WorldWideScience

Sample records for radar instrument design

  1. Design of cost effective antennas for instrumentation radars

    CSIR Research Space (South Africa)

    Botha, L

    2012-09-01

    Full Text Available The cost of antennas for instrumentation radars are determined by the development cost. By re-use of the reflector system cost effective antennas can be designed. The factors governing the design of such antennas are described here....

  2. Innovative operating modes and techniques for the spaceborne imaging radar-C instrument

    Science.gov (United States)

    Huneycutt, Bryan L.

    1990-01-01

    The operation of the spaceborne imaging radar-C (SIR-C) is discussed. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar which will be flown during at least two different seasons. The instrument has been designed to operate in innovative modes such as the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument has been designed to demonstrate innovative engineering techniques such as beam nulling for echo tracking, pulse-repetition frquency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.

  3. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  4. Cassini radar: Instrument description and performance status

    Science.gov (United States)

    Johnson, W. T. K.; Im, E.; Borgarelli, L.; ZampoliniFaustini, E.

    1995-01-01

    The spacecraft of the Cassini mission is planned to be launched towards Saturn in October 1997. The mission is designed to study the physical structure and chemical composition of Titan. The results of the tests performed on the Cassini radar engineering qualification model (EQM) are summarized. The approach followed in the verification and evaluation of the performance of the radio frequency subsystem EQM is presented. The results show that the instrument satisfies the most relevant mission requirements.

  5. Cassini Radar EQM Model: Instrument Description and Performance Status

    Science.gov (United States)

    Borgarelli, L.; Faustini, E. Zampolini; Im, E.; Johnson, W. T. K.

    1996-01-01

    The spaeccraft of the Cassini Mission is planned to be launched towards Saturn in October 1997. The mission is designed to study the physical structure and chemical composition of Titan. The results of the tests performed on the Cassini radar engineering qualification model (EQM) are summarized. The approach followed in the verification and evaluation of the performance of the radio frequency subsystem EQM is presented. The results show that the instrument satisfies the relevant mission requirements.

  6. On results using automated wideband instrumentation for radar measurements and characterization

    Science.gov (United States)

    Govoni, Mark A.; Dogaru, Traian; Le, Calvin; Sobczak, Kevin

    2017-05-01

    Experiences are shared from a recent radar measurement and characterization effort. A regimented data collection procedure ensures repeatability and provides an expedited alternative to typical narrowband capabilities. Commercially-available instrumentation is repurposed to support wideband data collections spanning a contiguous range of frequencies from 700 MHz to 40 GHz. Utilizing a 4-port network analyzer, both monostatic and quasi-monostatic measurements are achievable. Polarization is varied by way of a custom-designed antenna mount that allows for the mechanical reorientation of the antennas. Computational electromagnetic modeling is briefly introduced and serves in validating the legitimacy of the collection capability. Data products presented will include high-range resolution profiles and inverse synthetic aperture radar (ISAR) imagery.

  7. The Goldstone solar system radar: A science instrument for planetary research

    Science.gov (United States)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  8. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  9. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  10. A Method of Separation Assurance for Instrument Flight Procedures at Non-Radar Airports

    Science.gov (United States)

    Conway, Sheila R.; Consiglio, Maria

    2002-01-01

    A method to provide automated air traffic separation assurance services during approach to or departure from a non-radar, non-towered airport environment is described. The method is constrained by provision of these services without radical changes or ambitious investments in current ground-based technologies. The proposed procedures are designed to grant access to a large number of airfields that currently have no or very limited access under Instrument Flight Rules (IFR), thus increasing mobility with minimal infrastructure investment. This paper primarily addresses a low-cost option for airport and instrument approach infrastructure, but is designed to be an architecture from which a more efficient, albeit more complex, system may be developed. A functional description of the capabilities in the current NAS infrastructure is provided. Automated terminal operations and procedures are introduced. Rules of engagement and the operations are defined. Results of preliminary simulation testing are presented. Finally, application of the method to more terminal-like operations, and major research areas, including necessary piloted studies, are discussed.

  11. Performance Prediction of Constrained Waveform Design for Adaptive Radar

    Science.gov (United States)

    2016-11-01

    the famous Woodward quote, having a ubiquitous feeling for all radar waveform design (and performance prediction) researchers , that is found at the end...discuss research that develops performance prediction models to quantify the impact on SINR when an amplitude constraint is placed on a radar waveform...optimize the radar perfor- mance for the particular scenario and tasks. There have also been several survey papers on various topics in waveform design for

  12. Low-Cost Mini Radar: Design Prototyping and Tests

    Directory of Open Access Journals (Sweden)

    Dario Tarchi

    2017-01-01

    Full Text Available Radar systems are largely employed for surveillance of wide and remote areas; the recent advent of drones gives the opportunity to exploit radar sensors on board of unmanned aerial platforms. Nevertheless, whereas drone radars are currently available for military applications, their employment in the civilian domain is still limited. The present research focuses on design, prototyping, and testing of an agile, low-cost, mini radar system, to be carried on board of Remotely Piloted Aircraft (RPAs or tethered aerostats. In particular, the paper faces the challenge to integrate the in-house developed radar sensor with a low-cost navigation board, which is used to estimate attitude and positioning data. In fact, a suitable synchronization between radar and navigation data is essential to properly reconstruct the radar picture whenever the platform is moving or the radar is scanning different azimuthal sectors. Preliminary results, relative to tests conducted in preoperational conditions, are provided and exploited to assert the suitable consistency of the obtained radar pictures. From the results, there is a high consistency between the radar images and the picture of the current environment emerges; finally, the comparison of radar images obtained in different scans shows the stability of the platform.

  13. A Radar/Radiometer Instrument for Mapping Soil Moisture and Ocean Salinity

    Science.gov (United States)

    Hildebrand, Peter H.; Hilliard, Laurence; Rincon, Rafael; LeVine, David; Mead, James

    2003-01-01

    The RadSTAR instrument combines an L-band, digital beam-forming radar with an L-band synthetic aperture, thinned array (STAR) radiometer. The RadSTAR development will support NASA Earth science goals by developing a novel, L-band scatterometer/ radiometer that measures Earth surface bulk material properties (surface emissions and backscatter) as well as surface characteristics (backscatter). Present, real aperture airborne L-Band active/passive measurement systems such as the JPUPALS (Wilson, et al, 2000) provide excellent sampling characteristics, but have no scanning capabilities, and are extremely large; the huge JPUPALS horn requires a the C-130 airborne platform, operated with the aft loading door open during flight operation. The approach used for the upcoming Aquarius ocean salinity mission or the proposed Hydros soil mission use real apertures with multiple fixed beams or scanning beams. For real aperture instruments, there is no upgrade path to scanning over a broad swath, except rotation of the whole aperture, which is an approach with obvious difficulties as aperture size increases. RadSTAR will provide polarimetric scatterometer and radiometer measurements over a wide swath, in a highly space-efficient configuration. The electronic scanning approaches provided through STAR technology and digital beam forming will enable the large L-band aperture to scan efficiently over a very wide swath. RadSTAR technology development, which merges an interferometric radiometer with a digital beam forming scatterometer, is an important step in the path to space for an L-band scatterometer/radiometer. RadSTAR couples a patch array antenna with a 1.26 GHz digital beam forming radar scatterometer and a 1.4 GHz STAR radiometer to provide Earth surface backscatter and emission measurements in a compact, cross-track scanning instrument with no moving parts. This technology will provide the first L-band, emission and backscatter measurements in a compact aircraft instrument

  14. Instrumentation for optical remote sensing from space; Proceedings of the Meeting, Cannes, France, November 27-29, 1985

    Science.gov (United States)

    Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)

    1986-01-01

    Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.

  15. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  16. Phased-array design for MST and ST radars

    Science.gov (United States)

    Ecklund, W. L.

    1986-01-01

    All of the existing radar systems fully dedicated to clear-air radar studies use some type of phased-array antennas. The effects of beam-steering techniques including feed networks and phase shifters; sidelobe control; ground-clutter suppression; low altitude coverage; arrays with integrated radiating elements and feed networks; analysis of coaxial-collinear antennas; use of arrays with multiple beams; and array testing and measure on structural design of the antenna are discussed.

  17. Waveform design and diversity for advanced radar systems

    CERN Document Server

    Gini, Fulvio

    2012-01-01

    In recent years, various algorithms for radar signal design, that rely heavily upon complicated processing and/or antenna architectures, have been suggested. These techniques owe their genesis to several factors, including revolutionary technological advances (new flexible waveform generators, high speed signal processing hardware, digital array radar technology, etc.) and the stressing performance requirements, often imposed by defence applications in areas such as airborne early warning and homeland security.Increasingly complex operating scenarios calls for sophisticated algorithms with the

  18. Problems in the design of multifunction meteor-radar networks

    Science.gov (United States)

    Nechitailenko, V. A.; Voloshchuk, Iu. I.

    The design of meteor-radar networks is examined in connection with the need to conduct experiments on a mass scale in meteor geophysics and astronomy. Attention is given to network architecture features and procedures of communication-path selection in the organization of information transfer, with allowance for the features of the meteor communication link. The meteor link is considered as the main means to ensure traffic in the meteor-radar network.

  19. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    Science.gov (United States)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  20. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  1. Ground and Space Radar Volume Matching and Comparison Software

    Science.gov (United States)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  2. Gas And Ice Spectrometer/Radar (GAISR): a new instrument for close-up comet activity observations

    Science.gov (United States)

    Cooper, Ken; Monje, Raquel; Cochrane, Corey; Tang, Adrian; Alonso, Maria; Dengler, Robert; Durden, Stephen; Choukroun, Mathieu

    2017-10-01

    The Rosetta mission at 67P/Churyumov-Gerasimenko enabled the first detailed and long-term survey of cometary activity, which occurs primarily through water outgassing and emission of dust. Its highly-capable instrument suite improved our understanding of the outgassing and the dust emission and size distribution separately, however the coupling between the two remains poorly understood. GAISR consists of a dual-channel submillimeter-wave spectrometer inspired from MIRO/Rosetta, coupled to a small-particle Doppler radar for simultaneous observations of outgassing and emission of the large dust particles (comprising most of the mass emitted) in cometary jets and plumes of outer solar system satellites. GAISR’s medium-range W-band (95 GHz) radar will operate in a frequency-modulated continuous-wave (FMCW) mode with 1 Watt of transmit power to achieve high sensitivity detection of the range and velocity distribution of 0.1-10 mm sized ice and dust particles released by jets and plumes. The radar’s primary aperture also functions as an antenna for two passive heterodyne spectrometer channels at 270 and 560 GHz for detecting the abundance, temperature, and velocity of water vapor and its isotopes (including HDO), as well other major cometary volatiles such as CO, NH3, CH3OH. GAISR has been designed with a priority placed on low mass and power needs, to facilitate its infusion in future planetary missions. This is accomplished by leveraging recent innovations in W-band signal generation using low power silicon integrated circuits, state-of-the art III-V semiconductor devices for signal amplification and detection, and compact quasioptical duplexing. A new signal processing algorithm for FMCW Doppler radar detection out to the maximum range ambiguity limit has also been developed. GAISR’s performance testing has begun, and this poster will summarize its proven capabilities and plans for validation in relevant environments.

  3. Adaptive Waveform Design for Cognitive Radar in Multiple Targets Situations

    Directory of Open Access Journals (Sweden)

    Xiaowen Zhang

    2018-02-01

    Full Text Available In this paper, the problem of cognitive radar (CR waveform optimization design for target detection and estimation in multiple extended targets situations is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended targets with unknown target impulse response (TIR. To address this problem, an improved algorithm is employed for target detection by maximizing the detection probability of the received echo on the promise of ensuring the TIR estimation precision. In this algorithm, an additional weight vector is introduced to achieve a trade-off among different targets. Both the estimate of TIR and transmit waveform can be updated at each step based on the previous step. Under the same constraint on waveform energy and bandwidth, the information theoretical approach is also considered. In addition, the relationship between the waveforms that are designed based on the two criteria is discussed. Unlike most existing works that only consider single target with temporally correlated characteristics, waveform design for multiple extended targets is considered in this method. Simulation results demonstrate that compared with linear frequency modulated (LFM signal, waveforms designed based on maximum detection probability and maximum mutual information (MI criteria can make radar echoes contain more multiple-target information and improve radar performance as a result.

  4. Reconfigurable signal processor designs for advanced digital array radar systems

    Science.gov (United States)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  5. A Vehicular Mobile Standard Instrument for Field Verification of Traffic Speed Meters Based on Dual-Antenna Doppler Radar Sensor.

    Science.gov (United States)

    Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue

    2018-04-05

    Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument.

  6. Fpga based L-band pulse doppler radar design and implementation

    Science.gov (United States)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed

  7. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television

    Directory of Open Access Journals (Sweden)

    Wan Xianrong

    2017-02-01

    Full Text Available Digital broadcasting and television are important classes of illuminators of opportunity for passive radars. Distributed and multistatic structure are the development trends for passive radars. Most modern digital broadcasting and television systems work on a network, which not only provides a natural condition to distributed passive radar but also puts forward higher requirements on the design of passive radar systems. Among those requirements, precise synchronization among the receivers and transmitters as well as among multiple receiving stations, which mainly involves frequency and time synchronization, is the first to be solved. To satisfy the synchronization requirements of distributed passive radars, a synchronization scheme based on GPS is presented in this paper. Moreover, an effective scheme based on the China Mobile Multimedia Broadcasting signal is proposed to test the system synchronization performance. Finally, the reliability of the synchronization design is verified via the distributed multistatic passive radar experiments.

  8. The design of infrared laser radar for vehicle initiative safety

    Science.gov (United States)

    Gong, Ping; Xu, Xi-ping; Li, Xiao-yu; Li, Tian-zhi; Liu, Yu-long; Wu, Jia-hui

    2013-09-01

    Laser radar for vehicle is mainly used in advanced vehicle on-board active safety systems, such as forward anti-collision systems, active collision warning systems and adaptive cruise control systems, etc. Laser radar for vehicle plays an important role in the improvement of vehicle active safety and the reduction of traffic accidents. The stability of vehicle active anti-collision system in dynamic environment is still one of the most difficult problems to break through nowadays. According to people's driving habit and the existed detecting technique of sensor, combining the infrared laser range and galvanometer scanning technique , design a 3-D infrared laser radar which can be used to assist navigation, obstacle avoidance and the vehicle's speed control for the vehicle initiative safety. The device is fixed to the head of vehicle. Then if an accident happened, the device could give an alarm to remind the driver timely to decelerate or brake down, by which way can people get the purpose of preventing the collision accidents effectively. To accomplish the design, first of all, select the core components. Then apply Zemax to design the transmitting and receiving optical system. Adopt 1550 nm infrared laser transmitter as emission unit in the device, a galvanometer scanning as laser scanning unit and an InGaAs-APD detector as laser echo signal receiving unit. Perform the construction of experimental system using FPGA and ARM as the core controller. The system designed in this paper can not only detect obstacle in front of the vehicle and make the control subsystem to execute command, but also transfer laser data to PC in real time. Lots of experiments using the infrared laser radar prototype are made, and main performance of it is under tested. The results of these experiments show that the imaging speed of the laser radar can reach up to 25 frames per second, the frame resolution of each image can reach 30×30 pixels, the horizontal angle resolution is about 6. 98

  9. MWR-05XP Mobile Phased Array Weather Radar

    OpenAIRE

    2014-01-01

    The NPS/CIRPAS Weather Radar Project objective is to develop the technology for adding a parallel weather processor capability to tactical military radars and to develop an advanced scientific instrument for investigation of atmospheric phenomena and other various types of research. The payoff to the military will be the integration of current weather data into the tactical radar picture. The payoff to the science community will be the availability of an advanced instrument for inves...

  10. The use of radar for bathymetry in shallow seas

    NARCIS (Netherlands)

    Greidanus, H.

