WorldWideScience

Sample records for radar reflectivity factor

  1. Quantifying uncertainties in radar forward models through a comparison between CloudSat and SPartICus reflectivity factors

    Science.gov (United States)

    Mascio, Jeana; Mace, Gerald G.

    2017-02-01

    Interpretations of remote sensing measurements collected in sample volumes containing ice-phase hydrometeors are very sensitive to assumptions regarding the distributions of mass with ice crystal dimension, otherwise known as mass-dimensional or m-D relationships. How these microphysical characteristics vary in nature is highly uncertain, resulting in significant uncertainty in algorithms that attempt to derive bulk microphysical properties from remote sensing measurements. This uncertainty extends to radar reflectivity factors forward calculated from model output because the statistics of the actual m-D in nature is not known. To investigate the variability in m-D relationships in cirrus clouds, reflectivity factors measured by CloudSat are combined with particle size distributions (PSDs) collected by coincident in situ aircraft by using an optimal estimation-based (OE) retrieval of the m-D power law. The PSDs were collected by 12 flights of the Stratton Park Engineering Company Learjet during the Small Particles in Cirrus campaign. We find that no specific habit emerges as preferred, and instead, we find that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum-defying simple categorization. With the uncertainties derived from the OE algorithm, the uncertainties in forward-modeled backscatter cross section and, in turn, radar reflectivity is calculated by using a bootstrapping technique, allowing us to infer the uncertainties in forward-modeled radar reflectivity that would be appropriately applied to remote sensing simulator algorithms.

  2. Radar reflection off extensive air showers

    CERN Document Server

    Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J

    2012-01-01

    We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  3. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  4. Raindrop size distribution and radar reflectivity-rain rate relationships for radar hydrology

    NARCIS (Netherlands)

    Uijlenhoet, R.

    2001-01-01

    The conversion of the radar reflectivity factor Z (mm6m-3) to rain rate R (mm h-1) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the

  5. Evaluation of radar reflectivity factor simulations of ice crystal populations from in situ observations for the retrieval of condensed water content in tropical mesoscale convective systems

    Directory of Open Access Journals (Sweden)

    E. Fontaine

    2017-06-01

    Full Text Available This study presents the evaluation of a technique to estimate cloud condensed water content (CWC in tropical convection from airborne cloud radar reflectivity factors at 94 GHz and in situ measurements of particle size distributions (PSDs and aspect ratios of ice crystal populations. The approach is to calculate from each 5 s mean PSD and flight-level reflectivity the variability of all possible solutions of m(D relationships fulfilling the condition that the simulated radar reflectivity factor (T-matrix method matches the measured radar reflectivity factor. For the reflectivity simulations, ice crystals were approximated as oblate spheroids, without using a priori assumptions on the mass–size relationship of ice crystals. The CWC calculations demonstrate that individual CWC values are in the range ±32 % of the retrieved average CWC value over all CWC solutions for the chosen 5 s time intervals. In addition, during the airborne field campaign performed out of Darwin in 2014, as part of the international High Altitude Ice Crystals/High Ice Water Content (HAIC/HIWC projects, CWCs were measured independently with the new IKP-2 (isokinetic evaporator probe instrument along with simultaneous particle imagery and radar reflectivity. Retrieved CWCs from the T-matrix radar reflectivity simulations are on average 16 % higher than the direct CWCIKP measurements. The differences between the CWCIKP and averaged retrieved CWCs are found to be primarily a function of the total number concentration of ice crystals. Consequently, a correction term is applied (as a function of total number concentration that significantly improves the retrieved CWC. After correction, the retrieved CWCs have a median relative error with respect to measured values of only −1 %. Uncertainties in the measurements of total concentration of hydrometeors are investigated in order to calculate their contribution to the relative error of calculated CWC with respect to

  6. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    Science.gov (United States)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the

  7. Assimilation of radar reflectivity into the LM COSMO model with a high horizontal resolution

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Řezáčová, Daniela

    2006-01-01

    Roč. 13, č. 4 (2006), s. 317-330 ISSN 1350-4827 R&D Projects: GA ČR GA205/04/0114 Institutional research plan: CEZ:AV0Z30420517 Keywords : precipitation forecast * assimilation * radar reflectivity * NWP model * local storm Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.453, year: 2006

  8. Radar-based rainfall estimation: Improving Z/R relations through comparison of drop size distributions, rainfall rates and radar reflectivity patterns

    Science.gov (United States)

    Neuper, Malte; Ehret, Uwe

    2014-05-01

    The relation between the measured radar reflectivity factor Z and surface rainfall intensity R - the Z/R relation - is profoundly complex, so that in general one speaks about radar-based quantitative precipitation estimation (QPE) rather than exact measurement. Like in Plato's Allegory of the Cave, what we observe in the end is only the 'shadow' of the true rainfall field through a very small backscatter of an electromagnetic signal emitted by the radar, which we hope has been actually reflected by hydrometeors. The meteorological relevant and valuable Information is gained only indirectly by more or less justified assumptions. One of these assumptions concerns the drop size distribution, through which the rain intensity is finally associated with the measured radar reflectivity factor Z. The real drop size distribution is however subject to large spatial and temporal variability, and consequently so is the true Z/R relation. Better knowledge of the true spatio-temporal Z/R structure therefore has the potential to improve radar-based QPE compared to the common practice of applying a single or a few standard Z/R relations. To this end, we use observations from six laser-optic disdrometers, two vertically pointing micro rain radars, 205 rain gauges, one rawindsonde station and two C-band Doppler radars installed or operated in and near the Attert catchment (Luxembourg). The C-band radars and the rawindsonde station are operated by the Belgian and German Weather Services, the rain gauge data was partly provided by the French, Dutch, Belgian, German Weather Services and the Ministry of Agriculture of Luxembourg and the other equipment was installed as part of the interdisciplinary DFG research project CAOS (Catchment as Organized Systems). With the various data sets correlation analyzes were executed. In order to get a notion on the different appearance of the reflectivity patterns in the radar image, first of all various simple distribution indices (for example the

  9. Estimating radar reflectivity - snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations

    Science.gov (United States)

    Souverijns, Niels; Gossart, Alexandra; Lhermitte, Stef; Gorodetskaya, Irina; Kneifel, Stefan; Maahn, Maximilian; Bliven, Francis; van Lipzig, Nicole

    2017-04-01

    The Antarctic Ice Sheet (AIS) is the largest ice body on earth, having a volume equivalent to 58.3 m global mean sea level rise. Precipitation is the dominant source term in the surface mass balance of the AIS. However, this quantity is not well constrained in both models and observations. Direct observations over the AIS are also not coherent, as they are sparse in space and time and acquisition techniques differ. As a result, precipitation observations stay mostly limited to continent-wide averages based on satellite radar observations. Snowfall rate (SR) at high temporal resolution can be derived from the ground-based radar effective reflectivity factor (Z) using information about snow particle size and shape. Here we present reflectivity snowfall rate relations (Z = aSRb) for the East Antarctic escarpment region using the measurements at the Princess Elisabeth (PE) station and an overview of their uncertainties. A novel technique is developed by combining an optical disdrometer (NASA's Precipitation Imaging Package; PIP) and a vertically pointing 24 GHz FMCW micro rain radar (Metek's MRR) in order to reduce the uncertainty in SR estimates. PIP is used to obtain information about snow particle characteristics and to get an estimate of Z, SR and the Z-SR relation. For PE, located 173 km inland, the relation equals Z = 18SR1.1. The prefactor (a) of the relation is sensitive to the median diameter of the particles. Larger particles, found closer to the coast, lead to an increase of the value of the prefactor. More inland locations, where smaller snow particles are found, obtain lower values for the prefactor. The exponent of the Z-SR relation (b) is insensitive to the median diameter of the snow particles. This dependence of the prefactor of the Z-SR relation to the particle size needs to be taken into account when converting radar reflectivities to snowfall rates over Antarctica. The uncertainty on the Z-SR relations is quantified using a bootstrapping approach

  10. AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS Level 1b radiances spectra, CloudSat radar reflectivities, and MODIS...

  11. Effects of target shape and reflection on laser radar cross sections.

    Science.gov (United States)

    Steinvall, O

    2000-08-20

    Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.

  12. Performance ratings and personality factors in radar controllers.

    Science.gov (United States)

    1970-09-01

    The purpose of the study was to determine whether primary or second-order personality questionnaire factors were related to job performance ratings on the Employee Appraisal Record in a sample of 264 radar controllers. A Pearson correlation matrix wa...

  13. Interpretation of the distortion of ground-penetrating radar propagated and reflected waves - development of a multi-frequency tomography

    International Nuclear Information System (INIS)

    Hollender, F.

    1999-01-01

    Within the framework of research for waste disposal in deep geological formations, the French agency for nuclear waste management (ANDRA) has to dispose of non-destructive investigation methods to characterize the medium. Ground penetrating radar (GPR) could be used for this purpose in the case of granitic sites. The work presented here deals with this geophysical method. The classical interpretation of GPR data consists in the localization of geological discontinuities by signal amplitude or arrival time analysis. The main objective of our studies is the interpretation of the radar wave distortion (due to propagation and reflection phenomena), not only to localize discontinuities but also to contribute to their identification. Three preliminary studies have been carried out in order to understand on the one hand, the complexity of the electromagnetic phenomena in the geological medium at radar frequency, and on the other hand, the radar equipment constraints. First, the dispersion and the attenuation characterized by a Q variable factor of the GPR waves are shown with the support of dielectric laboratory measurements. A model, which only requires three parameters, is proposed in order to describe this behavior. Second, the radiation patterns of borehole radar antenna are studied. We show that the amplitude and frequency content of the emitted signal are variable versus the emission angle. An analytical method is proposed to study these phenomena. Finally, instrumental drifts of GPR equipment are studied. Emission time, sampling frequency and amplitude fluctuations are described. These elements are taken into account for the processing of propagated signals by tomographic inversion. Medium anisotropy and borehole trajectory errors are inserted in algorithms in order to cancel artifacts which compromised the previous interpretation. A pre-processing method, based on wave separation algorithm, is applied on data in order to increase tomogram resolution. A new

  14. Assimilation of extrapolated radar reflectivity into a NWP model and its impact on a precipitation forecast at high resolution

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk

    2011-01-01

    Roč. 100, 2-3 (2011), s. 201-212 ISSN 0169-8095 R&D Projects: GA ČR GA205/07/0905; GA MŠk ME09033 Institutional research plan: CEZ:AV0Z30420517 Keywords : Precipitation forecast * Nowcasting * Assimilation of radar reflectivity * Numerical weather prediction * Convective storms Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.911, year: 2011 http://www.sciencedirect.com/science/article/pii/S0169809510002462

  15. Lava flows in mare imbrium: An evaluation of anomalously low earth-based radar reflectivity

    Science.gov (United States)

    Schaber, G.G.; Thompson, T.W.; Zisk, S.H.

    1975-01-01

    The lunar maria reflect two to five times less Earth-based radar power than the highlands, the spectrally blue maria surfaces returning the lowest power levels. This effect of weakening signal return has been attributed to increased signal absorption related to the electrical and magnetic characteristics of the mineral ilmenite (FeTiO3). The surface of Mare Imbrium contains some of the most distinct red-blue colorimetric boundaries and depolarized 70 cm wavelength reflectivity variations on the near side of the Moon. The weakest levels of both 3.8 cm and 70 cm reflectivity within Imbrium are confined to regional mare surfaces of the blue spectral type that can be recognized as stratigraphically unique flow surfaces. Frequency distributions of the 70 cm polarized and depolarized radar return power for five mare surfaces within the basin indicate that signal absorption, and probably the ilmenite content, increases generally from the beginning of the Imbrian Period to the end of the Eratosthenian Period with slight reversal between the end of the Imbrian and beginning of the Eratosthenian. TiO2 calibrated radar reflectivity curves can be utilized for lunar maria geochemical mapping in the same manner as the TiO2 calibrated spectral reflectivity curves of Charette et al. (1974). The long wavelength radar data may be a sensitive indicator of mare chemical variations as it is unaffected by the normal surface rock clutter that includes ray materials from large impact craters. ?? 1975 D. Reidel Publishing Company.

  16. An assimilation test of Doppler radar reflectivity and radial velocity from different height layers in improving the WRF rainfall forecasts

    Science.gov (United States)

    Tian, Jiyang; Liu, Jia; Yan, Denghua; Li, Chuanzhe; Chu, Zhigang; Yu, Fuliang

    2017-12-01

    Hydrological forecasts require high-resolution and accurate rainfall information, which is one of the most difficult variables to be captured by the mesoscale Numerical Weather Prediction (NWP) systems. Radar data assimilation is an effective method for improving rainfall forecasts by correcting the initial and lateral boundary conditions of the NWP system. The aim of this study is to explore an efficient way of utilizing the Doppler radar observations for data assimilation, which is implemented by exploring the effect of assimilating radar data from different height layers on the improvement of the NWP rainfall accuracy. The Weather Research and Forecasting (WRF) model is used for numerical rainfall forecast in the Zijingguan catchment located in the ;Jing-Jin-Ji; (Beijing-Tianjin-Hebei) Region of Northern China, and the three-dimensional variational data assimilation (3-DVar) technique is adopted to assimilate the radar data. Radar reflectivity and radial velocity are assimilated separately and jointly. Each type of radar data is divided into seven data sets according to the height layers: (1) 2000 m, and (7) all layers. The results show that radar reflectivity assimilation leads to better results than radial velocity assimilation. The accuracy of the forecasted rainfall deteriorates with the rise of the height of the assimilated radar reflectivity. The same results can be found when assimilating radar reflectivity and radial velocity at the same time. The conclusions of this study provide a reference for efficient assimilation of the radar data in improving the NWP rainfall products.

  17. Detection of hail signatures from single-polarization C-band radar reflectivity

    Science.gov (United States)

    Kunz, Michael; Kugel, Petra I. S.

    2015-02-01

    Five different criteria that estimate hail signatures from single-polarization radar data are statistically evaluated over a 15-year period by categorical verification against loss data provided by a building insurance company. The criteria consider different levels or thresholds of radar reflectivity, some of them complemented by estimates of the 0 °C level or cloud top temperature. Applied to reflectivity data from a single C-band radar in southwest Germany, it is found that all criteria are able to reproduce most of the past damage-causing hail events. However, the criteria substantially overestimate hail occurrence by up to 80%, mainly due to the verification process using damage data. Best results in terms of highest Heidke Skill Score HSS or Critical Success Index CSI are obtained for the Hail Detection Algorithm (HDA) and the Probability of Severe Hail (POSH). Radar-derived hail probability shows a high spatial variability with a maximum on the lee side of the Black Forest mountains and a minimum in the broad Rhine valley.

  18. Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Zacharov, Petr, jr.

    2012-01-01

    Roč. 138, č. 665 (2012), s. 1072-1082 ISSN 0035-9009 Institutional support: RVO:68378289 Keywords : precipitation forecast * radar extrapolation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.327, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/qj.970/abstract

  19. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    International Nuclear Information System (INIS)

    Plumb, R.; Steeples, D.W.

    1998-01-01

    the seismic reflection data and the ground-penetrating radar (GPR) data over time. Two factors drive these changes: First, the soil-moisture conditions vary on a seasonal basis at the site. Second, the water table rises and falls on the order of one meter in response to changes in the level of the Arkansas River and in response to the many irrigation wells found nearby. At the test site in the Arkansas River alluvial valley near Great Bend, Kansas, surface material consists of unconsolidated medium- to coarse-grained sand interspersed with clay stringers and lenses deposited by the Arkansas River. A hand-augered test hole 5 meters from the seismic line revealed sand to a depth of about 1.5 meters, where a hard pan was found presumably a clay layer. At the time of the seismic and GPR surveys, the water table was at a depth of 2.1 meters, based on a measurement in a test well located 25 meters from the seismic line. A well drilled about 40 meters away from the seismic line encountered bedrock (a fine- to medium-grained Cretaceous-age sandstone) at a depth of 29 meters.'

  20. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    Science.gov (United States)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  1. A 100,000 Scale Factor Radar Range.

    Science.gov (United States)

    Blanche, Pierre-Alexandre; Neifeld, Mark; Peyghambarian, Nasser

    2017-12-19

    The radar cross section of an object is an important electromagnetic property that is often measured in anechoic chambers. However, for very large and complex structures such as ships or sea and land clutters, this common approach is not practical. The use of computer simulations is also not viable since it would take many years of computational time to model and predict the radar characteristics of such large objects. We have now devised a new scaling technique to overcome these difficulties, and make accurate measurements of the radar cross section of large items. In this article we demonstrate that by reducing the scale of the model by a factor 100,000, and using near infrared wavelength, the radar cross section can be determined in a tabletop setup. The accuracy of the method is compared to simulations, and an example of measurement is provided on a 1 mm highly detailed model of a ship. The advantages of this scaling approach is its versatility, and the possibility to perform fast, convenient, and inexpensive measurements.

  2. AIRS-AMSU variables-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS/AMSU retrievals at AMSU footprints, CloudSat radar reflectivities,...

  3. Radar-Based Depth Area Reduction Factors for Colorado

    Science.gov (United States)

    Curtis, D. C.; Humphrey, J. H.; Bare, D.

    2011-12-01

    More than 340,000 fifteen-minute storm cells, nearly 45,000 one-hour cells, and over 20,000 three-hour cells found in 21 months of gage adjusted radar-rainfall estimates (GARR) over El Paso County, CO, were identified and evaluated using TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting) software. TITAN's storm cell identification capability enabled the analysis of the geometric properties of storms, time step by time step. The gage-adjusted radar-rainfall data set was derived for months containing runoff producing events observed in the Fountain Creek Watershed within El Paso County from 1994-2008. Storm centered Depth Area Reduction Factors (DARFs) were computed and compared to DARFs published by the U.S. National Weather Service (NWS) in Technical Paper 29, which are widely used in stormwater infrastructure design. Radar-based storm centered DARFs decay much more sharply than the NWS standard curves. The results suggest lower watershed average rainfall inputs from radar-based storm centered DARFs than from standard NWS DARFs for a given watershed area. The results also suggest that DARFs are variable by return period and, perhaps, by location. Both findings could have significant impacts on design storm standards. Lower design volumes for a given return period translate to lower capacity requirements and lower cost infrastructure. Conversely, the higher volume requirements implied for the NWS DARFs translate to higher capacity requirements, higher costs, but lower risk of failure. Ultimately, a decision about which approach is to use depends on the risk tolerance of the decision maker. However, the growing volume of historical radar rainfall estimates coupled with the type of analysis described herein, supports a better understanding of risk and more informed decision-making by local officials.

  4. Modified Hitschfeld-Bordan Equations for Attenuation-Corrected Radar Rain Reflectivity: Application to Nonuniform Beamfilling at Off-Nadir Incidence

    Science.gov (United States)

    Meneghini, Robert; Liao, Liang

    2013-01-01

    As shown by Takahashi et al., multiple path attenuation estimates over the field of view of an airborne or spaceborne weather radar are feasible for off-nadir incidence angles. This follows from the fact that the surface reference technique, which provides path attenuation estimates, can be applied to each radar range gate that intersects the surface. This study builds on this result by showing that three of the modified Hitschfeld-Bordan estimates for the attenuation-corrected radar reflectivity factor can be generalized to the case where multiple path attenuation estimates are available, thereby providing a correction to the effects of nonuniform beamfilling. A simple simulation is presented showing some strengths and weaknesses of the approach.

  5. Characterization of tropical precipitation using drop size distribution and rain rate-radar reflectivity relation

    Science.gov (United States)

    Das, Saurabh; Maitra, Animesh

    2018-04-01

    Characterization of precipitation is important for proper interpretation of rain information from remotely sensed data. Rain attenuation and radar reflectivity (Z) depend directly on the drop size distribution (DSD). The relation between radar reflectivity/rain attenuation and rain rate (R) varies widely depending upon the origin, topography, and drop evolution mechanism and needs further understanding of the precipitation characteristics. The present work utilizes 2 years of concurrent measurements of DSD using a ground-based disdrometer at five diverse climatic conditions in Indian subcontinent and explores the possibility of rain classification based on microphysical characteristics of precipitation. It is observed that both gamma and lognormal distributions are performing almost similar for Indian region with a marginally better performance by one model than other depending upon the locations. It has also been found that shape-slope relationship of gamma distribution can be a good indicator of rain type. The Z-R relation, Z = ARb, is found to vary widely for different precipitation systems, with convective rain that has higher values of A than the stratiform rain for two locations, whereas the reverse is observed for the rest of the three locations. Further, the results indicate that the majority of rainfall (>50%) in Indian region is due to the convective rain although the occurrence time of convective rain is low (<10%).

  6. Modelling of ground penetrating radar data in stratified media using the reflectivity technique

    International Nuclear Information System (INIS)

    Sena, Armando R; Sen, Mrinal K; Stoffa, Paul L

    2008-01-01

    Horizontally layered media are often encountered in shallow exploration geophysics. Ground penetrating radar (GPR) data in these environments can be modelled by techniques that are more efficient than finite difference (FD) or finite element (FE) schemes because the lateral homogeneity of the media allows us to reduce the dependence on the horizontal spatial variables through Fourier transforms on these coordinates. We adapt and implement the invariant embedding or reflectivity technique used to model elastic waves in layered media to model GPR data. The results obtained with the reflectivity and FDTD modelling techniques are in excellent agreement and the effects of the air–soil interface on the radiation pattern are correctly taken into account by the reflectivity technique. Comparison with real wide-angle GPR data shows that the reflectivity technique can satisfactorily reproduce the real GPR data. These results and the computationally efficient characteristics of the reflectivity technique (compared to FD or FE) demonstrate its usefulness in interpretation and possible model-based inversion schemes of GPR data in stratified media

  7. Ground-penetrating radar study of the Cena Bog, Latvia: linkage of reflections with peat moisture content

    Directory of Open Access Journals (Sweden)

    Karušs, J.

    2015-12-01

    Full Text Available Present work illustrates results of the ground-penetrating radar (GPR study of the Cena Bog, Latvia. Six sub-horizontal reflections that most probably correspond to boundaries between sediments with different electromagnetic properties were identified. One of the reflections corresponds to bog peat mineral bottom interface but the rest are linked to boundaries within the peat body. The radar profiles are incorporated with sediment cores and studies of peat moisture and ash content, and degree of decomposition. Most of the electromagnetic wave reflections are related to changes in peat moisture content. The obtained data show that peat moisture content changes of at least 3 % are required to cause GPR signal reflection. However, there exist reflections that do not correlate with peat moisture content. As a result, authors disagree with a dominant opinion that all reflections in bogs are solely due to changes in volumetric peat moisture content.

  8. Improved estimation of heavy rainfall by weather radar after reflectivity correction and accounting for raindrop size distribution variability

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2015-04-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and meteorological perspective. Unfortunately, the operational weather radar measurements were affected by multiple sources of error and only 30% of the precipitation observed by rain gauges was estimated. Such an underestimation of heavy rainfall, albeit generally less strong than in this extreme case, is typical for operational weather radar in The Netherlands. In general weather radar measurement errors can be subdivided into two groups: (1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, radar calibration, vertical profile of reflectivity) and (2) errors resulting from variations in the raindrop size distribution that in turn result in incorrect rainfall intensity and attenuation estimates from observed reflectivity measurements. A stepwise procedure to correct for the first group of errors leads to large improvements in the quality of the estimated precipitation, increasing the radar rainfall accumulations to about 65% of those observed by gauges. To correct for the second group of errors, a coherent method is presented linking the parameters of the radar reflectivity-rain rate (Z-R) and radar reflectivity-specific attenuation (Z-k) relationships to the normalized drop size distribution (DSD). Two different procedures were applied. First, normalized DSD parameters for the whole event and for each precipitation type separately (convective, stratiform and undefined) were obtained using local disdrometer observations. Second, 10,000 randomly generated plausible normalized drop size distributions were used for rainfall estimation, to evaluate whether this Monte Carlo method would improve the quality of weather radar rainfall products. Using the

  9. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    Science.gov (United States)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  10. Numerical analysis on the absorption, reflection and transmission of radar waves by a uniform magnetized plasma slab

    International Nuclear Information System (INIS)

    Tang Deli; Sun Aiping; Qiu Xiaoming

    2002-01-01

    The absorption, reflection, and transmission of radar waves by a uniform and magnetized plasma slab are studied. The effect of various plasma parameters and different values of magnetic field intensity on the absorbed, reflected and transmitted power are discussed. The calculated results show that the effects of magnetic field on the absorbed power as well as the frequency band of resonant absorption are very significant. More than 90% of radar wave power can be absorbed and the resonant absorption band is about 2G Hz

  11. Simulador de radar meteorológico basado en modelo de Reflectividades en el espacio; Weather radar simulator based on space Reflectivity distribution

    Directory of Open Access Journals (Sweden)

    Vladímir Rodríguez Diez

    2012-07-01

    Full Text Available Los radares meteorológicos son potentes instrumentos de medición de potencia eléctrica. Los simuladores de radar permiten estudiar la influencia de todos sus parámetros en las mediciones que realiza. Su aplicación en laactualidad comprende el estudio de la influencia de las propiedades físicas de los hidrometeoros y la configuración del radar en la observación; y el estudio del desempeño de los modelos climáticos a partir de la confrontación de lasalida del simulador con la observación real. En este trabajo se utiliza como entrada al simulador una distribución de Reflectividades (parámetro proporcional a la potencia retornada en la atmósfera; obviando la compleja relación que existe entre esta última y las propiedades físicas del blanco meteorológico. El resultado es un simulador que posibilita el estudio de los efectos de patrón de escaneo de la atmósfera y el esquema de adquisición yprocesamientos de los datos, sobre la percepción de un blanco meteorológico. Weather radar are powerful measurement instruments for electric power. Radar simulators allows to investigate the influence of its parameter on measurements.Its application comprehend the study of influence of hydrometeor's physical properties and radar configurations in observation; and the study of climate model performance upon the confrontation of simulator output versus actual observations. In this work simulator input is given as a spacial reflectivity (proportional to returned power distribution in atmosphere, obviating the complex relation between this and physical properties of meteorological target. The result is a simulator for the study of volume scan pattern and acquisition and processing scheme effects on weather target observation.

  12. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Lane, J.W. Jr.; Joesten, P.K.; Pohll, Greg; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna. Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m. Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures. Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  13. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    Science.gov (United States)

    Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  14. Ground-Based Observations and Modeling of the Visibility and Radar Reflectivity in a Radiation Fog Layer

    NARCIS (Netherlands)

    Boers, R.; Baltink, K.H.; Hemink, H.J.; Bosveld, F.C.; Moerman, M.

    2013-01-01

    The development of a radiation fog layer at the Cabauw Experimental Site for Atmospheric Research(51.97°N, 4.93°E) on 23 March 2011 was observed with ground-based in situ and remote sensing observationsto investigate the relationship between visibility and radar reflectivity. The fog layer thickness

  15. Constraining mass-diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils

    Science.gov (United States)

    Fontaine, E.; Schwarzenboeck, A.; Delanoë, J.; Wobrock, W.; Leroy, D.; Dupuy, R.; Gourbeyre, C.; Protat, A.

    2014-10-01

    In this study the density of ice hydrometeors in tropical clouds is derived from a combined analysis of particle images from 2-D-array probes and associated reflectivities measured with a Doppler cloud radar on the same research aircraft. Usually, the mass-diameter m(D) relationship is formulated as a power law with two unknown coefficients (pre-factor, exponent) that need to be constrained from complementary information on hydrometeors, where absolute ice density measurement methods do not apply. Here, at first an extended theoretical study of numerous hydrometeor shapes simulated in 3-D and arbitrarily projected on a 2-D plan allowed to constrain the exponent βof the m(D) relationship from the exponent σ of the surface-diameterS(D)relationship, which is likewise written as a power law. Since S(D) always can be determined for real data from 2-D optical array probes or other particle imagers, the evolution of the m(D) exponent can be calculated. After that, the pre-factor α of m(D) is constrained from theoretical simulations of the radar reflectivities matching the measured reflectivities along the aircraft trajectory. The study was performed as part of the Megha-Tropiques satellite project, where two types of mesoscale convective systems (MCS) were investigated: (i) above the African continent and (ii) above the Indian Ocean. For the two data sets, two parameterizations are derived to calculate the vertical variability of m(D) coefficients α and β as a function of the temperature. Originally calculated (with T-matrix) and also subsequently parameterized m(D) relationships from this study are compared to other methods (from literature) of calculating m(D) in tropical convection. The significant benefit of using variable m(D) relations instead of a single m(D) relationship is demonstrated from the impact of all these m(D) relations on Z-CWC (Condensed Water Content) and Z-CWC-T-fitted parameterizations.

  16. Three-dimensional fusion of spaceborne and ground radar reflectivity data using a neural network-based approach

    Science.gov (United States)

    Kou, Leilei; Wang, Zhuihui; Xu, Fen

    2018-03-01

    The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method; interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.

  17. Hardware requirements: A new generation partial reflection radar for studies of the equatorial mesosphere

    Science.gov (United States)

    Vincent, R. A.

    1986-01-01

    A new partial reflection (PR) radar is being developed for operation at the proposed Equatorial Observatory. The system is being designed to make maximum use of recent advances in solid-state technology in order to minimize the power requirements. In particular, it is planned to use a solid-state transmitter in place of the tube transmitters previously used in PR systems. Solid-state transmitters have the advantages that they do not need high voltage supplies, they do not require cathode heaters with a corresponding saving in power consumption and parts are readily available and inexpensive. It should be possible to achieve 15 kW peak powers with recently announced fast switching transistors. Since high mean powers are desirable for obtaining good signal-to-noise ratios, it is also planned to phase code the transmitted pulses and decode after coherent integration. All decoding and signal processing will be carried out in dedicated microprocessors before the signals are passed to a microcomputer for on-line analysis. Recent tests have shown that an Olivetti M24 micro (an IBM compatible) running an 8-MHz clock with a 8087 coprocessor can analyze data at least as fast as the minicomputers presently being used with the Adelaide PR rad ar and at a significantly lower cost. The processed winds data will be stored in nonvolatile CMOS RAM modules; about 0.5 to 1 Mbyte is required to store one week's information.

  18. Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar

    Science.gov (United States)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.

    2013-09-01

    This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.

  19. 2002/2003 IfSAR data for Southern California: Radar Reflectance Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the collection and processing of topographic elevation point data derived from Interferometric Synthetic Aperture Radar (IfSAR)...

  20. Low complexity joint estimation of reflection coefficient, spatial location, and Doppler shift for MIMO-radar by exploiting 2D-FFT

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2014-01-01

    In multiple-input multiple-output (MIMO) radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, maximum-likelihood (ML) estimation yields the best performance. For this problem, the ML estimation requires

  1. GAMMA RAY REFLECTION FACTORS FROM CONCRETE

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, Arthur B.

    1963-06-15

    By means of the differential dose albedo formula, the field from a point source of gamma radiation near a concrete-air interface is mapped for those conditions in which the distances involved are larger than a meanfree-path in concrete but substantially smaller than a mean-free-path in air. Once the parameters for the albedo formula are selected, the computation of reflection factors can be carried out to any desired degree of accuracy. Computational errors are kept to substantially less than 5% of the resulting output values. (C.E.S.)

  2. Calibration of Local Area Weather Radar-Identifying significant factors affecting the calibration

    DEFF Research Database (Denmark)

    Pedersen, Lisbeth; Jensen, Niels Einar; Madsen, Henrik

    2010-01-01

    A Local Area Weather Radar (LAWR) is an X-band weather radar developed to meet the needs of high resolution rainfall data for hydrological applications. The LAWR system and data processing methods are reviewed in the first part of this paper, while the second part of the paper focuses...... cases when the calibration is based on a factorized 3 parameter linear model instead of a single parameter linear model....

  3. Efficiency of four-plasmon interaction in the reflection of a radar signal from the Sun

    International Nuclear Information System (INIS)

    Gerasimova, N.N.

    1979-01-01

    The problem, whether electromagnetic scattering by plasma turbulence pulsations of the solar corona can provide the necessary power of radar echo, is investigated. Expressions for the effective scattering cross-section have been obtained for two cases: 1) when the electromagnetic wave is scattered by Langmuir turbulence of an isotropic plasma; 2) when the wave is scattered on the ion-acoustic waves. The numerical estimates obtained show that four-plasmon interactions of the electromagnetic radiation and the coronal turbulent pulsations are an effective mechanism which can explain the results of radar observations of the Sun

  4. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  5. Analysis of X-band radar images for the detection of the reflected and diffracted waves in coastal zones

    Science.gov (United States)

    Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco

    2014-05-01

    The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no

  6. Interpretation of the distortion of ground-penetrating radar propagated and reflected waves - development of a multi-frequency tomography; Interpretation de la distorsion des signaux georadar propages et reflechis. Developpement d'une tomographie par bandes de frequence

    Energy Technology Data Exchange (ETDEWEB)

    Hollender, F

    1999-07-01

    Within the framework of research for waste disposal in deep geological formations, the French agency for nuclear waste management (ANDRA) has to dispose of non-destructive investigation methods to characterize the medium. Ground penetrating radar (GPR) could be used for this purpose in the case of granitic sites. The work presented here deals with this geophysical method. The classical interpretation of GPR data consists in the localization of geological discontinuities by signal amplitude or arrival time analysis. The main objective of our studies is the interpretation of the radar wave distortion (due to propagation and reflection phenomena), not only to localize discontinuities but also to contribute to their identification. Three preliminary studies have been carried out in order to understand on the one hand, the complexity of the electromagnetic phenomena in the geological medium at radar frequency, and on the other hand, the radar equipment constraints. First, the dispersion and the attenuation characterized by a Q variable factor of the GPR waves are shown with the support of dielectric laboratory measurements. A model, which only requires three parameters, is proposed in order to describe this behavior. Second, the radiation patterns of borehole radar antenna are studied. We show that the amplitude and frequency content of the emitted signal are variable versus the emission angle. An analytical method is proposed to study these phenomena. Finally, instrumental drifts of GPR equipment are studied. Emission time, sampling frequency and amplitude fluctuations are described. These elements are taken into account for the processing of propagated signals by tomographic inversion. Medium anisotropy and borehole trajectory errors are inserted in algorithms in order to cancel artifacts which compromised the previous interpretation. A pre-processing method, based on wave separation algorithm, is applied on data in order to increase tomogram resolution. A new

  7. The impact of reflectivity correction and accounting for raindrop size distribution variability to improve precipitation estimation by weather radar for an extreme low-land mesoscale convective system

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-11-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and meteorological perspective. Unfortunately, the operational weather radar measurements were affected by multiple sources of error and only 30% of the precipitation observed by rain gauges was estimated. Such an underestimation of heavy rainfall, albeit generally less strong than in this extreme case, is typical for operational weather radar in The Netherlands. In general weather radar measurement errors can be subdivided into two groups: (1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, radar calibration, vertical profile of reflectivity) and (2) errors resulting from variations in the raindrop size distribution that in turn result in incorrect rainfall intensity and attenuation estimates from observed reflectivity measurements. A stepwise procedure to correct for the first group of errors leads to large improvements in the quality of the estimated precipitation, increasing the radar rainfall accumulations to about 65% of those observed by gauges. To correct for the second group of errors, a coherent method is presented linking the parameters of the radar reflectivity-rain rate (Z - R) and radar reflectivity-specific attenuation (Z - k) relationships to the normalized drop size distribution (DSD). Two different procedures were applied. First, normalized DSD parameters for the whole event and for each precipitation type separately (convective, stratiform and undefined) were obtained using local disdrometer observations. Second, 10,000 randomly generated plausible normalized drop size distributions were used for rainfall estimation, to evaluate whether this Monte Carlo method would improve the quality of weather radar rainfall products. Using the

  8. Exploration of factors limiting biomass estimation by polarimetric radar in tropical forests

    NARCIS (Netherlands)

    Quiñones Fernández, M.J.; Hoekman, D.H.

    2004-01-01

    Direct inversion of radar return signals for forest biomass estimation is limited by signal saturation at medium biomass levels (roughly 150 ton/ha for P-band). Disturbing factors such as forest structural differences-and, notably, at low biomass levels, terrain roughness, and soil moisture

  9. Characterizing the degree of convective clustering using radar reflectivity and its application to evaluating model simulations

    Science.gov (United States)

    Cheng, W. Y.; Kim, D.; Rowe, A.; Park, S.

    2017-12-01

    Despite the impact of mesoscale convective organization on the properties of convection (e.g., mixing between updrafts and environment), parameterizing the degree of convective organization has only recently been attempted in cumulus parameterization schemes (e.g., Unified Convection Scheme UNICON). Additionally, challenges remain in determining the degree of convective organization from observations and in comparing directly with the organization metrics in model simulations. This study addresses the need to objectively quantify the degree of mesoscale convective organization using high quality S-PolKa radar data from the DYNAMO field campaign. One of the most noticeable aspects of mesoscale convective organization in radar data is the degree of convective clustering, which can be characterized by the number and size distribution of convective echoes and the distance between them. We propose a method of defining contiguous convective echoes (CCEs) using precipitating convective echoes identified by a rain type classification algorithm. Two classification algorithms, Steiner et al. (1995) and Powell et al. (2016), are tested and evaluated against high-resolution WRF simulations to determine which method better represents the degree of convective clustering. Our results suggest that the CCEs based on Powell et al.'s algorithm better represent the dynamical properties of the convective updrafts and thus provide the basis of a metric for convective organization. Furthermore, through a comparison with the observational data, the WRF simulations driven by the DYNAMO large-scale forcing, similarly applied to UNICON Single Column Model simulations, will allow us to evaluate the ability of both WRF and UNICON to simulate convective clustering. This evaluation is based on the physical processes that are explicitly represented in WRF and UNICON, including the mechanisms leading to convective clustering, and the feedback to the convective properties.

