration and stability procedures and protocols, for GPR equipment.' Project 1.3 deals with the 'Design, modelling and optimisation of GPR antennas.' During the first year of the Action, WG1 Members coordinated between themselves to address the state of the art and open problems in the scientific fields identified by the above-mentioned Projects [1, 2]. In carrying our this work, the WG1 strongly benefited from the participation of IDS Ingegneria dei Sistemi, one of the biggest GPR manufacturers, as well as from the contribution of external experts as David J. Daniels and Erica Utsi, sharing with the Action Members their wide experience on GPR technology and methodology (First General Meeting, July 2013). The synergy with WG2 and WG4 of the Action was useful for a deep understanding of the problems, merits and limits of available GPR equipment, as well as to discuss how to quantify the reliability of GPR results. An

  13. Low-Cost Mini Radar: Design Prototyping and Tests

    Directory of Open Access Journals (Sweden)

    Dario Tarchi

    2017-01-01

    Full Text Available Radar systems are largely employed for surveillance of wide and remote areas; the recent advent of drones gives the opportunity to exploit radar sensors on board of unmanned aerial platforms. Nevertheless, whereas drone radars are currently available for military applications, their employment in the civilian domain is still limited. The present research focuses on design, prototyping, and testing of an agile, low-cost, mini radar system, to be carried on board of Remotely Piloted Aircraft (RPAs or tethered aerostats. In particular, the paper faces the challenge to integrate the in-house developed radar sensor with a low-cost navigation board, which is used to estimate attitude and positioning data. In fact, a suitable synchronization between radar and navigation data is essential to properly reconstruct the radar picture whenever the platform is moving or the radar is scanning different azimuthal sectors. Preliminary results, relative to tests conducted in preoperational conditions, are provided and exploited to assert the suitable consistency of the obtained radar pictures. From the results, there is a high consistency between the radar images and the picture of the current environment emerges; finally, the comparison of radar images obtained in different scans shows the stability of the platform.

  14. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  15. Equipment for hydraulic testing

    International Nuclear Information System (INIS)

    Jacobsson, L.; Norlander, H.

    1981-07-01

    Hydraulic testing in boreholes is one major task of the hydrogeological program in the Stripa Project. A new testing equipment for this purpose was constructed. It consists of a downhole part and a surface part. The downhole part consists of two packers enclosing two test-sections when inflated; one between the packers and one between the bottom packer and the bottom of the borehole. A probe for downhole electronics is also included in the downhole equipment together with electrical cable and nylon tubing. In order to perform shut-in and pulse tests with high accuracy a surface controlled downhole valve was constructed. The surface equipment consists of the data acquisition system, transducer amplifier and surface gauges. In the report detailed descriptions of each component in the whole testing equipment are given. (Auth.)

  16. IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Karlson, Benjamin; LeBlanc, Bruce Philip.; Minster, David G; Estill, Milford; Miller, Bryan Edward; Busse, Franz (MIT LL); Keck, Chris (MIT LL); Sullivan, Jonathan (MIT LL); Brigada, David (MIT LL); Parker, Lorri (MIT LL); Younger, Richard (MIT LL); Biddle, Jason (MIT LL)

    2014-10-01

    Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in order to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.

  17. Simulating lightning tests to radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2010-01-01

    The risk of destruction due to lightning makes simulating the effects of lightning strikes a necessity. We modeled a radar enclosure and simulated the effect of a lightning strike. The results have been validated using full threat lightning current tests.

  18. COST Action TU1208 - Working Group 1 - Design and realisation of Ground Penetrating Radar equipment for civil engineering applications

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; D'Amico, Sebastiano; Ferrara, Vincenzo; Frezza, Fabrizio; Persico, Raffaele; Tosti, Fabio

    2017-04-01

    provided by the Italian company IDS Ingegneria dei Sistemi; in cooperation with the Spanish company Euroconsult, an instrumented lorry equipped with a curviameter was used in the same road sections. Curviameter and GPR results were compared, with very good agreement. 3. A reconfigurable stepped-frequency GPR prototype was improved and widely tested. The original version of this prototype was designed and realised in Italy, in 2008. In June 2014, with the support of the Action TU1208 (and in particular by exploiting the Short Term Scientific Mission (STSM) networking tool), this prototype was brought to Norway: tests were carried out in laboratory, on roads and archaelogical sites; results were compared with those obtained by using a commercial system manufactured by the Norwegian manufacturer 3d-radar. As a result of this work, it was possible to understand how to improve the Italian prototype. Changes to the hardware were implemented in cooperation with the company Florence Engineering. In the improved version of the prototype, a more advanced technique is used for the reconfiguration of the integration times. In July 2015, by exploiting again the STSM tool, the prototype was brought to Malta: tests were carried out in buildings, churches, archaeological and geological sites; results were compared with those obtained by using a commercial pulsed system manufactured by IDS Ingegneria dei Sistemi. It is worth pointing out that this was the first time GPR measurements were carried out in Malta, where no GPR systems are available. Finally, in January 2016 the improved prototype was again brought to Malta in order to be used during the experimental sessions of a TU1208 Training School. This is an excellent example of a successful scientific activity where STSM and TS COST networking tools were effectively exploited, the cooperation with industry was of central importance, and a less research-intensive Country was deliberately chosen, to test the improved system. 4. A cheap

  19. Equipment Operational Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  20. Functional Testing Airborne Radars

    Science.gov (United States)

    1981-03-27

    recorded, and presented in accordance with this TOP? Yes No Comment : 2. Were the facilities, test equipment, instrumentation, and support accommo- dations...adequate to accomplish the test objectives? Yes No Comment : 3. Have all data collected been reviewed for correctness and completeness? Yes No ... Comment : 4. Were the test results compromised in any way due to insufficient test planning? Yes No . Comment : 5. Were the test results compromised in any

  1. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    Science.gov (United States)

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  2. AVM branch vibration test equipment

    International Nuclear Information System (INIS)

    Anne, J.P.

    1995-01-01

    An inventory of the test equipment of the AVM Branch ''Acoustic and Vibratory Mechanics Analysis Methods'' group has been undertaken. The purpose of this inventory is to enable better acquaintance with the technical characteristics of the equipment, providing an accurate definition of their functionalities, ad to inform potential users of the possibilities and equipment available in this field. The report first summarizes the various experimental surveys conduced. Then, using the AVM equipment database to draw up an exhaustive list of available equipment, it provides a full-scope picture of the vibration measurement systems (sensors, conditioners and exciters) and data processing resources commonly used on industrial sites and in laboratories. A definition is also given of a mobile test unit, called 'shelter', and a test bench used for the testing and performance rating of the experimental analysis methods developed by the group. The report concludes with a description of two fixed installations: - the calibration bench ensuring the requisite quality level for the vibration measurement systems ; - the training bench, whereby know-how acquired in the field in the field of measurement and experimental analysis processes is made available to others. (author). 27 refs., 15 figs., 2 appends

  3. Ultra-Wideband Radar for Breath Tracking with Optical Fiber for Remote Reach Extension

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-01-01

    We report on the experimental demonstration of an UWB radar with fiber extension for remote breath tracking through 10 cm of concrete. The radar is based on telecom class equipment.......We report on the experimental demonstration of an UWB radar with fiber extension for remote breath tracking through 10 cm of concrete. The radar is based on telecom class equipment....

  4. Hardware in the loop testing and evaluation of seaborne search radars

    CSIR Research Space (South Africa)

    Strydom, JJ

    2012-09-01

    Full Text Available for independent testing and evaluation of radar systems. The CSIR digital radio frequency memory (DRFM) hardware technology is used as the basis of these test systems. DRFM's are traditionally used for EW applications, but processing power of field programmable... environment simulation (RES) on digital radio frequency memory (DRFM) platforms can be utilised to test the performance of a search radar in a sea clutter Y ra n ge X r a n g e S h a p e p a r a m e t e r 0 1 2 3 4 x 1 0 4 - 3 - 2 - 1...

  5. Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs

    Science.gov (United States)

    Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.

    1980-01-01

    In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.

  6. Test results for triple-modulation radar electronics with improved range disambiguation

    Energy Technology Data Exchange (ETDEWEB)

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it; Neri, Carlo

    2015-10-15

    Highlights: • A new digital radar electronic system based on triple-modulation has been developed. • The triple-modulation system uses an improved algorithm for the range-disambiguation. • The new radar electronics has been applied in the IVVS optical radar prototype for ITER. • The performances obtained with IVVS double and triple-modulation were compared. - Abstract: The In Vessel Viewing System (IVVS) is an optical radar with sub milimetrical resolution that will be used for imaging and metrology pourposes in ITER. The electronics of the system is based on a Digital Radar Electronics developed in ENEA Frascati laboratories during the past years. Until the present study, the system was based on amplitude modulation technique having double-modulation frequency. The power of the laser is sinusoidally modulated and the distance of the points scanned by the laser beam is obtained measuring the phase difference between outgoing and echo signals. Recently a triple-modulation radar electronics version and an algorithm able to solve the range disambiguation were developed. The aim of the upgrade was the increase of the robustness in the range disambiguation. The paper briefly describes the updates carried out on the Digital Radar Electronics and extensively the test results obtained by comparing the performance of the triple modulation versus the double modulation techniques.

  7. A User Guide for Smoothing Air Traffic Radar Data

    Science.gov (United States)

    Bach, Ralph E.; Paielli, Russell A.

    2014-01-01

    Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.

  8. UAV-based Radar Sounding of Antarctic Ice

    Science.gov (United States)

    Leuschen, Carl; Yan, Jie-Bang; Mahmood, Ali; Rodriguez-Morales, Fernando; Hale, Rick; Camps-Raga, Bruno; Metz, Lynsey; Wang, Zongbo; Paden, John; Bowman, Alec; Keshmiri, Shahriar; Gogineni, Sivaprasad

    2014-05-01

    We developed a compact radar for use on a small UAV to conduct measurements over the ice sheets in Greenland and Antarctica. It operates at center frequencies of 14 and 35 MHz with bandwidths of 1 MHz and 4 MHz, respectively. The radar weighs about 2 kgs and is housed in a box with dimensions of 20.3 cm x 15.2 cm x 13.2 cm. It transmits a signal power of 100 W at a pulse repletion frequency of 10 kHz and requires average power of about 20 W. The antennas for operating the radar are integrated into the wings and airframe of a small UAV with a wingspan of 5.3 m. We selected the frequencies of 14 and 35 MHz based on previous successful soundings of temperate ice in Alaska with a 12.5 MHz impulse radar [Arcone, 2002] and temperate glaciers in Patagonia with a 30 MHz monocycle radar [Blindow et al., 2012]. We developed the radar-equipped UAV to perform surveys over a 2-D grid, which allows us to synthesize a large two-dimensional aperture and obtain fine resolution in both the along- and cross-track directions. Low-frequency, high-sensitivity radars with 2-D aperture synthesis capability are needed to overcome the surface and volume scatter that masks weak echoes from the ice-bed interface of fast-flowing glaciers. We collected data with the radar-equipped UAV on sub-glacial ice near Lake Whillans at both 14 and 35 MHz. We acquired data to evaluate the concept of 2-D aperture synthesis and successfully demonstrated the first successful sounding of ice with a radar on an UAV. We are planning to build multiple radar-equipped UAVs for collecting fine-resolution data near the grounding lines of fast-flowing glaciers. In this presentation we will provide a brief overview of the radar and UAV, as well as present results obtained at both 14 and 35 MHz. Arcone, S. 2002. Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. Journal of Glaciology, 48, 317-334. Blindow, N., C. Salat, and G. Casassa. 2012. Airborne GPR sounding of

  9. Experimental test of General Relativity theory by radar observations of planets

    International Nuclear Information System (INIS)

    Afanas'eva, T.I.; Kislik, M.D.; Kolyuka, Yu.F.; Tikhonov, V.F.

    1991-01-01

    Basing on the radar observations of planets, carried out in the USSR and USA in 1964-1986, a particular relativistic effect has been tested, namely the (O-C) discrepancies in radar distances, arising in the construction of a unified theory of motion on interior planets in the Newtonian approximation. The results obtained confirm the validity of General Relativity to an accuracy of about 10 -2

  10. Weight/balance portable test equipment

    International Nuclear Information System (INIS)

    Whitlock, R.W.

    1994-01-01

    This document shows the general layout, and gives a part description for the weight/balance test equipment. This equipment will aid in the regulation of the leachate loading of tanker trucks. The report contains four drawings with part specifications. The leachate originates from lined trenches

  11. Contamination and incorporation due to emission of ionizing radiation from radar equipment of the German Federal Armed Forces. A reply to the report of the staff working group Dr. Sommer, presented 21st June 2001. 2. rev. ed.

    International Nuclear Information System (INIS)

    Bauer, K.

    2001-01-01

    The document refers to an issue of public debate in Germany, induced by the disclosure of inappropriate occupational safety measures at radar equipment of the German Army and Air Force. In this reply to the official report of investigation, the author gives his own expert opinion, discussing health risks in connection with radar equipment in general, and the specific military radar installations in particular. The author explains his approach to assessing the occupational radiation dose to military personnel and the resulting health risks and effects in that particular case. (orig./CB) [de

  12. Equipment qualification testing - a practical approach

    International Nuclear Information System (INIS)

    Davies, G.A.; McDougall, R.I.; Poirier, M.P.

    1996-01-01

    When nuclear safety equipment is credited with a Required Safety Function it must properly perform that function to facilitate safe control and/or shutdown of the plant during a design basis accident. When such equipment is required to be environmentally (EQ) and/or seismically qualified (SQ) for safety related use in CANDU nuclear power plants, the preferred method of qualification is by type testing. The qualification testing process requires that the test specimen equipment be subjected to the aging stressors associated with the normal service conditions that it would experience during it's required qualified (or service) life. Following the aging process, the test specimen is in a condition representative of that in which it would be at the end of its service life in the plant. The test specimen is then subjected to a simulated accident during which it must satisfy performance requirements thereby demonstrating that it can perform its required safety function. The performance requirements specified for the qualification testing must be designed to ensure that satisfactory performance of the safety function is demonstrated during the qualification program. This paper provides descriptions of practical methods used in the deriving and satisfying of relevant performance requirements during the qualification testing of safety related equipment. (author)

  13. A HWIL test facility of infrared imaging laser radar using direct signal injection

    Science.gov (United States)

    Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi

    2005-01-01

    Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.

  14. Solid-state radar switchboard

    Science.gov (United States)

    Thiebaud, P.; Cross, D. C.

    1980-07-01

    A new solid-state radar switchboard equipped with 16 input ports which will output data to 16 displays is presented. Each of the ports will handle a single two-dimensional radar input, or three ports will accommodate a three-dimensional radar input. A video switch card of the switchboard is used to switch all signals, with the exception of the IFF-mode-control lines. Each card accepts inputs from up to 16 sources and can pass a signal with bandwidth greater than 20 MHz to the display assigned to that card. The synchro amplifier of current systems has been eliminated and in the new design each PPI receives radar data via a single coaxial cable. This significant reduction in cabling is achieved by adding a serial-to-parallel interface and a digital-to-synchro converter located at the PPI.

  15. Waste Handling Equipment Development Test and Evaluation Study

    International Nuclear Information System (INIS)

    R.L. Tome

    1998-01-01

    The purpose of this study is to identify candidate Monitored Geologic Repository (MGR) surface waste handling equipment for development testing. This study will also identify strategies for performing the development tests. Development testing shall be implemented to support detail design and reduce design risks. Development testing shall be conducted to confirm design concepts, evaluate alternative design concepts, show the availability of needed technology, and provide design documentation. The candidate equipment will be selected from MGR surface waste handling equipment that is the responsibility of the Management and Operating Contractor (M and O) Surface Design Department. The equipment identified in this study is based on Viability Assessment (VA) design. The ''Monitored Geologic Repository Test and Evaluation Plan'' (MGR T and EP), Reference 5.1, was used as a basis for this study. The MGR T and EP reflects the extent of test planning and analysis that can be conducted, given the current status of the MGR requirements and latest VA design information. The MGR T and EP supports the appropriate sections in the license application (LA) in accordance with 10 CFR 60.2 1(c)(14). The MGR T and EP describes the following test activities: site characterization to confirm, by test and analysis, the suitability of the Yucca Mountain site for housing a geologic repository; development testing to investigate and document design concepts to reduce risk; qualification testing to verify equipment compliance with design requirements, specifications, and regulatory requirements; system testing to validate compliance with MGR requirements, which include the receipt, handling, retrieval, and disposal of waste; periodic performance testing to verify preclosure requirements and to demonstrate safe and reliable MGR operation; and performance confirmation modeling, testing, and analysis to verify adherence to postclosure regulatory requirements. Development test activities can be

  16. Real-data tests of a single-Doppler radar assimilation system

    Science.gov (United States)

    Nehrkorn, Thomas; Hegarty, James; Hamill, Thomas M.

    1994-06-01

    Real data tests of a single-Doppler radar data assimilation and forecast system have been conducted for a Florida sea breeze case. The system consists of a hydrostatic mesoscale model used for prediction of the preconvective boundary layer, an objective analysis that combines model first guess fields with radar derived horizontal winds, a thermodynamic retrieval scheme that obtains temperature information from the three-dimensional wind field and its temporal evolution, and a Newtonian nudging scheme for forcing the model forecast to closer agreement with the analysis. As was found in earlier experiments with simulated data, assimilation using Newtonian nudging benefits from temperature data in addition to wind data. The thermodynamic retrieval technique was successful in retrieving a horizontal temperature gradient from the radar-derived wind fields that, when assimilated into the model, led to a significantly improved forecast of the seabreeze strength and position.

  17. Evaluation of a radar-based proximity warning system for off-highway dump trucks.

    Science.gov (United States)

    Ruff, Todd

    2006-01-01

    A radar-based proximity warning system was evaluated by researchers at the Spokane Research Laboratory of the National Institute for Occupational Safety and Health to determine if the system would be effective in detecting objects in the blind spots of an off-highway dump truck. An average of five fatalities occur each year in surface mines as a result of an equipment operator not being aware of a smaller vehicle, person or change in terrain near the equipment. Sensor technology that can detect such obstacles and that also is designed for surface mining applications is rare. Researchers worked closely with the radar system manufacturer to test and modify the system on large, off-highway dump trucks at a surface mine over a period of 2 years. The final system was thoroughly evaluated by recording video images from a camera on the rear of the truck and by recording all alarms from the rear-mounted radar. Data show that the system reliably detected small vehicles, berms, people and other equipment. However, alarms from objects that posed no immediate danger were common, supporting the assertion that sensor-based systems for proximity warning should be used in combination with other devices, such as cameras, that would allow the operator to check the source of any alarm.

  18. Shaking table testing of electrical equipment in Argentina

    International Nuclear Information System (INIS)

    Carmona, J.S.; Zabala, F.; Santalucia, J.; Sisterna, C.; Magrini, M.; Oldecop, L.

    1995-01-01

    This paper describes the testing facility, the methodology applied and the results obtained in the seismic qualification tests of different types of electric equipment. These tests were carried out on a shaking table that was developed and built at the Earthquake Research Institute of the National University of San Juan, Argentine. The equipment tested consist of 500 KV and 132 KV current transformers, a 500 KV voltage transformer, a 145 KV disconnecter and a relay cabinet. The acceleration response of the tested equipment was measured at several locations distributed along its height, and strains were measured at critical points by strain gauges cemented on the base of the porcelain insulator. All the information was recorded with a data acquisition system at a sampling rate of 200 times per second in each channel. The facility developed at this Institute is the largest one in operation in Argentina at present and the equipment tested is the highest, heaviest and more slender one which has been seismically qualified on a shaking table in this country. These tests have been a valuable experience in the field of structural dynamic testing applied to equipment of hydroelectric and nuclear power plants. (author)

  19. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    International Nuclear Information System (INIS)

    Chiara, P.; Morelli, A.

    2010-01-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  20. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    Science.gov (United States)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  1. Lessons learned in testing of Safeguards equipment

    International Nuclear Information System (INIS)

    Pepper, Susan; Farnitano, Michael; Carelli, Joseph

    2001-01-01

    Upgrade Travel Funding' - This subtask provides funding for the upgrade of DIS equipment installed in the field; E.125.3, 'DIS Radiation Field Characterization' - This subtask provides for the procurement by the IAEA of radiation measurement equipment and technical assistance for the characterization of radiation conditions in the locations where DIS will be installed. This will help the IAEA ensure that the design specifications for the equipment are consistent with the location where the instrument will be used; E.125.4, 'DIS Design Limit Testing and Advise to Strengthen IAEA's Current Equipment Qualification Criteria' - Under this subtask, Wyle Laboratories and Quanterion Solutions will conduct SDIS design limit testing, including harsh environmental testing and accelerated aging, to determine the expected lifetime and produce a design limit report to include maximum operating environment vs. design limit analysis. Additionally, this task will include the development of a strengthened environmental qualification test plan and reliability and maintainability definition methodology for all safeguards equipment. The implementation of new equipment by the Department of Safeguards is costly. Expected costs associated with the implementation of equipment include capital costs, training and in some cases travel. The cost is dramatically increased when operational issues arise due to the costs of studying the issues, modifying and upgrading the equipment and additional travel. The U.S. Support Program believes that the IAEA's Division of Safeguards Technical Support (SGTS) must strengthen its equipment-testing program to ensure that the equipment it approves for inspection use is reliable and will not place additional burden on the Department of Safeguards' maintenance and inspection staff. The U.S. Support Program recognizes that SGTS already requires a series of fundamentally important and revealing tests, but we believe that additional tests should be added to the testing

  2. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    Science.gov (United States)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  3. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  4. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television

    Directory of Open Access Journals (Sweden)

    Wan Xianrong

    2017-02-01

    Full Text Available Digital broadcasting and television are important classes of illuminators of opportunity for passive radars. Distributed and multistatic structure are the development trends for passive radars. Most modern digital broadcasting and television systems work on a network, which not only provides a natural condition to distributed passive radar but also puts forward higher requirements on the design of passive radar systems. Among those requirements, precise synchronization among the receivers and transmitters as well as among multiple receiving stations, which mainly involves frequency and time synchronization, is the first to be solved. To satisfy the synchronization requirements of distributed passive radars, a synchronization scheme based on GPS is presented in this paper. Moreover, an effective scheme based on the China Mobile Multimedia Broadcasting signal is proposed to test the system synchronization performance. Finally, the reliability of the synchronization design is verified via the distributed multistatic passive radar experiments.

  5. Research on the Reliability Testing of Electrical Automation Control Equipment

    OpenAIRE

    Yongjie Luo

    2014-01-01

    According to the author’s many years’ work experience, this paper first discusses the concepts of electrical automation control equipment reliability testing, and then analyzes the test method of electrical automation control equipment reliability testing, finally, on this basis, this article discusses how to determine the reliability test method of electrical automation control equipment. Results of this study will provide a useful reference for electrical automation control equipment reliab...

  6. Measurements of millimeter wave radar transmission and backscatter during dusty infrared test 2, dirt 2

    Science.gov (United States)

    Petito, F. C.; Wentworth, E. W.

    1980-05-01

    Recently there has been much interest expressed to determine the ability of millimeter wave radar to perform target acquisition during degraded visibility conditions. In this regard, one of the primary issues of concern has been the potential of high-explosive artillery barrages to obscure the battlefield from millimeter wave radar systems. To address this issue 95 GHz millimeter wave radar measurements were conducted during the Dusty Infrared Test 2 (DIRT 2). This test was held at White Sands Missile Range, NM, 18-28 July 1979. Millimeter wave transmission and backscatter measurements were performed during singular live firings and static detonations of 155 mm and 105 mm high-explosive artillery rounds in addition to static detonations of C-4 explosives. A brief description of the millimeter wave portion of the test and instrumentation is given. The data along with some preliminary conclusions are presented.

  7. Maximum Available Accuracy of FM-CW Radars

    Directory of Open Access Journals (Sweden)

    V. Ricny

    2009-12-01

    Full Text Available This article deals with the principles and above all with the maximum available measuring accuracy analyse of FM-CW (Frequency Modulated Continuous Wave radars, which are usually employed for distance and velocity measurements of moving objects in road traffic, as well as air traffic and in other applications. These radars often form an important part of the active safety equipment of high-end cars – the so-called anticollision systems. They usually work in the frequency bands of mm waves (24, 35, 77 GHz. Function principles and analyses of factors, that dominantly influence the distance measurement accuracy of these equipments especially in the modulation and demodulation part, are shown in the paper.

  8. Installation and Initial Operation of DOE's 449-MHz Wind Profiling Radars on the U.S. West Coast

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shaw, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, Victor R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilczak, J. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); White, A. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ayers, Tom [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jordan, Jim [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); King, Clark W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-30

    The U.S. Department of Energy (DOE), in collaboration with the National Oceanic and Atmospheric Administration (NOAA), has recently completed the installation of three new wind profiling radars on the Washington and Oregon coasts. These systems operate at a frequency of 449 MHz and provide mean wind profiles to a height of roughly 8 km, with the maximum measurement height depending on time-varying atmospheric conditions. This is roughly half the depth of the troposphere at these latitudes. Each system is also equipped with a radio acoustic sounding system (RASS), which provides a measure of the temperature profile to heights of approximately 2 km. Other equipment deployed alongside the radar includes a surface meteorological station and GPS for column water vapor. This project began in fiscal year 2014, starting with equipment procurements and site selection. In addition, environmental reviews, equipment assembly and testing, site access agreements, and infrastructure preparations have been performed. Finally, with equipment deployment with data collection and dissemination, the primary tasks of this project have been completed. The three new wind profiling radars have been deployed at airports near Coos Bay, OR, and Astoria, OR, and at an industrial park near Forks, WA. Data are available through the NOAA Earth Systems Research Laboratory Data Display website, and will soon be made available through the DOE Atmosphere to Electrons data archive and portal as well.

  9. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  10. Development of Partial Discharging Simulation Test Equipment

    Science.gov (United States)

    Kai, Xue; Genghua, Liu; Yan, Jia; Ziqi, Chai; Jian, Lu

    2017-12-01

    In the case of partial discharge training for recruits who lack of on-site work experience, the risk of physical shock and damage of the test equipment may be due to the limited skill level and improper operation by new recruits. Partial discharge simulation tester is the use of simulation technology to achieve partial discharge test process simulation, relatively true reproduction of the local discharge process and results, so that the operator in the classroom will be able to get familiar with and understand the use of the test process and equipment.The teacher sets up the instrument to display different partial discharge waveforms so that the trainees can analyze the test results of different partial discharge types.

  11. Radar sensing via a Micro-UAV-borne system

    Science.gov (United States)

    Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine

    2017-04-01

    drone. The system is made by a commercial radar system, whose mass, size, power and cost budgets is compatible with the installation on micro-UAV. The radar system has been mounted on a DJI 550 UAV, a flexible hexacopter allowing both complex flight operations and static flight, and has been equipped with small size log-periodic antennas, having a 6 dB gain over the frequency range from 2 GHz to 11 GHz. An ad-hoc signal processing chain has been adopted to process the collected raw data and obtain an image of the investigated scenario providing an accurate target detection and localization. This chain involves a SVD-based noise filter procedure and an advanced data processing approach, which assumes a linear model of the underlying scattering phenomenon. REFERENCES [1] K. Whitehead, C. H. Hugenholtz, "Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges", J. Unmanned Vehicle Systems, vol.2, pp. 69-85, 2014. [2] K. Ouchi, Recent trend and advance of synthetic aperture radar with selected topics, Remote Sens, vol.5, pp.716-807, 2013. [3] D. Altdor et al., UAV-borne electromagnetic induction and ground-penetrating radar measurements: a feasibility test, 74th Annual Meeting of the Deutsche Geophysikalische Gesellschaft in Karlsruhe, Germany, March 9 - 13, 2014.

  12. A compliance testing program for diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Hutchinson, D.E.; Cobb, B.J.; Jacob, C.S.

    1999-01-01

    Compliance testing is nominally that part of a quality assurance program dealing with those aspects of X-ray equipment performance that are subject to radiation control legislation. Quality assurance programs for medical X-ray equipment should be an integral part of the quality culture in health care. However while major hospitals and individual medical centers may implement such programs with some diligence, much X-ray equipment can remain unappraised unless there is a comprehensive regulatory inspection program or some form of compulsion on the equipment owner to implement a testing program. Since the late 1950s all X-ray equipment in the State of Western Australia has been inspected by authorized officers acting on behalf of the Radiological Council, the regulatory authority responsible for administration of the State's Radiation Safety Act. However, economic constraints, coupled with increasing X-ray equipment numbers and a geographically large State have significantly affected the inspection rate. Data available from inspections demonstrate that regular compliance and performance checks are essential in order to ensure proper performance and to minimize unnecessary patient and operator dose. To ensure that diagnostic X-ray equipment complies with accepted standards and performance criteria, the regulatory authority introduced a compulsory compliance testing program for all medical, dental and chiropractic diagnostic X-ray equipment effective from 1 January 1997

  13. Applied Questions of Onboard Laser Radar Equipment Development

    Directory of Open Access Journals (Sweden)

    E. I. Starovoitov

    2015-01-01

    Full Text Available During development of the spacecraft laser radar systems (LRS it is a problem to make a choice of laser sources and photo-detectors both because of their using specifics in onboard equipment and because of the limited number of domestic and foreign manufacturers.Previous publications did not consider in detail the accuracy versus laser pulse repetition frequency, the impact of photo-detector sensitivity and dynamic range on the LRS characteristics, and the power signal-protected photo-detector against overload.The objective of this work is to analyze how the range, accuracy, and reliability of onboard LRS depend on different types of laser sources and photo-detectors, and on availability of electromechanical optical attenuator.The paper describes design solutions that are used to compensate for a decreased sensitivity of photo-detector and an impact of these changes on the LRS characteristics.It is shown that due to the high pulse repetition frequency a fiber laser is the preferred type of a laser source in onboard LRS, which can be used at ranges less than 500 m for two purposes: determining the orientation of the passive spacecraft with the accuracy of 0.3 and measuring the range rate during the rendezvous of spacecrafts with an accuracy of 0.003... 0.006 m/s.The work identifies the attenuation level of the optical attenuator versus measured range. In close proximity to a diffusely reflecting passive spacecraft and a corner reflector this attenuator protects photo-detector. It is found that the optical attenuator is advisable to apply when using the photo-detector based on an avalanche photodiode. There is no need in optical attenuator (if a geometric factor is available in the case of sounding corner reflector when a photo-detector based on pin-photodiode is used. Exclusion of electromechanical optical attenuator can increase the reliability function of LRS from Р (t = 0.9991 to Р (t = 0.9993.The results obtained in this work can be used

  14. Initial acceptance test experience with FFTF plant equipment

    International Nuclear Information System (INIS)

    Brown, R.K.; Coleman, K.A.; Mahaffey, M.K.; McCargar, C.G.; Young, M.W.

    1978-09-01

    The purpose of this paper is to examine the initial acceptance test experience of certain pieces of auxiliary equipment of the Fast Flux Test Facility (FFTF). The scope focuses on the DHX blowers and drive train, inert gas blowers, H and V containment isolation valves, and the Surveillance and In-service Inspection (SISI) transporter and trolley. For each type of equipment, the discussion includes a summary of the design and system function, installation history, preoperational acceptance testing procedures and results, and unusual events and resolutions

  15. Maintenance cost control at the Pacific Missile Test Center.

    OpenAIRE

    Jenson, Richard J.

    1980-01-01

    Approved for public release; distribution is unlimited The Pacific Missile Test Center (PMTC) is the Navy's largest Major Range and Test Facility Base, with an investment of over one billion dollars. The majority of this investment is in range test equipment and facilities including radar, telemetry, communication and command/ control systems. Concern is growing over the "excessively obsolete condition of PMTC technical equipment." Improvement of factors concerned with...

  16. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    NARCIS (Netherlands)

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.

    1997-01-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test

  17. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2014-01-01

    Full Text Available Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar interferences and, then, separately matched filtering for each radar. Besides the detailed algorithm derivation, extensive numerical simulation examples are performed with the down-chirp and up-chirp waveforms, partially overlapped or inverse chirp rate linearly frequency modulation (LFM waveforms and orthogonal frequency division multiplexing (ODFM chirp diverse waveforms. The effectiveness of the algorithm is verified by the simulation results.

  18. LESSONS LEARNED IN TESTING OF SAFEGUARDS EQUIPMENT

    International Nuclear Information System (INIS)

    Pepper, S.; Farnitano, M.; Carelli, J.; Hazeltine, J.; Bailey, D.

    2001-01-01

    The International Atomic Energy Agency's (IAEA) Department of Safeguards uses complex instrumentation for the application of safeguards at nuclear facilities around the world. Often, this equipment is developed through cooperation with member state support programs because the Agency's requirements are unique and are not met by commercially available equipment. Before approving an instrument or system for routine inspection use, the IAEA subjects it to a series of tests designed to evaluate its reliability. In 2000, the IAEA began to observe operational failures in digital surveillance systems. In response to the observed failures, the IAEA worked with the equipment designer and manufacturer to determine the cause of failure. An action plan was developed to correct the performance issues and further test the systems to make sure that additional operational issues would not surface later. This paper addresses the steps taken to address operation issues related to digital image surveillance systems and the lessons learned during this process

  19. Advances in impact resistance testing for explosion-proof electrical equipment

    Directory of Open Access Journals (Sweden)

    Pasculescu Vlad Mihai

    2017-01-01

    Full Text Available The design, construction and exploitation of electrical equipment intended to be used in potentially explosive atmospheres presents a series of difficulties. Therefore, the approach of these phases requires special attention concerning technical, financial and occupational health and safety aspects. In order for them not to generate an ignition source for the explosive atmosphere, such equipment have to be subjected to a series of type tests aiming to decrease the explosion risk in technological installations which operate in potentially explosive atmospheres. Explosion protection being a concern of researchers and authorities worldwide, testing and certification of explosion-proof electrical equipment, required for their conformity assessment, are extremely important, taking into account the unexpected explosion hazard due to potentially explosive atmospheres, risk which has to be minimized in order to ensure the occupational health and safety of workers, for preventing material losses and for decreasing the environmental pollution. Besides others, one of the type tests, which shall be applied, for explosion-proof electrical equipment is the impact resistance test, described in detail in EN 60079 which specifies the general requirements for construction, testing and marking of electrical equipment and Ex components intended for use in explosive atmospheres. This paper presents an analysis on the requirements of the impact resistance test for explosion-proof electrical equipment and on the possibilities to improve this type of test, by making use of modern computer simulation tools based on finite element analysis, techniques which are widely used nowadays in the industry and for research purposes.

  20. Testing of FFTF fuel handling equipment

    International Nuclear Information System (INIS)

    Coleman, D.W.; Grazzini, E.D.; Hill, L.F.

    1977-07-01

    The Fast Flux Test Facility has several manual/computer controlled fuel handling machines which are exposed to severe environments during plant operation but still must operate reliably when called upon for reactor refueling. The test programs for two such machines--the Closed Loop Ex-Vessel Machine and the In-Vessel Handling Machine--are described. The discussion centers on those areas where design corrections or equipment repairs substantiated the benefits of a test program prior to plant operation

  1. Project W320 52-inch diameter equipment container load test: Test report

    International Nuclear Information System (INIS)

    Bellomy, J.R.

    1995-01-01

    This test report summarizes testing activities and documents the results of the load tests performed on-site and off-site to structural qualify the 52-inch equipment containers designed and fabricated under Project W-320

  2. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  3. Comparative tests of bench equipment for fuel control system testing of gas-turbine engine

    Science.gov (United States)

    Shendaleva, E. V.

    2018-04-01

    The relevance of interlaboratory comparative researches is confirmed by attention of world metrological community to this field of activity. Use of the interlaboratory comparative research methodology not only for single gages collation, but also for bench equipment complexes, such as modeling stands for fuel control system testing of gas-turbine engine, is offered. In this case a comparative measure of different bench equipment will be the control fuel pump. Ensuring traceability of measuring result received at test benches of various air enterprises, development and introduction of national standards to practice of bench tests and, eventually, improvement of quality and safety of a aircraft equipment is result of this approach.

  4. 14 CFR 101.35 - Equipment and marking requirements.

    Science.gov (United States)

    2010-01-01

    ... unmanned free balloon unless— (1) It is equipped with at least two payload cut-down systems or devices that operate independently of each other; (2) At least two methods, systems, devices, or combinations thereof... envelope; and (3) The balloon envelope is equipped with a radar reflective device(s) or material that will...

  5. Improving the Thermal Testing Technology of Technological Equipment of Autonomous Complexes

    Directory of Open Access Journals (Sweden)

    V. V. Chugunkov

    2017-01-01

    Full Text Available The environmental conditions of autonomous objects of different-purpose technical complexes are in close relationship with increased values of operating temperatures. This requires thermal pretesting of the process equipment. The publication [1] considers the thermal test conditions in which the equipment elements under test are placed in a heated water tank covered by the globe insulators where, under automatic temperature control using a block of heaters, they are then kept for a specified period of time at a specified temperature range. Such an approach to the thermal tests of equipment allows us to reduce, but not eliminate completely the mass flows of water from evaporation with reducing power consumption of test equipment.Despite the results achieved, even a little bit of water vapor available when conducting the thermal tests may cause a failure of equipment. Therefore, there is a need in test equipment modernization for complete eliminating the fluxes of mass water and better power consumption in the test process. To this end, it is proposed to place a three-layer bubble wrap on the open surface of water.To justify an efficiency of the proposed option was developed a mathematical model of heat and mass transfer processes that occur during thermal tests, taking into account the geometric and thermo-physical characteristics of test tank, polymer film, and equipment. Using the laws and equations of heat and mass transfer enabled us to determine the required capacities for heating the tank with water and equipment to the required temperature range for a specified time, as well as the mass flows of water when evaporating from the tank surface.The efficiency of the three-layer bubble film as compared with the globe insulators as the elements for covering the test tank the surface has been analysed on the basis of the results obtained.The proposed film coating allowed almost complete elimination of evaporation losses of water mass and almost 8

  6. Test of remote control cutting equipment by Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Akio [Fuji Electric Corp. Research and Development Ltd., Yokosuka, Kanagawa (Japan); Hosoda, Hiroshi

    1997-11-01

    Technology of remote controlled cutting and reduction of generative secondary products have been required to the cutting system for decommissioning nuclear equipments. At a point of view that laser cutting technology by use of a Nd:YAG laser is effective, we have developed the laser cutting machine and carried out cutting tests for several stainless steel plates. This report is described the result of experiment by test equipment, about element technology of remote controlled cutting nuclear equipments. (author)

  7. Test of remote control cutting equipment by Nd:YAG laser

    International Nuclear Information System (INIS)

    Shimizu, Akio; Hosoda, Hiroshi.

    1997-01-01

    Technology of remote controlled cutting and reduction of generative secondary products have been required to the cutting system for decommissioning nuclear equipments. At a point of view that laser cutting technology by use of a Nd:YAG laser is effective, we have developed the laser cutting machine and carried out cutting tests for several stainless steel plates. This report is described the result of experiment by test equipment, about element technology of remote controlled cutting nuclear equipments. (author)

  8. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  9. The digital ultrasonic test unit for automatic equipment

    International Nuclear Information System (INIS)

    Hiraoka, T.; Matsuyama, H.

    1976-01-01

    The operations and features of the ultrasonic test unit used and the digital data processing techniques employed are described. This unit is used for a few hundred multi-channel automatic ultrasonic test equipment

  10. Development of fast scattering model of complex shape target for seminatural tests of onboard proximity radars in real time mode

    Directory of Open Access Journals (Sweden)

    Likhoedenko Andrei K.

    2016-01-01

    Full Text Available Problems of creation of models of real time of complex shape targets on the basis of use of their polygonal models are considered. Formulas for radar cross section of multipoint model of target and power of input signal of onboard radar are described. Technique of semi-natural tests of onboard radar detector on the base of multipoint model of target is proposed. Results of digital simulation of input signals of the onboard radar detector of the target from the aerodynamic target on the basis of their multipoint models are given.