    1997-01-01

    The bottom topography in shallow seas can be observed by air- and space borne radar. The paper reviews the radar imaging mechanism, and discusses the possibilities and limitations for practical use of radar in bathymetric applications, including the types of radar instruments available for this

  11. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-01-01

    outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize

  12. Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar)

    Science.gov (United States)

    Kneifel, Stefan; Maahn, Maximilian; Peters, Gerhard; Simmer, Clemens

    2011-06-01

    Quantifying snowfall intensity especially under arctic conditions is a challenge because wind and snow drift deteriorate estimates obtained from both ground-based gauges and disdrometers. Ground-based remote sensing with active instruments might be a solution because they can measure well above drifting snow and do not suffer from flow distortions by the instrument. Clear disadvantages are, however, the dependency of e.g. radar returns on snow habit which might lead to similar large uncertainties. Moreover, high sensitivity radars are still far too costly to operate in a network and under harsh conditions. In this paper we compare returns from a low-cost, low-power vertically pointing FM-CW radar (Micro Rain Radar, MRR) operating at 24.1 GHz with returns from a 35.5 GHz cloud radar (MIRA36) for dry snowfall during a 6-month observation period at an Alpine station (Environmental Research Station Schneefernerhaus, UFS) at 2,650 m height above sea level. The goal was to quantify the potential and limitations of the MRR in relation to what is achievable by a cloud radar. The operational MRR procedures to derive standard radar variables like effective reflectivity factor ( Z e) or the mean Doppler velocity ( W) had to be modified for snowfall since the MRR was originally designed for rain observations. Since the radar returns from snowfall are weaker than from comparable rainfall, the behavior of the MRR close to its detection threshold has been analyzed and a method is proposed to quantify the noise level of the MRR based on clear sky observations. By converting the resulting MRR- Z e into 35.5 GHz equivalent Z e values, a remaining difference below 1 dBz with slightly higher values close to the noise threshold could be obtained. Due to the much higher sensitivity of MIRA36, the transition of the MRR from the true signal to noise can be observed, which agrees well with the independent clear sky noise estimate. The mean Doppler velocity differences between both radars

  13. Design requirements for the SWIFT instrument

    International Nuclear Information System (INIS)

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2013-01-01

    The Stratospheric Wind Interferometer for Transport studies (SWIFT) instrument is a proposed limb-viewing satellite instrument that employs the method of Doppler Michelson interferometry to measure stratospheric wind velocities and ozone densities in the altitude range of 15–45 km. The values of the main instrument parameters including filter system parameters and Michelson interferometer parameters are derived using simulations and analyses. The system design requirements for the instrument and spacecraft are presented and discussed. Some of the retrieval-imposed design requirements are also discussed. Critical design issues are identified. The design optimization process is described. The sensitivity of wind measurements to instrument characteristics is investigated including the impact on critical design issues. Using sensitivity analyses, the instrument parameters were iteratively optimized in order to meet the science objectives. It is shown that wind measurements are sensitive to the thermal sensitivity of the instrument components, especially the narrow filter and the Michelson interferometer. The optimized values of the main system parameters including Michelson interferometer optical path difference, instrument visibility, instrument responsivity and knowledge of spacecraft velocity are reported. This work also shows that the filter thermal drift and the Michelson thermal drift are two main technical risks. (paper)

  14. Design and manufacture of radar absorbing wind turbine blades - final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    This report describes the results of a collaborative project between QinetiQ Ltd and NOI (Scotland) Ltd to design and manufacture radar absorbent wind turbine blades. The main objectives were to: use predictive modelling to understand the contribution made by the blade to radar cross section (RCS) of the complete turbine; confirm that the turbine RCS could feasibility be reduced to appropriate levels through the use of radar absorbent material (RAM); and to demonstrate that introduction of stealth technology within current composite sections would allow RAM variants of the blade materials to be manufactured with minimal impact on the structure. The RCS of a turbine was predicted at frequencies at which representative air traffic control (ATC), weather and marine navigation radar systems operate. The material compositions that exist on the blades produced by NOI were studied and methods by which RAM could be introduced to each region were identified. RCS predictions for a blade having RAM over its surface were then repeated. The study showed that it was possible to modify all material regions of the NOI blades to create RAM with little or no degradation in structural properties, thus reducing detection by non-Doppler radar and ATC radars. A full practical demonstration of a stealthy turbine is recommended to allow the benefits of RCS reduction through the use of RAM to be quantified by all stakeholders.

  15. Low Complexity Receiver Design for MIMO-Radar

    KAUST Repository

    Ahmed, Sajid

    2012-09-08

    In this work, an algorithm for the multiple-input multiple-output (MIMO) radar is proposed. It has low computational complexity compared to the available schemes, and relatively low side-lobe-levels in the receive beampattern compared to the phased-array and MIMO-radar. In the proposed algorithm, the received signal vector of MIMO-radar is divided into sub-vectors, and each sub-vector is multiplied with the corresponding weight vector. The number of sub-vectors and weight vectors are optimally found to maximise the received signal power from the target of interest direction. The proposed scheme can be effectively applied in passive radars to minimise the side-lobe levels and place deep nulls for interferers in the receive beampattern. Simulation results show that the proposed scheme has relatively lower side lobe levels and better detection capabilities compared to MIMO-radar and phased-array.

  16. Low Complexity Receiver Design for MIMO-Radar

    KAUST Repository

    Ahmed, Sajid; Alouini, Mohamed-Slim

    2012-01-01

    In this work, an algorithm for the multiple-input multiple-output (MIMO) radar is proposed. It has low computational complexity compared to the available schemes, and relatively low side-lobe-levels in the receive beampattern compared to the phased-array and MIMO-radar. In the proposed algorithm, the received signal vector of MIMO-radar is divided into sub-vectors, and each sub-vector is multiplied with the corresponding weight vector. The number of sub-vectors and weight vectors are optimally found to maximise the received signal power from the target of interest direction. The proposed scheme can be effectively applied in passive radars to minimise the side-lobe levels and place deep nulls for interferers in the receive beampattern. Simulation results show that the proposed scheme has relatively lower side lobe levels and better detection capabilities compared to MIMO-radar and phased-array.

  17. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    Science.gov (United States)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  18. Assessing collision risk for birds and bats : radar survey

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, R. [Genivar SEC, Sherbrooke, PQ (Canada)

    2010-07-01

    This PowerPoint presentation described some of the inventories and instrumentation available for monitoring winged fauna in and around wind farms. In addition to visual observations, bird calls and songs can be recorded to determine the amount and different types of birds located at wind farm sites. Radio-telemetry devices are also used to evaluate bird activities, and nest searches are conducted to determine the amount of eggs or young birds that will soon add to the bird population. Between 90 and 100 percent of birds and bats migrate at night. Acoustic radar, Doppler radar, and maritime surveillance radar instruments are used to monitor night-time activities in wind farm locations. Doppler radar is also used to detect bird and bat migration corridors. Screen-shots of various radar interfaces were presented. tabs., figs.

  19. Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders

    Science.gov (United States)

    Safaeinili, A.

    2003-12-01

    Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides the opportunity to collect data in a manner that enables Radio Reflection Tomographic (RRT) reconstruction of the body in the same manner that a medical ultrasound probe can image the interior of our body. This paper provides an overview of current technical capabilities and challenges and the potential of radio sounders in the investigation of planets and small bodies.

  20. ICUD-0471 Weather radar rainfall for design of urban storm water systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Wright, D. B.; Nielsen, Jesper Ellerbæk

    2017-01-01

    Long continuous series of high-resolution radar rainfall series provides valuable information on spatial and temporal variability of rainfall, which can be used in design of urban drainage systems. In design of especially large drainage systems with complex flow patterns (and potentially surface ...

  1. Industrial instrumentation principles and design

    CERN Document Server

    Padmanabhan, Tattamangalam R

    2000-01-01

    Pneumatic, hydraulic and allied instrumentation schemes have given way to electronic schemes in recent years thanks to the rapid strides in electronics and allied areas. Principles, design and applications of such state-of-the-art instrumentation schemes form the subject matter of this book. Through representative examples, the basic building blocks of instrumentation schemes are identified and each of these building blocks discussed in terms of its design and interface characteristics. The common generic schemes synthesized with such building blocks are dealt with subsequently. This forms the scope of Part I. The focus in Part II is on application. Displacement and allied instrumentation, force and allied instrumentation and process instrumentation in terms of temperature, flow, pressure level and other common process variables are dealt with separately and exhaustively. Despite the diversity in the sensor principles and characteristics and the variety in the applications and their environments, it is possib...

  2. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    Science.gov (United States)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; hide

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  3. Lunar Penetrating Radar onboard the Chang'e-3 mission

    Science.gov (United States)

    Fang, Guang-You; Zhou, Bin; Ji, Yi-Cai; Zhang, Qun-Ying; Shen, Shao-Xiang; Li, Yu-Xi; Guan, Hong-Fei; Tang, Chuan-Jun; Gao, Yun-Ze; Lu, Wei; Ye, Sheng-Bo; Han, Hai-Dong; Zheng, Jin; Wang, Shu-Zhi

    2014-12-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.

  4. Array-Based Ultrawideband through-Wall Radar: Prediction and Assessment of Real Radar Abilities

    Directory of Open Access Journals (Sweden)

    Nadia Maaref

    2013-01-01

    Full Text Available This paper deals with a new through-the-wall (TTW radar demonstrator for the detection and the localisation of people in a room (in a noncooperative way with the radar situated outside but in the vicinity of the first wall. After modelling the propagation through various walls and quantifying the backscattering by the human body, an analysis of the technical considerations which aims at defining the radar design is presented. Finally, an ultrawideband (UWB frequency modulated continuous wave (FMCW radar is proposed, designed, and implemented. Some representative trials show that this radar is able to localise and track moving people behind a wall in real time.

  5. UAVSAR Program: Initial Results from New Instrument Capabilities

    Science.gov (United States)

    Lou, Yunling; Hensley, Scott; Moghaddam, Mahta; Moller, Delwyn; Chapin, Elaine; Chau, Alexandra; Clark, Duane; Hawkins, Brian; Jones, Cathleen; Marks, Phillip; hide

    2013-01-01

    UAVSAR is an imaging radar instrument suite that serves as NASA's airborne facility instrument to acquire scientific data for Principal Investigators as well as a radar test-bed for new radar observation techniques and radar technology demonstration. Since commencing operational science observations in January 2009, the compact, reconfigurable, pod-based radar has been acquiring L-band fully polarimetric SAR (POLSAR) data with repeat-pass interferometric (RPI) observations underneath NASA Dryden's Gulfstream-III jet to provide measurements for science investigations in solid earth and cryospheric studies, vegetation mapping and land use classification, archaeological research, soil moisture mapping, geology and cold land processes. In the past year, we have made significant upgrades to add new instrument capabilities and new platform options to accommodate the increasing demand for UAVSAR to support scientific campaigns to measure subsurface soil moisture, acquire data in the polar regions, and for algorithm development, verification, and cross-calibration with other airborne/spaceborne instruments.

  6. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  7. Extended Target Recognition in Cognitive Radar Networks

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  8. Radar Precoder Design for Spectral Coexistence with Coordinated Multi-point (CoMP) System

    OpenAIRE

    Mahal, Jasmin A.; Khawar, Awais; Abdelhadi, Ahmed; Clancy, T. Charles

    2015-01-01

    This paper details the design of precoders for a MIMO radar spectrally coexistent with a MIMO cellular network. We focus on a coordinated multi-point (CoMP) system where a cluster of base stations (BSs) coordinate their transmissions to the intended user. The radar operates in two modes, interference-mitigation mode when it avoids interference with the CoMP system and cooperation mode when it exchanges information with it. Using either the conventional Switched Null Space Projection (SNSP) or...

  9. Design and performance Assessment of an Airborne Ice Sounding Radar Front-End

    DEFF Research Database (Denmark)

    Hernández, Carlos Cilla; Krozer, Viktor; Vidkjær, Jens

    2008-01-01

    The paper describes the design and experimental performance assessment of the RF front-end of an airborne P-band ice sounding radar. The ice sounder design features newly developed components at a centre frequency of 435 MHz, such as, antenna 20% bandwidth at RL ≪ 13 dB, compact high power in...

  10. MIMO-Radar Waveform Design for Beampattern Using Particle-Swarm-Optimisation

    KAUST Repository

    Ahmed, Sajid

    2012-07-31

    Multiple input multiple output (MIMO) radars have many advantages over their phased-array counterparts: improved spatial resolution; better parametric identifiably and greater flexibility to acheive the desired transmit beampattern. The desired transmit beampatterns using MIMO-radar requires the waveforms to have arbitrary auto- and cross-correlations. To design such waveforms, generally a waveform covariance matrix, R, is synthesised first then the actual waveforms are designed. Synthesis of the covariance matrix, R, is a constrained optimisation problem, which requires R to be positive semidefinite and all of its diagonal elements to be equal. To simplify the first constraint the covariance matrix is synthesised indirectly from its square-root matrix U, while for the second constraint the elements of the m-th column of U are parameterised using the coordinates of the m-hypersphere. This implicitly fulfils both of the constraints and enables us to write the cost-function in closed form. Then the cost-function is optimised using a simple particle-swarm-optimisation (PSO) technique, which requires only the cost-function and can optimise any choice of norm cost-function. © 2012 IEEE.

  11. Lunar Penetrating Radar onboard the Chang'e-3 mission

    International Nuclear Information System (INIS)

    Fang Guang-You; Zhou Bin; Ji Yi-Cai; Zhang Qun-Ying; Shen Shao-Xiang; Li Yu-Xi; Guan Hong-Fei; Tang Chuan-Jun; Gao Yun-Ze; Lu Wei; Ye Sheng-Bo; Han Hai-Dong; Zheng Jin; Wang Shu-Zhi

    2014-01-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed

  12. Suspended Integrated Strip-line Transition Design for Highly Integrated Radar Systems

    Science.gov (United States)

    2017-03-01

    technology. The measured results show good correlation to the simulated results with a return loss and insertion loss of less than 10 dB and greater...SSS); Suspended Integrated Strip-line (SISL) RF packaging; Ultra-wideband (UWB). Introduction The next generation of highly integrated radar...RF Circuit Design,” Second Edition, Pearson Education, 2009. 3. B. Ma, A. Chousseaud, and S. Toutain, “A new design of compact planar microstrip

  13. Drone Detection with Chirp‐Pulse Radar Based on Target Fluctuation Models

    Directory of Open Access Journals (Sweden)

    Byung‐Kwan Kim

    2018-04-01

    Full Text Available This paper presents a pulse radar system to detect drones based on a target fluctuation model, specifically the Swerling target model. Because drones are small atypical objects and are mainly composed of non‐conducting materials, their radar cross‐section value is low and fluctuating. Therefore, determining the target fluctuation model and applying a proper integration method are important. The proposed system is herein experimentally verified and the results are discussed. A prototype design of the pulse radar system is based on radar equations. It adopts three different pulse modes and a coherent pulse integration to ensure a high signal‐to‐noise ratio. Outdoor measurements are performed with a prototype radar system to detect Doppler frequencies from both the drone frame and blades. The results indicate that the drone frame and blades are detected within an instrumental maximum range. Additionally, the results show that the drone's frame and blades are close to the Swerling 3 and 4 target models, respectively. By the analysis of the Swerling target models, proper integration methods for detecting drones are verified and can thus contribute to increasing in detectability.

  14. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  15. Sparse Frequency Waveform Design for Radar-Embedded Communication

    Directory of Open Access Journals (Sweden)

    Chaoyun Mai

    2016-01-01

    Full Text Available According to the Tag application with function of covert communication, a method for sparse frequency waveform design based on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density fitting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which guarantees the low SER (signal error rate and LPI (low probability of intercept. The simulation results verify the effectiveness of this method.

  16. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  17. Design of a Handheld Pseudo Random Coded UWB Radar for Human Sensing

    Directory of Open Access Journals (Sweden)

    Xia Zheng-huan

    2015-10-01

    Full Text Available This paper presents the design of a handheld pseudo random coded Ultra-WideBand (UWB radar for human sensing. The main tasks of the radar are to track the moving human object and extract the human respiratory frequency. In order to achieve perfect penetrability and good range resolution, m sequence with a carrier of 800 MHz is chosen as the transmitting signal. The modulated m-sequence can be generated directly by the high-speed DAC and FPGA to reduce the size of the radar system, and the mean power of the transmitting signal is 5 dBm. The receiver has two receiving channels based on hybrid sampling, the first receiving channel is to sample the reference signal and the second receiving channel is to obtain the radar echo. The real-time pulse compression is computed in parallel with a group of on-chip DSP48E slices in FPGA to improve the scanning rate of the radar system. Additionally, the algorithms of moving target tracking and life detection are implemented using Intel’s micro-processor, and the detection results are sent to the micro displayer fixed on the helmet. The experimental results show that the moving target located at less than 16 m far away from the wall can be tracked, and the respiratory frequency of the static human at less than 14 m far away from the wall can be extracted.

  18. Mechanical engineers' handbook, design, instrumentation, and controls

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of electronics, MEMS, and instrumentation andcontrol in mechanical engineering This second volume of Mechanical Engineers' Handbookcovers electronics, MEMS, and instrumentation and control, givingyou accessible and in-depth access to the topics you'll encounterin the discipline: computer-aided design, product design formanufacturing and assembly, design optimization, total qualitymanagement in mechanical system design, reliability in themechanical design process for sustainability, life-cycle design,design for remanufacturing processes, signal processing, dataacquisition and dis

  19. Instrument design and optimization using genetic algorithms

    International Nuclear Information System (INIS)

    Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter

    2006-01-01

    This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods

  20. Instrument design and optimization using genetic algorithms

    Science.gov (United States)

    Hölzel, Robert; Bentley, Phillip M.; Fouquet, Peter

    2006-10-01

    This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of "nonstandard" magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.

  1. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    Science.gov (United States)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  2. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR

    Directory of Open Access Journals (Sweden)

    Matthew C. Garthwaite

    2017-06-01

    Full Text Available Trihedral corner reflectors are being increasingly used as point targets in deformation monitoring studies using interferometric synthetic aperture radar (InSAR techniques. The frequency and size dependence of the corner reflector Radar Cross Section (RCS means that no single design can perform equally in all the possible imaging modes and radar frequencies available on the currently orbiting Synthetic Aperture Radar (SAR satellites. Therefore, either a corner reflector design tailored to a specific data type or a compromise design for multiple data types is required. In this paper, I outline the practical and theoretical considerations that need to be made when designing appropriate radar targets, with a focus on supporting multi-frequency SAR data. These considerations are tested by performing field experiments on targets of different size using SAR images from TerraSAR-X, COSMO-SkyMed and RADARSAT-2. Phase noise behaviour in SAR images can be estimated by measuring the Signal-to-Clutter ratio (SCR in individual SAR images. The measured SCR of a point target is dependent on its RCS performance and the influence of clutter near to the deployed target. The SCR is used as a metric to estimate the expected InSAR displacement error incurred by the design of each target and to validate these observations against theoretical expectations. I find that triangular trihedral corner reflectors as small as 1 m in dimension can achieve a displacement error magnitude of a tenth of a millimetre or less in medium-resolution X-band data. Much larger corner reflectors (2.5 m or greater are required to achieve the same displacement error magnitude in medium-resolution C-band data. Compromise designs should aim to satisfy the requirements of the lowest SAR frequency to be used, providing that these targets will not saturate the sensor of the highest frequency to be used. Finally, accurate boresight alignment of the corner reflector can be critical to the overall

  3. Observations of Phobos by the Mars Express radar MARSIS: Description of the detection techniques and preliminary results

    Science.gov (United States)

    Cicchetti, A.; Nenna, C.; Plaut, J. J.; Plettemeier, D.; Noschese, R.; Cartacci, M.; Orosei, R.