  10. A Dual-Wavelength Radar Technique to Detect Hydrometeor Phases

    Science.gov (United States)

    Liao, Liang; Meneghini, Robert

    2016-01-01

    This study is aimed at investigating the feasibility of a Ku- and Ka-band space/air-borne dual wavelength radar algorithm to discriminate various phase states of precipitating hydrometeors. A phase-state classification algorithm has been developed from the radar measurements of snow, mixed-phase and rain obtained from stratiform storms. The algorithm, presented in the form of the look-up table that links the Ku-band radar reflectivities and dual-frequency ratio (DFR) to the phase states of hydrometeors, is checked by applying it to the measurements of the Jet Propulsion Laboratory, California Institute of Technology, Airborne Precipitation Radar Second Generation (APR-2). In creating the statistically-based phase look-up table, the attenuation corrected (or true) radar reflectivity factors are employed, leading to better accuracy in determining the hydrometeor phase. In practice, however, the true radar reflectivities are not always available before the phase states of the hydrometeors are determined. Therefore, it is desirable to make use of the measured radar reflectivities in classifying the phase states. To do this, a phase-identification procedure is proposed that uses only measured radar reflectivities. The procedure is then tested using APR-2 airborne radar data. Analysis of the classification results in stratiform rain indicates that the regions of snow, mixed-phase and rain derived from the phase-identification algorithm coincide reasonably well with those determined from the measured radar reflectivities and linear depolarization ratio (LDR).

  11. High Ice Water Content at Low Radar Reflectivity near Deep Convection. Part I ; Consistency of In Situ and Remote-Sensing Observations with Stratiform Rain Column Simulations

    Science.gov (United States)

    Fridlind, A. M.; Ackerman, A. S.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.; Williams, C. R.

    2015-01-01

    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 degrees Centigrade. Power loss events commonly occur during flight through radar reflectivity (Zeta (sub e)) less than 20-30 decibels relative to Zeta (dBZ - radar returns) and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-radar-reflectivity regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 kilometers), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 micrometers. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of radar reflectivity (Ze), mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015).

  12. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    Science.gov (United States)

    Passalacqua, Olivier; Ritz, Catherine; Parrenin, Frédéric; Urbini, Stefano; Frezzotti, Massimo

    2017-09-01

    Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF), which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice-bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km × 130 km area, with a N-S gradient and with values ranging from 48 to 60 mW m-2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.

  13. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    Directory of Open Access Journals (Sweden)

    O. Passalacqua

    2017-09-01

    Full Text Available Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF, which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice–bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km  ×  130 km area, with a N–S gradient and with values ranging from 48 to 60 mW m−2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.

  14. [Analysis of influencing factors of snow hyperspectral polarized reflections].

    Science.gov (United States)

    Sun, Zhong-Qiu; Zhao, Yun-Sheng; Yan, Guo-Qian; Ning, Yan-Ling; Zhong, Gui-Xin

    2010-02-01

    Due to the need of snow monitoring and the impact of the global change on the snow, on the basis of the traditional research on snow, starting from the perspective of multi-angle polarized reflectance, we analyzed the influencing factors of snow from the incidence zenith angles, the detection zenith angles, the detection azimuth angles, polarized angles, the density of snow, the degree of pollution, and the background of the undersurface. It was found that these factors affected the spectral reflectance values of the snow, and the effect of some factors on the polarization hyperspectral reflectance observation is more evident than in the vertical observation. Among these influencing factors, the pollution of snow leads to an obvious change in the snow reflectance spectrum curve, while other factors have little effect on the shape of the snow reflectance spectrum curve and mainly impact the reflection ratio of the snow. Snow reflectance polarization information has not only important theoretical significance, but also wide application prospect, and provides new ideas and methods for the quantitative research on snow using the remote sensing technology.

  15. The impact of reflectivity correction and conversion methods to improve precipitation estimation by weather radar for an extreme low-land Mesoscale Convective System

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-05-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands. For most of the country this led to over 15 hours of near-continuous precipitation, which resulted in total event accumulations exceeding 150 mm in the eastern part of the Netherlands. Such accumulations belong to the largest sums ever recorded in this country and gave rise to local flooding. Measuring precipitation by weather radar within such mesoscale convective systems is known to be a challenge, since measurements are affected by multiple sources of error. For the current event the operational weather radar rainfall product only estimated about 30% of the actual amount of precipitation as measured by rain gauges. In the current presentation we will try to identify what gave rise to such large underestimations. In general weather radar measurement errors can be subdivided into two different groups: 1) errors affecting the volumetric reflectivity measurements taken, and 2) errors related to the conversion of reflectivity values in rainfall intensity and attenuation estimates. To correct for the first group of errors, the quality of the weather radar reflectivity data was improved by successively correcting for 1) clutter and anomalous propagation, 2) radar calibration, 3) wet radome attenuation, 4) signal attenuation and 5) the vertical profile of reflectivity. Such consistent corrections are generally not performed by operational meteorological services. Results show a large improvement in the quality of the precipitation data, however still only ~65% of the actual observed accumulations was estimated. To further improve the quality of the precipitation estimates, the second group of errors are corrected for by making use of disdrometer measurements taken in close vicinity of the radar. Based on these data the parameters of a normalized drop size distribution are estimated for the total event as well as for each precipitation type separately (convective

  16. Probabilistic precipitation nowcasting based on an extrapolation of radar reflectivity and an ensemble approach

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Mejsnar, Jan; Pop, Lukáš; Bližňák, Vojtěch

    2017-01-01

    Roč. 194, 15 September (2017), s. 245-257 ISSN 0169-8095 Institutional support: RVO:68378289 Keywords : scale-dependence * forecast * predictability * images * model * rainfall * weather * analogs * motion Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.778, year: 2016 http://www.sciencedirect.com/science/article/pii/S0169809516305142

  17. Rain cell-based identification of the vertical profile of reflectivity as observed by weather radar and its use for precipitation uncertainty estimation

    Science.gov (United States)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Uijlenhoet, R.

    2012-04-01

    The wide scale implementation of weather radar systems over the last couple of decades has increased our understanding concerning spatio-temporal precipitation dynamics. However, the quantitative estimation of precipitation by these devices is affected by many sources of error. A very dominant source of error results from vertical variations in the hydrometeor size distribution known as the vertical profile of reflectivity (VPR). Since the height of the measurement as well as the beam volume increases with distance from the radar, for stratiform precipitation this results in a serious underestimation (overestimation) of the surface reflectivity while sampling within the snow (bright band) region. This research presents a precipitation cell-based implementation to correct volumetric weather radar measurements for VPR effects. Using the properties of a flipping carpenter square, a contour-based identification technique was developed, which is able to identify and track precipitation cells in real time, distinguishing between convective, stratiform and undefined precipitation. For the latter two types of systems, for each individual cell, a physically plausible vertical profile of reflectivity is estimated using a Monte Carlo optimization method. Since it can be expected that the VPR will vary within a given precipitation cell, a method was developed to take the uncertainty of the VPR estimate into account. As a result, we are able to estimate the amount of precipitation uncertainty as observed by weather radar due to VPR for a given precipitation type and storm cell. We demonstrate the possibilities of this technique for a number of winter precipitation systems observed within the Belgian Ardennes. For these systems, in general, the precipitation uncertainty estimate due to vertical reflectivity profile variations varies between 10-40%.

  18. Directional reflectance factor distributions of a cotton row crop

    Science.gov (United States)

    Kimes, D. S.; Newcomb, W. W.; Schutt, J. B.; Pinter, P. J., Jr.; Jackson, R. D.

    1984-01-01

    The directional reflectance factor distribution spanning the entire exitance hemisphere was measured for a cotton row crop (Gossypium barbadense L.) with 39 percent ground cover. Spectral directional radiances were taken in NOAA satellite 7 AVHRR bands 1 and 2 using a three-band radiometer with restricted 12 deg full angle field of view at half peak power points. Polar co-ordinate system plots of directional reflectance factor distributions and three-dimensional computer graphic plots of scattered flux were used to study the dynamics of the directional reflectance factor distribution as a function of spectral band, geometric structure of the scene, solar zenith and azimuth angles, and optical properties of the leaves and soil. The factor distribution of the incomplete row crops was highly polymodal relative to that for complete vegetation canopies. Besides the enhanced reflectance for the antisolar point, a reflectance minimum was observed towards the forwardscatter direction in the principle plane of the sun. Knowledge of the mechanics of the observed dynamics of the data may be used to provide rigorous validation for two- or three-dimensional radiative transfer models, and is important in interpreting aircraft and satellite data where the solar angle varies widely.

  19. Impact of multiple radar reflectivity data assimilation on the numerical simulation of a flash flood event during the HyMeX campaign

    Science.gov (United States)

    Maiello, Ida; Gentile, Sabrina; Ferretti, Rossella; Baldini, Luca; Roberto, Nicoletta; Picciotti, Errico; Alberoni, Pier Paolo; Silvio Marzano, Frank

    2017-11-01

    An analysis to evaluate the impact of multiple radar reflectivity data with a three-dimensional variational (3-D-Var) assimilation system on a heavy precipitation event is presented. The main goal is to build a regionally tuned numerical prediction model and a decision-support system for environmental civil protection services and demonstrate it in the central Italian regions, distinguishing which type of observations, conventional and not (or a combination of them), is more effective in improving the accuracy of the forecasted rainfall. In that respect, during the first special observation period (SOP1) of HyMeX (Hydrological cycle in the Mediterranean Experiment) campaign several intensive observing periods (IOPs) were launched and nine of which occurred in Italy. Among them, IOP4 is chosen for this study because of its low predictability regarding the exact location and amount of precipitation. This event hit central Italy on 14 September 2012 producing heavy precipitation and causing several cases of damage to buildings, infrastructure, and roads. Reflectivity data taken from three C-band Doppler radars running operationally during the event are assimilated using the 3-D-Var technique to improve high-resolution initial conditions. In order to evaluate the impact of the assimilation procedure at different horizontal resolutions and to assess the impact of assimilating reflectivity data from multiple radars, several experiments using the Weather Research and Forecasting (WRF) model are performed. Finally, traditional verification scores such as accuracy, equitable threat score, false alarm ratio, and frequency bias - interpreted by analysing their uncertainty through bootstrap confidence intervals (CIs) - are used to objectively compare the experiments, using rain gauge data as a benchmark.

  20. Experimental Evaluation of Several Key Factors Affecting Root Biomass Estimation by 1500 MHz Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    John C. Bain

    2017-12-01

    Full Text Available Accurate quantification of coarse roots without disturbance represents a gap in our understanding of belowground ecology. Ground penetrating radar (GPR has shown significant promise for coarse root detection and measurement, however root orientation relative to scanning transect direction, the difficulty identifying dead root mass, and the effects of root shadowing are all key factors affecting biomass estimation that require additional research. Specifically, many aspects of GPR applicability for coarse root measurement have not been tested with a full range of antenna frequencies. We tested the effects of multiple scanning directions, root crossover, and root versus soil moisture content in a sand-hill mixed oak community using a 1500 MHz antenna, which provides higher resolution than the oft used 900 MHz antenna. Combining four scanning directions produced a significant relationship between GPR signal reflectance and coarse root biomass (R2 = 0.75 (p < 0.01 and reduced variability encountered when fewer scanning directions were used. Additionally, significantly fewer roots were correctly identified when their moisture content was allowed to equalize with the surrounding soil (p < 0.01, providing evidence to support assertions that GPR cannot reliably identify dead root mass. The 1500 MHz antenna was able to identify roots in close proximity of each other as well as roots shadowed beneath shallower roots, providing higher precision than a 900 MHz antenna. As expected, using a 1500 MHz antenna eliminates some of the deficiency in precision observed in studies that utilized lower frequency antennas.

  1. Low complexity joint estimation of reflection coefficient, spatial location, and Doppler shift for MIMO-radar by exploiting 2D-FFT

    KAUST Repository

    Jardak, Seifallah

    2014-10-01

    In multiple-input multiple-output (MIMO) radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, maximum-likelihood (ML) estimation yields the best performance. For this problem, the ML estimation requires the joint estimation of spatial location and Doppler shift, which is a two dimensional search problem. Therefore, the computational complexity of ML estimation is prohibitively high. In this work, to estimate the parameters of a target, a reduced complexity optimum performance algorithm is proposed, which allow two dimensional fast Fourier transform to jointly estimate the spatial location and Doppler shift. To asses the performances of the proposed estimators, the Cramér-Rao-lower-bound (CRLB) is derived. Simulation results show that the mean square estimation error of the proposed estimators achieve the CRLB. © 2014 IEEE.

  2. Stealth metamaterial objects characterized in the far field by Radar Cross Section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, K.; Strikwerda, A. C.

    Reflection spectra and radar cross sections (RCS) at terahertz frequencies are measured on structures incorporating absorbing metamaterials. Reduction of the RCS by the factor of 375 at the resonant frequencies is observed.......Reflection spectra and radar cross sections (RCS) at terahertz frequencies are measured on structures incorporating absorbing metamaterials. Reduction of the RCS by the factor of 375 at the resonant frequencies is observed....

  3. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p

  4. 4-D-VAR assimilation of disdrometer data and radar spectral reflectivities for raindrop size distribution and vertical wind retrievals

    Science.gov (United States)

    Mercier, François; Chazottes, Aymeric; Barthès, Laurent; Mallet, Cécile

    2016-07-01

    This paper presents a novel framework for retrieving the vertical raindrop size distribution (DSD) and vertical wind profiles during light rain events. This is also intended as a tool to better characterize rainfall microphysical processes. It consists in coupling K band Doppler spectra and ground disdrometer measurements (raindrop fluxes) in a 2-D numerical model propagating the DSD from the clouds to the ground level. The coupling is done via a 4-D-VAR data assimilation algorithm. As a first step, in this paper, the dynamical model and the geometry of the problem are quite simple. They do not allow the complexity implied by all rain microphysical processes to be encompassed (evaporation, coalescence breakup and horizontal air motion are not taken into account). In the end, the model is limited to the fall of droplets under gravity, modulated by the effects of vertical winds. The framework is thus illustrated with light, stratiform rain events. We firstly use simulated data sets (data assimilation twin experiment) to show that the algorithm is able to retrieve the DSD profiles and vertical winds. It also demonstrates the ability of the algorithm to deal with the atmospheric turbulence (broadening of the Doppler spectra) and the instrumental noise. The method is then applied to a real case study which was conducted in the southwest of France during the autumn 2013. The data set collected during a long, quiet event (6 h duration, rain rate between 2 and 7 mm h-1) comes from an optical disdrometer and a 24 GHz vertically pointing Doppler radar. We show that the algorithm is able to reproduce the observations and retrieve realistic DSD and vertical wind profiles, when compared to what could be expected for such a rain event. A goal for this study is to apply it to extended data sets for a validation with independent data, which could not be done with our limited 2013 data. Other data sets would also help to parameterize more processes needed in the model (evaporation

  5. Radar observations of Mercury

    International Nuclear Information System (INIS)

    Harmon, J.K.; Campbell, D.B.

    1988-01-01

    Some of the radar altimetry profiles of Mercury obtained on the basis of data from the Arecibo Observatory are presented. In these measurements, the delay-Doppler method was used to measure altitudes along the Doppler equator, rather than to map radar reflectivity. The profiles, derived from observations made over a 6-yr period, provide extensive coverage over a restricted equatorial band and permit the identification of radar signatures for features as small as 50-km diameter craters and 1-km-high arcuate scarps. The data allowed identification of large-scale topographic features such as smooth plains subsidence zones and major highland regions

  6. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  7. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  8. Investigation of the winds and electron concentration variability in the D region of the ionosphere by the partial-reflection radar technique

    International Nuclear Information System (INIS)

    Weiland, R.M.; Bowhill, S.A.

    1981-12-01

    The development and first observations of the partial-reflection drifts experiment at Urbana, Illinois (40 N) are described. The winds data from the drifts experiment are compared with electron concentration data obtained by the differential-absorption technique to study the possible meteorological causes of the winter anomaly in the mesosphere at midlatitudes. Winds data obtained by the meteor-radar experiment at Urbana are also compared with electron concentration data measured at Urban. A significant correlation is shown is both cases between southward winds and increasing electron concentration measured at the same location during winter. The possibility of stratospheric/mesospheric coupling is investigated by comparing satellite-measured 0.4 mbar geopotential data with mesospheric electron concentration data. No significant coupling was observed. The winds measured at Saskatoon, Saskatchewan (52 N) are compared with the electron concentrations measured at Urban, yielding constant fixed relationship, but significant correlations for short segments of the winter. A significant coherence is observed at discrete frequencies during segments of the winter

  9. Reflections

    Directory of Open Access Journals (Sweden)

    Joanne Embree

    2001-01-01

    Full Text Available Ideally, editorials are written one to two months before publication in the Journal. It was my turn to write this one. I had planned to write the first draft the evening after my clinic on Tuesday, September 11. It didn't get done that night or during the next week. Somehow, the topic that I had originally chosen just didn't seem that important anymore as I, along my friends and colleagues, reflected on the changes that the events of that day were likely to have on our lives.

  10. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  11. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  12. Sun-view angle effects on reflectance factors of corn canopies

    Science.gov (United States)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.

    1985-01-01

    The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.

  13. Social Radar

    Science.gov (United States)

    2012-01-01

    RTA HFM-201/RSM PAPER 3 - 1 © 2012 The MITRE Corporation. All Rights Reserved. Social Radar Barry Costa and John Boiney MITRE Corporation...defenders require an integrated set of capabilities that we refer to as a “ social radar.” Such a system would support strategic- to operational-level...situation awareness, alerting, course of action analysis, and measures of effectiveness for each action undertaken. Success of a social radar

  14. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  15. Derivation of Z-R equation using Mie approach for a 77 GHz radar

    Science.gov (United States)

    Bertoldo, Silvano; Lucianaz, Claudio; Allegretti, Marco; Perona, Giovanni

    2017-04-01

    The ETSI (European Telecommunications Standards Institute) defines the frequency band around 77 GHz as dedicated to automatic cruise control long-range radars. This work aims to demonstrate that, with specific assumption and the right theoretical background it is also possible to use a 77 GHz as a mini weather radar and/or a microwave rain gauge. To study the behavior of a 77 GHz meteorological radar, since the raindrop size are comparable to the wavelength, it is necessary to use the general Mie scattering theory. According to the Mie formulation, the radar reflectivity factor Z is defined as a function of the wavelength on the opposite of Rayleigh approximation in which is frequency independent. Different operative frequencies commonly used in radar meteorology are considered with both the Rayleigh and Mie scattering theory formulation. Comparing them it is shown that with the increasing of the radar working frequency the use of Rayleigh approximation lead to an always larger underestimation of rain. At 77 GHz such underestimation is up to 20 dB which can be avoided with the full Mie theory. The crucial derivation of the most suited relation between the radar reflectivity factor Z and rainfall rate R (Z-R equation) is necessary to achieve the best Quantitative Precipitation Estimation (QPE) possible. Making the use of Mie scattering formulation from the classical electromagnetic theory and considering different radar working frequencies, the backscattering efficiency and the radar reflectivity factor have been derived from a wide range of rain rate using specific numerical routines. Knowing the rain rate and the corresponding reflectivity factor it was possible to derive the coefficients of the Z-R equation for each frequency with the least square method and to obtain the best coefficients for each frequency. The coefficients are then compared with the ones coming from the scientific literature. The coefficients of a 77 GHz weather radar are then obtained. A

  16. Effect of the refraction factor of a plastic fiber shell on the internal reflection coefficient

    International Nuclear Information System (INIS)

    Pkrksypkin, A.I.; Ponomarev, L.I.

    1992-01-01

    Results of pilot studies of the effect of refraction factor of plastic fiber shell on the coefficient of light internal reflection in the fiber are presented. It is pointed, that the shell does not absorb the light, but effects the surface layer of the fiber centre so, that dependence of the coefficient of internal reflection on refraction factor of the shell may be described using Fresnel formulae. It is shown, that coefficient of internal reflection decreases with the increase of refraction factor. Technique to determine volume length of scintillation light absorption in the fiber is suggested

  17. REFLECTION AS A FACTOR OF DEVELOPMENT OF ARTISTIC CREATIVITY OF MUSICAL SCHOOL'S STUDENTS

    Directory of Open Access Journals (Sweden)

    L. I. Baisara

    2009-03-01

    Full Text Available The attempt to investigate the problem of the reflection as a factor of development of creative capabilities of students of musical school is done. Influence of the level of the reflection on the creativity and the development of musical and rhythmic intellect is analyzed.

  18. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  19. Classification and correction of the radar bright band with polarimetric radar

    Science.gov (United States)

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  20. W-band spaceborne radar observations of atmospheric river events

    Science.gov (United States)

    Matrosov, S. Y.

    2010-12-01

    While the main objective of the world first W-band radar aboard the CloudSat satellite is to provide vertically resolved information on clouds, it proved to be a valuable tool for observing precipitation. The CloudSat radar is generally able to resolve precipitating cloud systems in their vertical entirety. Although measurements from the liquid hydrometer layer containing rainfall are strongly attenuated, special retrieval approaches can be used to estimate rainfall parameters. These approaches are based on vertical gradients of observed radar reflectivity factor rather than on absolute estimates of reflectivity. Concurrent independent estimations of ice cloud parameters in the same vertical column allow characterization of precipitating systems and provide information on coupling between clouds and rainfall they produce. The potential of CloudSat for observations atmospheric river events affecting the West Coast of North America is evaluated. It is shown that spaceborne radar measurements can provide high resolution information on the height of the freezing level thus separating areas of rainfall and snowfall. CloudSat precipitation rate estimates complement information from the surface-based radars. Observations of atmospheric rivers at different locations above the ocean and during landfall help to understand evolutions of atmospheric rivers and their structures.

  1. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  2. Radar absorbing properties of carbon nanotubes/polymer ...

    Indian Academy of Sciences (India)

    This research is devoted to the study of radar absorbing properties of the composites, based on the epoxy binder and ... Radar absorbing materials; carbon nanotubes; nanocomposites; reflection loss. 1. ..... So, for example, the papers of [3–5 ...

  3. A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data

    Science.gov (United States)

    Norin, L.

    2015-02-01

    In many countries wind turbines are rapidly growing in numbers as the demand for energy from renewable sources increases. The continued deployment of wind turbines can, however, be problematic for many radar systems, which are easily disturbed by turbines located in the radar line of sight. Wind turbines situated in the vicinity of Doppler weather radars can lead to erroneous precipitation estimates as well as to inaccurate wind and turbulence measurements. This paper presents a quantitative analysis of the impact of a wind farm, located in southeastern Sweden, on measurements from a nearby Doppler weather radar. The analysis is based on 6 years of operational radar data. In order to evaluate the impact of the wind farm, average values of all three spectral moments (the radar reflectivity factor, absolute radial velocity, and spectrum width) of the nearby Doppler weather radar were calculated, using data before and after the construction of the wind farm. It is shown that all spectral moments, from a large area at and downrange from the wind farm, were impacted by the wind turbines. It was also found that data from radar cells far above the wind farm (near 3 km altitude) were affected by the wind farm. It is shown that this in part can be explained by detection by the radar sidelobes and by scattering off increased levels of dust and turbulence. In a detailed analysis, using data from a single radar cell, frequency distributions of all spectral moments were used to study the competition between the weather signal and wind turbine clutter. It is shown that, when weather echoes give rise to higher reflectivity values than those of the wind farm, the negative impact of the wind turbines is greatly reduced for all spectral moments.

  4. Acquisition of Bidirectional Reflectance Factor Dataset Using a Micro Unmanned Aerial Vehicle and a Consumer Camera

    Directory of Open Access Journals (Sweden)

    Jouni I. Peltoniemi

    2010-03-01

    Full Text Available This paper describes a method for retrieving the bidirectional reflectance factor (BRF of land-surface areas, using a small consumer camera on board an unmanned aerial vehicle (UAV and introducing an advanced calibration routine. Images with varying view directions were taken of snow cover using the UAV. The vignetting effect was corrected from the images, and reflectance factor images were calculated using a calibrated white target as a reference. After spatial registration of the images using a corresponding point method, the target surface was divided into a grid, and a BRF was generated for each grid element. Lastly a model was fitted to the BRF dataset for data interpretation. The retrieved BRF were compared to parallel ground measurements. Comparison showed similar BRF and reflectance factor characteristics, which suggests that accurate measurements can be taken with cheap consumer cameras, if enough attention is paid to calibration of the images.

  5. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  6. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  7. How Do I Know That My Supervision Is Reflective? Identifying Factors and Validity of the Reflective Supervision Rating Scale

    Science.gov (United States)

    Gallen, Robert T.; Ash, Jordana; Smith, Conner; Franco, Allison; Willford, Jennifer A.

    2016-01-01

    Reflective supervision and consultation (RS/C) is often defined as a "relationship for learning"(Fenichel, 1992, p.9). As such, measurement tools should include the perspective of each participant in the supervisory relationship when assessing RS/C fidelity, delivery quality, and the supervisee's experience. The Reflective Supervision…

  8. Insights into factors contributing to the observability of a submarine at periscope depth by modern radar, Part 2: EM simulation of mast RCS in a realistic sea surface environment

    CSIR Research Space (South Africa)

    Smit, JC

    2012-09-01

    Full Text Available IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cape Town 2-7 September 2012 Insights into factors contributing to the observability of a submarine at periscope depth by modern radar, Part 2: EM... simulation of mast RCS in a realistic sea surface environment Smit JC; Cilliers JE CSIR, Defence, Peace, Safety and Security. PO Box 395, Pretoria, 0001 Abstract Recently, a set of high resolution radar measurements were undertaken in South...

  9. Weather radar performance monitoring using a metallic-grid ground-scatterer

    Science.gov (United States)

    Falconi, Marta Tecla; Montopoli, Mario; Marzano, Frank Silvio; Baldini, Luca

    2017-10-01

    The use of ground return signals is investigated for checks on the calibration of power measurements of a polarimetric C-band radar. To this aim, a peculiar permanent single scatterer (PSS) consisting of a big metallic roof with a periodic mesh grid structure and having a hemisphere-like shape is considered. The latter is positioned in the near-field region of the weather radar and its use, as a reference calibrator, shows fairly good results in terms of reflectivity and differential reflectivity monitoring. In addition, the use of PSS indirectly allows to check for the radar antenna de-pointing which is another issue usually underestimated when dealing with weather radars. Because of the periodic structure of the considered PSS, simulations of its electromagnetic behavior were relatively easy to perform. To this goal, we used an electromagnetic Computer-Aided-Design (CAD) with an ad-hoc numerical implementation of a full-wave solution to model our PSS in terms of reflectivity and differential reflectivity factor. Comparison of model results and experimental measurements are then shown in this work. Our preliminary investigation can pave the way for future studies aiming at characterizing ground-clutter returns in a more accurate way for radar calibration purposes.

  10. Multiplication factor evaluation of bare and reflected small fast assemblies using variational methods

    International Nuclear Information System (INIS)

    Dwivedi, S.R.; Jain, D.

    1979-01-01

    The multigroup collision probability equations were solved by the variational method to derive a simple relation between the multiplication factor and the size of a small spherical bare or reflected fast reactor. This relation was verified by a number of 26-group, S 4 , transport theory calculations in one-dimensional spherical geometry for enriched uranium and plutonium systems. It has been shown that further approximations to the above relation lead to the universal empirical relation obtained by Anil Kumar. (orig.) [de

  11. Classification of peacock feather reflectance using principal component analysis similarity factors from multispectral imaging data.

    Science.gov (United States)

    Medina, José M; Díaz, José A; Vukusic, Pete

    2015-04-20

    Iridescent structural colors in biology exhibit sophisticated spatially-varying reflectance properties that depend on both the illumination and viewing angles. The classification of such spectral and spatial information in iridescent structurally colored surfaces is important to elucidate the functional role of irregularity and to improve understanding of color pattern formation at different length scales. In this study, we propose a non-invasive method for the spectral classification of spatial reflectance patterns at the micron scale based on the multispectral imaging technique and the principal component analysis similarity factor (PCASF). We demonstrate the effectiveness of this approach and its component methods by detailing its use in the study of the angle-dependent reflectance properties of Pavo cristatus (the common peacock) feathers, a species of peafowl very well known to exhibit bright and saturated iridescent colors. We show that multispectral reflectance imaging and PCASF approaches can be used as effective tools for spectral recognition of iridescent patterns in the visible spectrum and provide meaningful information for spectral classification of the irregularity of the microstructure in iridescent plumage.

  12. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  13. Radar Scan Methods in Modern Multifunctional Radars

    Directory of Open Access Journals (Sweden)

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  14. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  15. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  16. Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar)

    Science.gov (United States)

    Kneifel, Stefan; Maahn, Maximilian; Peters, Gerhard; Simmer, Clemens

    2011-06-01

    Quantifying snowfall intensity especially under arctic conditions is a challenge because wind and snow drift deteriorate estimates obtained from both ground-based gauges and disdrometers. Ground-based remote sensing with active instruments might be a solution because they can measure well above drifting snow and do not suffer from flow distortions by the instrument. Clear disadvantages are, however, the dependency of e.g. radar returns on snow habit which might lead to similar large uncertainties. Moreover, high sensitivity radars are still far too costly to operate in a network and under harsh conditions. In this paper we compare returns from a low-cost, low-power vertically pointing FM-CW radar (Micro Rain Radar, MRR) operating at 24.1 GHz with returns from a 35.5 GHz cloud radar (MIRA36) for dry snowfall during a 6-month observation period at an Alpine station (Environmental Research Station Schneefernerhaus, UFS) at 2,650 m height above sea level. The goal was to quantify the potential and limitations of the MRR in relation to what is achievable by a cloud radar. The operational MRR procedures to derive standard radar variables like effective reflectivity factor ( Z e) or the mean Doppler velocity ( W) had to be modified for snowfall since the MRR was originally designed for rain observations. Since the radar returns from snowfall are weaker than from comparable rainfall, the behavior of the MRR close to its detection threshold has been analyzed and a method is proposed to quantify the noise level of the MRR based on clear sky observations. By converting the resulting MRR- Z e into 35.5 GHz equivalent Z e values, a remaining difference below 1 dBz with slightly higher values close to the noise threshold could be obtained. Due to the much higher sensitivity of MIRA36, the transition of the MRR from the true signal to noise can be observed, which agrees well with the independent clear sky noise estimate. The mean Doppler velocity differences between both radars

  17. A randomized controlled trial of an exercise intervention targeting cardiovascular and metabolic risk factors for prostate cancer patients from the RADAR trial

    International Nuclear Information System (INIS)

    Galvão, Daniel A; Spry, Nigel; Taaffe, Dennis R; Denham, James; Joseph, David; Lamb, David S; Levin, Greg; Duchesne, Gillian; Newton, Robert U

    2009-01-01

    Androgen deprivation therapy leads to a number of adverse effects including deterioration of the musculoskeletal system and increased risk factors for cardiovascular and metabolic complications. The purpose of this study is to determine the effects, efficacy, retention and compliance of a physical exercise intervention in a large established cohort of prostate cancer patients from the Randomised Androgen Deprivation and Radiotherapy (RADAR) study. Specifically, we aim to compare short- and long-term effects of a prostate cancer-specific supervised exercise program to a standard public health physical activity strategy utilizing printed resources on cardiovascular and metabolic risk factors. Our primary outcomes are cardiorespiratory capacity, abdominal obesity, and lipid and glycemic control, while secondary outcomes include self-reported physical activity, quality of life and psychological distress. Multi-site randomized controlled trial of 370 men from the RADAR study cohort undergoing treatment or previously treated for prostate cancer involving androgen deprivation therapy in the cities of Perth and Newcastle (Australia), and Wellington (New Zealand). Participants will be randomized to (1) supervised resistance/aerobic exercise or (2) printed material comprising general physical activity recommendations. Participants will then undergo progressive training for 6 months. Measurements for primary and secondary endpoints will take place at baseline, 6 months (end of intervention), and at 6 months follow-up. This study uses a large existent cohort of patients and will generate valuable information as to the continuing effects of exercise specifically targeting cardiovascular function and disease risk, insulin metabolism, abdominal obesity, physical function, quality of life and psychological distress. We expect dissemination of the knowledge gained from this project to reduce risk factors for the development of co-morbid diseases commonly associated with androgen

  18. Radar and Lidar Radar DEM

    Science.gov (United States)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  19. Hydrologic applications of weather radar

    Science.gov (United States)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  20. Remote sensing with laser spectrum radar

    Science.gov (United States)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  1. Minimum redundancy MIMO radars

    OpenAIRE

    Chen, Chun-Yang; Vaidyanathan, P. P.

    2008-01-01

    The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, i...

  2. A radar-echo model for Mars

    International Nuclear Information System (INIS)

    Thompson, T.W.; Moore, H.J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed

  3. Physical working principles of medical radar.

    Science.gov (United States)

    Aardal, Øyvind; Paichard, Yoann; Brovoll, Sverre; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-04-01

    There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.

  4. Multi-Input Multi-Output (MIMO) Radar - Diversity Means Superiority

    National Research Council Canada - National Science Library

    Li, Jian

    2008-01-01

    .... It also uses multiple antennas to receive the reflected signals. It has been shown that by exploiting this waveform diversity, MIMO radar can overcome performance degradations caused by radar cross section (RCS...

  5. Validation of attenuation, beam blockage, and calibration estimation methods using two dual polarization X band weather radars

    Science.gov (United States)

    Diederich, M.; Ryzhkov, A.; Simmer, C.; Mühlbauer, K.

    2011-12-01

    The amplitude a of radar wave reflected by meteorological targets can be misjudged due to several factors. At X band wavelength, attenuation of the radar beam by hydro meteors reduces the signal strength enough to be a significant source of error for quantitative precipitation estimation. Depending on the surrounding orography, the radar beam may be partially blocked when scanning at low elevation angles, and the knowledge of the exact amount of signal loss through beam blockage becomes necessary. The phase shift between the radar signals at horizontal and vertical polarizations is affected by the hydrometeors that the beam travels through, but remains unaffected by variations in signal strength. This has allowed for several ways of compensating for the attenuation of the signal, and for consistency checks between these variables. In this study, we make use of several weather radars and gauge network measuring in the same area to examine the effectiveness of several methods of attenuation and beam blockage corrections. The methods include consistency checks of radar reflectivity and specific differential phase, calculation of beam blockage using a topography map, estimating attenuation using differential propagation phase, and the ZPHI method proposed by Testud et al. in 2000. Results show the high effectiveness of differential phase in estimating attenuation, and potential of the ZPHI method to compensate attenuation, beam blockage, and calibration errors.

  6. Ground and Space Radar Volume Matching and Comparison Software

    Science.gov (United States)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  7. Dosimetry, clinical factors and medication intake influencing urinary symptoms after prostate radiotherapy: An analysis of data from the RADAR prostate radiotherapy trial

    International Nuclear Information System (INIS)

    Yahya, Noorazrul; Ebert, Martin A.; Bulsara, Max; Haworth, Annette; Kennedy, Angel; Joseph, David J.; Denham, Jim W.

    2015-01-01

    Purpose/objective: To identify dosimetry, clinical factors and medication intake impacting urinary symptoms after prostate radiotherapy. Material and methods: Data describing clinical factors and bladder dosimetry (reduced with principal component (PC) analysis) for 754 patients treated with external beam radiotherapy accrued by TROG 03.04 RADAR prostate radiotherapy trial were available for analysis. Urinary symptoms (frequency, incontinence, dysuria and haematuria) were prospectively assessed using LENT-SOMA to a median of 72 months. The endpoints assessed were prevalence (grade ⩾1) at the end of radiotherapy (representing acute symptoms), at 18-, 36- and 54-month follow-ups (representing late symptoms) and peak late incidence including only grade ⩾2. Impact of factors was assessed using multivariate logistic regression models with correction for over-optimism. Results: Baseline symptoms, non-insulin dependent diabetes mellitus, age and PC1 (correlated to the mean dose) impact symptoms at >1 timepoints. Associations at a single timepoint were found for cerebrovascular condition, ECOG status and non-steroidal anti-inflammatory drug intake. Peak incidence analysis shows the impact of baseline, bowel and cerebrovascular condition and smoking status. Conclusions: The prevalence and incidence analysis provide a complementary view for urinary symptom prediction. Sustained impacts across time points were found for several factors while some associations were not repeated at different time points suggesting poorer or transient impact

  8. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  9. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  10. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  11. Radar observations and shape model of asteroid 16 Psyche

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine; Males, Jared R.; Morzinski, Katie M.; Close, Laird M.; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Benner, Lance A. M.; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.

    2017-01-01

    Using the S-band radar at Arecibo Observatory, we observed 16 Psyche, the largest M-class asteroid in the main belt. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images (Drummond et al., 2016) to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image (Hanus et al., 2013) and three multi-chord occultations. Our shape model has dimensions 279 × 232 × 189 km (± 10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves (Hanus et al., 2013). Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ∼50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kgm-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ∼40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  12. Asteroid 16 Psyche: Radar Observations and Shape Model

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James E.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine R.; Males, Jared; Morzinski, Kathleen M.; Miller Close, Laird; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Warner, Brian D.; Harris, Alan W.

    2016-10-01

    We observed 16 Psyche, the largest M-class asteroid in the main belt, using the S-band radar at Arecibo Observatory. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image [Hanus et al. Icarus 226, 1045-1057, 2013] and three multi-chord occultations. Our shape model has dimensions 279 x 232 x 189 km (±10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves [Hanus et al., 2013]. Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ~50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kg m-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ~40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  13. Physiochemical, site, and bidirectional reflectance factor characteristics of uniformly moist soils. [Brazil, Spain and the United States of America

    Science.gov (United States)

    Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. The bidirectional reflectance factor (0.5 micron to 2.3 micron wavelength interval) and physiochemical properties of over 500 soils from 39 states, Brazil and Spain were measured. Site characteristics of soil temperature regime and moisture zone were used as selection criteria. Parent material and internal drainage were noted for each soil. At least five general types of soil reflectance curves were identified based primarily on the presence or absence of ferric iron absorption bands, organic matter content, and soil drainage characteristics. Reflectance in 10 bands across the spectrum was found to be negatively correlated with the natural log of organic matter content.