  11. Vertical Pointing Weather Radar for Built-up Urban Areas

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Thorndahl, Søren; Schaarup-Jensen, Kjeld

    2008-01-01

      A cost effective vertical pointing X-band weather radar (VPR) has been tested for measurement of precipitation in urban areas. Stationary tests indicate that the VPR performs well compared to horizontal weather radars, such as the local area weather radars (LAWR). The test illustrated...

  12. System for routine testing of self-contained and airline breathing equipment

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, H.J.; Hermens, G.A.

    1980-07-01

    A system for routine testing of self-contained and airline breathing equipment, developed by Shell Oil Co., for testing breathing equipment at one of its refineries, consists of an 80 psig air supply for airline respirators; a 500-2100 psig air supply for self-contained units; a regulator test system which uses a mannequin head that simulates human inhalation and which tests the ability of the regulator to keep the mask interior at the correct positive pressure; and an exhalation valve test system which identifies a leaky or sticking valve. The testing system has been in use for about 30 mo and has led to increased acceptance of respiratory protective equipment by workers.

  13. Diagnostic x-ray equipment compliance and facility survey. Recommended procedures for equipment and facility testing

    International Nuclear Information System (INIS)

    1994-01-01

    The Radiation Protection Bureau has set out guidelines for the testing of diagnostic x-ray equipment and facilities. This guide provides information for the x-ray inspector, test engineer, technologist, medical physicist and any other person responsible for verifying the regulatory compliance or safety of diagnostic x-ray equipment and facilities. Diagnostic x-radiation is an essential part of present day medical practice. The largest contributor of irradiation to the general population comes from diagnostic x-radiation. Although individual irradiations are usually small, there is a concern of possible excess cancer risk when large populations are irradiated. Unnecessary irradiations to patients from radiological procedures can be significantly reduced with little or no decrease in the value of medical diagnostic information. This can be achieved by using well designed x-ray equipment which is installed, used and maintained by trained personnel, and by the adoption of standardized procedures. In general, when patient surface dose is reduced, there is a corresponding decrease in dose to x-ray equipment operators and other health care personnel. 2 tabs., 4 figs

  14. Diagnostic x-ray equipment compliance and facility survey. Recommended procedures for equipment and facility testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Radiation Protection Bureau has set out guidelines for the testing of diagnostic x-ray equipment and facilities. This guide provides information for the x-ray inspector, test engineer, technologist, medical physicist and any other person responsible for verifying the regulatory compliance or safety of diagnostic x-ray equipment and facilities. Diagnostic x-radiation is an essential part of present day medical practice. The largest contributor of irradiation to the general population comes from diagnostic x-radiation. Although individual irradiations are usually small, there is a concern of possible excess cancer risk when large populations are irradiated. Unnecessary irradiations to patients from radiological procedures can be significantly reduced with little or no decrease in the value of medical diagnostic information. This can be achieved by using well designed x-ray equipment which is installed, used and maintained by trained personnel, and by the adoption of standardized procedures. In general, when patient surface dose is reduced, there is a corresponding decrease in dose to x-ray equipment operators and other health care personnel. 2 tabs., 4 figs.

  15. Reliability performance of standby equipment with periodic testing

    International Nuclear Information System (INIS)

    Sim, S.H.

    1985-11-01

    In this report, the reliability performance of standby equipment subjected to periodic testing is studied. analytical expressions have been derived for reliability measures, such as the man accumulated operating time to failure, the expected number of tests between two consecutive failures, the mean time to failure following an emergency start-up and the probability of failing to complete an emergency mission of a specified duration. These results are useful for the reliability assessment of standby equipment such as combustion turbine units of the emergency power supply system, and of the Class III power system at a nuclear generating station

  16. Experience in testing and inspection and maintenance of material handling equipments

    International Nuclear Information System (INIS)

    Sharma, M.L.

    2009-01-01

    All the Industries, Power Projects/Stations, Organizations engaged in the field of process of manufacturing, power generation, transportation, design, layout, manufacturing, and supply have to utilize material handling equipment, machinery tools tackles, lifting gears for performing their tasks/activities. The major role of the material handling equipments play an important role and a component of 40% of the total activities of the system/process to achieve targeted output with the reliability and quality is performed by material handling equipment and machineries. The material handling equipment shall have to be chosen/selected to suit the process requirement at times to be specifically designed inspected and tested to meet the specific requirement. These equipment/machineries/lifting gears have to undergo for the periodical inspection and testing to qualify for further use in a specified period. All those equipment and machinery to be used for material handling if not found satisfactory during inspection and testing or otherwise also shall be dismantled/stripped to the extent of inspection requirement of the components/sub components and maintenance repair shall have to be done to make them worthy for reuse after testing and inspection duly witnessed by competent authority

  17. Slope stability radar for monitoring mine walls

    Science.gov (United States)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  18. Performance testing of medical US equipment using US phantom (ATS-539)

    International Nuclear Information System (INIS)

    Kim, Do Hyung; Kwon, Deok Moon

    2014-01-01

    This study is to provide accurate information as medical imaging equipment to check for the presence of body disease US equipment. We investigated the status of medical US equipment performance in Daegu and criteria US phantom (ATS-539) for US equipment performance measurements. The results in this study, 1. US phantom measurement results: The test passed rate were 88.6% and the failed rate were 11.4%. 2. The difference between the group of mean and the pass/failed groups were statistically significant. Focal zone and 4 mm functional resolution in the two items that are not present the passing standard. 3. The difference was statistically significant number of years and used equipment and pass the failed equipment (4.13 vs 7.25 years). We investigated the performance status of US equipment used in the clinical area in Daegu. The basis for the two items are not present this proposed passing standard. Equipment performance was associated with the number of years of using US equipment. It is necessary to maintain the best performance of the equipment phantom measurements for performance testing of US equipment

  19. Performance testing of medical US equipment using US phantom (ATS-539)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Hyung [Daegu Branch, Korea Association of Health Promotion, Daegu (Korea, Republic of); Kwon, Deok Moon [Dept. of Radiology, Daegu Health College, Daegu (Korea, Republic of)

    2014-12-15

    This study is to provide accurate information as medical imaging equipment to check for the presence of body disease US equipment. We investigated the status of medical US equipment performance in Daegu and criteria US phantom (ATS-539) for US equipment performance measurements. The results in this study, 1. US phantom measurement results: The test passed rate were 88.6% and the failed rate were 11.4%. 2. The difference between the group of mean and the pass/failed groups were statistically significant. Focal zone and 4 mm functional resolution in the two items that are not present the passing standard. 3. The difference was statistically significant number of years and used equipment and pass the failed equipment (4.13 vs 7.25 years). We investigated the performance status of US equipment used in the clinical area in Daegu. The basis for the two items are not present this proposed passing standard. Equipment performance was associated with the number of years of using US equipment. It is necessary to maintain the best performance of the equipment phantom measurements for performance testing of US equipment.

  20. Operability test procedure [Tank] 241-SY-101 equipment removal system

    International Nuclear Information System (INIS)

    Mast, J.C.

    1994-01-01

    The 241-SY-101 equipment removal system (ERS) consists of components, equipment, instrumentation and procedures that will provide the means to disconnect, retrieve, contain, load and transport the Mitigation Pump Assembly (MPA) from waste Tank 241-SY-101 to the Central Waste Complex (CWC). The Operability Test Procedure (OTP) will test the interfaces between ERS components and will rehearse the procedure for MPA removal and transportation to the extent they can be mocked-up at the CTF (Cold Test Facility). At the conclusion of the OTP, the ERS components and equipment will be removed from the CTF, entered into the Component Based Recall System (CBRS), and stored until needed for actual MPA removal and transportation

  1. A Test Procedure for Determining Models of LV Equipment

    NARCIS (Netherlands)

    Cuk, Vladimir; Cobben, Joseph F.G.; Kling, Wil L.; Timens, R.B.; Leferink, Frank Bernardus Johannes

    2009-01-01

    An automated test technique for determining parameters of low voltage equipment is presented in the paper. The aim of this research is to obtain simple models of household, office and industrial equipment which could be used to predict power quality problems during the design of low voltage

  2. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  3. Program outline of seismic fragility capacity tests on nuclear power plant equipment

    International Nuclear Information System (INIS)

    Lijima, T.; Abe, H.; Fujita, T.

    2004-01-01

    A seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risk of nuclear plant that is designed with definitive seismic design condition. Seismic fragility capacity data are necessary for seismic PSA, but we don't have sufficient data of active components of nuclear plants in Japan. This paper describes a plan of seismic fragility capacity tests on nuclear power plant equipment. The purpose of those tests is to obtain seismic fragility capacity of important equipment from a safety design point of view. And the equipment for the fragility capacity tests were selected considering effect on core damage frequency (CDF) that was evaluated by our preliminary seismic PSA. Consequently horizontal shaft pump, electric cabinets, Control Rod Drive system (CRD system) of BWR and PWR plant and vertical shaft pump were selected. The seismic fragility capacity tests are conducted from phase-1 to phase-3, and horizontal shaft pump and electric cabinets are tested on phase-1. The fragility capacity test consists of two types of tests. One is actual equipment test and another is element test. On actual equipment test, a real size model is tested with high-level seismic motion, and critical acceleration and failure mode are investigated. Regarding fragility test phase-1, we selected typical type horizontal shaft pump and electric cabinets for the actual equipment test. Those were Reactor Building Closed Cooling Water (RCW) Pump and eight kinds of electric cabinets such as relay cabinet, motor control center. On the test phase-1, maximum input acceleration for the actual equipment test is intended to be 6-G-force. Since the shaking table of TADOTSU facility did not have capability for high acceleration, we made vibration amplifying system. In this system, amplifying device is mounted on original shaking table and it moves in synchronization with original table. The element test is conducted with many samples and critical acceleration, median and

  4. Equipment qualification testing methodology research at Sandia Laboratories

    International Nuclear Information System (INIS)

    Jeppesen, D.

    1983-01-01

    The Equipment Qualification Research Testing (EQRT) program is an evolutionary outgrowth of the Qualification Testing Evaluation (QTE) program at Sandia. The primary emphasis of the program has been qualification methodology research. The EQRT program offers to the industry a research-oriented perspective on qualification-related component performance, as well as refinements to component testing standards which are based upon actual component testing research

  5. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  6. Method and equipment for treating waste water resulting from the technological testing processes of NPP equipment

    International Nuclear Information System (INIS)

    Radulescu, M. C.; Valeca, S.; Iorga, C.

    2016-01-01

    Modern methods and technologies coupled together with advanced equipment for treating residual substances resulted from technological processes are mandatory measures for all industrial facilities. The correct management of the used working agents and of the all wastes resulted from the different technological process (preparation, use, collection, neutralization, discharge) is intended to reduce up to removal of their potential negative impact on the environment. The high pressure and temperature testing stands from INR intended for functional testing of nuclear components (fuel bundles, fuelling machines, etc.) were included in these measures since the use of oils, demineralized water chemically treated, greases, etc. This paper is focused on the method and equipment used at INR Pitesti in the chemical treatment of demineralized waters, as well as the equipment for collecting, neutralizing and discharging them after use. (authors)

  7. Point-of-Care Test Equipment for Flexible Laboratory Automation.

    Science.gov (United States)

    You, Won Suk; Park, Jae Jun; Jin, Sung Moon; Ryew, Sung Moo; Choi, Hyouk Ryeol

    2014-08-01

    Blood tests are some of the core clinical laboratory tests for diagnosing patients. In hospitals, an automated process called total laboratory automation, which relies on a set of sophisticated equipment, is normally adopted for blood tests. Noting that the total laboratory automation system typically requires a large footprint and significant amount of power, slim and easy-to-move blood test equipment is necessary for specific demands such as emergency departments or small-size local clinics. In this article, we present a point-of-care test system that can provide flexibility and portability with low cost. First, the system components, including a reagent tray, dispensing module, microfluidic disk rotor, and photometry scanner, and their functions are explained. Then, a scheduler algorithm to provide a point-of-care test platform with an efficient test schedule to reduce test time is introduced. Finally, the results of diagnostic tests are presented to evaluate the system. © 2014 Society for Laboratory Automation and Screening.

  8. Adventitious X-radiation from high voltage equipment

    International Nuclear Information System (INIS)

    Martin, E.B.M.

    1979-01-01

    The monograph is concerned with hazards of unwanted x-rays from sources such as television receivers, high voltage equipment, radar transmitters, switchgear and electron beam apparatus for welding, evaporation, analysis and microscopy. Chapters are included on units, production of x radiation, biological effects, protection standards, radiation monitoring, shielding and control of access, medical and dosimetric supervision and types of equipment. A bibliography of 92 references and other cited literature is included. (U.K.)

  9. Effects of respiration depth on human body radar cross section Using 2.4GHz continuous wave radar.

    Science.gov (United States)

    Lee, Alexander; Xiaomeng Gao; Jia Xu; Boric-Lubecke, Olga

    2017-07-01

    In this study, it was tested whether deep and shallow breathing has an effect on the cardiopulmonary radar cross-section (RCS). Continuous wave radar with quadrature architecture at 2.4GHz was used to test 2 human subjects breathing deep and shallow for 30 seconds each while seated 2 meters away from the radar. A retro-reflective marker was placed on the sternum of each subject and measured by infrared motion capture cameras to accurately track displacement of the chest. The quadrature radar outputs were processed to find the radius of the arc on the IQ plot using a circle-fitting algorithm. Results showed that the effective RCS ratio of deep to shallow breathing for subjects 1 and 2 was 6.99 and 2.24 respectively.

  10. All-Cause Mortality Among Belgian Military Radar Operators: A 40-Year Controlled Longitudinal Study

    International Nuclear Information System (INIS)

    Degrave, Etienne; Autier, Philippe; Grivegnee, Andre-Robert; Zizi, Martin

    2005-01-01

    Background: It has been suggested that exposure to radiofrequency/microwaves radiations could be associated with greater health hazards and higher mortality. Methods: The all-cause mortality of 27,671 Belgian militaries who served from 1963 until 1994 in battalions equipped with radars for anti-aircraft defence was studied over the period 1968-2003. End of the seventies, technical modifications brought to the shielding of the micro-wave generators resulted in a reduction in irradiations. A control group was formed by 16,128 militaries who served during the same period in the same military area but who were never exposed to radars. Administrative procedures for identifying militaries and their vital status were equivalent in the radar and the control groups. Results: The age-standardized mortality ratio (SMR) in the radar battalions was 1.05 (95% CI: 0.95-1.16) in professional militaries, and 0.80 (95% CI: 0.75-0.85) in conscripts. In professional militaries no difference in mortality was found according to duration (less than, or five years or more) or to period of service (before 1978 or after 1977). Conclusions: During a 40-year period of observation, we found no increase in all-cause mortality in Belgian militaries who were in close contact with radar equipments of anti-aircraft defence battalions

  11. Performance test of ex-core high temperature and high pressure water loop test equipment (Contract research)

    International Nuclear Information System (INIS)

    Nakano, Hiroko; Uehara, Toshiaki; Takeuchi, Tomoaki; Shibata, Hiroshi; Nakamura, Jinichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

    2016-03-01

    In Japan Atomic Energy Agency, we started research and development so as to monitor the situations in the Nuclear Plant Facilities during a severe accident, such as a radiation-resistant monitoring camera, a radiation-resistant transmission system for conveying the in-core information, and a heat-resistant signal cable. As a part of developments of the heat-resistant signal cable, we prepared ex-core high-temperature and high-pressure water loop test equipment, which can simulate the conditions of BWRs and PWRs, for evaluating reliability and properties of sheath materials of the cable. This equipment consists of autoclave, water conditioning tank, high-pressure metering pump, preheater, heat exchanger and water purification equipment, etc. This report describes the basic design and the performance test results of ex-core high-temperature and high-pressure water loop test equipment. (author)

  12. To See the Unseen: A History of Planetary Radar Astronomy

    Science.gov (United States)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  13. Outline of sodium-water reaction test in case of large leak with SWAT-3 testing equipments

    International Nuclear Information System (INIS)

    Sato, Minoru

    1978-01-01

    The key component in sodium-cooled fast reactors in steam generators, and the sodium-water reaction owing to the break of heating tubes may cause serious damages in equipments and pipings. The main factor controlling this phenomenon is the rate of leak of water. When the rate of water leak is small, the propagation of heating tube breaking may occur owing to ''wastage phenomenon'', on the other hand, when the rate of water leak is large, the phenomena of explosive pressure and flow occur due to the reaction heat and a large quantity of hydrogen generated by the reaction. In PNC, the testing equipments of SWAT-2 for small water leak and SWAT-1 for large leak were constructed, and the development test has been carried out to establish the method of safety design experimentally. The synthetic test equipment for the safety of steam generators, SWAT-3, was constructed to carry out the large water leak test in the scale close to actual plants. The object of the test, the outline of the test equipment, the phenomena of pressure and flow in the water injection test, the confirmation of the occurrence of secondary breaking of adjacent heating tubes, and the disposal of reaction products are described in this paper. This test is till going on, and the final conclusion will be reported later. (Kako, I.)

  14. Evolution of seismic shock test qualification of equipment

    International Nuclear Information System (INIS)

    Berriaud, C.

    1979-01-01

    From the first nuclear power plants a new industrial problem is appeared: the seismic test qualification of equipment. Nothing was existing in this range. Methods and test experiments were to be studied and perfected in order to obtain safe results. This paper presents the evolution of this question up to now [fr

  15. Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data

    Science.gov (United States)

    Eide, Michael C.; Mathews, Bruce

    1992-01-01

    Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler

  16. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  17. Novel Field Test Equipment for Lithium-Ion Batteries in Hybrid Electrical Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Goran Lindbergh

    2011-04-01

    Full Text Available Lifetime testing of batteries for hybrid-electrical vehicles (HEV is usually performed in the lab, either at the cell, module or battery pack level. Complementary field tests of battery packs in vehicles are also often performed. There are, however, difficulties related to field testing of battery-packs. Some examples are cost issues and the complexity of continuously collecting battery performance data, such as capacity fade and impedance increase. In this paper, a novel field test equipment designed primarily for lithium-ion battery cell testing is presented. This equipment is intended to be used on conventional vehicles, not hybrid vehicles, as a cheaper and faster field testing method for batteries, compared to full scale HEV testing. The equipment emulates an HEV environment for the tested battery cell by using real time vehicle sensor information and the existing starter battery as load and source. In addition to the emulated battery cycling, periodical capacity and pulse testing capability are implemented as well. This paper begins with presenting some background information about hybrid electrical vehicles and describing the limitations with today’s HEV battery testing. Furthermore, the functionality of the test equipment is described in detail and, finally, results from verification of the equipment are presented and discussed.

  18. AIChe equipment testing procedure centrifugal compressors : a guide to performance evaluation and site testing

    CERN Document Server

    AIChE

    2013-01-01

    With its engineer-tested procedures and thorough explanations, Centrifugal Compressors is an essential text for anyone engaged in implementing new technology in equipment design, identifying process problems, and optimizing equipment performance.  This condensed book presents a step by step approach to preparing for, planning, executing, and analyzing tests of centrifugal compressors, with an emphasis on methods that can be conducted on-site and with an acknowledgement of the strengths and limitations of these methods. The book opens with an extensive and detailed section offering definitions

  19. Case Study Analysis of Linear Chirp and Multitones (OFDM) Radar Signals Through Simulations and Measurement with HYCAM-Research Test Bench

    OpenAIRE

    Le Kernec, Julien; Dreuillet, Philippe; Bobillot, Gerard; Garda, Patrick; Romain, Olivier; Denoulet, Julien

    2009-01-01

    This paper presents a experimental platform that allows comparing objectively any radar waveforms. This is realized by equating radar characteristics, using the same test-bench HYCAM-Research, the same signal processing and also insuring the reproducibility of the experiments. The experimental measurements on linear chirp and multitones are analyzed through distance and velocity imaging.

  20. Extended Target Recognition in Cognitive Radar Networks

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  1. Framed bit error rate testing for 100G ethernet equipment

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert

    2010-01-01

    rate. As the need for 100 Gigabit Ethernet equipment rises, so does the need for equipment, which can properly test these systems during development, deployment and use. This paper presents early results from a work-in-progress academia-industry collaboration project and elaborates on the challenges...

  2. The introduction of compulsory compliance testing of medical diagnostic x-ray equipment in Western Australia

    International Nuclear Information System (INIS)

    Rafferty, M. W.; Jacob, C. S.

    1995-01-01

    Performance testing of medical diagnostic X-ray equipment can reveal equipment faults which, while not always clinically detectable, may contribute to reduced image quality and unnecessary radiation exposure of both patients and staff. Routine testing of such equipment is highly desirable to identify such faults and allows them to be rectified. The Radiological council of Western Australia is moving towards requiring compulsory compliance testing of all (new and existing) medical diagnostic X-ray equipment that all new mobile radiographic and new mammographic X-ray equipment be issued with a compliance test certificate as a prerequisite for registration. Workbooks which provide details of the tests required and recommended test methods have been prepared for medical radiographic (mobile and fixed), fluoroscopic and mammographic X-ray equipment. It is intended that future workbooks include details of the tests and methods for dental and computed tomography X-ray units. The workbooks are not limited to the compliance testing of items as specified in the Regulations, but include tests for other items such as film processing, darkrooms and image quality (for fluoroscopic equipment). Many of the workbook tests could be used within a regular quality assurance program for diagnostic X-ray equipment. Persons who conduct such compliance tests will need to be licensed and have all test certificates endorsed by a qualified expert. Suitable training and assessment of compliance testers will be required. Notification of such tests (including non-compliant items and corrective actions taken) will be required by the Radiological Council as a condition of equipment registration. 9 refs

  3. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    Science.gov (United States)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  4. Test and Analysis of Metallurgical Converter Equipment

    Directory of Open Access Journals (Sweden)

    Shan Pang

    2013-05-01

    Full Text Available Oxygen top-blow converter is the main equipment in steel making, and its work reliability decides the security and economy of steel production. Therefore, how to design and test analysis of convertor has been an important subject of industry research. Geometric modelling and structure analysis of converter tilting device by using Pro/E program .The design Principle, basic design structure were analyzed in detail. The computer simulation software of metallurgical converter equipment and how to use it were introduced .It developed by VC++ software. The position of barycentre and moment curve in No.3 and No.4 are calculated. The converter acceleration down dip can be resolved by comparing the moment curve and center curve.

  5. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2017-01-01

    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  6. Development of the testing procedure for units and elements of mining equipment

    Directory of Open Access Journals (Sweden)

    P. B. Gerike

    2017-09-01

    Full Text Available The author considers in detail the stages of creating a testing procedure for mining equipment based on the complex implementation of principles of nondestructive testing and technical diagnostics. The author substantiates effectiveness of application of a complex diagnostic approach for assessing the state of metal structures and energy-mechanical equipment of mining machines. The opportunity for timely detection of defects, regardless of their type and degree of danger, presents itself only with a wide application of the modern methods of vibration diagnostics and nondestructive testing. The author substantiates the effectiveness of specific combination of methods of nondestructive testing, most optimally suited for solving given tasks. The article contains the developed complex of more than 120 diagnostic rules, suitable for performing automated analysis of vibroacoustic signal and revealing the main damages of energy-mechanical equipment based on selective groups of informative frequencies. The author formulates the main criteria that one can use as a basic platform for improving the methodology for normalizing the parameters of mechanical oscillations. The developed diagnostic criteria became a basis for the development of individual spectral masks suitable for performing the analysis of parameters of vibroacoustic waves generated during operation of mining equipment. The author proves necessity of transition of repair and maintenance divisions of industrial enterprises to the system of maintenance of machinery according to its actual technical state, and the developed complex of diagnostic rules for detecting defects can serve as a platform for the implementation of basic elements of this system. The author substantiates the principal validity of the developed methodology for testing mining machines equipment and its individual elements, such as the predictive modeling of degradation of technical state of mining equipment and the

  7. Reliability and maintainability data acquisition in equipment development tests

    International Nuclear Information System (INIS)

    Haire, M.J.; Gift, E.H.

    1983-10-01

    The need for collection of reliability, maintainability, and availability data adds a new dimension to the data acquisition requirements of equipment development tests. This report describes the reliability and maintainability data that are considered necessary to ensure that sufficient and high quality data exist for a comprehensive, quantitative evaluation of equipment and system availability. These necessary data are presented as a set of data collection forms. Three data acquisition forms are discussed: an inventory and technical data form, which is filed by the design engineer when the design is finished or the equipment is received; an event report form, which is completed by the senior test operator at each shutdown; and a maintainability report, which is a collaborative effort between senior operators and lead engineers and is completed on restart. In addition, elements of a reliability, maintainability evaluation program are described. Emphasis is placed on the role of data, its storage, and use in such a program

  8. A hardware-in-the-loop simulation program for ground-based radar

    Science.gov (United States)

    Lam, Eric P.; Black, Dennis W.; Ebisu, Jason S.; Magallon, Julianna

    2011-06-01

    A radar system created using an embedded computer system needs testing. The way to test an embedded computer system is different from the debugging approaches used on desktop computers. One way to test a radar system is to feed it artificial inputs and analyze the outputs of the radar. More often, not all of the building blocks of the radar system are available to test. This will require the engineer to test parts of the radar system using a "black box" approach. A common way to test software code on a desktop simulation is to use breakpoints so that is pauses after each cycle through its calculations. The outputs are compared against the values that are expected. This requires the engineer to use valid test scenarios. We will present a hardware-in-the-loop simulator that allows the embedded system to think it is operating with real-world inputs and outputs. From the embedded system's point of view, it is operating in real-time. The hardware in the loop simulation is based on our Desktop PC Simulation (PCS) testbed. In the past, PCS was used for ground-based radars. This embedded simulation, called Embedded PCS, allows a rapid simulated evaluation of ground-based radar performance in a laboratory environment.

  9. Diagnosis - Using automatic test equipment and artificial intelligence expert systems

    Science.gov (United States)

    Ramsey, J. E., Jr.

    Three expert systems (ATEOPS, ATEFEXPERS, and ATEFATLAS), which were created to direct automatic test equipment (ATE), are reviewed. The purpose of the project was to develop an expert system to troubleshoot the converter-programmer power supply card for the F-15 aircraft and have that expert system direct the automatic test equipment. Each expert system uses a different knowledge base or inference engine, basing the testing on the circuit schematic, test requirements document, or ATLAS code. Implementing generalized modules allows the expert systems to be used for any different unit under test. Using converted ATLAS to LISP code allows the expert system to direct any ATE using ATLAS. The constraint propagated frame system allows for the expansion of control by creating the ATLAS code, checking the code for good software engineering techniques, directing the ATE, and changing the test sequence as needed (planning).

  10. Radar application in void and bar detection

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2003-01-01

    Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)

  11. Ballooning test equipment for use in hot cells

    International Nuclear Information System (INIS)

    Broendsted, P.; Adrian, F.

    1979-12-01

    An equipment for testing the LOCA behaviour of irradiated cladding materials is described. The details of the construction and of the installation in the Hot Cells are reported. Pilot tests carried out showed that the performance of the system fulfills the basic experimental prerequisites, which were: heating rate of 2-3degC/s, final temperature 1150degC/s, internal pressure max. 30 atm, external pressure max. 1 atm, test atmosphere either air or steam. (author)

  12. Developing hydrological monitoring system based on HF radar for islands and reefs in the South China Sea

    Science.gov (United States)

    Li, J.; Shi, P.; Chen, J.; Zhu, Y.; Li, B.

    2016-12-01

    There are many islands (or reefs) in the South China Sea. The hydrological properties (currents and waves) around the islands are highly spatially variable compared to those of coastal region of mainland, because the shorelines are more complex with much smaller scale, and the topographies are step-shape with a much sharper slope. The currents and waves with high spatial variations may destroy the buildings or engineering on shorelines, or even influence the structural stability of reefs. Therefore, it is necessary to establish monitoring systems to obtain the high-resolution hydrological information. This study propose a plan for developing a hydrological monitoring system based on HF radar on the shoreline of a typical island in the southern South China Sea: firstly, the HF radar are integrated with auxiliary equipment (such as dynamo, fuel tank, air conditioner, communication facilities) in a container to build a whole monitoring platform; synchronously, several buoys are set within the radar visibility for data calibration and validation; and finally, the current and wave observations collected by the HF radar are assimilated with numerical models to obtain long-term and high-precision reanalysis products. To test the feasibility of this plan, our research group has built two HF radar sites at the western coastal region of Guangdong Province. The collected data were used to extract surface current information and assimilated with an ocean model. The results show that the data assimilation can highly improve the surface current simulation, especially for typhoon periods. Continuous data with intervals between 6 and 12 hour are the most suitable for ideal assimilations. On the other hand, the test also reveal that developing similar monitoring system on island environments need advanced radars that have higher resolutions and a better performance for persistent work.

  13. Evaluation of the Radar Stage Sensor manufactured by Forest Technology Systems—Results of laboratory and field testing

    Science.gov (United States)

    Kunkle, Gerald A.

    2018-01-31

    Two identical Radar Stage Sensors from Forest Technology Systems were evaluated to determine if they are suitable for U.S. Geological Survey (USGS) hydrologic data collection. The sensors were evaluated in laboratory conditions to evaluate the distance accuracy of the sensor over the manufacturer’s specified operating temperatures and distance to water ranges. Laboratory results were compared to the manufacturer’s accuracy specification of ±0.007 foot (ft) and the USGS Office of Surface Water (OSW) policy requirement that water-level sensors have a measurement uncertainty of no more than 0.01 ft or 0.20 percent of the indicated reading. Both of the sensors tested were within the OSW policy requirement in both laboratory tests and within the manufacturer’s specification in the distance to water test over tested distances from 3 to 15 ft. In the temperature chamber test, both sensors were within the manufacturer’s specification for more than 90 percent of the data points collected over a temperature range of –40 to +60 degrees Celsius at a fixed distance of 8 ft. One sensor was subjected to an SDI-12 communication test, which it passed. A field test was conducted on one sensor at a USGS field site near Landon, Mississippi, from February 5 to March 29, 2016. Water-level measurements made by the radar during the field test were in agreement with those made by the Sutron Accubar Constant Flow Bubble Gauge.Upon the manufacturer’s release of updated firmware version 1.09, additional SDI-12 and temperature testing was performed to evaluate added SDI-12 functions and verify that performance was unaffected by the update. At this time, an Axiom data logger is required to perform a firmware update on this sensor. The data confirmed the results of the original test. Based on the test results, the Radar Stage Sensor is a suitable choice for USGS hydrologic data collection.

  14. Small battery operated unattended radar sensor for security systems

    Science.gov (United States)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  15. The development of synthetic test procedure for hot cell equipment systems in IMEF

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Lee, Key Soon; Park, Dae Kyu; Hong, Kwon Pyo; Choo, Yong Sun

    1998-04-01

    Hot cell facility should be confirmed to operation safety through pre-commissioning test after construction. In this report, the detailed procedure of hot cell equipment are described. The contents are as follows: 1. Entrance equipment of hot cell 2. Specimen transportation equipment between hot cells 3. Waste discharge equipment in hot cell 4. Specimen loading equipment to hot cell 5. Interlinking equipment in hot cell. (author). 4 tabs

  16. Development of ultrasonic testing equipment incorporating electromagnetic acoustic transducer

    International Nuclear Information System (INIS)

    Sato, Michio; Kimura, Motohiko; Okano, Hideharu; Miyazawa, Tatsuo; Nagase, Koichi; Ishikawa, Masaaki

    1989-01-01

    An ultrasonic testing equipment for use in in-service inspection of nuclear power plant piping has been developed, which comprises an angle-beam electromagnetic acoustic transducer mounted on a vehicle for scanning the piping surface to be inspected. The transducer functions without direct contact with the piping surface through couplant, and the vehicle does not require a guide track installed on the piping surface, being equipped with magnetic wheels that adhere to the piping material, permitting it to travel along the circumferential weld joint of a carbon steel pipe. The equipment thus dispenses with the laborious manual work involved in preparing the piping for inspection, such as removal of protective coating, surface polishing and installation of guide track and thereby considerably reduces the duration of inspection. The functioning principle and structural features of the transducer and vehicle are described, together with the results of trial operation of a prototype unit, which proved a 1mm deep notch cut on a test piece of 25mm thick carbon steel plate to be locatable with an accuracy of ±2mm. (author)

  17. Reliability of nondestructive testing of metal strength properties for power equipment

    International Nuclear Information System (INIS)

    Bugaj, N.V.; Lebedev, A.A.; Sharko, A.V.

    1985-01-01

    Ultrasonic control which is a constituent part of a complex control system which includes specimen-free (by hardness) tests, random breaking tests and acoustic measurements is stUdied for its reliability with respect to strength properties of power-equipment metal. Quantitative and alternative criteria are developed to estimate quality of elements for power-equipment according to results of metal strength properties. Acoustic control results are presented for ultimate strength in 12Kh1MF-steel

  18. Acceptance test procedure for K basins dose reduction project clean and coat equipment

    International Nuclear Information System (INIS)

    Creed, R.F.

    1996-01-01

    This document is the Acceptance Test Procedure (ATP) for the clean and coat equipment designed by Oceaneering Hanford, Inc. under purchase order MDK-XVC-406988 for use in the 105 K East Basin. The ATP provides the guidelines and criteria to test the equipment's ability to clean and coat the concrete perimeter, divider walls, and dummy elevator pit above the existing water level. This equipment was designed and built in support of the Spent Nuclear Fuel, Dose Reduction Project. The ATP will be performed at the 305 test facility in the 300 Area at Hanford. The test results will be documented in WHC-SD-SNF-ATR-020

  19. Qualification of class 1e equipment: regulation, technological margins and test experience

    International Nuclear Information System (INIS)

    Pasco, Y.; Le Meur, M.; Henry, J.Y.; Droger, J.P.; Morange, E.; Roubault, J.

    1986-10-01

    French regulation requires licensee to qualify electrical equipment important to safety for service in nuclear power plants to ensure that the equipment can perform its safety function under the set of plausible operating conditions. The French regulatory texts entitled Fundamental safety rules have classified safety related electrical equipment in three main categories: k1, k2, k3, according to their location and operating conditions. The definition of a design basis accident test profile must account for margins applied to thermal hydraulic code outputs. Specific safety margins was added to cover uncertainties in qualification test representativity. Up to now, accidental sequence studies have shown the validity of such a qualification test profile. On the other hand, the results from post accident simulation tests have shown that it is useful not only to validate post accident operating life but also to reveal failures initiated during previous tests [fr

  20. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  1. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author).

  2. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author)

  3. Research and development of laser radar for environmental measurement. 2; Kankyo keisokuyo laser radar no kenkyu kaihatsu. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This project was received by Optoelectronic Industry and Technology Development Association from NEDO, and aims to contribute to the improvement of Indonesia's environmental administration through the development of an air pollution observing laser radar (LR) and of an environmental information network system fit for use in the country in cooperation with Indonesian engineers. LRs will be installed at several sites in an urban area where environmental problems are increasingly serious, and a observation network system will be constructed to link the laser radar sites. The observed data will be collected, analyzed, and processed by an observation data processing center for the investigation of the three-dimensional spatial distribution of air pollution to determine the actual state of air pollution over an urban area. The laser radars and the network will be placed in the city of Djakarta. The Indonesian authority responsible for the project is Indonesian Institute of Sciences. In fiscal 1994, part of the equipment (difference absorbing LR) was designed and manufactured, the design of the environmental information network system was developed, and various researches required in this connection were conducted. (NEDO)

  4. SKB - PNC. Development of tunnel radar antennas

    International Nuclear Information System (INIS)

    Falk, L.

    1991-07-01

    Tunnel antennas for the RAMAC borehole radar system have been developed and tested in the field. The antennas are of the loaded dipole type and the receiver and transmitter electronics have been rebuilt to screen them from the antennas. A series of measurements has demonstrated that the radar pulse is short and well shaped and relatively free from ringing, even compared with the existing borehole antennas. Two antenna sets were tested: one centered at 60 MHz and another above 100 MHz. Both produced excellent radar pictures when tested in tunnels in Stripa mine. The antennas have been designed to be easy to carry, since the signal quality often depends on the way the antenna is held relative to electric conductors in the tunnels. (au) (46 figs., 57 refs.)

  5. A millimetre-wave MIMO radar system for threat detection in urban environments

    Science.gov (United States)

    Kirschner, A. J.; Guetlein, J.; Bertl, S.; Detlefsen, J.

    2012-10-01

    The European Defence Agency (EDA) engages countermeasures against Improvised Explosive Devices (IEDs) by funding several scientific programs on threat awareness, countermeasures IEDs or land-mine detection, in which this work is only one of numerous projects. The program, denoted as Surveillance in an urban environment using mobile sensors (SUM), covers the idea of equipping one or more vehicles of a patrol or a convoy with a set of sensors exploiting different physical principles in order to gain detailed insights of the road situation ahead. In order to give an added value to a conventional visual camera system, measurement data from an infra-red (IR) camera, a radiometer and a millimetre-wave radar are fused with data from an optical image and are displayed on a human-machine-interface (HMI) which shall assist the vehicle's co-driver to identify suspect objects or persons on or next to the road without forcing the vehicle to stop its cruise. This paper shall especially cover the role of the millimetre-wave radar sensor and its different operational modes. Measurement results are discussed. It is possible to alter the antenna mechanically which gives two choices for a field of view and angular resolution trade-off. Furthermore a synthetic aperture radar mode is possible and has been tested successfully. MIMO radar principles like orthogonal signal design were exploited tofrom a virtual array by 4 transmitters and 4 receivers. In joint evaluation, it was possible to detect e.g. grenade shells under cardboard boxes or covered metal barrels which were invisible for optical or infra-red detection.

  6. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Carmelo [Politecnico di Milano, Dept. of Architecture, Built environment and Construction engineering (ABC), Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Luzi, Guido [Centre Tecnòlogic de Telecomunicacions de Catalunya (CTTC), Division of Geomatics, Av. Gauss, 7 E-08860 Castelldefels (Barcelona) (Spain)

    2014-05-27

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.

  7. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    International Nuclear Information System (INIS)

    Gentile, Carmelo; Luzi, Guido

    2014-01-01

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points

  8. Thermal fatigue equipment to test joints of materials for high heat flux components

    International Nuclear Information System (INIS)

    Visca, E.; Libera, S.; Orsini, A.; Riccardi, B.; Sacchetti, M.

    2000-01-01

    The activity, carried out in the framework of an ITER divertor task, was aimed at defining a suitable method in order to qualify junctions between armour materials and heat sink of plasma-facing components (PFCs) mock-ups. An equipment able to perform thermal fatigue testing by electrical heating and active water-cooling was constructed and a standard for the sample was defined. In this equipment, during operation cycles, two samples are heated by thermal contact up to a relevant temperature value (350 deg. C) and then the water flow is switched on, thus producing fast cooling with time constants and gradients close to the real operating conditions. The equipment works with a test cycle of about 60 s and is suitable for continuous operation. A complete test consists of about 10000 cycles. After the assembling, the equipment and the control software were optimized to obtain a good reliability. Preliminary tests on mock-ups with flat CFC tiles joined to copper heat sink were performed. Finite-elements calculations were carried out in order to estimate the value of the thermal stresses arising close to the joint under the transient conditions that are characteristic of this equipment

  9. Soundness confirmation through cold test of the system equipment of HTTR

    International Nuclear Information System (INIS)

    Ono, Masato; Shinohara, Masanori; Iigaki, Kazuhiko; Tochio, Daisuke; Nakagawa, Shigeaki; Shimazaki, Yosuke

    2014-01-01

    HTTR was established at the Oarai Research and Development Center of Japan Atomic Energy Agency, for the purpose of the establishment and upgrading of high-temperature gas-cooled reactor technology infrastructure. Currently, it performs a safety demonstration test in order to demonstrate the safety inherent in high-temperature gas-cooled reactor. After the Great East Japan Earthquake, it conducted confirmation test for the purpose of soundness survey of facilities and equipment, and it confirmed that the soundness of the equipment was maintained. After two years from the confirmation test, it has not been confirmed whether the function of dynamic equipment and the soundness such as the airtightness of pipes and containers are maintained after receiving the influence of damage or deterioration caused by aftershocks generated during two years or aging. To confirm the soundness of these facilities, operation under cold state was conducted, and the obtained plant data was compared with confirmation test data to evaluate the presence of abnormality. In addition, in order to confirm through cold test the damage due to aftershocks and degradation due to aging, the plant data to compare was supposed to be the confirmation test data, and the evaluation on abnormality of the plant data of machine starting time and normal operation data was performed. (A.O.)