    2017-11-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005) is a synthetic aperture low frequency radar altimeter, onboard the ESA Mars Express orbiter, launched in June 2003. It is the first and so far the only spaceborne radar that has observed the Martian moon Phobos. Radar echoes were collected on different flyby trajectories. The primary aim of sounding Phobos is to prove the feasibility of deep sounding, into its subsurface. MARSIS is optimized for deep penetration investigations and is capable of transmitting at four different bands between 1.3 MHz and 5.5 MHz with a 1 MHz bandwidth. Unfortunately the instrument was originally designed to operate exclusively on Mars, assuming that Phobos would not be observed. Following this assumption, a protection mechanism was implemented in the hardware (HW) to maintain a minimum time separation between transmission and reception phases of the radar. This limitation does not have any impact on Mars observation but it prevented the observation of Phobos. In order to successfully operate the instrument at Phobos, a particular configuration of the MARSIS onboard software (SW) parameters, called ;Range Ambiguity,; was implemented to override the HW protection zone, ensuring at the same time a high level of safety of the instrument. This paper describes the principles of MARSIS onboard processing, and the procedure through which the parameters of the processing software were tuned to observe targets below the minimum distance allowed by hardware. Some preliminary results of data analysis will be shown, with the support of radar echo simulations. A qualitative comparison between the simulated results and the actual data, does not support the detection of subsurface reflectors.

  4. Simulation tools for detector and instrument design

    DEFF Research Database (Denmark)

    Kanaki, Kalliopi; Kittelmann, Thomas; Cai, Xiao Xiao

    2018-01-01

    The high performance requirements at the European Spallation Source have been driving the technological advances on the neutron detector front. Now more than ever is it important to optimize the design of detectors and instruments, to fully exploit the ESS source brilliance. Most of the simulation...... a powerful set of tools to tailor the detector and instrument design to the instrument application....

  5. DFT-Based Closed-form Covariance Matrix and Direct Waveforms Design for MIMO Radar to Achieve Desired Beampatterns

    KAUST Repository

    Bouchoucha, Taha

    2017-01-23

    In multiple-input multiple-out (MIMO) radar, for desired transmit beampatterns, appropriate correlated waveforms are designed. To design such waveforms, conventional MIMO radar methods use two steps. In the first step, the waveforms covariance matrix, R, is synthesized to achieve the desired beampattern. While in the second step, to realize the synthesized covariance matrix, actual waveforms are designed. Most of the existing methods use iterative algorithms to solve these constrained optimization problems. The computational complexity of these algorithms is very high, which makes them difficult to use in practice. In this paper, to achieve the desired beampattern, a low complexity discrete-Fourier-transform based closed-form covariance matrix design technique is introduced for a MIMO radar. The designed covariance matrix is then exploited to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope waveforms for the desired beampattern. The proposed technique can be used to design waveforms for large antenna array to change the beampattern in real time. It is also shown that the number of transmitted symbols from each antenna depends on the beampattern and is less than the total number of transmit antenna elements.

  6. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    Science.gov (United States)

    Nguyen, Vinh Ngoc

    Since their introduction by Mercedes Benz in the late 1990s, W-band radars operating at 76-77 GHz have found their way into more and more passenger cars. These automotive radars are typically used in adaptive cruise control, pre-collision sensing, and other driver assistance systems. While these systems are usually only about the size of two stacked cigarette packs, system size, and weight remains a concern for many automotive manufacturers. In this dissertation, I discuss how artificially structured metamaterials can be used to improve lens-based automotive radar systems. Metamaterials allow the fabrication of smaller and lighter systems, while still meeting the frequency, high gain, and cost requirements of this application. In particular, I focus on the development of planar artificial dielectric lenses suitable for use in place of the injection-molded lenses now used in many automotive radar systems. I begin by using analytic and numerical ray-tracing to compare the performance of planar metamaterial GRIN lenses to equivalent aspheric refractive lenses. I do this to determine whether metamaterials are best employed in GRIN or refractive automotive radar lenses. Through this study I find that planar GRIN lenses with the large refractive index ranges enabled by metamaterials have approximately optically equivalent performance to equivalent refractive lenses for fields of view approaching +/-20°. I also find that the uniaxial nature of most planar metamaterials does not negatively impact planar GRIN lens performance. I then turn my attention to implementing these planar GRIN lenses at W-band automotive radar frequencies. I begin by designing uniform sheets of W-band electrically-coupled LC resonator-based metamaterials. These metamaterial samples were fabricated by the Jokerst research group on glass and liquid crystal polymer (LCP) substrates and tested at Toyota Research Institute- North America (TRI-NA). When characterized at W-band frequencies, these

  7. Synergistic Use of Spacecraft Telecom Links for Collection of Planetary Radar Science Data

    Science.gov (United States)

    Asmar, S.; Bell, D. J.; Chahat, N. E.; Decrossas, E.; Dobreva, T.; Duncan, C.; Ellliot, H.; Jin, C.; Lazio, J.; Miller, J.; Preston, R.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. Example spacecraft radar instruments are the 90 MHz CONSERT radar used to probe the interior of Comet 67P/Churyumov-Gerasimenko to a depth of 760m, the 20 MHz SHARAD instrument used to investigate Mars subsurface ice features from Mars orbit at depths of 300 to 3000 meters and the upcoming RIMFAX 150 MHz to 1200 MHz ground penetrating radar that will ride on the Mars 2020 rover investigating to a depth of 10m below the rover. In all of these applications, the radar frequency and signal structures were chosen to match science goals of desired depth of penetration and spatial resolution combined with the expected subsurface materials and structures below the surface. Recently, JPL investigators have proposed a new radar science paradigm, synergistic use of the telecom hardware and telecom links to collect bistatic or monostatic radar signatures. All JPL spacecraft employ telecom hardware that operates at UHF (400 MHz and 900 MHz), X-band (8 GHz) or Ka-band (32 GHz). Using existing open-loop record functions in these radios, the telecom hardware can be used to capture opportunistic radar signatures from telecom signals penetrating the surface and reflecting off of subsurface structures. This paper reports on telecom strategies, radar science applications and recent laboratory and field tests to demonstrate the effectiveness of telecom link based radar data collection.

  8. Synthetic impulse and aperture radar (SIAR) a novel multi-frequency MIMO radar

    CERN Document Server

    Chen, Baixiao

    2014-01-01

    Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing me

  9. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    Science.gov (United States)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms

  10. The Role of Cloud and Precipitation Radars in Convoys and Constellations

    Science.gov (United States)

    Tanelli, Simone; Durden, Stephen L.; Im, Eastwood; Sadowy, Gregory A.

    2013-01-01

    We provide an overview of which benefits a radar, and only a radar, can provide to any constellation of satellites monitoring Earth's atmosphere; which aspects instead are most useful to complement a radar instrument to provide accurate and complete description of the state of the troposphere; and finally which goals can be given a lower priority assuming that other types of sensors will be flying in formation with a radar.

  11. Mars Express radar collects first surface data

    Science.gov (United States)

    2005-08-01

    This radar started its science operations on 4 July, the same day as its first commissioning phase ended. Due to the late deployment of Marsis, it was decided to split the commissioning, originally planned to last four weeks, into two phases; the second will take place in December. It has thus been possible to begin scientific observations with the instrument earlier than initially planned, while it is still Martian night-time. This is the best environmental condition for subsurface sounding, as in daytime the ionosphere is more ‘energised’ and disturbs the radio signals used for subsurface observations. As from the start of commissioning, the two 20m-long antenna booms have been sending radio signals towards the Martian surface and receiving echoes back. “The commissioning procedure confirmed that the radar is working very well and that it can be operated at full power without interfering with any of the spacecraft systems,” says Roberto Seu, Instrument Manager for Marsis, of University of Rome ‘La Sapienza’, Italy. Marsis is a very complex instrument, capable of operating at different frequency bands. Lower frequencies are best suited to probing the subsurface, the highest frequencies are used to probe shallow subsurface depths, while all frequencies are suited to studying the surface and the upper atmospheric layer of Mars. “During commissioning we worked to test all transmission modes and optimise the radar's performance around Mars,” says Professor Giovanni Picardi, Principal Investigator for Marsis, of University of Rome ‘LaSapienza’. “The result is that since we started the scientific observations in early July, we have been receiving very clean surface echoes back, and first indications about the ionosphere.” The Marsis radar is designed to operate around the orbit ‘pericentre’, when the spacecraft is closer to the planet’s surface. In each orbit, the radar is switched on for 36minutes around this point, spending the middle 26

  12. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  13. An enhanced Planetary Radar Operating Centre (PROC)

    Science.gov (United States)

    Catallo, C.

    2010-12-01

    Planetary exploration by means of radar systems, mainly using GPRs is an important role of Italy and numerous scientific international space programs are carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three experiments under Italian leadership ( designed and manufactured by the Italian industry) provided by ASI within a NASA/ESA/ASI joint venture framework are successfully operating: MARSIS on-board MEX, SHARAD on-board MRO and CASSINI Radar on-board Cassini spacecraft: the missions have been further extended . Three dedicated operational centers, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD are operating from the missions beginning to support all the scientific communities, institutional customers and experiment teams operation Each center is dedicated to a single instrument management and control, data processing and distribution and even if they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). In order to harmonize operations either from logistics point of view and from HW/SW capabilities point of view PROC is designed and developed for offering improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. PROC is, therefore, conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs, such as Europa-Jupiter System Mission (EJSM) The paper describes how the new PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation aiding scientists to increase their knowledge in the field of surface

  14. A brief history of the development of wind-profiling or MST radars

    Directory of Open Access Journals (Sweden)

    T. E. Van Zandt

    2000-07-01

    Full Text Available The history of the development of the wind-profiling or MST radar technique is reviewed from its inception in the late 1960s to the present. Extensions of the technique by the development of boundary-layer radars and the radio-acoustic sounding system (RASS technique to measure temperature are documented. Applications are described briefly, particularly practical applications to weather forecasting, with data from networks of radars, and scientific applications to the study of rapidly varying atmospheric phenomena such as gravity waves and turbulence.Key words: Meteorology and atmospheric dynamics (instruments and techniques · Radio science (remote sensing; instruments and techniques

  15. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    Science.gov (United States)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  16. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  17. Advanced radar detection schemes under mismatched signal models

    CERN Document Server

    Bandiera, Francesco

    2009-01-01

    Adaptive detection of signals embedded in correlated Gaussian noise has been an active field of research in the last decades. This topic is important in many areas of signal processing such as, just to give some examples, radar, sonar, communications, and hyperspectral imaging. Most of the existing adaptive algorithms have been designed following the lead of the derivation of Kelly's detector which assumes perfect knowledge of the target steering vector. However, in realistic scenarios, mismatches are likely to occur due to both environmental and instrumental factors. When a mismatched signal

  18. Design of the HYREX raingauge network

    Directory of Open Access Journals (Sweden)

    R. J. Moore

    2000-01-01

    Full Text Available Dense raingauge experiments in the past have experienced difficulties in the automated recording of rainfall amount and timing which with the benefit of modern instrument technology are now less problematic. The HYdrological Radar EXperiment, HYREX, provided a timely opportunity to design and implement a dense raingauge network in support of rainfall measurement and modelling research studies concerned with the use of weather radar in hydrology. The principles and random function theory underlying the design of this raingauge network over the Brue catchment in south-west England are detailed in this paper. Keywords: raingauge, design, network, rainfall, flood, spatial correlation

  19. Integrating Radar Image Data with Google Maps

    Science.gov (United States)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  20. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  1. Design of economic incentive instruments in nutrition policy

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård

    2011-01-01

    • Economic incentives are instruments to improve diets and reduce the fraction of people exposed to diet-related health risks • Proper targeting and design of economic incentive instruments is important, if such instruments should be efficient and feasible policy measures in the improvement...... of dietary behaviour in industrialised countries • From a cost-effectiveness perspective, there are considerable potential for optimizing the targeting and design of economic incentive instruments in nutritional policy...

  2. Interception of LPI radar signals

    Science.gov (United States)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  3. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  4. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-04-01

    Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location

  5. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2014-01-01

    Full Text Available Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar interferences and, then, separately matched filtering for each radar. Besides the detailed algorithm derivation, extensive numerical simulation examples are performed with the down-chirp and up-chirp waveforms, partially overlapped or inverse chirp rate linearly frequency modulation (LFM waveforms and orthogonal frequency division multiplexing (ODFM chirp diverse waveforms. The effectiveness of the algorithm is verified by the simulation results.

  6. Conceptual design of safety instrumentation for PFBR

    International Nuclear Information System (INIS)

    Muralikrishna, G.; Seshadri, U.; Raghavan, K.

    1996-01-01

    Instrumentation systems enable monitoring of the process which in turn enables control and shutdown of the process as per the requirements. Safety Instrumentation due to its vital importance has a stringent role and this needs to be designed methodically. This paper presents the details of the conceptual design for PFBR. (author). 4 figs, 3 tabs

  7. A brief history of the development of wind-profiling or MST radars

    Directory of Open Access Journals (Sweden)

    T. E. Van Zandt

    Full Text Available The history of the development of the wind-profiling or MST radar technique is reviewed from its inception in the late 1960s to the present. Extensions of the technique by the development of boundary-layer radars and the radio-acoustic sounding system (RASS technique to measure temperature are documented. Applications are described briefly, particularly practical applications to weather forecasting, with data from networks of radars, and scientific applications to the study of rapidly varying atmospheric phenomena such as gravity waves and turbulence.

    Key words: Meteorology and atmospheric dynamics (instruments and techniques · Radio science (remote sensing; instruments and techniques

  8. Radar rainfall estimation of stratiform winter precipitation in the Belgian Ardennes

    NARCIS (Netherlands)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.

    2011-01-01

    Radars are known for their ability to obtain a wealth of information about spatial storm field characteristics. Unfortunately, rainfall estimates obtained by this instrument are known to be affected by multiple sources of error. Especially for stratiform precipitation systems, the quality of radar

  9. New procedure to design low radar cross section near perfect isotropic and homogeneous triangular carpet cloaks.

    Science.gov (United States)

    Sharifi, Zohreh; Atlasbaf, Zahra

    2016-10-01

    A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.

  10. A utilização das imagens de radar meteorológico em Climatologia

    Directory of Open Access Journals (Sweden)

    Marcelo Fragoso

    1996-05-01

    Full Text Available WEATHER RADAR IMAGE IN CLIMATOLOGY - After a brief overview about weather radar as a remote sensing instrument, some problems concerning the use of radar images are discussed. The great interest of radar images as a tool in Climatology is pointed out. Finally, a case study about two rainfall events in Nancy (France in April 1995 is presented.

  11. Combined Lidar-Radar Remote Sensing: Initial Results from CRYSTAL-FACE and Implications for Future Spaceflight Missions

    Science.gov (United States)

    McGill, Matthew J.; Li, Li-Hua; Hart, William D.; Heymsfield, Gerald M.; Hlavka, Dennis L.; Vaughan, Mark A.; Winker, David M.

    2003-01-01

    In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter lidar and a 94-GHz cloud profiling radar in formation to provide complete global profiling of cloud and aerosol properties. The CRYSTAL-FACE field campaign, conducted during July 2002, provided the first high-altitude colocated measurements from lidar and cloud profiling radar to simulate these spaceborne sensors. The lidar and radar provide complementary measurements with varying degrees of measurement overlap. This paper presents initial results of the combined airborne lidar-radar measurements during CRYSTAL-FACE. The overlap of instrument sensitivity is presented, within the context of particular CRYSTAL-FACE conditions. Results are presented to quantify the portion of atmospheric profiles sensed independently by each instrument and the portion sensed simultaneously by the two instruments.

  12. Observations and modeling of fog by cloud radar and optical sensors

    NARCIS (Netherlands)

    Li, Y.; Hoogeboom, P.; Russchenberg, H.

    2014-01-01

    Fog is a significant factor affecting the public traffic because visibility is reduced to a large extent. Therefore the determination of optical visibility in fog from radar instruments has received much interest. To observe fog with radar, high frequency bands (millimeter waves) have the best

  13. The Basic Design Report of the 40M SANS Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young Soo; Lee, Chang Hee; Hwang, Dong Gil; Kim, Hak Rho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Hwan; Choi, Sung Min [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-04-15

    The HANARO cold neutron research facility project was launched on July 1, 2003. A state of the art SANS instrument was selected as a top-priority instrument by an instrument selection committee, which consisted of domestic users and HANARO personnel. An instrument development team and an international and domestic instrument advisory team were formulated. The guide and the instrument simulation were performed using Vitess software and the optimum basic design was completed based on the simulation results and the international advisory team reviews. The optimum design of the guide for the 40M SANS instrument was completed and the optimum basic design of the 40M the SANS instrument was also completed based on the Vitess simulation results. The Q range of the instrument will cover from 0.0008 to 1.0 A-1 and the maximum flux at a sample position can reach about 5.5x10 7 n/cm2sec. The simulation results and the basic design product will be used for the detailed design and the construction of the SANS instrument. The simulation results could be applied to the development of the other instrument.

  14. Motion measurement for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  15. Radar rainfall estimation of stratiform winter precipitation in the Belgian Ardennes

    Science.gov (United States)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.

    2011-02-01

    Radars are known for their ability to obtain a wealth of information about spatial storm field characteristics. Unfortunately, rainfall estimates obtained by this instrument are known to be affected by multiple sources of error. Especially for stratiform precipitation systems, the quality of radar rainfall estimates starts to decrease at relatively close ranges. In the current study, the hydrological potential of weather radar is analyzed during a winter half-year for the hilly region of the Belgian Ardennes. A correction algorithm is proposed which corrects the radar data for errors related to attenuation, ground clutter, anomalous propagation, the vertical profile of reflectivity (VPR), and advection. No final bias correction with respect to rain gauge data was implemented because such an adjustment would not add to a better understanding of the quality of the radar data. The impact of the different corrections is assessed using rainfall information sampled by 42 hourly rain gauges. The largest improvement in the quality of the radar data is obtained by correcting for ground clutter. The impact of VPR correction and advection depends on the spatial variability and velocity of the precipitation system. Overall during the winter period, the radar underestimates the amount of precipitation as compared to the rain gauges. Remaining differences between both instruments can be attributed to spatial and temporal variability in the type of precipitation, which has not been taken into account.