  14. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  15. ISTEF Laser Radar Program

    National Research Council Canada - National Science Library

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  16. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  17. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  18. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  19. Software Radar Technology

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-08-01

    Full Text Available In this paper, the definition and the key features of Software Radar, which is a new concept, are proposed and discussed. We consider the development of modern radar system technology to be divided into three stages: Digital Radar, Software radar and Intelligent Radar, and the second stage is just commencing now. A Software Radar system should be a combination of various modern digital modular components conformed to certain software and hardware standards. Moreover, a software radar system with an open system architecture supporting to decouple application software and low level hardware would be easy to adopt "user requirements-oriented" developing methodology instead of traditional "specific function-oriented" developing methodology. Compared with traditional Digital Radar, Software Radar system can be easily reconfigured and scaled up or down to adapt to the changes of requirements and technologies. A demonstration Software Radar signal processing system, RadarLab 2.0, which has been developed by Tsinghua University, is introduced in this paper and the suggestions for the future development of Software Radar in China are also given in the conclusion.

  20. Quantitative precipitation estimation in complex orography using quasi-vertical profiles of dual polarization radar variables

    Science.gov (United States)

    Montopoli, Mario; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Baldini, Luca

    2017-04-01

    Weather radars are nowadays a unique tool to estimate quantitatively the rain precipitation near the surface. This is an important task for a plenty of applications. For example, to feed hydrological models, mitigate the impact of severe storms at the ground using radar information in modern warning tools as well as aid the validation studies of satellite-based rain products. With respect to the latter application, several ground validation studies of the Global Precipitation Mission (GPM) products have recently highlighted the importance of accurate QPE from ground-based weather radars. To date, a plenty of works analyzed the performance of various QPE algorithms making use of actual and synthetic experiments, possibly trained by measurement of particle size distributions and electromagnetic models. Most of these studies support the use of dual polarization variables not only to ensure a good level of radar data quality but also as a direct input in the rain estimation equations. Among others, one of the most important limiting factors in radar QPE accuracy is the vertical variability of particle size distribution that affects at different levels, all the radar variables acquired as well as rain rates. This is particularly impactful in mountainous areas where the altitudes of the radar sampling is likely several hundred of meters above the surface. In this work, we analyze the impact of the vertical profile variations of rain precipitation on several dual polarization radar QPE algorithms when they are tested a in complex orography scenario. So far, in weather radar studies, more emphasis has been given to the extrapolation strategies that make use of the signature of the vertical profiles in terms of radar co-polar reflectivity. This may limit the use of the radar vertical profiles when dual polarization QPE algorithms are considered because in that case all the radar variables used in the rain estimation process should be consistently extrapolated at the surface

  1. A novel approach for absolute radar calibration: formulation and theoretical validation

    Directory of Open Access Journals (Sweden)

    C. Merker

    2015-06-01

    Full Text Available The theoretical framework of a novel approach for absolute radar calibration is presented and its potential analysed by means of synthetic data to lay out a solid basis for future practical application. The method presents the advantage of an absolute calibration with respect to the directly measured reflectivity, without needing a previously calibrated reference device. It requires a setup comprising three radars: two devices oriented towards each other, measuring reflectivity along the same horizontal beam and operating within a strongly attenuated frequency range (e.g. K or X band, and one vertical reflectivity and drop size distribution (DSD profiler below this connecting line, which is to be calibrated. The absolute determination of the calibration factor is based on attenuation estimates. Using synthetic, smooth and geometrically idealised data, calibration is found to perform best using homogeneous precipitation events with rain rates high enough to ensure a distinct attenuation signal (reflectivity above ca. 30 dBZ. Furthermore, the choice of the interval width (in measuring range gates around the vertically pointing radar, needed for attenuation estimation, is found to have an impact on the calibration results. Further analysis is done by means of synthetic data with realistic, inhomogeneous precipitation fields taken from measurements. A calibration factor is calculated for each considered case using the presented method. Based on the distribution of the calculated calibration factors, the most probable value is determined by estimating the mode of a fitted shifted logarithmic normal distribution function. After filtering the data set with respect to rain rate and inhomogeneity and choosing an appropriate length of the considered attenuation path, the estimated uncertainty of the calibration factor is of the order of 1 to 11 %, depending on the chosen interval width. Considering stability and accuracy of the method, an interval of

  2. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  3. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  4. Terahertz radar cross section measurements.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  5. Pedestrian recognition using automotive radar sensors

    Science.gov (United States)

    Bartsch, A.; Fitzek, F.; Rasshofer, R. H.

    2012-09-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insights into the object classification process. The impact of raw radar data properties can be directly observed in every layer of the classification system by avoiding machine learning and tracking. This gives information on the limiting factors of raw radar data in terms of classification decision making. To accomplish the very challenging distinction between pedestrians and static objects, five significant and stable object features from the spatial distribution and Doppler information are found. Experimental results with data from a 77 GHz automotive radar sensor show that over 95% of pedestrians can be classified correctly under optimal conditions, which is compareable to modern machine learning systems. The impact of the pedestrian's direction of movement, occlusion, antenna beam elevation angle, linear vehicle movement, and other factors are investigated and discussed. The results show that under real life conditions, radar only based pedestrian recognition is limited due to insufficient Doppler frequency and spatial resolution as well as antenna side lobe effects.

  6. Improving Radar Quantitative Precipitation Estimation over Complex Terrain in the San Francisco Bay Area

    Science.gov (United States)

    Cifelli, R.; Chen, H.; Chandrasekar, V.

    2017-12-01

    A recent study by the State of California's Department of Water Resources has emphasized that the San Francisco Bay Area is at risk of catastrophic flooding. Therefore, accurate quantitative precipitation estimation (QPE) and forecast (QPF) are critical for protecting life and property in this region. Compared to rain gauge and meteorological satellite, ground based radar has shown great advantages for high-resolution precipitation observations in both space and time domain. In addition, the polarization diversity shows great potential to characterize precipitation microphysics through identification of different hydrometeor types and their size and shape information. Currently, all the radars comprising the U.S. National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) network are operating in dual-polarization mode. Enhancement of QPE is one of the main considerations of the dual-polarization upgrade. The San Francisco Bay Area is covered by two S-band WSR-88D radars, namely, KMUX and KDAX. However, in complex terrain like the Bay Area, it is still challenging to obtain an optimal rainfall algorithm for a given set of dual-polarization measurements. In addition, the accuracy of rain rate estimates is contingent on additional factors such as bright band contamination, vertical profile of reflectivity (VPR) correction, and partial beam blockages. This presentation aims to improve radar QPE for the Bay area using advanced dual-polarization rainfall methodologies. The benefit brought by the dual-polarization upgrade of operational radar network is assessed. In addition, a pilot study of gap fill X-band radar performance is conducted in support of regional QPE system development. This paper also presents a detailed comparison between the dual-polarization radar-derived rainfall products with various operational products including the NSSL's Multi-Radar/Multi-Sensor (MRMS) system. Quantitative evaluation of various rainfall products is achieved

  7. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) IFloodS data set contain radar reflectivity and doppler velocity measurements. The D3R...

  8. Radar imaging of Saturn's rings

    Science.gov (United States)

    Nicholson, Philip D.; French, Richard G.; Campbell, Donald B.; Margot, Jean-Luc; Nolan, Michael C.; Black, Gregory J.; Salo, Heikki J.

    2005-09-01

    We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°⩽|B|⩽26.7°. The average radar cross-section of the A ring is ˜77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal

  9. TCSP ER-2 DOPPLER RADAR (EDOP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The EDOP provides vertically profiled reflectivity and Doppler velocity at aircraft nadir along the flight track. The ER-2 Doppler radar (EDOP) is an X-band (9.6...

  10. Assimilation of Doppler weather radar observations in a mesoscale ...

    Indian Academy of Sciences (India)

    Research (PSU–NCAR) mesoscale model (MM5) version 3.5.6. The variational data assimilation ... investigation of the direct assimilation of radar reflectivity data in 3DVAR system. The present ...... Results presented in this paper are based on.

  11. Investigation of Weather Radar Quantitative Precipitation Estimation Methodologies in Complex Orography

    Directory of Open Access Journals (Sweden)

    Mario Montopoli

    2017-02-01

    Full Text Available Near surface quantitative precipitation estimation (QPE from weather radar measurements is an important task for feeding hydrological models, limiting the impact of severe rain events at the ground as well as aiding validation studies of satellite-based rain products. To date, several works have analyzed the performance of various QPE algorithms using actual and synthetic experiments, possibly trained by measurement of particle size distributions and electromagnetic models. Most of these studies support the use of dual polarization radar variables not only to ensure a good level of data quality but also as a direct input to rain estimation equations. One of the most important limiting factors in radar QPE accuracy is the vertical variability of particle size distribution, which affects all the acquired radar variables as well as estimated rain rates at different levels. This is particularly impactful in mountainous areas, where the sampled altitudes are likely several hundred meters above the surface. In this work, we analyze the impact of the vertical profile variations of rain precipitation on several dual polarization radar QPE algorithms when they are tested in a complex orography scenario. So far, in weather radar studies, more emphasis has been given to the extrapolation strategies that use the signature of the vertical profiles in terms of radar co-polar reflectivity. This may limit the use of the radar vertical profiles when dual polarization QPE algorithms are considered. In that case, all the radar variables used in the rain estimation process should be consistently extrapolated at the surface to try and maintain the correlations among them. To avoid facing such a complexity, especially with a view to operational implementation, we propose looking at the features of the vertical profile of rain (VPR, i.e., after performing the rain estimation. This procedure allows characterization of a single variable (i.e., rain when dealing with

  12. The Meaning of Higher-Order Factors in Reflective-Measurement Models

    Science.gov (United States)

    Eid, Michael; Koch, Tobias

    2014-01-01

    Higher-order factor analysis is a widely used approach for analyzing the structure of a multidimensional test. Whenever first-order factors are correlated researchers are tempted to apply a higher-order factor model. But is this reasonable? What do the higher-order factors measure? What is their meaning? Willoughby, Holochwost, Blanton, and Blair…

  13. Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Schneider, David J.; Hoblitt, Richard P.

    2013-01-01

    The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  14. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  15. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  16. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  17. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  18. Radar-based hail detection

    Czech Academy of Sciences Publication Activity Database

    Skripniková, Kateřina; Řezáčová, Daniela

    2014-01-01

    Roč. 144, č. 1 (2014), s. 175-185 ISSN 0169-8095 R&D Projects: GA ČR(CZ) GAP209/11/2045; GA MŠk LD11044 Institutional support: RVO:68378289 Keywords : hail detection * weather radar * hail damage risk Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.844, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169809513001804

  19. Radar Polarimetry: Theory, Analysis, and Applications

    Science.gov (United States)

    Hubbert, John Clark

    delta is present. Algorithms are presented for estimating delta and K_{DP} from range profiles of Psi_ {CO}. Also discussed are procedures for the estimation and interpretation of other radar measurables such as reflectivity, Z_{HH}, differential reflectivity, Z_{DR }, the magnitude of the copolar correlation coefficient, rho_{HV}(0), and Doppler spectrum width, sigma _{v}. The techniques are again illustrated with data collected by POLDIRAD.

  20. The Comet Radar Explorer Mission

    Science.gov (United States)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  1. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  2. Aspects of Radar Polarimetry

    OpenAIRE

    LÜNEBURG, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  3. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  4. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  5. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  6. A technique to obtain a multiparameter radar rainfall algorithm using the probability matching procedure

    International Nuclear Information System (INIS)

    Gorgucci, E.; Scarchilli, G.

    1997-01-01

    The natural cumulative distributions of rainfall observed by a network of rain gauges and a multiparameter radar are matched to derive multiparameter radar algorithms for rainfall estimation. The use of multiparameter radar measurements in a statistical framework to estimate rainfall is resented in this paper, The techniques developed in this paper are applied to the radar and rain gauge measurement of rainfall observed in central Florida and central Italy. Conventional pointwise estimates of rainfall are also compared. The probability matching procedure, when applied to the radar and surface measurements, shows that multiparameter radar algorithms can match the probability distribution function better than the reflectivity-based algorithms. It is also shown that the multiparameter radar algorithm derived matching the cumulative distribution function of rainfall provides more accurate estimates of rainfall on the ground in comparison to any conventional reflectivity-based algorithm

  7. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    Science.gov (United States)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  8. Sensitivity of power functions to aggregation: Bias and uncertainty in radar rainfall retrieval

    NARCIS (Netherlands)

    Sassi, M.G.; Leijnse, H.; Uijlenhoet, R.

    2014-01-01

    Rainfall retrieval using weather radar relies on power functions between radar reflectivity Z and rain rate R. The nonlinear nature of these relations complicates the comparison of rainfall estimates employing reflectivities measured at different scales. Transforming Z into R using relations that

  9. Plasma-based radar cross section reduction

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...

  10. Assimilation of the radar-derived water vapour mixing ratio into the LM COSMO model with a high horizontal resolution

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Řezáčová, Daniela

    2009-01-01

    Roč. 92, č. 3 (2009), s. 331-342 ISSN 0169-8095. [International workshop on precipitation in urban areas /7./. St. Moritz, 07.12.2006-10.12.2006] R&D Projects: GA ČR GA205/07/0905; GA MŠk OC 112 Institutional research plan: CEZ:AV0Z30420517 Keywords : Precipitation * Local convective storm assimilation * Radar reflectivity * NWP model Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.811, year: 2009

  11. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2014-01-01

    Full Text Available Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar interferences and, then, separately matched filtering for each radar. Besides the detailed algorithm derivation, extensive numerical simulation examples are performed with the down-chirp and up-chirp waveforms, partially overlapped or inverse chirp rate linearly frequency modulation (LFM waveforms and orthogonal frequency division multiplexing (ODFM chirp diverse waveforms. The effectiveness of the algorithm is verified by the simulation results.

  12. Radar remote sensing in biology

    Science.gov (United States)

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  13. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Koch, Wolfgang

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Waveform diversity and cognitive radar and Target tracking and data fusion.

  14. Experimentelles FMCW-Radar zur hochfrequenten Charakterisierung von Windenergieanlagen

    Science.gov (United States)

    Schubert, Karsten; Werner, Jens; Schwartau, Fabian

    2017-09-01

    During the increasing dissemination of renewable energy sources the potential and actual interference effects of wind turbine plants became obvious. Turbines reflect the signals of weather radar and other radar systems. In addition to the static radar echoes, in particular the Doppler echoes are to be mentioned as an undesirable impairment Keränen (2014). As a result, building permit is refused for numerous new wind turbines, as the potential interference can not be reliably predicted. As a contribution to the improvement of this predictability, measurements are planned which aim at the high-frequency characterisation of wind energy installations. In this paper, a cost-effective FMCW radar is presented, which is operated in the same frequency band (C-band) as the weather radars of the German weather service. Here, the focus is on the description of the hardware design including the considerations used for its dimensioning.

  15. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  16. Wind farm radar study

    International Nuclear Information System (INIS)

    Davies, N.G.

    1995-01-01

    This report examines the possible degradations of radar performance that may be caused by the presence of a wind turbine generator within the radar coverage area. A brief literature survey reviews the previously published work, which is mainly concerned with degradation of broadcast TV reception. Estimates are made of wind turbine generator scattering cross-sections, and of the time and Doppler characteristics of the echo signals from representative wind turbine generator. The general characteristics of radar detection and tracking methods are described, and the behaviour of such systems in the presence of strong returns from a wind turbine generator (or an array of them) is discussed. (author)

  17. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  18. Analysis of 35 GHz Cloud Radar polarimetric variables to identify stratiform and convective precipitation.

    Science.gov (United States)

    Fontaine, Emmanuel; Illingworth, Anthony, J.; Stein, Thorwald

    2017-04-01

    This study is performed using vertical profiles of radar measurements at 35GHz, for the period going from 29th of February to 1rst October 2016, at the Chilbolton observatory in United Kingdom. During this period, more than 40 days with precipitation events are investigated. The investigation uses the synergy of radar reflectivity factors, vertical velocity, Doppler spectrum width, and linear depolarization ratio (LDR) to differentiate between stratiform and convective rain events. The depth of the layer with Doppler spectrum width values greater than 0.5 m s-1 is shown to be a suitable proxy to distinguish between convective and stratiform events. Using LDR to detect the radar bright band, bright band characteristics such as depth of the layer and maximum LDR are shown to vary with the amount of turbulence aloft. Profiles of radar measurements are also compared to rain gauge measurements to study the contribution of convective and stratiform rainfall to total rain duration and amount. To conclude, this study points out differences between convective and stratiform rains and quantifies their contributions over a precipitation event, highlighting that convective and stratiform rainfall should be considered as a continuum rather than a dichotomy.

  19. Mutual information-based LPI optimisation for radar network

    Science.gov (United States)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  20. Phased Array Radar Network Experiment for Severe Weather

    Science.gov (United States)

    Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.

    2017-12-01

    Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.

  1. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  2. Estimating soil water evaporation using radar measurements

    Science.gov (United States)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  3. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  4. Improved Laser Vibration Radar

    National Research Council Canada - National Science Library

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  5. Linguistic positivity in historical texts reflects dynamic environmental and psychological factors.

    Science.gov (United States)

    Iliev, Rumen; Hoover, Joe; Dehghani, Morteza; Axelrod, Robert

    2016-12-06

    People use more positive words than negative words. Referred to as "linguistic positivity bias" (LPB), this effect has been found across cultures and languages, prompting the conclusion that it is a panhuman tendency. However, although multiple competing explanations of LPB have been proposed, there is still no consensus on what mechanism(s) generate LPB or even on whether it is driven primarily by universal cognitive features or by environmental factors. In this work we propose that LPB has remained unresolved because previous research has neglected an essential dimension of language: time. In four studies conducted with two independent, time-stamped text corpora (Google books Ngrams and the New York Times), we found that LPB in American English has decreased during the last two centuries. We also observed dynamic fluctuations in LPB that were predicted by changes in objective environment, i.e., war and economic hardships, and by changes in national subjective happiness. In addition to providing evidence that LPB is a dynamic phenomenon, these results suggest that cognitive mechanisms alone cannot account for the observed dynamic fluctuations in LPB. At the least, LPB likely arises from multiple interacting mechanisms involving subjective, objective, and societal factors. In addition to having theoretical significance, our results demonstrate the value of newly available data sources in addressing long-standing scientific questions.

  6. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  7. Radar detection of Vesta

    International Nuclear Information System (INIS)

    Ostro, S.J.; Cornell University, Ithaca, N.Y.); Campbell, D.B.; Pettengill, G.H.

    1980-01-01

    Asteroid 4 Vesta was detected on November 6, 1979 with the Arecibo Observatory's S-band (12.6-cm-wavelength) radar. The echo power spectrum, received in the circular polarization opposite to that transmitted, yields a radar cross section of (0.2 + or - 0.1)pi a-squared, for a 272 km. The data are too noisy to permit derivation of Vesta's rotation period

  8. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  9. Optical constants and scattering factors from reflectivity measurements: 50 eV to 5 keV

    International Nuclear Information System (INIS)

    Blake, R.L.; Davis, J.C.; Graessle, D.E.; Burbine, T.H.; Gullikson, E.M.

    1992-01-01

    An improved reflection technique has been introduced to permit more accurate measurements of material optical constants δ and β, the density ρ, and from these the atomic scattering factors f ' and f double-prime. Regions of normal and anomolous dispersion can be measured with resolving power 1000 or larger using a portable reflectometer that is moved to any of three beamlines at NSLS or two at CHESS. Herein the reflectometer and measurement techniques are described together with sample characteristics and preliminary results for the Ni LIII edge and the M edges of Au, Pt, and Ir. The primary accuracy limiting factors are density determination, accumulation of surface oxides or carbonaceous deposits, and synchrotron orbit stability. Each sample must be prepared for the specific energy range to be measured so that model fitting routines have the minimum possible number of free variables

  10. Utilizing the Vertical Variability of Precipitation to Improve Radar QPE

    Science.gov (United States)

    Gatlin, Patrick N.; Petersen, Walter A.

    2016-01-01

    Characteristics of the melting layer and raindrop size distribution can be exploited to further improve radar quantitative precipitation estimation (QPE). Using dual-polarimetric radar and disdrometers, we found that the characteristic size of raindrops reaching the ground in stratiform precipitation often varies linearly with the depth of the melting layer. As a result, a radar rainfall estimator was formulated using D(sub m) that can be employed by polarimetric as well as dual-frequency radars (e.g., space-based radars such as the GPM DPR), to lower the bias and uncertainty of conventional single radar parameter rainfall estimates by as much as 20%. Polarimetric radar also suffers from issues associated with sampling the vertical distribution of precipitation. Hence, we characterized the vertical profile of polarimetric parameters (VP3)-a radar manifestation of the evolving size and shape of hydrometeors as they fall to the ground-on dual-polarimetric rainfall estimation. The VP3 revealed that the profile of ZDR in stratiform rainfall can bias dual-polarimetric rainfall estimators by as much as 50%, even after correction for the vertical profile of reflectivity (VPR). The VP3 correction technique that we developed can improve operational dual-polarimetric rainfall estimates by 13% beyond that offered by a VPR correction alone.

  11. Dissociative symptoms reflect levels of tumor necrosis factor alpha in patients with unipolar depression

    Directory of Open Access Journals (Sweden)

    Bizik G

    2014-04-01

    Full Text Available Gustav Bizik,1 Petr Bob,1 Jiri Raboch,1 Josef Pavlat,1 Jana Uhrova,2 Hana Benakova,2 Tomas Zima2 1Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, 2Department of Clinical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic Abstract: Recent evidence indicates that the nature of interactions between the nervous system and immune system is important in the pathogenesis of depression. Specifically, alterations in pro-inflammatory cytokines have been related to the development of several psychological and neurobiological manifestations of depressive disorder, as well as to stress exposure. A number of findings point to tumor necrosis factor alpha (TNF-α as one of the central factors in these processes. Accordingly, in the present study, we test the hypothesis that specific influences of chronic stressors related to traumatic stress and dissociation are related to alterations in TNF-α levels. We performed psychometric measurement of depression (Beck Depression Inventory [BDI]-II, traumatic stress symptoms (Trauma Symptom Checklist [TSC]-40, and psychological and somatoform dissociation (Dissociative Experiences Scale [DES] and Somatoform Dissociation Questionnaire [SDQ]-20, respectively, and immunochemical measure of serum TNF-α in 66 inpatients with unipolar depression (mean age 43.1 ± 7.3 years. The results show that TNF-α is significantly related to DES (Spearman R=−0.42, P<0.01, SDQ-20 (Spearman R=−0.38, P<0.01, and TSC-40 (Spearman R=−0.41, P<0.01, but not to BDI-II. Results of the present study suggest that TNF-α levels are related to dissociative symptoms and stress exposure in depressed patients. Keywords: depression, dissociation, TNF-alpha, traumatic stress

  12. A statistical model for radar images of agricultural scenes

    Science.gov (United States)

    Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.; Stiles, J. A.

    1982-01-01

    The presently derived and validated statistical model for radar images containing many different homogeneous fields predicts the probability density functions of radar images of entire agricultural scenes, thereby allowing histograms of large scenes composed of a variety of crops to be described. Seasat-A SAR images of agricultural scenes are accurately predicted by the model on the basis of three assumptions: each field has the same SNR, all target classes cover approximately the same area, and the true reflectivity characterizing each individual target class is a uniformly distributed random variable. The model is expected to be useful in the design of data processing algorithms and for scene analysis using radar images.

  13. Bias adjustment and advection interpolation of long-term high resolution radar rainfall series

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Nielsen, Jesper Ellerbæk; Rasmussen, Michael R.

    2014-01-01

    It is generally acknowledged that in order to apply radar rainfall data for hydrological proposes adjustment against ground observations are crucial. Traditionally, radar reflectivity is transformed into rainfall rates applying a fixed reflectivity – rainfall rate relationship even though...... this is known to depend on the changing drop size distribution of the specific rain. This creates a transient bias between the radar rainfall and the ground observations due to seasonal changes of the drop size distribution as well as other atmospheric effects and effects related to the radar observational...

  14. Arecibo Radar Observation of Near-Earth Asteroids: Expanded Sample Size, Determination of Radar Albedos, and Measurements of Polarization Ratios

    Science.gov (United States)

    Lejoly, Cassandra; Howell, Ellen S.; Taylor, Patrick A.; Springmann, Alessondra; Virkki, Anne; Nolan, Michael C.; Rivera-Valentin, Edgard G.; Benner, Lance A. M.; Brozovic, Marina; Giorgini, Jon D.

    2017-10-01

    The Near-Earth Asteroid (NEA) population ranges in size from a few meters to more than 10 kilometers. NEAs have a wide variety of taxonomic classes, surface features, and shapes, including spheroids, binary objects, contact binaries, elongated, as well as irregular bodies. Using the Arecibo Observatory planetary radar system, we have measured apparent rotation rate, radar reflectivity, apparent diameter, and radar albedos for over 350 NEAs. The radar albedo is defined as the radar cross-section divided by the geometric cross-section. If a shape model is available, the actual cross-section is known at the time of the observation. Otherwise we derive a geometric cross-section from a measured diameter. When radar imaging is available, the diameter was measured from the apparent range depth. However, when radar imaging was not available, we used the continuous wave (CW) bandwidth radar measurements in conjunction with the period of the object. The CW bandwidth provides apparent rotation rate, which, given an independent rotation measurement, such as from lightcurves, constrains the size of the object. We assumed an equatorial view unless we knew the pole orientation, which gives a lower limit on the diameter. The CW also provides the polarization ratio, which is the ratio of the SC and OC cross-sections.We confirm the trend found by Benner et al. (2008) that taxonomic types E and V have very high polarization ratios. We have obtained a larger sample and can analyze additional trends with spin, size, rotation rate, taxonomic class, polarization ratio, and radar albedo to interpret the origin of the NEAs and their dynamical processes. The distribution of radar albedo and polarization ratio at the smallest diameters (≤50 m) differs from the distribution of larger objects (>50 m), although the sample size is limited. Additionally, we find more moderate radar albedos for the smallest NEAs when compared to those with diameters 50-150 m. We will present additional trends we

  15. 5 year radar-based rainfall statistics: disturbances analysis and development of a post-correction scheme for the German radar composite

    Science.gov (United States)

    Wagner, A.; Seltmann, J.; Kunstmann, H.

    2015-02-01

    A radar-based rainfall statistic demands high quality data that provide realistic precipitation amounts in space and time. Instead of correcting single radar images, we developed a post-correction scheme for long-term composite radar data that corrects corrupted areas, but preserves the original precipitation patterns. The post-correction scheme is based on a 5 year statistical analysis of radar composite data and its constituents. The accumulation of radar images reveals artificial effects that are not visible in the individual radar images. Some of them are already inherent to single radar data such as the effect of increasing beam height, beam blockage or clutter remnants. More artificial effects are introduced in the process of compositing such as sharp gradients at the boundaries of overlapping areas due to different beam heights and resolution. The cause of these disturbances, their behaviour with respect to reflectivity level, season or altitude is analysed based on time-series of two radar products: the single radar reflectivity product PX for each of the 16 radar systems of the German Meteorological Service (DWD) for the time span 2000 to 2006 and the radar composite product RX of DWD from 2005 through to 2009. These statistics result in additional quality information on radar data that is not available elsewhere. The resulting robust characteristics of disturbances, e.g. the dependency of the frequencies of occurrence of radar reflectivities on beam height, are then used as a basis for the post-correction algorithm. The scheme comprises corrections for shading effects and speckles, such as clutter remnants or overfiltering, as well as for systematic differences in frequencies of occurrence of radar reflectivities between the near and the far ranges of individual radar sites. An adjustment to rain gauges is also included. Applying this correction, the Root-Mean-Square-Error for the comparison of radar derived annual rain amounts with rain gauge data

  16. Venus: radar determination of gravity potential.

    Science.gov (United States)

    Shapiro, I I; Pettengill, G H; Sherman, G N; Rogers, A E; Ingalls, R P

    1973-02-02

    We describe a method for the determination of the gravity potential of Venus from multiple-frequency radar measurements. The method is based on the strong frequency dependence of the absorption of radio waves in Venus' atmosphere. Comparison of the differing radar reflection intensities at several frequencies yields the height of the surface relative to a reference pressure contour; combination with measurements of round-trip echo delays allows the pressure, and hence the gravity potential contour, to be mapped relative to the mean planet radius. Since calibration data from other frequencies are unavailable, the absorption-sensitive Haystack Observatory data have been analyzed under the assumption of uniform surface reflectivity to yield a gravity equipotential contour for the equatorial region and a tentative upper bound of 6 x 10(-4) on the fractional difference of Venus' principal equatorial moments of inertia. The minima in the equipotential contours appear to be associated with topographic minima.

  17. Professional reflection as the factor of success of a sports coach

    Directory of Open Access Journals (Sweden)

    Zurida A. Sagova

    2017-06-01

    Full Text Available Professional functions of modern trainers have long expanded from a simple function of training athletes to compete to the performance of the numerous roles of leader, organizer, psychologist, which are based on the ability of a coach to improve their professional skills and personal qualities.With the increasing popularity of sports, the means and conditions of sports training, the requirements to the quality of work and mastery of the main subjects of sports are increasing. The demand for a coach as a key figure in the education of successful athletes rises. The paper analyzes the research of criteria and factors of sports coach efficiency; the features of reflexive processes as one of the most effective ways of coach’s professional development. The correlation analysis performed in the work showed a significant connection between professional success and the reflexivity of trainers, which in general is correspondent with the results of similar studies performed in a number of other research fields. In the work there was no confirmation of the regular viewpoint inpsychological studies of the relationship between the success of activity and the personality’s internality, which induced a number of new assumptions about the nature of the interaction of successful coaches with their pupils, leadership style, and personality traits. The results of the study as a whole cause additional questions about individual psychological characteristics of respondents and allow to identify further research.

  18. Feasibility of mitigating the effects of windfarms on primary radar

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.M.; Johnson, D.A.

    2003-07-01

    The objectives of the study were to investigate the feasibility of modifying civil and military radars to mitigate the effects from wind turbines, to provide costings for implementing changes to the radar and to produce guidelines for planning wind farms in the vicinity of radars. The effect of wind turbines on radar signals, assessed through computer modelling, is summarised. The key aspects of turbine design that can be modified to minimise these effects are described. A key issue is the fact that no two radar installations are alike, with settings being customised for local requirements. As a consequence, a detailed understanding of the design and features of each individual radar would be required in order to assess the impact of a wind farm proposal. The costs of a programme of modifications to the civil ATC (air traffic control) radar base will depend on many factors. An estimate of costs is provided, based on the assumption that only 30 of the UK radars would need modification and that a range of modifications from very simple to very complex will be required. A number of other approaches, outside of modification of the radar system, may require investigation during a windfarm planning application, such as layout and location of the wind farm or changing air traffic routes in the vicinity of the wind farm.

  19. Sustainable Entrepreneurship Orientation: A Reflection on Status-Quo Research on Factors Facilitating Responsible Managerial Practices

    Directory of Open Access Journals (Sweden)

    Sascha Kraus

    2018-02-01

    Full Text Available With the global financial system having undergone vast changes since the financial crisis of 2007, scientific research concerning the investor’s point of view on sustainable investments has drastically increased. However, there remains a lack of research focused on the entrepreneur’s angle regarding sustainable oriented investments. The aim of this paper is to contribute to the understanding of sustainable financial markets by bringing together entrepreneurial and financial research. This paper provides a structured literature review, based on which the authors identify three relevant levels that they believe have an effect on the successful implementation of managerial sustainable practices; these are the individual, the firm, and the contextual levels. The results show that on the individual level sustainable entrepreneurs tend to derive their will to act more sustainably from their personal values or traits. On the organizational level, though, it can be concluded that an small and medium sized enterprise’s internal culture and the reconfiguration of resources are critical determinants for adopting a sustainable entrepreneurial orientation. Finally, on the contextual level, researchers have focused on a better understanding of how entrepreneurs can help society and the environment through sustainable entrepreneurship, and how they can act as role models or change agents in light of the fact that the choice of investing or financing based on sustainability is still in its infancy. By providing an overview on facilitating factors for responsible managerial practices on the entrepreneur’s side, this research contributes to a better understanding for both theory and practice on how sustainable practices can be implemented and facilitated.

  20. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  1. Machine Learing Applications on a Radar Wind Profiler Deployment During the ARM GoAmazon2014/5 Campaign

    Science.gov (United States)

    Giangrande, S. E.; WANG, D.; Hardin, J. C.; Mitchell, J.

    2017-12-01

    As part of the 2 year Department of Energy Atmospheric Radiation Measurement (ARM) Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, the ARM Mobile Facility (AMF) collected a unique set of observations in a region of strong climatic significance near Manacapuru, Brazil. An important example for the beneficial observational record obtained by ARM during this campaign was that of the Radar Wind Profiler (RWP). This dataset has been previously documented for providing critical convective cloud vertical air velocity retrievals and precipitation properties (e.g., calibrated reflectivity factor Z, rainfall rates) under a wide variety of atmospheric conditions. Vertical air motion estimates to within deep convective cores such as those available from this RWP system have been previously identified as critical constraints for ongoing global climate modeling activities and deep convective cloud process studies. As an extended deployment within this `green ocean' region, the RWP site and collocated AMF surface gauge instrumentation experienced a unique hybrid of tropical and continental precipitation conditions, including multiple wet and dry season precipitation regimes, convective and organized stratiform storm dynamics and contributions to rainfall accumulation, pristine aerosol conditions of the locale, as well as the effects of the Manaus, Brazil, mega city pollution plume. For hydrological applications and potential ARM products, machine learning methods developed using this dataset are explored to demonstrate advantages in geophysical retrievals when compared to traditional methods. Emphasis is on performance improvements when providing additional information on storm structure and regime or echo type classifications. Since deep convective cloud dynamic insights (core updraft/downdraft properties) are difficult to obtain directly by conventional radars that also observe radar reflectivity factor profiles similar to RWP systems, we also

  2. Self-management of chronic illness: the role of 'habit' versus reflective factors in exercise and medication adherence.

    Science.gov (United States)

    Phillips, L Alison; Cohen, Joshua; Burns, Edith; Abrams, Jessica; Renninger, Steffi

    2016-12-01

    Non-adherence to health behaviors required for chronic illness self-management is pervasive. Advancing health-behavior theory to include behavioral initiation and maintenance factors, including reflective (e.g., belief- and feedback-based) and automatic (e.g., habit-based) mechanisms of adherence to different treatment-related behaviors could improve non-adherence prediction and intervention efforts. To test behavioral initiation and maintenance factors from an extended common sense self-regulation theoretical framework for predicting medication adherence and physical activity among patients with Type 2 diabetes. Patients (n = 133) in an in-person (n = 80) or online (n = 53) version of the study reported treatment-related (1) barriers, (2) beliefs and experiential feedback (reflective mechanisms of treatment-initiation and short-term repetition), and (3) habit strength (automatic mechanism of treatment-maintenance) for taking medication and engaging in regular physical activity at baseline. Behaviors were assessed via self-reports (n = 133) and objectively (electronic monitoring pill bottles, accelerometers; n = 80) in the subsequent month. Treatment-specific barriers and habit strength predicted self-reported and objective adherence for both behaviors. Beliefs were inconsistently related to behavior, even when habits were "weak". Experiential feedback from behavior was not related to adherence. Among patients with Type 2 diabetes diagnosis, medication and physical activity adherence were better predicted by their degree of automatic behavioral repetition than their beliefs/experiences with the treatment-actions. Habit strength should be an intervention target for chronic illness self-management; assessing it in practice settings may effectively detect non-adherence to existing treatment-regimens. However, future research and further refining of CS-SRM theory regarding the processes required for such habit development are needed.

  3. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    2001-08-01

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  4. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  5. Reflecting reflection in supervision

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    associated with reflection and an exploration of alternative conceptions that view reflection within the context of settings which have a more group- and team-based orientation. Drawing on an action research project on health care supervision, the paper questions whether we should reject earlier views...... of reflection, rehabilitate them in order to capture broader connotations or move to new ways of regarding reflection that are more in keeping with not only reflective but also emotive, normative and formative views on supervision. The paper presents a critical perspective on supervision that challenge...... the current reflective paradigm I supervision and relate this to emotive, normative and formative views supervision. The paper is relevant for Nordic educational research into the supervision and guidance...

  6. Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar

    Science.gov (United States)

    Srigutomo, Wahyu; Trimadona; Agustine, Eleonora

    2016-08-01

    Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.

  7. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  8. Synergistic Use of Spacecraft Telecom Links for Collection of Planetary Radar Science Data

    Science.gov (United States)

    Asmar, S.; Bell, D. J.; Chahat, N. E.; Decrossas, E.; Dobreva, T.; Duncan, C.; Ellliot, H.; Jin, C.; Lazio, J.; Miller, J.; Preston, R.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. Example spacecraft radar instruments are the 90 MHz CONSERT radar used to probe the interior of Comet 67P/Churyumov-Gerasimenko to a depth of 760m, the 20 MHz SHARAD instrument used to investigate Mars subsurface ice features from Mars orbit at depths of 300 to 3000 meters and the upcoming RIMFAX 150 MHz to 1200 MHz ground penetrating radar that will ride on the Mars 2020 rover investigating to a depth of 10m below the rover. In all of these applications, the radar frequency and signal structures were chosen to match science goals of desired depth of penetration and spatial resolution combined with the expected subsurface materials and structures below the surface. Recently, JPL investigators have proposed a new radar science paradigm, synergistic use of the telecom hardware and telecom links to collect bistatic or monostatic radar signatures. All JPL spacecraft employ telecom hardware that operates at UHF (400 MHz and 900 MHz), X-band (8 GHz) or Ka-band (32 GHz). Using existing open-loop record functions in these radios, the telecom hardware can be used to capture opportunistic radar signatures from telecom signals penetrating the surface and reflecting off of subsurface structures. This paper reports on telecom strategies, radar science applications and recent laboratory and field tests to demonstrate the effectiveness of telecom link based radar data collection.