  10. An equipment test for grading lumber by transverse vibration technique

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigo Carreira

    2008-08-01

    Full Text Available Due to the great variability of its mechanical properties, the rational use of lumber for structural purposes is directly conditioned to its grading. There are several techniques available for grading structural lumber. The most relevant one is the transverse vibration technique which obtained reliable results in non-destructive evaluation of lumber. The purpose of this work is to present the bases for the mechanical grading of lumber and the results of the calibration test of the frst transverse vibration equipment developed in Brazil. In this research 30 beams of cupiúba (Goupia glabra with nominal dimensions of 5 cm X 10 cm X 300 cm, were used. The tests were accomplished at the Wood and Timber Structures Laboratory (LaMEM of the University of São Paulo (USP. The results showed a strong correlation between the elasticity modulus measured by the static bending test and the one obtained with the transverse vibration equipment, showing the high reliability of the vibration method for the grading of structural lumber. A determination coeffcient (R² of 0.896 was obtained with the Brazilian equipment, showing that it can be used in the grading of lumber.

  11. FLIGHT DEVELOPMENT OF A DISTRIBUTED INERTIAL SATELLITE MICRONAVIGATTION SYSTEM FOR SYNTHETIC - APERTURE RADAR

    Directory of Open Access Journals (Sweden)

    Alexander Vladimirovich Chernodarov

    2017-01-01

    Full Text Available The current state of the onboard systems is characterized by the integration of aviation and radio-electronic equipment systems for solving problems of navigation and control. These problems include micro-navigation of the anten- na phase center (APC of the radar during the review of the Earth's surface from aboard the aircraft. Increasing of the reso- lution of the radar station (RLS by hardware increasing the antenna size is not always possible due to restrictions on the aircraft onboard equipment weight and dimensions. Therefore the implementation of analytic extension of the radiation pattern by "gluing" the images, obtained by RLS on the aircraft motion trajectory is embodied. The estimations are con- verted into amendments to the signals of RLS with synthetic aperture RSA to compensate instabilities. The purpose of the research is building a theoretical basis and a practical implementation of procedures for evaluating the trajectory APS in- stabilities using a distributed system of inertial-satellite micro-navigation (DSMN taking into account the RSA flight oper- ations actual conditions. The technology of evaluation and compensation of RSA trajectory instabilities via DSMN is con- sidered. The implementation of this technology is based on the mutual support of inertial, satellite and radar systems. Syn- chronization procedures of inertial and satellite measurements in the evaluation of DSMN errors are proposed. The given results of DSMN flight testing justify the possibility and expediency to apply the proposed technology in order to improve the resolution of RSA. The compensation of aircraft trajectory instabilities in RSA signals can be provided by inertial- satellite micro-navigation system, taking into account the actual conditions of the RSA flight operations. The researches show that in order to achieve the required resolution of RSA it seems to be appropriate to define the rational balance be- tween accuracy DSMN characteristics

  12. The Earthcare Cloud Profiling Radar, its PFM development status (Conference Presentation)

    Science.gov (United States)

    Nakatsuka, Hirotaka; Tomita, Eichi; Aida, Yoshihisa; Seki, Yoshihiro; Okada, Kazuyuki; Maruyama, Kenta; Ishii, Yasuyuki; Tomiyama, Nobuhiro; Ohno, Yuichi; Horie, Hiroaki; Sato, Kenji

    2016-10-01

    view, Doppler measurement from satellite is quite challenging Technology. In order to maintain and ensure the CPR performance, several types of calibration data will be obtained by CPR. Overall performance of CPR is checked by Active Radar Calibrator (ARC) equipped on the ground (CPR in External Calibration mode). ARC is used to check the CPR transmitter performance (ARC in receiver mode) and receiver performance (ARC in transmitter mode) as well as overall performance (ARC in transponder mode with delay to avoid the contamination with ground echo). In Japan, the instrument industrial Critical Design Review of the CPR was completed in 2013 and it was also complemented by an Interface and Mission aspects CPR CDR, involving ESA and the EarthCARE Prime, that was completed successfully in 2015. The CPR Proto-Flight Model is currently being tested with almost completion of Proto-Flight Model integration. After handed-over to ESA planned for the beginning of 2017, the CPR will be installed onto the EarthCARE satellite with the other instruments. After that the CPR will be tested, transported to Guiana Space Center in Kourou, French Guiana and launched by a Soyuz launcher in 2018. This presentation will show the summary of the latest CPR design and CPR PFM testing status.

  13. Software Radar Technology

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-08-01

    Full Text Available In this paper, the definition and the key features of Software Radar, which is a new concept, are proposed and discussed. We consider the development of modern radar system technology to be divided into three stages: Digital Radar, Software radar and Intelligent Radar, and the second stage is just commencing now. A Software Radar system should be a combination of various modern digital modular components conformed to certain software and hardware standards. Moreover, a software radar system with an open system architecture supporting to decouple application software and low level hardware would be easy to adopt "user requirements-oriented" developing methodology instead of traditional "specific function-oriented" developing methodology. Compared with traditional Digital Radar, Software Radar system can be easily reconfigured and scaled up or down to adapt to the changes of requirements and technologies. A demonstration Software Radar signal processing system, RadarLab 2.0, which has been developed by Tsinghua University, is introduced in this paper and the suggestions for the future development of Software Radar in China are also given in the conclusion.

  14. Potentialities of fluorography in radiographic testing of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Gromov, Yu.V.; Kapustin, V.I.

    1984-01-01

    Results of fluorography of steel 5-250 mm thick with the application of different radiation sources in accordance with existing test requirements and standards for NPP equipment under industrial conditions, are presented. Sensitivity curves of fluorographic and radiographic testing methods using the RUP-150/300-10 X-ray device, LUEh-15-15000 D linear accelerator flaw detectors with 192 Yr, 60 Co, 137 Cs sources, are given. The radiation energy range is 24O keV-8 MeV. It is shown that fluorographic method meets the requirements of sensitivity and is recommended to test welded joints 5-220 mm thick in NPP equipment under laboratory and industrial conditions

  15. An optimal beam alignment method for large-scale distributed space surveillance radar system

    Science.gov (United States)

    Huang, Jian; Wang, Dongya; Xia, Shuangzhi

    2018-06-01

    Large-scale distributed space surveillance radar is a very important ground-based equipment to maintain a complete catalogue for Low Earth Orbit (LEO) space debris. However, due to the thousands of kilometers distance between each sites of the distributed radar system, how to optimally implement the Transmitting/Receiving (T/R) beams alignment in a great space using the narrow beam, which proposed a special and considerable technical challenge in the space surveillance area. According to the common coordinate transformation model and the radar beam space model, we presented a two dimensional projection algorithm for T/R beam using the direction angles, which could visually describe and assess the beam alignment performance. Subsequently, the optimal mathematical models for the orientation angle of the antenna array, the site location and the T/R beam coverage are constructed, and also the beam alignment parameters are precisely solved. At last, we conducted the optimal beam alignment experiments base on the site parameters of Air Force Space Surveillance System (AFSSS). The simulation results demonstrate the correctness and effectiveness of our novel method, which can significantly stimulate the construction for the LEO space debris surveillance equipment.

  16. Testing and use of radar water level sensors by the U.S. Geological Survey

    Science.gov (United States)

    Fulford, Janice M.

    2016-01-01

    The United States Geological Survey uses water-level (or stage) measurements to compute streamflow at over 8000 stream gaging stations located throughout the United States (waterwatch.usgs.gov, 2016). Streamflow (or discharge) is computed at five minute to hourly intervals from a relationship between water level and discharge that is uniquely determined for each station. The discharges are posted hourly to WaterWatch (waterwatch. usgs.gov) and are used by water managers to issue flood warnings and manage water supply and by other users of water information to make decisions. The accuracy of the water-level measurement is vital to the accuracy of the computed discharge. Because of the importance of water-level measurements, USGS has an accuracy policy of 0.02 ft or 0.2 percent of reading (whichever is larger) (Sauer and Turnipseed, 2010). Older technologies, such as float and shaft-encoder systems, bubbler systems and submersible pressure sensors, provide the needed accuracy but often require extensive construction to install and are prone to malfunctioning and damage from floating debris and sediment. No stilling wells or orifice lines need to be constructed for radar installations. During the last decade testing by the USGS Hydrologic Instrumentation Facility(HIF) found that radar water-level sensors can provide the needed accuracy for water-level measurements and because the sensor can be easily attached to bridges, reduce the construction required for installation. Additionally, the non-contact sensing of water level minimizes or eliminates damage and fouling from floating debris and sediment. This article is a brief summary of the testing efforts by the USGS HIF and field experiences with models of radar water-level sensors in streamflow measurement applications. Any use of trade names in this article is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  17. Biaxial Testing of High-Strength Fabric Improves Design of Inflatable Radar Domes

    Science.gov (United States)

    Krause, David L.; Bartolotta, Paul A.

    2001-01-01

    Large radar installations around the globe continuously watch the skies, unobtrusively providing security to the United States; these systems have been in active use for the past 50 years. Often situated in extreme environments, the radar dishes require shielding from the harsh elements. Air-inflated domes (over 100 ft in diameter) are one structure of choice for providing this essential protection. The radomes are constructed from highstrength fabric that is strong enough to withstand the inflation pressure, high winds, and other environmental loads, yet transparent to the microwave signal to allow precise radar mapping. This fabric is woven from glass fibers for high strength and embedded in a polytetrafluoroethylene resin matrix, akin to the nonstick coatings used on cookware.

  18. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  19. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  20. Specification and acceptance testing of nuclear medicine equipment

    International Nuclear Information System (INIS)

    Wegst, A.V.; Erickson, J.J.

    1984-01-01

    The purchase of nuclear medicine equipment is of prime importance in the operation of a clinical service. Failure to properly evaluate the potential uses of the instrumentation and the various operational characteristics of the equipment can often result in the purchase of inappropriate or inferior instruments. The magnitude of the purchase in terms of time and financial investments make it imperative that the purchase be approached in a systematic manner. Consideration of both the intended clinical functions and personnel requirements is important. It is necessary also to evaluate the ability of the equipment vendor to support the instrumentation after the purchase has been completed and the equipment installed in the clinical site. The desired specifications of the instrument characteristics should be stated in terms that can be verified by acceptance testing. The complexity of modern instrumentation and the sensitivity of it to the environment require the buyer to take into account the potential problems of controlling the temperature, humidity, and electrical power of the installation site. If properly and systematically approached, the purchase of new nuclear medicine instrumentation can result in the acquisition of a powerful diagnostic tool which will have a useful lifetime of many years. If not so approached, it may result in the expenditure of a large amount of money and personnel time without the concomitant return in useful clinical service. (author)

  1. Ground Penetrating Radar Investigations in the Noble Hall of São Carlos Theater in Lisbon, Portugal

    Science.gov (United States)

    Fontul, S.; Solla, M.; Cruz, H.; Machado, J. S.; Pajewski, L.

    2018-05-01

    This paper describes a study conducted by the National Laboratory for Civil Engineering of Portugal (LNEC), in cooperation with the Defense University Center at the Spanish Naval Academy and "La Sapienza," University of Rome, to assess the health and safety conditions of the Noble Hall floor in the São Carlos National Theater (Lisbon, Portugal). In a multidisciplinary approach, extensive fieldwork was carried out. The survey included the location and characterization of beams in the various areas of the floor by using two ground penetrating radar (GPR) systems equipped with two different ground- or air-coupled antennas, local inspection openings to visually assess the geometry, timber species and conservation state of structural members, and an assessment of the conservation state of the timber beam ends using drilling equipment. All the tests performed and the results obtained are presented. The potential of using non-destructive tests for the inspection of timber cultural heritage structures, particularly GPR, is discussed, and some practical recommendations are made.

  2. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  3. Combining millimeter-wave radar and communication paradigms for automotive applications : a signal processing approach.

    Science.gov (United States)

    2016-05-01

    As driving becomes more automated, vehicles are being equipped with more sensors generating even higher data rates. Radars (RAdio Detection and Ranging) are used for object detection, visual cameras as virtual mirrors, and LIDARs (LIght Detection and...

  4. Establishment Criteria for Integrated Wind Shear Detection Systems: Low-Level Wind Shear Alert System (LLWAS), Terminal Doppler Weather Radar (TDWR), and Modified Airport Surveillance Radar

    Science.gov (United States)

    1990-12-01

    Overviev . ......................................... 9 2. Programs , Syr!ems, and Services ........................ 11 a. National Weather Service...Equipment Appropriation. ADA, a computer system developed and maintained by the Office of Aviation Policy and rlans, facilitates APS-I processing... Program Plan. The primary benefit of LLWAS, TDWR, and modified airport surveillance radar is reduced risk and expected incidence of wind shear-related

  5. Imaging Sensor Flight and Test Equipment Software

    Science.gov (United States)

    Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa

    2007-01-01

    The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes

  6. Improved Laser Vibration Radar

    National Research Council Canada - National Science Library

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  7. METHODOLOGICAL PROBLEMS AND WAYS OF CREATION OF THE AIRCRAFT EQUIPMENT TEST AUTOMATED MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Vladimir Michailovich Vetoshkin

    2017-01-01

    Full Text Available The development of new and modernization of existing aviation equipment specimens of different classes are ac- companied and completed by the complex process of ground and flight tests. This phase of aviation equipment life cycle is implemented by means of organizational and technical systems - running centers. The latter include various proving grounds, measuring complex and systems, aircraft, ships, security and flight control offices, information processing laborato- ries and many other elements. The system analysis results of development challenges of the automated control systems of aviation equipment tests operations are presented. The automated control systems are in essence an automated data bank. The key role of development of flight tests automated control system in the process of creation of the automated control sys- tems of aviation equipment tests operations is substantiated. The way of the mobile modular measuring complexes integra- tion and the need for national methodologies and technological standards for database systems design concepts are grounded. Database system, as a central element in this scheme, provides collection, storing and updating of values of the elements described above in pace and the required frequency of the controlled object state monitoring. It is database system that pro- vides the supervisory unit with actual data corresponding to specific moments of time, which concern the state processes, assessments of the progress and results of flight experiments, creating the necessary environment for aviation equipment managing and testing as a whole. The basis for development of subsystems of automated control systems of aviation equip- ment tests operations are conceptual design processes of the respective database system, the implementation effectiveness of which largely determines the level of success and ability to develop the systems being created. Introduced conclusions and suggestions can be used in the

  8. Non destructive testing of heterogeneous structures with a step frequency radar

    International Nuclear Information System (INIS)

    Cattin, V.; Chaillout, J.J.

    1998-01-01

    Ground penetrating radar have shown increasing potential in diagnostic of soils or concrete, but the realisation of such a system and the interpretation of data produced by this technique require a clear understanding of the physical electromagnetic processes that appear between media and waves. In this paper are studied the performances of a step frequency radar as a nondestructive technique to evaluate different heterogeneous laboratory size structures. Some critical points are studied like material properties, antenna effect and image reconstruction algorithm, to determine its viability to distinguish smallest region of interest

  9. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  10. Ground Penetrating Radar Technologies in Ukraine

    Science.gov (United States)

    Pochanin, Gennadiy P.; Masalov, Sergey A.

    2014-05-01

    Transient electromagnetic fields are of great interest in Ukraine. The following topics are studied by research teams, with high-level achievements all over the world: (i) Ultra-Wide Band/Short-pulse radar techniques (IRE and LLC "Transient Technologies", for more information please visit http://applied.ire.kharkov.ua/radar%20systems_their%20components%20and%20relevant%20technologies_e.html and http://viy.ua); (ii) Ground Penetrating Radar (GPR) with stepped frequency sounding signals (IRE); (iii) Continuous-Wave (CW) radar with phase-shift keying signals (IRE); and (iv) Radio-wave interference investigation (Scientific and Technical Centre of The Subsurface Investigation, http://geophysics.ua). GPR applications are mainly in search works, for example GPR is often used to search for treasures. It is also used to identify leaks and diffusion of petroleum in soil, in storage areas, as well as for fault location of pipelines. Furthermore, GPR is used for the localization of underground utilities and for diagnostics of the technical state of hydro dams. Deeper GPR probing was performed to identify landslides in Crimea. Rescue radar with CW signal was designed in IRE to search for living people trapped under the rubble of collapsed buildings. The fourth version of this radar has been recently created, showing higher stability and noise immunity. Radio-wave interference investigation allows studying the soil down to tens of meters. It is possible to identify areas with increased conductivity (moisture) of the soil. LLC "Transient Technologies" is currently working with Shevchenko Kyiv University on a cooperation program in which the construction of a test site is one of the planned tasks. In the framework of this program, a GPR with a 300 MHz antenna was handed to the geological Faculty of the University. Employees of "Transient Technologies" held introductory lectures with a practical demonstration for students majoring in geophysics. The authors participated to GPR

  11. Performance Analysis of Ultra-Wideband Channel for Short-Range Monopulse Radar at Ka-Band

    Directory of Open Access Journals (Sweden)

    Naohiko Iwakiri

    2012-01-01

    Full Text Available High-range resolution is inherently provided with Ka-band ultra-wideband (UWB vehicular radars. The authors have developed a prototype UWB monopulse radar equipped with a two-element receiving antenna array and reported its measurement results. In this paper, a more detailed verification using these measurements is presented. The measurements were analyzed employing matched filtering and eigendecomposition, and then multipath components were extracted to examine the behavior of received UWB monopulse signals. Next, conventional direction finding algorithms based on narrowband assumption were evaluated using the extracted multipath components, resulting in acceptable angle-of-arrival (AOA from the UWB monopulse signal regardless of wideband signals. Performance degradation due to a number of averaging the received monopulses was also examined to design suitable radar's waveforms.

  12. 14 CFR Appendix J to Part 23 - HIRF Environments and Equipment HIRF Test Levels

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false HIRF Environments and Equipment HIRF Test Levels J Appendix J to Part 23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF.... 23, App. J Appendix J to Part 23—HIRF Environments and Equipment HIRF Test Levels This appendix...

  13. Site investigation - equipment for geological, geophysical, hydrogeological and hydrochemical characterization

    International Nuclear Information System (INIS)

    Almen, K.E.; Fridh, B.; Johansson, B.E.; Sehlstedt, M.

    1986-11-01

    The investigations are performed within a site investigation program. In total about 60,000 m of cored 56 mm boreholes have been drilled and investigated at eight study sites. A summarized description of the main investigation methods is included. Instruments for geophysical investigations contains equipment for ground measurements as well as for borehole logging. The Geophysical investigations including the borehole radar measurements, are indirect methods for the geological and hydrogeological characterization of the rock formation. Great effort has been laid on the development of hydrogeological instruments for hydraulic tests and groundwater head measurements. In order to obtain hydrochemical investigations with high quality, a complete system for sampling and analysis of ground water has been developed. (orig./PW)

  14. Investigation of possible methods for equipment self-tests in digital radiology

    International Nuclear Information System (INIS)

    Zoetelief, J.; Idris, H. H. E.; Jansen, J. T. M.

    2005-01-01

    Quality control in digital radiology can be time-consuming. Equipment self-tests may significantly decrease staff workload. The two most essential parameters for radiology systems are image quality and patient dose. Concerning patient dose, information on the dose-area product (DAP) values generally forms the basis for assessment of patient dose. DAP-values can be measured using a transmission ionisation chamber or calculated from equipment settings. In the present study, various image quality parameters were derived using a contrast-detail (C-D) phantom. The investigation included a computer-aided assessment of C-D images, which produced various parameters, and also parameters based upon scoring by human observers. In addition, another parameter was calculated from modulation transfer function (MTF) measurements. The automatically calculated parameters showed good correlation with human readings, although the number of X-ray systems studied is still limited. We propose a combined evaluation of DAP and automatically calculated C-D or MTF parameters for equipment self-tests. (authors)

  15. Cold Regions Logistic Supportability Testing of Electronic, Avionic and Communications Equipment.

    Science.gov (United States)

    1985-06-20

    Comment : 2. Have all data collected been reviewed for correctness and completeness? YES NO . Comment : 3. Were the facilities, test equipment...insufficient test planning? YES NO . Comment : 5. Were the test results compromised in any way due to test performance procedures? YES NO . Comment : 6. Were the...test results compromised in any way due to test control pro- cedures? YES NO Comment : 7. Were the test results compromised in any way due to data

  16. The Northern regional programme for the acceptance testing of X-ray equipment

    International Nuclear Information System (INIS)

    Faulkner, K.; Harrison, R.M.; Kotre, C.J.; Smith, S.; Davies, M.; Barker, P.

    1989-01-01

    Since 1984 the UK Northern Regional Medical Physics Department has participated in a regional acceptance testing programme for all X-ray equipment from mobile units to computed tomography scanners. Organizational and radiation physics aspects of the programme are described. Three levels of tests are performed by physicists: the first on installation, the second after 3 months, the final visit just prior to the end of the manufacturers warranty. The second test is only performed if any aspect of performance requires rechecking as a result of the first. Acceptance test protocols are based on those published by the Institute of Physical Sciences in Medicine. Details limiting values for the acceptance test measurements are given. In some instances testing has resulted in modifications to the design and construction of X-ray equipment. Acceptance testing is important in determining a baseline standard of performance against which routine quality assurance may be assessed. (author)

  17. Navigation Tools and Equipment and How They Have Improved Aviation Safety

    OpenAIRE

    Sulaiman D. S Alsahli FadalahassanALfadala

    2017-01-01

    This paper highlights the impact of navigation tools and equipment, such as the GPS, navigation radar, and other communications tools, which aid in ensuring aviation safety. It emphasizes the need for aviation safety and how these navigation methods are of great help to reduce the hazards and clearly indicate the problems related to the aircraft, aircraft traffic management, weather disturbances, among others. It also recommends how these tools and equipment must be further developed to promo...

  18. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation

    DEFF Research Database (Denmark)

    Ricker, R.; Hendricks, S.; Helm, V.

    2014-01-01

    In the context of quantifying Arctic ice-volume decrease at global scale, the CryoSat-2 satellite was launched in 2010 and is equipped with the K-u band synthetic aperture radar altimeter SIRAL (Synthetic Aperture Interferometric Radar Altimeter), which we use to derive sea-ice freeboard defined...... knowledge of ice and snow properties, the composition of radar backscatter and therefore the interpretation of radar echoes is crucial. This has consequences in the selection of retracker algorithms which are used to track the main scattering horizon and assign a range estimate to each CryoSat-2 measurement...... of sea-ice freeboard and higher-level products that arise from the choice of the retracker threshold only, independent of the uncertainties related to snow and ice properties. Our study shows that the choice of retracker thresholds does have a significant impact on magnitudes of estimates of sea...

  19. The Northern Regional Programme for the acceptance testing of X-ray equipment

    International Nuclear Information System (INIS)

    Faulkner, K.; Harrison, R.M.; Kotre, C.J.; Smith, S.; Davies, M.; Barker, P.

    1989-01-01

    Since 1984 the Regional Medical Physics Department has participated in a regional acceptance testing programme for all X-ray equipment from mobile units to computed tomography scanners. The organizational and radiation physics aspects of the programme are described. Three levels of tests are performed by physicists: the first on installation, the second after 3 months, and the final visit just prior to the end of the manufacturer's warranty. The second test is only performed if any aspect of performance requires rechecking as a result of the first visit. Acceptance test protocols are based on those published by the Institute of Physical Sciences in Medicine. Details of the limiting values for the acceptance test measurements are given. The results of the programme are discussed. In some instances the testing has resulted in modifications to the design and construction of X-ray equipment. Acceptance testing is important in determining a baseline standard of performance against which routine quality assurance may be assessed. (author)

  20. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    Science.gov (United States)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  1. All-cause mortality and radar exposure among french navy personnel: a 30 years cohort study

    International Nuclear Information System (INIS)

    Dabouis, V.; Arvers, P.; Debouzy, J.C.; Perrin, A.; Hours, M.

    2006-01-01

    To improve operational performance in a modern navy force, radiofrequency (RF) and microwaves emitting devices are widely used. It has been suggested that exposure to electromagnetic fields could be associated with greater health hazards and higher mortality. The all-cause mortality of 39488 militaries of the French navy forces was studied over the period 1975-2001 with a cohort epidemiological study. They served from 1975 until 1995. In a first step, the mortality of radar exposed militaries was compared to a control group formed by militaries who served during the same period in the same environment but without radar exposure. Administrative procedures for identifying militaries and their vital status were equivalent in the radar and the control groups. The age standardized mortality ratio in the radar navy personnel was 0.70 (95% CI: 0.54-0.90). In professional militaries, no difference in mortality ratio was found according to duration of estimated exposure. During a 30 years period of observation, we found no increase in all-cause mortality in the French navy personnel who were close to radar equipments

  2. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing

  3. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  4. Results of development and field tests of a radar-tracer system providing meteorological support to modeling hazardous technological releases

    International Nuclear Information System (INIS)

    Shershakov, V.M.; Zukov, G.P.; Kosykh, V.S.

    2003-01-01

    Full text: Radar support to systems of automated radiation monitoring requires dealing with determination of geometric characteristics of air release of radionuclides. For doing this, an air release can be labeled by chaff propagating in the air similarly to particles of radioactive substance. Then, a chaff suspension can be treated as a spatially distributed radar target and thus be detected by a radar. For a number of years the Science and Production Association 'Typhoon' of Roshydromet, Obninsk has been developing a radar tracer system (RTS) for meteorological support of modeling hazardous technological releases. In September -December 2002 experiments were conducted to test the RTS in field. This presentation contains preliminary results of testing this system. A total of 9 experiments pursuing different goals were carried out. Of them 6 experiments were conducted approximately 6 km south-west of Obninsk in the vicinity of the village of Potresovo. The first three experiments were aimed at working out interaction between the MR and LDU and assessing the chaff cloud observation distance. In doing this, radar information was not transmitted from the MR to the CCS. In the last three experiments radar information was transmitted to the CCS by cell communication lines using telephones Siemens S35 with in-built modems. The CCS was deployed in building 4/25 of SPA 'Typhoon'. All information received in the CCS was put an a map. Three experiments were conducted in the area of the Kursk NPP as part of preparations for training exercises near the village of Makarovka about 7 km north-west of the city of Kurchatov. In the first two experiments radar information from the MR was passed by cell communication channels to the CCS deployed in the laboratory of external radiation monitoring of the Kursk nuclear power plant. Experiment 3 was a demonstration and arranged during the emergency response exercises at the Kursk NPP. The MR was based on the site of the external

  5. On-Line Radiation Test Facility for Industrial Equipment needed for the Large Hadron Collider at CERN

    CERN Document Server

    Rausch, R

    1999-01-01

    The future Large Hadron Collider to be built at CERN will use superconducting magnets cooled down to 1.2 K. To preserve the superconductivity, the energy deposition dose levels in equipment located outside the cryostat, in the LHC tunnel, are calculated to be of the order of 1 to 10 Gy per year. At such dose levels, no major radiation-damage problems are to be expected, and the possibility of installing Commercial Of The Shelf (COTS) electronic equipment in the LHC tunnel along the accelerator is considered. To this purpose, industrial electronic equipment and circuits have to be qualified and tested against radiation to insure their long term stability and reliability. An on-line radiation test facility has been setup at the CERN Super Proton Synchrotron (SPS) and a program of on-line tests for electronic equipment is ongoing. Equipment tested includes Industrial Programmable Logic Controllers (PLCs) from several manufacturers, standard VME modules, Fieldbuses like Profibus, WorldFIP and CAN, various electro...

  6. Monitoring Strategies of Earth Dams by Ground-Based Radar Interferometry: How to Extract Useful Information for Seismic Risk Assessment.

    Science.gov (United States)

    Di Pasquale, Andrea; Nico, Giovanni; Pitullo, Alfredo; Prezioso, Giuseppina

    2018-01-16

    The aim of this paper is to describe how ground-based radar interferometry can provide displacement measurements of earth dam surfaces and of vibration frequencies of its main concrete infrastructures. In many cases, dams were built many decades ago and, at that time, were not equipped with in situ sensors embedded in the structure when they were built. Earth dams have scattering properties similar to landslides for which the Ground-Based Synthetic Aperture Radar (GBSAR) technique has been so far extensively applied to study ground displacements. In this work, SAR and Real Aperture Radar (RAR) configurations are used for the measurement of earth dam surface displacements and vibration frequencies of concrete structures, respectively. A methodology for the acquisition of SAR data and the rendering of results is described. The geometrical correction factor, needed to transform the Line-of-Sight (LoS) displacement measurements of GBSAR into an estimate of the horizontal displacement vector of the dam surface, is derived. Furthermore, a methodology for the acquisition of RAR data and the representation of displacement temporal profiles and vibration frequency spectra of dam concrete structures is presented. For this study a Ku-band ground-based radar, equipped with horn antennas having different radiation patterns, has been used. Four case studies, using different radar acquisition strategies specifically developed for the monitoring of earth dams, are examined. The results of this work show the information that a Ku-band ground-based radar can provide to structural engineers for a non-destructive seismic assessment of earth dams.

  7. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  8. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  9. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    Science.gov (United States)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  10. Guidelines for Electromagnetic Interference Testing of Power Plant Equipment: Revision 3 to TR-102323

    International Nuclear Information System (INIS)

    Cunningham, J.; Shank, J.

    2004-01-01

    To continue meeting safety and reliability requirements while controlling costs, operators of nuclear power plants must be able to replace and upgrade equipment in a cost-effective manner. One issue that has been problematic for new plant equipment and especially for digital instrumentation and control (I and C) systems in recent years is electromagnetic compatibility (EMC). The EMC issue usually involves testing to show that critical equipment will not be adversely affected by electromagnetic interference (EMI) in the plant environment. This guide will help nuclear plant engineers address EMC issues and qualification testing in a consistent, comprehensive manner

  11. Guidelines for Electromagnetic Interference Testing of Power Plant Equipment: Revision 3 to TR-102323

    Energy Technology Data Exchange (ETDEWEB)

    J. Cunningham and J. Shank

    2004-11-01

    To continue meeting safety and reliability requirements while controlling costs, operators of nuclear power plants must be able to replace and upgrade equipment in a cost-effective manner. One issue that has been problematic for new plant equipment and especially for digital instrumentation and control (I&C) systems in recent years is electromagnetic compatibility (EMC). The EMC issue usually involves testing to show that critical equipment will not be adversely affected by electromagnetic interference (EMI) in the plant environment. This guide will help nuclear plant engineers address EMC issues and qualification testing in a consistent, comprehensive manner.

  12. Radar-based rainfall estimation: Improving Z/R relations through comparison of drop size distributions, rainfall rates and radar reflectivity patterns

    Science.gov (United States)

    Neuper, Malte; Ehret, Uwe

    2014-05-01

    The relation between the measured radar reflectivity factor Z and surface rainfall intensity R - the Z/R relation - is profoundly complex, so that in general one speaks about radar-based quantitative precipitation estimation (QPE) rather than exact measurement. Like in Plato's Allegory of the Cave, what we observe in the end is only the 'shadow' of the true rainfall field through a very small backscatter of an electromagnetic signal emitted by the radar, which we hope has been actually reflected by hydrometeors. The meteorological relevant and valuable Information is gained only indirectly by more or less justified assumptions. One of these assumptions concerns the drop size distribution, through which the rain intensity is finally associated with the measured radar reflectivity factor Z. The real drop size distribution is however subject to large spatial and temporal variability, and consequently so is the true Z/R relation. Better knowledge of the true spatio-temporal Z/R structure therefore has the potential to improve radar-based QPE compared to the common practice of applying a single or a few standard Z/R relations. To this end, we use observations from six laser-optic disdrometers, two vertically pointing micro rain radars, 205 rain gauges, one rawindsonde station and two C-band Doppler radars installed or operated in and near the Attert catchment (Luxembourg). The C-band radars and the rawindsonde station are operated by the Belgian and German Weather Services, the rain gauge data was partly provided by the French, Dutch, Belgian, German Weather Services and the Ministry of Agriculture of Luxembourg and the other equipment was installed as part of the interdisciplinary DFG research project CAOS (Catchment as Organized Systems). With the various data sets correlation analyzes were executed. In order to get a notion on the different appearance of the reflectivity patterns in the radar image, first of all various simple distribution indices (for example the

  13. Evaluation tests of the Instrumentation and Control equipment to use in nuclear power plants: its contribution to the improvement and quality certification of the Brazilian equipment

    International Nuclear Information System (INIS)

    Menezes, R.H.M. de; Peluso, M.A.V.

    1984-01-01

    This work presents the procedures used to evaluate Instrumentation Control equipment and reports the experience of integration among instrument user, manufacturer and test institution. It covers tests for equipments for conventional user and for specific application in Nuclear Power Stations. (Author) [pt

  14. Dynamic tension testing equipment for paperboard and corrugated fiberboard

    Science.gov (United States)

    W. D. Godshall

    1965-01-01

    The objective of this work was to develop a method, the testing equipment, and the instrumentation with which dynamic stress-strain information may be obtained for paperboards and built-up corrugated fiberboards as used in corrugated fiberboard containers. Much information is available on the properties of these materials when subjected to static or low rates of...

  15. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  16. Recommendation on Transition from Primary/Secondary Radar to Secondary- Only Radar Capability

    Science.gov (United States)

    1994-10-01

    Radar Beacon Performance Monitor RCIU Remote Control Interface Unit RCL Remote Communications Link R E&D Research, Engineering and Development RML Radar...rate. 3.1.2.5 Maintenance The current LRRs have limited remote maintenance monitoring (RMM) capabilities via the Remote Control Interface Unit ( RCIU ...1, -2 and FPS-20 radars required an upgrade of some of the radar subsystems, namely the RCIU to respond as an RMS and the CD to interface with radar

  17. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  18. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  19. Social Radar

    Science.gov (United States)

    2012-01-01

    RTA HFM-201/RSM PAPER 3 - 1 © 2012 The MITRE Corporation. All Rights Reserved. Social Radar Barry Costa and John Boiney MITRE Corporation...defenders require an integrated set of capabilities that we refer to as a “ social radar.” Such a system would support strategic- to operational-level...situation awareness, alerting, course of action analysis, and measures of effectiveness for each action undertaken. Success of a social radar

  20. Monitoring internal organ motion with continuous wave radar in CT

    International Nuclear Information System (INIS)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-01-01

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  1. Experiment in Onboard Synthetic Aperture Radar Data Processing

    Science.gov (United States)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  2. Development of a Test Equipment for Performance Evaluation of Safety Systems

    International Nuclear Information System (INIS)

    Kim, S. J.; Kwon, S. M.; Lee, J. M.; Kim, C. K.; Cho, C. H.; Chun, J. H.; Park, M. K.

    2004-07-01

    The purpose of this study is to develop a test equipment for performance evaluation of safety systems in nuclear power plants. First, we develop an input-output simulator for reactor protection systems, ESF component control systems, and a data acquisition system for these I/O simulators as a hardware for this equipment. Then, we develop a software for human-machine interface system, which is easy-to-use and easy-to-modify. In addition, a simulation tool for a reactor trip switch gear is developed

  3. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  4. A Dual-Wavelength Radar Technique to Detect Hydrometeor Phases

    Science.gov (United States)

    Liao, Liang; Meneghini, Robert

    2016-01-01

    This study is aimed at investigating the feasibility of a Ku- and Ka-band space/air-borne dual wavelength radar algorithm to discriminate various phase states of precipitating hydrometeors. A phase-state classification algorithm has been developed from the radar measurements of snow, mixed-phase and rain obtained from stratiform storms. The algorithm, presented in the form of the look-up table that links the Ku-band radar reflectivities and dual-frequency ratio (DFR) to the phase states of hydrometeors, is checked by applying it to the measurements of the Jet Propulsion Laboratory, California Institute of Technology, Airborne Precipitation Radar Second Generation (APR-2). In creating the statistically-based phase look-up table, the attenuation corrected (or true) radar reflectivity factors are employed, leading to better accuracy in determining the hydrometeor phase. In practice, however, the true radar reflectivities are not always available before the phase states of the hydrometeors are determined. Therefore, it is desirable to make use of the measured radar reflectivities in classifying the phase states. To do this, a phase-identification procedure is proposed that uses only measured radar reflectivities. The procedure is then tested using APR-2 airborne radar data. Analysis of the classification results in stratiform rain indicates that the regions of snow, mixed-phase and rain derived from the phase-identification algorithm coincide reasonably well with those determined from the measured radar reflectivities and linear depolarization ratio (LDR).

  5. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    Energy Technology Data Exchange (ETDEWEB)

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology

  6. Radar investigations at the Saltsjoetunnel - predictions and validation

    International Nuclear Information System (INIS)

    Olsson, Olle; Palmqvist, Kai

    1989-01-01

    Borehole radar investigations have been performed in two boreholes drilled along the extent of the Saltsjoe tunnel in Stockholm, Sweden. The objective of the project was to test investigate the capabilities of the borehole radar technique to predict geological structures prior to tunnel excavation. Singlehole and crosshole radar measurements were made in the two boreholes which outlined and equilateral triangle. The crosshole data was used to produce tomograms showing the distribution of radar attenuation and slowness (inverse of velocity) in the plane between the boreholes. The radar model of the site contained one major feature which was identified as a fracture zone. The intersection of the fracture zone with the tunnel was extrapolated from the radar data and found to be in agreement with observations in the tunnel. At the intersection of the fracture zone with the tunnel grouting had to be applied. It has also been found that the radar identifies a number of smaller features which are of practically no significance with respect to tunnel construction. There is general agreement between the radar model of the site and the geologic-tectonic model of the site. This project has demonstrated the capability of the boreholes radar technique to predict the existence, location, and orientation of geologic features (e.g. fracture zones) which can be of significance to the cost and safety when excavating a tunnel. However, further development is needed to be able to use the technique cost effectively for continuous prediction ahead of the tunnel front. (authors) (17 figs., 1 tab.)

  7. Large Scale Leach Test Facility: Development of equipment and methods, and comparison to MCC-1 leach tests

    International Nuclear Information System (INIS)

    Pellarin, D.J.; Bickford, D.F.

    1985-01-01

    This report describes the test equipment and methods, and documents the results of the first large-scale MCC-1 experiments in the Large Scale Leach Test Facility (LSLTF). Two experiments were performed using 1-ft-long samples sectioned from the middle of canister MS-11. The leachant used in the experiments was ultrapure deionized water - an aggressive and well characterized leachant providing high sensitivity for liquid sample analyses. All the original test plan objectives have been successfully met. Equipment and procedures have been developed for large-sample-size leach testing. The statistical reliability of the method has been determined, and ''bench mark'' data developed to relate small scale leach testing to full size waste forms. The facility is unique, and provides sampling reliability and flexibility not possible in smaller laboratory scale tests. Future use of this facility should simplify and accelerate the development of leaching models and repository specific data. The factor of less than 3 for leachability, corresponding to a 200,000/1 increase in sample volume, enhances the credibility of small scale test data which precedes this work, and supports the ability of the DWPF waste form to meet repository criteria

  8. Compliance testing of medical diagnostic x-ray equipment: three years experience of a public hospital in western Australia

    International Nuclear Information System (INIS)

    Tuchyna, T.; Jacob, C.S.