  16. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  17. Design and manufacture NCS instruments for cement factories

    International Nuclear Information System (INIS)

    Nguyen Thanh Tuy; Nguyen Tien Dung; Dang Nguyet Anh; Nguyen Phuc; Khuong Thanh Tuan; Luong Duc Long; Pham Trong Quyen

    2003-01-01

    The ministry project 'Design and manufacture some of NCS instruments for cement factories' is a part of instrumentation for cement production in Vietnam. The objectives of the project include: 1/Design and manufacture the automatic control system for cement raw material mixing, connected to components X-ray analyzer through serial port of PC; 2/Design and manufacture the automatic discharge control system using gamma rays. The instruments, made by the project , for controlling the conveyor belt weighing machine can be easily improved for various types of conveyor belt weighing machines. Their mobility and software equipped can be adapted for requirement of modern cement production technology. The instruments are operating well in some cement factories and they are helping in quality control. (NHA)

  18. Design aspects of safety critical instrumentation of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, P. [Electronics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)]. E-mail: swamy@igcar.ernet.in

    2005-07-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  19. Design aspects of safety critical instrumentation of nuclear installations

    International Nuclear Information System (INIS)

    Swaminathan, P.

    2005-01-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  20. Pocket radar guide key facts, equations, and data

    CERN Document Server

    Curry, G Richard

    2010-01-01

    ThePocket Radar Guideis a concise collection of key radar facts and important radar data that provides you with necessary radar information when you are away from your office or references. It includes statements and comments on radar design, operation, and performance; equations describing the characteristics and performance of radar systems and their components; and tables with data on radar characteristics and key performance issues.It is intended to supplement other radar information sources by providing a pocket companion to refresh memory and provide details whenever you need them such a

  1. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini

  2. Radar signal analysis and processing using Matlab

    CERN Document Server

    Mahafza, Bassem R

    2008-01-01

    Offering radar-related software for the analysis and design of radar waveform and signal processing, this book provides comprehensive coverage of radar signals and signal processing techniques and algorithms. It contains numerous graphical plots, common radar-related functions, table format outputs, and end-of-chapter problems. The complete set of MATLAB[registered] functions and routines are available for download online.

  3. Design of a slimline directional borehole radar antenna using FDTD

    CSIR Research Space (South Africa)

    Vogt, D

    2008-06-01

    Full Text Available , dielectric. I. INTRODUCTION Borehole radar is the application of Ground Penetrating Radar (GPR) within a borehole [11]. GPR is a technique used to delineate structures and features of a subsurface. The borehole radar technique has been used successfully..., the direction of the incoming EM wave can be determined [6]. III. FILLER MATERIAL INSIDE ANTENNA ARRAY Ideally, there is no material between the antenna body and the rock surrounding it. In that case, the filler material would be matched to the dielectric...

  4. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  5. Intensive probing of clear air convective fields by radar and instrumented drone aircraft.

    Science.gov (United States)

    Rowland, J. R.

    1972-01-01

    Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.

  6. Modern Radar Techniques for Geophysical Applications: Two Examples

    Science.gov (United States)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  7. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands

    Directory of Open Access Journals (Sweden)

    Micaela Troglia Gamba

    2015-11-01

    Full Text Available Global Navigation Satellite Systems (GNSS broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth’s surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R, whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs, which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests.

  8. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Phillip E

    2003-01-01

    The drive is on to devise LPI radar systems that evade hostile detection as well as develop non-cooperative intercept devices that outsmart enemy LPI radar. Based on the author's own design experience, this comprehensive, hands-on book gives you the latest design and development techniques to innovate new LPI radar systems and discover new ways to intercept enemy LPI radar. and help you visually identify waveform parameters. Filled with more than 500 equations that provide rigorous mathematical detail, this book can be used by both entry-level and seasoned engineers. Besides thoroughly treatin

  9. Design, Performance and Optimization for Multimodal Radar Operation

    Directory of Open Access Journals (Sweden)

    Surendra S. Bhat

    2012-09-01

    Full Text Available This paper describes the underlying methodology behind an adaptive multimodal radar sensor that is capable of progressively optimizing its range resolution depending upon the target scattering features. It consists of a test-bed that enables the generation of linear frequency modulated waveforms of various bandwidths. This paper discusses a theoretical approach to optimizing the bandwidth used by the multimodal radar. It also discusses the various experimental results obtained from measurement. The resolution predicted from theory agrees quite well with that obtained from experiments for different target arrangements.

  10. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  11. Radar Image, Hokkaido, Japan

    Science.gov (United States)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62

  12. Wind farms impact on radar aviation interests - final report

    Energy Technology Data Exchange (ETDEWEB)

    Poupart, G.J.

    2003-09-01

    The main objectives of the study were: to determine the effects of siting wind turbines adjacent to primary air traffic control radar; to gather the information required for the generation of guidelines by civil, military and wind farm developer stakeholders; to determine the extent to which the design of wind turbines influences their effects on radar systems and to determine the extent to which design of the radar processing influences the effects of wind turbines on radar systems. A computer model was developed to predict the Radar Cross Section (RCS) of wind turbines and understand the interaction of radar energy and turbines. The model was designed to predict and simulate the impact of wind farms on the primary radar display. Validation of the model was carried out in a full-scale trial and modelling process, with data collected from a number of sources. The model was validated against a single turbine scenario and showed an accurate prediction capability. Further validation of the model could be gained through a multiple turbine trial. The knowledge gained from the development and validation of the predictive computer model has been used to conduct a sensitivity analysis (of the sub-elements of the radar and wind farm interaction) and to compile a list of the key factors influencing the radar signature of wind turbines. The result is a more detailed quantification of the complex interactions between wind turbines and radar systems than was previously available. The key findings of how the design, size and construction materials of wind turbines affect RCS are summarised.

  13. Small battery operated unattended radar sensor for security systems

    Science.gov (United States)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  14. Architecture for a 1-GHz Digital RADAR

    Science.gov (United States)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  15. Tank SY-101 void fraction instrument functional design criteria

    International Nuclear Information System (INIS)

    McWethy, L.M.

    1994-01-01

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations

  16. Low Complexity Beampattern Design in MIMO Radars Using Planar Array

    KAUST Repository

    Bouchoucha, Taha

    2015-01-07

    In multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest. To do this, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate actual transmitted waveforms. Both steps require constrained optimization, therefore, use iterative and expensive algorithms. In this paper, we provide a closed-form solution to design covariance matrix for the given beampattern using the planar array, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope (FACE) waveforms. The proposed algorithm exploits the two-dimensional fast-Fourier-transform. The performance of our proposed algorithm is compared with existing methods that are based on semi-definite quadratic programming with the advantage of a considerably reduced complexity.

  17. Modulation, resolution and signal processing in radar, sonar and related systems

    CERN Document Server

    Benjamin, R; Costrell, L

    1966-01-01

    Electronics and Instrumentation, Volume 35: Modulation, Resolution and Signal Processing in Radar, Sonar and Related Systems presents the practical limitations and potentialities of advanced modulation systems. This book discusses the concepts and techniques in the radar context, but they are equally essential to sonar and to a wide range of signaling and data-processing applications, including seismology, radio astronomy, and band-spread communications.Organized into 15 chapters, this volume begins with an overview of the principal developments sought in pulse radar. This text then provides a

  18. Fourier-Based Transmit Beampattern Design Using MIMO Radar

    KAUST Repository

    Lipor, John

    2014-05-01

    In multiple-input multiple-output (MIMO) radar settings, it is often desirable to transmit power only to a given location or set of locations defined by a beampattern. Transmit waveform design is a topic that has received much attention recently, involving synthesis of both the signal covariance matrix,, as well as the actual waveforms. Current methods involve a two-step process of designing via iterative solutions and then using to generate waveforms that fulfill practical constraints such as having a constant-envelope or drawing from a finite alphabet. In this paper, a closed-form method to design for a uniform linear array is proposed that utilizes the discrete Fourier transform (DFT) coefficients and Toeplitz matrices. The resulting covariance matrix fulfills the practical constraints such as positive semidefiniteness and the uniformelemental power constraint and provides performance similar to that of iterative methods, which require a much greater computation time. Next, a transmit architecture is presented that exploits the orthogonality of frequencies at discrete DFT values to transmit a sum of orthogonal signals from each antenna. The resulting waveforms provide a lower mean-square error than current methods at a much lower computational cost, and a simulated detection scenario demonstrates the performance advantages achieved.

  19. Time-domain ultra-wideband radar, sensor and components theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2014-01-01

    This book presents the theory, analysis, and design of ultra-wideband (UWB) radar and sensor systems (in short, UWB systems) and their components. UWB systems find numerous applications in the military, security, civilian, commercial and medicine fields. This book addresses five main topics of UWB systems: System Analysis, Transmitter Design, Receiver Design, Antenna Design and System Integration and Test. The developments of a practical UWB system and its components using microwave integrated circuits, as well as various measurements, are included in detail to demonstrate the theory, analysis and design technique. Essentially, this book will enable the reader to design their own UWB systems and components. In the System Analysis chapter, the UWB principle of operation as well as the power budget analysis and range resolution analysis are presented. In the UWB Transmitter Design chapter, the design, fabrication and measurement of impulse and monocycle pulse generators are covered. The UWB Receiver Design cha...

  20. The Earthcare Cloud Profiling Radar, its PFM development status (Conference Presentation)

    Science.gov (United States)

    Nakatsuka, Hirotaka; Tomita, Eichi; Aida, Yoshihisa; Seki, Yoshihiro; Okada, Kazuyuki; Maruyama, Kenta; Ishii, Yasuyuki; Tomiyama, Nobuhiro; Ohno, Yuichi; Horie, Hiroaki; Sato, Kenji

    2016-10-01

    The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is joint mission between Europe and Japan for the launch year of 2018. Mission objective is to improve scientific understanding of cloud-aerosol-radiation interactions that is one of the biggest uncertain factors for numerical climate and weather predictions. The EarthCARE spacecraft equips four instruments such as an ultra violet lidar (ATLID), a cloud profiling radar (CPR), a broadband radiometer (BBR), and a multi-spectral imager (MSI) and perform complete synergy observation to observe aerosols, clouds and their interactions simultaneously from the orbit. Japan Aerospace Exploration Agency (JAXA) is responsible for development of the CPR in this EarthCARE mission and the CPR will be the first space-borne W-band Doppler radar. The CPR is defined with minimum radar sensitivity of -35dBz (6dB better than current space-borne cloud radar, i.e. CloudSat, NASA), radiometric accuracy of 2.7 dB, and Doppler velocity measurement accuracy of less than 1.3 m/s. These specifications require highly accurate pointing technique in orbit and high power source with large antenna dish. JAXA and National Institute of Information and Communications Technology (NICT) have been jointly developed this CPR to meet these strict requirements so far and then achieved the development such as new CFRP flex-core structure, long life extended interaction klystron, low loss quasi optical feed technique, and so on. Through these development successes, CPR development phase has been progressed to critical design phase. In addition, new ground calibration technique is also being progressed for launch of EarthCARE/CPR. The unique feature of EarthCARE CPR is vertical Doppler velocity measurement capability. Vertical Doppler velocity measurement is very attractive function from the science point of view, because vertical motions of cloud particles are related with cloud microphysics and dynamics. However, from engineering point of

  1. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    Science.gov (United States)

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  2. The Klystron Engineering Model Development (KEMD) Task - A New Design for the Goldstone Solar System Radar (GSR)

    Science.gov (United States)

    Teitelbaum, L.; Liou, R.; Vodonos, Y.; Velazco, J.; Andrews, K.; Kelley, D.

    2017-08-01

    The Goldstone Solar System Radar (GSSR) is one of the world's great planetary radar facilities. The heart of the GSSR is its high-power transmitter, which radiates 450 kW from DSS-14, the Deep Space Network's 70-m antenna at Goldstone, by combining the output from two 250-kW klystrons. Klystrons are vacuum tube electron beam devices that are the key amplifying elements of most radio frequency telecommunications and radar transmitter systems. NASA's Science Mission Directorate sponsored the development of a new design for a 250-kW power, 50-MHz bandwidth, reliable klystron, intended to replace the aging operational devices that were developed in the mid-1990s. The design, developed in partnership with Communications & Power Industries, was verified by implementing and testing a first article prototype, the engineering model. Key elements of the design are new beam optics and focusing magnet, a seven-cavity RF body, and a modern collector able to reliably dissipate the full power of the electron beam. The first klystron based on the new VKX-7864C design was delivered to the DSN High-Power Transmitter Test Facility on November 1, 2016, the culmination of a six-year effort initiated to explore higher-resolution imaging of potentially hazardous near-Earth asteroids. The new design met or exceeded all requirements, including supporting advanced GSSR ranging modulations. The first article prototype was placed into operational service on July 26, 2017, after failure of one of the older klystrons, restoring the GSSR to full-power operations.

  3. A new design of neutron survey instrument

    International Nuclear Information System (INIS)

    Tanner, R.J.; Eakins, J.S.; Hager, L.G.

    2010-01-01

    A novel design of neutron survey instrument has been developed. The moderator has been modified via the use of 'neutron guides', which help thermal neutrons reach the central proportional counter. This innovation has allowed the variations in the energy dependence of ambient dose equivalent response to be reduced compared to prior single-detector designs, whilst maintaining a relatively light moderator and simple construction. In particular, the design has a relatively small over-response to neutrons with energies around 5 keV, when compared to prior designs. The final optimized design has been verified using MCNP5 calculations to ensure that the response is relatively independent of the energy and direction of the incident neutron. This has required the ends of the guides to be structured so that unidirectional and isotropic neutron fields have closely matched responses, as is necessary in the workplace. The reading of the instrument in workplace fields is calculated via folding and the suitability of the design for use in the workplace discussed.

  4. Design type testing for digital instrumentation and control systems

    International Nuclear Information System (INIS)

    Bastl, W.; Mohns, G.

    1997-01-01

    The design type qualification of digital safety instrumentation and control is outlined. Experience shows that the concepts discussed, derived from codes, guidelines and standards, achieve useful results. It has likewise become clear that the systematics of design type qualification of the hardware components is also applicable to the software components. Design type qualification of the software, a premiere, could be performed unexpectedly smoothly. The hardware design type qualification proved that the hardware as a substrate of functionality and reliability is an issue that demands full attention, as compared to conventional systems. Another insight is that design qualification of digital instrumentation and control systems must include plant-independent systems tests. Digital instrumentation and control systems simply work very differently from conventional control systems, so that this testing modality is inevitable. (Orig./CB) [de

  5. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  6. Probability and information theory, with applications to radar

    CERN Document Server

    Woodward, P M; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Second Edition, Volume 3: Probability and Information Theory with Applications to Radar provides information pertinent to the development on research carried out in electronics and applied physics. This book presents the established mathematical techniques that provide the code in which so much of the mathematical theory of electronics and radar is expressed.Organized into eight chapters, this edition begins with an overview of the geometry of probability distributions in which moments play a significant role. This text then examines the mathematical methods in

  7. Wind profile radar for study of Antarctic air circulation

    International Nuclear Information System (INIS)

    Ragaini, E.; Sarango, M.F.; Vasquez, E.H.

    1992-01-01

    After a brief discussion of meteorological methods used in the Antarctic, the paper gives an outline of a coordinated international research project whose objective is to set up a wind profiler radar station that would give meteorologists information regarding Antarctic atmospheric dynamics useful in their investigation of the causes and effects of the hole in the ozone layer. The radar instrumentation is to provide continuous readings of wind velocity at varying altitudes above the polar continent

  8. Development Of Signal Detection For Radar Navigation System

    OpenAIRE

    Theingi Win Hlaing; Hla Myo Tun; Zaw Min Naing; Win Khaing Moe

    2017-01-01

    This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum...

  9. Solid-state radar switchboard

    Science.gov (United States)

    Thiebaud, P.; Cross, D. C.

    1980-07-01

    A new solid-state radar switchboard equipped with 16 input ports which will output data to 16 displays is presented. Each of the ports will handle a single two-dimensional radar input, or three ports will accommodate a three-dimensional radar input. A video switch card of the switchboard is used to switch all signals, with the exception of the IFF-mode-control lines. Each card accepts inputs from up to 16 sources and can pass a signal with bandwidth greater than 20 MHz to the display assigned to that card. The synchro amplifier of current systems has been eliminated and in the new design each PPI receives radar data via a single coaxial cable. This significant reduction in cabling is achieved by adding a serial-to-parallel interface and a digital-to-synchro converter located at the PPI.