  9. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  10. Human walking estimation with radar

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2003-01-01

    Radar can be used to observe humans that are obscured by objects such as walls. These humans cannot be visually observed. The radar measurements are used to animate an obscured human in virtual reality. This requires detailed information about the motion. The radar measurements give detailed

  11. Target scattering characteristics for OAM-based radar

    Directory of Open Access Journals (Sweden)

    Kang Liu

    2018-02-01

    Full Text Available The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM based radar system. To illustrate the role of OAM-based radar cross section (ORCS, conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS. The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  12. Target scattering characteristics for OAM-based radar

    Science.gov (United States)

    Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang

    2018-02-01

    The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  13. ARM Cloud Radar Simulator Package for Global Climate Models Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuying [North Carolina State Univ., Raleigh, NC (United States); Xie, Shaocheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-01

    It has been challenging to directly compare U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground-based cloud radar measurements with climate model output because of limitations or features of the observing processes and the spatial gap between model and the single-point measurements. To facilitate the use of ARM radar data in numerical models, an ARM cloud radar simulator was developed to converts model data into pseudo-ARM cloud radar observations that mimic the instrument view of a narrow atmospheric column (as compared to a large global climate model [GCM] grid-cell), thus allowing meaningful comparison between model output and ARM cloud observations. The ARM cloud radar simulator value-added product (VAP) was developed based on the CloudSat simulator contained in the community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), which has been widely used in climate model evaluation with satellite data (Klein et al., 2013, Zhang et al., 2010). The essential part of the CloudSat simulator is the QuickBeam radar simulator that is used to produce CloudSat-like radar reflectivity, but is capable of simulating reflectivity for other radars (Marchand et al., 2009; Haynes et al., 2007). Adapting QuickBeam to the ARM cloud radar simulator within COSP required two primary changes: one was to set the frequency to 35 GHz for the ARM Ka-band cloud radar, as opposed to 94 GHz used for the CloudSat W-band radar, and the second was to invert the view from the ground to space so as to attenuate the beam correctly. In addition, the ARM cloud radar simulator uses a finer vertical resolution (100 m compared to 500 m for CloudSat) to resolve the more detailed structure of clouds captured by the ARM radars. The ARM simulator has been developed following the COSP workflow (Figure 1) and using the capabilities available in COSP

  14. A Twin Spiral Planar Antenna for UWB Medical Radars

    Directory of Open Access Journals (Sweden)

    Giuseppe A. Zito

    2013-01-01

    Full Text Available A planar-spiral antenna to be used in an ultrawideband (UWB radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

  15. Netted LPI RADARs

    Science.gov (United States)

    2011-09-01

    CHALLENGES ............................66 1. Radar Processing Gain ........................66 2. High Sensitivity Requirement .................68 B...Relationship Between Network Space and Challenges .....................................127 Figure 42. Maneuverability................................129...virtually any kind of terrain. It has five modes: Normal, Weather, ECCM, LPI, and Very Low Clearance ( VLC ). Pictures of the LANTIRN pod aboard and F-16

  16. a Study of Precipitation Using Dual-Frequency and Interferometric Doppler Radars.

    Science.gov (United States)

    Chilson, Phillip Bruce

    The primary focus of this dissertation involves the investigation of precipitation using Doppler radar but using distinctly different methods. Each method will be treated separately. The first part describes an investigation of a tropical thunderstorm that occurred in the summer of 1991 over the National Astronomy and Ionosphere Center in Arecibo, Puerto Rico. Observations were made using a vertically pointing, dual-wavelength, collinear beam Doppler radar which permits virtually simultaneous observations of the same pulse volume using transmission and reception of coherent UHF and VHF signals on alternate pulses. This made it possible to measure directly the vertical wind within the sampling volume using the VHF signal while using the UHF signal to study the nature of the precipitation. The observed storm showed strong similarities with systems observed in the Global Atmospheric Research Program's (GARP) Atlantic Tropical Experiment (GATE) study. The experiment provided a means of determining various parameters associated with the storm, such as the vertical air velocity, the mean fall speeds of the precipitation, and the reflectivity. Rogers proposed a means of deducing the mean fall speed of precipitation particles using the radar reflectivity factor. Using the data from our experiment, the mean precipitation fall speeds were calculated and compared with those that would be inferred from Rogers' method. The results suggest the Rogers method of estimating mean precipitation fall speeds to be unreliable in turbulent environments. The second part reports observations made with the 50 MHz Middle and Upper Atmosphere (MU) radar located at Shigaraki, Japan during May of 1992. The facility was operated in a spatial interferometry (SI) mode while observing frontal precipitation. The data suggest that the presence of precipitation can produce a bias in the SI cross-spectral phase that in turn creates an overestimation of the horizontal wind. The process is likened to

  17. Borehole radar survey at the granite quarry mine, Pocheon, Kyounggi province

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Ho; Cho, Seong Jun; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il; Shin, In Chul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Borehole radar survey in combination with the reflection and tomography methods was conducted at the Donga granite quarry mine of Pocheon area in Kyounggi province. The purpose of radar survey in quarry mine is to delineate the inhomogeneities including fractures and to estimate the freshness of rock. 20 MHz was adopted as the central frequency for the radar reflection and tomography surveys for the longer distance of penetration. The reflection survey using the direction finding antenna was also conducted to get the information on the spatial orientation of reflectors. Besides the various kinds of radar borehole survey, two surface geophysical methods, dipole-dipole resistivity survey and ground penetrating radar, were also applied to delineate the hidden parts of geological structures which was confirmed by geological mapping. The reflection data processing package, RADPRO ver. 2.2, developed continuously through in this study, was used to process the borehole reflection radar data. The new programs to process radar reflection data using directional antenna were devised and used to calculate and image the orientation of reflectors. The major dip angle of fractured zones were determined from the radar reflection images. With the aid of direction finding antenna and the newly developed algorithm to image the orientation of reflectors, it was possible to get the three dimensional attitudes of reflectors. Detailed interpretation results of the surveyed area are included in this report. Through the interpretation of borehole reflection data using dipole and direction finding antenna, we could determine the orientation of the major fractured zone, the boundary of two mining areas. Many of hidden inhomogeneities were found by borehole radar methods. By the image of direction finding antenna, it was confirmed that nearly all of them were located at the outside of the planned mining area or were situated very deeply. Therefore, the surveyed area consists of very fresh and

  18. Effects of respiration depth on human body radar cross section Using 2.4GHz continuous wave radar.

    Science.gov (United States)

    Lee, Alexander; Xiaomeng Gao; Jia Xu; Boric-Lubecke, Olga

    2017-07-01

    In this study, it was tested whether deep and shallow breathing has an effect on the cardiopulmonary radar cross-section (RCS). Continuous wave radar with quadrature architecture at 2.4GHz was used to test 2 human subjects breathing deep and shallow for 30 seconds each while seated 2 meters away from the radar. A retro-reflective marker was placed on the sternum of each subject and measured by infrared motion capture cameras to accurately track displacement of the chest. The quadrature radar outputs were processed to find the radius of the arc on the IQ plot using a circle-fitting algorithm. Results showed that the effective RCS ratio of deep to shallow breathing for subjects 1 and 2 was 6.99 and 2.24 respectively.

  19. Crosshole investigations - results from borehole radar investigations

    International Nuclear Information System (INIS)

    Olsson, O.; Falk, L.; Sandberg, E.; Forslund, O.; Lundmark, L.

    1987-05-01

    A new borehole radar system has been designed, built and tested. The system consists of borehole transmitter and receiver probes, a signal control unit for communication with the borehole probes, and a computer unit for storage and display of data. The system can be used both in singlehole and crosshole modes and probing ranges of 115 m and 300 m, respectively, have been obtained at Stripa. The borehole radar is a short pulse system which uses center frequencies in the range 20 to 60 MHz. Single hole reflection measurements have been used to identify fracture zones and to determine their position and orientation. The travel time and amplitude of the first arrival measured in a crosshole experiment can be used as input data in a tomographic analysis. (orig./DG)

  20. Radar studies of the planets. [radar measurements of lunar surface, Mars, Mercury, and Venus

    Science.gov (United States)

    Ingalls, R. P.; Pettengill, G. H.; Rogers, A. E. E.; Sebring, P. B. (Editor); Shapiro, I. I.

    1974-01-01

    The radar measurements phase of the lunar studies involving reflectivity and topographic mapping of the visible lunar surface was ended in December 1972, but studies of the data and production of maps have continued. This work was supported by Manned Spacecraft Center, Houston. Topographic mapping of the equatorial regions of Mars has been carried out during the period of each opposition since that of 1967. The method comprised extended precise traveling time measurements to a small area centered on the subradar point. As measurements continued, planetary motions caused this point to sweep out extensive areas in both latitude and longitude permitting the development of a fairly extensive topographical map in the equatorial region. Radar observations of Mercury and Venus have also been made over the past few years. Refinements of planetary motions, reflectivity maps and determinations of rotation rates have resulted.

  1. Space Radar Image of Bahia

    Science.gov (United States)

    1994-01-01

    This is a color composite image of southern Bahia, Brazil, centered at 15.22 degree south latitude and 39.07 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 38th orbit of Earth on October 2, 1994. The image covers an area centered over the Una Biological Reserve, one the largest protected areas in northeastern Brazil. The 7,000-hectare reserve is administered by the Brazilian Institute for the Environment and is part of the larger Atlantic coastal forest, a narrow band of rain forest extending along the eastern coast of Brazil. The Atlantic coastal forest of southern Bahia is one of the world's most threatened and diverse ecosystems. Due to widespread settlement, only 2 to 5 percent of the original forest cover remains. Yet the region still contains an astounding variety of plants and animals, including a large number of endemic species. More than half of the region's tree species and 80 percent of its animal species are indigenous and found nowhere else on Earth. The Una Reserve is also the only federally protected habitat for the golden-headed lion tamarin, the yellow-breasted capuchin monkey and many other endangered species. In the past few years, scientists from Brazilian and international conservation organizations have coordinated efforts to study the biological diversity of this region and to develop practical and economically viable options for preserving the remaining primary forests in southern Bahia. The shuttle imaging radar is used in this study to identify various land uses and vegetation types, including remaining patches of primary forest, cabruca forest (cacao planted in the understory of the native forest), secondary forest, pasture and coastal mangrove. Standard remote-sensing technology that relies on light reflected from the forest canopy cannot accurately distinguish between cabruca and undisturbed forest. Optical remote sensing is also

  2. Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z- M relationship

    Science.gov (United States)

    Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di

    2018-02-01

    With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.

  3. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  4. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    2001-08-01

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  5. The use of radar for bathymetry assessment

    OpenAIRE

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered bathymetric data. The paper reviews the concepts of bathymetry assessment by radar, the radar imaging mechanism, and the possibilities and limitations of the use of radar data in rapid assessment.

  6. Postoperative Insulin-Like Growth Factor 1 Levels Reflect the Graft's Function and Predict Survival after Liver Transplantation.

    Directory of Open Access Journals (Sweden)

    Daniele Nicolini

    Full Text Available The reduction of insulin-like growth factor 1 (IGF-1 plasma levels is associated with the degree of liver dysfunction and mortality in cirrhotic patients. However, little research is available on the recovery of the IGF-1 level and its prognostic role after liver transplantation (LT.From April 2010 to May 2011, 31 patients were prospectively enrolled (25/6 M/F; mean age±SEM: 55.2±1.4 years, and IGF-1 serum levels were assessed preoperatively and at 15, 30, 90, 180 and 365 days after transplantation. The influence of the donor and recipient characteristics (age, use of extended criteria donor grafts, D-MELD and incidence of early allograft dysfunction on hormonal concentration was analyzed. The prognostic role of IGF-1 level on patient survival and its correlation with routine liver function tests were also investigated.All patients showed low preoperative IGF-1 levels (mean±SEM: 29.5±2.1, and on postoperative day 15, a significant increase in the IGF-1 plasma level was observed (102.7±11.7 ng/ml; p65 years or extended criteria donor grafts. An inverse correlation between IGF-1 and bilirubin serum levels at day 15 (r = -0.3924, p = 0.0320 and 30 (r = -0.3894, p = 0.0368 was found. After multivariate analysis, early (within 15 days IGF-1 normalization [Exp(b = 3.913; p = 0.0484] was the only prognostic factor associated with an increased 3-year survival rate.IGF-1 postoperative levels are correlated with the graft's quality and reflect liver function. Early IGF-1 recovery is associated with a higher 3-year survival rate after LT.

  7. Quantifying Uncertainties in Mass-Dimensional Relationships Through a Comparison Between CloudSat and SPartICus Reflectivity Factors

    Science.gov (United States)

    Mascio, J.; Mace, G. G.

    2015-12-01

    CloudSat and CALIPSO, two of the satellites in the A-Train constellation, use algorithms to calculate the scattering properties of small cloud particles, such as the T-matrix method. Ice clouds (i.e. cirrus) cause problems with these cloud property retrieval algorithms because of their variability in ice mass as a function of particle size. Assumptions regarding the microphysical properties, such as mass-dimensional (m-D) relationships, are often necessary in retrieval algorithms for simplification, but these assumptions create uncertainties of their own. Therefore, ice cloud property retrieval uncertainties can be substantial and are often not well known. To investigate these uncertainties, reflectivity factors measured by CloudSat are compared to those calculated from particle size distributions (PSDs) to which different m-D relationships are applied. These PSDs are from data collected in situ during three flights of the Small Particles in Cirrus (SPartICus) campaign. We find that no specific habit emerges as preferred and instead we conclude that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum and, therefore, cannot be categorized easily. To quantify the uncertainties in the mass-dimensional relationships, an optimal estimation inversion was run to retrieve the m-D relationship per SPartICus flight, as well as to calculate uncertainties of the m-D power law.

  8. Forestry applications of ground-penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, H.; Perez-Gracia, V.; Novo, A.; Armesto, J.

    2010-07-01

    Ground-penetrating radar (GPR) is a geophysical and close-range remote sensing technique based on the use of radar pulses to obtain cross-section images of underground features. This method is characterized by the transmission of an electromagnetic short length pulse (1-2 ns), presenting a centre frequency ranging from 10 MHz to 2.5 GHz. The principles of GPR operation are based on the ability of low frequency radar waves to penetrate into a non-conductive medium, usually subsoil, but also walls, concrete or wood. Those waves are detected after suffering a reflection in electromagnetic discontinuities of the propagation medium. Therefore, this is a suitable method to study changes in those physical properties, and also to characterize different mediums and the reflective targets providing information about their physical properties. The aim of this work is to describe and demonstrate different applications of GPR in forestry, showing the obtained results together with their interpretation. Firstly, in this paper, it is illustrated how GPR is able to map shallow bedrock, subsoil stratigraphy and also to estimate shallow water table depth. Secondly, different tree trunks as well as dry timber are analyzed, evaluating the different radar data obtained in each particular case, and observing differences in their electromagnetic properties related to the GPR response. Finally, several measurements were taken in order to analyze the use of GPR to detect tree root systems using polarimetric techniques, being possible to detect medium and big size roots, together with groups of small roots. (Author) 39 refs.

  9. Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data

    Science.gov (United States)

    Eide, Michael C.; Mathews, Bruce

    1992-01-01

    Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler

  10. Wind farms impact on radar aviation interests - final report

    Energy Technology Data Exchange (ETDEWEB)

    Poupart, G.J.

    2003-09-01

    The main objectives of the study were: to determine the effects of siting wind turbines adjacent to primary air traffic control radar; to gather the information required for the generation of guidelines by civil, military and wind farm developer stakeholders; to determine the extent to which the design of wind turbines influences their effects on radar systems and to determine the extent to which design of the radar processing influences the effects of wind turbines on radar systems. A computer model was developed to predict the Radar Cross Section (RCS) of wind turbines and understand the interaction of radar energy and turbines. The model was designed to predict and simulate the impact of wind farms on the primary radar display. Validation of the model was carried out in a full-scale trial and modelling process, with data collected from a number of sources. The model was validated against a single turbine scenario and showed an accurate prediction capability. Further validation of the model could be gained through a multiple turbine trial. The knowledge gained from the development and validation of the predictive computer model has been used to conduct a sensitivity analysis (of the sub-elements of the radar and wind farm interaction) and to compile a list of the key factors influencing the radar signature of wind turbines. The result is a more detailed quantification of the complex interactions between wind turbines and radar systems than was previously available. The key findings of how the design, size and construction materials of wind turbines affect RCS are summarised.

  11. Intercomparison of attenuation correction algorithms for single-polarized X-band radars

    Science.gov (United States)

    Lengfeld, K.; Berenguer, M.; Sempere Torres, D.

    2018-03-01

    Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing

  12. Simulation for ground penetrating radar (GPR) study of the subsurface structure of the Moon

    Science.gov (United States)

    Fa, Wenzhe

    2013-12-01

    Ground penetrating radar (GPR) is currently within the scope of China's Chang-E 3 lunar mission, to study the shallow subsurface of the Moon. In this study, key factors that could affect a lunar GPR performance, such as frequency, range resolution, and antenna directivity, are discussed firstly. Geometrical optics and ray tracing techniques are used to model GPR echoes, considering the transmission, attenuation, reflection, geometrical spreading of radar waves, and the antenna directivity. The influence on A-scope GPR echoes and on the simulated radargrams for the Sinus Iridum region by surface and subsurface roughness, dielectric loss of the lunar regolith, radar frequency and bandwidth, and the distance between the transmit and receive antennas are discussed. Finally, potential scientific return about lunar subsurface properties from GPR echoes is also discussed. Simulation results suggest that subsurface structure from several to hundreds of meters can be studied from GPR echoes at P and VHF bands, and information about dielectric permittivity and thickness of subsurface layers can be estimated from GPR echoes in combination with regolith composition data.

  13. Monte Carlo Simulation of the Echo Signals from Low-Flying Targets for Airborne Radar

    Directory of Open Access Journals (Sweden)

    Mingyuan Man

    2014-01-01

    Full Text Available A demonstrated hybrid method based on the combination of half-space physical optics method (PO, graphical-electromagnetic computing (GRECO, and Monte Carlo method on echo signals from low-flying targets based on actual environment for airborne radar is presented in this paper. The half-space physical optics method , combined with the graphical-electromagnetic computing (GRECO method to eliminate the shadow regions quickly and rebuild the target automatically, is employed to calculate the radar cross section (RCS of the conductive targets in half space fast and accurately. The direct echo is computed based on the radar equation. The reflected paths from sea or ground surface cause multipath effects. In order to accurately obtain the echo signals, the phase factors are modified for fluctuations in multipath, and the statistical average value of the echo signals is obtained using the Monte Carlo method. A typical simulation is performed, and the numerical results show the accuracy of the proposed method.

  14. Processing of 3D Weather Radar Data with Application for Assimilation in the NWP Model

    Directory of Open Access Journals (Sweden)

    Ośródka Katarzyna

    2014-09-01

    Full Text Available The paper is focused on the processing of 3D weather radar data to minimize the impact of a number of errors from different sources, both meteorological and non-meteorological. The data is also quantitatively characterized in terms of its quality. A set of dedicated algorithms based on analysis of the reflectivity field pattern is described. All the developed algorithms were tested on data from the Polish radar network POLRAD. Quality control plays a key role in avoiding the introduction of incorrect information into applications using radar data. One of the quality control methods is radar data assimilation in numerical weather prediction models to estimate initial conditions of the atmosphere. The study shows an experiment with quality controlled radar data assimilation in the COAMPS model using the ensemble Kalman filter technique. The analysis proved the potential of radar data for such applications; however, further investigations will be indispensable.

  15. A technique for the radar cross-section estimation of axisymmetric plasmoid

    International Nuclear Information System (INIS)

    Naumov, N D; Petrovskiy, V P; Sasinovskiy, Yu K; Shkatov, O Yu

    2015-01-01

    A model for the radio waves backscattering from both penetrable plasma and reflecting plasma is developed. The technique proposed is based on Huygens's principle and reduces the radar cross-section estimation to numerical integrations. (paper)

  16. Use of radars to monitor stream discharge by noncontact methods

    Science.gov (United States)

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    . Time series of surface velocity obtained by different radars in the Cowlitz River experiment also show small‐amplitude pulsations not found in stage records that reflect tidal energy at the gauging station. Noncontact discharge measurements made during a flood on 30 January 2004 agreed with the rated discharge to within 5%. Measurement at both field sites confirm that lognormal velocity profiles exist for a wide range of flows in these rivers, and mean velocity is approximately 0.85 times measured surface velocity. Noncontact methods of flow measurement appear to (1) be as accurate as conventional methods, (2) obtain data when standard contact methods are dangerous or cannot be obtained, and (3) provide insight into flow dynamics not available from detailed stage records alone.

  17. Experiment for buried pipes by stepped FM-CW radar; Step shiki FM-CW radar ni yoru maisetsukan tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Ito, M. [Kawasaki Geological Engineering, Co. Ltd., Tokyo (Japan); Tanabe, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-27

    The underground radar exploration is adopted to surveys of cavity under the road and buried pipes since the result of high resolution is obtained. However, the explorative depth of the radar is shallow, 2-3m in soil basement, and its applicable field has been limited. The continuous wave radar (FM-CW radar) was devised to get deeper explorative depth, but has been used for the geological structure survey such as the fault survey since it is lower in resolution as compared with the pulse radar. Therefore, to make use of characteristics of the continuous wave radar and enhance resolution in the shallow part, an experiment on buried pipes was conducted for the purpose of assessing and improving the FM-CW radar. In this processing, the wave form treatment used in the reflection method seismic survey was adopted for the radar survey. There are some problems, but it is effective to adopt the same algorithm to that used in the seismic survey to the radar exploration. The explorative depth was discussed from the damping rate of electromagnetic waves and dynamic range of facilities of the experimental site, and 7m was obtained. 5 figs., 1 tab.

  18. Mars radar clutter and surface roughness characteristics from MARSIS data

    Science.gov (United States)

    Campbell, Bruce A.; Schroeder, Dustin M.; Whitten, Jennifer L.

    2018-01-01

    Radar sounder studies of icy, sedimentary, and volcanic settings can be affected by reflections from surface topography surrounding the sensor nadir location. These off-nadir ;clutter; returns appear at similar time delays to subsurface echoes and complicate geologic interpretation. Additionally, broadening of the radar echo in delay by surface returns sets a limit on the detectability of subsurface interfaces. We use MARSIS 4 MHz data to study variations in the nadir and off-nadir clutter echoes, from about 300 km to 1000 km altitude, R, for a wide range of surface roughness. This analysis uses a new method of characterizing ionospheric attenuation to merge observations over a range of solar zenith angle and date. Mirror-like reflections should scale as R-2, but the observed 4 MHz nadir echoes often decline by a somewhat smaller power-law factor because MARSIS on-board processing increases the number of summed pulses with altitude. Prior predictions of the contributions from clutter suggest a steeper decline with R than the nadir echoes, but in very rough areas the ratio of off-nadir returns to nadir echoes shows instead an increase of about R1/2 with altitude. This is likely due in part to an increase in backscatter from the surface as the radar incidence angle at some round-trip time delay declines with increasing R. It is possible that nadir and clutter echo properties in other planetary sounding observations, including RIME and REASON flyby data for Europa, will vary in the same way with altitude, but there may be differences in the nature and scale of target roughness (e.g., icy versus rocky surfaces). We present global maps of the ionosphere- and altitude-corrected nadir echo strength, and of a ;clutter; parameter based on the ratio of off-nadir to nadir echoes. The clutter map offers a view of surface roughness at ∼75 m length scale, bridging the spatial-scale gap between SHARAD roughness estimates and MOLA-derived parameters.

  19. The theory-practice relationship: reflective skills and theoretical knowledge as key factors in bridging the gap between theory and practice in initial nursing education.

    Science.gov (United States)

    Hatlevik, Ida Katrine Riksaasen

    2012-04-01

    This paper is a report of a correlational study of the relations of nursing students' acquired reflective skills, practical skills and theoretical knowledge on their perception of coherence between theory and practice. Reflection is considered a key factor in bridging the gap between theory and practice. However, it is not evident whether reflective skills are primarily generic in nature or whether they develop from a theoretical knowledge base or the acquisition of practical skills. This study is a secondary analysis of existing data. The data are part of a student survey that was conducted among third-year nursing students in Norway during the spring of 2007. A total of 446 nursing students participated in this study and the response rate was 71%. Structural equation modelling analyses were performed. The results indicate that students' perception of coherence between theory and practice during initial nursing education is directly influenced by reflective skills and theoretical knowledge. The results also reveal that reflective skills have mediating effects and that practical skills have a fully mediated and theoretical knowledge a partially mediated influence on students' perception of coherence. The findings imply that helping students perceive coherence between theory and practice in nursing education, developing students' reflective skills and strengthening the theoretical components of the initial nursing education programme might be beneficial. The results suggest that reflective thinking is not merely a generic skill but rather a skill that depends on the acquisition of relevant professional knowledge and experience. © 2011 Blackwell Publishing Ltd.

  20. Methods and limitations in radar target imagery

    Science.gov (United States)

    Bertrand, P.

    An analytical examination of the reflectivity of radar targets is presented for the two-dimensional case of flat targets. A complex backscattering coefficient is defined for the amplitude and phase of the received field in comparison with the emitted field. The coefficient is dependent on the frequency of the emitted signal and the orientation of the target with respect to the transmitter. The target reflection is modeled in terms of the density of illumined, colored points independent from one another. The target therefore is represented as an infinite family of densities indexed by the observational angle. Attention is given to the reflectivity parameters and their distribution function, and to the conjunct distribution function for the color, position, and the directivity of bright points. It is shown that a fundamental ambiguity exists between the localization of the illumined points and the determination of their directivity and color.

  1. Ka-Band ARM Zenith Radar Corrections Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Karen [Brookhaven National Lab. (BNL), Upton, NY (United States); Toto, Tami [Brookhaven National Lab. (BNL), Upton, NY (United States); Giangrande, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-10-15

    The KAZRCOR Value -added Product (VAP) performs several corrections to the ingested KAZR moments and also creates a significant detection mask for each radar mode. The VAP computes gaseous attenuation as a function of time and radial distance from the radar antenna, based on ambient meteorological observations, and corrects observed reflectivities for that effect. KAZRCOR also dealiases mean Doppler velocities to correct velocities whose magnitudes exceed the radar’s Nyquist velocity. Input KAZR data fields are passed through into the KAZRCOR output files, in their native time and range coordinates. Complementary corrected reflectivity and velocity fields are provided, along with a mask of significant detections and a number of data quality flags. This report covers the KAZRCOR VAP as applied to the original KAZR radars and the upgraded KAZR2 radars. Currently there are two separate code bases for the different radar versions, but once KAZR and KAZR2 data formats are harmonized, only a single code base will be required.

  2. Quantitative analysis of ground penetrating radar data in the Mu Us Sandland

    Science.gov (United States)

    Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong

    2018-06-01

    Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.

  3. Performance of high-resolution X-band radar for rainfall measurement in The Netherlands

    Directory of Open Access Journals (Sweden)

    C. Z. van de Beek

    2010-02-01

    Full Text Available This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The aim of this paper is to present a thorough analysis of a climatological dataset using a high spatial (120 m and temporal (16 s resolution X-band radar. This makes it a study of the potential for high-resolution rainfall measurements with non-polarimetric X-band radar over flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than what can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.

  4. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  5. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  6. Regime-dependence of Impacts of Radar Rainfall Data Assimilation

    Science.gov (United States)

    Craig, G. C.; Keil, C.

    2009-04-01

    Experience from the first operational trials of assimilation of radar data in kilometre scale numerical weather prediction models (operating without cumulus parameterisation) shows that the positive impact of the radar data on convective precipitation forecasts typically decay within a few hours, although certain cases show much longer impacts. Here the impact time of radar data assimilation is related to characteristics of the meteorological environment. This QPF uncertainty is investigated using an ensemble of 10 forecasts at 2.8 km horizontal resolution based on different initial and boundary conditions from a global forecast ensemble. Control forecasts are compared with forecasts where radar reflectivity data is assimilated using latent heat nudging. Examination of different cases of convection in southern Germany suggests that the forecasts can be separated into two regimes using a convective timescale. Short impact times are associated with short convective timescales that are characteristic of equilibrium convection. In this regime the statistical properties of the convection are constrained by the large-scale forcing, and effects of the radar data are lost within a few hours as the convection rapidly returns to equilibrium. When the convective timescale is large (non-equilibrium conditions), the impact of the radar data is longer since convective systems are triggered by the latent heat nudging and are able to persist for many hours in the very unstable conditions present in these cases.

  7. Radar Image, Hokkaido, Japan

    Science.gov (United States)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62

  8. Waveform design and diversity for advanced radar systems

    CERN Document Server

    Gini, Fulvio

    2012-01-01

    In recent years, various algorithms for radar signal design, that rely heavily upon complicated processing and/or antenna architectures, have been suggested. These techniques owe their genesis to several factors, including revolutionary technological advances (new flexible waveform generators, high speed signal processing hardware, digital array radar technology, etc.) and the stressing performance requirements, often imposed by defence applications in areas such as airborne early warning and homeland security.Increasingly complex operating scenarios calls for sophisticated algorithms with the

  9. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  10. Applying volumetric weather radar data for rainfall runoff modeling: The importance of error correction.

    Science.gov (United States)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.; Delobbe, L.; Weerts, A.; Reggiani, P.

    2009-04-01

    In the current study half a year of volumetric radar data for the period October 1, 2002 until March 31, 2003 is being analyzed which was sampled at 5 minutes intervals by C-band Doppler radar situated at an elevation of 600 m in the southern Ardennes region, Belgium. During this winter half year most of the rainfall has a stratiform character. Though radar and raingauge will never sample the same amount of rainfall due to differences in sampling strategies, for these stratiform situations differences between both measuring devices become even larger due to the occurrence of a bright band (the point where ice particles start to melt intensifying the radar reflectivity measurement). For these circumstances the radar overestimates the amount of precipitation and because in the Ardennes bright bands occur within 1000 meter from the surface, it's detrimental effects on the performance of the radar can already be observed at relatively close range (e.g. within 50 km). Although the radar is situated at one of the highest points in the region, very close to the radar clutter is a serious problem. As a result both nearby and farther away, using uncorrected radar results in serious errors when estimating the amount of precipitation. This study shows the effect of carefully correcting for these radar errors using volumetric radar data, taking into account the vertical reflectivity profile of the atmosphere, the effects of attenuation and trying to limit the amount of clutter. After applying these correction algorithms, the overall differences between radar and raingauge are much smaller which emphasizes the importance of carefully correcting radar rainfall measurements. The next step is to assess the effect of using uncorrected and corrected radar measurements on rainfall-runoff modeling. The 1597 km2 Ourthe catchment lies within 60 km of the radar. Using a lumped hydrological model serious improvement in simulating observed discharges is found when using corrected radar

  11. Aercibo S-band radar program

    International Nuclear Information System (INIS)

    Campbell, D.B.

    1988-01-01

    The high powered 12.6 cm wavelength radar on the 1000-ft Arecibo reflector is utilized for a number of solar system studies. Chief among these are: (1) surface reflectivity mapping of Venus, Mercury and the Moon. Resolutions achievable on Venus are less than 1.5 km over some areas, for Mercury about 30 km and for the Moon 200 m at present, (2) high time resolution ranging measurements to the surfaces of the terrestrial planets. These measurements are used to obtain profiles and scattering parameters in the equatorial region. They can also be used to test relativistic and gravitational theories by monitoring the rate of advance of the perihelion of the orbit of Mercury and placing limits on the stability of the gravitational constant, (3) measurements of the orbital parameters, figure, spin vector and surface properties of asteroids and comets, and (4) observations of the Galilean Satellites of Jupiter and the satellites of Mars, Phobos and Deimos. The Galilean Satellites of Jupiter were re-observed with the 12.6 cm radar for the first time since 1981. Much more accurate measurements of the scattering properties of the three icy satellites were obtained that generally confirmed previous observations. Unambiguous measurements of the cross section and circular polarizations ratio of Io were also obtained for the first time. The radar scattering properties of four mainbelt asteroids and one near-earth asteroid were studied

  12. Monitoring internal organ motion with continuous wave radar in CT

    International Nuclear Information System (INIS)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-01-01

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  13. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Chiswell, S.; Buckley, R.

    2009-01-15

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has

  14. Inner Core Structure of Hurricane Alicia from Airborne Doppler Radar Observations.

    Science.gov (United States)

    Marks, Frank D., Jr.; Houze, Robert A., Jr.

    1987-05-01

    Airborne Doppler radar measurements are used to determine the horizontal winds, vertical air motions, radar reflectivity and hydrometer fallspeeds over much of the inner-core region (within 40 km of the eye) of Hurricane Alicia (1983). The reconstructed flow field is more complete and detailed than any obtained previously. The data show both the primary (azimuthal) and secondary (radial-height) circulations. The primary circulation was characterized by an outward sloping maximum of tangential wind. The secondary circulation was characterized by a deep layer of radial inflow in the lower troposphere and a layer of intense outflow above 10 km altitude. The rising branch of the secondary circulation was located in the eyewall and sloped radially outward. Discrete convective-scale bubbles of more intense upward motion were superimposed on this mean rising current, and convective-scale downdrafts were located throughout and below the core of maximum precipitation in the eyewall.Precipitation particles in the eyewall rainshaft circulated 18-20 km downwind as they fell, consistent with the typical upwind slope with increasing altitude of eyewall precipitation cores Outside the eyewall, the precipitation was predominantly stratiform. A radar bright band was evident at the melting level. Above the melting level, ice particles were advected into the stratiform region from the upper levels of the eyewall and drifted downward through a mesoscale region of ascent. Hypothetical precipitation particle trajectories showed that as these particles fell slowly through the mesoscale updraft toward the melting level, they were carried azimuthally as many as 1 1/2 times around the storm. During this spiraling descent, the particles evidently grew vigorously. The amount of water condensed by the ambient mesoscale ascent exceeded that transported into the stratiform region by the eyewall outflow by a factor of 3. As the particles fell into the lower troposphere, they entered a mesoscale

  15. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  16. Broadview Radar Altimetry Toolbox

    Science.gov (United States)

    Garcia-Mondejar, Albert; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the frontend for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the dataformatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and specific

  17. Doppler radar flowmeter

    Science.gov (United States)

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  18. THE PRENATAL PARENTAL REFLECTIVE FUNCTIONING QUESTIONNAIRE: EXPLORING FACTOR STRUCTURE AND CONSTRUCT VALIDITY OF A NEW MEASURE IN THE FINN BRAIN BIRTH COHORT PILOT STUDY.

    Science.gov (United States)

    Pajulo, Marjukka; Tolvanen, Mimmi; Karlsson, Linnea; Halme-Chowdhury, Elina; Öst, Camilla; Luyten, Patrick; Mayes, Linda; Karlsson, Hasse

    2015-01-01

    Parental reflective functioning (PRF) is the capacity to focus on experience and feelings in oneself and in the child. Individual differences in PRF reportedly affect child attachment and socioemotional development. In this study, we report work on developing a questionnaire to assess PRF during pregnancy (Prenatal Parental Reflective Functioning Questionnaire; P-PRFQ). The factor structure of the 33-item version of the P-PRFQ was explored using pilot study data from the Finn Brain Birth Cohort Study (n = 124 mothers, n = 82 fathers). Construct validity was assessed against the Pregnancy Interview (PI; A. Slade, L. Grunebaum, L. Huganir, & M. Reeves, 1987, 2002, 2011) in a subsample of 29 mothers from the same pilot sample. Exploratory and confirmatory factor analysis resulted in a 14-item P-PRFQ, with three factors which seem to capture relevant aspects of prenatal parental mentalization-F1: "Opacity of mental states," F2: "Reflecting on the fetus-child," and F3: "The dynamic nature of the mental states." Functioning of the factor structure was further tested in the large cohort with 600 mothers and 600 fathers. Correlations with the PI result were high, both regarding total and factor scores of the P-PRFQ. Cost-effective tools to assess key areas of early parenting are needed for both research and clinical purposes. The 14-item P-PRFQ seems to be an applicable and promising new tool for assessing very early parental mentalizing capacity. © 2015 Michigan Association for Infant Mental Health.

  19. Database development for understanding the wet deposition and dispersion processes after the Fukushima nuclear plant accident. Radar data

    International Nuclear Information System (INIS)

    Yatagai, Akiyo; Takara, Kaoru; Ishihara, Masahito; Ishikawa, Hirohiko; Watanabe, Akira; Murata, Ken T.

    2015-01-01

    This manuscript describes datasets of meteorological information being developed for understanding the dispersion and deposition process of radionuclides associated with the Fukushima accident in March 2011. Among several products, this paper reports mainly our original radar data images including the X-band radar data from Fukushima University as well as the three-dimensional reflectivity data from the Japan Meteorological Agency C-band radar network. (author)

  20. Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar

    Directory of Open Access Journals (Sweden)

    M. D. Shupe

    2012-06-01

    Full Text Available Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4–6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tethered-balloon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2–3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds.

  1. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  2. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  3. Performance indicators modern surveillance radar

    NARCIS (Netherlands)

    Nooij, P.N.C.; Theil, A.