    2000-01-01

    Full text: A formal compliance testing program which began on 1 January 1997 called for all medical and diagnostic x-ray equipment to be tested according to protocols established by the Western Australian Radiological Council. This work describes the impact of the legislation three years post implementation on a major teaching Hospital with 45 x-ray tubes located throughout 37 rooms. Testing is performed prior to scheduled service by licensed compliance testers according to test methods specified in the Western Australian Compliance Testing Workbook, 1997. A dedicated non-invasive x-ray beam analyser is instrumental in accurately determining radiation output parameters of the generator and x-ray tube. Assessment of compliance is determined by a Qualified Expert. Repair and re-testing of non-compliant items is coordinated with service personnel. Notices of non-compliance were received for approximately 60% of the equipment in the Hospital following the equipment' first annual test. Reasons and seriousness of failure varied according to equipment category, test category, equipment use and age. The majority of non-compliance issues were resolved within 90 days. At the end of the third year of testing, approximately 75% of the x-ray units tested met the compliance criteria. The main reasons for non-compliance were found to be design limitations associated with old technology and the current radiation legislation that makes it difficult for older equipment to meet the stringent criteria. The number and categories of failure did not significantly decrease in the second or third years of testing. Exemptions from compliance criteria have been sought for two units on the basis of age and design. Units unable to meet the criteria following several repair attempts or where the cost of repair was deemed not justified, were decommissioned. Formal testing of medical x-ray equipment has demonstrated various non-compliance issues that did not significantly improve during the

  9. Minimum redundancy MIMO radars

    OpenAIRE

    Chen, Chun-Yang; Vaidyanathan, P. P.

    2008-01-01

    The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, i...

  10. 42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Test systems, equipment, instruments... SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY... storage of reagents and specimens, accurate and reliable test system operation, and test result reporting...

  11. Foundation Investigation for Ground Based Radar Project-Kwajalein Island, Marshall Islands

    Science.gov (United States)

    1990-04-01

    iL_ COPY MISCELLANEOUS PAPER GL-90-5 i iFOUNDATION INVESTIGATION FOR GROUND BASED RADAR PROJECT--KWAJALEIN ISLAND, MARSHALL ISLANDS by Donald E...C!assification) Foundatioa Investigation for Ground Based Radar Project -- Kwajalein Island, Marshall Islands 12. PERSONAL AUTHOR(S) Yule, Donald E...investigation for the Ground Based Radar Project -- Kwajalein Island, Marshall Islands , are presented.- eophysical tests comprised of surface refrac- tion

  12. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    Science.gov (United States)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; hide

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  13. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    Science.gov (United States)

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  14. Frequency domain, waveform inversion of laboratory crosswell radar data

    Science.gov (United States)

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  15. 40 CFR 1065.910 - PEMS auxiliary equipment for field testing.

    Science.gov (United States)

    2010-07-01

    ..., you may route engine intake air or exhaust through a flow meter. Route the engine intake air or exhaust as follows: (1) Flexible connections. Use short flexible connectors where necessary. (i) You may use flexible connectors to enlarge or reduce the pipe diameters to match that of your test equipment...

  16. Engineering Work Plan for the Development of Phased Startup Initiative (PSI) Phases 3 and 4 Test Equipment

    International Nuclear Information System (INIS)

    PITNER, A.L.

    2000-01-01

    A number of tools and equipment pieces are required to facilitate planned test operations during Phases 3 and 4 of the Phased Startup Initiative (PSI). These items will be used in assessing residual canister sludge quantities on cleaned fuel assemblies, sorting coarse and fine scrap fuel pieces, assessing the size distribution of scrap pieces, loading scrap into a canister, and measuring the depth of the accumulated scrap in a canister. This work plan supercedes those previously issued for development of several of these test items. These items will be considered prototype equipment until testing has confirmed their suitability for use in K West Basin. The process described in AP-EN-6-032 will be used to qualify the equipment for facility use. These items are considered non-OCRWM for PSI Phase 3 applications. The safety classification of this equipment is General Service, with Quality Level 0 (for PSI Phase 3). Quality Control inspections shall be performed to verify basic dimensions and overall configurations of fabricated components, and any special quality control verifications specified in this work plan (Section 3.1.5). These inspections shall serve to approve the test equipment for use in K West Basin (Acceptance Tag). This equipment is for information gathering only during PSI Phases 3 and 4 activities, and will be discarded at the completion of PSI. For equipment needed to support actual production throughput, development/fabrication/testing activities would be more rigorously controlled

  17. The Use of Ground Penetrating Radar to Exploring Sedimentary Ore In North-Central Saudi Arabia

    Science.gov (United States)

    Almutairi, Yasir; Almutair, Muteb

    2015-04-01

    Ground Penetrating Radar (GPR) is a non-destructive geophysical method that provides a continuous subsurface profile, without drilling. This geophysical technique has great potential in delineating the extension of bauxites ore in north-central Saudi Arabia. Bauxite is from types sedimentary ores. This study aim to evaluate the effectiveness of Ground Penetrating Radar (GPR) to illustrate the subsurface feature of the Bauxite deposits at some selected mining areas north-central Saudi Arabia. Bauxite is a heterogeneous material that consists of complex metals such as alumina and aluminum. An efficient and cost-effect exploration method for bauxite mine in Saudi Arabia is required. Ground penetrating radar (GPR) measurements have been carrying out along outcrop in order to assess the potential of GPR data for imaging and characterising different lithological facies. To do so, we have tested different antenna frequencies to acquire the electromagnetic signals along a 90 m profile using the IDS system. This system equipped with a 25 MHz antenna that allows investigating the Bauxite layer at shallow depths where the clay layers may existed. Therefore, the 25 MHz frequency antenna has been used in this study insure better resolution of the subsurface and to get more penetration to image the Bauxite layer. After the GPR data acquisition, this data must be processed in order to be more easily visualized and interpreted. Data processing was done using Reflex 6.0 software. A series of tests were carried out in frequency filtering on a sample of radar sections, which was considered to better represent the entire set of data. Our results indicated that the GPR profiling has a very good agreement for mapping the bauxite layer depth at range of 7 m to 11 m. This study has emphasized that the high-resolution GPR method is the robust and cost-effect technique to map the Bauxite layer. The exploration of Bauxite resource using the GPR technique could reduce the number of holes to

  18. Fpga based L-band pulse doppler radar design and implementation

    Science.gov (United States)

    Savci, Kubilay

    point arithmetic operations as it is fast and facilitates source requirement as it consumes less hardware than floating point arithmetic operations. The software uses floating point arithmetic operations, which ensure precision in processing at the expense of speed. The functionality of the radar system has been tested for experimental validation in the field with a moving car and the validation of submodules are tested with synthetic data simulated on MATLAB.

  19. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB Radar Systems

    Directory of Open Access Journals (Sweden)

    Jana Rovňáková

    2013-09-01

    Full Text Available In the case of through-the-wall localization of moving targets by ultra wideband (UWB radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  20. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  1. Identification of corn fields using multidate radar data

    International Nuclear Information System (INIS)

    Shanmugan, K.S.; Ulaby, F.T.; Narayanan, V.; Dobson, C.

    1983-01-01

    Airborne C- and L-band radar data acquired over a test site in western Kansas were analyzed to determine corn-field identification accuracies obtainable using single-channel, multichannel, and multidate radar data. An automated pattern-recognition procedure was used to classify 144 fields into three categories: corn, pasture land, and bare soil (including wheat stubble and fallow). Corn fields were identified with accuracies ranging from 85% for single channel, single-date data to 100% for single-channel, multidate data. The effects of radar parameters such as frequency, polarization, and look angle as well as the effects of soil moisture on the classification accuracy are also presented

  2. Operational Overview for UAS Integration in the NAS Project Flight Test Series 3

    Science.gov (United States)

    Valkov, Steffi B.; Sternberg, Daniel; Marston, Michael

    2018-01-01

    The National Aeronautics and Space Administration Unmanned Aircraft Systems Integration in the National Airspace System Project has conducted a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The 2015 Flight Test Series 3, supported two separate test configurations. The first configuration investigated the timing of Detect and Avoid alerting thresholds using a radar equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries.

  3. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    Science.gov (United States)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the

  4. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    Science.gov (United States)

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  5. An improved hydrometeor detection method for millimeter-wavelength cloud radar

    Directory of Open Access Journals (Sweden)

    J. Ge

    2017-07-01

    Full Text Available A modified method with a new noise reduction scheme that can reduce the noise distribution to a narrow range is proposed to distinguish clouds and other hydrometeors from noise and recognize more features with weak signal in cloud radar observations. A spatial filter with central weighting, which is widely used in cloud radar hydrometeor detection algorithms, is also applied in our method to examine radar return for significant levels of signals. Square clouds were constructed to test our algorithm and the method used for the US Department of Energy Atmospheric Radiation Measurements Program millimeter-wavelength cloud radar. We also applied both the methods to 6 months of cloud radar observations at the Semi-Arid Climate and Environment Observatory of Lanzhou University and compared the results. It was found that our method has significant advantages in reducing the rates of both failed negative and false positive hydrometeor identifications in simulated clouds and recognizing clouds with weak signal from our cloud radar observations.

  6. Applications of Surface Penetrating Radar for Mars Exploration

    Science.gov (United States)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the

  7. Covert, Intelligent, and Spectrally-Efficient MIMO-Based Noise Radar Networks

    Science.gov (United States)

    2009-01-31

    differentiate signals from various transmitters. Generalized Likelihood Ratio Test (GLRT) and Tapped Delay Line (TDL) beamforming were integrated. 2. RF tag...signjH From Tx 1 XCORR otfeljtion’ • y b«jmfotftiiri9 exx Eft . i igriji2 Ftorn T*2 (b) Fig. 8: MIMO radar using orthogonal sequences: (a...water-filling approach further. Generalized Likelihood Ratio Test and Tapped Delay Line Beamforming: Multi-input and multi-output (MIMO) radar

  8. Advances in the realtime simulation of synthetic clutter for radar testing and evaluation

    CSIR Research Space (South Africa)

    Strydom, JJ

    2010-10-01

    Full Text Available measures. Recent developments in processing power have allowed for a ground clutter simulation capability to be added to this list. RadaR ClutteR Simulation Radar clutter simulation is computationally expensive as a single range line can contain... and correlation functions require more processing power to simulate. RefeRenCeS [1] B. Manz, ?DRFMs Grow to Meet New Threats,? The Journal of Electronic Defense, August 2010, pp. 43-48. K-8430 [www.kashan.co.za] Advances in the Realtime Simulation...

  9. RESUME95 Nordic field test of mobile equipment for nuclear fall-out monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, C.; Bresson, J.; Chiffot, T.; Guillot, L. [Centre d`Etudes de Valduc, Direction des Applications Militaires, Commissaiat a L`Energie Atomique, Tille (France)

    1997-12-31

    Nordic Safety Research (NKS) organised in August 1995 a field test of various techniques and instrumentation for monitoring radioactive fall-out. In an emergency situation, after a major release of radioactive material, many different measuring systems are going to be used, ranging from small hand hold intensitometer to complex spectrometer systems. In this test the following type of equipment were tested: Airborne spectrometers; Carborne spectrometers and dose rate meters; In situ spectrometers and intensitometers. Helinuc team was equipped of an airborne system and of a germanium device for in situ measurements. Different tasks were specified for each team: Mapping caesium fall-out and natural activity over two areas of 18 and 5 km{sup 2}; Research of hidden sources. For measurements and data processing the respect of time allowed was strictly controlled for testing the ability of each team. (au).

  10. RESUME95 Nordic field test of mobile equipment for nuclear fall-out monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, C; Bresson, J; Chiffot, T; Guillot, L [Centre d` Etudes de Valduc, Direction des Applications Militaires, Commissaiat a L` Energie Atomique, Tille (France)

    1998-12-31

    Nordic Safety Research (NKS) organised in August 1995 a field test of various techniques and instrumentation for monitoring radioactive fall-out. In an emergency situation, after a major release of radioactive material, many different measuring systems are going to be used, ranging from small hand hold intensitometer to complex spectrometer systems. In this test the following type of equipment were tested: Airborne spectrometers; Carborne spectrometers and dose rate meters; In situ spectrometers and intensitometers. Helinuc team was equipped of an airborne system and of a germanium device for in situ measurements. Different tasks were specified for each team: Mapping caesium fall-out and natural activity over two areas of 18 and 5 km{sup 2}; Research of hidden sources. For measurements and data processing the respect of time allowed was strictly controlled for testing the ability of each team. (au).

  11. Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration: A review

    Science.gov (United States)

    Pettinelli, Elena; Cosciotti, Barbara; Di Paolo, Federico; Lauro, Sebastian Emanuel; Mattei, Elisabetta; Orosei, Roberto; Vannaroni, Giuliano

    2015-09-01

    The first European mission dedicated to the exploration of Jupiter and its icy moons (JUpiter ICy moons Explorer—JUICE) will be launched in 2022 and will reach its final destination in 2030. The main goals of this mission are to understand the internal structure of the icy crusts of three Galilean satellites (Europa, Ganymede, and Callisto) and, ultimately, to detect Europa's subsurface ocean, which is believed to be the closest to the surface among those hypothesized to exist on these moons. JUICE will be equipped with the 9 MHz subsurface-penetrating radar RIME (Radar for Icy Moon Exploration), which is designed to image the ice down to a depth of 9 km. Moreover, a parallel mission to Europa, which will host onboard REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) equipped with 9MHz and 60MHz antennas, has been recently approved by NASA. The success of these experiments strongly relies on the accurate prediction of the radar performance and on the optimal processing and interpretation of radar echoes that, in turn, depend on the dielectric properties of the materials composing the icy satellite crusts. In the present review we report a complete range of potential ice types that may occur on these icy satellites to understand how they may affect the results of the proposed missions. First, we discuss the experimental results on pure and doped water ice in the framework of the Jaccard theory, highlighting the critical aspects in terms of a lack of standard laboratory procedures and inconsistency in data interpretation. We then describe the dielectric behavior of extraterrestrial ice analogs like hydrates and icy mixtures, carbon dioxide ice and ammonia ice. Building on this review, we have selected the most suitable data to compute dielectric attenuation, velocity, vertical resolution, and reflection coefficients for such icy moon environments, with the final goal being to estimate the potential capabilities of the radar missions as a

  12. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  13. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  14. Balloon-borne pressure sensor performance evaluation utilizing tracking radars

    Science.gov (United States)

    Norcross, G. A.; Brooks, R. L.

    1983-01-01

    The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the Earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute significant height errors to their measurements of atmospheric constituent concentrations and properties. A series of radiosonde flights was conducted. In most cases, each flight consisted of two sondes attached to a single balloon and each flight was tracked by a highly accurate C-band radar. For the first 19 radiosonde flights, the standard aneroid cell baroswitch assembly used was the pressure sensor. The last 26 radiosondes were equipped with a premium grade aneroid cell baroswitch assembly sensor and with a hypsometer. It is shown that both aneroid cell baroswitch sensors become increasingly inaccurate with altitude. The hypsometer radar differences are not strongly dependent upon altitude and it is found that the standard deviation of the differences at 35 km is 0.179 km.

  15. Radiation protection type testing and licensing of diagnostic X-ray equipment in the GDR

    International Nuclear Information System (INIS)

    Taschner, P.; Poulheim, K.F.; Feldheim, W.

    1987-01-01

    The results of more than 10 years experience in type testing and type licensing of diagnostic X-ray equipment with respect to meeting radiation protection requirements as well as the implications for the conduct of these procedures resulting from the introduction of new radiation protection legislation in 1983 and 1984, are described. At present an updated version of the 'Regulation of 16 December 1977 concerning radiation protection type testing and licensing of sealed radiation sources and equipment emitting ionizing radiation' is being prepared. (author)

  16. Shigaraki UAV-Radar Experiment (ShUREX): overview of the campaign with some preliminary results

    Science.gov (United States)

    Kantha, Lakshmi; Lawrence, Dale; Luce, Hubert; Hashiguchi, Hiroyuki; Tsuda, Toshitaka; Wilson, Richard; Mixa, Tyler; Yabuki, Masanori

    2017-12-01

    The Shigaraki unmanned aerial vehicle (UAV)-Radar Experiment (ShUREX) is an international (USA-Japan-France) observational campaign, whose overarching goal is to demonstrate the utility of small, lightweight, inexpensive, autonomous UAVs in probing and monitoring the lower troposphere and to promote synergistic use of UAVs and very high frequency (VHF) radars. The 2-week campaign lasting from June 1 to June 14, 2015, was carried out at the Middle and Upper Atmosphere (MU) Observatory in Shigaraki, Japan. During the campaign, the DataHawk UAV, developed at the University of Colorado, Boulder, and equipped with high-frequency response cold wire and pitot tube sensors (as well as an iMET radiosonde), was flown near and over the VHF-band MU radar. Measurements in the atmospheric column in the immediate vicinity of the radar were obtained. Simultaneous and continuous operation of the radar in range imaging mode enabled fine-scale structures in the atmosphere to be visualized by the radar. It also permitted the UAV to be commanded to sample interesting structures, guided in near real time by the radar images. This overview provides a description of the ShUREX campaign and some interesting but preliminary results of the very first simultaneous and intensive probing of turbulent structures by UAVs and the MU radar. The campaign demonstrated the validity and utility of the radar range imaging technique in obtaining very high vertical resolution ( 20 m) images of echo power in the atmospheric column, which display evolving fine-scale atmospheric structures in unprecedented detail. The campaign also permitted for the very first time the evaluation of the consistency of turbulent kinetic energy dissipation rates in turbulent structures inferred from the spectral broadening of the backscattered radar signal and direct, in situ measurements by the high-frequency response velocity sensor on the UAV. The data also enabled other turbulence parameters such as the temperature

  17. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  18. Seismic test qualification of electrical equipment - testing methods in use to EDF

    International Nuclear Information System (INIS)

    Fabries, R.

    1981-01-01

    At the beginning, for the 900 MW Power Plant level, the testing method in application used the single axis test by sine beat of 10 cycles according to the specifications of the guide IEEE 344-71. When the french guide UTEC 20-420 came into force we have had to define another testing method (EDF standard: HN20 E52) which utilize the single-axis test either by a sine beat of 5-cycles or by a synthetized time history. We present here the mains criterions allowing to justify: -The single-axis test. The single frequency wave (when the Initial Response Spectrum (IRS) present a narrow band). The use of one sine beat of 5-cycles or one synthetized time history. The need of taking into account the high stress level. This oligocyclic stress fatigue explains why one beat of 5-cycles may be as severe as one time history of 20 seconds (with the same level of strong response spectrum). Then, we conclude that the durating of the testing wave applied to the equipment shall be considered as a relative parameter only. The weight of the SSE tests by respect to the OBE tests. The precautions to take in order to: generate and check accurately the synthetized time history, choice the test frequencies when the sine beat is used. (orig./HP)

  19. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  20. Weather Radar Estimations Feeding an Artificial Neural Network Model Weather Radar Estimations Feeding an Artificial Neural Network Model

    Directory of Open Access Journals (Sweden)

    Dawei Han

    2012-02-01

    Full Text Available The application of ANNs (Artifi cial Neural Networks has been studied by many researchers in modelling rainfall runoff processes. However, the work so far has been focused on the rainfall data from traditional raingauges. Weather radar is a modern technology which could provide high resolution rainfall in time and space. In this study, a comparison in rainfall runoff modelling between the raingauge and weather radar has been carried out. The data were collected from Brue catchment in Southwest of England, with 49 raingauges covering 136 km2 and two C-band weather radars. This raingauge network is extremely dense (for research purposes and does not represent the usual raingauge density in operational flood forecasting systems. The ANN models were set up with both lumped and spatial rainfall input. The results showed that raingauge data outperformed radar data in all the events tested, regardless of the lumped and spatial input. La aplicación de Redes Neuronales Artificiales (RNA en el modelado de lluvia-flujo ha sido estudiada ampliamente. Sin embargo, hasta ahora se han utilizado datos provenientes de pluviómetros tradicionales. Los radares meteorológicos son una tecnología moderna que puede proveer datos de lluvia de alta resolución en tiempo y espacio. Este es un trabajo de comparación en el modelado lluvia-flujo entre pluviómetros y radares meteorológicos. Los datos provienen de la cuenca del río Brue en el suroeste de Inglaterra, con 49 pluviómetros cubriendo 136 km2 y dos radares meteorológicos en la banda C. Esta red de pluviómetros es extremadamente densa (para investigación y no representa la densidad usual en sistemas de predicción de inundaciones. Los modelos de RNA fueron implementados con datos de entrada de lluvia tanto espaciados como no distribuidos. Los resultados muestran que los datos de los pluviómetros fueron mejores que los datos de los radares en todos los eventos probados.

  1. Phased-array design for MST and ST radars

    Science.gov (United States)

    Ecklund, W. L.

    1986-01-01

    All of the existing radar systems fully dedicated to clear-air radar studies use some type of phased-array antennas. The effects of beam-steering techniques including feed networks and phase shifters; sidelobe control; ground-clutter suppression; low altitude coverage; arrays with integrated radiating elements and feed networks; analysis of coaxial-collinear antennas; use of arrays with multiple beams; and array testing and measure on structural design of the antenna are discussed.

  2. Specification for a standard radar sea clutter model

    Science.gov (United States)

    Paulus, Richard A.

    1990-09-01

    A model for the average sea clutter radar cross section is proposed for the Oceanographic and Atmospheric Master Library. This model is a function of wind speed (or sea state), wind direction relative to the antenna, refractive conditions, radar antenna height, frequency, polarization, horizontal beamwidth, and compressed pulse length. The model is fully described, a FORTRAN 77 computer listing is provided, and test cases are given to demonstrate the proper operation of the program.

  3. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  4. Enhancing reliability of ultrasonic testing of welds of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Shcherbinskij, V.G.

    1981-01-01

    Results of investigation of factors influencing the reliability of manual ultrasonic testing of welded joints and weld deposited metal power-generating equipment are presented. Recommendations on the enhancing of reliability are given [ru

  5. Research and development cooperation project on environmental measurement using laser radar in fiscal 1995; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the purpose of contributing to the environmental management in Indonesia, Japan made R and D of a laser radar to measure the urban air pollution and an environmental network jointly with Indonesia in compliance with the actual situation of the country. At present, in developing countries, air pollution is becoming a big problem because of increases in population and in energy consumption in urban areas according to the industrial/economic growth. As for the laser radar, it is an active sensor with laser as light source and can observe in high resolution the three-dimensional space distribution such as density and composition of air pollutants. Japan is a leader in the development of laser technology which is a core technology for the laser radar and the preceding research. The equipment is installed at several points of urban areas in Indonesia, and at the same time, the observation network is constructed to collect, analyze and process data at the central processing center. This is a 4-year plan from fiscal 1993 to 1996. In fiscal 1995, negotiations with Indonesia and field surveys were conducted to determine sites for installation. A plan for system improvement was also decided on. 38 refs., 24 figs., 14 tabs.

  6. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  7. Dynamic characteristics of lead rubber bearings with dynamic two-dimensional test equipment

    International Nuclear Information System (INIS)

    Ohtori, Y.; Ishida, K.; Mazda, T.

    1994-01-01

    Although studies have previously been done on the static mechanical properties of lead rubber bearings, this study aims to grasp the dynamic characteristics of lead rubber bearings from experimental results, using two-dimensional dynamic test equipment which is designed to grasp in detail such dynamic characteristics as deformation capacity and proof stress. This paper describes the results from three types of tests: (1) dynamic mechanical properties tests, (2) cyclic loading tests, and (3) dynamic ultimate tests. Through these tests, it was confirmed that the dynamic characteristics of lead rubber bearings are independent of strain rate

  8. Synthetic impulse and aperture radar (SIAR) a novel multi-frequency MIMO radar

    CERN Document Server

    Chen, Baixiao

    2014-01-01

    Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing me

  9. The Variation Test and Extraction Equipment to Optimum Asphalt by Using Gasoline Solvent

    Science.gov (United States)

    Soehardi, Fitridawati

    2017-12-01

    Based on the Binamarga Specification 2010 at third revision, the extraction test should be carried out using the specimen from the loose asphalt mixture extracted from the back of the finisher bitumen machine. The purpose of this research is to find out the result of pretest and posttest extraction asphalt content. The Extraction test using two equipment, they are Soklet and Centrifuge. The specimens was used AMP, Asphalt Finisher and Core, which involved gasoline solvent. Based on the asphalt level extraction test results, the appropriate equipment was used centrifuge with the level accuracy as requirement of Binamarga Specification 2010 at third revision and the level of ease used as equipment in the field study. The asphalt content obtained for AMP 5,51%, Asphalt Finisher5,46% and Core 5.34%. As for the socket asphalt content obtained is AMP 5.55%, Asphalt Finisher 5.50% and Core core 5. 41%. The extract test value of asphalt content decreased, so it can be formulated KA JMF value of Job mix used was 5.56% with the tolerance given according to Binamarga Specification 2010 at third revision is ± 0.30%. In accordance with the results obtained then the results of a centrifuge tool that matches and meets the requirements of time, accuracy of results and economic value.

  10. Design and performance of wideband DRFM for radar test and evaluation

    CSIR Research Space (South Africa)

    Olivier, K

    2011-07-01

    Full Text Available low that it is unlikely that advanced electronic counter countermeasures (ECCM?s) in the radar will be able to distinguish between a physical target return and one generated by the DRFM. The authors would like to express their gratitude...

  11. Automatic test equipment for C and I of compact LWR

    International Nuclear Information System (INIS)

    Mayya, Anuradha; Marathe, P.P.; Madala, Kalyan C.

    2014-01-01

    The C and I of compact LWR consist of a wide variety of electronic modules. Testing of these modules manually was found to be very cumbersome. To ease the testing of these modules, Automatic Test Equipments (ATE) were developed jointly by BARC and ECIL. This paper describes the design of two ATEs for testing 69 types of modules. A power supply ATE was developed for 43 types of power supply modules of type AC-AC, AC-DC, DC-DC and signal conditioning modules. A VME ATE was developed to test 26 types of VME bus based and other microcontroller based non-bussed modules. These ATEs are used for the automated black box testing of modules by feeding power and control inputs and checking the outputs without operator intervention. This paper describes the important considerations in design and the major design challenges. (author)

  12. The use of fuzzy logic in quality control testing of automotive and tractor equipment

    Directory of Open Access Journals (Sweden)

    Korobko А.

    2016-08-01

    Full Text Available The article analyzes the relevance of the research topics, defines goals and objectives, subject and object of research. On the basis of the literature analysis, the following eduction was made: not all the test methods in road and agricultural vehicles (tractors contribute to the effective implementation of the requirements of normative documents including international, inter-laboratory comparative tests. The approach in laboratory testing to the synthesis adaptive system of metrological assurance the use of fuzzy logic is proposed. These labs conduct testing of automotive and tractor equipment. The decision is under risk. The scheme of metrological assurance system covers all parties to ensure the necessary accuracy of measurements and tests; the necessary normative-technical documentation is provided; availability of measuring instruments and test equipment, standards and reference measures; availability of qualified personnel; the assurance that test results are accurate (correct and precision; provides effective decisions based on objective information.

  13. Methodically finding solutions of equipments for carrying out experiments in materials testing and research. Pt. 2

    International Nuclear Information System (INIS)

    Findeisen, D.; Nachtweide, D.; Kuntze, G.

    1983-01-01

    In comparison with the development of industrial products the development of test equipments is of special kind, which is demonstrated by methodical proceeding for finding solutions and by potentialities for technical design and production of test equipment engineering. Some general principles are turned out and explained by several realized examples of design belonging to the sphere of materials testing in den Federal Institute of Materials Testing (BAM) representative of other problems. User are large scientific institutes independent of university, scientific institutes as members of university just as test stands and quality control offices of industrial works. (orig.) [de

  14. Equipment design for reliability testing of protection system

    International Nuclear Information System (INIS)

    Situmorang, Johnny; Tjahjono, H.; Santosa, A. Z.; Tjahjani, S.DT.; Ismu, P.H; Haryanto, D.; Mulyanto, D.; Kusmono, S

    1999-01-01

    The equipment for reliability testing of cable of protection system has been designed as a a furnace with the electric heater have a 4 kW power, and need time 10 minute to reach the designed maximum temperature 3000C. The dimension of furnace is 800 mm diameter and 2000 mm length is isolated use rockwool isolator and coated by aluminium. For the designed maximum temperature the surface temperature is 78 0c. Assemble of specimens is arranged horizontally in the furnace. The failure criteria will be defined based on the behaviour of the load circuit in each line of cable specimens

  15. Instantaneous response spectrum in seismic testing of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Morrone, A.

    1977-01-01

    Seismic response spectra, as used in seismic analyses, give the maximum responses of single degree of freedom oscillators without consideration of the different time in the seismic time history at which each of the maximum responses occur. For response spectrum seismic analysis, the use of time-independent maximum responses is appropriate. The time dependece is considered in a statistical manner, for multi-degree of freedom systems, usually by combining the modal effects by the square root of the sum of the squares. For seismic testing of electrical equipment. IEEE Std. 344-1975 makes use of the response spectrum to define the input motion of the shake table. One of the basic requirements is that the test response spectrum (TRS) that is, the response spectrum produced by the shake table motion, should envelop the required response spectrum (RRS) calculated from the building analysis at the support point of the equipment being tested. This paper presents the concept of instantaneous response spectrum (IRS) as the response of single degree of freedom oscillators at a particular time. It demonstrates that a shake table random motion whose standard TRS envelops the RRS does not necessarily satisfy the enveloping requirement instantaneously. (Auth.)

  16. Array-Based Ultrawideband through-Wall Radar: Prediction and Assessment of Real Radar Abilities

    Directory of Open Access Journals (Sweden)

    Nadia Maaref

    2013-01-01

    Full Text Available This paper deals with a new through-the-wall (TTW radar demonstrator for the detection and the localisation of people in a room (in a noncooperative way with the radar situated outside but in the vicinity of the first wall. After modelling the propagation through various walls and quantifying the backscattering by the human body, an analysis of the technical considerations which aims at defining the radar design is presented. Finally, an ultrawideband (UWB frequency modulated continuous wave (FMCW radar is proposed, designed, and implemented. Some representative trials show that this radar is able to localise and track moving people behind a wall in real time.

  17. Development of automatic Ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Kim, Kor R.; Kim, Jae H.; Lee, Jae C.

    1996-06-01

    The selected weld areas of a reactor pressure vessel and adjacent piping are examined by the remote mechanized ultrasonic testing (MUT) equipment. Since the MUT equipment was purchased from southwest Research Institute (SwRI) in April 1985, 15 inservice inspections and 5 preservice inspections are performed with this MUT equipment. However due to the old age of the equipment and frequent movements to plant sites, the reliability of examination was recently decreased rapidly and it is very difficult to keep spare parts. In order to resolve these problems and to meet the strong request from plant sites, we intend to develop a new 3-axis control system including hardware and software. With this control system, we expect more efficient and reliable examination of the nozzle to shell weld areas, which is specified in ASME Code Section XI. The new 3-axis control system hardware and software were designed and development of our own control system, the advanced technologies of computer control mechanism were established and examination reliability of the nozzle to shell weld area was improved. With the development of our 3-axis control system for PaR ISI-2 computer control system, the reliability of nozzle to shell weld area examination has been improved. The established technologies from the development and detailed analysis of existing control system, are expected to be applied to the similar control systems in nuclear power plants. (author). 12 refs., 4 tabs., 33 figs

  18. Development of automatic Ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kor R.; Kim, Jae H.; Lee, Jae C.

    1996-06-01

    The selected weld areas of a reactor pressure vessel and adjacent piping are examined by the remote mechanized ultrasonic testing (MUT) equipment. Since the MUT equipment was purchased from southwest Research Institute (SwRI) in April 1985, 15 inservice inspections and 5 preservice inspections are performed with this MUT equipment. However due to the old age of the equipment and frequent movements to plant sites, the reliability of examination was recently decreased rapidly and it is very difficult to keep spare parts. In order to resolve these problems and to meet the strong request from plant sites, we intend to develop a new 3-axis control system including hardware and software. With this control system, we expect more efficient and reliable examination of the nozzle to shell weld areas, which is specified in ASME Code Section XI. The new 3-axis control system hardware and software were designed and development of our own control system, the advanced technologies of computer control mechanism were established and examination reliability of the nozzle to shell weld area was improved. With the development of our 3-axis control system for PaR ISI-2 computer control system, the reliability of nozzle to shell weld area examination has been improved. The established technologies from the development and detailed analysis of existing control system, are expected to be applied to the similar control systems in nuclear power plants. (author). 12 refs., 4 tabs., 33 figs.

  19. Micropower radar systems for law enforcement technology

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, S.G.; Mast, J.; Brase, J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  20. An assimilation test of Doppler radar reflectivity and radial velocity from different height layers in improving the WRF rainfall forecasts

    Science.gov (United States)

    Tian, Jiyang; Liu, Jia; Yan, Denghua; Li, Chuanzhe; Chu, Zhigang; Yu, Fuliang

    2017-12-01

    Hydrological forecasts require high-resolution and accurate rainfall information, which is one of the most difficult variables to be captured by the mesoscale Numerical Weather Prediction (NWP) systems. Radar data assimilation is an effective method for improving rainfall forecasts by correcting the initial and lateral boundary conditions of the NWP system. The aim of this study is to explore an efficient way of utilizing the Doppler radar observations for data assimilation, which is implemented by exploring the effect of assimilating radar data from different height layers on the improvement of the NWP rainfall accuracy. The Weather Research and Forecasting (WRF) model is used for numerical rainfall forecast in the Zijingguan catchment located in the ;Jing-Jin-Ji; (Beijing-Tianjin-Hebei) Region of Northern China, and the three-dimensional variational data assimilation (3-DVar) technique is adopted to assimilate the radar data. Radar reflectivity and radial velocity are assimilated separately and jointly. Each type of radar data is divided into seven data sets according to the height layers: (1) 2000 m, and (7) all layers. The results show that radar reflectivity assimilation leads to better results than radial velocity assimilation. The accuracy of the forecasted rainfall deteriorates with the rise of the height of the assimilated radar reflectivity. The same results can be found when assimilating radar reflectivity and radial velocity at the same time. The conclusions of this study provide a reference for efficient assimilation of the radar data in improving the NWP rainfall products.

  1. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Koch, Wolfgang

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Waveform diversity and cognitive radar and Target tracking and data fusion.

  2. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    OpenAIRE

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the ot...

  3. The experimental results and analysis of a borehole radar prototype

    International Nuclear Information System (INIS)

    Liu, Sixin; Wu, Junjun; Dong, Hang; Fu, Lei; Wang, Fei

    2012-01-01

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations. (paper)

  4. Development of a model and test equipment for cold flow tests at 500 atm of small nuclear light bulb configurations

    Science.gov (United States)

    Jaminet, J. F.

    1972-01-01

    A model and test equipment were developed and cold-flow-tested at greater than 500 atm in preparation for future high-pressure rf plasma experiments and in-reactor tests with small nuclear light bulb configurations. With minor exceptions, the model chamber is similar in design and dimensions to a proposed in-reactor geometry for tests with fissioning uranium plasmas in the nuclear furnace. The model and the equipment were designed for use with the UARL 1.2-MW rf induction heater in tests with rf plasmas at pressures up to 500 atm. A series of cold-flow tests of the model was then conducted at pressures up to about 510 atm. At 504 atm, the flow rates of argon and cooling water were 3.35 liter/sec (STP) and 26 gal/min, respectively. It was demonstrated that the model is capable of being operated for extended periods at the 500-atm pressure level and is, therefore, ready for use in initial high-pressure rf plasma experiments.

  5. Radar remote sensing in biology

    Science.gov (United States)

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  6. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  7. Through the looking glass: Applications of ground-penetrating radar in archaeology

    Science.gov (United States)

    Stamos, Antonia

    The focus of this dissertation is to present the results of four years' worth of geophysical surveying at four major archaeological sites in Greece and the benefits to the archaeological community. The ground penetrating radar offers an inexpensive, non-destructive solution to the problem of deciding how much of a site is worth excavating and which areas would yield the most promising results. An introduction to the ground penetrating radar, or GPR, the equipment necessary to conduct a geophysical survey in the field, and the methods of data collection and subsequent data processing are all addressed. The benefits to the archeological community are many, and future excavations will incorporate such an important tool for a greater understanding of the site. The history of GPR work in the archaeological field has grown at an astounding rate from its beginnings as a simple tool for petroleum and mining services in the beginning of the twentieth century. By mid-century, the GPR was first applied to archaeological sites rather than its common use by utility companies in locating pipes, cables, tunnels, and shafts. Although the preliminary surveys were little more than a search to locate buried walls, the success of these initial surveys paved the ground for future surveys at other archaeological sites, many testing the radar's efficacy with a myriad of soil conditions and properties. The four sites in which geophysical surveys with a ground penetrating radar were conducted are Azorias on the island of Crete, Kolonna on the island of Aegina, Mochlos Island and Coastal Mochlos on the island of Crete, and Mycenae in the Peloponnese on mainland Greece. These case studies are first presented in terms of their geographical location, their mythology and etymology, where applicable, along with a brief history of excavation and occupation of the site. Additional survey methods were used at Mycenae, including aerial photography and ERDAS Imagine, a silo locating program now

  8. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  9. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume III: Test protocol

    Energy Technology Data Exchange (ETDEWEB)

    Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Inc., Toronto, Ontario (Canada)

    1996-04-01

    The American Society of Mechanical Engineers' [ASME] Center for Research and Technology Development [CRTD] has been awarded a subcontract by the National Renewable Energy Laboratory [NREL] to demonstrate the technical performance and viability of flue gas temperature control in combination with dry acid gas reagent and activated carbon injection at an existing electrostatic precipitator [ESP] equipped municipal waste combustor [MWC]. The objective of this proof-of-concept demonstration test is to economically and reliably meet 40 CFR 60 Subpart Cb Emissions Guidelines for MWC's at existing ESP equipped facilities. The effort is being directed by a Subcommittee of tile ASME Research Committee on Industrial and Municipal Wastes [RCIMW] chaired by Dave Hoecke. Mr. Greg Barthold of ASME/CRTD is the Project Manager. ASME/CRTD contracted with Rigo & Rigo Associates, Inc. in cooperation with A.J. Chandler & Associates, Ltd. to be the Principal Investigator for the project and manage the day-t o-day aspects of the program, conduct the testing reduce and interpret the data and prepare the report. Testing will be conducted at the 2 by 210 TPD, ESP equipped MWC at the Davis County Resource Recovery Facility in Layton, Utah. The test plan calls for duplicate metals (Cd, Pb and Hg), dioxin and acid gas runs.

  10. Compressive Detection Using Sub-Nyquist Radars for Sparse Signals

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2016-01-01

    Full Text Available This paper investigates the compression detection problem using sub-Nyquist radars, which is well suited to the scenario of high bandwidths in real-time processing because it would significantly reduce the computational burden and save power consumption and computation time. A compressive generalized likelihood ratio test (GLRT detector for sparse signals is proposed for sub-Nyquist radars without ever reconstructing the signal involved. The performance of the compressive GLRT detector is analyzed and the theoretical bounds are presented. The compressive GLRT detection performance of sub-Nyquist radars is also compared to the traditional GLRT detection performance of conventional radars, which employ traditional analog-to-digital conversion (ADC at Nyquist sampling rates. Simulation results demonstrate that the former can perform almost as well as the latter with a very small fraction of the number of measurements required by traditional detection in relatively high signal-to-noise ratio (SNR cases.

  11. 78 FR 63410 - Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment...

    Science.gov (United States)

    2013-10-24

    ... test procedures for direct heating equipment and pool heaters established under the Energy Policy and... U.S.C. 6293(e)(2)) The current energy conservation standards for direct heating equipment and pool... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2013-BT-TP-0004] RIN 1904-AC94 Energy...

  12. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  13. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  14. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  15. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  16. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  17. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    Science.gov (United States)

    Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  18. The Tanzania experience: clinical laboratory testing harmonization and equipment standardization at different levels of a tiered health laboratory system.