  10. The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuying [Lawrence Livermore National Laboratory, Livermore, California; Xie, Shaocheng [Lawrence Livermore National Laboratory, Livermore, California; Klein, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California; Marchand, Roger [University of Washington, Seattle, Washington; Kollias, Pavlos [Stony Brook University, Stony Brook, New York; Clothiaux, Eugene E. [The Pennsylvania State University, University Park, Pennsylvania; Lin, Wuyin [Brookhaven National Laboratory, Upton, New York; Johnson, Karen [Brookhaven National Laboratory, Upton, New York; Swales, Dustin [CIRES and NOAA/Earth System Research Laboratory, Boulder, Colorado; Bodas-Salcedo, Alejandro [Met Office Hadley Centre, Exeter, United Kingdom; Tang, Shuaiqi [Lawrence Livermore National Laboratory, Livermore, California; Haynes, John M. [Cooperative Institute for Research in the Atmosphere/Colorado State University, Fort Collins, Colorado; Collis, Scott [Argonne National Laboratory, Argonne, Illinois; Jensen, Michael [Brookhaven National Laboratory, Upton, New York; Bharadwaj, Nitin [Pacific Northwest National Laboratory, Richland, Washington; Hardin, Joseph [Pacific Northwest National Laboratory, Richland, Washington; Isom, Bradley [Pacific Northwest National Laboratory, Richland, Washington

    2018-01-01

    Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have had difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the concept of instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to improve and to facilitate the comparison of modeled clouds with observations. Many simulators have (and continue to be developed) for a variety of instruments and purposes. A community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Klein et al. 2013; Zhang et al. 2010). This article introduces a ground-based cloud radar simulator developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program for comparing climate model clouds with ARM observations from its vertically pointing 35-GHz radars. As compared to CloudSat radar observations, ARM radar measurements occur with higher temporal resolution and finer vertical resolution. This enables users to investigate more fully the detailed vertical structures within clouds, resolve thin clouds, and quantify the diurnal variability of clouds. Particularly, ARM radars are sensitive to low-level clouds, which are

  11. Introduction to radar target recognition

    CERN Document Server

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  12. Signal conditioning circuitry design for instrumentation systems.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Cory A.

    2012-01-01

    This report details the current progress in the design, implementation, and validation of the signal conditioning circuitry used in a measurement instrumentation system. The purpose of this text is to document the current progress of a particular design in signal conditioning circuitry in an instrumentation system. The input of the signal conditioning circuitry comes from a piezoresistive transducer and the output will be fed to a 250 ksps, 12-bit analog-to-digital converter (ADC) with an input range of 0-5 V. It is assumed that the maximum differential voltage amplitude input from the sensor is 20 mV with an unknown, but presumably high, sensor bandwidth. This text focuses on a specific design; however, the theory is presented in such a way that this text can be used as a basis for future designs.

  13. Millimeter wave radars raise weapon IQ

    Science.gov (United States)

    Lerner, E. J.

    1985-02-01

    The problems encountered by laser and IR homing devices for guided munitions may be tractable with warhead-mounted mm-wave radars. Operating at about 100 GHz and having several kilometers range, mm-wave radars see through darkness, fog, rain and smoke. The radar must be coupled with an analyzer that discerns moving and stationary targets and higher priority targets. The target lock-on can include shut-off of the transmitter and reception of naturally-generated mm-waves bouncing off the target when in the terminal phase of the flight. Monopulse transmitters have simplified the radar design, although mass production of finline small radar units has yet to be accomplished, particularly in combining GaAs, ferrites and other materials on one monolithic chip.

  14. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    Science.gov (United States)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    , occupy minimum cabin space and maximize scan coverage, a pod-based configuration was adopted. Currently, the radar system is capable of collecting observations between zenith and nadir in a fixed scanning mode. Measurements are corrected for aircraft attitude changes. The near-nadir and zenith pointing observations minimize the cross-track Doppler contamination in the radial velocity measurements. An extensive engineering monitoring mechanism is built into the recording system status such as temperature, pressure, various electronic components' status and receiver characteristics. Status parameters are used for real-time system stability estimates and correcting radar system parameters. The pod based radar system is mounted on a modified Gulfstream V aircraft, which is operated and maintained by the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation (NSF). The aircraft is called the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) (Laursen et al., 2006). It is also instrumented with high spectral resolution lidar (HSRL) and an array of in situ and remote sensors for atmospheric research. As part of the instrument suite for HIAPER, the NSF funded the development of the HIAPER Cloud Radar (HCR). The HCR is an airborne, millimeter-wavelength, dual-polarization, Doppler radar that serves the atmospheric science community by providing cloud remote sensing capabilities for the NSF/NCAR G-V (HIAPER) aircraft. An optimal radar configuration that is capable of maximizing the accuracy of both qualitative and quantitative estimated cloud microphysical and dynamical properties is the most attractive option to the research community. The Technical specifications of cloud radar are optimized for realizing the desired scientific performance for the pod-based configuration. The radar was both ground and flight tested and preliminary measurements of Doppler and polarization measurements were collected. HCR

  15. Proceedings of a workshop on methods for neutron scattering instrumentation design

    International Nuclear Information System (INIS)

    Hjelm, R.P.

    1997-09-01

    The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop. The international gathering of about 50 participants representing 15 national facilities, universities and corporations featured oral presentations, posters, discussions and demonstrations. Participants looked at a number of issues concerning neutron scattering instruments and the tools used in instrument design. Objectives included: (1) determining the needs of the neutron scattering community in instrument design computer code and information sharing to aid future instrument development, (2) providing for a means of training scientists in neutron scattering and neutron instrument techniques, and (3) facilitating the involvement of other scientists in determining the characteristics of new instruments that meet future scientific objectives, and (4) fostering international cooperation in meeting these needs. The scope of the meeting included: (1) a review of x-ray scattering instrument design tools, (2) a look at the present status of neutron scattering instrument design tools and models of neutron optical elements, and (3) discussions of the present and future needs of the neutron scattering community. Selected papers were abstracted separately for inclusion to the Energy Science and Technology Database

  16. Proceedings of a workshop on methods for neutron scattering instrumentation design

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, R.P. [ed.] [Los Alamos National Lab., NM (United States)

    1997-09-01

    The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop. The international gathering of about 50 participants representing 15 national facilities, universities and corporations featured oral presentations, posters, discussions and demonstrations. Participants looked at a number of issues concerning neutron scattering instruments and the tools used in instrument design. Objectives included: (1) determining the needs of the neutron scattering community in instrument design computer code and information sharing to aid future instrument development, (2) providing for a means of training scientists in neutron scattering and neutron instrument techniques, and (3) facilitating the involvement of other scientists in determining the characteristics of new instruments that meet future scientific objectives, and (4) fostering international cooperation in meeting these needs. The scope of the meeting included: (1) a review of x-ray scattering instrument design tools, (2) a look at the present status of neutron scattering instrument design tools and models of neutron optical elements, and (3) discussions of the present and future needs of the neutron scattering community. Selected papers were abstracted separately for inclusion to the Energy Science and Technology Database.

  17. Instruments of Inquiry: Understanding the Nature and Role of Design Tools

    DEFF Research Database (Denmark)

    Dalsgaard, Peter

    2017-01-01

    Designers employ a range of tools in most design projects, yet there are few frameworks for understanding how and why they work. On the basis of a well-established school of thought, pragmatism, this paper contributes with a coherent conceptualisation of tools in design, which I label instruments...... of inquiry. This perspective underscores the crucial role that instruments play in design, and the ways in which they scaffold design creativity and exploration. In particular, it highlights that instruments not only augment our capabilities for carrying out intended actions, they also guide our perception...... and understanding of design problems and solutions. I present and discuss a framework consisting of five qualities of instruments of inquiry, which make them valuable in designerly inquiry: perception, conception, externalisation, knowing-through-action, and mediation....

  18. Simultaneous rocket and radar measurements of currents in an auroral arc

    International Nuclear Information System (INIS)

    Robinson, R.M.; Bering, E.A.; Vondrak, R.R.; Anderson, H.R.; Cloutier, P.A.

    1981-01-01

    A detailed study of electric field, current and conductivities associated with an auroral arc was made in a coordinated rocket and radar experiment in Alaska on March 9, 1978. The payload, designated 29.007 UE, was launched at 1013 p.m. local time. It penetrated the diffuse aurora on the upleg and at apogee traversed field lines connected to a stable auroral arc of 40 kR intensity. Among the instruments carried by the payload were a vector magnetometer, a set of electrostatic double probes and a set of electron and proton spectrometers. Simultaneous electron density and line-of-sight velocity measurements were made by Chatanika radar operating in an elevation scan mode in the magnetic meridian plane. Both the radar and rocket measurements indicated that the zonal electric field was westward and approximately constant across the arc with a magnitude of about 7 mV/m. Small differences between the rocket and radar zonal electric field measurements indicated the presence of upward drifting ions in the region of the arc. The meridional field was large and northward equatorward of the arc, but negligible within the arc. Conductivities computed from measured fluxes of energetic electrons agreed well with the conductivities derived from the radar measureements of electron density. The electric field and conductivity measurements indicated that the zonal currents were eastward equatorward of the arc and westward within the arc. These electrojet currents agreed well with those inferred from the rocket magnetometer data. Better agreement was obtained when a westward neutral wind was added. The westward wind was also consistent with differences between the rocket and radar meridional electric fields. The meridional currents computed from the electric field measurements were northward over the entire region

  19. Meteorological radar services: a brief discussion and a solution in practice

    Science.gov (United States)

    Nicolaides, K. A.

    2014-08-01

    The Department of Meteorology is the organization designated by the Civil Aviation Department and by the National Supervisory Authority of the Republic of Cyprus, as an air navigation service provider, based on the regulations of the Single European Sky. Department of Meteorology holds and maintains also an ISO: 9001/2008, Quality System, for the provision of meteorological and climatological services to aeronautic and maritime community, but also to the general public. In order to fulfill its obligations the Department of Meteorology customs the rather dense meteorological stations network, with long historical data series, installed and maintained by the Department, in parallel with modelling and Numerical Weather Prediction (NWP), along with training and gaining of expertise. Among the available instruments in the community of meteorologists is the meteorological radar, a basic tool for the needs of very short/short range forecasting (nowcasting). The Department of Meteorology installed in the mid 90's a C-band radar over «Throni» location and expanded its horizons in nowcasting, aviation safety and warnings issuance. The radar has undergone several upgrades but today technology has over passed its rather old technology. At the present the Department of Meteorology is in the process of buying Meteorological Radar Services as a result of a public procurement procedure. Two networked X-band meteorological radar will be installed (the project now is in the phase of infrastructure establishment while the hardware is in the process of assemble), and maintained from Space Hellas (the contractor) for a 13 years' time period. The present article must be faced as a review article of the efforts of the Department of Meteorology to support its weather forecasters with data from meteorological radar.

  20. South African passive radar and towards its characterisation

    CSIR Research Space (South Africa)

    Lysko, Albert A

    2017-05-01

    Full Text Available A passive or passive coherent location (PCL) radar does not have an own transmitter or require owning spectrum, making it a very cost effective instrument for tracking non-cooperative targets. The paper discusses achievements in FM-based passive...

  1. Characterization of hydrometeors in Sahelian convective systems with an X-band radar and comparison with in situ measurements. Part I : Sensitivity of polarimetric radar particle identification retrieval and case study evaluation

    OpenAIRE

    Cazenave, Frédéric; Gosset, Marielle; Kacou, M.; Alcoba, M.; Fontaine, E.; Duroure, C.; Dolan, B.

    2016-01-01

    The particle identification scheme developed by Dolan and Rutledge for X-band polarimetric radar is tested for the first time in Africa and compared with in situ measurements. The data were acquired during the Megha-Tropiques mission algorithm-validation campaign that occurred in Niger in 2010. The radar classification is compared with the in situ observations gathered by an instrumented aircraft for the 13 August 2010 squall-line case. An original approach has been developed for the radar-in...

  2. Wind profile radar for study of Antarctic air circulation. Progetto di un radar 'wind-profiler' per lo studio della circolazione atmosferica antartica

    Energy Technology Data Exchange (ETDEWEB)

    Ragaini, E.; Sarango, M.F.; Vasquez, E.H.

    1992-10-01

    After a brief discussion of meteorological methods used in the Antarctic, the paper gives an outline of a coordinated international research project whose objective is to set up a wind profiler radar station that would give meteorologists information regarding Antarctic atmospheric dynamics useful in their investigation of the causes and effects of the hole in the ozone layer. The radar instrumentation is to provide continuous readings of wind velocity at varying altitudes above the polar continent.

  3. Designing communication and remote controlling of virtual instrument network system

    Science.gov (United States)

    Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.

  4. Designing communication and remote controlling of virtual instrument network system

    International Nuclear Information System (INIS)

    Lei Lin; Wang Houjun; Zhou Xue; Zhou Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful

  5. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    Science.gov (United States)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  6. Design aid system for nuclear power plant instrumentations

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Ito, Toshiichiro; Fujii, Makoto; Shimada, Nobuhide.

    1987-01-01

    Purpose: To enable to provide design aid for the nuclear power plant instrumentation of high reliability with the minimum cost while eliminating unrequired condition even if there are no data for the ground of the instrumentation design. Constitution: The information data base for the design of process radiation ray monitors are administrated by a data base administration device. The conditions to be satisfied in the process radiation monitors designed based on the data for the circumstances where particular predetermined process radiation monitors are installed, are derived by deduction using information obtained from the data base by way of the data base administration device. The derived design conditions are displayed and the optimum conditions are again reduced and displayed. In this way, the designers are assisted such that optimum designs can be obtained while sufficiently satisfying the safety and also in view of the cost. (Kamimura, M.)

  7. Design and implementation of a wireless instrument adapter

    DEFF Research Database (Denmark)

    Laino, Kaori V.; Saathoff, Thore; Savarimuthu, Thiusius R.

    2018-01-01

    The evaluation of new methods for control and manipulation in minimally invasive robotic surgery requires a realistic setup. To decouple the evaluation of methods from overall clinical systems, we propose an instrument adapter for the S line EndoWrist\\c{opyright} instruments of the da Vinci...... surgical system. The adapter is small and lightweight and can be mounted to any robot to mimic motion. We describe its design and implementation, as well as a setup to calibrate instruments to study precise motion control. Our results indicate that each instrument requires individual calibration...

  8. Jupiter Trojan's Shallow Subsurface: Direct Observation By Radar Sounding

    Science.gov (United States)

    Herique, A.; Plettemeier, D.; Beck, P.; Michel, P.; Kumamoto, A.; Kofman, W. W.

    2017-12-01

    Most of the Jupiter's Trojan are classified as spectral type P or D from visible and near-IR observations. Still, major question remain regarding theire origin and geological evolution: What ices are present in their interior, and in what amount? What is the abundance and the nature of the organic fraction? Did they experience some level of differentiation powered by 26Al? Answering theses question is the goal of the Solar-Power Sail JAXA mission [1, 2]. This mission plans to study the surface by remote sensing in the optical in IR domain. This probe will carry a large-sized lander with a drill to sample the constitutive material at meter depth in order to complement physical and chemical properties measured by on-board instruments. The sample return is an option under study.Radar sounding of the shallow subsurface would be envisaged in complement to this payload. Sounding radar could provide the structure of the first tens of meters of the Trojan surface. It will allow identifying layering, ice lens, and embedded block. It also will enable to reconnect the surface with the deep interior in order to identify exogenous / pristine material. For the surface package, the drilling and the sample return, radar sounding is a unique opportunity to support the selection of the landing site and to provide the greater geological context of the samples that will be returned to Earth.In this paper, we will detail the objective of this instrument and then we will outline the proposed instrument, which is inheriting from the radar developed for the AIDA/AIM mission.[1] Mori, O. et al., Science experiments on a Jupiter Trojan Asteroid in the solar powerd sail mission. LPSC 2016 - 1822.[2] Okada, T. et al., Science and Exploration of a Jupiter Trojan Asteroid in the solar-power sail mission. LPSC 2017 - 1828.

  9. Laser radar IV; Proceedings of the Meeting, Orlando, FL, Mar. 29, 30, 1989

    Science.gov (United States)

    Becherer, Richard J.

    1989-09-01

    Various papers on laser radars are presented. Individual topics considered include: frequency chirp of a low-pressure hybrid TE CO2 laser, design of a high-power isotopic CO2 laser amplifier, monolithic beam steering for large aperture laser radar, laser radar receiver using a Digicon detector, all-solid-state CO2 laser driver, noise in an acoustooptic-modulated laser source, laser signature prediction using the Value computer program, laser radar acquisition and tracking, concept of a moving target indicator search ladar, system design philosophy for laser radar wavelength determination, imaging three-frequency CO2 laser radar, backscatter-modulation semiconductor laser radar, three-dimensional imaging using a single laser pulse, design and manufacture of a high-resolution laser radar scanner, calculations of vibrational signatures for coherent ladar, coherent subaperture ultraviolet imagery, and range-Doppler resolution degradation associated with amplitude distortion.

  10. Use of radars to monitor stream discharge by noncontact methods

    Science.gov (United States)

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods

  11. Morphologie radar de fonds marins Radar Morphology of Some Sea Floors

    Directory of Open Access Journals (Sweden)

    Wadsworth A.

    2006-11-01

    Full Text Available Les radars latéraux sont des instruments de télédétection, fournissant des images de la surface terrestre survolée par pratiquement tout temps, c'est-à-dire de jour ou de nuit, par temps clair ou à travers de la brume, du brouillard, des nuages ou de la pluie. Dans le cadre de l'utilisation de ces instruments pour l'acquisition de données en mer, afin de quantifier les vagues ou la houle, des visualisations annexes, involontaires à l'origine, ont été réalisées. C'est le cas, par exemple, de certains fonds marins, que l'on peut voirlorsque quelques éléments opérationnels sont bien choisis. De plus, une certaine idée de leur morphologie peut être atteinte. Divers exemples sont présentés dans le cas de faibles fonds. Une approche des causes de cette visualisation est proposée, les grandes limites en sont fixées. Side-looking radars are remote-sensing instruments providing images of the ground surface overflown in almost all weather, i. e. day or night, with clear weather or through mist, fog, clouds or rain. These equipments, previously used to quantify sea waves and swell produced, in sonie cases, a noise which was later understood as being a signal, an expression of sea bottom features. This is the case, for example, for sonie sea floors which can be seenwhen a few operational elements have been carefully chosen. Likewise, some idea of the morphology of sea floors can be obtained. This article gives different examples for shallow depths. An approach to the causes of this visualization is proposed, and the major limitations are determined.