    2014-01-01

    Blake chart computations are widely employed to rank detection coverage capabilities of competitive search radar systems. Developed for comparable 2D radar systems with a mechanically rotating reflector antenna, it was not necessary to regard update rate and plot quality in Blake's chart. To

  4. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  5. Radar rainfall estimation in a hilly environment and implications for runoff modeling

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2010-05-01

    Radars are known for their ability to obtain a wealth of information about the spatial stormfield characteristics. Unfortunately, rainfall estimates obtained by this instrument are known to be affected by multiple sources of error. Especially for stratiform precipitation systems, the quality of radar rainfall estimates starts to decrease at relatively close ranges. In the current study the hydrological potential of weather radar is analyzed during a winter half-year for the hilly region of the Belgian Ardennes. A correction algorithm is proposed taking into account attenuation, ground clutter, anomalous propagation, the vertical profile of reflectivity (VPR) and advection. No final bias correction with respect to rain gauge data were implemented, because that does not add to a better understanding of the quality of the radar. Largest quality improvements in the radar data are obtained by ground clutter removal. The influence of VPR correction and advection depends on the precipitation system observed. Overall, the radar shows an underestimation as compared to the rain gauges, which becomes smaller after averaging at the scale of the medium-sized Ourthe catchment. Remaining differences between both devices can mainly be attributed to an improper choice of the Z-R relationship. Conceptual rainfall-runoff simulations show similar results using either catchment average radar or rain gauge data, although the largest discharge peak observed, is seriously underestimated when applying radar data. Overall, for hydrological applications corrected weather radar information in a hilly environment can be used up to 70 km during a winter half-year.

  6. 100 years of radar

    CERN Document Server

    Galati, Gaspare

    2016-01-01

    This book offers fascinating insights into the key technical and scientific developments in the history of radar, from the first patent, taken out by Hülsmeyer in 1904, through to the present day. Landmark events are highlighted and fascinating insights provided into the exceptional people who made possible the progress in the field, including the scientists and technologists who worked independently and under strict secrecy in various countries across the world in the 1930s and the big businessmen who played an important role after World War II. The book encourages multiple levels of reading. The author is a leading radar researcher who is ideally placed to offer a technical/scientific perspective as well as a historical one. He has taken care to structure and write the book in such a way as to appeal to both non-specialists and experts. The book is not sponsored by any company or body, either formally or informally, and is therefore entirely unbiased. The text is enriched by approximately three hundred ima...

  7. Orthogonal on-off control of radar pulses for the suppression of mutual interference

    Science.gov (United States)

    Kim, Yong Cheol

    1998-10-01

    Intelligent vehicles of the future will be guided by radars and other sensors to avoid obstacles. When multiple vehicles move simultaneously in autonomous navigational mode, mutual interference among car radars becomes a serious problem. An obstacle is illuminated with electromagnetic pulses from several radars. The signal at a radar receiver is actually a mixture of the self-reflection and the reflection of interfering pulses emitted by others. When standardized pulse- type radars are employed on vehicles for obstacle avoidance and so self-pulse and interfering pulses have identical pulse repetition interval, this SI (synchronous Interference) is very difficult to separate from the true reflection. We present a method of suppressing such a synchronous interference. By controlling the pulse emission of a radar in a binary orthogonal ON, OFF pattern, the true self-reflection can be separated from the false one. Two range maps are generated, TRM (true-reflection map) and SIM (synchronous- interference map). TRM is updated for every ON interval and SIM is updated for every OFF interval of the self-radar. SIM represents the SI of interfering radars while TRM keeps a record of a mixture of the true self-reflection and SI. Hence the true obstacles can be identified by the set subtraction operation. The performance of the proposed method is compared with that of the conventional M of N method. Bayesian analysis shows that the probability of false alarm is improved by order of 103 to approximately 106 while the deterioration in the probability of detection is negligible.

  8. Impacts of the Angular Dependence of the Solar Diffuser BRDF Degradation Factor on the SNPP VIIRS Reflective Solar Band On-Orbit Radiometric Calibration

    Science.gov (United States)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    Using an onboard sunlit solar diffuser (SD) as the primary radiance source, the visible infrared imaging radiometer suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs radiometric calibration of its reflective solar bands (RSBs). The SD bidirectional reflectance distribution function (BRDF) value decreases over time. A numerical degradation factor is used to quantify the degradation and is determined by an onboard SD stability monitor (SDSM), which observes the sun and the sunlit SD at almost the same time. We had shown previously that the BRDF degradation factor was angle-dependent. Consequently, due to that the SDSM and the RSB view the SD at very different angles relative to both the solar and the SD surface normal vectors, directly applying the BRDF degradation factor determined by the SDSM to the VIIRS RSB calibration can result in large systematic errors. We develop a phenomenological model to calculate the BRDF degradation factor for the RSB SD view from the degradation factor for the SDSM SD view. Using the yearly undulations observed in the VIIRS detector gains for the M1-M4 bands calculated with the SD BRDF degradation factor for the SDSM SD view and the difference between the VIIRS detector gains calculated from the SD and the lunar observations, we obtain the model parameter values and thus establish the relation between the BRDF degradation factors for the RSB and the SDSM SD view directions.

  9. Radar-Assisted Mapping of Massive Ice in Western Utopia Planitia, Mars: Degradational Mechanisms and Implications for Surface Evolution

    Science.gov (United States)

    Stuurman, C. M.; Levy, J. S.; Holt, J. W.; Harrison, T. N.; Osinski, G. R.

    2015-12-01

    Western Utopia Planitia remains an enigmatic region of Mars. Radar and morphological analyses have framed the area as rich in ground ice, however there exist multiple theories regarding how the ice was emplaced. Here, we combine radar and morphological analyses to characterize the recent history of water ice in western Utopia Planitia. A radar reflective interface found in SHAllow RADar (SHARAD) data in Utopia Planitia is found to correlate with layered mesas 80-110 m thick. Discontinuities in the radar reflective interface relate to degradation of the layered mesas. This work uses the extent of the reflective interface to map the previous extent of the layered mesas, which we believe constitutes the remnants of a large ice sheet formed in the Late Amazonian. The past volume of the ice sheet is to be determined by the SHARAD-assisted mapping. This volume will be related to the recent climate history of western Utopia Planitia.

  10. Automatic Classification of Offshore Wind Regimes With Weather Radar Observations

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik

    2014-01-01

    Weather radar observations are called to play an important role in offshore wind energy. In particular, they can enable the monitoring of weather conditions in the vicinity of large-scale offshore wind farms and thereby notify the arrival of precipitation systems associated with severe wind...... and amplitude) using reflectivity observations from a single weather radar system. A categorical sequence of most likely wind regimes is estimated from a wind speed time series by combining a Markov-Switching model and a global decoding technique, the Viterbi algorithm. In parallel, attributes of precipitation...... systems are extracted from weather radar images. These attributes describe the global intensity, spatial continuity and motion of precipitation echoes on the images. Finally, a CART classification tree is used to find the broad relationships between precipitation attributes and wind regimes...

  11. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  12. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  13. Coupling Between Doppler Radar Signatures and Tornado Damage Tracks

    Science.gov (United States)

    Jedlovec, Gary J.; Molthan, Andrew L.; Carey, Lawrence; Carcione, Brian; Smith, Matthew; Schultz, Elise V.; Schultz, Christopher; Lafontaine, Frank

    2011-01-01

    On April 27, 2011, the southeastern United States was raked with several episodes of severe weather. Numerous tornadoes caused extensive damage, and tragically, the deaths of over 300 people. In Alabama alone, there were 61 confirmed tornados, 4 of them produced EF5 damage, and several were on the ground an hour or more with continuous damage tracks exceeding 80km. The use of Doppler radars covering the region provided reflectivity and velocity signatures that allowed forecasters to monitors the severe storms from beginning to end issuing hundreds of severe weather warnings throughout the day. Meteorologists from the the NWS performed extensive surveys to assess the intensity, duration, and ground track of tornadoes reported during the event. Survey activities included site visits to the affected locations, analysis of radar and satellite data, aerial surveys, and interviews with eyewitnesses. Satellite data from NASA's MODIS and ASTER instruments played a helpful role in determining the location of tornado damage paths and in the assessment. High resolution multispectral and temporal composites helped forecasters corroborate their damage assessments, determine starting and ending points for tornado touchdowns, and helped to provide forecasters with a better big-picture view of the damage region. The imagery also helped to separate damage from the April 27th tornados from severe weather that occurred earlier that month. In a post analysis of the outbreak, tornado damage path signatures observed in the NASA satellite data have been correlated to "debris ball" signatures in the NWS Doppler radars and a special ARMOR dual-polarization radar operated by the University of Alabama Huntsville during the event. The Doppler radar data indicates a circular enhanced reflectivity signal and rotational couplet in the radial velocity likely associated with the tornado that is spatially correlated with the damage tracks in the observed satellite data. An algorithm to detect and

  14. Polarimetric Radar Retrievals in Southeast Texas During Hurricane Harvey

    Science.gov (United States)

    Wolff, D. B.; Petersen, W. A.; Tokay, A.; Marks, D. A.; Pippitt, J. L.; Kirstetter, P. E.

    2017-12-01

    Hurricane Harvey hit the Texas Gulf Coast as a major hurricane on August 25, 2017 before exiting the state as a tropical storm on September 1, 2017. In its wake, it left a flood of historic proportions, with some areas measuring 60 inches of rain over a five-day period. Although the storm center stayed west of the immediate Houston area training bands of precipitation impacted the Houston area for five full days. The National Weather Service (NWS) WSR88D dual-polarimetric radar (KHGX), located southeast of Houston, maintained operations for the entirety of the event. The Harris County Flood Warning System (HCFWS) had 150 rain gauges deployed in its network and seven NWS Automated Surface Observing Systems (ASOS) rain gauges are also located in the area. In this study, we used the full radar data set to retrieve daily and event-total precipitation estimates within 120 km of the KHGX radar for the period August 25-29, 2017. These estimates were then compared to the HCFWS and ASOS gauges. Three different polarimetric hybrid rainfall retrievals were used: Ciffeli et al. 2011; Bringi et al. 2004; and, Chen et al. 2017. Each of these hybrid retrievals have demonstrated robust performance in the past. However, both daily and event-total comparisons from each of these retrievals compared to those of HCFWS and ASOS rain gauge networks resulted in significant underestimates by the radar retrievals. These radar underestimates are concerning. Sources of error and variance will be investigated to understand the source of radar-gauge disagreement. One current hypothesis is that due to the large number of small drops often found in hurricanes, the differential reflectivity and specific differential phase are relatively small so that the hybrid algorithms use only the reflectivity/rain rate procedure (so called Z-R relationships), and hence rarely invoke the ZDR or KDP procedures. Thus, an alternative Z-R relationship must be invoked to retrieve accurate rain rate estimates.

  15. Interception of LPI radar signals

    Science.gov (United States)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  16. Synthetic aperture radar imaging simulator for pulse envelope evaluation

    Science.gov (United States)

    Balster, Eric J.; Scarpino, Frank A.; Kordik, Andrew M.; Hill, Kerry L.

    2017-10-01

    A simulator for spotlight synthetic aperture radar (SAR) image formation is presented. The simulator produces radar returns from a virtual radar positioned at an arbitrary distance and altitude. The radar returns are produced from a source image, where the return is a weighted summation of linear frequency-modulated (LFM) pulse signals delayed by the distance of each pixel in the image to the radar. The imagery is resampled into polar format to ensure consistent range profiles to the position of the radar. The SAR simulator provides a capability enabling the objective analysis of formed SAR imagery, comparing it to an original source image. This capability allows for analysis of various SAR signal processing techniques previously determined by impulse response function (IPF) analysis. The results suggest that IPF analysis provides results that may not be directly related to formed SAR image quality. Instead, the SAR simulator uses image quality metrics, such as peak signal-to-noise ratio (PSNR) and structured similarity index (SSIM), for formed SAR image quality analysis. To showcase the capability of the SAR simulator, it is used to investigate the performance of various envelopes applied to LFM pulses. A power-raised cosine window with a power p=0.35 and roll-off factor of β=0.15 is shown to maximize the quality of the formed SAR images by improving PSNR by 0.84 dB and SSIM by 0.06 from images formed utilizing a rectangular pulse, on average.

  17. Radar signal analysis and processing using Matlab

    CERN Document Server

    Mahafza, Bassem R

    2008-01-01

    Offering radar-related software for the analysis and design of radar waveform and signal processing, this book provides comprehensive coverage of radar signals and signal processing techniques and algorithms. It contains numerous graphical plots, common radar-related functions, table format outputs, and end-of-chapter problems. The complete set of MATLAB[registered] functions and routines are available for download online.

  18. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  19. Radar observations of asteroids

    International Nuclear Information System (INIS)

    Ostro, S.J.

    1989-01-01

    This paper describes echoes from 33 main-belt asteroids (MBAs) and 19 near-Earth asteroids (NEAs) have provided a wealth of new information about these objects such as sizes, shapes, spin vectors, and such surface characteristics as decimeter-scale morphology, topographic relief, regolith porosity and metal concentrations. On average, small NEAs are much rougher at decimeter scales than MBAs, comets or terrestrial planets. Some of the largest MBAs (e.g., 1 Ceres and 2 Pallas ) are smoother than the moon at decimeter scales but much rougher than the Moon at some much larger scale. There is at least a five-fold variation in the radar albedos of MBAs, implying substantial variations in the surface porosities or metal concentrations of these objects. The highest MBA albedo estimate, for 16 Psyche, is consistent with a metal concentration near unity and lunar porosities

  20. Under the Radar

    CERN Document Server

    Goss, WM

    2010-01-01

    This is the biography of Ruby Payne-Scott (1912 to 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II and were used by Australian, US and New Zealand personnel. From a sociological perspective, her career also offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs this book gives a fascinating insight into the beginning of radio astronomy and the role of a pioneering woman in astronomy.

  1. Material integrity verification radar

    International Nuclear Information System (INIS)

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  2. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    is the snow/air interface, whereas radar waves interact with the variable physical properties of the snow cover on the Arctic sea ice. In addition, radar elevation measurements may vary for different retracker algorithms, which determine the track point of the scattered echo power distribution. Since accurate...... knowledge of the reflection horizon is critical for sea ice thickness retrieval, validation data is necessary to investigate the penetration of radar waves into the snow for the upcoming CryoSat-2 mission. Furthermore, the combination of both optical and RF wavelengths might be used to derive snow thickness......, if radar altimeters are capable of measuring the distance to the snow-ice interface reliably. We present the results of aircraft campaigns in the Arctic with a scanning laser altimeter and the Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) of the European Space Agency. The elevation...

  3. Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence

    Science.gov (United States)

    Boccippio, Dennis

    2003-01-01

    A cluster analysis technique is used to identify 16 "archetypal" vertical radar profile types from a large, globally representative sample of profiles from the TRMM Precipitation Radar. These include nine convective types (7 of these deep convective) and seven stratiform types (5 of these clearly glaciated). Radar profile classification provides an alternative to conventional deep convective storm metrics, such as 30 dBZ echo height, maximum reflectivity or VIL. As expected, the global frequency of occurrence of deep convective profile types matches satellite-observed total lightning production, including to very small scall local features. Each location's "mix" of profile types provides an objective description of the local convective spectrum, and in turn, is a first step in objectively classifying convective regimes. These classifiers are tested as inputs to a neural network which attempts to predict lightning occurrence based on radar-only storm observations, and performance is compared with networks using traditional radar metrics as inputs.

  4. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  5. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  6. Introduction to radar target recognition

    CERN Document Server

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  7. Radar spectrum opportunities for cognitive communications transmission

    OpenAIRE

    Wang, L; McGeehan, JP; Williams, C; Doufexi, A

    2008-01-01

    In relation to opportunistic access to radar spectrum, the impact of the radar on a communication system is investigated in this paper. This paper illustrates that by exploring the spatial and temporal opportunities in the radar spectrum and therefore improving the tolerance level to radar interference, a substantial increase on the throughput of a communication system is possible. Results are presented regarding the impact of swept radars on a WiMAX system. The results show the impact of SIR...

  8. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    Science.gov (United States)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  9. Three dimensional numerical modeling for investigation of fracture zone filled with water by borehole radar; Borehole radar ni yoru gansui hasaitai kenshutsu no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y; Watanabe, T; Ashida, Y [Kyoto University, Kyoto (Japan); Hasegawa, K; Yabuuchi, S [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1997-05-27

    Water bearing fracture zones existing in rock mass largely influence the underground water flow and dynamic property of rock mass. The detailed survey of the location and size of water bearing fracture zones is an important task in the fields such as civil engineering, environment and disaster prevention. Electromagnetic waves of high frequency zones can be grasped as a wave phenomenon, and the record obtained in the actual measurement is wave forms of time series. In the exploration using borehole radar, this water bearing fracture zone becomes the reflection surface, and also becomes a factor of damping in the transmitted wave. By examining changes which these give to the observed wave forms, therefore, water bearing fracture zones can be detected. This study made three dimensional numerical modeling using the time domain finite difference method, and obtained the same output as the observed wave form obtained using borehole radar. By using this program and changing each of the parameters such as frequency and resistivity in the homogeneous medium, changes of the wave forms were observed. Further, examples were shown of modeling of detection of water bearing fracture zones. 5 refs., 16 figs., 1 tab.

  10. Solid-state radar switchboard

    Science.gov (United States)

    Thiebaud, P.; Cross, D. C.

    1980-07-01

    A new solid-state radar switchboard equipped with 16 input ports which will output data to 16 displays is presented. Each of the ports will handle a single two-dimensional radar input, or three ports will accommodate a three-dimensional radar input. A video switch card of the switchboard is used to switch all signals, with the exception of the IFF-mode-control lines. Each card accepts inputs from up to 16 sources and can pass a signal with bandwidth greater than 20 MHz to the display assigned to that card. The synchro amplifier of current systems has been eliminated and in the new design each PPI receives radar data via a single coaxial cable. This significant reduction in cabling is achieved by adding a serial-to-parallel interface and a digital-to-synchro converter located at the PPI.

  11. The Reflective Learning Continuum: Reflecting on Reflection

    Science.gov (United States)

    Peltier, James W.; Hay, Amanda; Drago, William

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…

  12. Observations and modeling of fog by cloud radar and optical sensors

    NARCIS (Netherlands)

    Li, Y.; Hoogeboom, P.; Russchenberg, H.

    2014-01-01

    Fog is a significant factor affecting the public traffic because visibility is reduced to a large extent. Therefore the determination of optical visibility in fog from radar instruments has received much interest. To observe fog with radar, high frequency bands (millimeter waves) have the best

  13. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  14. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    Science.gov (United States)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  15. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

    Directory of Open Access Journals (Sweden)

    Xing Shu-guang

    2015-04-01

    Full Text Available A new method of Radar Cross Section (RCS measurement based on near-field imaging of cylindrical scanning surface is proposed. The method is based on the core assumption that the target consists of ideal isotropic scattered centers. Three-dimensional radar scattered images are obtained by using the proposed method, and then to obtain the RCS of the target, the scattered far field is calculated by summing the fields generated by the equivalent scattered centers. Not only three dimensional radar reflectivity images but also the RCS of targets in certain three dimensional angle areas can be obtained. Compared with circular scanning that can only obtain twodimensional radar reflectivity images and RCS results in two-dimensional angle areas, cylindrical scanning can provide more information about the scattering properties of the targets. The method has strong practicability and its validity is verified by simulations.

  16. The NASA Polarimetric Radar (NPOL)

    Science.gov (United States)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  17. Comparison of CloudSat and TRMM radar reflectivities

    Indian Academy of Sciences (India)

    Tropical deep convective clouds drive the large scale circulation of ... information concerning tropical clouds since 1998 ..... and CloudSat Data Processing Center, NASA for providing .... ical precipitating clouds ranging from shallow to deep.

  18. Self-practice and self-reflection in cognitive behaviour therapy training: what factors influence trainees' engagement and experience of benefit?

    Science.gov (United States)

    Bennett-Levy, James; Lee, Nicole K

    2014-01-01

    Previous studies of self-practice/self-reflection (SP/SR) CBT training have found that trainees report significant benefits from practising CBT techniques on themselves (self-practice) and reflecting on their experience (self-reflection) as a formal part of their CBT training. However, not all trainees experience the same level of benefit from SP/SR and not all types of training course produce benefits to the same extent. This paper examines the question: What factors influence trainees' reported benefit from SP/SR? The aim was to develop a model to maximize the value of SP/SR training. The authors used a grounded theory analysis of four SP/SR training courses, varying along several dimensions, to derive a model that could account for the data. A model was derived comprising of seven elements: Two outcomes - "Experience of Benefit" and "Engagement with the Process" - that mutually influence one another; and five other influencing factors - "Course Structure and Requirements", "Expectation of Benefit", "Feeling of Safety with the Process", "Group Process", and "Available Personal Resources" - that mediate the impact on Engagement with the Process and Experience of Benefit from SP/SR. A model that provides guidance about the best ways to set up and develop SP/SR programs has been developed. This model may now be subject to empirical testing by trainers and researchers. Implications and recommendations for the design and development of future SP/SR programs are discussed.

  19. Use of reflective surfaces on roadway embankment

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Doré, Guy

    2007-01-01

    adherence characteristics for roadway use. In Kangerlussuaq Airport, western Greenland, ground-penetrating radar (GPR) has been used to compare the variation of the frost table underneath a normal black asphalt surface and a more reflective surface (white paint). The GPR results have shown a clear...

  20. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing

    Directory of Open Access Journals (Sweden)

    M. Maahn

    2012-11-01

    Full Text Available The Micro Rain Radar 2 (MRR is a compact Frequency Modulated Continuous Wave (FMCW system that operates at 24 GHz. The MRR is a low-cost, portable radar system that requires minimum supervision in the field. As such, the MRR is a frequently used radar system for conducting precipitation research. Current MRR drawbacks are the lack of a sophisticated post-processing algorithm to improve its sensitivity (currently at +3 dBz, spurious artefacts concerning radar receiver noise and the lack of high quality Doppler radar moments. Here we propose an improved processing method which is especially suited for snow observations and provides reliable values of effective reflectivity, Doppler velocity and spectral width. The proposed method is freely available on the web and features a noise removal based on recognition of the most significant peak. A dynamic dealiasing routine allows observations even if the Nyquist velocity range is exceeded. Collocated observations over 115 days of a MRR and a pulsed 35.2 GHz MIRA35 cloud radar show a very high agreement for the proposed method for snow, if reflectivities are larger than −5 dBz. The overall sensitivity is increased to −14 and −8 dBz, depending on range. The proposed method exploits the full potential of MRR's hardware and substantially enhances the use of Micro Rain Radar for studies of solid precipitation.

  1. Borehole radar measurements performed on preliminary investigation areas in Finland for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Carlsten, S.

    1991-05-01

    Borehole radar measurements with the RAMAC system have been performed in 24 boreholes distributed between the investigation areas Kuhmo Romuvaara, Hyrynsalmi Veitsivaara, Konginkangas Kivetty, Sievi Syyry, and Eurajoki Olkiluoto. The purpose of the borehole radar measurement program has been to investigate the bedrock in the vicinity of the boreholes in order to obtain information about geometry and extent of fracture zones, lithological contacts and other structures. The measurements have been performed as singlehole radar reflection measurements and Vertical Radar Profiling (VRP) measurements, using antennas with 22 MHz frequency range in both configurations. The total measured length in the singlehole radar reflection mode is 13304 meter and in the VRP mode 9200 meter. The VRP measurements are not presented in the report. Radar data from the singlehole reflection measurements are presented as grey scale radar maps after digital filtering with a bandpass filter and a moving average filter. Interpreted zones from the singlehole radar measurements are presented in tables for each borehole. It has been possible to study structures at distances of more than 110 meter from the borehole

  2. Propagation of radar rainfall uncertainty in urban flood simulations

    Science.gov (United States)

    Liguori, Sara; Rico-Ramirez, Miguel

    2013-04-01

    This work discusses the results of the implementation of a novel probabilistic system designed to improve ensemble sewer flow predictions for the drainage network of a small urban area in the North of England. The probabilistic system has been developed to model the uncertainty associated to radar rainfall estimates and propagate it through radar-based ensemble sewer flow predictions. The assessment of this system aims at outlining the benefits of addressing the uncertainty associated to radar rainfall estimates in a probabilistic framework, to be potentially implemented in the real-time management of the sewer network in the study area. Radar rainfall estimates are affected by uncertainty due to various factors [1-3] and quality control and correction techniques have been developed in order to improve their accuracy. However, the hydrological use of radar rainfall estimates and forecasts remains challenging. A significant effort has been devoted by the international research community to the assessment of the uncertainty propagation through probabilistic hydro-meteorological forecast systems [4-5], and various approaches have been implemented for the purpose of characterizing the uncertainty in radar rainfall estimates and forecasts [6-11]. A radar-based ensemble stochastic approach, similar to the one implemented for use in the Southern-Alps by the REAL system [6], has been developed for the purpose of this work. An ensemble generator has been calibrated on the basis of the spatial-temporal characteristics of the residual error in radar estimates assessed with reference to rainfall records from around 200 rain gauges available for the year 2007, previously post-processed and corrected by the UK Met Office [12-13]. Each ensemble member is determined by summing a perturbation field to the unperturbed radar rainfall field. The perturbations are generated by imposing the radar error spatial and temporal correlation structure to purely stochastic fields. A

  3. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    2001-08-01

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  4. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  5. Formulation and Analysis of the Quantum Radar Cross Section

    Science.gov (United States)

    Brandsema, Matthew J.

    In radar, the amount of returns that an object sends back to the receiver after being struck by an electromagnetic wave is characterized by what is known as the radar cross section, denoted by sigma typically. There are many mechanisms that affect how much radiation is reflected back in the receiver direction, such as reflectivity, physical contours and dimensions, attenuation properties of the materials, projected cross sectional area and so on. All of these characteristics are lumped together in a single value of sigma, which has units of m2. Stealth aircrafts for example are designed to minimize its radar cross section and return the smallest amount of radiation possible in the receiver direction. A new concept has been introduced called quantum radar, that uses correlated quantum states of photons as well as the unique properties of quantum mechanics to ascertain information on a target at a distance. At the time of writing this dissertation, quantum radar is very much in its infancy. There still exist fundamental questions about the feasibility of its implementation, especially in the microwave spectrum. However, what has been theoretically determined, is that quantum radar has a fundamental advantage over classical radar in terms of resolution and returns in certain regimes. Analogous to the classical radar cross section (CRCS), the concept of the quantum radar cross section (QRCS) has been introduced. This quantity measures how an object looks to a quantum radar be describing how a single photon, or small cluster of photons scatter off of a macroscopic target. Preliminary simulations of the basic quantum radar cross section equation have yielded promising results showing an advantage in sidelobe response in comparison to the classical RCS. This document expands upon this idea by providing insight as to where this advantage originates, as well as developing more rigorous simulation analysis, and greatly expanding upon the theory. The expanded theory presented

  6. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    OpenAIRE

    N. N. Halimshah; A. Yusup; Z. Mat Amin; M. D. Ghazalli

    2015-01-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and effic...

  7. Reflective photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.

    2018-03-06

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.

  8. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  9. On the reasons of radical forms of social protest: Reflections about principles of ‘Malthusian trap’ and demographic factors

    Directory of Open Access Journals (Sweden)

    E E Shults

    2017-12-01

    Full Text Available The article considers reasons for radical mass forms of social protest in the context of the ‘Malthusian trap’ and structural-demographic theory of Jack Goldstone, which have become popular in the last two decades. The author critically evaluates these two conceptions and comes to the conclusion that the principles they underline are just concomitant factors, i.e. additional risk factors for political systems and regimes, rather than causes of radical mass forms of social protest. The author suggests a method of analysis that consists of studying the circumstances, i.e. the wide historical context, in which mass forms of social protest usually emerge, and provides a large number of illustrative examples. The scientific approach to the identification of social-historical determinants of radical forms of social protest implies that if something is a reason/cause of an event, then this reason/cause must be present whenever there is such an event both alone or within a complex of concomitant factors. The ‘Malthusian trap’ and demographic factors cannot be traced in all manifestations of radical mass forms of social protest in modern and contemporary history. Moreover, the ‘Malthusian trap’ and demographic pressure on the economy and social system do not always lead to mass forms of social protest. The wave of radical forms of social protest in the last decade, i.e. the so-called ‘color revolutions’, ‘Arab spring’, protest actions in France, England and the USA, once again confirms the relevance of the author’s approach and the importance of critical study of the traditional conceptions.

  10. Arterial 18F-fluorodeoxyglucose uptake reflects balloon catheter-induced thrombus formation and tissue factor expression via nuclear factor-κB in rabbit atherosclerotic lesions

    International Nuclear Information System (INIS)

    Yamashita, Atsushi; Zhao, Yan; Zhao, Songji

    2013-01-01

    Imaging modalities to assess atherosclerotic plaque thrombogenicity have not been established, so in this study the relationship between [ 18 F]-fluorodeoxyglucose ( 18 F-FDG) uptake and thrombus formation was investigated in rabbit atherosclerotic arteries. Atherosclerotic plaque was induced in the iliacofemoral artery by balloon injury and a 0.5% cholesterol diet. At 3 weeks after the first balloon injury, the arteries were visualized by 18 F-FDG positron emission tomography (PET) imaging 2 h after an 18 F-FDG infusion, and then arterial thrombus was induced by a second balloon injury of both iliacofemoral arteries. Imaging with 18 F-FDG-PET revealed significantly more radioactivity along the injured (0.63±0.12 standardized uptake value (SUV)max), than the contralateral non-injured artery (0.34±0.08 SUVmax, n=17, P 18 F-FDG uptake reflects the thrombogenicity of atherosclerotic plaque following balloon injury. (author)

  11. Local perspectives of the ability of HIA stakeholder engagement to capture and reflect factors that impact Alaska Native health.

    Science.gov (United States)

    Jones, Jen; Nix, Nancy A; Snyder, Elizabeth Hodges

    2014-01-01

    Health impact assessment (HIA) is a process used to inform planning and decision making in a range of sectors by identifying potential positive and negative health effects of proposed projects, programs, or policies. Stakeholder engagement is an integral component of HIA and requires careful consideration of participant diversity and appropriate methodologies. Ensuring that the engagement process is able to capture and address Indigenous worldviews and definitions of health is important where Indigenous populations are impacted, particularly in northern regions experiencing increases in natural resource development activities on Indigenous lands. Investigate local participant perspectives of an HIA of a proposed Alaska coal mine, with a focus on the ability of the HIA process to capture, reflect, and address health concerns communicated by Alaska Native participants. A qualitative approach guided by semi-structured interviews with purposeful sampling to select key informants who participated in the coal mine HIA stakeholder engagement process. QUALITATIVE DATA IDENTIFIED THREE KEY THEMES AS IMPORTANT FROM THE PERSPECTIVE OF ALASKA NATIVE PARTICIPANTS IN THE ALASKA COAL MINE HIA STAKEHOLDER ENGAGEMENT PROCESS: (i) the inability of the engagement process to recognize an Indigenous way of sharing or gathering information; (ii) the lack of recognizing traditional knowledge and its use for identifying health impacts and status; and (iii) the inability of the engagement process to register the relationship Indigenous people have with the environment in which they live. Issues of trust in the HIA process and of the HIA findings were expressed within each theme. Recommendations derived from the research identify the need to acknowledge and incorporate the history of colonialism and assimilation policies in an HIA when assessing health impacts of resource development on or near Indigenous lands. These historical contexts must be included in baseline conditions to understand

  12. Sixteenth International Laser Radar Conference, Part 1

    International Nuclear Information System (INIS)

    Mccormick, M.P.

    1992-07-01

    This publication contains extended abstracts of papers presented at the 16th International Laser Radar Conference. One-hundred ninety-five papers were presented in both oral and poster sessions. The topics of the conference sessions were: (1) Mt. Pinatubo Volcanic Dust Layer Observations; (2) Global Change/Ozone Measurements; (3) GLOBE/LAWS/LITE; (4) Mesospheric Measurements and Measurement Systems; (5) Middle Atmosphere; (6) Wind Measurements and Measurement Systems; (7) Imaging and Ranging; (8) Water Vapor Measurements; (9) Systems and Facilities; and (10) Laser Devices and Technology. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations relating to global change to the development of new lidar systems and technology

  13. Polarimetric borehole radar measurement near Nojima fault and its application to subsurface crack characterization; Polarimetric borehole radar ni yoru Nojima danso shuhen no chika kiretsu keisoku jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Taniguchi, Y.; Miwa, T.; Niitsuma, H. [Tohoku University, Sendai (Japan); Ikeda, R. [National Research Institute for Disaster Prevention, Tsukuba (Japan); Makino, K. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)

    1997-05-27

    Practical application of subsurface crack characterization by the borehole radar measurement to which the radar polarimetric method was introduced was attempted to measuring objects for which the borehole radar has not been much used, for example, the inside of low loss rock mass or fracture zone where cracks tightly exist. A system was trially manufactured which makes the radar polarimetric measurement possible in the borehole at a 1000m depth and with a about 10cm diameter, and a field experiment was conducted for realizing the subsurface crack characterization near the Nojima fault. For the measuring experiment by the polarimetric borehole radar, used were Iwaya borehole and Hirabayashi borehole drilled in the north of Awaji-shima, Hyogo-ken. In a comparison of both polarization systems of Hirabayashi borehole, reflected waves at depths of 1038m and 1047m are relatively stronger in both polarization systems than those with the same polarization form and at different depths, whereas reflected waves around a 1017m depth are strong only as to the parallel polarization system. Characteristics of the polarization in this experiment indirectly reflect crack structures. 6 refs., 6 figs., 1 tab.

  14. Borehole radar diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Jun; Kim, Jung Ho; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Tomography is widely used as imaging method for determining subsurface structure. Among the reconstruction algorithms for tomographic imaging, travel time tomography is almost applied to imaging subsurface. But isolated small body comparable with the wavelength could not be well recognized by travel time tomography. Other tomographic method are need to improve the imaging process. In the study of this year, diffraction tomography was investigated. The theory for diffraction tomography is based on the 1st-order Born approximation. Multisource holography, which is similar to Kirchihoff migration, is compared with diffraction tomography. To improve 1st-order Born diffraction tomography, two kinds of filter designed from multisource holography and 2-D green function, respectively, applied on the reconstructed image. The algorithm was tested for the numerical modeling data of which algorithm consists of the analytic computation of radar signal in transmitter and receiver regions and 2-D FDM scheme for the propagation of electromagnetic waves in media. The air-filled cavity model to show a typical diffraction pattern was applied to diffraction tomography imaging, and the result shows accurate location and area of cavity. But the calculated object function is not well matched the real object function, because the air-filled cavity model is not satisfied week scattered inhomogeneity for 1st born approximation, and the error term is included in estimating source wavelet from received signals. In spite of the object function error, the diffraction tomography assist for interpretation of subsurface as if conducted with travel time tomography. And the fracture model was tested, 1st born diffraction tomographic image is poor because of limited view angle coverage and violation of week scatter assumption, but the filtered image resolve the fracture somewhat better. The tested diffraction tomography image confirms effectiveness of filter for enhancing resolution. (author). 14

  15. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  16. Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields

    Directory of Open Access Journals (Sweden)

    S. Vogl

    2012-07-01

    Full Text Available This study addresses the problem of combining radar information and gauge measurements. Gauge measurements are the best available source of absolute rainfall intensity albeit their spatial availability is limited. Precipitation information obtained by radar mimics well the spatial patterns but is biased for their absolute values.

    In this study copula models are used to describe the dependence structure between gauge observations and rainfall derived from radar reflectivity at the corresponding grid cells. After appropriate time series transformation to generate "iid" variates, only the positive pairs (radar >0, gauge >0 of the residuals are considered. As not each grid cell can be assigned to one gauge, the integration of point information, i.e. gauge rainfall intensities, is achieved by considering the structure and the strength of dependence between the radar pixels and all the gauges within the radar image. Two different approaches, namely Maximum Theta and Multiple Theta, are presented. They finally allow for generating precipitation fields that mimic the spatial patterns of the radar fields and correct them for biases in their absolute rainfall intensities. The performance of the approach, which can be seen as a bias-correction for radar fields, is demonstrated for the Bavarian Alps. The bias-corrected rainfall fields are compared to a field of interpolated gauge values (ordinary kriging and are validated with available gauge measurements. The simulated precipitation fields are compared to an operationally corrected radar precipitation field (RADOLAN. The copula-based approach performs similarly well as indicated by different validation measures and successfully corrects for errors in the radar precipitation.

  17. Design of cost effective antennas for instrumentation radars

    CSIR Research Space (South Africa)

    Botha, L

    2012-09-01

    Full Text Available The cost of antennas for instrumentation radars are determined by the development cost. By re-use of the reflector system cost effective antennas can be designed. The factors governing the design of such antennas are described here....

  18. A simulation training evaluation method for distribution network fault based on radar chart

    Directory of Open Access Journals (Sweden)

    Yuhang Xu

    2018-01-01

    Full Text Available In order to solve the problem of automatic evaluation of dispatcher fault simulation training in distribution network, a simulation training evaluation method based on radar chart for distribution network fault is proposed. The fault handling information matrix is established to record the dispatcher fault handling operation sequence and operation information. The four situations of the dispatcher fault isolation operation are analyzed. The fault handling anti-misoperation rule set is established to describe the rules prohibiting dispatcher operation. Based on the idea of artificial intelligence reasoning, the feasibility of dispatcher fault handling is described by the feasibility index. The relevant factors and evaluation methods are discussed from the three aspects of the fault handling result feasibility, the anti-misoperation correctness and the operation process conciseness. The detailed calculation formula is given. Combining the independence and correlation between the three evaluation angles, a comprehensive evaluation method of distribution network fault simulation training based on radar chart is proposed. The method can comprehensively reflect the fault handling process of dispatchers, and comprehensively evaluate the fault handling process from various angles, which has good practical value.