    Science.gov (United States)

    Massambu, Charles; Mwangi, Christina

    2009-06-01

    The rapid scale-up of the care and treatment programs in Tanzania during the preceding 4 years has greatly increased the demand for quality laboratory services for diagnosis of HIV and monitoring patients during antiretroviral therapy. Laboratory services were not in a position to cope with this demand owing to poor infrastructure, lack of human resources, erratic and/or lack of reagent supply and commodities, and slow manual technologies. With the limited human resources in the laboratory and the need for scaling up the care and treatment program, it became necessary to install automated equipment and train personnel for the increased volume of testing and new tests across all laboratory levels. With the numerous partners procuring equipment, the possibility of a multitude of equipment platforms with attendant challenges for procurement of reagents, maintenance of equipment, and quality assurance arose. Tanzania, therefore, had to harmonize laboratory tests and standardize laboratory equipment at different levels of the laboratory network. The process of harmonization of tests and standardization of equipment included assessment of laboratories, review of guidelines, development of a national laboratory operational plan, and stakeholder advocacy. This document outlines this process.

  19. Technical manual: operation and equipment instructions for in situ impulse test

    International Nuclear Information System (INIS)

    1979-11-01

    This manual describes the test equipment and procedures for a new field test which determines the shear modulus of a soil deposit at strain levels equivalent to those experienced during actual earthquakes. Results from this test are typically used as input parameters to response analyses for evaluating local soil effects during earthquake shaking. The test employs a cross-hole wave propagation procedure with velocity transducers located in closely spaced adjacent borings. Clear, consistent, and repeatable data in all types of soil and a method of data reduction different from conventional geophysical first arrival techniques are unique aspects of this new test. In addition to describing the principles of the test and data reduction procedures, major discussions of the field procedures are also included. Detailed drilling and testing information is provided both for planning and executing a test program

  20. Advances in the testing and evaluation of airborne radar through realtime simulation of synthetic clutter

    CSIR Research Space (South Africa)

    Strydom, JJ

    2011-11-01

    Full Text Available and Evaluation of Airborne Radar through Realtime Simulation of Synthetic Clutter Presenter: Jurgen Strydom Systems Engineer & Signal Analyst Experimental EW Systems, CSIR Email: jjstrydom@csir.co.za Co-authors: Jacques Cilliers, CSIR 48th AOC Conference... environment simulation domain ? CSIR 2011 Slide 2 ? Technological advancements and challenges in the simulation of clutter for an airborne radar platform is discussed Where we are from: South Africa ? CSIR 2011 Slide 3 Health Natural Environment...

  1. Survey of Ultra-wideband Radar

    Science.gov (United States)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  2. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    Science.gov (United States)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    , occupy minimum cabin space and maximize scan coverage, a pod-based configuration was adopted. Currently, the radar system is capable of collecting observations between zenith and nadir in a fixed scanning mode. Measurements are corrected for aircraft attitude changes. The near-nadir and zenith pointing observations minimize the cross-track Doppler contamination in the radial velocity measurements. An extensive engineering monitoring mechanism is built into the recording system status such as temperature, pressure, various electronic components' status and receiver characteristics. Status parameters are used for real-time system stability estimates and correcting radar system parameters. The pod based radar system is mounted on a modified Gulfstream V aircraft, which is operated and maintained by the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation (NSF). The aircraft is called the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) (Laursen et al., 2006). It is also instrumented with high spectral resolution lidar (HSRL) and an array of in situ and remote sensors for atmospheric research. As part of the instrument suite for HIAPER, the NSF funded the development of the HIAPER Cloud Radar (HCR). The HCR is an airborne, millimeter-wavelength, dual-polarization, Doppler radar that serves the atmospheric science community by providing cloud remote sensing capabilities for the NSF/NCAR G-V (HIAPER) aircraft. An optimal radar configuration that is capable of maximizing the accuracy of both qualitative and quantitative estimated cloud microphysical and dynamical properties is the most attractive option to the research community. The Technical specifications of cloud radar are optimized for realizing the desired scientific performance for the pod-based configuration. The radar was both ground and flight tested and preliminary measurements of Doppler and polarization measurements were collected. HCR

  3. German Radar Observation Shuttle Experiment (ROSE)

    Science.gov (United States)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  4. Meteor detection on ST (MST) radars

    International Nuclear Information System (INIS)

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  5. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  6. Research cooperation of the development of laser radar for environmental measurements; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development of the laser radar for measuring the air pollution in urban areas and the environmental information network have been conducted through the cooperation with Indonesian researchers. A measurement system suitable to actual situation of Indonesia has been constructed. In FY 1996, some works have been conducted as in the final fiscal year. To set the laser radar for environmental measurements and to make a plan of measurement research, conditions of air pollution in Indonesia and setting places of systems have been investigated. Opinions for the cooperation research have been exchanged with Indonesian researchers. Actual trends of the environmental measurements technology using laser radar have been surveyed. Indonesian researchers have been invited to learn operation and data processing of the system. One unit of MIE diffusion laser radar system has been designed and fabricated, and an additional data processing program has been made. The system has been delivered to Jakarta and installed. After the adjustment, performance tests have been conducted to complete the construction of the system. 3 refs., 72 figs., 10 tabs.

  7. Laboratory evaluation of the Design Analysis Associates DAA H-3613i radar water-level sensor—Results of temperature, distance, and SDI-12 tests

    Science.gov (United States)

    Carnley, Mark V.

    2016-09-30

    The Design Analysis Associates (DAA) DAA H-3613i radar water-level sensor (DAA H-3613i), manufactured by Xylem Incorporated, was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to manufacturer’s accuracy specifications for measuring a distance throughout the sensor’s operating temperature range, for measuring distances from 3 to 15 feet at ambient temperatures, and for compliance with the SDI-12 serial-to-digital interface at 1200-baud communication standard. The DAA H-3613i is a noncontact water-level sensor that uses pulsed radar to measure the distance between the radar and the water surface from 0.75 to 131 feet over a temperature range of −40 to 60 degrees Celsius (°C). Manufacturer accuracy specifications that were evaluated, the test procedures that followed, and the results obtained are described in this report. The sensor’s accuracy specification of ± 0.01 feet (± 3 millimeters) meets USGS requirements for a primary water-stage sensor used in the operation of a streamgage. The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during temperature testing at a distance of 8 feet from the target over its temperature-compensated operating range of −40 to 60 °C, except at 60 °C. At 60 °C, about half the measurements exceeded the manufacturer’s accuracy specification by not more than 0.005 feet.The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during distance-accuracy testing at the tested distances from 3 to 15 feet above the water surface at the HIF.

  8. Establishment of nuclear equipment qualification system

    International Nuclear Information System (INIS)

    Joo, Po Kook; Lim, Nam Jin; Lee, Young Gun

    2003-04-01

    This study is carried out by KEARI(Korea Atomic Energy Research Institute) as the lead organization in cooperation with KIMM(Korea Institute of Machinery and Materials), KTL(Korea Testing Laboratory) and KRISS(Korea Research Institute of Standards and Science) to construct a basis of efficient management of nuclear equipment qualification business by expanding test equipment of each of participating organization, and developing qualification technologies. As for KIMM, control system of large scale shaker was replaced with advanced system, and LOCA(Loss of Coolant Accident) test facility was installed. KTL is now capable of conducting seismic tests of nuclear I and C as a result of installation of seismic test equipment during the first two project years. KRISS participated in the Project with a view to have large scale EMI test equipment and related technologies. In parallel with expansion of test equipment, a industrial-educational-research cooperation committee, as an intermediate step toward integrated equipment qualification system to maximize the usage of test equipment, was established and cooperation methods were investigated. As a result, Korea Nuclear Equipment Qualification Association, an corporate juridical person, was established. Research on development of thermal and radiation aging test technology of nuclear materials was carried out by Hanyang University and SECO(Saehan Engineering and Qualification Co., Ltd.). Integrated Equipment Qualification Database was developed which contains material test data, equipment qualification data and other EQ related informations. Standard qualification procedures were developed in order for test laboratories and manufacturers to establish design requirements and to efficiently perform tests

  9. A study of different fabrics to increase radar cross section of humans.

    Science.gov (United States)

    Ödman, Torbjörn; Welinder, Jan; Andersson, Nils; Otterskog, Magnus; Lindén, Maria; Ödman, Natalia; Larsson, Christer

    2015-01-01

    This purpose of the study was to increase the visibility on radar for unprotected pedestrians with the aid of conducting fabric. The experiment comprised measurements of four types of fabric to determine the radio frequency properties, such as radar cross section (RCS) for the vehicle radar frequency 77 GHz and transmission (shielding) in the frequency range 3-18 GHz. Two different thicknesses of polypyrrole (PPy) nonvowen fabric were tested and one thickness for 30 % and 40 % stainless steel fabrics respectively. A jacket with the thinner nonvowen material and one with 40 % steel were tested and compared to an unmodified jacket in the RCS measurement. The measurement showed an increase in RCS of 4 dB for the jacket with the 40 % steel lining compared to the unmodified jacket. The transmission measurement was aimed at determining the fabric with the highest transmission of an incoming radio wave. The 30 % steel fabric and the two thicknesses of the nonvowen fabrics were tested. One practical application is for example the use of radar reflective material in search and rescue (SAR) clothes. The study showed that the 30 % steel fabric was the best candidate for further RCS measurements.

  10. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  11. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study

    Science.gov (United States)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos

    2015-04-01

    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and

  12. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  13. Cytogenetic monitoring of personnel occupationally exposed to microwave radiation of GEM radar

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, Vera; Gajski, Goran; Brumen, Vlatka

    2008-01-01

    In the present study we analyzed and followed-up on the DNA damaging effects of microwave radiation of GEM radar equipment within microwave field of 10 μW/cm 2 to 10 mW/cm 2 in personnel occupationally exposed to frequency range of 1.5 GHz to 10.9 GHz. The single cell gel electrophoresis (SCGE)/comet assay as a tool for the bio monitoring of individuals accidentally, environmentally or occupationally exposed to physical or chemical agents was used to evaluate possible genotoxic effect on peripheral human blood lymphocytes. The comet assay is a method that allows efficient determination of single strand breaks (SSB) and double-strand breaks (DSB), as well as alkali-labile sites in the DNA of single cells. The comet assay was carried out under alkaline conditions. We measured the baseline comet assay effect in whole blood samples. Parameter of the comet assay was studied in workers occupationally exposed to microwave radiation of GEM radar and in corresponding unexposed control subjects. It was found that in the subjects who were occupationally exposed to microwave radiation, the levels of DNA damage increased compare to control group and showed interindividual variations. As a measure of DNA damage tail length was used, calculated from the centre of the head and presented in micrometers (μm). Mean value of exposed group was 13.54±1.44 as opposed to control mean value that was 13.15±1.39. Differences between mean tail lengths were statistically significant (P<0.05, ANOVA). The results of this study indicate that individuals occupationally exposed to microwave frequency of GEM radar equipment may experience an increased genotoxic risk, emphasizing the importance of individual bio monitoring, limiting exposure and radiation safety programs. (author)

  14. Imaging of concrete specimens using inverse synthetic aperture radar

    International Nuclear Information System (INIS)

    Rhim, Hong C.; Buyukozturk, Oral

    2000-01-01

    Radar Measurement results of laboratory size concrete specimens are presented in this paper. The purpose of this research work is to study various aspects of the radar method in an effort to develop an improved radar system for nondestructive testing of concrete structures. The radar system used for the study is an Inverse Synthetic Aperture Radar (ISAR), which is capable of transmitting microwaves at three different frequency ranges of 2-3.4, 3.4-5.8, and 8-12 GHz. Radar measurement setup is such that the radar is locates 14.4 m away from a concrete target to satisfy a far-field criterion. The concrete target is rotated for 20 degrees during the measurements for the generation of two-dimensional (cross-range) imagery. Concrete targets used for the measurements have the dimensions of 305 mm (width)x305 mm (height)x92 mm (thickness) with different inside configurations. Comparisons are made for dry and wet specimens, specimens with and without inclusions. Each specimen is made to model various situations that a concrete structure can have in reality. Results show that center frequency, frequency bandwidth, and polarization of the incident wave have different effects on identifying the thickness or inclusions inside concrete specimens. Results also suggest that a certain combination of measurement parameters is suitable for a specific application area. Thus, measurement parameters can be optimized for a specific problem. The findings are presented and discussed in details in the paper. Signal processing schemes implemented for imaging of the specimens are also discussed

  15. Effects upon health of occupational exposure to microwave radiation (radar)

    International Nuclear Information System (INIS)

    Robinette, C.D.; Silverman, C.; Jablon, S.

    1980-01-01

    The effects of occupational experience with microwave radiation (radar) on the health of US enlisted Naval personnel were studied in cohorts of approximately 20,000 men with maximum opportunity for exposure (electronic equipment repair) and 20,000 with minimum potential for exposure (equipment operation) who served during the Korean War period. Potential exposure was assessed in terms of occupational duties, length of time in occupation and power of equipment at the time of exposure. Actual exposure to members of each cohort could not be established. Mortality by cause of death, hospitalization during military service, later hospitalization in Veterans Administration (VA) facilities, and VA disability compensation were the health indexes studied, largely through the use of automated record systems. No adverse effects were detected in these indexes that could be attributed to potential microwave radiation exposures during the period 1950-1954. Functional and behavioral changes and ill-defined conditions, such as have been reported as microwave effects, could not be investigated in this study but subgroups of the living study population can be identified for expanded follow-up

  16. The qualification requirements for personnel carry out the testing for the pressure equipment materials

    International Nuclear Information System (INIS)

    Wojas, M.; Walczak, M.

    2006-01-01

    The article contains information about qualification requirements for personnel carry out the destructive and non-destructive testing for the pressure equipment materials based on the Directive 97/23/CE(PED). Competence laboratory carry out the testing. The responsibility lies with producer / employer. The producer / employer could elaborate the written practice procedure for qualification and certification testing personnel. (authors)

  17. Case studies of slope stability radar used in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D. [GroundProbe Pty Ltd., South Brisbane, Qld. (Australia)

    2005-07-01

    This paper presents case studies about how the Slope Stability Radar (SSR) system provided adequate warning to safeguard people and equipment prior to highwall and low wall failure at two Australian coal mines. At Drayton mine, the SSR was able to provide the mine with sufficient warning to move the shovel and trucks away from the highwall, while personnel safely watched 50,000 tonnes of bulk material coming down from the wall. At Mt Owen mine, the SSR alarm allowed the mine to evacuate equipment and personnel four hours prior to a 30,000,000 tonne low wall failure. These two case studies demonstrate how the SSR system was able to continuously monitor the stability of these critical slopes, enabling greater mine productivity whilst maintaining the highest quality of safety. 2 refs., 7 figs., 1 tab.

  18. Morphologie radar de fonds marins Radar Morphology of Some Sea Floors

    Directory of Open Access Journals (Sweden)

    Wadsworth A.

    2006-11-01

    Full Text Available Les radars latéraux sont des instruments de télédétection, fournissant des images de la surface terrestre survolée par pratiquement tout temps, c'est-à-dire de jour ou de nuit, par temps clair ou à travers de la brume, du brouillard, des nuages ou de la pluie. Dans le cadre de l'utilisation de ces instruments pour l'acquisition de données en mer, afin de quantifier les vagues ou la houle, des visualisations annexes, involontaires à l'origine, ont été réalisées. C'est le cas, par exemple, de certains fonds marins, que l'on peut voirlorsque quelques éléments opérationnels sont bien choisis. De plus, une certaine idée de leur morphologie peut être atteinte. Divers exemples sont présentés dans le cas de faibles fonds. Une approche des causes de cette visualisation est proposée, les grandes limites en sont fixées. Side-looking radars are remote-sensing instruments providing images of the ground surface overflown in almost all weather, i. e. day or night, with clear weather or through mist, fog, clouds or rain. These equipments, previously used to quantify sea waves and swell produced, in sonie cases, a noise which was later understood as being a signal, an expression of sea bottom features. This is the case, for example, for sonie sea floors which can be seenwhen a few operational elements have been carefully chosen. Likewise, some idea of the morphology of sea floors can be obtained. This article gives different examples for shallow depths. An approach to the causes of this visualization is proposed, and the major limitations are determined.

  19. Design, Performance and Optimization for Multimodal Radar Operation

    Directory of Open Access Journals (Sweden)

    Surendra S. Bhat

    2012-09-01

    Full Text Available This paper describes the underlying methodology behind an adaptive multimodal radar sensor that is capable of progressively optimizing its range resolution depending upon the target scattering features. It consists of a test-bed that enables the generation of linear frequency modulated waveforms of various bandwidths. This paper discusses a theoretical approach to optimizing the bandwidth used by the multimodal radar. It also discusses the various experimental results obtained from measurement. The resolution predicted from theory agrees quite well with that obtained from experiments for different target arrangements.

  20. Handling and disposal of SP-100 ground test nuclear fuel and equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Hodgson, R.D.

    1990-05-01

    The post SP-100 reactor testing period will focus on defueling the reactor, packaging the various radioactive waste forms, and shipping this material to the appropriate locations. Remote-handling techniques will be developed to defuel the reactor. Packaging the spent fuel and activated reactor components is a challenge in itself. This paper presents an overview of the strategy, methods, and equipment that will be used during the closeout phase of nuclear testing

  1. Handling and disposal of SP-100 ground test nuclear fuel and equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Hodgson, R.D.

    1991-01-01

    The post SP-100 reactor testing period will focus on defueling the reactor, packaging the various radiactive waste forms, and shipping this material to the appropriate locations. Remote-handling techniques will be developed to defuel the reactor. Packaging the spent fuel and activated reactor components is a challenge in itself. This paper presents an overview of the strategy, methods, and equipment that will be used during the closeout phase of nuclear testing

  2. The use of radar for bathymetry assessment

    OpenAIRE

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered bathymetric data. The paper reviews the concepts of bathymetry assessment by radar, the radar imaging mechanism, and the possibilities and limitations of the use of radar data in rapid assessment.

  3. Results from the University of Calgary environmental geophysics test range

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, K; Lawton, D.C.; Juigalli, J; Parry, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The Spy Hill Research Farm, operated by the University of Calgary as a test range site where geophysical equipment and methods related to environmental monitoring can be operated under controlled conditions, was described. The site is used by students in the geophysics courses offered at the University, but it is also intended to be available to other users for equipment tests. The site is underlain by glacial gravels and clays which reach thicknesses in excess of 30 m. Surveys of the site have been completed with the following geophysical systems: Geonics EM-31 and EM-34; Apex Max-Min; Huntec Mk4 IP with Phoenix IP-T1 transmitter; Geometrics Proton Magnetometer; McPhar vertical field Fluxgate magnetometer; Androtex TDR6 IP with Phoenix IP-T1 transmitter; Geometrics 12 channel refraction seismic system; and Pulse Echo Ground Penetrating Radar. The site has proved to be well suited to serve as a test range. The addition of yet more features to the site is being planned.

  4. SpaceWire: IP, Components, Development Support and Test Equipment

    Science.gov (United States)

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  5. The role of a certified calibration laboratory in a station's measuring and test equipment calibration, repair, and documentation program

    International Nuclear Information System (INIS)

    Ebenstreit, K.; MacIntosh, N.

    1995-01-01

    This paper outlines the role of a Certified Calibration Laboratory in- ensuring that the requirements of Measuring and Test Equipment calibration, identification, and traceability are met and documented. The Nuclear environment is one which is subject to influences from numerous 'quality agents'. One of the fields which comes under the scrutiny of the quality agents is that of equipment calibration and repair (both field components and M and TE). There is a responsibility to produce a superior product for the Ontario Consumer. The maintenance and calibration of Station Systems and their components have a direct impact on this output. The Measuring and Test Equipment element in each of these needs can be addressed by having a defined group of Maintenance Staff to execute a Measuring and Test Equipment Program which meets specific parameters. (author)

  6. Characterization of hydrometeors in Sahelian convective systems with an X-band radar and comparison with in situ measurements. Part I : Sensitivity of polarimetric radar particle identification retrieval and case study evaluation

    OpenAIRE

    Cazenave, Frédéric; Gosset, Marielle; Kacou, M.; Alcoba, M.; Fontaine, E.; Duroure, C.; Dolan, B.

    2016-01-01

    The particle identification scheme developed by Dolan and Rutledge for X-band polarimetric radar is tested for the first time in Africa and compared with in situ measurements. The data were acquired during the Megha-Tropiques mission algorithm-validation campaign that occurred in Niger in 2010. The radar classification is compared with the in situ observations gathered by an instrumented aircraft for the 13 August 2010 squall-line case. An original approach has been developed for the radar-in...

  7. Interception of LPI radar signals

    Science.gov (United States)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  8. A blind test of nondestructive underground void detection by ground penetrating radar (GPR)

    Science.gov (United States)

    Lai, Wallace W. L.; Chang, Ray K. W.; Sham, Janet F. C.

    2018-02-01

    Blind test/experiment is widely adopted in various scientific disciplines like medicine drug testing/clinical trials/psychology, but not popular in nondestructive testing and evaluation (NDTE) nor near-surface geophysics (NSG). This paper introduces a blind test of nondestructive underground void detection in highway/pavement using ground penetrating radar (GPR). Purpose of which is to help the Highways Department (HyD) of the Hong Kong Government to evaluate the feasibility of large-scale and nationwide application, and examine the ability of appropriate service providers to carry out such works. In the past failure case of such NDTE/NSG based on lowest bid price, it is not easy to know which part(s) in SWIMS (S - service provider, i.e. people; W - work procedure; I - instrumentation; M - materials in the complex underground; S - specifications by client) fails, and how it/they fail(s). This work attempts to carry out the blind test by burying fit balls (as voids) under a site with reinforced concrete road and paving block by PolyU team A. The blind test about the void centroid, spread and cover depth was then carried out by PolyU team B without prior information given. Then with this baseline, a marking scheme, acceptance criteria and passing mark were set to test six local commercial service providers, determine their scores and evaluate the performance. A pass is a prerequisite of the award of a service contract of similar nature. In this first attempt of the blind test, results were not satisfactory and it is concluded that 'S-service provider' and 'W-work procedure' amongst SWIMS contributed to most part of the unsatisfactory performance.+

  9. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  10. Civil Engineering Applications of Ground Penetrating Radar in Finland

    Science.gov (United States)

    Pellinen, Terhi; Huuskonen-Snicker, Eeva; Olkkonen, Martta-Kaisa; Eskelinen, Pekka

    2014-05-01

    Ground penetrating radar (GPR) has been used in Finland since 1980's for civil engineering applications. First applications in this field were road surveys and dam inspections. Common GPR applications in road surveys include the thickness evaluation of the pavement, subgrade soil evaluation and evaluation of the soil moisture and frost susceptibility. Since the 1990's, GPR has been used in combination with other non-destructive testing (NDT) methods in road surveys. Recently, more GPR applications have been adopted, such as evaluating bridges, tunnels, railways and concrete elements. Nowadays, compared with other countries GPR is relatively widely used in Finland for road surveys. Quite many companies, universities and research centers in Finland have their own GPR equipment and are involved in the teaching and research of the GPR method. However, further research and promotion of the GPR techniques are still needed since GPR could be used more routinely. GPR has been used to evaluate the air void content of asphalt pavements for years. Air void content is an important quality measure of pavement condition for both the new and old asphalt pavements. The first Finnish guideline was released in 1999 for the method. Air void content is obtained from the GPR data by measuring the dielectric value as continuous record. To obtain air void content data, few pavement cores must be taken for calibration. Accuracy of the method is however questioned because there are other factors that affect the dielectric value of the asphalt layer, in addition to the air void content. Therefore, a research project is currently carried out at Aalto University in Finland. The overall objective is to investigate if the existing GPR technique used in Finland is accurate enough to be used as QC/QA tool in assessing the compaction of asphalt pavements. The project is funded by the Finnish Transport Agency. Further research interests at Aalto University include developing new microwave asphalt

  11. Human walking estimation with radar

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2003-01-01

    Radar can be used to observe humans that are obscured by objects such as walls. These humans cannot be visually observed. The radar measurements are used to animate an obscured human in virtual reality. This requires detailed information about the motion. The radar measurements give detailed

  12. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  13. Radar meteor rates and solar activity

    International Nuclear Information System (INIS)

    Prikryl, P.

    1983-01-01

    The short-term variation of diurnal radar meteor rates with solar activity represented by solar microwave flux Fsub(10.7), and sunspots relative number Rsub(z), is investigated. Applying the superposed-epoch analysis to the observational material of radar meteor rates from Christchurch (1960-61 and 1963-65), a decrease in the recorded radar rates is found during days of enhanced solar activity. No effect of geomagnetic activity similar to the one reported for the Swedish and Canadian radar meteor data was found by the author in the Christchurch data. A possible explanation of the absence of the geomagnetic effect on radar meteor rates from New Zealand due to a lower echo ceiling height of the Christchurch radar is suggested. The variation of the atmospheric parameters as a possible cause of the observed variation in radar meteor rates is also discussed. (author)

  14. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    Science.gov (United States)

    Trizna, D.; Hathaway, K.

    2007-05-01

    Two new radar systems have been developed for real-time measurement of near-shore processes, and results are presented for measurements of ocean wave spectra, near-shore sand bar structure, and ocean currents. The first is a non-coherent radar based on a modified version of the Sitex radar family, with a data acquisition system designed around an ISR digital receiver card. The card operates in a PC computer with inputs from a Sitex radar modified for extraction of analogue signals for digitization. Using a 9' antenna and 25 kW transmit power system, data were collected during 2007 at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC during winter and spring of 2007. The directional wave spectrum measurements made are based on using a sequence of 64 to 640 antenna rotations to form a snapshot series of radar images of propagating waves. A square window is extracted from each image, typically 64 x 64 pixels at 3-m resolution. Then ten sets of 64 windows are submitted to a three-dimensional Fast Fourier Transform process to generate radar image spectra in the frequency-wavenumber space. The relation between the radar image spectral intensity and wave spectral intensity derived from the FRF pressure gauge array was used for a test set of data, in order to establish a modulation transfer function (MTF) for each frequency component. For 640 rotations, 10 of such spectra are averaged for improved statistics. The wave spectrum so generated was compared for extended data sets beyond those used to establish the MTF, and those results are presented here. Some differences between the radar and pressure sensor data that are observed are found to be due to the influence of the wind field, as the radar echo image weakens for light winds. A model is developed to account for such an effect to improve the radar estimate of the directional wave spectrum. The radar ocean wave imagery is severely influenced only by extremely heavy rain-fall rates, so that

  15. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  16. A Parasitic Array Receiver for ISAR Imaging of Ship Targets Using a Coastal Radar

    Directory of Open Access Journals (Sweden)

    Fabrizio Santi

    2016-01-01

    Full Text Available The detection and identification of ship targets navigating in coastal areas are essential in order to prevent maritime accidents and to take countermeasures against illegal activities. Usually, coastal radar systems are employed for the detection of vessels, whereas noncooperative ship targets as well as ships not equipped with AIS transponders can be identified by means of dedicated active radar imaging system by means of ISAR processing. In this work, we define a parasitic array receiver for ISAR imaging purposes based on the signal transmitted by an opportunistic coastal radar over its successive scans. In order to obtain the proper cross-range resolution, the physical aperture provided by the array is combined with the synthetic aperture provided by the target motion. By properly designing the array of passive devices, the system is able to correctly observe the signal reflected from the ships over successive scans of the coastal radar. Specifically, the upper bounded interelement spacing provides a correct angular sampling accordingly to the Nyquist theorem and the lower bounded number of elements of the array ensures the continuity of the observation during multiple scans. An ad hoc focusing technique has been then proposed to provide the ISAR images of the ships. Simulated analysis proved the effectiveness of the proposed system to provide top-view images of ship targets suitable for ATR procedures.

  17. Classification and correction of the radar bright band with polarimetric radar

    Science.gov (United States)

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  18. Ground penetrating radar results at the Box Canyon Site - 1996 survey as part of infiltration test

    International Nuclear Information System (INIS)

    Peterson, J.E. Jr.; Williams, K.H.

    1997-08-01

    This data report presents a discussion of the borehole radar tomography experiment conducted at Box Canyon, Idaho. Discussion concentrates on the survey methodology, data acquisition procedures, and the resulting tomographic images and interpretations. The entire geophysics field effort for FY96 centered around the collection of the borehole radar data within the inclined boreholes R1, R2, R3, and R4 before, during, and after the ponded infiltration experiment. The well pairs R1-R2, R2-R4, and R3-R4 comprised the bulk of the field survey; however, additional data were collected between vertical boreholes within and around the infiltration basin. The intent of the inclined boreholes was to allow access beneath the infiltration basin and to enhance the ability of the radar method to image both vertical and horizontal features where flow may dominate. This data report will concentrate on the inclined borehole data and the resulting tomograms. The borehole radar method is one in which modified ground penetrating radar antennas are lowered into boreholes and high frequency electromagnetic signals are transmitted through subsurface material to a receiving antenna. The transmitted signals may be represented as multiple raypaths crossing through the zone of interest. If sufficient raypaths are recorded, a tomographic image may be obtained through computer processing. The data normally recorded are signal amplitude versus time. The information extracted from such data includes the following: (a) the transit time which depends on the wave velocity, (b) the amplitude which depends on the wave attenuation, the dispersion which indicates a change in velocity and attenuation with frequency

  19. Pipe Penetrating Radar: a New Tool for the Assessment of Critical Infrastructure

    Science.gov (United States)

    Ekes, C.; Neducz, B.

    2012-04-01

    This paper describes the development of Pipe Penetrating Radar (PPR), the underground in-pipe application of GPR, a non-destructive testing method that can detect defects and cavities within and outside mainline diameter (>18 in / 450mm) non-metallic (concrete, PVC, HDPE, etc.) underground pipes. The method uses two or more high frequency GPR antennae carried by a robot into underground pipes. The radar data is transmitted to the surface via fibre optic cable and is recorded together with the output from CCTV (and optionally sonar and laser). Proprietary software analyzes the data and pinpoints defects or cavities within and outside the pipe. Thus the testing can identify existing pipe and pipe bedding symptoms that can be addressed to prevent catastrophic failure due to sinkhole development and can provide useful information about the remaining service life of the pipe. The key innovative aspect is the unique ability to map pipe wall thickness and deterioration including cracks and voids outside the pipe, enabling accurate predictability of needed intervention or the timing of replacement. This reliable non-destructive testing method significantly impacts subsurface infrastructure condition based asset management by supplying previously unattainable measurable conditions. Keywords: pipe penetrating radar (PPR), ground penetrating radar (GPR), pipe inspection, concrete deterioration, municipal engineering

  20. Investigation of Weather Radar Quantitative Precipitation Estimation Methodologies in Complex Orography

    Directory of Open Access Journals (Sweden)

    Mario Montopoli

    2017-02-01

    Full Text Available Near surface quantitative precipitation estimation (QPE from weather radar measurements is an important task for feeding hydrological models, limiting the impact of severe rain events at the ground as well as aiding validation studies of satellite-based rain products. To date, several works have analyzed the performance of various QPE algorithms using actual and synthetic experiments, possibly trained by measurement of particle size distributions and electromagnetic models. Most of these studies support the use of dual polarization radar variables not only to ensure a good level of data quality but also as a direct input to rain estimation equations. One of the most important limiting factors in radar QPE accuracy is the vertical variability of particle size distribution, which affects all the acquired radar variables as well as estimated rain rates at different levels. This is particularly impactful in mountainous areas, where the sampled altitudes are likely several hundred meters above the surface. In this work, we analyze the impact of the vertical profile variations of rain precipitation on several dual polarization radar QPE algorithms when they are tested in a complex orography scenario. So far, in weather radar studies, more emphasis has been given to the extrapolation strategies that use the signature of the vertical profiles in terms of radar co-polar reflectivity. This may limit the use of the radar vertical profiles when dual polarization QPE algorithms are considered. In that case, all the radar variables used in the rain estimation process should be consistently extrapolated at the surface to try and maintain the correlations among them. To avoid facing such a complexity, especially with a view to operational implementation, we propose looking at the features of the vertical profile of rain (VPR, i.e., after performing the rain estimation. This procedure allows characterization of a single variable (i.e., rain when dealing with

  1. Radar Rainfall Bias Correction based on Deep Learning Approach

    Science.gov (United States)

    Song, Yang; Han, Dawei; Rico-Ramirez, Miguel A.

    2017-04-01

    Radar rainfall measurement errors can be considerably attributed to various sources including intricate synoptic regimes. Temperature, humidity and wind are typically acknowledged as critical meteorological factors in inducing the precipitation discrepancies aloft and on the ground. The conventional practices mainly use the radar-gauge or geostatistical techniques by direct weighted interpolation algorithms as bias correction schemes whereas rarely consider the atmospheric effects. This study aims to comprehensively quantify those meteorological elements' impacts on radar-gauge rainfall bias correction based on a deep learning approach. The deep learning approach employs deep convolutional neural networks to automatically extract three-dimensional meteorological features for target recognition based on high range resolution profiles. The complex nonlinear relationships between input and target variables can be implicitly detected by such a scheme, which is validated on the test dataset. The proposed bias correction scheme is expected to be a promising improvement in systematically minimizing the synthesized atmospheric effects on rainfall discrepancies between radar and rain gauges, which can be useful in many meteorological and hydrological applications (e.g., real-time flood forecasting) especially for regions with complex atmospheric conditions.

  2. A fast autofocus algorithm for synthetic aperture radar processing

    DEFF Research Database (Denmark)

    Dall, Jørgen

    1992-01-01

    High-resolution synthetic aperture radar (SAR) imaging requires the motion of the radar platform to be known very accurately. Otherwise, phase errors are induced in the processing of the raw SAR data, and bad focusing results. In particular, a constant error in the measured along-track velocity o...... of magnitude lower than that of other algorithms providing comparable accuracies is presented. The algorithm has been tested on data from the Danish Airborne SAR, and the performance is compared with that of the traditional map drift algorithm...

  3. 46 CFR 184.404 - Radars.

    Science.gov (United States)

    2010-10-01

    ... within one mile of land must be fitted with a FCC Type Accepted general marine radar system for surface... Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD...

  4. Compact U-Slotted Antenna for Broadband Radar Applications

    Directory of Open Access Journals (Sweden)

    S. Costanzo

    2013-01-01

    Full Text Available The original U-shaped patch antenna is properly modified in this work to provide a compact and broadband antenna configuration with reduced cross-polar effects, well suitable for modern radar applications. The proposed antenna layout is applied to design, realize, and test two different prototypes working at P-band and C-band, typically adopted for ground-penetrating radar. The experimental results successfully demonstrate a large operating bandwidth between 15% and 20%, a significant reduction of size (about half of the standard configuration, and a low cross-polarization level within the operating frequency range.

  5. Radar network communication through sensing of frequency hopping

    Science.gov (United States)

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  6. Sensor management in RADAR/IRST track fusion

    Science.gov (United States)

    Hu, Shi-qiang; Jing, Zhong-liang

    2004-07-01

    In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.

  7. Dispensing Equipment Testing with Mid-Level Ethanol/Gasoline Test Fluid: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, K.; Chapin, J. T.

    2010-11-01

    The National Renewable Energy Laboratory's (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy's (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

  8. ISTEF Laser Radar Program

    National Research Council Canada - National Science Library

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  9. Radar transmitter classification using non-stationary signal classifier

    CSIR Research Space (South Africa)

    Du Plessis, MC

    2009-07-01

    Full Text Available support vector machine which is applied to the radar pulse's time-frequency representation. The time-frequency representation is refined using particle swarm optimization to increase the classification accuracy. The classification accuracy is tested...

  10. Electrical equipment qualification

    International Nuclear Information System (INIS)

    Farmer, W.S.

    1983-01-01

    Electrical equipment qualification research programs being carried out by CEA, JAERI, and Sandia Laboratories are discussed. Objectives of the program are: (1) assessment of accident simulation methods for electrical equipment qualification testing; lower coarse (2) evaluation of equipment aging and accelerated aging methods; (3) determine radiation dose spectrum to electrical equipment and assess simulation methods for qualification; (4) identify inadequacies in electrical equipment qualification procedures and standards and potential failure modes; and (5) provide data for verifying and improving standards, rules and regulatory guides

  11. A simple biota removal algorithm for 35 GHz cloud radar measurements

    Science.gov (United States)

    Kalapureddy, Madhu Chandra R.; Sukanya, Patra; Das, Subrata K.; Deshpande, Sachin M.; Pandithurai, Govindan; Pazamany, Andrew L.; Ambuj K., Jha; Chakravarty, Kaustav; Kalekar, Prasad; Krishna Devisetty, Hari; Annam, Sreenivas

    2018-03-01

    Cloud radar reflectivity profiles can be an important measurement for the investigation of cloud vertical structure (CVS). However, extracting intended meteorological cloud content from the measurement often demands an effective technique or algorithm that can reduce error and observational uncertainties in the recorded data. In this work, a technique is proposed to identify and separate cloud and non-hydrometeor echoes using the radar Doppler spectral moments profile measurements. The point and volume target-based theoretical radar sensitivity curves are used for removing the receiver noise floor and identified radar echoes are scrutinized according to the signal decorrelation period. Here, it is hypothesized that cloud echoes are observed to be temporally more coherent and homogenous and have a longer correlation period than biota. That can be checked statistically using ˜ 4 s sliding mean and standard deviation value of reflectivity profiles. The above step helps in screen out clouds critically by filtering out the biota. The final important step strives for the retrieval of cloud height. The proposed algorithm potentially identifies cloud height solely through the systematic characterization of Z variability using the local atmospheric vertical structure knowledge besides to the theoretical, statistical and echo tracing tools. Thus, characterization of high-resolution cloud radar reflectivity profile measurements has been done with the theoretical echo sensitivity curves and observed echo statistics for the true cloud height tracking (TEST). TEST showed superior performance in screening out clouds and filtering out isolated insects. TEST constrained with polarimetric measurements was found to be more promising under high-density biota whereas TEST combined with linear depolarization ratio and spectral width perform potentially to filter out biota within the highly turbulent shallow cumulus clouds in the convective boundary layer (CBL). This TEST technique is

  12. Features of Ground Penetrating Radars for the exploration of planetary subsurface

    Science.gov (United States)

    Burghignoli, P.; Cereti, A.; Fiore, E.; Galli, A.; Pajewski, L.; Pettinelli, E.; Pisani, A.; Schettini, G.; Ticconi, F.

    2003-04-01

    Among the various applications of Surface or Ground Penetrating Radars (GPRs), the possibility of achieving useful information about the characterization of planetary soils represents a topic which has deserved particular interest in recent times [1]. The present work intends to analyze various critical aspects related to the GPR capability of properly investigating the subsurface structure, also emphasizing what kind of practical solutions seem to be more suitable to this purpose. Some basic aspects have to be considered, which are peculiar of this type of problem, e.g.: i) the poor information achievable up to now on both the composition and the stratigraphy of planet soils; ii) the typical bulk and weight limitations for instruments when used in onboard rovers for in-situ measurements. As regards the first aspect, additional knowledge should generally be required on the electromagnetic parameters (permittivity, permeability, and conductivity) of the upper subsoil layers in order to extract useful information from the GPR data. The use of different types of sensors, which can be integrated in an overall "sounding package" [1], is a useful way of characterizing more precisely such electromagnetic parameters. Consequently, GPR can primarily be used to get data on the unknown stratigraphy. The second aspect implies fundamental constraints in the design of GPR, involving the choice of the type of radar, the relevant electronic equipment for signal processing, the antenna design, etc. In addition to standard types of "pulsed" GPR, a specific study has been performed on "step-frequency" GPRs, which appear to be attractive due to their low-cost and simple electronic circuitry. As concerns the choice of the radiating elements, the most suitable configurations of GPR antennas have been investigated and compared in terms of dimensions and radiation parameters. New specific antenna configurations have been proposed, designed, and tested. Finally, numerical simulations have

  13. Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence

    Science.gov (United States)

    Boccippio, Dennis

    2003-01-01

    A cluster analysis technique is used to identify 16 "archetypal" vertical radar profile types from a large, globally representative sample of profiles from the TRMM Precipitation Radar. These include nine convective types (7 of these deep convective) and seven stratiform types (5 of these clearly glaciated). Radar profile classification provides an alternative to conventional deep convective storm metrics, such as 30 dBZ echo height, maximum reflectivity or VIL. As expected, the global frequency of occurrence of deep convective profile types matches satellite-observed total lightning production, including to very small scall local features. Each location's "mix" of profile types provides an objective description of the local convective spectrum, and in turn, is a first step in objectively classifying convective regimes. These classifiers are tested as inputs to a neural network which attempts to predict lightning occurrence based on radar-only storm observations, and performance is compared with networks using traditional radar metrics as inputs.