  12. IoSiS: a radar system for imaging of satellites in space

    Science.gov (United States)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  13. Design and Implementation of Radar Cross-Section Models on a Virtex-6 FPGA

    Directory of Open Access Journals (Sweden)

    B. U. V. Prashanth

    2014-01-01

    Full Text Available The simulation of radar cross-section (RCS models in FPGA is illustrated. The models adopted are the Swerling ones. Radar cross-section (RCS which is also termed as echo area gives the amount of scattered power from a target towards the radar. This paper elucidates the simulation of RCS to represent the specified targets under different conditions, namely, aspect angle and frequency. This model is used for the performance evaluation of radar. RCS models have been developed for various targets like simple objects to complex objects like aircrafts, missiles, tanks, and so forth. First, the model was developed in MATLAB real time simulation environment and after successful verification, the same was implemented in FPGA. Xilinx ISE software was used for VHDL coding. This simulation model was used for the testing of a radar system. The results were compared with MATLAB simulations and FPGA based timing diagrams and RTL synthesis. The paper illustrates the simulation of various target radar cross-section (RCS models. These models are simulated in MATLAB and in FPGA, with the aim of implementing them efficiently on a radar system. This method can be generalized to apply to objects of arbitrary geometry for the two configurations of transmitter and receiver in the same as well as different locations.

  14. Laboratory evaluation of the Design Analysis Associates DAA H-3613i radar water-level sensor—Results of temperature, distance, and SDI-12 tests

    Science.gov (United States)

    Carnley, Mark V.

    2016-09-30

    The Design Analysis Associates (DAA) DAA H-3613i radar water-level sensor (DAA H-3613i), manufactured by Xylem Incorporated, was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to manufacturer’s accuracy specifications for measuring a distance throughout the sensor’s operating temperature range, for measuring distances from 3 to 15 feet at ambient temperatures, and for compliance with the SDI-12 serial-to-digital interface at 1200-baud communication standard. The DAA H-3613i is a noncontact water-level sensor that uses pulsed radar to measure the distance between the radar and the water surface from 0.75 to 131 feet over a temperature range of −40 to 60 degrees Celsius (°C). Manufacturer accuracy specifications that were evaluated, the test procedures that followed, and the results obtained are described in this report. The sensor’s accuracy specification of ± 0.01 feet (± 3 millimeters) meets USGS requirements for a primary water-stage sensor used in the operation of a streamgage. The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during temperature testing at a distance of 8 feet from the target over its temperature-compensated operating range of −40 to 60 °C, except at 60 °C. At 60 °C, about half the measurements exceeded the manufacturer’s accuracy specification by not more than 0.005 feet.The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during distance-accuracy testing at the tested distances from 3 to 15 feet above the water surface at the HIF.

  15. Design of virtual three-dimensional instruments for sound control

    Science.gov (United States)

    Mulder, Axel Gezienus Elith

    An environment for designing virtual instruments with 3D geometry has been prototyped and applied to real-time sound control and design. It enables a sound artist, musical performer or composer to design an instrument according to preferred or required gestural and musical constraints instead of constraints based only on physical laws as they apply to an instrument with a particular geometry. Sounds can be created, edited or performed in real-time by changing parameters like position, orientation and shape of a virtual 3D input device. The virtual instrument can only be perceived through a visualization and acoustic representation, or sonification, of the control surface. No haptic representation is available. This environment was implemented using CyberGloves, Polhemus sensors, an SGI Onyx and by extending a real- time, visual programming language called Max/FTS, which was originally designed for sound synthesis. The extension involves software objects that interface the sensors and software objects that compute human movement and virtual object features. Two pilot studies have been performed, involving virtual input devices with the behaviours of a rubber balloon and a rubber sheet for the control of sound spatialization and timbre parameters. Both manipulation and sonification methods affect the naturalness of the interaction. Informal evaluation showed that a sonification inspired by the physical world appears natural and effective. More research is required for a natural sonification of virtual input device features such as shape, taking into account possible co- articulation of these features. While both hands can be used for manipulation, left-hand-only interaction with a virtual instrument may be a useful replacement for and extension of the standard keyboard modulation wheel. More research is needed to identify and apply manipulation pragmatics and movement features, and to investigate how they are co-articulated, in the mapping of virtual object

  16. Morning sector drift-bounce resonance driven ULF waves observed in artificially-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    Full Text Available HF radar backscatter, which has been artificially-induced by a high power RF facility such as the EISCAT heater at Tromsø, has provided coherent radar ionospheric electric field data of unprecedented temporal resolution and accuracy. Here such data are used to investigate ULF wave processes observed by both the CUTLASS HF radars and the EISCAT UHF radar. Data from the SP-UK-OUCH experiment have revealed small-scale (high azimuthal wave number, m -45 waves, predominantly in the morning sector, thought to be brought about by the drift-bounce resonance processes. Conjugate observations from the Polar CAM-MICE instrument indicate the presence of a non-Maxwellian ion distribution function. Further statistical analysis has been undertaken, using the Polar TIMAS instrument, to reveal the prevalence and magnitude of the non-Maxwellian energetic particle populations thought to be responsible for generating these wave types.

    Key words. Ionosphere (active experiments; wave-particle interactions Magnetospheric physics (MHD waves and instabilities

  17. Morning sector drift-bounce resonance driven ULF waves observed in artificially-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2002-09-01

    Full Text Available HF radar backscatter, which has been artificially-induced by a high power RF facility such as the EISCAT heater at Tromsø, has provided coherent radar ionospheric electric field data of unprecedented temporal resolution and accuracy. Here such data are used to investigate ULF wave processes observed by both the CUTLASS HF radars and the EISCAT UHF radar. Data from the SP-UK-OUCH experiment have revealed small-scale (high azimuthal wave number, m -45 waves, predominantly in the morning sector, thought to be brought about by the drift-bounce resonance processes. Conjugate observations from the Polar CAM-MICE instrument indicate the presence of a non-Maxwellian ion distribution function. Further statistical analysis has been undertaken, using the Polar TIMAS instrument, to reveal the prevalence and magnitude of the non-Maxwellian energetic particle populations thought to be responsible for generating these wave types.Key words. Ionosphere (active experiments; wave-particle interactions Magnetospheric physics (MHD waves and instabilities

  18. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  19. Design and fabrication of non-instrumented capsule

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sung; Lee, Jeong Young; Kim, Joon Yeon; Lee, Sung Ho; Ji, Dae Young; Kim, Suk Hoon; Ahn, Sung Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-04-01

    The use of non-instrumented capsule designed and fabricated in this time is for the evaluation of material irradiation performance, it is to be installed in the inner core of HANARO. The design process of non-instrumented capsule was accomplished by the decision of the quality of material and the shape, thermal analysis, structural analysis. The temperature of the specimen and the stress in capsule during irradiation test was calculated by the thermal analysis and the structural analysis. GGENGTC code and ABAQUS code were used for the calculation of non-instrumented capsule. In case of installing the capsule in irradiation hole, the coolant flow rate and the pressure drop in the hole is changed, which will affect the coolant flow rate of the fuel region. Eventually the coolant flow rate outside capsule have to be restricted to the allowable range. In order to obtain the required pressure drop, the flow rate control mechanism, end plate and orifice ring were used in this test. The test results are compared with 36-element fuel pressure drop data which AECL performed by the SCTR facility.

  20. Design and fabrication of non-instrumented capsule

    International Nuclear Information System (INIS)

    Kim, Yong Sung; Lee, Jeong Young; Kim, Joon Yeon; Lee, Sung Ho; Ji, Dae Young; Kim, Suk Hoon; Ahn, Sung Ho

    1995-04-01

    The use of non-instrumented capsule designed and fabricated in this time is for the evaluation of material irradiation performance, it is to be installed in the inner core of HANARO. The design process of non-instrumented capsule was accomplished by the decision of the quality of material and the shape, thermal analysis, structural analysis. The temperature of the specimen and the stress in capsule during irradiation test was calculated by the thermal analysis and the structural analysis. GGENGTC code and ABAQUS code were used for the calculation of non-instrumented capsule. In case of installing the capsule in irradiation hole, the coolant flow rate and the pressure drop in the hole is changed, which will affect the coolant flow rate of the fuel region. Eventually the coolant flow rate outside capsule have to be restricted to the allowable range. In order to obtain the required pressure drop, the flow rate control mechanism, end plate and orifice ring were used in this test. The test results are compared with 36-element fuel pressure drop data which AECL performed by the SCTR facility

  1. Software for simulation and design of neutron scattering instrumentation

    DEFF Research Database (Denmark)

    Bertelsen, Mads

    designed using the software. The Union components uses a new approach to simulation of samples in McStas. The properties of a sample are split into geometrical and material, simplifying user input, and allowing the construction of complicated geometries such as sample environments. Multiple scattering...... from conventional choices. Simulation of neutron scattering instrumentation is used when designing instrumentation, but also to understand instrumental effects on the measured scattering data. The Monte Carlo ray-tracing package McStas is among the most popular, capable of simulating the path of each...... neutron through the instrument using an easy to learn language. The subject of the defended thesis is contributions to the McStas language in the form of the software package guide_bot and the Union components.The guide_bot package simplifies the process of optimizing neutron guides by writing the Mc...

  2. PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2014-01-01

    We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratio (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.

  3. Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band

    International Nuclear Information System (INIS)

    Jang, Hong-Kyu; Lee, Won-Jun; Kim, Chun-Gon

    2011-01-01

    In this study, the authors developed a radar absorbing method to reduce the antenna radar cross section (RCS) without any loss of antenna performance. The new method was based upon an electromagnetic bandgap (EBG) absorber using conducting polymer (CP). First, a microstrip patch antenna was made by using a copper film and glass/epoxy composite materials, which are typically used for load-bearing structures, such as aircraft and other vehicles. Then, CP EBG patterns were also designed that had a 90% electromagnetic (EM) wave absorbing performance within the X-band (8.2–12.4 GHz). Finally, the CP EBG patterns were printed on the top surface of the microstrip patch antenna. The measured radar absorbing performance of the fabricated patch antenna showed that the frontal RCS of the antenna declined by nearly 95% at 10 GHz frequency while the CP EBG patterns had almost no effect on the antenna's performance

  4. Reducing Surface Clutter in Cloud Profiling Radar Data

    Science.gov (United States)

    Tanelli, Simone; Pak, Kyung; Durden, Stephen; Im, Eastwood

    2008-01-01

    An algorithm has been devised to reduce ground clutter in the data products of the CloudSat Cloud Profiling Radar (CPR), which is a nadir-looking radar instrument, in orbit around the Earth, that measures power backscattered by clouds as a function of distance from the instrument. Ground clutter contaminates the CPR data in the lowest 1 km of the atmospheric profile, heretofore making it impossible to use CPR data to satisfy the scientific interest in studying clouds and light rainfall at low altitude. The algorithm is based partly on the fact that the CloudSat orbit is such that the geodetic altitude of the CPR varies continuously over a range of approximately 25 km. As the geodetic altitude changes, the radar timing parameters are changed at intervals defined by flight software in order to keep the troposphere inside a data-collection time window. However, within each interval, the surface of the Earth continuously "scans through" (that is, it moves across) a few range bins of the data time window. For each radar profile, only few samples [one for every range-bin increment ((Delta)r = 240 m)] of the surface-clutter signature are available around the range bin in which the peak of surface return is observed, but samples in consecutive radar profiles are offset slightly (by amounts much less than (Delta)r) with respect to each other according to the relative change in geodetic altitude. As a consequence, in a case in which the surface area under examination is homogenous (e.g., an ocean surface), a sequence of consecutive radar profiles of the surface in that area contains samples of the surface response with range resolution (Delta)p much finer than the range-bin increment ((Delta)p 10 dB and a reduction of the contaminated altitude over ocean from about 1 km to about 0.5 km (over the ocean). The algorithm has been embedded in CloudSat L1B processing as of Release 04 (July 2007), and the estimated flat surface clutter is removed in L2B-GEOPROF product from the

  5. European coordination for coastal HF radar data in EMODnet Physics

    Science.gov (United States)

    Mader, Julien; Novellino, Antonio; Gorringe, Patrick; Griffa, Annalisa; Schulz-Stellenfleth, Johannes; Montero, Pedro; Montovani, Carlo; Ayensa, Garbi; Vila, Begoña; Rubio, Anna; Sagarminaga, Yolanda

    2015-04-01

    Historically, joint effort has been put on observing open ocean, organizing, homogenizing, sharing and reinforcing the impact of the acquired information based on one technology: ARGO with profilers Argo floats, EuroSites, ESONET-NoE, FixO3 for deep water platforms, Ferrybox for stations in ships of opportunities, and GROOM for the more recent gliders. This kind of networking creates synergies and makes easier the implementation of this source of data in the European Data exchange services like EMODnet, ROOSs portals, or any applied services in the Blue economy. One main targeted improvement in the second phase of EMODnet projects is the assembling of data along coastline. In that sense, further coordination is recommended between platform operators around a specific technology in order to make easier the implementation of the data in the platforms (4th EuroGOOS DATAMEQ WG). HF radar is today recognized internationally as a cost-effective solution to provide high spatial and temporal resolution current maps (depending on the instrument operation frequency, covering from a few kilometres offshore up to 200 km) that are needed for many applications for issues related to ocean surface drift or sea state characterization. Significant heterogeneity still exists in Europe concerning technological configurations, data processing, quality standards and data availability. This makes more difficult the development of a significant network for achieving the needed accessibility to HF Radar data for a pan European use. EuroGOOS took the initiative to lead and coordinate activities within the various observation platforms by establishing a number of Ocean Observing Task Teams such as HF-Radars. The purpose is to coordinate and join the technological, scientific and operational HF radar communities at European level. The goal of the group is on the harmonization of systems requirements, systems design, data quality, improvement and proof of the readiness and standardization of

  6. MIMO Radar Transmit Beampattern Design Without Synthesising the Covariance Matrix

    KAUST Repository

    Ahmed, Sajid

    2013-10-28

    Compared to phased-array, multiple-input multiple-output (MIMO) radars provide more degrees-offreedom (DOF) that can be exploited for improved spatial resolution, better parametric identifiability, lower side-lobe levels at the transmitter/receiver, and design variety of transmit beampatterns. The design of the transmit beampattern generally requires the waveforms to have arbitrary auto- and crosscorrelation properties. The generation of such waveforms is a two step complicated process. In the first step a waveform covariance matrix is synthesised, which is a constrained optimisation problem. In the second step, to realise this covariance matrix actual waveforms are designed, which is also a constrained optimisation problem. Our proposed scheme converts this two step constrained optimisation problem into a one step unconstrained optimisation problem. In the proposed scheme, in contrast to synthesising the covariance matrix for the desired beampattern, nT independent finite-alphabet constantenvelope waveforms are generated and pre-processed, with weight matrix W, before transmitting from the antennas. In this work, two weight matrices are proposed that can be easily optimised for the desired symmetric and non-symmetric beampatterns and guarantee equal average power transmission from each antenna. Simulation results validate our claims.

  7. MIMO Radar Transceiver Design for High Signal-to-Interference-Plus-Noise Ratio

    KAUST Repository

    Lipor, John

    2013-05-12

    Multiple-input multiple-output (MIMO) radar employs orthogonal or partially correlated transmit signals to achieve performance benefits over its phased-array counterpart. It has been shown that MIMO radar can achieve greater spatial resolution, improved signal-to-noise ratio (SNR) and target localization, and greater clutter resolution using space-time adaptive processing (STAP). This thesis explores various methods to improve the signal-to-interference-plus-noise ratio (SINR) via transmit and receive beamforming. In MIMO radar settings, it is often desirable to transmit power only to a given location or set of locations defined by a beampattern. Current methods involve a two- step process of designing the transmit covariance matrix R via iterative solutions and then using R to generate waveforms that fulfill practical constraints such as having a constant-envelope or drawing from a finite alphabet. In this document, a closed- form method to design R is proposed that utilizes the discrete Fourier transform (DFT) coefficients and Toeplitz matrices. The resulting covariance matrix fulfills the practical constraints such as positive semidefiniteness and the uniform elemental power constraint and provides performance similar to that of iterative methods, which require a much greater computation time. Next, a transmit architecture is presented 
that exploits the orthogonality of frequencies at discrete DFT values to transmit a sum of orthogonal signals from each antenna. The resulting waveforms provide a lower mean-square error than current methods at a much lower computational cost, and a simulated detection scenario demonstrates the performance advantages achieved. It is also desirable to receive signal power only from a given set of directions defined by a beampattern. In a later chapter of this document, the problem of receive beampattern matching is formulated and three solutions to this problem are demonstrated. We show that partitioning the received data vector

  8. Target scattering characteristics for OAM-based radar

    Directory of Open Access Journals (Sweden)

    Kang Liu

    2018-02-01

    Full Text Available The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM based radar system. To illustrate the role of OAM-based radar cross section (ORCS, conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS. The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  9. Target scattering characteristics for OAM-based radar

    Science.gov (United States)

    Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang

    2018-02-01

    The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  10. Bi-alphabetic pulse compression radar signal design

    Indian Academy of Sciences (India)

    Bi-alphabetic radar; Hamming scan; back-tracking; merit factor; ... of 14.08, 12.10, 9.85, 8.85, 8.83, 8.86, 8.58 and 8.50 respectively. Beyond n ˆ 59 but below n ˆ 117, the highest merit factor available is 9.56. Known high merit ... subjected to dual ternary±binary interpretation to facilitate a coincidence detection scheme.

  11. San Gabriel Mountains, California, Radar image, color as height

    Science.gov (United States)

    2000-01-01

    This topographic radar image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the

  12. Design and analysis of compressed sensing radar detectors

    NARCIS (Netherlands)

    Anitori, L.; Maleki, A.; Otten, M.P.G.; Baraniuk, R.G.; Hoogeboom, P.