  19. Reflections on the role of consultant radiographers in the UK: The perceived impact on practice and factors that support and hinder the role

    International Nuclear Information System (INIS)

    Henwood, S.; Booth, L.; Miller, P.K.

    2016-01-01

    Study context: This paper is the third paper arising from a two year long, in-depth case study exploring various components of the role of consultant radiographers in the UK. This paper focuses particularly upon the perceived impact of the role and factors that support and hinder the role in practice. Methods: A longitudinal case study method was used to explore the role of consultant radiographers. Interviewing was informed and guided by a phenomenological approach to promote a deeper understanding of consultants' experiences in the role. Eight consultant radiographers participated, with six involved throughout the whole study. Over an 18 month period each of those six consultants was interviewed three times. Two consultants only participated in the first interview; these interviews are also reported here. A total of 20 interviews were conducted. Findings: Interviews explored the impact of the consultant role as perceived by consultants themselves, and encouraged individual reflection on factors which had both supported and hindered success therein. Analysis demonstrated that there was substantial variation in the experiences communicated yet, and without any exception, all consultants reported that the introduction of their role had been beneficial to service delivery and quality of patient care. A number of obstacles were outlined, as well as a range of support mechanisms. Recommendations are thus made as to how the consultant role might be more effectively supported in the future. - Highlights: • The perceived impact of the consultant radiographer role in practice. • Reflections upon what supported the consultants in their role. • Reflections upon what hindered the consultants in their role.

  20. Serum vascular endothelial growth factor A levels reflect itch severity in mycosis fungoides and Sézary syndrome.

    Science.gov (United States)

    Sakamoto, Minami; Miyagaki, Tomomitsu; Kamijo, Hiroaki; Oka, Tomonori; Takahashi, Naomi; Suga, Hiraku; Yoshizaki, Ayumi; Asano, Yoshihide; Sugaya, Makoto; Sato, Shinichi

    2018-01-01

    Angiogenesis is an important step to support progression of malignancies, including mycosis fungoides (MF) and Sézary syndrome (SS). Vascular endothelial growth factor (VEGF)-A, a key player in angiogenesis, is secreted by tumor cells of MF/SS and its expression levels in lesional skin correlated with disease severity. In this study, we examined serum VEGF-A levels in MF/SS patients. Serum VEGF-A levels were elevated in patients with erythrodermic MF/SS and the levels decreased after treatment. Importantly, serum VEGF-A levels positively correlated with markers for pruritus. We also found that VEGF-A upregulated mRNA expression of thymic stromal lymphopoietin by keratinocytes. Taken together, our study suggests that VEGF-A can promote progression and pruritus in MF/SS. Inhibition of VEGF-A signaling can be a therapeutic strategy for patients with erythrodermic MF/SS. © 2017 Japanese Dermatological Association.

  1. Extended Target Recognition in Cognitive Radar Networks

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  2. German Radar Observation Shuttle Experiment (ROSE)

    Science.gov (United States)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  3. NOAA NEXt-Generation RADar (NEXRAD) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  4. MST radar data-base management

    Science.gov (United States)

    Wickwar, V. B.

    1983-01-01

    Data management for Mesospheric-Stratospheric-Tropospheric, (MST) radars is addressed. An incoherent-scatter radar data base is discussed in terms of purpose, centralization, scope, and nature of the data base management system.

  5. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  6. Modern approach to relativity theory (radar formulation)

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1991-01-01

    The main peculiarities of the radar formulation of the relativity theory are presented. This formulation operates with the retarded (light) distances and relativistic or radar length introduced on their basis. 21 refs.; 1 tab

  7. Meteor detection on ST (MST) radars

    International Nuclear Information System (INIS)

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  8. Analysis of Radar Doppler Signature from Human Data

    Directory of Open Access Journals (Sweden)

    M. ANDRIĆ

    2014-04-01

    Full Text Available This paper presents the results of time (autocorrelation and time-frequency (spectrogram analyses of radar signals returned from the moving human targets. When a radar signal falls on the human target which is moving toward or away from the radar, the signals reflected from different parts of his body produce a Doppler shift that is proportional to the velocity of those parts. Moving parts of the body causes the characteristic Doppler signature. The main contribution comes from the torso which causes the central Doppler frequency of target. The motion of arms and legs induces modulation on the returned radar signal and generates sidebands around the central Doppler frequency, referred to as micro-Doppler signatures. Through analyses on experimental data it was demonstrated that the human motion signature extraction is better using spectrogram. While the central Doppler frequency can be determined using the autocorrelation and the spectrogram, the extraction of the fundamental cadence frequency using the autocorrelation is unreliable when the target is in the clutter presence. It was shown that the fundamental cadence frequency increases with increasing dynamic movement of people and simultaneously the possibility of its extraction is proportional to the degree of synchronization movements of persons in the group.

  9. Challenges for Greenland-wide mass balance from Cryosat-2 radar-altimetry

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Forsberg, René; Sørensen, Louise Sandberg

    As the Greenland ice sheet warms, a change in the structure of the upper snow/firn occurs. This change further induces changes in the reflective properties of the firn seen from satellite radar altimetry. If not identified as changes in the reflective properties of the firn, these may be interpre......As the Greenland ice sheet warms, a change in the structure of the upper snow/firn occurs. This change further induces changes in the reflective properties of the firn seen from satellite radar altimetry. If not identified as changes in the reflective properties of the firn, these may...... be interpreted as actual surface elevation changes seen from the satellite radar altimetry (Nilsson et al., 2015).Here, we investigate how to correct the elevation change observed from the ESA Cryosat-2 radar altimetry mission to derive elevation change of the air/snow interface of the Greenland ice sheet....... The elevation change of this “real” physical surface is crucial, if the goal is to derive Greenland mass balance as done for LiDAR missions.The investigations look into waveform parameters to correct for the observed bias between Radar and LiDAR observations when using Croysat-2 level-2 data. Based...

  10. SAR Ambiguity Study for the Cassini Radar

    Science.gov (United States)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  11. Radar operation in a hostile electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  12. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  13. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  14. Preliminary Analysis of X-Band and Ka-Band Radar for Use in the Detection of Icing Conditions Aloft

    Science.gov (United States)

    Reehorst, Andrew L.; Koenig, George G.

    2004-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. Radar has been identified as a strong tool for this work. However, since the remote detection of icing conditions with the intent to identify areas of icing hazard is a new and evolving capability, there are no set requirements for radar sensitivity. This work is an initial attempt to quantify, through analysis, the sensitivity requirements for an icing remote sensing radar. The primary radar of interest for cloud measurements is Ka-band, however, since NASA is currently using an X-band unit, this frequency is also examined. Several aspects of radar signal analysis were examined. Cloud reflectivity was calculated for several forms of cloud using two different techniques. The Air Force Geophysical Laboratory (AFGL) cloud models, with different drop spectra represented by a modified gamma distribution, were utilized to examine several categories of cloud formation. Also a fundamental methods approach was used to allow manipulation of the cloud droplet size spectra. And an analytical icing radar simulator was developed to examine the complete radar system response to a configurable multi-layer cloud environment. Also discussed is the NASA vertical pointing X-band radar. The radar and its data system are described, and several summer weather events are reviewed.

  15. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  16. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  17. Radar geomorphology of coastal and wetland environments

    Science.gov (United States)

    Lewis, A. J.; Macdonald, H. C.

    1973-01-01

    Details regarding the collection of radar imagery over the past ten years are considered together with the geomorphic, geologic, and hydrologic data which have been extracted from radar imagery. Recent investigations were conducted of the Louisiana swamp marsh and the Oregon coast. It was found that radar imagery is a useful tool to the scientist involved in wetland research.

  18. 46 CFR 184.404 - Radars.

    Science.gov (United States)

    2010-10-01

    ... within one mile of land must be fitted with a FCC Type Accepted general marine radar system for surface... Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD...

  19. Personal Reflections

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Personal Reflections. Articles in Resonance – Journal of Science Education. Volume 6 Issue 3 March 2001 pp 90-93 Personal Reflections. Why did I opt for Career in Science? Jayant V Narlikar · More Details Fulltext PDF. Volume 9 Issue 8 August 2004 pp 89-89 ...

  20. Reflection groups

    International Nuclear Information System (INIS)

    Eggermont, G.

    2006-01-01

    In 2005, PISA organised proactive meetings of reflection groups on involvement in decision making, expert culture and ethical aspects of radiation protection.All reflection group meetings address particular targeted audiences while the output publication in book form is put forward

  1. Reflection ciphers

    DEFF Research Database (Denmark)

    Boura, Christina; Canteaut, Anne; Knudsen, Lars Ramkilde

    2017-01-01

    study the necessary properties for this coupling permutation. Special care has to be taken of some related-key distinguishers since, in the context of reflection ciphers, they may provide attacks in the single-key setting.We then derive some criteria for constructing secure reflection ciphers...

  2. Radar rainfall estimation of stratiform winter precipitation in the Belgian Ardennes

    Science.gov (United States)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.

    2011-02-01

    Radars are known for their ability to obtain a wealth of information about spatial storm field characteristics. Unfortunately, rainfall estimates obtained by this instrument are known to be affected by multiple sources of error. Especially for stratiform precipitation systems, the quality of radar rainfall estimates starts to decrease at relatively close ranges. In the current study, the hydrological potential of weather radar is analyzed during a winter half-year for the hilly region of the Belgian Ardennes. A correction algorithm is proposed which corrects the radar data for errors related to attenuation, ground clutter, anomalous propagation, the vertical profile of reflectivity (VPR), and advection. No final bias correction with respect to rain gauge data was implemented because such an adjustment would not add to a better understanding of the quality of the radar data. The impact of the different corrections is assessed using rainfall information sampled by 42 hourly rain gauges. The largest improvement in the quality of the radar data is obtained by correcting for ground clutter. The impact of VPR correction and advection depends on the spatial variability and velocity of the precipitation system. Overall during the winter period, the radar underestimates the amount of precipitation as compared to the rain gauges. Remaining differences between both instruments can be attributed to spatial and temporal variability in the type of precipitation, which has not been taken into account.

  3. Pseudo-radar algorithms with two extremely wet months of disdrometer data in the Paris area

    Science.gov (United States)

    Gires, A.; Tchiguirinskaia, I.; Schertzer, D.

    2018-05-01

    Disdrometer data collected during the two extremely wet months of May and June 2016 at the Ecole des Ponts ParisTech are used to get insights on radar algorithms. The rain rate and pseudo-radar quantities (horizontal and vertical reflectivity, specific differential phase shift) are all estimated over several durations with the help of drop size distributions (DSD) collected at 30 s time steps. The pseudo-radar quantities are defined with simplifying hypotheses, in particular on the DSD homogeneity. First it appears that the parameters of the standard radar relations Zh - R, R - Kdp and R - Zh - Zdr for these pseudo-radar quantities exhibit strong variability between events and even within an event. Second an innovative methodology that relies on checking the ability of a given algorithm to reproduce the good scale invariant multifractal behaviour (on scales 30 s - few h) observed on rainfall time series is implemented. In this framework, the classical hybrid model (Zh - R for low rain rates and R - Kdp for great ones) performs best, as well as the local estimates of the radar relations' parameters. However, we emphasise that due to the hypotheses on which they rely these observations cannot be straightforwardly extended to real radar quantities.

  4. Noise Parameters of CW Radar Sensors Used in Active Defense Systems

    Czech Academy of Sciences Publication Activity Database

    Jeník, V.; Hudec, P.; Pánek, Petr

    2012-01-01

    Roč. 21, č. 2 (2012), s. 632-639 ISSN 1210-2512 Institutional support: RVO:67985882 Keywords : radar * phase noise Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.687, year: 2012

  5. Total and free insulin-like growth factor I, insulin-like growth factor binding protein 3 and acid-labile subunit reflect clinical activity in acromegaly

    DEFF Research Database (Denmark)

    Sneppen, S B; Lange, Merete Wolder; Pedersen, L M

    2001-01-01

    The aim was to evaluate, markers of disease activity in acromegaly in relation to perceived disease activity. Thirty-seven consecutively treated, acromegalic patients, classified by clinical symptoms as inactive (n=16), slightly active (n=10) and active (n=11), entered the study. When evaluating......-like growth factor binding protein-3 (IGFBP-3) with PV(pos) of 0.69 and 0.71 and PV(neg) of 0.91 and 0.92 respectively. We conclude that free IGF-I is more closely related than total IGF-I to perceived disease activity and is as such useful when evaluating previously treated acromegaly for disease activity...

  6. Recommendation on Transition from Primary/Secondary Radar to Secondary- Only Radar Capability

    Science.gov (United States)

    1994-10-01

    Radar Beacon Performance Monitor RCIU Remote Control Interface Unit RCL Remote Communications Link R E&D Research, Engineering and Development RML Radar...rate. 3.1.2.5 Maintenance The current LRRs have limited remote maintenance monitoring (RMM) capabilities via the Remote Control Interface Unit ( RCIU ...1, -2 and FPS-20 radars required an upgrade of some of the radar subsystems, namely the RCIU to respond as an RMS and the CD to interface with radar

  7. Quantifying Reflection

    DEFF Research Database (Denmark)

    Alcock, Gordon Lindsay

    2013-01-01

    ´ These are all based on Blooms taxonomy and levels of competence and form a major part of individual student and group learning portfolios. Key Words :Project-Based learning, Reflective Portfolios, Self assessment, Defining learning gains, Developing learning strategies , Reflections on and for learning....... It contrasts the students’ self-assessment in a range of ‘product’ skills such as Revit, Structural Design, Mathematics of construction, Technical Installations; as well as ‘process’ competencies such as ‘Working in a team’, Sharing knowledge, Maintaining a portfolio and Reflecting ON learning and FOR learning......This paper documents 1st semester student reflections on “learning to learn” in a team-based PBL environment with quantitative and qualitative student reflective feedback on the learning gains of 60 Architectural Technology and Construction Management students at VIA University College, Denmark...

  8. Multistatic Wireless Fidelity Network Based Radar – Results of the Chrcynno Experiment

    Directory of Open Access Journals (Sweden)

    S. Rzewuski

    2014-04-01

    Full Text Available This paper presents the theory and experimental result of passive radar using WIFI transmitters as illuminators of opportunity. As a result of experiments conducted on 17th August 2013 at airfield Chrcynno a Cessna C208 airplane was detected and tracked using multistatic passive radar system based on low power signal from WIFI network nodes, which were acting as non cooperative illuminators of opportunity. In the experiment 3 wireless access points were communicating with each other and illuminating the radar scene (airfield. The direct reference and reflected (surveillance signals have been acquired and processed using specially developed algorithm presented in the paper. After signal processing using Passive Coherent Location methods target has been detected. This paper describes in details the algorithms and the results of the experiment for the multistatic passive radar based on the WIFI signal.

  9. Radioprotection and radar: practical aspects

    International Nuclear Information System (INIS)

    Pepersack, J.P.

    1979-01-01

    The author, on basis of his experience in radar-radioprotection, exposes the standard and security norms and recommendations to be applied for the preventive adapation of the work-areas as well as for the follow-up of the exposed workers. (author)

  10. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  11. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  12. Radar application in void and bar detection

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2003-01-01

    Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)

  13. Scattering amplitudes and static atomic correction factors for the composition-sensitive 002 reflection in sphalerite ternary III-V and II-VI semiconductors.

    Science.gov (United States)

    Schowalter, M; Müller, K; Rosenauer, A

    2012-01-01

    Modified atomic scattering amplitudes (MASAs), taking into account the redistribution of charge due to bonds, and the respective correction factors considering the effect of static atomic displacements were computed for the chemically sensitive 002 reflection for ternary III-V and II-VI semiconductors. MASAs were derived from computations within the density functional theory formalism. Binary eight-atom unit cells were strained according to each strain state s (thin, intermediate, thick and fully relaxed electron microscopic specimen) and each concentration (x = 0, …, 1 in 0.01 steps), where the lattice parameters for composition x in strain state s were calculated using continuum elasticity theory. The concentration dependence was derived by computing MASAs for each of these binary cells. Correction factors for static atomic displacements were computed from relaxed atom positions by generating 50 × 50 × 50 supercells using the lattice parameter of the eight-atom unit cells. Atoms were randomly distributed according to the required composition. Polynomials were fitted to the composition dependence of the MASAs and the correction factors for the different strain states. Fit parameters are given in the paper.

  14. Radar meteor rates and solar activity

    International Nuclear Information System (INIS)

    Prikryl, P.

    1983-01-01

    The short-term variation of diurnal radar meteor rates with solar activity represented by solar microwave flux Fsub(10.7), and sunspots relative number Rsub(z), is investigated. Applying the superposed-epoch analysis to the observational material of radar meteor rates from Christchurch (1960-61 and 1963-65), a decrease in the recorded radar rates is found during days of enhanced solar activity. No effect of geomagnetic activity similar to the one reported for the Swedish and Canadian radar meteor data was found by the author in the Christchurch data. A possible explanation of the absence of the geomagnetic effect on radar meteor rates from New Zealand due to a lower echo ceiling height of the Christchurch radar is suggested. The variation of the atmospheric parameters as a possible cause of the observed variation in radar meteor rates is also discussed. (author)

  15. Bi-alphabetic pulse compression radar signal design

    Indian Academy of Sciences (India)

    Bi-alphabetic radar; Hamming scan; back-tracking; merit factor; ... of 14.08, 12.10, 9.85, 8.85, 8.83, 8.86, 8.58 and 8.50 respectively. Beyond n ˆ 59 but below n ˆ 117, the highest merit factor available is 9.56. Known high merit ... subjected to dual ternary±binary interpretation to facilitate a coincidence detection scheme.

  16. Mars Express radar collects first surface data

    Science.gov (United States)

    2005-08-01

    This radar started its science operations on 4 July, the same day as its first commissioning phase ended. Due to the late deployment of Marsis, it was decided to split the commissioning, originally planned to last four weeks, into two phases; the second will take place in December. It has thus been possible to begin scientific observations with the instrument earlier than initially planned, while it is still Martian night-time. This is the best environmental condition for subsurface sounding, as in daytime the ionosphere is more ‘energised’ and disturbs the radio signals used for subsurface observations. As from the start of commissioning, the two 20m-long antenna booms have been sending radio signals towards the Martian surface and receiving echoes back. “The commissioning procedure confirmed that the radar is working very well and that it can be operated at full power without interfering with any of the spacecraft systems,” says Roberto Seu, Instrument Manager for Marsis, of University of Rome ‘La Sapienza’, Italy. Marsis is a very complex instrument, capable of operating at different frequency bands. Lower frequencies are best suited to probing the subsurface, the highest frequencies are used to probe shallow subsurface depths, while all frequencies are suited to studying the surface and the upper atmospheric layer of Mars. “During commissioning we worked to test all transmission modes and optimise the radar's performance around Mars,” says Professor Giovanni Picardi, Principal Investigator for Marsis, of University of Rome ‘LaSapienza’. “The result is that since we started the scientific observations in early July, we have been receiving very clean surface echoes back, and first indications about the ionosphere.” The Marsis radar is designed to operate around the orbit ‘pericentre’, when the spacecraft is closer to the planet’s surface. In each orbit, the radar is switched on for 36minutes around this point, spending the middle 26

  17. 3D radar wavefield tomography of comet interiors

    Science.gov (United States)

    Sava, Paul; Asphaug, Erik

    2018-04-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their surface and interior structure in detail and at high resolution. The interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data from multiple viewpoints, as in medical tomography. Radar tomography can be performed using methodology adapted from terrestrial exploration seismology. Our feasibility study primarily focuses on full wavefield methods that facilitate high quality imaging of small body interiors. We consider the case of a monostatic system (co-located transmitters and receivers) operated in various frequency bands between 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Using realistic numerical experiments, we demonstrate that wavefield techniques can generate high resolution tomograms of comets nuclei with arbitrary shape and complex interior properties.

  18. Is there radar evidence for liquid water on Mars?

    Science.gov (United States)

    Roth, L. E.

    1984-01-01

    The hypothesis that an extraordinary radar smoothness of a lunar target suggests that ground moisture is rest on the assumption that on the penetration-depth scale, the dielectric constant be an isotropic quantity. In other words, the planet's surface should have no vertical structure. Results of modeling exercises (based on the early lunar two-layer models) conducted to simulate the behavior of radar reflectivity, at S-band, over Solis Lacus, without manipulating the dielectric constant of the base layer (i.e., without adding moisture) are summarized. More sophisticated, explicit, rather than iterative multi-layer models involving dust, duricrust, mollisol, and permafrost are under study. It is anticipated that a paradoxical situation will be reached when each improvement in the model introduces additional ambiguities into the data interpretation.

  19. San Gabriel Mountains, California, Radar image, color as height

    Science.gov (United States)

    2000-01-01

    This topographic radar image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the

  20. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Science.gov (United States)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  1. A multi-source precipitation approach to fill gaps over a radar precipitation field

    Science.gov (United States)

    Tesfagiorgis, K. B.; Mahani, S. E.; Khanbilvardi, R.

    2012-12-01

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products. The present work develops an approach to seamlessly blend satellite, radar, climatological and gauge precipitation products to fill gaps over ground-based radar precipitation fields. To mix different precipitation products, the bias of any of the products relative to each other should be removed. For bias correction, the study used an ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar rainfall product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. A weighted Successive Correction Method (SCM) is proposed to make the merging between error corrected satellite and radar rainfall estimates. In addition to SCM, we use a Bayesian spatial method for merging the gap free radar with rain gauges, climatological rainfall sources and SPEs. We demonstrate the method using SPE Hydro-Estimator (HE), radar- based Stage-II, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over three different geographical locations of the United States. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the scientific community.

  2. Simulation model study of limitation on the locating distance of a ground penetrating radar; Chichu tansa radar no tansa kyori genkai ni kansuru simulation model no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Nakauchi, T; Tsunasaki, M; Kishi, M; Hayakawa, H [Osaka Gas Co. Ltd., Osaka (Japan)

    1996-10-01

    Various simulations were carried out under various laying conditions to obtain the limitation of locating distance for ground penetrating radar. Recently, ground penetrating radar has been remarked as location technology of obstacles such as the existing buried objects. To enhance the theoretical model (radar equation) of a maximum locating distance, the following factors were examined experimentally using pulse ground penetrating radar: ground surface conditions such as asphalt pavement, diameter of buried pipes, material of buried pipes, effect of soil, antenna gain. The experiment results well agreed with actual field experiment ones. By adopting the antenna gain and effect of the ground surface, the more practical simulation using underground models became possible. The maximum locating distance was more improved by large antenna than small one in actual field. It is assumed that large antenna components contributed to improvement of gain and reduction of attenuation during passing through soil. 5 refs., 12 figs.

  3. Radar Observations of Convective Systems from a High-Altitude Aircraft

    Science.gov (United States)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations

  4. Improvement of insertion loss and quality factor of flexural plate-wave-based alpha-fetoprotein biosensor using groove-type reflective grating structures

    Science.gov (United States)

    Lin, Chang-Yu; Huang, I.-Yu; Lan, Je-Wei

    2013-01-01

    Conventional flexural plate-wave (FPW) transducers have limited applications in biomedical sensing due to their disadvantages such as high insertion loss and low quality factor. To overcome these shortcomings, we propose a FPW transducer on a low phase velocity insulator membrane (5-μm-thick SiO2) with a novel groove-type reflective grating structure design. Additionally, a cystamine self-assembly monolayer and a glutaraldehyde cross-linking layer are implemented on the backside of the FPW device to immobilize alpha-fetoprotein (AFP) antibody. A FPW-based AFP biosensor with low detection limit (5 ng/mL) can be achieved and used to measure the extreme low concentration of AFP antigen in human serum for early detection of hepatocellular carcinoma. The proposed FPW-based AFP biosensor also demonstrates a very high quality factor (206), low insertion loss (-40.854 dB), low operating frequency (6.388 MHz), and high sensing linearity (90.7%).

  5. Reflectance Modeling

    Science.gov (United States)

    Smith, J. A.; Cooper, K.; Randolph, M.

    1984-01-01

    A classical description of the one dimensional radiative transfer treatment of vegetation canopies was completed and the results were tested against measured prairie (blue grama) and agricultural canopies (soybean). Phase functions are calculated in terms of directly measurable biophysical characteristics of the canopy medium. While the phase functions tend to exhibit backscattering anisotropy, their exact behavior is somewhat more complex and wavelength dependent. A Monte Carlo model was developed that treats soil surfaces with large periodic variations in three dimensions. A photon-ray tracing technology is used. Currently, the rough soil surface is described by analytic functions and appropriate geometric calculations performed. A bidirectional reflectance distribution function is calculated and, hence, available for other atmospheric or canopy reflectance models as a lower boundary condition. This technique is used together with an adding model to calculate several cases where Lambertian leaves possessing anisotropic leaf angle distributions yield non-Lambertian reflectance; similar behavior is exhibited for simulated soil surfaces.

  6. Multiple-scattering in radar systems: A review

    International Nuclear Information System (INIS)

    Battaglia, Alessandro; Tanelli, Simone; Kobayashi, Satoru; Zrnic, Dusan; Hogan, Robin J.; Simmer, Clemens

    2010-01-01

    Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is

  7. Reflective optics

    CERN Document Server

    Korsch, Dietrich

    1991-01-01

    This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unc

  8. Radar observations of Comet Halley

    International Nuclear Information System (INIS)

    Campbell, D.B.; Harmon, J.K.; Shapiro, I.I.

    1989-01-01

    Five nights of Arecibo radar observations of Comet Halley are reported which reveal a feature in the overall average spectrum which, though weak, seems consistent with being an echo from the comet. The large radar cross section and large bandwidth of the feature suggest that the echo is predominantly from large grains which have been ejected from the nucleus. Extrapolation of the dust particle size distribution to large grain sizes gives a sufficient number of grains to account for the echo. The lack of a detectable echo from the nucleus, combined with estimates of its size and rotation rate from spacecraft encounters and other data, indicate that the nucleus has a surface of relatively high porosity. 33 references

  9. Validation and Sensitivity Analysis of 3D Synthetic Aperture Radar (SAR) Imaging of the Interior of Primitive Solar System Bodies: Comets and Asteroids

    Data.gov (United States)

    National Aeronautics and Space Administration — This task will demonstrate that using Radar Reflection Imager Instrument in an orbing platform , we can perform 3D mapping of the Cometary Nucleus. To probe the...

  10. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)] [and others

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  11. Radar Control Optimal Resource Allocation

    Science.gov (United States)

    2015-07-13

    Dartmouth, Nova Scotia, Canada by the McMaster University Intelligent PIXel (IPIX) X-band Polarimetric Coherent Radar during the OHGR - Dartmouth...following coefficients [ q2, 4p22q, 12p12q, 12p11q, 12|P | ] (26) for A4 and [ q2, 4p22q, 4q(3 p12 + r22), 12(p11q + p22r22 − qr12), 12(|P |+ 2r22p12

  12. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  13. Radar-eddy current GPR

    OpenAIRE

    A. O. Abramovych

    2014-01-01

    Introduction. At present there are many electrical schematic metal detectors (the most common kind of ground penetrating radar), which are differ in purpose. Each scheme has its own advantages and disadvantages compared to other schemes. Designing metal detector problem of optimal selection of functional units most schemes can only work with a narrow range of special purpose units. Functional units used in circuits can be replaced by better ones, but specialization schemes do not provide such...

  14. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  15. Do DSM-5 Section II personality disorders and Section III personality trait domains reflect the same genetic and environmental risk factors?

    Science.gov (United States)

    Reichborn-Kjennerud, T; Krueger, R F; Ystrom, E; Torvik, F A; Rosenström, T H; Aggen, S H; South, S C; Neale, M C; Knudsen, G P; Kendler, K S; Czajkowski, N O

    2017-09-01

    DSM-5 includes two conceptualizations of personality disorders (PDs). The classification in Section II is identical to the one found in DSM-IV, and includes 10 categorical PDs. The Alternative Model (Section III) includes criteria for dimensional measures of maladaptive personality traits organized into five domains. The degree to which the two conceptualizations reflect the same etiological factors is not known. We use data from a large population-based sample of adult twins from the Norwegian Institute of Public Health Twin Panel on interview-based DSM-IV PDs and a short self-report inventory that indexes the five domains of the DSM-5 Alternative Model plus a domain explicitly targeting compulsivity. Schizotypal, Paranoid, Antisocial, Borderline, Avoidant, and Obsessive-compulsive PDs were assessed at the same time as the maladaptive personality traits and 10 years previously. Schizoid, Histrionic, Narcissistic, and Dependent PDs were only assessed at the first interview. Biometric models were used to estimate overlap in genetic and environmental risk factors. When measured concurrently, there was 100% genetic overlap between the maladaptive trait domains and Paranoid, Schizotypal, Antisocial, Borderline, and Avoidant PDs. For OCPD, 43% of the genetic variance was shared with the domains. Genetic correlations between the individual domains and PDs ranged from +0.21 to +0.91. The pathological personality trait domains, which are part of the Alternative Model for classification of PDs in DSM-5 Section III, appears to tap, at an aggregate level, the same genetic risk factors as the DSM-5 Section II classification for most of the PDs.

  16. Quantitative cerebral blood flow calculation method using xenon CT. Introduction of a factor reflecting diffusing capacity of the lung for xenon

    International Nuclear Information System (INIS)

    Sase, Shigeru; Honda, Mitsuru; Noguchi, Yoshitaka

    2007-01-01

    In calculating cerebral blood flow (CBF) using the Fick principle, time-course information on arterial tracer concentration is indispensable and exerts considerable influence on the accuracy of CBF. In xenon-enhanced CT (Xe-CT), the time-course change rate for end-tidal xenon concentration (Ke), which can be measured, and that for arterial xenon concentration (Ka) have been assumed to be equal. However, it has been pointed out that there are large differences between Ke and Ka in many cases. We have introduced a single factor (γ) which correlates Ke with Ka in the equation Ka=γ x (1-e -Ke/γ ). This factor, γ, reflects the diffusing capacity of the lung for xenon; larger γ values correspond to larger diffusing capacities and Ka is equal to Ke when γ is infinity. Kety's equation contains two parameters: CBF and xenon solubility coefficient We added a third parameter, γ, to Kety's equation, and developed an efficient method to obtain the γ value for each Xe-CT study. Applying this method to ten normal subjects (35.4±16.3 years, mean±standard deviation (SD)), we obtained γ value of 1.01±0.17 and the average CBF value of 38.8±7.5 mL/100 g/min in basal ganglia. The wash-in period could be shortened to two minutes using this method. Xe-CT with this factor (γ) as a parameter enhances its clinical availability as well as the accuracy of CBF. (author)

  17. Radar Rainfall Bias Correction based on Deep Learning Approach

    Science.gov (United States)

    Song, Yang; Han, Dawei; Rico-Ramirez, Miguel A.

    2017-04-01

    Radar rainfall measurement errors can be considerably attributed to various sources including intricate synoptic regimes. Temperature, humidity and wind are typically acknowledged as critical meteorological factors in inducing the precipitation discrepancies aloft and on the ground. The conventional practices mainly use the radar-gauge or geostatistical techniques by direct weighted interpolation algorithms as bias correction schemes whereas rarely consider the atmospheric effects. This study aims to comprehensively quantify those meteorological elements' impacts on radar-gauge rainfall bias correction based on a deep learning approach. The deep learning approach employs deep convolutional neural networks to automatically extract three-dimensional meteorological features for target recognition based on high range resolution profiles. The complex nonlinear relationships between input and target variables can be implicitly detected by such a scheme, which is validated on the test dataset. The proposed bias correction scheme is expected to be a promising improvement in systematically minimizing the synthesized atmospheric effects on rainfall discrepancies between radar and rain gauges, which can be useful in many meteorological and hydrological applications (e.g., real-time flood forecasting) especially for regions with complex atmospheric conditions.

  18. Basic study for tsunami detection with DBF ocean radar

    International Nuclear Information System (INIS)

    Sakai, Shin'ichi; Matsuyama, Masafumi; Okuda, Kouzou; Uehara, Fumihiro

    2015-01-01

    To develop early tsunami warning system utilizing ocean radars, the evaluation of the variety of measuring coverage and data accuracy is indispensable in real oceans. The field observation was carried out at 5 minutes interval with two digital beam forming ocean radars with VHF band from 2012 to 2014 in the sea of Enshu. The high data acquisition areas are found in the extent of 17 km off the coast on a hill site and of 13 km on a low ground site. The measured current by the ocean radar were well correlated with that by the current-meter in the depth of 2 m near the coast with the correlation coefficient of ∼0.6. It is inferred that the main factor of difference in both data sets was due to the presence of wind-driven current through the multi-regression analysis with both current data and wind data. In addition, the order of the temporal current deviations as to the representative time-scale of one hour is about 5 cm/s under the ordinary sea conditions, which suggest that ocean radars could sufficiently detect the current deviation due to grant tsunami. (author)

  19. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  20. Application of ground penetrating radar in placer mineral exploration for mapping subsurface sand layers: A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Barnwal, R.P.; Singh, V.K.; Gujar, A.R.; Rajamanickam, G.V.

    radar reflections using time-domain reflectometry and sedimentological analyses, Sedimentology, v. 47, p. 435-449. Jol, H.M. & Bristow, C.S., 2003. GPR in sediments: advice on data collection, basic processing and interpretation, a good practice... guide, In: Bristow, C.S. and Jol, H.M. (Eds.), GPR in sediments, Geological Society of London, Special Publication, 211. Neal, A., 2004. Ground Penetrating Radar and its use in sedimentology: Principles, Problems and Progress. Earth-Science Reviews...

  1. Ground Penetrating Radar for SMART CITIES

    Science.gov (United States)

    Soldovieri, Francesco; Catapano, Ilaria; Gennarelli, Gianluca

    2016-04-01

    The use of monitoring and surveillance technologies is now recognized as a reliable option of the overall smart cities management cycle, for the advantages that they offer in terms of: economically sustainable planning of the ordinary and extraordinary maintenance interventions; situational awareness of possible risks factors in view of a reliable early warning; improvement of the security of the communities especially in public environments. In this frame, the abstract will deal with the recent advances in the development and deployment of radar systems for the urban surveillance, exploitation of the subsurface resources and civil engineering structures. In particular, we will present the recent scientific developments and several examples of use of these systems in operational conditions.

  2. Fundamentals of ground penetrating radar in environmental and engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Casas, A.; Pinto, V.; Rivero, L. [Barcelona Univ., Barcelona (Spain). Faculty of Geology, Dept. of Geochemistry, Petrology and Geological Prospecting

    2000-12-01

    Ground Penetrating Radar (GPR) is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic) energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples.

  3. Fundamentals of ground penetrating radar in environmental and engineering applications

    International Nuclear Information System (INIS)

    Casas, A.; Pinto, V.; Rivero, L.

    2000-01-01

    Ground Penetrating Radar (GPR) is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic) energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples

  4. Fundamental of ground penetrating radar in environmental and engineering applications

    Directory of Open Access Journals (Sweden)

    L. Rivero

    2000-06-01

    Full Text Available Ground Penetrating Radar (GPR is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples.

  5. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  6. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  7. Radar probing of the auroral plasma

    International Nuclear Information System (INIS)

    Brekke, A.

    1977-01-01

    The European Incoherent Scatter Radar in the Auroral Zone (EISCAT) is an intereuropean organization planning to install an incoherent scatter radar system in Northern Scandinavia. It is supported by Finland, France, Norway, Great Britain, Sweden and West Germany, and its headquarters is in Kiruna, Sweden. The radar is planned to be operating in 1979. In order to introduce students and young scientists to the incoherent scatter radar technique, a summer school was held in Tromsoe, from 5th to 13th June 1975. In these proceedings an introduction to the basic theory of fluctuations in a plasma is given. Some of the present incoherent scatter radars now in use are presented and special considerations with respect to the planned EISACT facility are discussed. Reviews of some recent results and scientific problems relevant to EISCAT are also presented and finally a presentation of some observational techniques complementary to incoherent scatter radars is included. (Ed.)

  8. Ground penetrating radar images of selected fluvial deposits in the Netherlands

    NARCIS (Netherlands)

    Berghe, J. van den; Overmeeren, R.A. van

    1999-01-01

    Ground penetrating radar (GPR) surveys have been carried out in order to characterise reflection patterns and to assess the method's potential for imaging palaeofluvial sediments in the Mass-Rhine former confluence area in the southern Netherlands. The results show that the deposits of meandering,

  9. Identification of Mine-Shaped Objects based on an Efficient Phase Stepped-Frequency Radar Approach

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Jakobsen, Kaj Bjarne; Nymann, Ole

    1997-01-01

    a radar probe is moved automatically to measure in each grid point a set of reflection coefficients from which phase and amplitude information are extracted. Based on a simple processing of the phase information, quarternary image and template cross-correlation a successful detection of metal- and non...

  10. Ground penetrating radar images of selected fluvial deposits in the Netherlands.

    NARCIS (Netherlands)

    Vandenberghe, J.; van Overmeeren, R.A.