  14. Characterization of wetland, forest, and agricultural ecosystems in Belize with airborne radar (AIRSAR)

    Science.gov (United States)

    Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.

    1992-01-01

    The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.

  15. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  16. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  17. Material integrity verification radar

    International Nuclear Information System (INIS)

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  18. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  19. Miravalles Geothermal Project: Portable Well Flow Test Equipment and Procedures Manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    The well flow test program has been designed to facilitate the gathering of information, with portable test equipment, from various wells with regard to their capability of flow, the quality of steam produced at various back pressures, the composition and quantity of noncondensable gases flashed from the wells and the composition and quantity of solids in the well's liquid streams (brine). The test program includes procedures for obtaining the following basic flow data pertinent to the plant power cycle design: (1) Effluent steam and brine flows, pressures and temperatures; (2) Noncondensable and dissolved gas contents in steam and brine; (3) H{sub s}S content in gases formed; and (4) Solids content and chemical analysis of steam and brine.

  20. Evaluation of climatic vibration testing on plastic waterproof enclosure for electronic equipment using ANSYS[reg] workbench

    International Nuclear Information System (INIS)

    Aw, K.C.; Huang, W.D.J.; De Silva, M.W.R.P.

    2007-01-01

    Designing and testing of waterproof enclosure for electronic equipment involves significant amount of time and resources. This paper concentrates on electronic equipment used for maritime application. Typical waterproof test perform is based on the IEC 60529 standards and is insufficient to determine its reliability. Since, these enclosures were subjected to environmental stress such as heat and vibration and there is a need to understand how these affect the waterproof performance. Simulation using ANSYS workbench software was performed to comprehend the effect of various parameters of accelerated testing performed on these waterproof enclosures. Experiments were performed to examine the correlation with simulation results. The results confirmed that accelerated testing with random vibration at cold temperature causes greatest stress and causes degradation to adhesive bonds and hence affect the waterproof performance

  1. Pocket radar guide key facts, equations, and data

    CERN Document Server

    Curry, G Richard

    2010-01-01

    ThePocket Radar Guideis a concise collection of key radar facts and important radar data that provides you with necessary radar information when you are away from your office or references. It includes statements and comments on radar design, operation, and performance; equations describing the characteristics and performance of radar systems and their components; and tables with data on radar characteristics and key performance issues.It is intended to supplement other radar information sources by providing a pocket companion to refresh memory and provide details whenever you need them such a

  2. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  3. Companies hone in on radar-docking technology

    Science.gov (United States)

    Howell, Elizabeth

    2009-11-01

    As NASA prepares to retire the Space Shuttle next year, two private space firms have tested docking technology that could be used on the next generation of US spacecraft. In September, Canadian firm Neptec tested a new radar system on the Space Shuttle Discovery that allows spacecraft to dock more easily. Meanwhile, Space Exploration Technologies (SpaceX) based in California has revealed that it tested out a new proximity sensor, dubbed "Dragoneye", on an earlier shuttle mission in July.

  4. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  5. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  6. Application of ranging technique of radar level meter for draft survey

    Directory of Open Access Journals (Sweden)

    SHEN Yijun

    2017-12-01

    Full Text Available [Objectives] This paper aims to solve the problems of the high subjectivity and low accuracy and efficiency of draft surveying relying on human visual inspection.[Methods] Radar-level oil and liquid measurement technology products are widely used in the petrochemical industry. A device is developed that uses radar to survey the draft of a boat, designed with data series optimization formulae to ensure that the data results are true and correct. At the same time, a test is designed to prove the accuracy of the results.[Results] According to the conditions of the ship,the device is composed of a radar sensor, triangular bracket and display,and is put to use in the test.[Conclusions] With 15 vessels as the research objects,the comparison experiment shows a difference in range between 0.001-0.022 meters, with an average difference rate of 0.028%, which meets the requirements for ship draft survey accuracy.

  7. Earth Observing System (EOS)/ Advanced Microwave Sounding Unit-A (AMSU-A): Special Test Equipment. Software Requirements

    Science.gov (United States)

    Schwantje, Robert

    1995-01-01

    This document defines the functional, performance, and interface requirements for the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A) Special Test Equipment (STE) software used in the test and integration of the instruments.

  8. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  9. High resolution radar-rain gauge data merging for urban hydrology: current practice and beyond

    Science.gov (United States)

    Ochoa Rodriguez, Susana; Wang, Li-Pen; Bailey, Andy; Willems, Patrick; Onof, Christian

    2017-04-01

    In this work a thorough test is conducted of radar-rain gauge merging techniques at urban scales, under different climatological conditions and rain gauge density scenarios. The aim is to provide guidance regarding the suitability and application of merging methods at urban scales, which is lacking at present. The test is conducted based upon two pilot locations, i.e. the cities of Edinburgh (254 km^2) and Birmingham (431 km^2), for which a total of 96 and 84 tipping bucket rain gauges were respectively available, alongside radar QPEs, dense runoff records and urban drainage models. Three merging techniques, namely Mean Field Bias (MFB) adjustment, kriging with external (KED) and Bayesian (BAY) combination, were selected for testing on grounds of performance and common use. They were initially tested as they were originally formulated and as they are reportedly commonly applied using typically available radar and rain gauge data. Afterwards, they were tested in combination with two special treatments which were identified as having the potential to improve merging applicability for urban hydrology: (1) reduction of temporal sampling errors in radar QPEs through temporal interpolation and (2) singularity-based decomposition of radar QPEs prior to merging. These treatments ultimately aim at improving the consistency between radar and rain gauge records, which has been identified as the chief factor affecting merging performance and is particularly challenging at the fine spatial-temporal resolutions required for urban applications. The main findings of this study are the following: - All merging methods were found to improve the applicability of radar QPEs for urban hydrological applications, but the degree of improvement they provide and the added value of radar information vary for each merging method and are also a function of climatological conditions and rain gauge density scenarios. - Overall, KED displayed the best performance, with BAY being a close second

  10. Synergistic Use of Spacecraft Telecom Links for Collection of Planetary Radar Science Data

    Science.gov (United States)

    Asmar, S.; Bell, D. J.; Chahat, N. E.; Decrossas, E.; Dobreva, T.; Duncan, C.; Ellliot, H.; Jin, C.; Lazio, J.; Miller, J.; Preston, R.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. Example spacecraft radar instruments are the 90 MHz CONSERT radar used to probe the interior of Comet 67P/Churyumov-Gerasimenko to a depth of 760m, the 20 MHz SHARAD instrument used to investigate Mars subsurface ice features from Mars orbit at depths of 300 to 3000 meters and the upcoming RIMFAX 150 MHz to 1200 MHz ground penetrating radar that will ride on the Mars 2020 rover investigating to a depth of 10m below the rover. In all of these applications, the radar frequency and signal structures were chosen to match science goals of desired depth of penetration and spatial resolution combined with the expected subsurface materials and structures below the surface. Recently, JPL investigators have proposed a new radar science paradigm, synergistic use of the telecom hardware and telecom links to collect bistatic or monostatic radar signatures. All JPL spacecraft employ telecom hardware that operates at UHF (400 MHz and 900 MHz), X-band (8 GHz) or Ka-band (32 GHz). Using existing open-loop record functions in these radios, the telecom hardware can be used to capture opportunistic radar signatures from telecom signals penetrating the surface and reflecting off of subsurface structures. This paper reports on telecom strategies, radar science applications and recent laboratory and field tests to demonstrate the effectiveness of telecom link based radar data collection.

  11. Flood Monitoring using X-band Dual-polarization Radar Network

    Science.gov (United States)

    Chandrasekar, V.; Wang, Y.; Maki, M.; Nakane, K.

    2009-09-01

    sensitivity and fast temporal update across the coverage. Strong clutter is expected from buildings in the neighborhood which act as perfect reflectors. The reduction in radar size enables flexible deployment, such as rooftop installation, with small infrastructure requirement, which is critical in a metropolitan region. Dual-polarization based technologies can be implemented for real-time mitigation of rain attenuations and accurate estimation of rainfall. The NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is developing the technologies and the systems for network centric weather observation. The Differential propagation phase (Kdp) has higher sensitivity at X-band compared to S and C band. It is attractive to use Kdp to derive Quantitative Precipitation Estimation (QPE) because it is immune to rain attenuation, calibration biases, partial beam blockage, and hail contamination. Despite the advantage of Kdp for radar QPE, the estimation of Kdp itself is a challenge as the range derivative of the differential propagation phase profiles. An adaptive Kdp algorithm was implemented in the CASA IP1 testbed that substantially reduces the fluctuation in light rain and the bias at heavy rain. The Kdp estimation also benefits from the higher resolution in the IP1 radar network. The performance of the IP1 QPE product was evaluated for all major rain events against the USDA Agriculture Research Service's gauge network (MicroNet) in the Little Washita watershed, which comprises 20 weather stations in the center of the test bed. The cross-comparison with gauge measurements shows excellent agreement for the storm events during the Spring Experiments of 2007 and 2008. The hourly rainfall estimates compared to the gauge measurements have a very small bias of few percent and a normalized standard error of 21%. The IP1 testbed was designed with overlapping coverage among its radar nodes. The study area is covered by multiple radars and the aspect of

  12. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  13. Development of corrosion testing equipment under heat transfer and irradiation conditions to evaluate corrosion resistance of materials used in acid recovery evaporator. Contract research

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Numata, Masami; Kiuchi, Kiyoshi

    2002-01-01

    We have been evaluated the safety for corrosion of various metals applied to acid recovery evaporators by the mock-up tests using small scaled equipment and the reference tests in laboratories with small specimens. These tests have been conducted under-radioactive environment. The environment in practical reprocessing plants has many radioactive species. Therefore, the effect of irradiation on corrosion should be evaluated in detail. In this study, we have developed the corrosion testing equipment, which is employed to simulate environments in the acid recovery evaporators. This report describes the specification of corrosion testing equipment and the results of primary, reference and hot tests. Using the equipment, the corrosion test under heat transfer and irradiation conditions have been carried out for 930 hours in safety. It is expectable that useful corrosion test data in radioactive environment are accumulated with this equipment in future, and help the adequate choice of corrosion test condition in laboratories. (author)

  14. Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland

    Science.gov (United States)

    Schiemann, R.; Erdin, R.; Willi, M.; Frei, C.; Berenguer, M.; Sempere-Torres, D.

    2011-05-01

    Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation

  15. Comparing and Merging Observation Data from Ka-Band Cloud Radar, C-Band Frequency-Modulated Continuous Wave Radar and Ceilometer Systems

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-12-01

    Full Text Available Field experiment in South China was undertaken to improve understanding of cloud and precipitation properties. Measurements of the vertical structures of non-precipitating and precipitating clouds were obtained using passive and active remote sensing equipment: a Ka-band cloud radar (CR system, a C-band frequency modulated continuous wave vertical pointing radar (CVPR, a microwave radiometer and a laser ceilometer (CEIL. CR plays a key role in high-level cloud observation, whereas CVPR is important for observing low- and mid-level clouds and heavy precipitation. CEIL helps us diminish the effects of “clear-sky” in the planetary boundary layer. The experiment took place in Longmen, Guangdong Province, China from May to September of 2016. This study focuses on evaluating the ability of the two radars to deliver consistent observation data and develops an algorithm to merge the CR, CVPR and CEIL data. Cloud echo base, thickness, frequency of observed cloud types and reflectivity vertical distributions are analyzed in the radar data. Comparisons between the collocated data sets show that reflectivity biases between the CR three operating modes are less than 2 dB. The averaged difference between CR and CVPR reflectivity can be reduced with attenuation correction to 3.57 dB from the original 4.82 dB. No systemic biases were observed between velocity data collected in the three CR modes and CVPR. The corrected CR reflectivity and velocity data were then merged with the CVPR data and CEIL data to fill in the gaps during the heavy precipitation periods and reduce the effects of Bragg scattering and fog on cloud observations in the boundary layer. Meanwhile, the merging of velocity data with different Nyquist velocities and resolutions diminishes velocity folding to provide fine-grain information about cloud and precipitation dynamics. The three daily periods in which low-level clouds tended to occur were at sunrise, noon and sunset and large

  16. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  17. Performance test of nutrient control equipment for hydroponic plants

    Science.gov (United States)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  18. Development of an automatic test equipment for nano gauging displacement transducers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y-C [National Yunlin University of Science and Technology, Taiwan (China); Jywe, W-Y [National Formosa University, Taiwan (China); Liu, C-H [National Formosa University, Taiwan (China)

    2005-01-01

    In order to satisfy the increasing demands on the precision in manufacturing technology, nanaometrology gradually becomes more important in manufacturing process. To ensure the precision of manufacture, precise measuring instruments and sensors play a decisive role for the accurate characterization and inspection of products. For linear length inspection, high precision gauging displacement transducers, i.e. nano gauging displacement transducers (NGDT), have been often utilized, which have been often utilized, which have the resolution in the nanometer range and can achieve an accuracy of less than 100 nm. Such measurement instruments include transducers based on electronic as well as optical measurement principles, e.g. inductive, incremental-optical or interference optical. To guarantee the accuracy and the traceability to the definition of the meter, calibration and test of NGDT are essential. Currently, there are some methods and machines for test of NGDT, but they suffer from various disadvantages. Some of them permit only manual test procedures which are time-consuming, e.g. with high accurate gauge blocks as material measures. Other tests can reach higher accuracy only in the micrometer range or result in uncertainties of more than 100 nm in the large measuring ranges. To realize the test of NGDT with a high resolution as well as a large measuring range, an automatic test equipment was constructed, that has a resolution of 1.24 nm, a measuring range of up to 20 nm (60 mm) and a measuring uncertainty of approximate {+-}10 nm can fulfil the requirements of high resolution within the nanometer range while simultaneously covering a large measuring range in the order of millimeters. The test system includes a stable frame, a polarization interferometer, an angle sensor, an angular control, a drive system and piezo translators. During the test procedure, the angular control and piezo translators minimize the Abbe error. For the automation of the test procedure a

  19. Development of an automatic test equipment for nano gauging displacement transducers

    International Nuclear Information System (INIS)

    Wang, Y-C; Jywe, W-Y; Liu, C-H

    2005-01-01

    In order to satisfy the increasing demands on the precision in manufacturing technology, nanaometrology gradually becomes more important in manufacturing process. To ensure the precision of manufacture, precise measuring instruments and sensors play a decisive role for the accurate characterization and inspection of products. For linear length inspection, high precision gauging displacement transducers, i.e. nano gauging displacement transducers (NGDT), have been often utilized, which have been often utilized, which have the resolution in the nanometer range and can achieve an accuracy of less than 100 nm. Such measurement instruments include transducers based on electronic as well as optical measurement principles, e.g. inductive, incremental-optical or interference optical. To guarantee the accuracy and the traceability to the definition of the meter, calibration and test of NGDT are essential. Currently, there are some methods and machines for test of NGDT, but they suffer from various disadvantages. Some of them permit only manual test procedures which are time-consuming, e.g. with high accurate gauge blocks as material measures. Other tests can reach higher accuracy only in the micrometer range or result in uncertainties of more than 100 nm in the large measuring ranges. To realize the test of NGDT with a high resolution as well as a large measuring range, an automatic test equipment was constructed, that has a resolution of 1.24 nm, a measuring range of up to 20 nm (60 mm) and a measuring uncertainty of approximate ±10 nm can fulfil the requirements of high resolution within the nanometer range while simultaneously covering a large measuring range in the order of millimeters. The test system includes a stable frame, a polarization interferometer, an angle sensor, an angular control, a drive system and piezo translators. During the test procedure, the angular control and piezo translators minimize the Abbe error. For the automation of the test procedure a

  20. Development of an automatic test equipment for nano gauging displacement transducers

    Science.gov (United States)

    Wang, Yung-Chen; Jywe, Wen-Yuh; Liu, Chien-Hung

    2005-01-01

    In order to satisfy the increasing demands on the precision in manufacturing technology, nanaometrology gradually becomes more important in manufacturing process. To ensure the precision of manufacture, precise measuring instruments and sensors play a decesive role for the accurate characterization and inspection of products. For linear length inspection, high precision gauging displacement transducers, i.e. nano gauging displacement transducers (NGDT), have been often utilized, which have been often utilized, which have the resolution in the nanometer range and can achieve an accuracy of less than 100 nm. Such measurement instruments include transducers based on electronic as well as optical measurement principles, e.g. inductive, incremental-optical or interference optical. To guarantee the accuracy and the traceability to the definition of the meter, calibration and test of NGDT are essential. Currently, there are some methods and machines for test of NGDT, but they suffer from various disadvantages. Some of them permit only manual test procedures which are time-consuming, e.g. with high accurate gauge blocks as material measures. Other tests can reach higher accuracy only in the micrometer range or result in uncertainties of more than 100 nm in the large measuring ranges. To realize the test of NGDT with a high resolution as well as a large measuring range, an automatic test equipment was constructed, that has a resolution of 1.24 nm, a measuring range of up to 20 nm (60 mm) and a measuring uncertainty of approximate ±10 nm can fulfil the requirements of high resolution within the nanometer range while simultaneously covering a large measuring range in the order of millimeters. The test system includes a stable frame, a polarization interferometer, an angle sensor, an angular control, a drive system and piezo translators. During the test procedure, the angular control and piezo translators minimize the Abbe error. For the automation of the test procedure a

  1. Radar spectrum opportunities for cognitive communications transmission

    OpenAIRE

    Wang, L; McGeehan, JP; Williams, C; Doufexi, A

    2008-01-01

    In relation to opportunistic access to radar spectrum, the impact of the radar on a communication system is investigated in this paper. This paper illustrates that by exploring the spatial and temporal opportunities in the radar spectrum and therefore improving the tolerance level to radar interference, a substantial increase on the throughput of a communication system is possible. Results are presented regarding the impact of swept radars on a WiMAX system. The results show the impact of SIR...

  2. Interpretation of the distortion of ground-penetrating radar propagated and reflected waves - development of a multi-frequency tomography

    International Nuclear Information System (INIS)

    Hollender, F.

    1999-01-01

    Within the framework of research for waste disposal in deep geological formations, the French agency for nuclear waste management (ANDRA) has to dispose of non-destructive investigation methods to characterize the medium. Ground penetrating radar (GPR) could be used for this purpose in the case of granitic sites. The work presented here deals with this geophysical method. The classical interpretation of GPR data consists in the localization of geological discontinuities by signal amplitude or arrival time analysis. The main objective of our studies is the interpretation of the radar wave distortion (due to propagation and reflection phenomena), not only to localize discontinuities but also to contribute to their identification. Three preliminary studies have been carried out in order to understand on the one hand, the complexity of the electromagnetic phenomena in the geological medium at radar frequency, and on the other hand, the radar equipment constraints. First, the dispersion and the attenuation characterized by a Q variable factor of the GPR waves are shown with the support of dielectric laboratory measurements. A model, which only requires three parameters, is proposed in order to describe this behavior. Second, the radiation patterns of borehole radar antenna are studied. We show that the amplitude and frequency content of the emitted signal are variable versus the emission angle. An analytical method is proposed to study these phenomena. Finally, instrumental drifts of GPR equipment are studied. Emission time, sampling frequency and amplitude fluctuations are described. These elements are taken into account for the processing of propagated signals by tomographic inversion. Medium anisotropy and borehole trajectory errors are inserted in algorithms in order to cancel artifacts which compromised the previous interpretation. A pre-processing method, based on wave separation algorithm, is applied on data in order to increase tomogram resolution. A new

  3. Seismic proving tests on the reliability for large components and equipment of nuclear power plants

    International Nuclear Information System (INIS)

    Ohno, Tokue; Tanaka, Nagatoshi

    1988-01-01

    Since Japan has destructive earthquakes frequently, the structural reliability for large components and equipment of nuclear power plants are rigorously required. They are designed using sophisticated seismic analyses and have not yet encountered a destructive earthquake. When nuclear power plants are planned, it is very important that the general public understand the structural reliability during and after an earthquake. Seismic Proving Tests have been planned by Ministry of International Trade and Industry (Miti) to comply with public requirement in Japan. A large-scale high-performance vibration table was constructed at Tasted Engineering Laboratory of Nuclear Power Engineering Test Center (NU PEC), in order to prove the structural reliability by vibrating the test model (of full scale or close to the actual size) in the condition of a destructive earthquake. As for the test models, the following four items were selected out of large components and equipment important to the safety: Reactor Containment Vessel; Primary Coolant Loop or Primary Loop Recirculation System; Reactor Pressure Vessel; and Reactor Core Internals. Here is described a brief of the vibration table, the test method and the results of the tests on PWR Reactor Containment Vessel and BWR Primary Loop Recirculation System (author)

  4. Processing of 3D Weather Radar Data with Application for Assimilation in the NWP Model

    Directory of Open Access Journals (Sweden)

    Ośródka Katarzyna

    2014-09-01

    Full Text Available The paper is focused on the processing of 3D weather radar data to minimize the impact of a number of errors from different sources, both meteorological and non-meteorological. The data is also quantitatively characterized in terms of its quality. A set of dedicated algorithms based on analysis of the reflectivity field pattern is described. All the developed algorithms were tested on data from the Polish radar network POLRAD. Quality control plays a key role in avoiding the introduction of incorrect information into applications using radar data. One of the quality control methods is radar data assimilation in numerical weather prediction models to estimate initial conditions of the atmosphere. The study shows an experiment with quality controlled radar data assimilation in the COAMPS model using the ensemble Kalman filter technique. The analysis proved the potential of radar data for such applications; however, further investigations will be indispensable.

  5. I. The effect of volcanic aerosols on ultraviolet radiation in Antarctica. II. A novel method for enhancing subsurface radar imaging using radar interferometry

    Science.gov (United States)

    Tsitas, Steven Ronald

    The theory of radiative transfer is used to explain how a stratospheric aerosol layer may, for large solar zenith angles, increase the flux of UV-B light at the ground. As previous explanations are heuristic and incomplete, I first provide a rigorous and complete explanation of how this occurs. I show that an aerosol layer lying above Antarctica during spring will decrease the integrated daily dose of biologically weighted irradiance, weighted by the erythema action spectrum, by only up to 5%. Thus after a volcanic eruption, life in Antarctica during spring will suffer the combined effects of the spring ozone hole and ozone destruction induced by volcanic aerosols, with the latter effect only slightly offset by aerosol scattering. I extend subsurface radar imaging by considering the additional information that may be derived from radar interferometry. I show that, under the conditions that temporal and spatial decorrelation between observations is small so that the effects of these decorrelations do not swamp the signature expected from a subsurface layer, the depth of burial of the lower surface may be derived. Also, the echoes from the lower and upper surfaces may be separated. The method is tested with images acquired by SIR-C of the area on the Egypt/Sudan border where buried river channels were first observed by SIR-A. Temporal decorrelation between the images, due to some combination of physical changes in the scene, changes in the spacecraft attitude and errors in the processing by NASA of the raw radar echoes into the synthetic aperture radar images, swamps the expected signature for a layer up to 40 meters thick. I propose a test to determine whether or not simultaneous observations are required, and then detail the radar system requirements for successful application of the method for both possible outcomes of the test. I also describe in detail the possible applications of the method. These include measuring the depth of burial of ice in the polar

  6. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    2001-08-01

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  7. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  8. Design and Implementation of Radar Cross-Section Models on a Virtex-6 FPGA

    Directory of Open Access Journals (Sweden)

    B. U. V. Prashanth

    2014-01-01

    Full Text Available The simulation of radar cross-section (RCS models in FPGA is illustrated. The models adopted are the Swerling ones. Radar cross-section (RCS which is also termed as echo area gives the amount of scattered power from a target towards the radar. This paper elucidates the simulation of RCS to represent the specified targets under different conditions, namely, aspect angle and frequency. This model is used for the performance evaluation of radar. RCS models have been developed for various targets like simple objects to complex objects like aircrafts, missiles, tanks, and so forth. First, the model was developed in MATLAB real time simulation environment and after successful verification, the same was implemented in FPGA. Xilinx ISE software was used for VHDL coding. This simulation model was used for the testing of a radar system. The results were compared with MATLAB simulations and FPGA based timing diagrams and RTL synthesis. The paper illustrates the simulation of various target radar cross-section (RCS models. These models are simulated in MATLAB and in FPGA, with the aim of implementing them efficiently on a radar system. This method can be generalized to apply to objects of arbitrary geometry for the two configurations of transmitter and receiver in the same as well as different locations.

  9. Radar observations of Mercury

    International Nuclear Information System (INIS)

    Harmon, J.K.; Campbell, D.B.

    1988-01-01

    Some of the radar altimetry profiles of Mercury obtained on the basis of data from the Arecibo Observatory are presented. In these measurements, the delay-Doppler method was used to measure altitudes along the Doppler equator, rather than to map radar reflectivity. The profiles, derived from observations made over a 6-yr period, provide extensive coverage over a restricted equatorial band and permit the identification of radar signatures for features as small as 50-km diameter craters and 1-km-high arcuate scarps. The data allowed identification of large-scale topographic features such as smooth plains subsidence zones and major highland regions

  10. Experiment for buried pipes by stepped FM-CW radar; Step shiki FM-CW radar ni yoru maisetsukan tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Ito, M. [Kawasaki Geological Engineering, Co. Ltd., Tokyo (Japan); Tanabe, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-27

    The underground radar exploration is adopted to surveys of cavity under the road and buried pipes since the result of high resolution is obtained. However, the explorative depth of the radar is shallow, 2-3m in soil basement, and its applicable field has been limited. The continuous wave radar (FM-CW radar) was devised to get deeper explorative depth, but has been used for the geological structure survey such as the fault survey since it is lower in resolution as compared with the pulse radar. Therefore, to make use of characteristics of the continuous wave radar and enhance resolution in the shallow part, an experiment on buried pipes was conducted for the purpose of assessing and improving the FM-CW radar. In this processing, the wave form treatment used in the reflection method seismic survey was adopted for the radar survey. There are some problems, but it is effective to adopt the same algorithm to that used in the seismic survey to the radar exploration. The explorative depth was discussed from the damping rate of electromagnetic waves and dynamic range of facilities of the experimental site, and 7m was obtained. 5 figs., 1 tab.

  11. Radar reflection off extensive air showers

    CERN Document Server

    Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J

    2012-01-01

    We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  12. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    Science.gov (United States)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document

  13. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  14. Welding of sule elements for nuclear reactors with solid state YAG laser using instrumentated testing equipments

    International Nuclear Information System (INIS)

    Bourgault, F.; Lacoste, J.; Schley, R.; Kluzinski, C.; Piednoir, P.

    1985-09-01

    The instrumentation of the equipment for carrying out safety tests on fuel elements for nuclear reactors requires special thermocouples adapted to the prevailing agressive medium. The investigations described deal essentially with the operational and metallurgical weldability tests out on the safety test zircaloy piping in the pressurized water circuit (PHEBUS-programme) [fr

  15. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  16. Radar probing of the auroral plasma

    International Nuclear Information System (INIS)

    Brekke, A.

    1977-01-01

    The European Incoherent Scatter Radar in the Auroral Zone (EISCAT) is an intereuropean organization planning to install an incoherent scatter radar system in Northern Scandinavia. It is supported by Finland, France, Norway, Great Britain, Sweden and West Germany, and its headquarters is in Kiruna, Sweden. The radar is planned to be operating in 1979. In order to introduce students and young scientists to the incoherent scatter radar technique, a summer school was held in Tromsoe, from 5th to 13th June 1975. In these proceedings an introduction to the basic theory of fluctuations in a plasma is given. Some of the present incoherent scatter radars now in use are presented and special considerations with respect to the planned EISACT facility are discussed. Reviews of some recent results and scientific problems relevant to EISCAT are also presented and finally a presentation of some observational techniques complementary to incoherent scatter radars is included. (Ed.)

  17. Development of manufacturing equipment and QC equipment for DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J.J.; Lee, J.W.; Kim, S.S.; Yim, S.P.; Kim, J.H.; Kim, K.H.; Na, S.H.; Kim, W.K.; Shin, J.M.; Lee, D.Y.; Cho, K.H.; Lee, Y.S.; Sohn, J.S.; Kim, M.J.

    1999-05-01

    In this study, DUPIC powder and pellet fabrication equipment, welding system, QC equipment, and fission gas treatment are developed to fabricate DUPIC fuel at IMEF M6 hot cell. The systems are improved to be suitable for remote operation and maintenance with the manipulator at hot cell. Powder and pellet fabrication equipment have been recently developed. The systems are under performance test to check remote operation and maintenance. Welding chamber and jigs are designed and developed to remotely weld DUPIC fuel rod with manipulators at hot cell. Remote quality control equipment are being tested for analysis and inspection of DUPIC fuel characteristics at hot cell. And trapping characteristics is analyzed for cesium and ruthenium released under oxidation/reduction and sintering processes. The design criteria and process flow diagram of fission gas treatment system are prepared incorporating the experimental results. The fission gas treatment system has been successfully manufactured. (Author). 33 refs., 14 tabs., 91 figs

  18. Method for radar detection of persons wearing wires

    OpenAIRE

    Fox, William P.

    2014-01-01

    8,730,098 B1 Methods are described for radar detection of persons wearing wires using radar spectra data including the vertical polarization (VV) radar cross section and the horizontal polarization (HH) radar cross section for a person. In one embodiment, the ratio of the vertical polarization (VV) radar cross section to the horizontal polarization (HH) radar cross section for a person is compared to a detection threshold to determine whether the person is wearing wire...

  19. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  20. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  1. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  2. Millimeter wave radars raise weapon IQ

    Science.gov (United States)

    Lerner, E. J.

    1985-02-01

    The problems encountered by laser and IR homing devices for guided munitions may be tractable with warhead-mounted mm-wave radars. Operating at about 100 GHz and having several kilometers range, mm-wave radars see through darkness, fog, rain and smoke. The radar must be coupled with an analyzer that discerns moving and stationary targets and higher priority targets. The target lock-on can include shut-off of the transmitter and reception of naturally-generated mm-waves bouncing off the target when in the terminal phase of the flight. Monopulse transmitters have simplified the radar design, although mass production of finline small radar units has yet to be accomplished, particularly in combining GaAs, ferrites and other materials on one monolithic chip.

  3. HF Radar Sea-echo from Shallow Water

    Directory of Open Access Journals (Sweden)

    Josh Kohut

    2008-08-01

    Full Text Available HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information far more than first-order (which gives information on current velocities, the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  4. Aercibo S-band radar program

    International Nuclear Information System (INIS)

    Campbell, D.B.

    1988-01-01

    The high powered 12.6 cm wavelength radar on the 1000-ft Arecibo reflector is utilized for a number of solar system studies. Chief among these are: (1) surface reflectivity mapping of Venus, Mercury and the Moon. Resolutions achievable on Venus are less than 1.5 km over some areas, for Mercury about 30 km and for the Moon 200 m at present, (2) high time resolution ranging measurements to the surfaces of the terrestrial planets. These measurements are used to obtain profiles and scattering parameters in the equatorial region. They can also be used to test relativistic and gravitational theories by monitoring the rate of advance of the perihelion of the orbit of Mercury and placing limits on the stability of the gravitational constant, (3) measurements of the orbital parameters, figure, spin vector and surface properties of asteroids and comets, and (4) observations of the Galilean Satellites of Jupiter and the satellites of Mars, Phobos and Deimos. The Galilean Satellites of Jupiter were re-observed with the 12.6 cm radar for the first time since 1981. Much more accurate measurements of the scattering properties of the three icy satellites were obtained that generally confirmed previous observations. Unambiguous measurements of the cross section and circular polarizations ratio of Io were also obtained for the first time. The radar scattering properties of four mainbelt asteroids and one near-earth asteroid were studied

  5. Validation Testing for Automated Solubility Measurement Equipment Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lachut, J. S. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2016-01-11

    Laboratory tests have been completed to test the validity of automated solubility measurement equipment using sodium nitrate and sodium chloride solutions (see test plan WRPS-1404441, “Validation Testing for Automated Solubility Measurement Equipment”). The sodium nitrate solution results were within 2-3% of the reference values, so the experiment is considered successful using the turbidity meter. The sodium chloride test was done by sight, as the turbidity meter did not work well using sodium chloride. For example, the “clear” turbidity reading was 53 FNU at 80 °C, 107 FNU at 55 °C, and 151 FNU at 20 °C. The sodium chloride did not work because it is granular and large; as the solution was stirred, the granules stayed to the outside of the reactor and just above the stir bar level, having little impact on the turbidity meter readings as the meter was aimed at the center of the solution. Also, the turbidity meter depth has an impact. The salt tends to remain near the stir bar level. If the meter is deeper in the slurry, it will read higher turbidity, and if the meter is raised higher in the slurry, it will read lower turbidity (possibly near zero) because it reads the “clear” part of the slurry. The sodium chloride solution results, as measured by sight rather than by turbidity instrument readings, were within 5-6% of the reference values.

  6. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    Science.gov (United States)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    Discharge estimation at a river site depends on local hydraulic conditions identified by recording water levels. In fact, stage monitoring is straightforward and relatively inexpensive compared with the cost necessary to carry out flow velocity measurements which are, however, limited to low flows and constrained by the accessibility of the site. In this context the mean flow velocity is hard to estimate for high flow, affecting de-facto the reliability of discharge assessment for extreme events. On the other hand, the surface flow velocity can be easily monitored by using radar sensors allowing to achieve a good estimate of discharge by exploiting the entropy theory applied to rivers hydraulic (Chiu,1987). Recently, a growing interest towards the use of Unmanned Aerial Vehicle (UVA), henceforth drone, for topographic applications is observed and considering their capability drones may be of a considerable interest for the hydrological monitoring and in particular for streamflow measurements. With this aim, for the first time, a miniaturized Doppler radar sensor, operating at 24 GHz, will be mounted on a drone to measure the surface flow velocity in rivers. The sensor is constituted by a single-board circuit (i.e. is a fully planar circuits - no waveguides) with the antenna on one side and the front-end electronic on the other side (Alimenti et al., 2007). The antenna has a half-power beam width of less than 10 degrees in the elevation plane and a gain of 13 dBi. The radar is equipped with a monolithic oscillator and transmits a power of about 4 mW at 24 GHz. The sensor is mounted with an inclination of 45 degrees with respect to the drone flying plane and such an angle is considered in recovering the surface speed of the water. The drone is a quadricopter that has more than 30 min, flying time before recharging the battery. Furthermore its flying plan can be scheduled with a suitable software and is executed thanks to the on-board sensors (GPS, accelerometers

  7. Marine X-band Weather Radar Data Calibration

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2012-01-01

    estimates. This paper presents some of the challenges in small marine X-band radar calibration by comparing three calibration procedures for assessing the relationship between radar and rain gauge data. Validation shows similar results for precipitation volumes but more diverse results on peak rain......Application of weather radar data in urban hydrology is evolving and radar data is now applied for both modelling, analysis, and real time control purposes. In these contexts, it is allimportant that the radar data is well calibrated and adjusted in order to obtain valid quantitative precipitation...

  8. Raindrop size distribution and radar reflectivity-rain rate relationships for radar hydrology

    NARCIS (Netherlands)

    Uijlenhoet, R.

    2001-01-01

    The conversion of the radar reflectivity factor Z (mm6m-3) to rain rate R (mm h-1) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the

  9. 5 year radar-based rainfall statistics: disturbances analysis and development of a post-correction scheme for the German radar composite

    Science.gov (United States)

    Wagner, A.; Seltmann, J.; Kunstmann, H.

    2015-02-01

    A radar-based rainfall statistic demands high quality data that provide realistic precipitation amounts in space and time. Instead of correcting single radar images, we developed a post-correction scheme for long-term composite radar data that corrects corrupted areas, but preserves the original precipitation patterns. The post-correction scheme is based on a 5 year statistical analysis of radar composite data and its constituents. The accumulation of radar images reveals artificial effects that are not visible in the individual radar images. Some of them are already inherent to single radar data such as the effect of increasing beam height, beam blockage or clutter remnants. More artificial effects are introduced in the process of compositing such as sharp gradients at the boundaries of overlapping areas due to different beam heights and resolution. The cause of these disturbances, their behaviour with respect to reflectivity level, season or altitude is analysed based on time-series of two radar products: the single radar reflectivity product PX for each of the 16 radar systems of the German Meteorological Service (DWD) for the time span 2000 to 2006 and the radar composite product RX of DWD from 2005 through to 2009. These statistics result in additional quality information on radar data that is not available elsewhere. The resulting robust characteristics of disturbances, e.g. the dependency of the frequencies of occurrence of radar reflectivities on beam height, are then used as a basis for the post-correction algorithm. The scheme comprises corrections for shading effects and speckles, such as clutter remnants or overfiltering, as well as for systematic differences in frequencies of occurrence of radar reflectivities between the near and the far ranges of individual radar sites. An adjustment to rain gauges is also included. Applying this correction, the Root-Mean-Square-Error for the comparison of radar derived annual rain amounts with rain gauge data

  10. Radon removal equipment based on aeration: A literature study of tests performed in Sweden between 1981 and 1996

    International Nuclear Information System (INIS)

    Mjoenes, L.

    2000-02-01

    In Sweden some principles to reduce the radon concentration in drinking water were tested in the beginning of the 1980s. Spray aeration under atmospheric pressure, diffused bubble aeration, aeration in the pressure tank and different combinations of these principles were studied. Aeration in the drill hole and adsorption on granulated activated char-coal were also tested. The best results, about 70 % reduction, were obtained with aeration in the pressure tank with a spray system combined with diffused air bubbling. The Oerebro project in the beginning of the 1990s included on site testing of five different aeration solutions: Aeration in the drill hole, aeration in the storage tank, ejector aeration, shallow tray aeration and packed column aeration. The radon removal efficiency varied between 20 % and 99 %. In 1994 a study intended to test the radon removal capacity of different water treatment equipment was performed. Six units of radon separators were included but most of the tested equipment was installed for other water treatment purposes. The performed measurements showed that the only types of equipment that reduce the radon concentration efficiently are radon separators and reverse osmosis filters. The radon removal capacity of the radon separators varied between 23 % and 97 %. In 1996 the nine most common radon separators on the Swedish market were tested. The results showed that the tested radon removal equipment worked well, although the technical quality and chosen technical solutions were not always the best. The radon removal capacity of the units participating in this test was in most cases between 96 and 99 %. In some cases the capacity exceeded 99 %. In order to reach this radon removal capacity the water must be recirculated in a storage tank under atmospheric pressure

  11. Radon removal equipment based on aeration: A literature study of tests performed in Sweden between 1981 and 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mjoenes, L

    2000-02-01

    In Sweden some principles to reduce the radon concentration in drinking water were tested in the beginning of the 1980s. Spray aeration under atmospheric pressure, diffused bubble aeration, aeration in the pressure tank and different combinations of these principles were studied. Aeration in the drill hole and adsorption on granulated activated char-coal were also tested. The best results, about 70 % reduction, were obtained with aeration in the pressure tank with a spray system combined with diffused air bubbling. The Oerebro project in the beginning of the 1990s included on site testing of five different aeration solutions: Aeration in the drill hole, aeration in the storage tank, ejector aeration, shallow tray aeration and packed column aeration. The radon removal efficiency varied between 20 % and 99 %. In 1994 a study intended to test the radon removal capacity of different water treatment equipment was performed. Six units of radon separators were included but most of the tested equipment was installed for other water treatment purposes. The performed measurements showed that the only types of equipment that reduce the radon concentration efficiently are radon separators and reverse osmosis filters. The radon removal capacity of the radon separators varied between 23 % and 97 %. In 1996 the nine most common radon separators on the Swedish market were tested. The results showed that the tested radon removal equipment worked well, although the technical quality and chosen technical solutions were not always the best. The radon removal capacity of the units participating in this test was in most cases between 96 and 99 %. In some cases the capacity exceeded 99 %. In order to reach this radon removal capacity the water must be recirculated in a storage tank under atmospheric pressure.