    2013-01-01

    We consider the problem of target detection from a set of Compressed Sensing (CS) radar measurements corrupted by additive white Gaussian noise. We propose two novel architectures and compare their performance by means of Receiver Operating Characteristic (ROC) curves. Using asymptotic arguments and

  13. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    Science.gov (United States)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  14. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  15. Radar Location Equipment Development Program: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  16. Radar Location Equipment Development Program: Phase I

    International Nuclear Information System (INIS)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2 0 , respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1 0 in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs

  17. Miniature Ground Penetrating Radar, CRUX GPR

    Science.gov (United States)

    Kim, Soon Sam; Carnes, Steven R.; Haldemann, Albert F.; Ulmer, Christopher T.; Ng, Eddie; Arcone, Steven A.

    2006-01-01

    Under NASA instrument development programs (PIDDP 2000-2002, MIPD 2003-2005, ESR and T, 2005) we have been developing miniature ground penetrating radars (GPR) for use in mapping subsurface stratigraphy from planetary rovers for Mars and lunar applications. The Mars GPR is for deeper penetration (up to 50 m depth) into the Martian subsurface at moderate resolution (0.5 m) for a geological characterization. As a part of the CRUX (Construction and Resource Utilization Explorer) instrument suite, the CRUX GPR is optimized for a lunar prospecting application. It will have shallower penetration (5 m depth) with higher resolution (10 cm) for construction operations including ISRU (in-situ resource utilization).

  18. Hurricane Rita Track Radar Image with Topographic Overlay

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Animation About the animation: This simulated view of the potential effects of storm surge flooding on Galveston and portions of south Houston was generated with data from the Shuttle Radar Topography Mission. Although it is protected by a 17-foot sea wall against storm surges, flooding due to storm surges caused by major hurricanes remains a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments. About the image: The Gulf Coast from the Mississippi Delta through the Texas coast is shown in this satellite image from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) overlain with data from the Shuttle Radar Topography Mission (SRTM), and the predicted storm track for Hurricane Rita. The prediction from the National Weather Service was published Sept. 22 at 4 p.m. Central Time, and shows the expected track center in black with the lighter shaded area indicating the range of potential tracks the storm could take. Low-lying terrain along the coast has been highlighted using the SRTM elevation data, with areas within 15 feet of sea level shown in red, and within 30 feet in yellow. These areas are more at risk for flooding and the destructive effects of storm surge and high waves. Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial

  19. Development Of Signal Detection For Radar Navigation System

    Directory of Open Access Journals (Sweden)

    Theingi Win Hlaing

    2017-09-01

    Full Text Available This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum for detection in non-Gaussian nature. The theory of target detection in Gaussian distributed clutter has been well established and the closed form of the detection performances can be easily obtained. However that is not the case in non-Gaussian clutter distributions. The operation of radar detection is determined by radar detection theory with different types of Swerling target models such as Swerling I II III IV and V. By using MATLAB these signal detection techniques are developed.

  20. Feasibility of mitigating the effects of windfarms on primary radar

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.M.; Johnson, D.A.

    2003-07-01

    The objectives of the study were to investigate the feasibility of modifying civil and military radars to mitigate the effects from wind turbines, to provide costings for implementing changes to the radar and to produce guidelines for planning wind farms in the vicinity of radars. The effect of wind turbines on radar signals, assessed through computer modelling, is summarised. The key aspects of turbine design that can be modified to minimise these effects are described. A key issue is the fact that no two radar installations are alike, with settings being customised for local requirements. As a consequence, a detailed understanding of the design and features of each individual radar would be required in order to assess the impact of a wind farm proposal. The costs of a programme of modifications to the civil ATC (air traffic control) radar base will depend on many factors. An estimate of costs is provided, based on the assumption that only 30 of the UK radars would need modification and that a range of modifications from very simple to very complex will be required. A number of other approaches, outside of modification of the radar system, may require investigation during a windfarm planning application, such as layout and location of the wind farm or changing air traffic routes in the vicinity of the wind farm.

  1. Key issues in the thermal design of spaceborne cryogenic infrared instruments

    Science.gov (United States)

    Schember, Helene R.; Rapp, Donald

    1992-12-01

    Thermal design and analysis play an integral role in the development of spaceborne cryogenic infrared (IR) instruments. From conceptual sketches to final testing, both direct and derived thermal requirements place significant constraints on the instrument design. Although in practice these thermal requirements are interdependent, the sources of most thermal constraints may be grouped into six distinct categories. These are: (1) Detector temperatures, (2) Optics temperatures, (3) Pointing or alignment stability, (4) Mission lifetime, (5) Orbit, and (6) Test and Integration. In this paper, we discuss these six sources of thermal requirements with particular regard to development of instrument packages for low background infrared astronomical observatories. In the end, the thermal performance of these instruments must meet a set of thermal requirements. The development of these requirements is typically an ongoing and interactive process, however, and the thermal design must maintain flexibility and robustness throughout the process. The thermal (or cryogenic) engineer must understand the constraints imposed by the science requirements, the specific hardware, the observing environment, the mission design, and the testing program. By balancing these often competing factors, the system-oriented thermal engineer can work together with the experiment team to produce an effective overall design of the instrument.

  2. Portable nucleonics instrument design: The PortaCAT example

    International Nuclear Information System (INIS)

    Wallace, G.; Pohl, P.; Hutchinson, E.

    2000-01-01

    Portable nucleonic gauges prototypes are designed and manufactured in New Zealand for niche applications. Considerable development in hardware and software provide new opportunity in design of relatively low cost portable nucleonic gauges. In this paper are illustrated principles, and specific factors to be consider when designing portable nucleonic instrumentation, using an example called PortaCAT, which is a portable computed tomography scanner designed for imaging wooden power poles. (author)

  3. Radar velocity determination using direction of arrival measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Bickel, Douglas L.; Naething, Richard M.; Horndt, Volker

    2017-12-19

    The various technologies presented herein relate to utilizing direction of arrival (DOA) data to determine various flight parameters for an aircraft A plurality of radar images (e.g., SAR images) can be analyzed to identify a plurality of pixels in the radar images relating to one or more ground targets. In an embodiment, the plurality of pixels can be selected based upon the pixels exceeding a SNR threshold. The DOA data in conjunction with a measurable Doppler frequency for each pixel can be obtained. Multi-aperture technology enables derivation of an independent measure of DOA to each pixel based on interferometric analysis. This independent measure of DOA enables decoupling of the aircraft velocity from the DOA in a range-Doppler map, thereby enabling determination of a radar velocity. The determined aircraft velocity can be utilized to update an onboard INS, and to keep it aligned, without the need for additional velocity-measuring instrumentation.

  4. New Vacuum Electronic Devices for Radar

    Directory of Open Access Journals (Sweden)

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  5. Radar signal processing and its applications

    CERN Document Server

    Hummel, Robert; Stoica, Petre; Zelnio, Edmund

    2003-01-01

    Radar Signal Processing and Its Applications brings together in one place important contributions and up-to-date research results in this fast-moving area. In twelve selected chapters, it describes the latest advances in architectures, design methods, and applications of radar signal processing. The contributors to this work were selected from the leading researchers and practitioners in the field. This work, originally published as Volume 14, Numbers 1-3 of the journal, Multidimensional Systems and Signal Processing, will be valuable to anyone working or researching in the field of radar signal processing. It serves as an excellent reference, providing insight into some of the most challenging issues being examined today.

  6. ASIC and HMC designs for portable nuclear instruments

    International Nuclear Information System (INIS)

    Chandratre, V.B.

    2005-01-01

    This paper describes the seed activity done so far for realizing the goal of compact portable nuclear instruments and related instrumentation that can be designed, developed and manufactured without external constraints. This important activity requires critical components to be made in the country by tapping and gearing the established industrial units for this activity. A good deal of ground work has been carried out over a period of time in setting up IC design facility and CAD-FAB interface. There has been a close interaction with the production and semiconductor facilities to design and develop ASIC, hybrids, display devices, detectors/sensors etc. Efforts are also undertaken to develop the critical technologies that are required to fulfill the requirement. A status report on various technologies, ASIC, hybrids and their application development done in the face of out-standing challenges is being presented here. (author)

  7. Software Radar Technology

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-08-01

    Full Text Available In this paper, the definition and the key features of Software Radar, which is a new concept, are proposed and discussed. We consider the development of modern radar system technology to be divided into three stages: Digital Radar, Software radar and Intelligent Radar, and the second stage is just commencing now. A Software Radar system should be a combination of various modern digital modular components conformed to certain software and hardware standards. Moreover, a software radar system with an open system architecture supporting to decouple application software and low level hardware would be easy to adopt "user requirements-oriented" developing methodology instead of traditional "specific function-oriented" developing methodology. Compared with traditional Digital Radar, Software Radar system can be easily reconfigured and scaled up or down to adapt to the changes of requirements and technologies. A demonstration Software Radar signal processing system, RadarLab 2.0, which has been developed by Tsinghua University, is introduced in this paper and the suggestions for the future development of Software Radar in China are also given in the conclusion.

  8. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  9. Biaxial Testing of High-Strength Fabric Improves Design of Inflatable Radar Domes

    Science.gov (United States)

    Krause, David L.; Bartolotta, Paul A.

    2001-01-01

    Large radar installations around the globe continuously watch the skies, unobtrusively providing security to the United States; these systems have been in active use for the past 50 years. Often situated in extreme environments, the radar dishes require shielding from the harsh elements. Air-inflated domes (over 100 ft in diameter) are one structure of choice for providing this essential protection. The radomes are constructed from highstrength fabric that is strong enough to withstand the inflation pressure, high winds, and other environmental loads, yet transparent to the microwave signal to allow precise radar mapping. This fabric is woven from glass fibers for high strength and embedded in a polytetrafluoroethylene resin matrix, akin to the nonstick coatings used on cookware.

  10. Design of reactor alarm instrument based on SOPC

    International Nuclear Information System (INIS)

    Li Meng; Lu Yi; Rong Ru

    2008-01-01

    The design of embedded alarm instrument in reactors based on Nios II CPU is introduced in this paper. This design uses the SOPC technology based on the Cyclone series FPGA as a digital bench, and connects the MPU and drivers and interface of times, RS232, sdram,and etc. into a FPGA chip. It is proved that the system achieves the design goals in primary experimentation. (authors)

  11. The design of nuclear radiation measuring instrument of embedded network

    International Nuclear Information System (INIS)

    Zhang Huaiqiang; Ge Liangquan; Xiong Shengqing

    2009-01-01

    The design and realization of nuclear radiation measuring instrument is introduced. Due to the current nuclear instrument often used serial interface to communicate the PC, it is widely used for simple design and easy operation. However, as the demand of remote data acquisition and the call of sharing resources, the design of embedded the TCP/IP protocol stack into MCU, it may send the nuclear signal in Internet. Some devices that link each other with the network can be networked. The design is not only realizing remote data acquisition and sharing resources, but also reducing costs and improving the maintainability of the system. (authors)

  12. Opto-mechanical design for transmission optics in cryogenic space instrumentation

    Science.gov (United States)

    Kroes, Gabby; Venema, Lars; Navarro, Ramón

    2017-11-01

    NOVA is involved in the development and realization of various optical astronomical instruments for groundbased as well as space telescopes, with a focus on nearand mid-infrared instrumentation. NOVA has developed a suite of scientific instruments with cryogenic optics for the ESO VLT and VLTI instruments: VISIR, MIDI, the SPIFFI 2Kcamera for SINFONI, X-shooter and MATISSE. Other projects include the cryogenic optics for MIRI for the James Webb Space Telescope and several E-ELT instruments. Mounting optics is always a compromise between firmly fixing the optics and preventing stresses within the optics. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations, temperature ranges, during launch, transport or earthquake. On the other hand, the fixings can induce deformations and sometimes birefringence in the optics and thus cause optical errors. Even cracking or breaking of the optics is a risk, especially when using brittle infrared optical materials at the cryogenic temperatures required in instruments for infrared astronomy, where differential expansion of various materials amounts easily to several millimeters per meter. Special kinematic mounts are therefore needed to ensure both accurate positioning and low stress. This paper concentrates on the opto-mechanical design of optics mountings, especially for large transmission optics in cryogenic circumstances in space instruments. It describes the development of temperature-invariant ("a-thermal") kinematic designs, their implementation in ground based instrumentation and ways to make them suitable for space instruments.

  13. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  14. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Science.gov (United States)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  15. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  16. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  17. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    Science.gov (United States)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  18. Requirements and design reference mission for the WFIRST/AFTA coronagraph instrument

    Science.gov (United States)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; Noecker, Charley; Neville, Timothy; Pham, Hung; Rud, Mike; Tang, Hong; Villalvazo, Juan

    2015-09-01

    The WFIRST-AFTA coronagraph instrument takes advantage of AFTAs 2.4-meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes: Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, Lyot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architectures. Structural Thermal Optical Performance (STOP) analysis predicts the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  19. Requirements and Design Reference Mission for the WFIRST-AFTA Coronagraph Instrument

    Science.gov (United States)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; hide

    2015-01-01

    The WFIRST-AFTA coronagraph instrument take s advantage of AFTA s 2.4 -meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes : Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, yot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architecture s. Structural Thermal Optical Performance (STOP) analysis predict s the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  20. Analytical Research by Computer Simulation of Developmental Polarimetric/Frequency Agile Pulsed Radars.

    Science.gov (United States)

    1982-12-01

    scattering matrix format so that the entire radar signature will be available for future radar hardware and simulator designers . Without such data and...validated models the radar system analyst and designer will continue to suffer from the so called "Sedenquist Effect" that is, put two radar engineers...P4AsME 7Em VAMqA5OIE I uU04 I.ATEGE.4. VARIAdLE AVAL U00036 REAL*4 VAmIAdLE CAdS vu0uvi4 iKEA *4 sN(,CEOumE CUM"Uiv iLUC.A /AUOX L.Ei#GTH 04UOaUt HO0SAV

  1. Agile beam laser radar using computational imaging for robotic perception

    Science.gov (United States)

    Powers, Michael A.; Stann, Barry L.; Giza, Mark M.

    2015-05-01

    This paper introduces a new concept that applies computational imaging techniques to laser radar for robotic perception. We observe that nearly all contemporary laser radars for robotic (i.e., autonomous) applications use pixel basis scanning where there is a one-to-one correspondence between world coordinates and the measurements directly produced by the instrument. In such systems this is accomplished through beam scanning and/or the imaging properties of focal-plane optics. While these pixel-basis measurements yield point clouds suitable for straightforward human interpretation, the purpose of robotic perception is the extraction of meaningful features from a scene, making human interpretability and its attendant constraints mostly unnecessary. The imposing size, weight, power and cost of contemporary systems is problematic, and relief from factors that increase these metrics is important to the practicality of robotic systems. We present a system concept free from pixel basis sampling constraints that promotes efficient and adaptable sensing modes. The cornerstone of our approach is agile and arbitrary beam formation that, when combined with a generalized mathematical framework for imaging, is suited to the particular challenges and opportunities of robotic perception systems. Our hardware concept looks toward future systems with optical device technology closely resembling modern electronically-scanned-array radar that may be years away from practicality. We present the design concept and results from a prototype system constructed and tested in a laboratory environment using a combination of developed hardware and surrogate devices for beam formation. The technological status and prognosis for key components in the system is discussed.

  2. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  3. REAL - Ensemble radar precipitation estimation for hydrology in a mountainous region

    OpenAIRE

    Germann, Urs; Berenguer Ferrer, Marc; Sempere Torres, Daniel; Zappa, Massimiliano

    2009-01-01

    An elegant solution to characterise the residual errors in radar precipitation estimates is to generate an ensemble of precipitation fields. The paper proposes a radar ensemble generator designed for usage in the Alps using LU decomposition (REAL), and presents first results from a real-time implementation coupling the radar ensemble with a semi-distributed rainfall–runoff model for flash flood modelling in a steep Alpine catchment. Each member of the radar ensemble is a possible realisati...

  4. Design principles for radiological protection instrumentation systems

    International Nuclear Information System (INIS)

    Wells, F.H.; Powell, R.G.

    1981-02-01

    This Code of Practice takes the form of recommendations intended for designers and installers of Radiological Protection Instrumentation, and should also be of value to the newcomer to the R.P.I. field. Topics are discussed under the following headings: outline of R.P.I. requirements, specifying the requirement, satisfying the requirements, (overall design, availability and reliability, information display, human factors, power supplies, manufacture, quality assurance, testing, and cost analysis), supply, location and operation of the equipment, importance of documentation. (U.K.)

  5. COST Action TU1208 - Working Group 1 - Design and realisation of Ground Penetrating Radar equipment for civil engineering applications

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; D'Amico, Sebastiano; Ferrara, Vincenzo; Frezza, Fabrizio; Persico, Raffaele; Tosti, Fabio

    2017-04-01

    provided by the Italian company IDS Ingegneria dei Sistemi; in cooperation with the Spanish company Euroconsult, an instrumented lorry equipped with a curviameter was used in the same road sections. Curviameter and GPR results were compared, with very good agreement. 3. A reconfigurable stepped-frequency GPR prototype was improved and widely tested. The original version of this prototype was designed and realised in Italy, in 2008. In June 2014, with the support of the Action TU1208 (and in particular by exploiting the Short Term Scientific Mission (STSM) networking tool), this prototype was brought to Norway: tests were carried out in laboratory, on roads and archaelogical sites; results were compared with those obtained by using a commercial system manufactured by the Norwegian manufacturer 3d-radar. As a result of this work, it was possible to understand how to improve the Italian prototype. Changes to the hardware were implemented in cooperation with the company Florence Engineering. In the improved version of the prototype, a more advanced technique is used for the reconfiguration of the integration times. In July 2015, by exploiting again the STSM tool, the prototype was brought to Malta: tests were carried out in buildings, churches, archaeological and geological sites; results were compared with those obtained by using a commercial pulsed system manufactured by IDS Ingegneria dei Sistemi. It is worth pointing out that this was the first time GPR measurements were carried out in Malta, where no GPR systems are available. Finally, in January 2016 the improved prototype was again brought to Malta in order to be used during the experimental sessions of a TU1208 Training School. This is an excellent example of a successful scientific activity where STSM and TS COST networking tools were effectively exploited, the cooperation with industry was of central importance, and a less research-intensive Country was deliberately chosen, to test the improved system. 4. A cheap

  6. A Light-Weight Instrumentation System Design

    International Nuclear Information System (INIS)

    Kidner, Ronald

    1999-01-01

    To meet challenging constraints on telemetry system weight and volume, a custom Light-Weight Instrumentation System was developed to collect vehicle environment and dynamics on a short-duration exo-atmospheric flight test vehicle. The total telemetry system, including electronics, sensors, batteries, and a 1 watt transmitter weighs about 1 kg. Over 80 channels of measurement, housekeeping, and telemetry system diagnostic data are transmitted at 128 kbps. The microcontroller-based design uses the automotive industry standard Controller Area Network to interface with and support in-flight control fimctions. Operational parameters are downloaded via a standard asynchronous serial communications intefiace. The basic design philosophy and functionality is described here

  7. Factors affecting the design of instrument flight procedures

    Directory of Open Access Journals (Sweden)

    Ivan FERENCZ

    2008-01-01

    Full Text Available The article highlights factors, which might affect the design of instrument flight procedures. Ishikawa diagram is used to distribute individual factors into classes, as are People, Methods, Regulations, Tools, Data and Environment.