    1999-01-01

    Ground penetrating radar (GPR) surveys have been carried out in order to characterise reflection patterns and to assess the method's potential for imaging palaeofluvial sediments in the Mass-Rhine former confluence area in the southern Netherlands. The results show that the deposits of meandering,

  11. A novel approach of collision assessment for coastal radar surveillance

    International Nuclear Information System (INIS)

    Ma, Feng; Chen, Yu-wang; Huang, Zi-chao; Yan, Xin-ping; Wang, Jin

    2016-01-01

    For coastal radar surveillance, this paper proposes a data-driven approach to estimate a blip's collision probability preliminarily based on two factors: the probability of it being a moving vessel and the collision potential of its position. The first factor is determined by a Directed Acyclic Graph (DAG), whose nodes represent the blip's characteristics, including the velocity, direction and size. Additionally, the structure and conditional probability tables of the DAG can be learned from verified samples. Subsequently, obstacles in a waterway can be described as collision potential fields using an Artificial Potential Field model, and the corresponding coefficients can be trained in accordance with the historical vessel distribution. Then, the other factor, the positional collision potential of any position is obtained through overlapping all the collision potential fields. For simplicity, only static obstacles have been considered. Eventually, the two factors are characterised as evidence, and the collision probability of a blip is estimated by combining them with Dempster's rule. Through ranking blips on collision probabilities, those that pose high threat to safety can be picked up in advance to remind radar operators. Particularly, a good agreement between the proposed approach and the manual operation was found in a preliminary test. - Highlights: • Novel estimation approach of collision probability for radar blips. • Novel method to evaluate the positional collision potentials using the APF model. • Novel method to obtain the coefficients of potential fields with historical data.

  12. Textural features for radar image analysis

    Science.gov (United States)

    Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.

    1981-01-01

    Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

  13. Signal compression in radar using FPGA

    OpenAIRE

    Escamilla Hemández, Enrique; Kravchenko, Víctor; Ponomaryov, Volodymyr; Duchen Sánchez, Gonzalo; Hernández Sánchez, David

    2010-01-01

    We present the hardware implementation of radar real time processing procedures using a simple, fast technique based on FPGA (Field Programmable Gate Array) architecture. This processing includes different window procedures during pulse compression in synthetic aperture radar (SAR). The radar signal compression processing is realized using matched filter, and classical and novel window functions, where we focus on better solution for minimum values of sidelobes. The proposed architecture expl...

  14. Pedestrian recognition using automotive radar sensors

    OpenAIRE

    A. Bartsch; F. Fitzek; R. H. Rasshofer

    2012-01-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insight...

  15. Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders

    Science.gov (United States)

    Safaeinili, A.

    2003-12-01

    Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides the opportunity to collect data in a manner that enables Radio Reflection Tomographic (RRT) reconstruction of the body in the same manner that a medical ultrasound probe can image the interior of our body. This paper provides an overview of current technical capabilities and challenges and the potential of radio sounders in the investigation of planets and small bodies.

  16. The study of fresh-water lake ice using multiplexed imaging radar

    Science.gov (United States)

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  17. The experimental results and analysis of a borehole radar prototype

    International Nuclear Information System (INIS)

    Liu, Sixin; Wu, Junjun; Dong, Hang; Fu, Lei; Wang, Fei

    2012-01-01

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations. (paper)

  18. Traveling Ionospheric Disturbances Observed by Midlatitude SuperDARN Radars

    Science.gov (United States)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; West, M. L.; Bristow, W. A.

    2012-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of 100-250 km and periods between ~15 - 60 min, and are generally thought to be the ionospheric manifestation of Atmospheric Gravity Waves (AGWs). High-latitude MSTIDs have been studied using SuperDARN radars since 1989, and are typically attributed to auroral sources and propagated by the Earth Reflected Wave (ERW) mode. Tropospheric sources and earthquakes are also known to be sources of MSTIDs. Observations of MSTIDs using both mid- and high- latitude SuperDARN radars are presented. North American radar data from November 2010 - November 2011 were searched for signatures of MSTIDs. Initial results suggest that MSTIDs are observed at high latitudes primarily in the fall/winter months, which is consistent with published results. This search also reveals that mid-latitude MSTIDs often appear concurrently with high-latitude MSTIDs and share similar wave parameters. During the fall/winter months, SuperDARN mid-latitude MSTIDs appear more often than high-latitude MSTIDs, likely due to calmer ionospheric conditions at mid-latitudes. In the springtime, SuperDARN-observed MSTIDs are less likely to be seen at high-latitudes, but still appear at mid-latitudes. Selected events are analyzed for wave parameters using the Multiple Signal Classification (MUSIC) technique.

  19. Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    Olsson, O.; Falk, L.; Forslund, O.; Lundmark, L.; Sandberg, E.

    1992-01-01

    This paper discusses the borehole radar system, RAMAC, developed within the framework of the International Stripa Project, which can be used in three different measuring modes; single-hole reflection, cross-hole reflection and cross-hole tomography. The reflection modes basically provide geometrical data on features located at some distance from the borehole. In addition the strength of the reflections indicate the contrast in electrical properties. Single-hole reflection data are cylindrically symmetrical with respect to the borehole, which means that a unique fracture orientation cannot be obtained. A method has been devised where absolute orientation of fracture zones is obtained by combining single-hole reflection data from adjacent holes. Similar methods for the analysis of cross-hole reflection data have also been developed and found to be efficient. The radar operates in the frequency range 20-60 MHz which gives a resolution of 1-3 m in crystalline rock. The investigation range obtained in the Stripa granite is approximately 100 m in the single-hole mode and 200-300 m in the cross-hole model. Variations in the arrival time and amplitude of the direct wave between transmitter and receiver have been used for cross-hole tomographic imaging to yield maps of radar velocity and attenuation. The cross-hole measurement configuration coupled with tomographic inversion has less resolution than the reflection methods but provides better quantitative estimates of the values of measured properties. The analysis of the radar data has provided a consistent description of the fracture zones at the Stripa Cross-hole site in agreement with both geological and geophysical observations

  20. Radar Image with Color as Height, Sman Teng, Temple, Cambodia

    Science.gov (United States)

    2002-01-01

    This image of Cambodia's Angkor region, taken by NASA's Airborne Synthetic Aperture Radar (AIRSAR), reveals a temple (upper-right) not depicted on early 19th Century French archeological survey maps and American topographic maps. The temple, known as 'Sman Teng,' was known to the local Khmer people, but had remained unknown to historians due to the remoteness of its location. The temple is thought to date to the 11th Century: the heyday of Angkor. It is an important indicator of the strategic and natural resource contributions of the area northwest of the capitol, to the urban center of Angkor. Sman Teng, the name designating one of the many types of rice enjoyed by the Khmer, was 'discovered' by a scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., working in collaboration with an archaeological expert on the Angkor region. Analysis of this remote area was a true collaboration of archaeology and technology. Locating the temple of Sman Teng required the skills of scientists trained to spot the types of topographic anomalies that only radar can reveal.This image, with a pixel spacing of 5 meters (16.4 feet), depicts an area of approximately 5 by 4.7 kilometers (3.1 by 2.9 miles). North is at top. Image brightness is from the P-band (68 centimeters, or 26.8 inches) wavelength radar backscatter, a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 25 meters (82 feet) of elevation change, so going from blue to red to yellow to green and back to blue again corresponds to 25 meters (82 feet) of elevation change.AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate elevation data. Built

  1. Reducing Surface Clutter in Cloud Profiling Radar Data

    Science.gov (United States)

    Tanelli, Simone; Pak, Kyung; Durden, Stephen; Im, Eastwood

    2008-01-01

    An algorithm has been devised to reduce ground clutter in the data products of the CloudSat Cloud Profiling Radar (CPR), which is a nadir-looking radar instrument, in orbit around the Earth, that measures power backscattered by clouds as a function of distance from the instrument. Ground clutter contaminates the CPR data in the lowest 1 km of the atmospheric profile, heretofore making it impossible to use CPR data to satisfy the scientific interest in studying clouds and light rainfall at low altitude. The algorithm is based partly on the fact that the CloudSat orbit is such that the geodetic altitude of the CPR varies continuously over a range of approximately 25 km. As the geodetic altitude changes, the radar timing parameters are changed at intervals defined by flight software in order to keep the troposphere inside a data-collection time window. However, within each interval, the surface of the Earth continuously "scans through" (that is, it moves across) a few range bins of the data time window. For each radar profile, only few samples [one for every range-bin increment ((Delta)r = 240 m)] of the surface-clutter signature are available around the range bin in which the peak of surface return is observed, but samples in consecutive radar profiles are offset slightly (by amounts much less than (Delta)r) with respect to each other according to the relative change in geodetic altitude. As a consequence, in a case in which the surface area under examination is homogenous (e.g., an ocean surface), a sequence of consecutive radar profiles of the surface in that area contains samples of the surface response with range resolution (Delta)p much finer than the range-bin increment ((Delta)p 10 dB and a reduction of the contaminated altitude over ocean from about 1 km to about 0.5 km (over the ocean). The algorithm has been embedded in CloudSat L1B processing as of Release 04 (July 2007), and the estimated flat surface clutter is removed in L2B-GEOPROF product from the

  2. Reflective Efficacy

    Directory of Open Access Journals (Sweden)

    Carla Bagnoli

    2018-04-01

    Full Text Available The purpose of this paper is to highlight some difficulties of Neil Sinhababu’s Humean theory of agency, which depend on his radically reductivist approach, rather than to his Humean sympathies. The argument is that Sinhababu’s theory builds upon a critique of reflective agency which is based on equivocation and misunderstandings of the Kantian approach. Ultimately, the objection is that his reductivist view is unequipped to address the rclassical problems of rational deliberation and agential authority.

  3. Integrity inspection of main access tunnel using ground penetrating radar

    Science.gov (United States)

    Ismail, M. A.; Abas, A. A.; Arifin, M. H.; Ismail, M. N.; Othman, N. A.; Setu, A.; Ahmad, M. R.; Shah, M. K.; Amin, S.; Sarah, T.

    2017-11-01

    This paper discusses the Ground Penetrating Radar (GPR) survey performed to determine the integrity of wall of tunnel at a hydroelectric power generation facility. GPR utilises electromagnetic waves that are transmitted into the medium of survey. Any reflectors in the medium will reflect the transmitted waves and picked up by the GPR antenna. The survey was done using MALA GeoScience RAMAC CUII with 250MHz antenna. Survey was done on the left, the crown and the right walls of the underground tunnels. Distance was measured using wheel encoders. The results of the survey is discussed in this paper.

  4. Precision metrology of NSTX surfaces using coherent laser radar ranging

    International Nuclear Information System (INIS)

    Kugel, H.W.; Loesser, D.; Roquemore, A. L.; Menon, M. M.; Barry, R. E.

    2000-01-01

    A frequency modulated Coherent Laser Radar ranging diagnostic is being used on the National Spherical Torus Experiment (NSTX) for precision metrology. The distance (range) between the 1.5 microm laser source and the target is measured by the shift in frequency of the linearly modulated beam reflected off the target. The range can be measured to a precision of < 100microm at distances of up to 22 meters. A description is given of the geometry and procedure for measuring NSTX interior and exterior surfaces during open vessel conditions, and the results of measurements are elaborated

  5. Radar observations of Comet IRAS-Araki-Alcock 1983d

    International Nuclear Information System (INIS)

    Harmon, J.K.; Hine, A.A.; Campbell, D.B.; Shapiro, I.I.; Marsden, B.G.

    1989-01-01

    A detailed analysis and interpretation of the Arecibo S-band radar observations of Comet IRAS-Araki-Alcock 1983d are presented. The very high signal strengths are used to make an accurate determination of the shape of the echo spectrum in the two orthogonal senses of circular polarization. The narrow-band component is used to place constraints on the size, rotation, period, reflectivity, and roughness of the nucleus. Detailed analysis of the broadband component yields estimates of, or bounds on, the spatial extent, position, and mass of the particle cloud, as well as the effective size of the constituent particles. 41 references

  6. Ground Penetrating Radar (GPR) for Detection of Underground Objects

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Kamal Shah Shamsuddin; Wan Zainal Abidin; Awang Sarfarudin Awang Putra

    2011-01-01

    Ground Penetrating Radar (GPR) utilizes an electromagnetic microwave that is transmitted into the matter under investigation. Any objects with different dielectric properties from the medium of the matter under investigation will reflect the waves and will be picked up by the receivers embedded in the antenna. We have applied GPR in various application such as concrete inspection, underground utility detection, grave detection, archaeology, oil contamination of soil, soil layer thickness measurement and etc. This paper will give general findings of the application of GPR to provide solutions to the industry and public. The results of the GPR surveys will be discussed. (author)

  7. Radar network communication through sensing of frequency hopping

    Science.gov (United States)

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  8. The NASA radar entomology program at Wallops Flight Center

    Science.gov (United States)

    Vaughn, C. R.

    1979-01-01

    NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

  9. Radar-based summer precipitation climatology of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Bližňák, Vojtěch; Kašpar, Marek; Müller, Miloslav

    2018-01-01

    Roč. 38, č. 2 (2018), s. 677-691 ISSN 0899-8418 R&D Projects: GA ČR GA17-23773S; GA MZe QJ1520265 Institutional support: RVO:68378289 Keywords : weather radar * rain gauges * adjustment * precipitation climatology * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.5202/full

  10. Nowcasting of 1-h precipitation using radar and NWP data

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk

    2006-01-01

    Roč. 328, 1-2 (2006), s. 200-211 ISSN 0022-1694 R&D Projects: GA ČR GA205/04/0114; GA AV ČR IBS3042101 Institutional research plan: CEZ:AV0Z30420517 Keywords : Precipitation forecast * Regression models * Nowcasting * Radar Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.117, year: 2006

  11. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    Science.gov (United States)

    2018-01-01

    REPORT TYPE Technical Note 3. DATES COVERED (From - To) December 2017 4. TITLE AND SUBTITLE Doppler Processing with Ultra-Wideband (UWB) Radar...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This technical note revisits previous work performed at the US Army Research Laboratory related to...target considered previously is proportional to a delayed version of the transmitted signal, up to a complex constant factor. We write the received

  12. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  13. Experimental and rendering-based investigation of laser radar cross sections of small unmanned aerial vehicles

    Science.gov (United States)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-12-01

    Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.

  14. Improved Detection of Human Respiration Using Data Fusion Basedon a Multistatic UWB Radar

    Directory of Open Access Journals (Sweden)

    Hao Lv

    2016-09-01

    Full Text Available This paper investigated the feasibility for improved detection of human respiration using data fusion based on a multistatic ultra-wideband (UWB radar. UWB-radar-based respiration detection is an emerging technology that has great promise in practice. It can be applied to remotely sense the presence of a human target for through-wall surveillance, post-earthquake search and rescue, etc. In these applications, a human target’s position and posture are not known a priori. Uncertainty of the two factors results in a body orientation issue of UWB radar, namely the human target’s thorax is not always facing the radar. Thus, the radial component of the thorax motion due to respiration decreases and the respiratory motion response contained in UWB radar echoes is too weak to be detected. To cope with the issue, this paper used multisensory information provided by the multistatic UWB radar, which took the form of impulse radios and comprised one transmitting and four separated receiving antennas. An adaptive Kalman filtering algorithm was then designed to fuse the UWB echo data from all the receiving channels to detect the respiratory-motion response contained in those data. In the experiment, a volunteer’s respiration was correctly detected when he curled upon a camp bed behind a brick wall. Under the same scenario, the volunteer’s respiration was detected based on the radar’s single transmitting-receiving channels without data fusion using conventional algorithm, such as adaptive line enhancer and single-channel Kalman filtering. Moreover, performance of the data fusion algorithm was experimentally investigated with different channel combinations and antenna deployments. The experimental results show that the body orientation issue for human respiration detection via UWB radar can be dealt well with the multistatic UWB radar and the Kalman-filter-based data fusion, which can be applied to improve performance of UWB radar in real applications.

  15. Method for radar detection of persons wearing wires

    OpenAIRE

    Fox, William P.

    2014-01-01

    8,730,098 B1 Methods are described for radar detection of persons wearing wires using radar spectra data including the vertical polarization (VV) radar cross section and the horizontal polarization (HH) radar cross section for a person. In one embodiment, the ratio of the vertical polarization (VV) radar cross section to the horizontal polarization (HH) radar cross section for a person is compared to a detection threshold to determine whether the person is wearing wire...

  16. Doppler radar observation of thunderstorm circulation in the 1977 trip program. [triple Doppler radar network for lightning detection and ranging

    Science.gov (United States)

    Lhermitte, R. M.; Conte, D.; Pasqualucci, F.; Lennon, C.; Serafin, R. J.

    1978-01-01

    Storm data obtained on August 1, 1977 are examined in an attempt to interpret the relationship between lightning occurrence and the thunderstorm inner dynamics and precipitation processes. Horizontal maps are presented which indicated the position of radiation sources detected by the Lightning Detection and Ranging (LDAR) network, together with the horizontal motion fields and radar reflectivity data. Detailed inspection of these fields showed that, although radiation sources are found in the vicinity of precipitation cells, they are not located in the heavy precipitation areas, but rather on their rear side in regions where the configuration of the wind fields suggests the presence of updrafts.

  17. Array-Based Ultrawideband through-Wall Radar: Prediction and Assessment of Real Radar Abilities

    Directory of Open Access Journals (Sweden)

    Nadia Maaref

    2013-01-01

    Full Text Available This paper deals with a new through-the-wall (TTW radar demonstrator for the detection and the localisation of people in a room (in a noncooperative way with the radar situated outside but in the vicinity of the first wall. After modelling the propagation through various walls and quantifying the backscattering by the human body, an analysis of the technical considerations which aims at defining the radar design is presented. Finally, an ultrawideband (UWB frequency modulated continuous wave (FMCW radar is proposed, designed, and implemented. Some representative trials show that this radar is able to localise and track moving people behind a wall in real time.

  18. Long-wavelength Radar Studies of the Lunar Maria

    Science.gov (United States)

    Campbell, Bruce A.; Hawke, B. Ray; Thompson, Thomas W.

    1995-01-01

    various mineral phases, but ilmenite content (FeTiO3) has typically been cited as the dominant cause of changes in loss tangent (and thus the radar absorption). The lack of correlation between the radar data and TiO2 estimates may arise from uncertainties in the Charette technique, subtle differences in the upper surface and bulk properties of the regolith, mineralogic effects on the radar not linked to titanium content, or to some combination of these factors. Dark crater haloes in the mare and highlands, and low radar returns from apparent cryptomare regions, are used to illustrate the role radar data can play in identifying changes in regolith composition; low-return haloes around craters such as Petavius may indicate 5-25% contamination of the highlands soil by excavated mare material or a layer of rock-poor ejecta at least several meters deep. The 7.5-m data were shown to correlate to a reasonable degree with estimates of Fe abundance, suggesting that this component of the mare basalts is primarily responsible for attenuation losses at very long wavelengths. The different sensitivities of the two radar wavelengths and multispectral data offers the potential for future deep mapping of the mare lava flows and regolith.

  19. Pocket radar guide key facts, equations, and data

    CERN Document Server

    Curry, G Richard

    2010-01-01

    ThePocket Radar Guideis a concise collection of key radar facts and important radar data that provides you with necessary radar information when you are away from your office or references. It includes statements and comments on radar design, operation, and performance; equations describing the characteristics and performance of radar systems and their components; and tables with data on radar characteristics and key performance issues.It is intended to supplement other radar information sources by providing a pocket companion to refresh memory and provide details whenever you need them such a

  20. Customizable Digital Receivers for Radar

    Science.gov (United States)

    Moller, Delwyn; Heavey, Brandon; Sadowy, Gregory

    2008-01-01

    Compact, highly customizable digital receivers are being developed for the system described in 'Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets' (NPO-43962), NASA Tech Briefs, Vol. 31, No. 7 (August 2007), page 72. The receivers are required to operate in unison, sampling radar returns received by the antenna elements in a digital beam-forming (DBF) mode. The design of these receivers could also be adapted to commercial radar systems. At the time of reporting the information for this article, there were no commercially available digital receivers capable of satisfying all of the operational requirements and compact enough to be mounted directly on the antenna elements. A provided figure depicts the overall system of which the digital receivers are parts. Each digital receiver includes an analog-to-digital converter (ADC), a demultiplexer (DMUX), and a field-programmable gate array (FPGA). The ADC effects 10-bit band-pass sampling of input signals having frequencies up to 3.5 GHz. The input samples are demultiplexed at a user-selectable rate of 1:2 or 1:4, then buffered in part of the FPGA that functions as a first-in/first-out (FIFO) memory. Another part of the FPGA serves as a controller for the ADC, DMUX, and FIFO memory and as an interface between (1) the rest of the receiver and (2) a front-panel data port (FPDP) bus, which is an industry-standard parallel data bus that has a high data-rate capability and multichannel configuration suitable for DBF. Still other parts of the FPGA in each receiver perform signal-processing functions. The digital receivers can be configured to operate in a stand-alone mode, or in a multichannel mode as needed for DBF. The customizability of the receiver makes it applicable to a broad range of system architectures. The capability for operation of receivers in either a stand-alone or a DBF mode enables the use of the receivers in an unprecedentedly wide variety of radar systems.

  1. Visual Attention to Radar Displays

    Science.gov (United States)

    Moray, N.; Richards, M.; Brophy, C.

    1984-01-01

    A model is described which predicts the allocation of attention to the features of a radar display. It uses the growth of uncertainty and the probability of near collision to call the eye to a feature of the display. The main source of uncertainty is forgetting following a fixation, which is modelled as a two dimensional diffusion process. The model was used to predict information overload in intercept controllers, and preliminary validation obtained by recording eye movements of intercept controllers in simulated and live (practice) interception.

  2. Radar Methods in Urban Environments

    Science.gov (United States)

    2016-10-26

    and A. Nehorai, "A low-complexity multi-target tracking algorithm in urban environments using sparse modeling ,’’ Signal Processing, Vol. 92, pp. 2199...AFRL-AFOSR-VA-TR-2016-0344 Radar Methods in Urban Environments Arye Nehorai WASHINGTON UNIVERSITY THE Final Report 10/26/2016 DISTRIBUTION A...of information   if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION . 1. REPORT DATE

  3. On Reflection

    DEFF Research Database (Denmark)

    Blasco, Maribel

    2012-01-01

    produces: that the self is accessible and transcendable, that reflexivity is universal across space and time, and that the self can act as its own remedial change agent or ‘inner consultant.’ I argue that because reflexivity is understood in many different ways, attention to definition is crucial, both...... on the concepts of selfhood that prevail and how notions of difference are constructed. First, I discuss how the dominant usages of reflexivity in intercultural education reflect and reproduce a Cartesian view of the self that shapes how ICC is conceptualized and taught. I discuss three assumptions that this view...

  4. Inspiring Reflections

    DEFF Research Database (Denmark)

    Muchie, Mammo

    2011-01-01

    A numberof Chris Freeman's colleagues were asked to reflect on what they thought describes his life and work in a few words. Some of the colleagues replied including former SPRU students that were taught or supervised by Chris Freeman. Their views on what they thought were Chris Freeman's defining...... life is not free from fluctuations, cycles, disruptions, crises and destructions both human and ecological. Innovation research ought to position itself to address environmental, financial and economic crises. The third is innovation research for development by addressing not only poverty erdaication...

  5. Reflective Writing

    DEFF Research Database (Denmark)

    Ahrenkiel Jørgensen, Andriette

    2016-01-01

    In Breve fra min Have (Letters from my Garden), the Swedish landscape architect, Sven-Ingvar Andersson, produces dialogues about his garden to a wide circle of friends, colleagues, deceased and still living acquaintances such as Karen Blixen, Gertrude Stein, C. Th. Sørensen, Albrecht Dürer, Peter...... Høeg etetera. The dialogues work as a tool of reflection in terms of providing opportunity to examine his own beliefs, to explore the possible reasons for engaging in a particular activity. On the basis of Sven-Ingvar Andersson’s book a teaching program at the Aarhus School of Architecture provides...

  6. Reflective Packaging

    Science.gov (United States)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  7. Mathematical Problems in Synthetic Aperture Radar

    Science.gov (United States)

    Klein, Jens

    2010-10-01

    This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new inversion formula. This inversion formula has the potential to make it easier to suppress artifacts due to limited data and, depending on the application, can be refined to a fast reconstruction formula. In the penultimate chapter a solution to the problem of left-right ambiguity is presented. This problem exists since the invention of SAR and is caused by the geometry of the measurements. This leads to the fact that only symmetric images can be obtained. With the solution from this chapter it is possible to reconstruct not only the even part of the reflectivity function, but also the odd part, thus making it possible to reconstruct asymmetric images. Numerical simulations are shown to demonstrate that this solution is not affected by stability problems as other approaches have been. The final chapter develops some continuative ideas that could be pursued in the future.

  8. Wide Band and Wide Azimuth Beam Effect on High-resolution Synthetic Aperture Radar Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Hong Jun

    2015-06-01

    Full Text Available Passive corner reflectors and active transponders are often used as man-made reference targets in Synthetic Aperture Radar (SAR radiometric calibration, With the emergence of new radar systems and the increasing demand for greater accuracy, wide-band and wide-beam radars challenge the hypothesis that the Radar Cross Section (RCS of reference targets is constant. In this study, the FEKO electromagnetic simulation software is used to obtain the change curve of the target RCS as a function of frequency and aspect angle while incorporating high-resolution point-target SAR simulation, and quantitatively analyzing the effect of the modulation effect on SAR images. The simulation results suggest that the abovementioned factors affect the SAR calibration by more than 0.2 dB within a fractional bandwidth greater than 10% or azimuth beam width of more than 20°, which must be corrected in the data processing.

  9. NAPL detection with ground-penetrating radar (Invited)

    Science.gov (United States)

    Bradford, J. H.

    2013-12-01

    Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency

  10. Ultra-wideband radar sensors and networks

    Science.gov (United States)

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  11. Weather radar rainfall data in urban hydrology

    NARCIS (Netherlands)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, J.A.E.; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology

  12. High-precision positioning of radar scatterers

    NARCIS (Netherlands)

    Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.

    2016-01-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy

  13. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels

    1995-01-01

    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...

  14. Incidence angle normalization of radar backscatter data

    Science.gov (United States)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  15. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  16. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy plan...

  17. Classification of Agricultural Crops in Radar Images

    NARCIS (Netherlands)

    Hoogeboom, P.

    1983-01-01

    For the past few years an accurate X-band SLAR system with digital recording has been available in The Netherlands. The images of this system are corrected to indicate radar backscatter coefficients (gamma) instead of arbitrary greytones. In 1980 a radar measurement campaign was organized in the

  18. Classification of radar echoes using fractal geometry

    International Nuclear Information System (INIS)

    Azzaz, Nafissa; Haddad, Boualem

    2017-01-01

    Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.

  19. Neutron reflectivity

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.

  20. Millimeter wave radars raise weapon IQ

    Science.gov (United States)

    Lerner, E. J.

    1985-02-01

    The problems encountered by laser and IR homing devices for guided munitions may be tractable with warhead-mounted mm-wave radars. Operating at about 100 GHz and having several kilometers range, mm-wave radars see through darkness, fog, rain and smoke. The radar must be coupled with an analyzer that discerns moving and stationary targets and higher priority targets. The target lock-on can include shut-off of the transmitter and reception of naturally-generated mm-waves bouncing off the target when in the terminal phase of the flight. Monopulse transmitters have simplified the radar design, although mass production of finline small radar units has yet to be accomplished, particularly in combining GaAs, ferrites and other materials on one monolithic chip.

  1. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...... necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall...... estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...

  2. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...... applications. The paper also reviews how the focus in urban hydrology research has shifted over the last decade to fields such as climate change impacts, resilience of urban areas to hydrological extremes, and online prediction/warning systems. It is discussed how radar rainfall data can add value......Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...

  3. Meteor observation by the Kyoto meteor radar

    International Nuclear Information System (INIS)

    Kato, S.; Tsuda, T.

    1987-01-01

    The Kyoto Meteor Radar is a monostatic coherent pulsed Doppler radar operating on the frequency of 31.57 MH. The system is computer controlled and uses radio interferometry for echo height determination. The antenna, an improvement, can be directed either to the north or the east. The system has been continuously collecting data on winds at meteor heights by radar observation. The meteor echo rate was also measured, the echo rate distribution with height and the daily variation in height integrated echo rate are discussed. Investigations of atmospheric tides are being pursued by cooperative observations. A novel approach to the study of gravity waves was attempted using the meteor radar which is able to detect the horizontal propagation of the waves by observing the changing phase through the region illuminated by the radar

  4. Progress in coherent laser radar

    Science.gov (United States)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  5. BALTRAD Advanced Weather Radar Networking

    Directory of Open Access Journals (Sweden)

    Daniel Michelson

    2018-03-01

    Full Text Available BALTRAD software exchanges weather-radar data internationally, operationally, and in real-time, and it processes the data using a common toolbox of algorithms available to every node in the decentralized radar network. This approach enables each node to access and process its own and international data to meet its local needs. The software system is developed collaboratively by the BALTRAD partnership, mostly comprising the national Meteorological and Hydrological institutes in the European Union’s Baltic Sea Region. The most important sub-systems are for data exchange, data management, scheduling and event handling, and data processing. C, Java, and Python languages are used depending on the sub-system, and sub-systems communicate using well-defined interfaces. Software is available from a dedicated Git server. BALTRAD software has been deployed throughout Europe and more recently in Canada. Funding statement: From 2009–2014, the BALTRAD and BALTRAD+ projects were part-financed by the European Union (European Regional Development Fund and European Neighbourhood and Partnership Instrument, with project numbers #009 and #101, respectively.

  6. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization(in English

    Directory of Open Access Journals (Sweden)

    Shi Chen-guang

    2014-08-01

    Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.

  7. Microphysical Structures of Hurricane Irma Observed by Polarimetric Radar

    Science.gov (United States)

    Didlake, A. C.; Kumjian, M. R.

    2017-12-01

    This study examines dual-polarization radar observations of Hurricane Irma as its center passed near the WSR-88D radar in Puerto Rico, capturing needed microphysical information of a mature tropical cyclone. Twenty hours of observations continuously sampled the inner core precipitation features. These data were analyzed by annuli and azimuth, providing a bulk characterization of the primary eyewall, secondary eyewall, and rainbands as they varied around the storm. Polarimetric radar variables displayed distinct signatures of convective and stratiform precipitation in the primary eyewall and rainbands that were organized in a manner consistent with the expected kinematic asymmetry of a storm in weak environmental wind shear but with moderate low-level storm-relative flow. In the front quadrants of the primary eyewall, vertical profiles of differential reflectivity (ZDR) exhibit increasing values with decreasing height consistent with convective precipitation processes. In particular, the front-right quadrant exhibits a signature in reflectivity (ZH) and ZDR indicating larger, sparser drops, which is consistent with a stronger updraft present in this quadrant. In the rear quadrants, a sharply peaked ZDR maximum occurs within the melting layer, which is attributed of stratiform processes. In the rainbands, the convective to stratiform transition can be seen traveling from the front-right to the front-left quadrant. The front-right quadrant exhibits lower co-polar correlation coefficient (ρHV) values in the 3-8 km altitude layer, suggesting larger vertical spreading of various hydrometeors that occurs in convective vertical motions. The front-left quadrant exhibits larger ρHV values, suggesting less diversity of hydrometeor shapes, consistent with stratiform processes. The secondary eyewall did not exhibit a clear signature of processes preferred in a specific quadrant, and a temporal analysis of the secondary eyewall revealed a complex evolution of its structure

  8. Random Forest Application for NEXRAD Radar Data Quality Control

    Science.gov (United States)

    Keem, M.; Seo, B. C.; Krajewski, W. F.

    2017-12-01

    Identification and elimination of non-meteorological radar echoes (e.g., returns from ground, wind turbines, and biological targets) are the basic data quality control steps before radar data use in quantitative applications (e.g., precipitation estimation). Although WSR-88Ds' recent upgrade to dual-polarization has enhanced this quality control and echo classification, there are still challenges to detect some non-meteorological echoes that show precipitation-like characteristics (e.g., wind turbine or anomalous propagation clutter embedded in rain). With this in mind, a new quality control method using Random Forest is proposed in this study. This classification algorithm is known to produce reliable results with less uncertainty. The method introduces randomness into sampling and feature selections and integrates consequent multiple decision trees. The multidimensional structure of the trees can characterize the statistical interactions of involved multiple features in complex situations. The authors explore the performance of Random Forest method for NEXRAD radar data quality control. Training datasets are selected using several clear cases of precipitation and non-precipitation (but with some non-meteorological echoes). The model is structured using available candidate features (from the NEXRAD data) such as horizontal reflectivity, differential reflectivity, differential phase shift, copolar correlation coefficient, and their horizontal textures (e.g., local standard deviation). The influence of each feature on classification results are quantified by variable importance measures that are automatically estimated by the Random Forest algorithm. Therefore, the number and types of features in the final forest can be examined based on the classification accuracy. The authors demonstrate the capability of the proposed approach using several cases ranging from distinct to complex rain/no-rain events and compare the performance with the existing algorithms (e

  9. Space Radar Image of Chernobyl

    Science.gov (United States)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  10. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    Science.gov (United States)

    Gergely, Mathias; Cooper, Steven J.; Garrett, Timothy J.

    2017-10-01

    The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  11. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    Directory of Open Access Journals (Sweden)

    M. Gergely

    2017-10-01

    Full Text Available The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs. Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  12. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    Directory of Open Access Journals (Sweden)

    Ji She

    2016-12-01

    Full Text Available Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  13. Maximum Available Accuracy of FM-CW Radars

    Directory of Open Access Journals (Sweden)

    V. Ricny

    2009-12-01

    Full Text Available This article deals with the principles and above all with the maximum available measuring accuracy analyse of FM-CW (Frequency Modulated Continuous Wave radars, which are usually employed for distance and velocity measurements of moving objects in road traffic, as well as air traffic and in other applications. These radars often form an important part of the active safety equipment of high-end cars – the so-called anticollision systems. They usually work in the frequency bands of mm waves (24, 35, 77 GHz. Function principles and analyses of factors, that dominantly influence the distance measurement accuracy of these equipments especially in the modulation and demodulation part, are shown in the paper.

  14. Modelling dielectric-constant values of concrete: an aid to shielding effectiveness prediction and ground-penetrating radar wave technique interpretation

    International Nuclear Information System (INIS)

    Bourdi, Taoufik; Rhazi, Jamal Eddine; Ballivy, Gérard; Boone, François

    2012-01-01

    A number of efficient and diverse mathematical methods have been used to model electromagnetic wave propagation. Each of these methods possesses a set of key elements which eases its understanding. However, the modelling of the propagation in concrete becomes impossible without modelling its electrical properties. In addition to experimental measurements; material theoretical and empirical models can be useful to investigate the behaviour of concrete's electrical properties with respect to frequency, moisture content (MC) or other factors. These models can be used in different fields of civil engineering such as (1) electromagnetic compatibility which predicts the shielding effectiveness (SE) of a concrete structure against external electromagnetic waves and (2) in non-destructive testing to predict the radar wave reflected on a concrete slab. This paper presents a comparison between the Jonscher model and the Debye models which is suitable to represent the dielectric properties of concrete, although dielectric and conduction losses are taken into consideration in these models. The Jonscher model gives values of permittivity, SE and radar wave reflected in a very good agreement with those given by experimental measurements and this for different MCs. Compared with other models, the Jonscher model is very effective and is the most appropriate to represent the electric properties of concrete.

  15. Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011

    Science.gov (United States)

    Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra

    2015-01-01

    Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.

  16. Millimeter-Wave Radar Field Measurements and Inversion of Cloud Parameters for the 1999 Mt. Washington Icing Sensors Project

    Science.gov (United States)

    Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)

    2001-01-01

    The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.

  17. Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings

    Science.gov (United States)

    Jorgensen, David P.; Hanshaw, Maiana N.; Schmidt, Kevin M.; Laber, Jayme L; Staley, Dennis M.; Kean, Jason W.; Restrepo, Pedro J.

    2011-01-01

    A portable truck-mounted C-band Doppler weather radar was deployed to observe rainfall over the Station Fire burn area near Los Angeles, California, during the winter of 2009/10 to assist with debris-flow warning decisions. The deployments were a component of a joint NOAA–U.S. Geological Survey (USGS) research effort to improve definition of the rainfall conditions that trigger debris flows from steep topography within recent wildfire burn areas. A procedure was implemented to blend various dual-polarized estimators of precipitation (for radar observations taken below the freezing level) using threshold values for differential reflectivity and specific differential phase shift that improves the accuracy of the rainfall estimates over a specific burn area sited with terrestrial tipping-bucket rain gauges. The portable radar outperformed local Weather Surveillance Radar-1988 Doppler (WSR-88D) National Weather Service network radars in detecting rainfall capable of initiating post-fire runoff-generated debris flows. The network radars underestimated hourly precipitation totals by about 50%. Consistent with intensity–duration threshold curves determined from past debris-flow events in burned areas in Southern California, the portable radar-derived rainfall rates exceeded the empirical thresholds over a wider range of storm durations with a higher spatial resolution than local National Weather Service operational radars. Moreover, the truck-mounted C-band radar dual-polarimetric-derived estimates of rainfall intensity provided a better guide to the expected severity of debris-flow events, based on criteria derived from previous events using rain gauge data, than traditional radar-derived rainfall approaches using reflectivity–rainfall relationships for either the portable or operational network WSR-88D radars. Part of the reason for the improvement was due to siting the radar closer to the burn zone than the WSR-88Ds, but use of the dual-polarimetric variables

  18. Radar

    DEFF Research Database (Denmark)

    Nielsen, Tom

    2009-01-01

    Bidrag til arkitektens opgørelse (baseret på en række forskellige indlæg) over hvor dansk arkitektur står, med korte bud på spørgsmålene: Kan man ud over stedsanknytningen tale om en særlig dansk arkitektur?, Hvad er dansk arkitekturs største kvalitet, vores vigtigste force? og Hvad er dansk arki...