  12. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  13. Radar signal analysis and processing using Matlab

    CERN Document Server

    Mahafza, Bassem R

    2008-01-01

    Offering radar-related software for the analysis and design of radar waveform and signal processing, this book provides comprehensive coverage of radar signals and signal processing techniques and algorithms. It contains numerous graphical plots, common radar-related functions, table format outputs, and end-of-chapter problems. The complete set of MATLAB[registered] functions and routines are available for download online.

  14. Radar efficiency and the calculation of decade-long PMSE backscatter cross-section for the Resolute Bay VHF radar

    Directory of Open Access Journals (Sweden)

    N. Swarnalingam

    2009-04-01

    Full Text Available The Resolute Bay VHF radar, located in Nunavut, Canada (75.0° N, 95.0° W and operating at 51.5 MHz, has been used to investigate Polar Mesosphere Summer Echoes (PMSE since 1997. PMSE are a unique form of strong coherent radar echoes, and their understanding has been a challenge to the scientific community since their discovery more than three decades ago. While other high latitude radars have recorded strong levels of PMSE activities, the Resolute Bay radar has observed relatively lower levels of PMSE strengths. In order to derive absolute measurements of PMSE strength at this site, a technique is developed to determine the radar efficiency using cosmic (sky noise variations along with the help of a calibrated noise source. VHF radars are only rarely calibrated, but determination of efficiency is even less common. Here we emphasize the importance of efficiency for determination of cross-section measurements. The significant advantage of this method is that it can be directly applied to any MST radar system anywhere in the world as long as the sky noise variations are known. The radar efficiencies for two on-site radars at Resolute Bay are determined. PMSE backscatter cross-section is estimated, and decade-long PMSE strength variations at this location are investigated. It was noticed that the median of the backscatter cross-section distribution remains relatively unchanged, but over the years a great level of variability occurs in the high power tail of the distribution.

  15. Wind farm radar study

    International Nuclear Information System (INIS)

    Davies, N.G.

    1995-01-01

    This report examines the possible degradations of radar performance that may be caused by the presence of a wind turbine generator within the radar coverage area. A brief literature survey reviews the previously published work, which is mainly concerned with degradation of broadcast TV reception. Estimates are made of wind turbine generator scattering cross-sections, and of the time and Doppler characteristics of the echo signals from representative wind turbine generator. The general characteristics of radar detection and tracking methods are described, and the behaviour of such systems in the presence of strong returns from a wind turbine generator (or an array of them) is discussed. (author)

  16. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  17. New look at radar auroral motions

    International Nuclear Information System (INIS)

    Greenwald, R.A.; Ecklund, W.L.

    1975-01-01

    During October 1974, three modifications were temporarily added to the NOAA radar auroral backscatter facility located at Anchorage, Alaska. These modifications included (1) a multiple azimuth antenna system. (2) an on-line computer for processing amplitude and mean Doppler profiles of the radar backscatter, and (3) a 13-baud Barker coder. In combination with the radar these modifications provided data relevant to understanding both the microscopic and the macroscopic nature of the radar aurora. Appreciable structure was often found in the Doppler velocity profiles of radar auroral irregularities. Doppler velocities of nearly 2000 m/s were observed. By combining scatter amplitude profiles and mean Doppler profiles from the five azimuths we have produced contour maps of the scatter intensity and the Doppler velocity. The scatter intensity maps often indicate appreciable temporal and spatial structure in the radar auroral irregularities, corroborating the results of Tsunoda et al. (1974). The mean Doppler contour maps indicate that there is also appreciable temporal and spatial structure in the flow velocities of radar auroral irregularities. At those times when there appears to be large-scale uniformity in the irregularity flow, the Doppler velocity varies with azimuth in a manner that is consistent with a cosine-dependent azimuthal variation

  18. Follow-up of the evolution of the characteristics and performance of the equipments tested during a KALI campaign

    International Nuclear Information System (INIS)

    Rouaud, J.

    1985-01-01

    One of the four parts of the K1 qualification of the 1E equipments concerns the design basis accidents. The KALI loops allows to create the thermodynamic conditions of these accidents. This paper presents the PROCESS II which concerns the installation of the equipment in conditions representative of those met in nuclear power plants, the control assurance before, during and after the thermodynamic test. A list of qualification tests carried out on the KALI loop is finally given [fr

  19. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  20. Hydrologic applications of weather radar

    Science.gov (United States)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  1. Classification of radar echoes using fractal geometry

    International Nuclear Information System (INIS)

    Azzaz, Nafissa; Haddad, Boualem

    2017-01-01

    Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.

  2. MST radar data-base management

    Science.gov (United States)

    Wickwar, V. B.

    1983-01-01

    Data management for Mesospheric-Stratospheric-Tropospheric, (MST) radars is addressed. An incoherent-scatter radar data base is discussed in terms of purpose, centralization, scope, and nature of the data base management system.

  3. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  4. Challenges in X-band Weather Radar Data Calibration

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.

    2009-01-01

    Application of weather radar data in urban hydrology is evolving and radar data is now applied for both modelling, analysis and real time control purposes. In these contexts, it is all-important that the radar data well calibrated and adjusted in order to obtain valid quantitative precipitation e...... estimates. This paper compares two calibration procedures for a small marine X-band radar by comparing radar data with rain gauge data. Validation shows a very good consensus with regards to precipitation volumes, but more diverse results on peak rain intensities.......Application of weather radar data in urban hydrology is evolving and radar data is now applied for both modelling, analysis and real time control purposes. In these contexts, it is all-important that the radar data well calibrated and adjusted in order to obtain valid quantitative precipitation...

  5. Hardware in the loop radar environment simulation on wideband DRFM platforms

    CSIR Research Space (South Africa)

    Strydom, JJ

    2012-10-01

    Full Text Available @csir.co.za, dnaiker@csir.co.za, kolivier@csir.co.za Keywords: DRFM, ECM, Complex Targets, Clutter, HIL, radar environment, simulation. Abstract This paper describes the development and testing of a digital radio frequency memory (DRFM) kernel, as well... as follows: Section 2 describes the design of a high performance DRFM kernel. Section 3 describes the integration of this kernel into a radar environment simulator system. Sections 4, 5 and 6 then present the generation of realistic targets, ECM...

  6. Development of hot test equipment for advanced nuclear fuel cycle development in JNC

    International Nuclear Information System (INIS)

    Nomura, K.; Shibata, A.; Nemoto, S.; Aoshima, A.; Funasaka, H.

    2001-01-01

    JNC (Japan nuclear fuel cycle development institute) has been developing a mini centrifugal contactor. JNC has experience of the development of the RETF (Recycle equipment test facility; under construction at Tokai-works) type centrifugal contactor and the mini centrifugal contactor is designed on the basis of this knowledge. The followings were carried out in order to estimate the performance of the mini centrifugal contactor: functional test for evaluating basic performance of this extractor, acid-solvent test and uranium test for confirming that sufficient performance is attained. The results showed wide performance in comparison with the mini mixer settler used so far and it is expected that shortening in operating time and higher efficiency of extracting tests will be achieved. (author)

  7. Radar principles for the nonspecialist, 3rd edition

    CERN Document Server

    Toomay, John

    2004-01-01

    Radar Principles for the Non-specialist, Third Edition continues its popular tradition: to distill the very complex technology of radar into its fundamentals, tying them to the laws of nature on one end and to the most modern and complex systems on the other. It starts with electromagnetic propagation, describes a radar of the utmost simplicity, and derives the radar range equation from that simple radar. Once the range equation is available, the book attacks the meaning of each term in it, moving through antennas, detection and tracking, radar cross-section, waveforms andsignal proces

  8. Crosshole investigations - results from borehole radar investigations

    International Nuclear Information System (INIS)

    Olsson, O.; Falk, L.; Sandberg, E.; Forslund, O.; Lundmark, L.

    1987-05-01

    A new borehole radar system has been designed, built and tested. The system consists of borehole transmitter and receiver probes, a signal control unit for communication with the borehole probes, and a computer unit for storage and display of data. The system can be used both in singlehole and crosshole modes and probing ranges of 115 m and 300 m, respectively, have been obtained at Stripa. The borehole radar is a short pulse system which uses center frequencies in the range 20 to 60 MHz. Single hole reflection measurements have been used to identify fracture zones and to determine their position and orientation. The travel time and amplitude of the first arrival measured in a crosshole experiment can be used as input data in a tomographic analysis. (orig./DG)

  9. Test equipment used for radiation protection type testing of aerosol filters at the National Board of Nuclear Safety and Radiation Protection (SAAS)

    International Nuclear Information System (INIS)

    Ullmann, W.; Przyborowski, S.

    1977-01-01

    Following a description of the overall design of test equipment developed in the SAAS for radiation protection type testing of aerosol filters, the most important physical and technical details concerning the preparation and measurement of test aerosols as well as the sampling procedure upstream and downstream of the filter to the tested, are comprehensively discussed. Furthermore, experiences gained during several years with different devices for mixing and diluting the aerosols are reported. (author)

  10. Non-destructive testing: magnetizing equipment for magnetic particle inspection

    International Nuclear Information System (INIS)

    1975-07-01

    Magnetizing equipment for magnetic particle inspection serves to produce a magnetic field of suitable size and direction in a workpiece under examination. The characteristic parameters of this equipment are given in this standard along with their method of determination if this is necessary. (orig./AK) [de

  11. Development of a handmade device for collimation and central ray alignment tests in medical X-ray equipment

    International Nuclear Information System (INIS)

    Cruz, B.L. da; Brito, E.B.; Gomes, A.S.

    2017-01-01

    Ordinance 453/98 of the Ministry of Health establishes that medical X-ray equipment should be monitored by tests that prove its efficiency. This practice is called quality control (QC), and two important tests jointly evaluate the operation of the collimation and alignment systems of the central axis of the X-ray beam. The low supply and the high cost generate allegations of difficulties in the periodic realization of the tests. The aim of this work is to design, make and evaluate the performance of a handmade device for the mentioned tests, using low cost materials. Once built, the device had its performance evaluated and compared with the traditionally marketed device. The handmade device proved to be fit in its functions. It is possible to make a device that tests X-ray medical equipment, using the radiology technologist himself as the test runner. Radiation protection is promoted and legislation with no real financial burden

  12. Millimeter-Wave Receiver Concepts for 77 GHz Automotive Radar in Silicon-Germanium Technology

    CERN Document Server

    Kissinger, Dietmar

    2012-01-01

    The book presents the analysis and design of integrated automotive radar receivers in Silicon-Germanium technology, for use in complex multi-channel radar transceiver front-ends in the 77GHz frequency band. The main emphasis of the work is the realization of high-linearity and low-power modular receiver channels as well as the investigation of millimeter-wave integrated test concepts for the receiver front-end.

  13. Equipment for functional testing of the ALADIN TXA pulsed laser head

    Science.gov (United States)

    Emanuele, Stucchi; Franco, Trespidi; Enzo, Nava

    2017-11-01

    It is described a measurement instrument, used as Optical Ground Support Equipment, capable of performing the characterization of a pulsed laser beam. The instrument was developed for the functional testing of the EQM and FMs of the ALADIN laser transmitter (TXA). The performed measurements are: beam shaping, M2 measurement, beam angular stability, energy and wavelength measurements, pulse duration, polarization, pulse shape and spectral characterization, optical frequency stability measurement. The measurement system can work in automatic mode performing several measurements and providing automatic report generation.

  14. FMCW radar system for detection and classification of small vessels in high sea state conditions

    NARCIS (Netherlands)

    Wasselin, J.-P.; Mazuel, S.; Itcia, E.; Huizing, A.G.; Theil, A.

    2012-01-01

    The ROCKWELL COLLINS France radar department is currently developing a FMCW radar system for the detection and the classification of small maritime targets in the frame of the SISMARIS, SARGOS & I2C projects. Several test campaigns have been conducted since 2009 to develop a sensor as well as an

  15. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  16. Study on application of radar technique to explore mineral resources. 1. Sample test in laboratory; Radar ho no kosho tansa eno tekiyosei kento. 1. Shitsunai shiryo shiken

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, A; Okada, K [Sumitomo Metal Mining Co. Ltd., Tokyo (Japan); Arai, E [Metal Mining Agency of Japan, Tokyo (Japan); Noguchi, K; Fujiwara, K [Waseda University, Tokyo (Japan)

    1997-10-22

    Dielectric constants of ore body and mother rock specimens taken from an epithermal gold deposit were measured in the frequency band of radar technique. Applicability of the radar technique to mineral exploration has been investigated by comparing measured results and ore showing. This paper describes the results. Measured results of the dielectric constants are summarized as follows. The specific dielectric constant in the forced dry condition did not depend on specimens. The specific dielectric constant in the water saturated condition increased with increasing the porosity. The conductivity increased with increasing the specific dielectric constant. The specific dielectric constant and conductivity increased with increasing the water content. The specific dielectric constant did not depend on types of rocks. The specific dielectric constant decreased with increasing the frequency. Difference of the specific dielectric constant in the water saturated condition decreased with increasing the frequency. The radar technique was applied to blind deposits. Since they were often in the ground water saturated zones, it was considered that the reflection at the boundary was enhanced with increasing the difference of specific dielectric constant between ore body and mother rock compared with that in unsaturated zones. 8 refs., 8 figs., 3 tabs.

  17. Mutual information-based LPI optimisation for radar network

    Science.gov (United States)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  18. Development of In situ Geological Investigation and Test Equipment in KURT

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Yong Kweon; Kim, Kyung Su; Park, Kyung Woo; Koh, Yong Kweon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    For establishment of the advanced infrastructures of KURT, geological investigation and in situ test equipment were installed. The optical sensor technique could be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc. The micro-seismic monitoring system is able to predict the location and timing of fracturing of rock mass and rock fall around an underground openings as well as analysis on safety of various kinds of engineering structures such as nuclear facilities and other structures. The straddle packer system for hydro-testing in a deep borehole will lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project

  19. Radar operation in a hostile electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  20. Aspects of Radar Polarimetry

    OpenAIRE

    LÜNEBURG, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  1. Remote sensing with laser spectrum radar

    Science.gov (United States)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  2. CFAR Detection from Noncoherent Radar Echoes Using Bayesian Theory

    Directory of Open Access Journals (Sweden)

    Wataru Suganuma

    2010-01-01

    Full Text Available We propose a new constant false alarm rate (CFAR detection method from noncoherent radar echoes, considering heterogeneous sea clutter. It applies the Bayesian theory for adaptive estimation of the local clutter statistical distribution in the cell under test. The detection technique can be readily implemented in existing noncoherent marine radar systems, which makes it particularly attractive for economical CFAR detection systems. Monte Carlo simulations were used to investigate the detection performance and demonstrated that the proposed technique provides a higher probability of detection than conventional techniques, such as cell averaging CFAR (CA-CFAR, especially with a small number of reference cells.

  3. CFAR Detection from Noncoherent Radar Echoes Using Bayesian Theory

    Directory of Open Access Journals (Sweden)

    Yamaguchi Hiroyuki

    2010-01-01

    Full Text Available Abstract We propose a new constant false alarm rate (CFAR detection method from noncoherent radar echoes, considering heterogeneous sea clutter. It applies the Bayesian theory for adaptive estimation of the local clutter statistical distribution in the cell under test. The detection technique can be readily implemented in existing noncoherent marine radar systems, which makes it particularly attractive for economical CFAR detection systems. Monte Carlo simulations were used to investigate the detection performance and demonstrated that the proposed technique provides a higher probability of detection than conventional techniques, such as cell averaging CFAR (CA-CFAR, especially with a small number of reference cells.

  4. Prediction of buried mine-like target radar signatures using wideband electromagnetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Warrick, A.L.; Azevedo, S.G.; Mast, J.E.

    1998-04-06

    Current ground penetrating radars (GPR) have been tested for land mine detection, but they have generally been costly and have poor performance. Comprehensive modeling and experimentation must be done to predict the electromagnetic (EM) signatures of mines to access the effect of clutter on the EM signature of the mine, and to understand the merit and limitations of using radar for various mine detection scenarios. This modeling can provide a basis for advanced radar design and detection techniques leading to superior performance. Lawrence Livermore National Laboratory (LLNL) has developed a radar technology that when combined with comprehensive modeling and detection methodologies could be the basis of an advanced mine detection system. Micropower Impulse Radar (MIR) technology exhibits a combination of properties, including wideband operation, extremely low power consumption, extremely small size and low cost, array configurability, and noise encoded pulse generation. LLNL is in the process of developing an optimal processing algorithm to use with the MIR sensor. In this paper, we use classical numerical models to obtain the signature of mine-like targets and examine the effect of surface roughness on the reconstructed signals. These results are then qualitatively compared to experimental data.

  5. Using phase for radar scatterer classification

    Science.gov (United States)

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  6. Pedestrian recognition using automotive radar sensors

    Science.gov (United States)

    Bartsch, A.; Fitzek, F.; Rasshofer, R. H.

    2012-09-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insights into the object classification process. The impact of raw radar data properties can be directly observed in every layer of the classification system by avoiding machine learning and tracking. This gives information on the limiting factors of raw radar data in terms of classification decision making. To accomplish the very challenging distinction between pedestrians and static objects, five significant and stable object features from the spatial distribution and Doppler information are found. Experimental results with data from a 77 GHz automotive radar sensor show that over 95% of pedestrians can be classified correctly under optimal conditions, which is compareable to modern machine learning systems. The impact of the pedestrian's direction of movement, occlusion, antenna beam elevation angle, linear vehicle movement, and other factors are investigated and discussed. The results show that under real life conditions, radar only based pedestrian recognition is limited due to insufficient Doppler frequency and spatial resolution as well as antenna side lobe effects.

  7. First test of a CMS DT chamber equipped with full electronics in a muon beam

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    A CMS DT chamber of MB3 type, equipped with the final version of a minicrate (containing all on-chamber trigger and readout electronics), was tested in a muon beam for the first time. The beam was bunched in 25 ns spills, allowing an LHC-like response of the chamber trigger. This test confirmed the excellent performance of the trigger design.

  8. Contact Dermatitis to Personal Sporting Equipment in Youth.

    Science.gov (United States)

    Marzario, Barbara; Burrows, Dianne; Skotnicki, Sandy

    2016-07-01

    Contact dermatitis to personal sporting equipment in youth is poorly studied. To review the results of patch testing 6 youth to their sporting equipment in a dermatology general private practice from 2006 to 2011. A retrospective analysis of 6 youth aged 11 to 14 who were evaluated for chronic and persistent dermatitis occurring in relation to sports equipment was conducted. All patients were subjected to epicutaneous (patch) testing, which included some or all of the following: North American Contact Dermatitis Group (NACGD) series, textile series, rubber series, corticosteroid series, and raw material from the patients' own personal equipment. All cases had 1 or more positive patch test reactions to an allergen within the aforementioned series, and 3 subjects tested positive to their personal equipment in raw form. Allergic contact dermatitis, not irritant, was deemed the relevant cause of chronic dermatitis in 4 of the 6 patients due to positive reactions to epicutaneous tests and/or personal equipment. The utility of testing to patients' own sporting equipment was shown to be of additional value and should be considered when patch testing for contact allergy to sporting equipment. © The Author(s) 2015.

  9. Target scattering characteristics for OAM-based radar

    Directory of Open Access Journals (Sweden)

    Kang Liu

    2018-02-01

    Full Text Available The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM based radar system. To illustrate the role of OAM-based radar cross section (ORCS, conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS. The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  10. Target scattering characteristics for OAM-based radar

    Science.gov (United States)

    Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang

    2018-02-01

    The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  11. Radar micro-doppler signatures processing and applications

    CERN Document Server

    Chen, Victor C; Miceli, William J

    2014-01-01

    Radar Micro-Doppler Signatures: Processing and applications concentrates on the processing and application of radar micro-Doppler signatures in real world situations, providing readers with a good working knowledge on a variety of applications of radar micro-Doppler signatures.

  12. SAR Ambiguity Study for the Cassini Radar

    Science.gov (United States)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  13. Radar Polarimetry: Theory, Analysis, and Applications

    Science.gov (United States)

    Hubbert, John Clark

    The fields of radar polarimetry and optical polarimetry are compared. The mathematics of optic polarimetry are formulated such that a local right handed coordinate system is always used to describe the polarization states. This is not done in radar polarimetry. Radar optimum polarization theory is redeveloped within the framework of optical polarimetry. The radar optimum polarizations and optic eigenvalues of common scatterers are compared. In addition a novel definition of an eigenpolarization state is given and the accompanying mathematics is developed. The polarization response calculated using optic, radar and novel definitions is presented for a variety of scatterers. Polarimetric transformation provides a means to characterize scatters in more than one polarization basis. Polarimetric transformation for an ensemble of scatters is obtained via two methods: (1) the covariance method and (2) the instantaneous scattering matrix (ISM) method. The covariance method is used to relate the mean radar parameters of a +/-45^circ linear polarization basis to those of a horizontal and vertical polarization basis. In contrast the ISM method transforms the individual time samples. Algorithms are developed for transforming the time series from fully polarimetric radars that switch between orthogonal states. The transformed time series are then used to calculate the mean radar parameters of interest. It is also shown that propagation effects do not need to be removed from the ISM's before transformation. The techniques are demonstrated using data collected by POLDIRAD, the German Aerospace Research Establishment's fully polarimetric C-band radar. The differential phase observed between two copolar states, Psi_{CO}, is composed of two phases: (1) differential propagation phase, phi_{DP}, and (2) differential backscatter phase, delta. The slope of phi_{DP } with range is an estimate of the specific differential phase, K_{DP}. The process of estimating K_{DP} is complicated when

  14. Detección de movimiento mediante técnicas radar CW-FM en banda W

    OpenAIRE

    Vargas González, Daniel

    2014-01-01

    Aplicació de diverses tècniques de detecció i localització per detectar moviments amb un radar C2-FM que opera en banda W. [ANGLÈS] Integration of a SAR adquisition system using a FM-CW 94 GHz radar and test the system by different measurement campaigns with the aim of detecting micrometic displacements using a phase analysis of the recived signal [CASTELLÀ[ Integración de un sistema de adquisición SAR mediante el uso de un radar FM-CW a 94 GHz y probar la validez del mencionado sistema...

  15. Introduction to radar target recognition

    CERN Document Server

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  16. Qualification test of Class 1E equipment based on IEEE323 Std 2003

    International Nuclear Information System (INIS)

    Kim, J. S.; Jung, S. C.; Kim, T. R.

    2004-01-01

    IEEE Standard for Qualifying Class 1E Equipment has been updated to 2003 edition since the issue of IEEE Std 323-1971, 1974, 1983. NRC approved the IEEE Std 323-1974 as Qualification standard of Class 1E Equipment in domestic nuclear power plant. IEEE Std 323-2003 was issued in September of 2003 and utility is waiting the approval of NRC. IEEE Std 323-2003 suggest a new qualification technique which adopts the condition monitoring. Performance of two transient during DBA test is no longer recommended in IEEE Std 323-2003. IEEE323 Std 2003 included a chapter of ''extension of Qualified life'' to make available the life extension of components during plant life extension. For the efficient control of preserving EQ in domestic nuclear power plant, IEEE323 Std 2003 is strongly recommended

  17. Electromagnetic simulators for Ground Penetrating Radar applications developed in COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonios; Warren, Craig; Antonijevic, Sinisa; Doric, Vicko; Poljak, Dragan

    2017-04-01

    Founded in 1971, COST (European COoperation in Science and Technology) is the first and widest European framework for the transnational coordination of research activities. It operates through Actions, science and technology networks with a duration of four years. The main objective of the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (4 April 2013 - 3 October 2017) is to exchange and increase knowledge and experience on Ground-Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe a wider use of this technique. Research activities carried out in TU1208 include all aspects of the GPR technology and methodology: design, realization and testing of radar systems and antennas; development and testing of surveying procedures for the monitoring and inspection of structures; integration of GPR with other non-destructive testing approaches; advancement of electromagnetic-modelling, inversion and data-processing techniques for radargram analysis and interpretation. GPR radargrams often have no resemblance to the subsurface or structures over which the profiles were recorded. Various factors, including the innate design of the survey equipment and the complexity of electromagnetic propagation in composite scenarios, can disguise complex structures recorded on reflection profiles. Electromagnetic simulators can help to understand how target structures get translated into radargrams. They can show the limitations of GPR technique, highlight its capabilities, and support the user in understanding where and in what environment GPR can be effectively used. Furthermore, electromagnetic modelling can aid the choice of the most proper GPR equipment for a survey, facilitate the interpretation of complex datasets and be used for the design of new antennas. Electromagnetic simulators can be employed to produce synthetic radargrams with the purposes of testing new data-processing, imaging and inversion algorithms, or assess

  18. Analysis of F-16 radar discrepancies

    Science.gov (United States)

    Riche, K. A.

    1982-12-01

    One hundred and eight aircraft were randomly selected from three USAF F-16 bases and examined. These aircraft included 63 single-seat F-16As and 45 two-seat F-16Bs and encompassed 8,525 sorties and 748 radar system write-ups. Programs supported by the Statistical Package for the Social Sciences (SPSS) were run on the data. Of the 748 discrepancies, over one-third of them occurred within three sorties of each other and half within six sorties. Sixteen percent of all aircraft which had a discrepancy within three sorties had another write-up within the next three sorties. Designated repeat/recurring write-ups represented one-third of all the instances in which the write-up separation interval was three sorties or less. This is an indication that maintenance is unable to correct equipment failures as they occur, most likely because the false alarm rate is too high and maintenance is unable to duplicate the error conditions on the ground for correct error diagnosis.

  19. Presentation of accessibility equipment for primary pipings, IHX, pumps and appertaining manipulator tests

    International Nuclear Information System (INIS)

    Hahn, G.; Hoeft, E.

    1980-01-01

    Accessibility and inservice procedure of SNR-300 components are described. Due to the high radiation level in the primary system it was necessary to develop special equipment to permit access to the testing components. The pertinent examination methods for surveying welding seams are acoustic (ultrasonic) and optical procedures (TV cameras, surface crack tests). This can be done by remote-controlled manipulators and special devices, which can transport the inspection system by rails to the testing position. Presently, relatively limited experience exists for such remote-controlled handling in nuclear power plants. Thus model experiments were carried out on a model pipe section at INTERATOM. The performed test shows that the concept planned to perform inservice by using remote-controlled manipulators can be realized successfully. (author)

  20. Integrating Radar Image Data with Google Maps

    Science.gov (United States)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  1. Seismic qualification of non-safety class equipment whose failure would damage safety class equipment

    International Nuclear Information System (INIS)

    LaSalle, F.R.

    1991-01-01

    Both Code of Federal Regulations, Title 10, Part 50, and US Department of Energy Order 6340.1A have requirements to assess the interaction of non-safety and safety class structures and equipment during a seismic event to maintain the safety function. At the Hanford Site, a cost effective program has been developed to perform the evaluation of non-safety class equipment. Seismic qualification is performed by analysis, test, or upgrading of the equipment to ensure the integrity of safety class structures and equipment. This paper gives a brief overview and synopsis that address design analysis guidelines including applied loading, damping values, component anchorage, allowable loads, and stresses. Test qualification of equipment and walkdown acceptance criteria for heating ampersand ventilation (H ampersand V) ducting, conduit, cable tray, missile zone of influence, as well as energy criteria are presented

  2. Ground and Space Radar Volume Matching and Comparison Software

    Science.gov (United States)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  3. Proposed limiting values for performance criteria in acceptance testing of diagnostic X-ray equipment in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Baeuml, A.

    1989-01-01

    In the Federal Republic of Germany a new X-ray ordinance came into force in 1988 containing a specific paragraph on quality assurance for all medical X-ray units stipulating acceptance tests, regular checks and supervision by medical bodies and the competent authorities. Acceptance testing is to be performed by engineers from equipment suppliers of manufacturers in new and existing installations. It is expected that the service engineers will adjust the equipment in such a way as to obtain optimal performance before measurements are made, the results of which are to be stated in a certificate describing quality status of the equipment. A working group has developed guidelines for these acceptance tests. Items to be measured are reported and proposed limiting values and their tolerances are discussed. (author)

  4. Proposed limiting values for performance criteria in acceptance testing of diagnostic X-ray equipment in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Baeuml, A.

    1989-01-01

    In the Federal Republic of Germany a new X-ray ordinance came into force in 1988 containing a specific paragraph on quality assurance for all medical X-ray units stipulating acceptance tests, regular checks and supervision by medical bodies and the competent authorities. Acceptance testing is to be performed by engineers from the equipment suppliers or manufacturers in new and also existing installations. It is expected that the service engineers will adjust the equipment in such a way as to obtain optimal performance before measurements are made, the results of which are to be stated in a certificate describing the quality status of the equipment. A working group has developed guidelines for these acceptance tests. The items to be measured are reported and the proposed limiting values and their tolerances are discussed. (author)

  5. Development Of Signal Detection For Radar Navigation System

    OpenAIRE

    Theingi Win Hlaing; Hla Myo Tun; Zaw Min Naing; Win Khaing Moe

    2017-01-01

    This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum...

  6. Radar detection of Vesta

    International Nuclear Information System (INIS)

    Ostro, S.J.; Cornell University, Ithaca, N.Y.); Campbell, D.B.; Pettengill, G.H.

    1980-01-01

    Asteroid 4 Vesta was detected on November 6, 1979 with the Arecibo Observatory's S-band (12.6-cm-wavelength) radar. The echo power spectrum, received in the circular polarization opposite to that transmitted, yields a radar cross section of (0.2 + or - 0.1)pi a-squared, for a 272 km. The data are too noisy to permit derivation of Vesta's rotation period

  7. Condor equatorial electrojet campaign: Radar results

    International Nuclear Information System (INIS)

    Kudeki, E.; Fejer, B.G.; Farley, D.T.; Hanuise, C.

    1987-01-01

    A review of the experimental and theoretical background to the Condor equatorial electrojet compaign is followed by the presentation and discussion of VHF radar interferometer and HF radar backscatter data taken concurrently with two rocket in situ experiments reported in companion papers (Pfaff et al., this issue (a, b). Both experiments were conducted in strongly driven periods with the on-line radar interferometer displaying signatures of what has been interpreted in earlier radar work (Kudeki et al., 1982) as kilometer scale gradient drift waves. Low-frequency density fluctuations detected by in situ rocket sensors confirm the earlier interpretation. VHF radar/rocket data comparisons also indicate the existence of a turbulent layer in the upper portion of the daytime electrojet at about 108 km altitude driven purely by the two-stream instability. Nonlinear mode coupling of linearly growing two-stream waves to linearly damped 3-m vertical modes could account for the radar echoes scattered from this layer, which showed no indication of large-scale gradient drift waves. Nonlinear mode coupling may therefore compete with the wave-induced anomalous diffusion mechanism proposed recently by Sudan (1983) for the saturation of directly excited two-stream waves. Nighttime radar data show a bifurcated layer with the two parts having comparable echo strength but oppositely directed zonal drift velocities. The lower layer shows narrow backscatter spectra; the upper layer is characterized by kilometer scale waves and vertically propagating type 1 waves

  8. Radar studies of the atmosphere using spatial and frequency diversity

    Science.gov (United States)

    Yu, Tian-You

    This work provides results from a thorough investigation of atmospheric radar imaging including theory, numerical simulations, observational verification, and applications. The theory is generalized to include the existing imaging techniques of coherent radar imaging (CRI) and range imaging (RIM), which are shown to be special cases of three-dimensional imaging (3D Imaging). Mathematically, the problem of atmospheric radar imaging is posed as an inverse problem. In this study, the Fourier, Capon, and maximum entropy (MaxEnt) methods are proposed to solve the inverse problem. After the introduction of the theory, numerical simulations are used to test, validate, and exercise these techniques. Statistical comparisons of the three methods of atmospheric radar imaging are presented for various signal-to-noise ratio (SNR), receiver configuration, and frequency sampling. The MaxEnt method is shown to generally possess the best performance for low SNR. The performance of the Capon method approaches the performance of the MaxEnt method for high SNR. In limited cases, the Capon method actually outperforms the MaxEnt method. The Fourier method generally tends to distort the model structure due to its limited resolution. Experimental justification of CRI and RIM is accomplished using the Middle and Upper (MU) Atmosphere Radar in Japan and the SOUnding SYstem (SOUSY) in Germany, respectively. A special application of CRI to the observation of polar mesosphere summer echoes (PMSE) is used to show direct evidence of wave steepening and possibly explain gravity wave variations associated with PMSE.

  9. A 100 GHz Polarimetric Compact Radar Range for Scale-Model Radar Cross Section Measurements

    Science.gov (United States)

    2013-10-01

    common radar bands. ACKNOWLEDGEMENTS The authors wish to thank David Jillson (UML STL – Electrical Engineer) for efforts involved in RF and DC wiring...Waldman J., Fetterman H.R., Duffy P.E., Bryant T.G., Tannenwald P.E., “Submillimeter Model Measurements and Their Applications to Millimeter Radar

  10. Arecibo Radar Observation of Near-Earth Asteroids: Expanded Sample Size, Determination of Radar Albedos, and Measurements of Polarization Ratios

    Science.gov (United States)

    Lejoly, Cassandra; Howell, Ellen S.; Taylor, Patrick A.; Springmann, Alessondra; Virkki, Anne; Nolan, Michael C.; Rivera-Valentin, Edgard G.; Benner, Lance A. M.; Brozovic, Marina; Giorgini, Jon D.

    2017-10-01

    The Near-Earth Asteroid (NEA) population ranges in size from a few meters to more than 10 kilometers. NEAs have a wide variety of taxonomic classes, surface features, and shapes, including spheroids, binary objects, contact binaries, elongated, as well as irregular bodies. Using the Arecibo Observatory planetary radar system, we have measured apparent rotation rate, radar reflectivity, apparent diameter, and radar albedos for over 350 NEAs. The radar albedo is defined as the radar cross-section divided by the geometric cross-section. If a shape model is available, the actual cross-section is known at the time of the observation. Otherwise we derive a geometric cross-section from a measured diameter. When radar imaging is available, the diameter was measured from the apparent range depth. However, when radar imaging was not available, we used the continuous wave (CW) bandwidth radar measurements in conjunction with the period of the object. The CW bandwidth provides apparent rotation rate, which, given an independent rotation measurement, such as from lightcurves, constrains the size of the object. We assumed an equatorial view unless we knew the pole orientation, which gives a lower limit on the diameter. The CW also provides the polarization ratio, which is the ratio of the SC and OC cross-sections.We confirm the trend found by Benner et al. (2008) that taxonomic types E and V have very high polarization ratios. We have obtained a larger sample and can analyze additional trends with spin, size, rotation rate, taxonomic class, polarization ratio, and radar albedo to interpret the origin of the NEAs and their dynamical processes. The distribution of radar albedo and polarization ratio at the smallest diameters (≤50 m) differs from the distribution of larger objects (>50 m), although the sample size is limited. Additionally, we find more moderate radar albedos for the smallest NEAs when compared to those with diameters 50-150 m. We will present additional trends we

  11. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    Science.gov (United States)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  12. Signal compression in radar using FPGA

    OpenAIRE

    Escamilla Hemández, Enrique; Kravchenko, Víctor; Ponomaryov, Volodymyr; Duchen Sánchez, Gonzalo; Hernández Sánchez, David

    2010-01-01

    We present the hardware implementation of radar real time processing procedures using a simple, fast technique based on FPGA (Field Programmable Gate Array) architecture. This processing includes different window procedures during pulse compression in synthetic aperture radar (SAR). The radar signal compression processing is realized using matched filter, and classical and novel window functions, where we focus on better solution for minimum values of sidelobes. The proposed architecture expl...

  13. Pedestrian recognition using automotive radar sensors

    OpenAIRE

    A. Bartsch; F. Fitzek; R. H. Rasshofer

    2012-01-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insight...

  14. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    Science.gov (United States)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  15. Long-wavelength Radar Studies of the Lunar Maria

    Science.gov (United States)

    Campbell, Bruce A.; Hawke, B. Ray; Thompson, Thomas W.

    1995-01-01

    Radar measurements at 70 cm and 7.5 m wavelengths provide insight into the structure and chemical properties of the upper 5-100 m of the lunar regolith and crust. Past work has identified a number of anomalous regions and changes in echo strength, some attributed to differences in titanium content. There has been little opportunity, however, to compare calibrated long-wavelength backscatter among different units or to theoretical model results. We combine recent high-resolution (3-5 km) 70-cm radar data for the nearside with earlier calibrated full-disk observations to provide a reasonable estimate of the true lunar backscatter coefficient. These data are tested against models for quasi-specular scattering from the surface, echoes from a buried substrate, and Mie scattering from surface and buried rocks. We find that 70 cm echoes likely arise from Mie scattering by distributed rocks within the soil, consistent with earlier hypotheses. Returns from a buried substrate would provide a plausible fit to the observations only if the regolith depth were 3 m or less and varied little across the maria. Depolarized echoes are due to some combination of single and multiple scattering events, but it appears that single scattering alone could account for the observed echo power, based on comparisons with terrestrial rocky surfaces. Backscatter strength from the regolith is most strongly affected by the loss tangent, whose variation with mineral content is still poorly defined. We compared the backscatter values for the mare deposits to the oxide contents inferred from spectral ratio methods, and found that in general the unit boundaries evident in radar images closely follow those seen in color difference images. The 70-cm data are not well correlated with TiO2 values found using the Charette relationship nor with Fe abundances derived from Clementine observations. The lack of a relationship between radar echo and Fe content is reasonable given the distribution of iron among

  16. Radar Scan Methods in Modern Multifunctional Radars

    Directory of Open Access Journals (Sweden)

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  17. Radar and Lidar Radar DEM

    Science.gov (United States)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  18. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  19. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  20. Performance indicators modern surveillance radar

    NARCIS (Netherlands)

    Nooij, P.N.C.; Theil, A.

    2014-01-01

    Blake chart computations are widely employed to rank detection coverage capabilities of competitive search radar systems. Developed for comparable 2D radar systems with a mechanically rotating reflector antenna, it was not necessary to regard update rate and plot quality in Blake's chart. To

  1. MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems 12/8/06 to 12/31/09

    Science.gov (United States)

    2010-01-01

    Channels are frequency dependent. It has been observed that the intervening materials, such as foliage and soil , have dielectric properties that are...equipment in a strong clutter background, such as foliage, soil cover or building has been a long-standing subject of intensive study. It is believed...foliage enviroment , and observed that the path-loss exponent is very high because it has rich scattering. Index Terms : Channel modeling, radar, UWB channel

  2. Dynamic neural network modeling of HF radar current maps for forecasting oil spill trajectories

    International Nuclear Information System (INIS)

    Tissot, P.; Perez, J.; Kelly, F.J.; Bonner, J.; Michaud, P.