  19. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    International Nuclear Information System (INIS)

    Handayani, Gunawan

    2015-01-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented

  20. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Science.gov (United States)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  1. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Gunawan [The Earth Physics and Complex Systems Research Group (Jl. Ganesa 10 Bandung Indonesia) gunawanhandayani@gmail.com (Indonesia)

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  2. Sensitivity of Spaceborne and Ground Radar Comparison Results to Data Analysis Methods and Constraints

    Science.gov (United States)

    Morris, Kenneth R.; Schwaller, Mathew

    2011-01-01

    With the availability of active weather radar observations from space from the Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TR.MM) satellite, numerous studies have been performed comparing PR reflectivity and derived rain rates to similar observations from ground-based weather radars (GR). These studies have used a variety of algorithms to compute matching PR and GR volumes for comparison. Most studies have used a fixed 3-dimensional Cartesian grid centered on the ground radar, onto which the PR and GR data are interpolated using a proprietary approach and/or commonly available GR analysis software (e.g., SPRINT, REORDER). Other studies have focused on the intersection of the PR and GR viewing geometries either explicitly or using a hybrid of the fixed grid and PR/GR common fields of view. For the Dual-Frequency Precipitation Radar (DPR) of the upcoming Global Precipitation Measurement (GPM) mission, a prototype DPR/GR comparison algorithm based on similar TRMM PR data has been developed that defines the common volumes in terms of the geometric intersection of PR and GR rays, where smoothing of the PR and GR data are minimized and no interpolation is performed. The PR and GR volume-averaged reflectivity values of each sample volume are accompanied by descriptive metadata, for attributes including the variability and maximum of the reflectivity within the sample volume, and the fraction of range gates in the sample average having reflectivity values above an adjustable detection threshold (typically taken to be 18 dBZ for the PR). Sample volumes are further characterized by rain type (Stratiform or Convective), proximity to the melting layer, underlying surface (land/water/mixed), and the time difference between the PR and GR observations. The mean reflectivity differences between the PR and GR can differ between data sets produced by the different analysis methods; and for the GPM prototype, by the type of constraints and

  3. Space Radar Image of Manaus region of Brazil

    Science.gov (United States)

    1994-01-01

    These L-band images of the Manaus region of Brazil were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. The left image was acquired on April 12, 1994, and the middle image was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (top) and the Rio Solimoes (bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The differences in brightness between the images reflect changes in the scattering of the radar channel. In this case, the changes are indicative of flooding. A flooded forest has a higher backscatter at L-band (horizontally transmitted and received) than an unflooded river. The extent of the flooding is much greater in the April image than in the October image, and corresponds to the annual, 10-meter (33-foot) rise and fall of the Amazon River. A third image at right shows the change in the April and October images and was created by determining which areas had significant decreases in the intensity of radar returns. These areas, which appear blue on the third image at right, show the dramatic decrease in the extent of flooded forest, as the level of the Amazon River falls. The flooded forest is a vital habitat for fish and floating meadows are an important source of atmospheric methane. This demonstrates the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies obscure monitoring of floods. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during

  4. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Costley, A; Prentice, R [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R [Toulouse-3 Univ., 31 (France). Centre d` Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  5. Proposed experiment to detect air showers with the Jicamarca radar system

    International Nuclear Information System (INIS)

    Vinogradova, T.; Chapin, E.; Gorham, P.; Saltzberg, D.

    2001-01-01

    When an extremely high energy particle interacts in the atmosphere, the collision induces a multiplicative cascade of charged particles, which grows exponentially until the energy per secondary degrades enough to dissipate in ionization of the surrounding air. During this process the compact cloud of energetic secondary particles travels 10-20 km through the atmosphere, leaving a column of ionization behind it. This ionized column quickly recombines, but for a period of order 0.1 ms it is highly reflective at frequencies below 100 MHz. This ionization trail, which is comparable in ionization density to that of a micro-meteor, should be clearly detectable using standard radar methods. We propose radar measurements using the facilities operated by Cornell University and the Instituto Geofisico del Peru (IGP) at the Jicamarca Radio Observatory near Lima, Peru. This facility's primary instrument is 49.92 MHz incoherent scatter radar, transmitting up to 1.5 MW of pulse power

  6. Three-dimensional ground penetrating radar imaging using multi-frequency diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mast, J.E.; Johansson, E.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    In this talk we present results from a three-dimensional image reconstruction algorithm for impulse radar operating in monostatic pule-echo mode. The application of interest to us is the nondestructive evaluation of civil structures such as bridge decks. We use a multi-frequency diffraction tomography imaging technique in which coherent backward propagations of the received reflected wavefield form a spatial image of the scattering interfaces within the region of interest. This imaging technique provides high-resolution range and azimuthal visualization of the subsurface region. We incorporate the ability to image in planarly layered conductive media and apply the algorithm to experimental data from an offset radar system in which the radar antenna is not directly coupled to the surface of the region. We present a rendering in three-dimensions of the resulting image data which provides high-detail visualization.

  7. Bubbles in Titan’s Seas: Nucleation, Growth, and RADAR Signature

    Science.gov (United States)

    Cordier, Daniel; Liger-Belair, Gérard

    2018-05-01

    In the polar regions of Titan, the main satellite of Saturn, hydrocarbon seas have been discovered by the Cassini–Huygens mission. RADAR observations have revealed surprising and transient bright areas over the Ligeia Mare surface. As suggested by recent research, bubbles could explain these strange features. However, the nucleation and growth of such bubbles, together with their RADAR reflectivity, have never been investigated. All of these aspects are critical to an actual observation. We have thus applied the classical nucleation theory to our context, and we developed a specific radiative transfer model that is appropriate for bubble streams in cryogenic liquids. According to our results, the sea bed appears to be the most plausible place for the generation of bubbles, leading to a signal comparable to observations. This conclusion is supported by thermodynamic arguments and by RADAR properties of a bubbly column. The latter are also valid in the case of bubble plumes, due to gas leaking from the sea floor.

  8. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, A.S. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C.W.; Snider, J.B. [NOAA Environmental Technology Lab., Boulder, CO (United States); Lenshow, D.H.; Mayer, S.D. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  9. Comparison of space borne radar altimetry and airborne laser altimetry over sea ice in the Fram Strait

    DEFF Research Database (Denmark)

    Giles, K.A.; Hvidegaard, Sine Munk

    2006-01-01

    This paper describes the first comparison of satellite radar and airborne laser altimetry over sea ice. In order to investigate the differences between measurements from the two different instruments we explore the statistical properties of the data and determine reasonable scales in space and time...... at which to examine them. The resulting differences between the data sets show that the laser and the radar are reflecting from different surfaces and that the magnitude of the difference decreases with increasing surface air temperature. This suggests that the penetration depth of the radar signal......, into the snow, varies with temperature. The results also show the potential for computing Arctic wide snow depth maps by combining measurements from laser and radar altimeters....

  10. Reflected Glory

    Science.gov (United States)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  11. Merging of rain gauge and radar data for urban hydrological modelling

    Science.gov (United States)

    Berndt, Christian; Haberlandt, Uwe

    2015-04-01

    Urban hydrological processes are generally characterised by short response times and therefore rainfall data with a high resolution in space and time are required for their modelling. In many smaller towns, no recordings of rainfall data exist within the urban catchment. Precipitation radar helps to provide extensive rainfall data with a temporal resolution of five minutes, but the rainfall amounts can be highly biased and hence the data should not be used directly as a model input. However, scientists proposed several methods for adjusting radar data to station measurements. This work tries to evaluate rainfall inputs for a hydrological model regarding the following two different applications: Dimensioning of urban drainage systems and analysis of single event flow. The input data used for this analysis can be divided into two groups: Methods, which rely on station data only (Nearest Neighbour Interpolation, Ordinary Kriging), and methods, which incorporate station as well as radar information (Conditional Merging, Bias correction of radar data based on quantile mapping with rain gauge recordings). Additionally, rainfall intensities that were directly obtained from radar reflectivities are used. A model of the urban catchment of the city of Brunswick (Lower Saxony, Germany) is utilised for the evaluation. First results show that radar data cannot help with the dimensioning task of sewer systems since rainfall amounts of convective events are often overestimated. Gauges in catchment proximity can provide more reliable rainfall extremes. Whether radar data can be helpful to simulate single event flow depends strongly on the data quality and thus on the selected event. Ordinary Kriging is often not suitable for the interpolation of rainfall data in urban hydrology. This technique induces a strong smoothing of rainfall fields and therefore a severe underestimation of rainfall intensities for convective events.

  12. Estimation of Mesospheric Densities at Low Latitudes Using the Kunming Meteor Radar Together With SABER Temperatures

    Science.gov (United States)

    Yi, Wen; Xue, Xianghui; Reid, Iain M.; Younger, Joel P.; Chen, Jinsong; Chen, Tingdi; Li, Na

    2018-04-01

    Neutral mesospheric densities at a low latitude have been derived during April 2011 to December 2014 using data from the Kunming meteor radar in China (25.6°N, 103.8°E). The daily mean density at 90 km was estimated using the ambipolar diffusion coefficients from the meteor radar and temperatures from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The seasonal variations of the meteor radar-derived density are consistent with the density from the Mass Spectrometer and Incoherent Scatter (MSIS) model, show a dominant annual variation, with a maximum during winter, and a minimum during summer. A simple linear model was used to separate the effects of atmospheric density and the meteor velocity on the meteor radar peak detection height. We find that a 1 km/s difference in the vertical meteor velocity yields a change of approximately 0.42 km in peak height. The strong correlation between the meteor radar density and the velocity-corrected peak height indicates that the meteor radar density estimates accurately reflect changes in neutral atmospheric density and that meteor peak detection heights, when adjusted for meteoroid velocity, can serve as a convenient tool for measuring density variations around the mesopause. A comparison of the ambipolar diffusion coefficient and peak height observed simultaneously by two co-located meteor radars indicates that the relative errors of the daily mean ambipolar diffusion coefficient and peak height should be less than 5% and 6%, respectively, and that the absolute error of the peak height is less than 0.2 km.

  13. Site characterization and validation - Borehole radar investigations stage 3

    International Nuclear Information System (INIS)

    Sandberg, E.; Olsson, O.; Falk, L.

    1989-11-01

    The borehole radar investigation program Stage 3 of the SCV-site has comprised single hole reflection measurements with centre frequencies of 22 and 60 MHz. Single hole reflection measurement with both omni-directional and directional antennas have been performed in the boreholes C1, C2, C3 and the D-holes. Crosshole tomographic measurements as well as cross- hole reflection measurement have been made between the bore- holes C1-C2, W1-C1 and W1-C2. The range obtained in the single hole reflection measurements was approximately 100 m for the lower frequency and about 60-70 m for the centre frequency 60 MHz. In the crosshole measurements transmitter-receiver separations from 20 to 120 m have been used. The Stage 3 radar investigations have essentially confirmed the three dimensional description of the structures at the SCV-site. The conceptual model of the site which was produced based on the Stage 1 data included three major zones, two minor zones and a circular feature. The major features are considered to be the most significant at the site and are all observed in the Stage 3 boreholes close to their predicted locations. The circular feature has also been found in two of the additional tomograms at the predicted location. The results indicate that the zones are not homogeneous but rather that they are highly irregular containing parts of considerably increased fracturing and parts where their contrast to the background rock is quite small. The zones appear to be approximately planar at least at the scale of the site. At a smaller scale the zones can appear quite irregular

  14. Survey of Ultra-wideband Radar

    Science.gov (United States)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  15. New look at radar auroral motions

    International Nuclear Information System (INIS)

    Greenwald, R.A.; Ecklund, W.L.

    1975-01-01

    During October 1974, three modifications were temporarily added to the NOAA radar auroral backscatter facility located at Anchorage, Alaska. These modifications included (1) a multiple azimuth antenna system. (2) an on-line computer for processing amplitude and mean Doppler profiles of the radar backscatter, and (3) a 13-baud Barker coder. In combination with the radar these modifications provided data relevant to understanding both the microscopic and the macroscopic nature of the radar aurora. Appreciable structure was often found in the Doppler velocity profiles of radar auroral irregularities. Doppler velocities of nearly 2000 m/s were observed. By combining scatter amplitude profiles and mean Doppler profiles from the five azimuths we have produced contour maps of the scatter intensity and the Doppler velocity. The scatter intensity maps often indicate appreciable temporal and spatial structure in the radar auroral irregularities, corroborating the results of Tsunoda et al. (1974). The mean Doppler contour maps indicate that there is also appreciable temporal and spatial structure in the flow velocities of radar auroral irregularities. At those times when there appears to be large-scale uniformity in the irregularity flow, the Doppler velocity varies with azimuth in a manner that is consistent with a cosine-dependent azimuthal variation

  16. Condor equatorial electrojet campaign: Radar results

    International Nuclear Information System (INIS)

    Kudeki, E.; Fejer, B.G.; Farley, D.T.; Hanuise, C.

    1987-01-01

    A review of the experimental and theoretical background to the Condor equatorial electrojet compaign is followed by the presentation and discussion of VHF radar interferometer and HF radar backscatter data taken concurrently with two rocket in situ experiments reported in companion papers (Pfaff et al., this issue (a, b). Both experiments were conducted in strongly driven periods with the on-line radar interferometer displaying signatures of what has been interpreted in earlier radar work (Kudeki et al., 1982) as kilometer scale gradient drift waves. Low-frequency density fluctuations detected by in situ rocket sensors confirm the earlier interpretation. VHF radar/rocket data comparisons also indicate the existence of a turbulent layer in the upper portion of the daytime electrojet at about 108 km altitude driven purely by the two-stream instability. Nonlinear mode coupling of linearly growing two-stream waves to linearly damped 3-m vertical modes could account for the radar echoes scattered from this layer, which showed no indication of large-scale gradient drift waves. Nonlinear mode coupling may therefore compete with the wave-induced anomalous diffusion mechanism proposed recently by Sudan (1983) for the saturation of directly excited two-stream waves. Nighttime radar data show a bifurcated layer with the two parts having comparable echo strength but oppositely directed zonal drift velocities. The lower layer shows narrow backscatter spectra; the upper layer is characterized by kilometer scale waves and vertically propagating type 1 waves

  17. Using phase for radar scatterer classification

    Science.gov (United States)

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  18. Applied Questions of Onboard Laser Radar Equipment Development

    Directory of Open Access Journals (Sweden)

    E. I. Starovoitov

    2015-01-01

    Full Text Available During development of the spacecraft laser radar systems (LRS it is a problem to make a choice of laser sources and photo-detectors both because of their using specifics in onboard equipment and because of the limited number of domestic and foreign manufacturers.Previous publications did not consider in detail the accuracy versus laser pulse repetition frequency, the impact of photo-detector sensitivity and dynamic range on the LRS characteristics, and the power signal-protected photo-detector against overload.The objective of this work is to analyze how the range, accuracy, and reliability of onboard LRS depend on different types of laser sources and photo-detectors, and on availability of electromechanical optical attenuator.The paper describes design solutions that are used to compensate for a decreased sensitivity of photo-detector and an impact of these changes on the LRS characteristics.It is shown that due to the high pulse repetition frequency a fiber laser is the preferred type of a laser source in onboard LRS, which can be used at ranges less than 500 m for two purposes: determining the orientation of the passive spacecraft with the accuracy of 0.3 and measuring the range rate during the rendezvous of spacecrafts with an accuracy of 0.003... 0.006 m/s.The work identifies the attenuation level of the optical attenuator versus measured range. In close proximity to a diffusely reflecting passive spacecraft and a corner reflector this attenuator protects photo-detector. It is found that the optical attenuator is advisable to apply when using the photo-detector based on an avalanche photodiode. There is no need in optical attenuator (if a geometric factor is available in the case of sounding corner reflector when a photo-detector based on pin-photodiode is used. Exclusion of electromechanical optical attenuator can increase the reliability function of LRS from Р (t = 0.9991 to Р (t = 0.9993.The results obtained in this work can be used

  19. Foliage penetration radar detection and characterization of objects under trees

    CERN Document Server

    Davis, Mark

    2011-01-01

    This book covers all aspects of foliage penetration (FOPEN) radar, concentrating on both airborne military radar systems as well as earth resource mapping radars. It is the first concise and thorough treatment of FOPEN, covering the results of a decade-long investment by DARPA in characterizing foliage and earth surface with ultrawideband UHF and VHF synthetic aperture radar (SAR).

  20. The use of radar for bathymetry in shallow seas

    NARCIS (Netherlands)

    Greidanus, H.

    1997-01-01

    The bottom topography in shallow seas can be observed by air- and space borne radar. The paper reviews the radar imaging mechanism, and discusses the possibilities and limitations for practical use of radar in bathymetric applications, including the types of radar instruments available for this

  1. Radar ornithology and the conservation of migratory birds

    Science.gov (United States)

    Sidney A. Gauthreaux; Carroll G. Belser

    2005-01-01

    It is possible to study with surveillance radar the movements of migrating birds in the atmosphere at different spatial scales. At a spatial scale within a range of 6 kilometers, high-resolution, 3-centimeter wavelength surveillance radar (e.g. BIRDRAD) can detect the departure of migrants from different types of habitat within a few kilometers of the radar. The radar...

  2. 3D And 4D Cloud Lifecycle Investigations Using Innovative Scanning Radar Analysis Methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, Pavlos [Stony Brook Univ., NY (United States)

    2017-04-23

    With the vast upgrades to the ARM program radar measurement capabilities in 2010 and beyond, our ability to probe the 3D structure of clouds and associated precipitation has increased dramatically. This project build on the PI's and co-I's expertisein the analysis of radar observations. The first research thrust aims to document the 3D morphological (as depicted by the radar reflectivity structure) and 3D dynamical (cloud$-$scale eddies) structure of boundary layer clouds. Unraveling the 3D dynamical structure of stratocumulus and shallow cumulus clouds requires decomposition of the environmental wind contribution and particle sedimentation velocity from the observed radial Doppler velocity. The second thrust proposes to unravel the mechanism of cumulus entrainment (location, scales) and its impact on microphysics utilizing radar measurements from the vertically pointing and new scanning radars at the ARM sites. The third research thrust requires the development of a cloud$-$tracking algorithm that monitors the properties of cloud.

  3. Specification for a surface-search radar-detection-range model

    Science.gov (United States)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  4. Grimsel test site. Analysis of radar measurements performed at the Grimsel rock laboratory in October 1985

    International Nuclear Information System (INIS)

    Falk, L.; Magnusson, K.A.; Olsson, O.; Ammann, M.; Keusen, H.R.; Sattel, G.

    1988-02-01

    In October 1985 Swedish Geological Co. conducted a radar reflection survey at Grimsel Test Site to map discontinuities in the rock mass of the Underground Seismic (US) test field. These measurements first designed as a test of the equipment at that specific site allowed a comprehensive interpretation of the geometrical structure of the test field. The geological interpretation of the radar reflectors observed is discussed and a possible way is shown to construct a geological model of a site using the combination of radar results and geological information. Additionally to these results the report describes the radar equipment and the theoretical background for the analysis of the data. The main geological features in the area under investigation, situated in the 'Zentraler Aaregranit', are lamprophyre dykes and fracture/shear zones. Their position and strike have been determined using single- and crosshole radar data, SABIS data (accoustic televiewer) as well as existing geological information from the boreholes or the drifts under the assumption of steep dipping elements (70 to 90 o ). (author) 10 refs., 32 figs., 17 tabs

  5. Assessment of the Performance of the Chilbolton 3-GHz Advanced Meteorological Radar for Cloud-Top-Height Retrieval.

    Science.gov (United States)

    Naud, C. M.; Muller, J.-P.; Slack, E. C.; Wrench, C. L.; Clothiaux, E. E.

    2005-06-01

    The Chilbolton 3-GHz Advanced Meteorological Radar (CAMRa), which is mounted on a fully steerable 25-m dish, can provide three-dimensional information on the presence of hydrometeors. The potential for this radar to make useful measurements of low-altitude liquid water cloud structure is investigated. To assess the cloud-height assignment capabilities of the 3-GHz radar, low-level cloud-top heights were retrieved from CAMRa measurements made between May and July 2003 and were compared with cloud-top heights retrieved from a vertically pointing 94-GHz radar that operates alongside CAMRa. The average difference between the 94- and 3-GHz radar-derived cloud-top heights is shown to be -0.1 ± 0.4 km. To assess the capability of 3-GHz radar scans to be used for satellite-derived cloud-top-height validation, multiangle imaging spectroradiometer (MISR) cloud-top heights were compared with both 94- and 3-GHz radar retrievals. The average difference between 94-GHz radar and MISR cloud-top heights is shown to be 0.1 ± 0.3 km, while the 3-GHz radar and MISR average cloud-top-height difference is shown to be -0.2 ± 0.6 km. In assessing the value of the CAMRa measurements, the problems associated with low-reflectivity values from stratiform liquid water clouds, ground clutter, and Bragg scattering resulting from turbulent mixing are all addressed. It is shown that, despite the difficulties, the potential exists for CAMRa measurements to contribute significantly to liquid water cloud-top-height retrievals, leading to the production of two-dimensional transects (i.e., maps) of cloud-top height.

  6. Radar Exploration of Cometary Nuclei

    Science.gov (United States)

    Gim, Yonggyu; Heggy, E.; Belton, M.; Weissman, P.; Asphaug, E.

    2012-10-01

    We have developed a mission formulation, based on the use of previously flown planetary radar sounding techniques, to image the 3D internal structure of the nucleus of a Jupiter-family comet (JFC). Believed to originate in the outer solar system and to be delivered recently to the inner solar system from the Kuiper Belt, JFCs are among the most primitive bodies accessible by spacecraft, and are indicated in the 2010 Decadal Survey as primary targets for primitive bodies sample return. We consider a sounder design operating at dual frequencies, 5 and 15 MHz center frequencies with 1 and 10 MHz bandwidths, respectively. Operating from close orbit about the nucleus of a spinning comet nucleus, CORE obtains a dense network of echoes that are used to image its interior structure to 10 m and to map the dielectric properties inside the nucleus to better than 200 m throughout. Clear images of internal structure and dielectric composition will reveal how the nucleus was formed and how it has evolved. Radiometric tracking of the spacecraft orbit will provide an interior mass distribution that constrains the radar-based models of interior composition. High-resolution visible and infrared color images provide surface and exterior boundary conditions for interior models and hypotheses. They present the geology and morphology of the nucleus surface at meter-scales, and the time-evolving activity, structure, and composition of the inner coma. By making global yet detailed connections from interior to exterior, the data from CORE will provide answers to fundamental questions about the earliest stages of planetesimal evolution and planet formation, will be an important complement to the Rosetta mission science, and will lay the foundation for comet nucleus sample return.

  7. Radar, sonar, and holography an introduction

    CERN Document Server

    Kock, Winston E

    1974-01-01

    Radar, Sonar, and Holography: An Introduction provides an introduction to the technology of radar and sonar. Because the new science of holography is affecting both these fields quite strongly, the book includes an explanation of the fundamental principles underlying this new art (including the subjects of wave coherence, interference, and diffraction) and of the hologram process itself. Finally, numerous examples are discussed which show how holography is providing new horizons to radar and sonar systems. The book thus also provides a simple approach to the new technology of holography. The

  8. New Vacuum Electronic Devices for Radar

    Directory of Open Access Journals (Sweden)

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  9. Image Registration Methode in Radar Interferometry

    Directory of Open Access Journals (Sweden)

    S. Chelbi

    2015-08-01

    Full Text Available This article presents a methodology for the determination of the registration of an Interferometric Synthetic radar (InSAR pair images with half pixel precision. Using the two superposed radar images Single Look complexes (SLC [1-4], we developed an iterative process to superpose these two images according to their correlation coefficient with a high coherence area. This work concerns the exploitation of ERS Tandem pair of radar images SLC of the Algiers area acquired on 03 January and 04 January 1994. The former is taken as a master image and the latter as a slave image.

  10. Radar signal processing and its applications

    CERN Document Server

    Hummel, Robert; Stoica, Petre; Zelnio, Edmund

    2003-01-01

    Radar Signal Processing and Its Applications brings together in one place important contributions and up-to-date research results in this fast-moving area. In twelve selected chapters, it describes the latest advances in architectures, design methods, and applications of radar signal processing. The contributors to this work were selected from the leading researchers and practitioners in the field. This work, originally published as Volume 14, Numbers 1-3 of the journal, Multidimensional Systems and Signal Processing, will be valuable to anyone working or researching in the field of radar signal processing. It serves as an excellent reference, providing insight into some of the most challenging issues being examined today.

  11. Signal compression in radar using FPGA

    OpenAIRE

    Enrique Escamilla Hemández; Víctor Kravchenko; Volodymyr Ponomaryov; Gonzalo Duchen Sánchez; David Hernández Sánchez

    2010-01-01

    El presente artículo muestra la puesta en práctica de hardware para realizar el procesamiento en tiempo real de la señal de radar usando una técnica simple, rápida basada en arquitectura de FPGA (Field Programmable Gate Array). El proceso incluye diversos procedimientos de enventanado durante la compresión del pulso del radar de apertura sintética (SAR). El proceso de compresión de la señal de radar se hace con un filtro acoplado. que aplica funciones clásicas y nuevas de enventanado, donde n...

  12. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    Science.gov (United States)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  13. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    Science.gov (United States)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  14. Localization Capability of Cooperative Anti-Intruder Radar Systems

    Directory of Open Access Journals (Sweden)

    Mauro Montanari

    2008-06-01

    Full Text Available System aspects of an anti-intruder multistatic radar based on impulse radio ultrawideband (UWB technology are addressed. The investigated system is composed of one transmitting node and at least three receiving nodes, positioned in the surveillance area with the aim of detecting and locating a human intruder (target that moves inside the area. Such systems, referred to also as UWB radar sensor networks, must satisfy severe power constraints worldwide imposed by, for example, the Federal Communications Commission (FCC and by the European Commission (EC power spectral density masks. A single transmitter-receiver pair (bistatic radar is considered at first. Given the available transmitted power and the capability of the receiving node to resolve the UWB pulses in the time domain, the surveillance area regions where the target is detectable, and those where it is not, are obtained. Moreover, the range estimation error for the transmitter-receiver pair is discussed. By employing this analysis, a multistatic system is then considered, composed of one transmitter and three or four cooperating receivers. For this multistatic system, the impact of the nodes location on area coverage, necessary transmitted power and localization uncertainty is studied, assuming a circular surveillance area. It is highlighted how area coverage and transmitted power, on one side, and localization uncertainty, on the other side, require opposite criteria of nodes placement. Consequently, the need for a system compromising between these factors is shown. Finally, a simple and effective criterion for placing the transmitter and the receivers is drawn.

  15. Development Of Signal Detection For Radar Navigation System

    OpenAIRE

    Theingi Win Hlaing; Hla Myo Tun; Zaw Min Naing; Win Khaing Moe

    2017-01-01

    This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum...

  16. Radar Polarimetry and Interferometry (La polarimetrie et l'interferometrie radar) (CD-ROM)

    National Research Council Canada - National Science Library

    Keydel, W; Boerner, W. M; Pottier, E; Lee, J. S; Ferro-Famil, L; Hellmann, M; Cloude, S. R

    2005-01-01

    ...: Scientists and engineers already engaged in the fields of radar surveillance, reconnaissance and scattering measurements, for instance, generally gain their specialist knowledge in both polarimetry...

  17. Synthetic impulse and aperture radar (SIAR) a novel multi-frequency MIMO radar

    CERN Document Server

    Chen, Baixiao

    2014-01-01

    Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing me

  18. Radar-derived quantitative precipitation estimation in complex terrain over the eastern Tibetan Plateau

    Science.gov (United States)

    Gou, Yabin; Ma, Yingzhao; Chen, Haonan; Wen, Yixin

    2018-05-01

    Quantitative precipitation estimation (QPE) is one of the important applications of weather radars. However, in complex terrain such as Tibetan Plateau, it is a challenging task to obtain an optimal Z-R relation due to the complex spatial and temporal variability in precipitation microphysics. This paper develops two radar QPE schemes respectively based on Reflectivity Threshold (RT) and Storm Cell Identification and Tracking (SCIT) algorithms using observations from 11 Doppler weather radars and 3264 rain gauges over the Eastern Tibetan Plateau (ETP). These two QPE methodologies are evaluated extensively using four precipitation events that are characterized by different meteorological features. Precipitation characteristics of independent storm cells associated with these four events, as well as the storm-scale differences, are investigated using short-term vertical profile of reflectivity (VPR) clusters. Evaluation results show that the SCIT-based rainfall approach performs better than the simple RT-based method for all precipitation events in terms of score comparison using validation gauge measurements as references. It is also found that the SCIT-based approach can effectively mitigate the local error of radar QPE and represent the precipitation spatiotemporal variability better than the RT-based scheme.

  19. On the radar cross section (RCS) prediction of vehicles moving on the ground

    International Nuclear Information System (INIS)

    Sabihi, Ahmad

    2014-01-01

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea

  20. On the radar cross section (RCS) prediction of vehicles moving on the ground

    Energy Technology Data Exchange (ETDEWEB)

    Sabihi, Ahmad [Department of Mathematical Sciences, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  1. Effects of external factors on soil reflectance measured on-the-go and assessment of potential spectral correction through orthogonalisation and standardisation procedures

    NARCIS (Netherlands)

    Franceschini, M.H.D.; Demattê, J.A.M.; Kooistra, L.; Bartholomeus, H.; Rizzo, R.; Fongaro, C.T.; Molin, J.P.

    2018-01-01

    Reflectance spectroscopy is an alternative to describe soil properties, with potential to reduce costs and environmental impacts of conventional practices related to this activity. Acquisition of soil spectra on-the-go has several advantages over 'in-situ' static approaches, like deriving

  2. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  3. Identifying structural damage with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2008-07-01

    Full Text Available Ground penetrating radar (GPR) and electrical resistance tomography (ERT) surveys were conducted in an urban environment in an attempt to identify the cause of severe structural damage to a historically significant residential property...

  4. Simulating lightning tests to radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2010-01-01

    The risk of destruction due to lightning makes simulating the effects of lightning strikes a necessity. We modeled a radar enclosure and simulated the effect of a lightning strike. The results have been validated using full threat lightning current tests.

  5. Airborne Radar Search for Diesel Submarines (ARSDS)

    National Research Council Canada - National Science Library

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of an airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  6. Airborne Radar Search for Diesel Submarines

    National Research Council Canada - National Science Library

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  7. UWB Sampler for Wireless Communications and Radar

    National Research Council Canada - National Science Library

    Han, Jeongwoo; Nguyen, Cam

    2005-01-01

    An ultra wideband (UWB) sampler, realized using step recovery and Schottky diodes on coplanar waveguide, coplanar strips and slotlines, has been developed for UWB wireless communications and radar systems...

  8. VERTICAL ACTIVITY ESTIMATION USING 2D RADAR

    African Journals Online (AJOL)

    hennie

    estimates on aircraft vertical behaviour from a single 2D radar track. ... Fortunately, the problem of detecting relative vertical motion using a single 2D ..... awareness tools in scenarios where aerial activity sensing is typically limited to 2D.

  9. Radar Training Facility Local Area Network -

    Data.gov (United States)

    Department of Transportation — The RTF LAN system provides a progressive training environment for initial and refresher radar training qualification for new and re-hired FAA employees. Its purpose...

  10. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  11. Snowballing and flying under the radar

    DEFF Research Database (Denmark)

    Pötz, Katharina Anna; Hjortsø, Carsten Nico Portefée

    2013-01-01

    management and venture development paths. More specifically, flying under radar in terms of operating under lower institutional requirements, and slowly accumulating resources (snowballing) are major leveraging strategies. We integrate our results into a hypothesized framework for resource management in East...

  12. Using the VAHIRR Radar Algorithm to Investigate Lightning Cessation

    Science.gov (United States)

    Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.

    2012-01-01

    Accurately determining the threat posed by lightning is a major area for improved operational forecasts. Most efforts have focused on the initiation of lightning within a storm, with far less effort spent investigating lightning cessation. Understanding both components, initiation and cessation, are vital to improving lightning safety. Few organizations actively forecast lightning onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued lightning and can greatly extend the window of a potential lightning strike. Furthermore, no discernable trend of total lightning activity has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing lightning. Previous lightning cessation work has primarily focused on forecasting the cessation of cloud-to -ground lightning only. A more recent, statistical study involved total lightning (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer lightning cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually lightning cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total lightning to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally developed during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing

  13. Three dimensional numerical modeling for ground penetrating radar using finite difference time domain (FDTD) method; Jikan ryoiki yugen sabunho ni yoru chika radar no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y; Ashida, Y; Sassa, K [Kyoto University, Kyoto (Japan)

    1996-10-01

    3-D numerical modeling by FDTD method was studied for ground penetrating radar. Radar radiates electromagnetic wave, and determines the existence and distance of objects by reflection wave. Ground penetrating radar uses the above functions for underground surveys, however, its resolution and velocity analysis accuracy are problems. In particular, propagation characteristics of electromagnetic wave in media such as heterogeneous and anisotropic soil and rock are essential. The behavior of electromagnetic wave in the ground could be precisely reproduced by 3-D numerical modeling using FDTD method. FDTD method makes precise analysis in time domain and electric and magnetic fields possible by sequentially calculating the difference equation of Maxwell`s equation. Because of the high calculation efficiency of FDTD method, more precise complicated analysis can be expected by using the latest advanced computers. The numerical model and calculation example are illustrated for surface type electromagnetic pulse ground penetrating radar assuming the survey of steel pipes of 1m deep. 4 refs., 3 figs., 1 tab.

  14. Architecture for a 1-GHz Digital RADAR

    Science.gov (United States)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  15. Radar Location Equipment Development Program: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  16. Radar Location Equipment Development Program: Phase I

    International Nuclear Information System (INIS)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2 0 , respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1 0 in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs

  17. Single Bit Radar Systems for Digital Integration

    OpenAIRE

    Bjørndal, Øystein

    2017-01-01

    Small, low cost, radar systems have exciting applications in monitoring and imaging for the industrial, healthcare and Internet of Things (IoT) sectors. We here explore, and show the feasibility of, several single bit square wave radar architectures; that benefits from the continuous improvement in digital technologies for system-on-chip digital integration. By analysis, simulation and measurements we explore novel and harmonic-rich continuous wave (CW), stepped-frequency CW (SFCW) and freque...

  18. Development of a Software-Defined Radar

    Science.gov (United States)

    2017-10-01

    disrupt desired radar operation. The cognitive radar system discussed herein mitigates the effects of RFI by sensing and adapting the transmitted...present received data, and plot processed data. Top right: Calculates a “ flicker ” rate caused by an unknown issue where blank data are received due to...and plot processed data. Top right: Calculates a “ flicker ” rate caused by an unknown issue where blank data are received due to missed

  19. Evaluating precipitation in a regional climate model using ground-based radar measurements in Dronning Maud Land, East Antarctica

    Science.gov (United States)

    Gorodetskaya, Irina; Maahn, Maximilan; Gallée, Hubert; Souverijns, Niels; Gossart, Alexandra; Kneifel, Stefan; Crewell, Susanne; Van Lipzig, Nicole

    2017-04-01

    Occasional very intense snowfall events over Dronning Maud Land (DML) region in East Antarctica, contributed significantly to the entire Antarctic ice sheet surface mass balance (SMB) during the last years. The meteorological-cloud-precipitation observatory running at the Princess Elisabeth station (PE) in the DML escarpment zone since 2009 (HYDRANT/AEROCLOUD projects), provides unique opportunity to estimate contribution of precipitation to the local snow accumulation and new data for evaluating precipitation in climate models. Our previous work using PE measurements showed that occasional intense precipitation events determine the total local yearly SMB and account for its large interannual variability. Here we use radar measurements to evaluate precipitation in a regional climate model with a special focus on intense precipitation events together with the large-scale atmospheric dynamics responsible for these events. The coupled snow-atmosphere regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB in DML at 5-km horizontal resolution during 2012 using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. Two evaluation approaches are used: observations-to-model and model-to-observations. In the first approach, snowfall rate (S) is derived from the MRR (vertically profiling 24-GHz precipitation radar) effective reflectivity factor (Ze) at 400 m agl using various Ze-S relationships for dry snow. The uncertainty in Ze-S relationships is constrained using snow particle size distribution from Snow Video Imager - Precipitation Imaging Package (SVI/PIP) and information about particle shapes. For the second approach we apply the Passive and Active Microwave radiative TRAnsfer model (PAMTRA), which allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar Ze and Doppler velocity. In MAR

  20. Application of a Snow Growth Model to Radar Remote Sensing

    Science.gov (United States)

    Erfani, E.; Mitchell, D. L.

    2014-12-01

    Microphysical growth processes of diffusion, aggregation and riming are incorporated analytically in a steady-state snow growth model (SGM) to solve the zeroth- and second- moment conservation equations with respect to mass. The SGM is initiated by radar reflectivity (Zw), supersaturation, temperature, and a vertical profile of the liquid water content (LWC), and it uses a gamma size distribution (SD) to predict the vertical evolution of size spectra. Aggregation seems to play an important role in the evolution of snowfall rates and the snowfall rates produced by aggregation, diffusion and riming are considerably greater than those produced by diffusion and riming alone, demonstrating the strong interaction between aggregation and riming. The impact of ice particle shape on particle growth rates and fall speeds is represented in the SGM in terms of ice particle mass-dimension (m-D) power laws (m = αDβ). These growth rates are qualitatively consistent with empirical growth rates, with slower (faster) growth rates predicted for higher (lower) β values. In most models, β is treated constant for a given ice particle habit, but it is well known that β is larger for the smaller crystals. Our recent work quantitatively calculates β and α for cirrus clouds as a function of D where the m-D expression is a second-order polynomial in log-log space. By adapting this method to the SGM, the ice particle growth rates and fall speeds are predicted more accurately. Moreover, the size spectra predicted by the SGM are in good agreement with those from aircraft measurements during Lagrangian spiral descents through frontal clouds, indicating the successful modeling of microphysical processes. Since the lowest Zw over complex topography is often significantly above cloud base, the precipitation is often underestimated by radar quantitative precipitation estimates (QPE). Our SGM is capable of being initialized with Zw at the lowest reliable radar echo and consequently improves