    2001-01-01

    This paper examined the concept of dynamic neural network (NN) modeling for short-term forecasts of coastal high-frequency (HF) radar current maps offshore of Galveston Texas. HF radar technology is emerging as a viable and affordable way to measure surface currents in real time and the number of users applying the technology is increasing. A 25 megahertz, two site, Seasonde HF radar system was used to map ocean and bay surface currents along the coast of Texas where wind and river discharge create complex and rapidly changing current patters that override the weaker tidal flow component. The HF radar system is particularly useful in this type of setting because its mobility makes it a good marine spill response tool that could provide hourly current maps. This capability helps improve deployment of response resources. In addition, the NN model recently developed by the Conrad Blucher Institute can be used to forecast water levels during storm events. Forecasted currents are based on time series of current vectors from HF radar plus wind speed, wind direction, and water levels, as well as tidal forecasts. The dynamic NN model was tested to evaluate its performance and the results were compared with a baseline model which assumes the currents do not change from the time of the forecast up to the forecasted time. The NN model showed improvements over the baseline model for forecasting time equal or greater than 3 hours, but the difference was relatively small. The test demonstrated the ability of the dynamic NN model to link meteorological forcing functions with HF radar current maps. Development of the dynamic NN modeling is still ongoing. 18 refs., 1 tab., 5 figs

  3. Radar cross-section (RCS) analysis of high frequency surface wave radar targets

    OpenAIRE

    ÇAKIR, Gonca; SEVGİ, Levent

    2010-01-01

    Realistic high frequency surface wave radar (HFSWR) targets are investigated numerically in terms of electromagnetic wave -- target interactions. Radar cross sections (RCS) of these targets are simulated via both the finite-difference time-domain (FDTD) method and the Method of Moments (MoM). The virtual RCS prediction tool that was introduced in previous work is used for these investigations. The virtual tool automatically creates the discrete FDTD model of the target under investi...

  4. Evaluation of protection factor of respiratory protective equipment using indigenously developed protection factor test facility

    International Nuclear Information System (INIS)

    Patkulkar, D.S.; Ganesh, G.; Tripathi, R.M.

    2018-01-01

    Assigned protection factor (APF) is an indicator representing effectiveness of a respirator and it provides workplace level of respiratory protection for workers in providing protection against exposure to airborne contaminants Occupational Safety and Health Administration (OSHA) specifies 'Respirator APF' and 'Maximum Use Concentration' (MUC - a term derived using APF) shall be an integral part of Respirator Protection Standard. MUC establishes the maximum airborne concentration of a contaminant in which a respirator with a given APF may be used. The use of particulate respirators such as half face mask, full face mask and powered air purifying respirators is essential for radioactive jobs in nuclear facilities to prevent any intake of radionuclide. With this impetus, the Protection Factor Test Facility (PFTF) for testing and evaluation of respiratory protective equipment meeting relevant applicable standards was designed, fabricated and installed in Respiratory Protective Equipment Laboratory of Health Physics Division

  5. Laser radar cross-section estimation from high-resolution image data.

    Science.gov (United States)

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  6. Sea clutter scattering, the K distribution and radar performance

    CERN Document Server

    Ward, Keith; Watts, Simon

    2013-01-01

    Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd Edition gives an authoritative account of our current understanding of radar sea clutter. Topics covered include the characteristics of radar sea clutter, modelling radar scattering by the ocean surface, statistical models of sea clutter, the simulation of clutter and other random processes, detection of small targets in sea clutter, imaging ocean surface features, radar detection performance calculations, CFAR detection, and the specification and measurement of radar performance. The calculation of the performance of pract

  7. Performance Test of the Salt transfer and Pellet fabrication of UCl3 Making Equipment for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B.

    2014-01-01

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl 2 - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl 3 The apparatus for producing UCl 3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer

  8. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  9. W-026 acceptance test report system integration equipment (SIE)(submittal {number_sign} 018.6.A)

    Energy Technology Data Exchange (ETDEWEB)

    Watson, T.L.

    1997-01-27

    Acceptance testing of the System Integration Equipment (SIE) at Hanford was performed in two stages. The first was inconclusive, and resulted in a number of findings. These finding. are summarized as part of this report. The second stage of testing addressed these findings, and performed full system testing per the approved test procedure. This report includes summaries of all testing, results and finding.. Although the SIE did not in some cases perform as required for plant operations, it did perform per the system specification. (These discrepancies were noted and are addressed elsewhere.) Following testing, the system was formaLLy accepted. Documentation of this acceptance is incLuded in this report.

  10. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  11. Radar ornithology and the conservation of migratory birds

    Science.gov (United States)

    Sidney A. Gauthreaux; Carroll G. Belser

    2005-01-01

    It is possible to study with surveillance radar the movements of migrating birds in the atmosphere at different spatial scales. At a spatial scale within a range of 6 kilometers, high-resolution, 3-centimeter wavelength surveillance radar (e.g. BIRDRAD) can detect the departure of migrants from different types of habitat within a few kilometers of the radar. The radar...

  12. A Study of Equipment Accuracy and Test Precision in Dual Energy X-ray Absorptiometry

    International Nuclear Information System (INIS)

    Dong, Kyung Rae; Kim, Ho Sung; Jung, Woon Kwan

    2008-01-01

    =0.96), P2 - (spine: 0.002±0.018 g/cm 2 , %CV=0.55, Femur: 0.001±0.013 g/cm 2 , %CV=0.48) in Group 3. The average error±2SD, %CV, and r value was spine : 0.006±0.024 g/cm 2 , %CV=0.86, r=0.995, Femur: 0±0.014 g/cm 2 , %CV=0.54, r=0.998 in Group 4. Both LUNAR ASP CV% and HOLOGIC Spine Phantom are included in the normal range of error of ±2% defined in ISCD. BMD measurement keeps a relatively constant value, so showing excellent repeatability. The Phantom has homogeneous characteristics, but it has limitations to reflect the clinical part including variations in patient's body weight or body fat. As a result, it is believed that quality control using Phantom will be useful to check mis-calibration of the equipment used. A value measured a patient two times with one equipment, and that of double-crossed two equipment are all included within 2SD Value in the Bland - Altman Graph compared results of Group 3 with Group 4. The r value of 0.99 or higher in Linear regression analysis(Regression Analysis) indicated high precision and correlation. Therefore, it revealed that two compatible equipment did not affect in tracking the patients. Regular testing equipment and capabilities of a tester, then appropriate calibration will have to be achieved in order to calculate confidential BMD.

  13. A Study of Equipment Accuracy and Test Precision in Dual Energy X-ray Absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kyung Rae [Dept. of Radiological Technology, Gwangju Health College, Gwangju (Korea, Republic of); Kim, Ho Sung [Dept. of Nuclear Medicine, Asan Medical Center, Seoul (Korea, Republic of); Jung, Woon Kwan [Dept. of Nuclear Energy Technology, Chosun University, Gwangju (Korea, Republic of)

    2008-03-15

    .94, Femur: 0.001{+-}0.019 g/cm{sup 2}, %CV=0.96), P2 - (spine: 0.002{+-}0.018 g/cm{sup 2}, %CV=0.55, Femur: 0.001{+-}0.013 g/cm{sup 2}, %CV=0.48) in Group 3. The average error{+-}2SD, %CV, and r value was spine : 0.006{+-}0.024 g/cm{sup 2}, %CV=0.86, r=0.995, Femur: 0{+-}0.014 g/cm{sup 2}, %CV=0.54, r=0.998 in Group 4. Both LUNAR ASP CV% and HOLOGIC Spine Phantom are included in the normal range of error of {+-}2% defined in ISCD. BMD measurement keeps a relatively constant value, so showing excellent repeatability. The Phantom has homogeneous characteristics, but it has limitations to reflect the clinical part including variations in patient's body weight or body fat. As a result, it is believed that quality control using Phantom will be useful to check mis-calibration of the equipment used. A value measured a patient two times with one equipment, and that of double-crossed two equipment are all included within 2SD Value in the Bland - Altman Graph compared results of Group 3 with Group 4. The r value of 0.99 or higher in Linear regression analysis(Regression Analysis) indicated high precision and correlation. Therefore, it revealed that two compatible equipment did not affect in tracking the patients. Regular testing equipment and capabilities of a tester, then appropriate calibration will have to be achieved in order to calculate confidential BMD.

  14. Accuracy of three-dimensional glacier surface volocities derived from radar interfeometry and ice-soundin radar measurements

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels; Madsen, Søren Nørvang

    2003-01-01

    We present a method for analyzing the errors involved in measuring three-dimensional glacier velocities with interferometric radar. We address the surface-parallel flow assumption and an augmented approach with a flux-divergence (FD) term. The errors in an interferometric ERS-1/-2 satellite radar...... dataset with ascending- and descending-orbit data covering Storstrommen glacier, northeast Greenland, are assessed. The FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the same area. A simple model of an interferometric radar system is developed and analyzed. The error...... sources considered include phase noise, atmospheric distortions, baseline calibration errors, a dry snow layer, and the stationary-flow assumption used in differential interferometry. The additional error sources in the analysis of FD errors are noise, bias and unknown variations of the ice thickness...

  15. Development Of Signal Detection For Radar Navigation System

    Directory of Open Access Journals (Sweden)

    Theingi Win Hlaing

    2017-09-01

    Full Text Available This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum for detection in non-Gaussian nature. The theory of target detection in Gaussian distributed clutter has been well established and the closed form of the detection performances can be easily obtained. However that is not the case in non-Gaussian clutter distributions. The operation of radar detection is determined by radar detection theory with different types of Swerling target models such as Swerling I II III IV and V. By using MATLAB these signal detection techniques are developed.

  16. Impact of dual-polarization radar technology and Twitter on the Hattiesburg, Mississippi tornado.

    Science.gov (United States)

    Cates, Alexis L; Arnold, Brent W; Cooper, Guy Paul; Yeager, Violet; Stake, Josh; Ali, Mohammed; Calderone, Richard C; Wilkinson, James; Hsu, Edbert; Parrillo, Steven; Piper, Steven; Subbarao, Italo

    2013-12-01

    Dual-Polarization Radar and Twitter were analyzed to determine the impact on injuries sustained by the Hattiesburg EF-4 tornado. Tracking data provided from the Dual-Pol radar systems in National Weather Service Jackson were reviewed. Twitter data from four local Twitter handles were obtained. The change in tweets and followers for the day of the storm were compared to historical averages. A Student t-test was utilized in determining statistical significance (ptornado. An Injury Severity Score (ISS) was calculated for trauma records related to the tornado. Radar detection of the tornado gave approximately 30 minutes of advanced warning time. Statistical significance in follower growth was seen in all four Twitter handles. Out of 50 patients, the average ISS was 3.9 with a range of 1 to 29. There were zero fatalities. An ISS average of 3.9 was significantly less than two previous tornadoes of similar strength that occurred prior to increased usage of Dual-pol radar and Twitter as a means for communicating severe weather information. Early detection from Dual-pol radar improved warning time. Tweets informed citizens to seek appropriate shelter. (Disaster Med Public Health Preparedness. 2013;7:585-592).

  17. Design of electronic measurement and quench detection equipment for the Current Lead Test facility Karlsruhe (CuLTKa)

    International Nuclear Information System (INIS)

    Hollik, Markus; Fietz, Walter H.; Fink, Stefan; Gehrlein, Mirko; Heller, Reinhard; Lange, Christian; Möhring, Tobias

    2013-01-01

    The Current Lead Test facility Karlsruhe (CuLTKa) is under construction at the Karlsruhe Institute of Technology (KIT) to perform acceptance tests of high temperature superconductor (HTS) current leads (CL). CuLTKa is in progress and present planning expects the completion in 2013. The data acquisition system is based on a modular design with electronic measurement and monitoring equipment covering a test voltage of 50 kV DC against ground. It provides plug-in units which enable temperature and voltage measurement at high voltage potential and in addition quench detection units which detect a loss of superconductivity reliably and quickly to avoid damage of the superconducting device under test. Prototype units for quench detection, temperature and voltage measurement have been successfully tested. Six temperature measurement units are already in use in the KIT test facility TOSKA and operated reliably during the acceptance tests of the HTS current leads for Wendelstein 7-X (W7-X) in 2011/2012. CuLTKa will be used first for 26 current leads which will be built in KIT for the fusion experiment JT-60SA. The present paper gives an overview of the design of the electronic measurement and quench detection equipment

  18. Simpevarp site investigation. Geophysical, radar and BIPS logging in borehole KSH01A, HSH01, HSH02 and HSH03

    International Nuclear Information System (INIS)

    Nilsson, Per; Gustafsson, Christer

    2003-04-01

    The objective of the surveys is to both receive information of the borehole itself, and from the rock mass around the borehole. Bore hole radar was used to investigate the nature and the structure of the rock mass located around the boreholes, and BIPS for geological surveying and fracture mapping and orientation. Geophysical logging was used to measure changes in physical properties in the borehole fluid and the bedrock surrounding the boreholes. This field report describes the equipment used as well the measurement procedures. For the BIPS survey, the result is presented as images. Radar data is presented in radargrams and identified reflectors in each borehole are listed in tables. Geophysical logging data is presented in graphs as a function of depth

  19. Simpevarp site investigation. Geophysical, radar and BIPS logging in borehole KSH01A, HSH01, HSH02 and HSH03

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Per; Gustafsson, Christer [RAYCON, Malaa (Sweden)

    2003-04-01

    The objective of the surveys is to both receive information of the borehole itself, and from the rock mass around the borehole. Bore hole radar was used to investigate the nature and the structure of the rock mass located around the boreholes, and BIPS for geological surveying and fracture mapping and orientation. Geophysical logging was used to measure changes in physical properties in the borehole fluid and the bedrock surrounding the boreholes. This field report describes the equipment used as well the measurement procedures. For the BIPS survey, the result is presented as images. Radar data is presented in radargrams and identified reflectors in each borehole are listed in tables. Geophysical logging data is presented in graphs as a function of depth.

  20. Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar)

    Science.gov (United States)

    Kneifel, Stefan; Maahn, Maximilian; Peters, Gerhard; Simmer, Clemens

    2011-06-01

    Quantifying snowfall intensity especially under arctic conditions is a challenge because wind and snow drift deteriorate estimates obtained from both ground-based gauges and disdrometers. Ground-based remote sensing with active instruments might be a solution because they can measure well above drifting snow and do not suffer from flow distortions by the instrument. Clear disadvantages are, however, the dependency of e.g. radar returns on snow habit which might lead to similar large uncertainties. Moreover, high sensitivity radars are still far too costly to operate in a network and under harsh conditions. In this paper we compare returns from a low-cost, low-power vertically pointing FM-CW radar (Micro Rain Radar, MRR) operating at 24.1 GHz with returns from a 35.5 GHz cloud radar (MIRA36) for dry snowfall during a 6-month observation period at an Alpine station (Environmental Research Station Schneefernerhaus, UFS) at 2,650 m height above sea level. The goal was to quantify the potential and limitations of the MRR in relation to what is achievable by a cloud radar. The operational MRR procedures to derive standard radar variables like effective reflectivity factor ( Z e) or the mean Doppler velocity ( W) had to be modified for snowfall since the MRR was originally designed for rain observations. Since the radar returns from snowfall are weaker than from comparable rainfall, the behavior of the MRR close to its detection threshold has been analyzed and a method is proposed to quantify the noise level of the MRR based on clear sky observations. By converting the resulting MRR- Z e into 35.5 GHz equivalent Z e values, a remaining difference below 1 dBz with slightly higher values close to the noise threshold could be obtained. Due to the much higher sensitivity of MIRA36, the transition of the MRR from the true signal to noise can be observed, which agrees well with the independent clear sky noise estimate. The mean Doppler velocity differences between both radars

  1. Modern Radar Techniques for Geophysical Applications: Two Examples

    Science.gov (United States)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  2. Blending of Radial HF Radar Surface Current and Model Using ETKF Scheme For The Sunda Strait

    Science.gov (United States)

    Mujiasih, Subekti; Riyadi, Mochammad; Wandono, Dr; Wayan Suardana, I.; Nyoman Gede Wiryajaya, I.; Nyoman Suarsa, I.; Hartanto, Dwi; Barth, Alexander; Beckers, Jean-Marie

    2017-04-01

    Preliminary study of data blending of surface current for Sunda Strait-Indonesia has been done using the analysis scheme of the Ensemble Transform Kalman Filter (ETKF). The method is utilized to combine radial velocity from HF Radar and u and v component of velocity from Global Copernicus - Marine environment monitoring service (CMEMS) model. The initial ensemble is based on the time variability of the CMEMS model result. Data tested are from 2 CODAR Seasonde radar sites in Sunda Strait and 2 dates such as 09 September 2013 and 08 February 2016 at 12.00 UTC. The radial HF Radar data has a hourly temporal resolution, 20-60 km of spatial range, 3 km of range resolution, 5 degree of angular resolution and spatial resolution and 11.5-14 MHz of frequency range. The u and v component of the model velocity represents a daily mean with 1/12 degree spatial resolution. The radial data from one HF radar site is analyzed and the result compared to the equivalent radial velocity from CMEMS for the second HF radar site. Error checking is calculated by root mean squared error (RMSE). Calculation of ensemble analysis and ensemble mean is using Sangoma software package. The tested R which represents observation error covariance matrix, is a diagonal matrix with diagonal elements equal 0.05, 0.5 or 1.0 m2/s2. The initial ensemble members comes from a model simulation spanning a month (September 2013 or February 2016), one year (2013) or 4 years (2013-2016). The spatial distribution of the radial current are analyzed and the RMSE values obtained from independent HF radar station are optimized. It was verified that the analysis reproduces well the structure included in the analyzed HF radar data. More importantly, the analysis was also improved relative to the second independent HF radar site. RMSE of the improved analysis is better than first HF Radar site Analysis. The best result of the blending exercise was obtained for observation error variance equal to 0.05 m2/s2. This study is

  3. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  4. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...... necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall...... estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...

  5. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...... applications. The paper also reviews how the focus in urban hydrology research has shifted over the last decade to fields such as climate change impacts, resilience of urban areas to hydrological extremes, and online prediction/warning systems. It is discussed how radar rainfall data can add value......Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...

  6. Meteor observation by the Kyoto meteor radar

    International Nuclear Information System (INIS)

    Kato, S.; Tsuda, T.

    1987-01-01

    The Kyoto Meteor Radar is a monostatic coherent pulsed Doppler radar operating on the frequency of 31.57 MH. The system is computer controlled and uses radio interferometry for echo height determination. The antenna, an improvement, can be directed either to the north or the east. The system has been continuously collecting data on winds at meteor heights by radar observation. The meteor echo rate was also measured, the echo rate distribution with height and the daily variation in height integrated echo rate are discussed. Investigations of atmospheric tides are being pursued by cooperative observations. A novel approach to the study of gravity waves was attempted using the meteor radar which is able to detect the horizontal propagation of the waves by observing the changing phase through the region illuminated by the radar

  7. CSU-CHILL Polarimetric Radar Measurements from a Severe Hail Storm in Eastern Colorado.

    Science.gov (United States)

    Hubbert, J.; Bringi, V. N.; Carey, L. D.; Bolen, S.

    1998-08-01

    Polarimetric radar measurements made by the recently upgraded CSU-CHILL radar system in a severe hailstorm are analyzed permitting for the first time the combined use of Zh, ZDR, linear depolarization ratio (LDR), KDP, and h to infer hydrometeor types. A chase van equipped for manual collection of hail, and instrumented with a rain gauge, intercepted the storm core for 50 min. The period of golfball-sized hail is easily distinguished by high LDR (greater than or equal to 18 dB), negative ZDR (less than or equal to 0.5 dB), and low h (less than or equal to 0.93) values near the surface. Rainfall accumulation over the entire event (about 40 mm) estimated using KDP is in excellent agreement with the rain gauge measurement. Limited dual-Doppler synthesis using the CSU-CHILL and Denver WSR-88D radars permit estimates of the horizontal convergence at altitudes less than 3 km above ground level (AGL) at 1747 and 1812 mountain daylight time (MDT). Locations of peak horizontal convergence at these times are centered on well-defined positive ZDR columns. Vertical sections of multiparameter radar data at 1812 MDT are interpreted in terms of hydrometeor type. In particular, an enhanced LDR `cap' area on top of the the positive ZDR column is interpreted as a region of mixed phase with large drops mixed with partially frozen and frozen hydrometeors. A positive KDP column on the the western fringe of the main updraft is inferred to be the result of drops (1-2 mm) shed by wet hailstones. Swaths of large hail at the surface (inferred from LDR signatures) and positive ZDR at 3.5 km AGL suggest that potential frozen drop embryos are favorably located for growth into large hailstones. Thin section analysis of a sample of the large hailstones shows that 30%-40% have frozen drop embryos.

  8. Ten years of sodium cooled steam generator tests on the C.G.V.S. Synthesis of the results obtained on these equipments and operation experiments of an industrial size test facility

    International Nuclear Information System (INIS)

    Fontaine, J.P.; Llory, M.; Quinet, J.L.

    1984-04-01

    From 1970 to 1980, Electricite de France carried out tests on four steam generators of the fast neutron reactor series on an industrial size testing equipment, the C.G.V.S. (large power testing Circuit for Steam Generators heated by Sodium). After a presentation of the testing installation, types of tests carried out and tested apparatus, a balance of lessons drawn from the circuit exploitation, and from the main results obtained on the tested equipments and on the means of calculation COPI and SICLE codes developed or adopted to simulate steam generator operation. 33 figs., 50 refs [fr

  9. An interferometric radar sensor for monitoring the vibrations of structures at short ranges

    Directory of Open Access Journals (Sweden)

    Luzi Guido

    2018-01-01

    Full Text Available The Real-Aperture-Radar (RAR interferometry technique consolidated in the last decade as an operational tool for the monitoring of large civil engineering structures as bridges, towers, and buildings. In literature, experimental campaigns collected through a well-known commercial equipment have been widely documented, while the cases where different types of sensors have been tested are a few. On the bases of some experimental tests, a new sensor working at high frequency, providing some improved performances, is here discussed. The core of the proposed system is an off-the-shelf, linear frequency modulated continuous wave device. The development of this apparatus is aimed at achieving a proof-of-concept, tackling operative aspects related to the development of a low cost and reliable system. The capability to detect the natural frequencies of a lightpole has been verified; comparing the results of the proposed sensor with those ones obtained through a commercial system based on the same technique, a more detailed description of the vibrating structure has been achieved. The results of this investigation confirmed that the development of sensors working at higher frequencies, although deserving deeper studies, is very promising and could open new applications demanding higher spatial resolutions at close ranges.

  10. NOAA NEXt-Generation RADar (NEXRAD) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  11. The use of radar for bathymetry in shallow seas

    NARCIS (Netherlands)

    Greidanus, H.

    1997-01-01

    The bottom topography in shallow seas can be observed by air- and space borne radar. The paper reviews the radar imaging mechanism, and discusses the possibilities and limitations for practical use of radar in bathymetric applications, including the types of radar instruments available for this

  12. 76 FR 77914 - Energy Conservation Program for Certain Commercial and Industrial Equipment: Test Procedures for...

    Science.gov (United States)

    2011-12-15

    ... lifetime. Correlated color temperature (CCT) and color rendering index (CRI) would also be measured as potential means to delineate equipment classes for HID lamps. This notice of proposed rulemaking (NOPR) also... Conditions a. Ambient Conditions i. Ambient Test Temperature ii. Air Speed b. Power Supply Characteristics i...

  13. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  14. Radar geomorphology of coastal and wetland environments

    Science.gov (United States)

    Lewis, A. J.; Macdonald, H. C.

    1973-01-01

    Details regarding the collection of radar imagery over the past ten years are considered together with the geomorphic, geologic, and hydrologic data which have been extracted from radar imagery. Recent investigations were conducted of the Louisiana swamp marsh and the Oregon coast. It was found that radar imagery is a useful tool to the scientist involved in wetland research.

  15. Architecture for a 1-GHz Digital RADAR

    Science.gov (United States)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  16. Evolution of Precipitation Structure During the November DYNAMO MJO Event: Cloud-Resolving Model Intercomparison and Cross Validation Using Radar Observations

    Science.gov (United States)

    Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong

    2018-04-01

    Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.

  17. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  18. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  19. Textural features for radar image analysis

    Science.gov (United States)

    Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.

    1981-01-01

    Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

  20. Radar detection of ultra high energy cosmic rays

    Science.gov (United States)

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.

  1. Low Complexity Receiver Design for MIMO-Radar

    KAUST Repository

    Ahmed, Sajid

    2012-09-08

    In this work, an algorithm for the multiple-input multiple-output (MIMO) radar is proposed. It has low computational complexity compared to the available schemes, and relatively low side-lobe-levels in the receive beampattern compared to the phased-array and MIMO-radar. In the proposed algorithm, the received signal vector of MIMO-radar is divided into sub-vectors, and each sub-vector is multiplied with the corresponding weight vector. The number of sub-vectors and weight vectors are optimally found to maximise the received signal power from the target of interest direction. The proposed scheme can be effectively applied in passive radars to minimise the side-lobe levels and place deep nulls for interferers in the receive beampattern. Simulation results show that the proposed scheme has relatively lower side lobe levels and better detection capabilities compared to MIMO-radar and phased-array.

  2. Low Complexity Receiver Design for MIMO-Radar

    KAUST Repository

    Ahmed, Sajid; Alouini, Mohamed-Slim

    2012-01-01

    In this work, an algorithm for the multiple-input multiple-output (MIMO) radar is proposed. It has low computational complexity compared to the available schemes, and relatively low side-lobe-levels in the receive beampattern compared to the phased-array and MIMO-radar. In the proposed algorithm, the received signal vector of MIMO-radar is divided into sub-vectors, and each sub-vector is multiplied with the corresponding weight vector. The number of sub-vectors and weight vectors are optimally found to maximise the received signal power from the target of interest direction. The proposed scheme can be effectively applied in passive radars to minimise the side-lobe levels and place deep nulls for interferers in the receive beampattern. Simulation results show that the proposed scheme has relatively lower side lobe levels and better detection capabilities compared to MIMO-radar and phased-array.

  3. Methodology development for availability improvement of standby equipment

    International Nuclear Information System (INIS)

    Shin, Sung Min; Jeon, In Seop; Kang, Hyun Gook

    2014-01-01

    The core damage frequency (CDF) of operating and constructing pressurized nuclear plants are ranging on the order of 10 -5 and 10 -6 per year. The target CDF of new NPP design has been set at 10 -7 . In this context, although various systems are currently studied, availability improvement of standby equipment will be more efficient than the additional application of safety systems. It is obvious in every aspect, such as management and cost efficiency. Here, soundness can affect equipment unavailability, and the soundness degrades because of aging. However, some studies did not consider aging when calculating the unavailability. Standby equipment can age because of two important factors: standby stress which accumulates over time, and test stress which accumulates with the number of tests (or operations). Both factors should be considered together when aging is considered. However, some studies only considered standby stress or test stress. There are some previous studies which considered both factors. Besides equipment soundness related to aging effect, some process like bypass during test also can affect equipment unavailability because the original function of equipment cannot be performed immediately during this process. However, there are seldom studies dealing with above factors as a whole problem. This study investigated a general approach to calculate the unavailability of standby equipment which considers aging caused by standby and test stresses and bypass process. Based on this general approach, we propose two maintenance strategies which aim to reduce standby equipment unavailability. In section 2, the general approach is presented. As one of the strategies, the changing test interval method (CIM) is introduced in section 3, and its effectiveness is also analyzed. The online monitoring method (OMM) is investigated in section 4 as another method to reduce equipment unavailability. In section 5, a combination of these two methods is analyzed. A general

  4. Development of Spaceborne Radar Simulator by NICT and JAXA using JMA Cloud-resolving Model

    Science.gov (United States)

    Kubota, T.; Eito, H.; Aonashi, K.; Hashimoto, A.; Iguchi, T.; Hanado, H.; Shimizu, S.; Yoshida, N.; Oki, R.

    2009-12-01

    We are developing synthetic spaceborne radar data toward a simulation of the Dual-frequency Precipitation Radar (DPR) aboard the Global Precipitation Measurement (GPM) core-satellite. Our purposes are a production of test-bed data for higher level DPR algorithm developers, in addition to a diagnosis of a cloud resolving model (CRM). To make the synthetic data, we utilize the CRM by the Japan Meteorological Agency (JMA-NHM) (Ikawa and Saito 1991, Saito et al. 2006, 2007), and the spaceborne radar simulation algorithm by the National Institute of Information and Communications Technology (NICT) and the Japan Aerospace Exploration Agency (JAXA) named as the Integrated Satellite Observation Simulator for Radar (ISOSIM-Radar). The ISOSIM-Radar simulates received power data in a field of view of the spaceborne radar with consideration to a scan angle of the radar (Oouchi et al. 2002, Kubota et al. 2009). The received power data are computed with gaseous and hydrometeor attenuations taken into account. The backscattering and extinction coefficients are calculated assuming the Mie approximation for all species. The dielectric constants for solid particles are computed by the Maxwell-Garnett model (Bohren and Battan 1982). Drop size distributions are treated in accordance with those of the JMA-NHM. We assume a spherical sea surface, a Gaussian antenna pattern, and 49 antenna beam directions for scan angles from -17 to 17 deg. in the PR. In this study, we report the diagnosis of the JMA-NHM with reference to the TRMM Precipitation Radar (PR) and CloudSat Cloud Profiling Radar (CPR) using the ISOSIM-Radar from the view of comparisons in cloud microphysics schemes of the JMA-NHM. We tested three kinds of explicit bulk microphysics schemes based on Lin et al. (1983), that is, three-ice 1-moment scheme, three-ice 2-moment scheme (Eito and Aonashi 2009), and newly developed four-ice full 2-moment scheme (Hashimoto 2008). The hydrometeor species considered here are rain, graupel

  5. Physical working principles of medical radar.

    Science.gov (United States)

    Aardal, Øyvind; Paichard, Yoann; Brovoll, Sverre; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-04-01

    There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.

  6. Comparison of FPS-16 radar/jimsphere and NASA's 50-MHz radar wind profiler turbulence indicators

    Science.gov (United States)

    Susko, Michael

    1993-01-01

    Measurements of the wind and turbulent regions from the surface to 16 km by the FPS-11 radar/jimsphere system are reported with particular attention given to the use of these turbulence and wind assessments to validate the NASA 50-MHz radar wind profiler. Wind profile statistics were compared at 150-m wavelengths, a wavelength validated from 20 jimspheres, simultaneously tracked by FPS-16 and FPQ-14 radar, and the resulting analysis of auto spectra, cross-spectra, and coherence squared spectra of the wind profiles. Results demonstrate that the NASA prototype wind profiler is an excellent monitoring device illustrating the measurements of the winds within 1/2 hour of launch zero.

  7. Non-destructive testing of a NPP's metallic equipment during operation

    International Nuclear Information System (INIS)

    Brodskij, B.R.; Monina, Eh.F.

    1977-01-01

    Some nondestructive testing methods and facilities currently used in the USSR and overseas to remotely control the quality of a NPPs metallic equipment during operation are reviewed. The ultrasonic and γ scanning devices designed to verify the integrity of nuclear reactor pressure vessels and piping weldments are considered. The acoustic emission techniques, ultrasonic holography and routine ultrasonic fault detection are acknowledged the most promising and safe when applied to reactor vessels. On the other hand, the radiographic methods are pointed out not to quarantee the identification of a flaw. There is also a description of a container designed to maintain and repair a nuclear reactor in the highly radioactive environment. The increased interest of foreign firms towards acoustic emission techniques is stressed

  8. An overview of equipment survivability studies at Sandia National Laboratories (SNL)

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Craft, Ch.M.; McCulloch, W.H.; Sebrell, W.A.

    1983-01-01

    The USNRC sponsors a number of programs at Sandia National Laboratories (SNL) specifically addressing safety-related equipment survivability. The major thrust of these programs has been the physical testing of equipment. Test results illustrate the importance of a dedicated equipment design effort giving particular attention to the safety implications of the equipment operation. Several equipment survivability tests here have revealed equipment design and test-related deficiencies

  9. TCSP ER-2 DOPPLER RADAR (EDOP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TCSP ER-2 DOPPLER RADAR (EDOP) dataset was collected by the ER-2 Doppler radar (EDOP), which is an X-band (9.6 GHz) Doppler radar mounted in the nose of the ER-2...

  10. CAMEX-4 ER-2 DOPPLER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 Doppler Radar dataset was collected by the ER-2 Doppler radar (EDOP), which is an X-band (9.6 GHz) Doppler radar mounted in the nose of ER-2. The...

  11. Field vibration test of principal equipment of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shiraki, Kazuhiro; Fujita, Katsuhisa; Kajimura, Motohiko; Ikegami, Yasuhiko; Hanzawa, Katsumi; Sakai, Yoshiyuki; Kokubo, Eiji; Igarashi, Shigeru

    1984-09-01

    Japan is one of the most earthquake-stricken countries in the world, and demands for aseismic design have become severer recently. In a nuclear power plant in particular, consisting of a reactor vessel and other facilities dealing with a radioactive substance in some form or other, it is essential from the standpoint of safety to eliminate any possibility of radioactive hazards for the local public, and the employees at the plant as well, if these facilities are struck by an earthquake. This paper is related to the reactor vessel, reactor primary cooling equipment and piping system and important general piping as examples of important facilities of a nuclear power plant, and discusses vibration tests of an actual plant in the field from the standpoint of enhancing the aseismic safety of the Mitsubishi PWR nuclear power plant. Especially concerning vibration test technology, the effects in the evaluation of aseismic safety and its limits are studied to prove how it contributes to the enhancement of the reliability of aseismic design of nuclear power plants.

  12. Measuring and test equipment control through bar-code technology

    International Nuclear Information System (INIS)

    Crockett, J.D.; Carr, C.C.

    1993-01-01

    Over the past several years, the use, tracking, and documentation of measuring and test equipment (M ampersand TE) has become a major issue. New regulations are forcing companies to develop new policies for providing use history, traceability, and accountability of M ampersand TE. This paper discusses how the Fast Flux Test Facility (FFTF), operated by Westinghouse Hanford Company and located at the Hanford site in Rich- land, Washington, overcame these obstacles by using a computerized system exercising bar-code technology. A data base was developed to identify M ampersand TE containing 33 separate fields, such as manufacturer, model, range, bar-code number, and other pertinent information. A bar-code label was attached to each piece of M ampersand TE. A second data base was created to identify the employee using the M ampersand TE. The fields contained pertinent user information such as name, location, and payroll number. Each employee's payroll number was bar coded and attached to the back of their identification badge. A computer program was developed to automate certain tasks previously performed and tracked by hand. Bar-code technology was combined with this computer program to control the input and distribution of information, eliminate common mistakes, electronically store information, and reduce the time required to check out the M ampersand TE for use

  13. Phased Array Radar Network Experiment for Severe Weather

    Science.gov (United States)

    Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.

    2017-12-01

    Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.

  14. Quantitative precipitation estimation in complex orography using quasi-vertical profiles of dual polarization radar variables

    Science.gov (United States)

    Montopoli, Mario; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Baldini, Luca

    2017-04-01

    Weather radars are nowadays a unique tool to estimate quantitatively the rain precipitation near the surface. This is an important task for a plenty of applications. For example, to feed hydrological models, mitigate the impact of severe storms at the ground using radar information in modern warning tools as well as aid the validation studies of satellite-based rain products. With respect to the latter application, several ground validation studies of the Global Precipitation Mission (GPM) products have recently highlighted the importance of accurate QPE from ground-based weather radars. To date, a plenty of works analyzed the performance of various QPE algorithms making use of actual and synthetic experiments, possibly trained by measurement of particle size distributions and electromagnetic models. Most of these studies support the use of dual polarization variables not only to ensure a good level of radar data quality but also as a direct input in the rain estimation equations. Among others, one of the most important limiting factors in radar QPE accuracy is the vertical variability of particle size distribution that affects at different levels, all the radar variables acquired as well as rain rates. This is particularly impactful in mountainous areas where the altitudes of the radar sampling is likely several hundred of meters above the surface. In this work, we analyze the impact of the vertical profile variations of rain precipitation on several dual polarization radar QPE algorithms when they are tested a in complex orography scenario. So far, in weather radar studies, more emphasis has been given to the extrapolation strategies that make use of the signature of the vertical profiles in terms of radar co-polar reflectivity. This may limit the use of the radar vertical profiles when dual polarization QPE algorithms are considered because in that case all the radar variables used in the rain estimation process should be consistently extrapolated at the surface

  15. Phase and amplitude inversion of crosswell radar data

    Science.gov (United States)

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2011-01-01

    Phase and amplitude inversion of crosswell radar data estimates the logarithm of complex slowness for a 2.5D heterogeneous model. The inversion is formulated in the frequency domain using the vector Helmholtz equation. The objective function is minimized using a back-propagation method that is suitable for a 2.5D model and that accounts for the near-, intermediate-, and far-field regions of the antennas. The inversion is tested with crosswell radar data collected in a laboratory tank. The model anomalies are consistent with the known heterogeneity in the tank; the model’s relative dielectric permittivity, which is calculated from the real part of the estimated complex slowness, is consistent with independent laboratory measurements. The methodologies developed for this inversion can be adapted readily to inversions of seismic data (e.g., crosswell seismic and vertical seismic profiling data).

  16. YSAR: a compact low-cost synthetic aperture radar

    Science.gov (United States)

    Thompson, Douglas G.; Arnold, David V.; Long, David G.; Miner, Gayle F.; Karlinsey, Thomas W.; Robertson, Adam E.

    1997-09-01

    The Brigham Young University Synthetic Aperture Radar (YSAR) is a compact, inexpensive SAR system which can be flown on a small aircraft. The system has exhibited a resolution of approximately 0.8 m by 0.8 m in test flights in calm conditions. YSAR has been used to collect data over archeological sites in Israel. Using a relatively low frequency (2.1 GHz), we hope to be able to identify walls or other archeological features to assist in excavation. A large data set of radar and photographic data have been collected over sites at Tel Safi, Qumran, Tel Micnah, and the Zippori National Forest in Israel. We show sample images from the archeological data. We are currently working on improved autofocus algorithms for this data and are developing a small, low-cost interferometric SAR system (YINSAR) for operation from a small aircraft.

  17. Radar, sonar, and holography an introduction

    CERN Document Server

    Kock, Winston E

    1974-01-01

    Radar, Sonar, and Holography: An Introduction provides an introduction to the technology of radar and sonar. Because the new science of holography is affecting both these fields quite strongly, the book includes an explanation of the fundamental principles underlying this new art (including the subjects of wave coherence, interference, and diffraction) and of the hologram process itself. Finally, numerous examples are discussed which show how holography is providing new horizons to radar and sonar systems. The book thus also provides a simple approach to the new technology of holography. The

  18. Detecting and mitigating wind turbine clutter for airspace radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  19. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2013-01-01

    Full Text Available It is well recognized that a wind turbine has a large radar cross-section (RCS and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  20. West Valley Demonstration Project vitrification process equipment Functional and Checkout Testing of Systems (FACTS)

    International Nuclear Information System (INIS)

    Carl, D.E.; Paul, J.; Foran, J.M.; Brooks, R.

    1990-01-01

    The Vitrification Facility (VF) at the West Valley Demonstration Project was designed to convert stored radioactive waste into a stable glass for disposal in a federal repository. The Functional and Checkout Testing of Systems (FACTS) program was conducted from 1984 to 1989. During this time new equipment and processes were developed, installed, and implemented. Thirty-seven FACTS tests were conducted, and approximately 150,000 kg of glass were made by using nonradioactive materials to simulate the radioactive waste. By contrast, the planned radioactive operation is expected to produce approximately 500,000 kg of glass. The FACTS program demonstrated the effectiveness of equipment and procedures in the vitrification system, and the ability of the VF to produce quality glass on schedule. FACTS testing also provided data to validate the WVNS waste glass qualification method and verify that the product glass would meet federal repository acceptance requirements. The system was built and performed to standards which would have enabled it to be used in radioactive service. As a result, much of the VF tested, such as the civil construction, feed mixing and holding vessels, and the off-gas scrubber, will be converted for radioactive operation. The melter was still in good condition after being at temperature for fifty-eight of the sixty months of FACTS. However, the melter exceeded its recommended design life and will be replaced with a similar melter. Components that were not designed for remote operation and maintenance will be replaced with remote-use items. The FACTS testing was accomplished with no significant worker injury or environmental releases. During the last FACTS run, the VF processes approximated the remote-handling system that will be used in radioactive operations. Following this run the VF was disassembled for conversion to a radioactive process. Functional and checkout testing of new components will be performed prior to radioactive operation