  8. Radar rainfall estimation in a hilly environment and implications for runoff modeling

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2010-05-01

    Radars are known for their ability to obtain a wealth of information about the spatial stormfield characteristics. Unfortunately, rainfall estimates obtained by this instrument are known to be affected by multiple sources of error. Especially for stratiform precipitation systems, the quality of radar rainfall estimates starts to decrease at relatively close ranges. In the current study the hydrological potential of weather radar is analyzed during a winter half-year for the hilly region of the Belgian Ardennes. A correction algorithm is proposed taking into account attenuation, ground clutter, anomalous propagation, the vertical profile of reflectivity (VPR) and advection. No final bias correction with respect to rain gauge data were implemented, because that does not add to a better understanding of the quality of the radar. Largest quality improvements in the radar data are obtained by ground clutter removal. The influence of VPR correction and advection depends on the precipitation system observed. Overall, the radar shows an underestimation as compared to the rain gauges, which becomes smaller after averaging at the scale of the medium-sized Ourthe catchment. Remaining differences between both devices can mainly be attributed to an improper choice of the Z-R relationship. Conceptual rainfall-runoff simulations show similar results using either catchment average radar or rain gauge data, although the largest discharge peak observed, is seriously underestimated when applying radar data. Overall, for hydrological applications corrected weather radar information in a hilly environment can be used up to 70 km during a winter half-year.

  9. Experimentelles FMCW-Radar zur hochfrequenten Charakterisierung von Windenergieanlagen

    Science.gov (United States)

    Schubert, Karsten; Werner, Jens; Schwartau, Fabian

    2017-09-01

    During the increasing dissemination of renewable energy sources the potential and actual interference effects of wind turbine plants became obvious. Turbines reflect the signals of weather radar and other radar systems. In addition to the static radar echoes, in particular the Doppler echoes are to be mentioned as an undesirable impairment Keränen (2014). As a result, building permit is refused for numerous new wind turbines, as the potential interference can not be reliably predicted. As a contribution to the improvement of this predictability, measurements are planned which aim at the high-frequency characterisation of wind energy installations. In this paper, a cost-effective FMCW radar is presented, which is operated in the same frequency band (C-band) as the weather radars of the German weather service. Here, the focus is on the description of the hardware design including the considerations used for its dimensioning.

  10. VenSAR on EnVision: Taking earth observation radar to Venus

    Science.gov (United States)

    Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed

    2018-02-01

    Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.

  11. Remote sensing technology research and instrumentation platform design

    Science.gov (United States)

    1992-01-01

    An instrumented pallet concept and definition of an aircraft with performance and payload capability to meet NASA's airborne turbulent flux measurement needs for advanced multiple global climate research and field experiments is presented. The report addresses airborne measurement requirements for general circulation model sub-scale parameterization research, specifies instrumentation capable of making these measurements, and describes a preliminary support pallet design. Also, a review of aircraft types and a recommendation of a manned and an unmanned aircraft capable of meeting flux parameterization research needs is given.

  12. Laser radar: historical prospective-from the East to the West

    Science.gov (United States)

    Molebny, Vasyl; McManamon, Paul; Steinvall, Ove; Kobayashi, Takao; Chen, Weibiao

    2017-03-01

    This article discusses the history of laser radar development in America, Europe, and Asia. Direct detection laser radar is discussed for range finding, designation, and topographic mapping of Earth and of extraterrestrial objects. Coherent laser radar is discussed for environmental applications, such as wind sensing and for synthetic aperture laser radar development. Gated imaging is discussed through scattering layers for military, medical, and security applications. Laser microradars have found applications in intravascular studies and in ophthalmology for vision correction. Ghost laser radar has emerged as a new technology in theoretical and simulation applications. Laser radar is now emerging as an important technology for applications such as self-driving cars and unmanned aerial vehicles. It is also used by police to measure speed, and in gaming, such as the Microsoft Kinect.

  13. Design of autotrack detecting instrument for solar UV radiation

    Science.gov (United States)

    Xia, Jiangtao; Mao, Xiaoli; Zhao, Jing

    2009-11-01

    In order to autotrack the object and detect the solar UV index, a reliable real-time high-precise instrument is proposed in this paper. This instrument involves two subsystems: the autotrack and detecting modules. The autotrack module consists of four-quadrant photo detector, multi-channel signal processing circuit and precise stepping system. The detecting module designed for dada measurement and acquisition is made up of the ultraviolet sensor UV460 and high precision A/D converter MAX1162. The key component of the entire instrument is ultralow-power microprocessor MSP430 which is used for entire system controlling and data processing. The lower system of autotracking and measurement is communicated with upper PC computer by RS232 module. In the experiment, the tracking precision of two-dimensional motion revolving stage is calibrated to be less than 0.05°. Experimental results indicate that the system designed could realize the precise autotracking and detecting function well, and the measure precision of system has reached the desirable target.

  14. Ground clutter cancellation in incoherent radars: solutions for EISCAT Svalbard radar

    Directory of Open Access Journals (Sweden)

    T. Turunen

    2000-09-01

    Full Text Available Incoherent scatter radars measure ionosphere parameters using modified Thomson scatter from free electrons in the target (see e.g. Hagfors, 1997. The integrated cross section of the ionospheric scatterers is extremely small and the measurements can easily be disturbed by signals returned by unwanted targets. Ground clutter signals, entering via the antenna side lobes, can render measurements at the nearest target ranges totally impossible. The EISCAT Svalbard Radar (ESR, which started measurements in 1996, suffers from severe ground clutter and the ionosphere cannot be measured in any simple manner at ranges less than about 120–150 km, depending on the modulation employed. If the target and clutter signals have different, and clearly identifiable, properties then, in principle, there are always ways to eliminate the clutter. In incoherent scatter measurements, differences in the coherence times of the wanted and unwanted signals can be used for clutter cancellation. The clutter cancellation must be applied to all modulations, usually alternating codes in modern experiments, used for shorter ranges. Excellent results have been obtained at the ESR using a simple pulse-to-pulse clutter subtraction method, but there are also other possibilities.Key words: Radio science (ionospheric physics; signal processing; instruments and techniques

  15. Design of instrumentation and software for precise laser machining

    Science.gov (United States)

    Wyszyński, D.; Grabowski, Marcin; Lipiec, Piotr

    2017-10-01

    The paper concerns the design of instrumentation and software for precise laser machining. Application of advanced laser beam manipulation instrumentation enables noticeable improvement of cut quality and material loss. This factors have significant impact on process efficiency and cutting edge quality by means of machined part size and shape accuracy, wall taper, material loss reduction (e.g. diamond) and time effectiveness. The goal can be reached by integration of laser drive, observation and optical measurement system, beam manipulation system and five axis mechanical instrumentation with use of advanced tailored software enabling full laser cutting process control and monitoring.

  16. Design and testing of Ground Penetrating Radar equipment dedicated for civil engineering applications: ongoing activities in Working Group 1 of COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Manacorda, Guido; Persico, Raffaele

    2015-04-01

    This work aims at presenting the ongoing research activities carried out in Working Group 1 'Novel GPR instrumentation' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Working Group 1 (WG1) of the Action focuses on the development of innovative GPR equipment dedicated for civil engineering applications. It includes three Projects. Project 1.1 is focused on the 'Design, realisation and optimisation of innovative GPR equipment for the monitoring of critical transport infrastructures and buildings, and for the sensing of underground utilities and voids.' Project 1.2 is concerned with the 'Development and definition of advanced testing, calibration and stability procedures and protocols, for GPR equipment.' Project 1.3 deals with the 'Design, modelling and optimisation of GPR antennas.' During the first year of the Action, WG1 Members coordinated between themselves to address the state of the art and open problems in the scientific fields identified by the above-mentioned Projects [1, 2]. In carrying our this work, the WG1 strongly benefited from the participation of IDS Ingegneria dei Sistemi, one of the biggest GPR manufacturers, as well as from the contribution of external experts as David J. Daniels and Erica Utsi, sharing with the Action Members their wide experience on GPR technology and methodology (First General Meeting, July 2013). The synergy with WG2 and WG4 of the Action was useful for a deep understanding of the problems, merits and limits of available GPR equipment, as well as to discuss how to quantify the reliability of GPR results. An

  17. The Next Generation Airborne Polarimetric Doppler Radar

    Science.gov (United States)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  18. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    Science.gov (United States)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document

  19. Advances on Frequency Diverse Array Radar and Its Applications

    Directory of Open Access Journals (Sweden)

    Wang Wenqin

    2018-04-01

    Full Text Available Unlike the conventional phased array that provides only angle-dependent transmit beampattern, Frequency Diverse Array (FDA employs a small frequency increment across its array elements to produce automatic beam scanning without requiring phase shifters or mechanical steering. FDA can produce both rangedependent and time-variant transmit beampatterns, which overcomes the disadvantages of conventional phased arrays that produce only angle-dependent beampattern. Thus, FDA has many promising applications. Based on a previous study conducted by the author, “Frequency Diverse Array Radar: Concept, Principle and Application” (Journal of Electronics & Information Technology, 2016, 38(4: 1000–1011, the current study introduces basic FDA radar concepts, principles, and application characteristics and reviews recent advances on FDA radar and its applications. In addition, several new promising applications of FDA technology are discussed, such as radar electronic warfare and radar-communications, as well as open technical challenges such as beampattern variance, effective receiver design, adaptive signal detection and estimation, and the implementation of practical FDA radar demos.

  20. System 80+ instrumentation and controls - certification of a reliable design

    International Nuclear Information System (INIS)

    Matzie, R.A.; Scarola, K.; Turk, R.S.

    1993-01-01

    ABB Combustion Engineering's (ABB) System 80+ advanced light water plant design includes a modern, fully digitized instrumentation and controls complex, Nuplex 80+. This complex incorporates an evolutionary advanced control room, replacing conventional analog instruments with more capable computer driven components. As a result, Nuplex 80+ results in significant improvements in operator information handling and control to enhance plant safety and availability. The design implements features which the U.S. NRC has determined to be acceptable for addressing the potential for common mode failure in software implemented for protective functions. (author)

  1. Features of Ground Penetrating Radars for the exploration of planetary subsurface

    Science.gov (United States)

    Burghignoli, P.; Cereti, A.; Fiore, E.; Galli, A.; Pajewski, L.; Pettinelli, E.; Pisani, A.; Schettini, G.; Ticconi, F.

    2003-04-01

    Among the various applications of Surface or Ground Penetrating Radars (GPRs), the possibility of achieving useful information about the characterization of planetary soils represents a topic which has deserved particular interest in recent times [1]. The present work intends to analyze various critical aspects related to the GPR capability of properly investigating the subsurface structure, also emphasizing what kind of practical solutions seem to be more suitable to this purpose. Some basic aspects have to be considered, which are peculiar of this type of problem, e.g.: i) the poor information achievable up to now on both the composition and the stratigraphy of planet soils; ii) the typical bulk and weight limitations for instruments when used in onboard rovers for in-situ measurements. As regards the first aspect, additional knowledge should generally be required on the electromagnetic parameters (permittivity, permeability, and conductivity) of the upper subsoil layers in order to extract useful information from the GPR data. The use of different types of sensors, which can be integrated in an overall "sounding package" [1], is a useful way of characterizing more precisely such electromagnetic parameters. Consequently, GPR can primarily be used to get data on the unknown stratigraphy. The second aspect implies fundamental constraints in the design of GPR, involving the choice of the type of radar, the relevant electronic equipment for signal processing, the antenna design, etc. In addition to standard types of "pulsed" GPR, a specific study has been performed on "step-frequency" GPRs, which appear to be attractive due to their low-cost and simple electronic circuitry. As concerns the choice of the radiating elements, the most suitable configurations of GPR antennas have been investigated and compared in terms of dimensions and radiation parameters. New specific antenna configurations have been proposed, designed, and tested. Finally, numerical simulations have

  2. Sensitivity of Attitude Determination on the Model Assumed for ISAR Radar Mappings

    Science.gov (United States)

    Lemmens, S.; Krag, H.

    2013-09-01

    Inverse synthetic aperture radars (ISAR) are valuable instrumentations for assessing the state of a large object in low Earth orbit. The images generated by these radars can reach a sufficient quality to be used during launch support or contingency operations, e.g. for confirming the deployment of structures, determining the structural integrity, or analysing the dynamic behaviour of an object. However, the direct interpretation of ISAR images can be a demanding task due to the nature of the range-Doppler space in which these images are produced. Recently, a tool has been developed by the European Space Agency's Space Debris Office to generate radar mappings of a target in orbit. Such mappings are a 3D-model based simulation of how an ideal ISAR image would be generated by a ground based radar under given processing conditions. These radar mappings can be used to support a data interpretation process. E.g. by processing predefined attitude scenarios during an observation sequence and comparing them with actual observations, one can detect non-nominal behaviour. Vice versa, one can also estimate the attitude states of the target by fitting the radar mappings to the observations. It has been demonstrated for the latter use case that a coarse approximation of the target through an 3D-model is already sufficient to derive the attitude information from the generated mappings. The level of detail required for the 3D-model is determined by the process of generating ISAR images, which is based on the theory of scattering bodies. Therefore, a complex surface can return an intrinsically noisy ISAR image. E.g. when many instruments on a satellite are visible to the observer, the ISAR image can suffer from multipath reflections. In this paper, we will further analyse the sensitivity of the attitude fitting algorithms to variations in the dimensions and the level of detail of the underlying 3D model. Moreover, we investigate the ability to estimate the orientations of different

  3. Monitoring internal organ motion with continuous wave radar in CT

    International Nuclear Information System (INIS)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-01-01

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  4. BALTRAD Advanced Weather Radar Networking

    Directory of Open Access Journals (Sweden)

    Daniel Michelson

    2018-03-01

    Full Text Available BALTRAD software exchanges weather-radar data internationally, operationally, and in real-time, and it processes the data using a common toolbox of algorithms available to every node in the decentralized radar network. This approach enables each node to access and process its own and international data to meet its local needs. The software system is developed collaboratively by the BALTRAD partnership, mostly comprising the national Meteorological and Hydrological institutes in the European Union’s Baltic Sea Region. The most important sub-systems are for data exchange, data management, scheduling and event handling, and data processing. C, Java, and Python languages are used depending on the sub-system, and sub-systems communicate using well-defined interfaces. Software is available from a dedicated Git server. BALTRAD software has been deployed throughout Europe and more recently in Canada. Funding statement: From 2009–2014, the BALTRAD and BALTRAD+ projects were part-financed by the European Union (European Regional Development Fund and European Neighbourhood and Partnership Instrument, with project numbers #009 and #101, respectively.

  5. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    Science.gov (United States)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  6. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  7. Comparison of space borne radar altimetry and airborne laser altimetry over sea ice in the Fram Strait

    DEFF Research Database (Denmark)

    Giles, K.A.; Hvidegaard, Sine Munk

    2006-01-01

    This paper describes the first comparison of satellite radar and airborne laser altimetry over sea ice. In order to investigate the differences between measurements from the two different instruments we explore the statistical properties of the data and determine reasonable scales in space and time...... at which to examine them. The resulting differences between the data sets show that the laser and the radar are reflecting from different surfaces and that the magnitude of the difference decreases with increasing surface air temperature. This suggests that the penetration depth of the radar signal......, into the snow, varies with temperature. The results also show the potential for computing Arctic wide snow depth maps by combining measurements from laser and radar altimeters....

  8. Closed form fourier-based transmit beamforming for MIMO radar

    KAUST Repository

    Lipor, John J.

    2014-05-01

    In multiple-input multiple-output (MIMO) radar setting, it is often desirable to design correlated waveforms such that power is transmitted only to a given set of locations, a process known as beampattern design. To design desired beam-pattern, current research uses iterative algorithms, first to synthesize the waveform covariance matrix, R, then to design the actual waveforms to realize R. In contrast to this, we present a closed form method to design R that exploits discrete Fourier transform and Toeplitz matrix. The resulting covariance matrix fulfills the practical constraints and performance is similar to that of iterative methods. Next, we present a radar architecture for the desired beampattern that does not require the synthesis of covariance matrix nor the design of correlated waveforms. © 2014 IEEE.

  9. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  10. Design concepts for a nuclear digital instrumentation and control system platform

    International Nuclear Information System (INIS)

    Ou, T. C.; Chen, C. K.; Chen, P. J.; Shyu, S. S.; Lee, C. L.; Hsieh, S. F.

    2010-10-01

    The objective of this paper is to present the development results of the nuclear instrumentation and control system in Taiwan. As the Taiwan nuclear power plants age, the need to consider upgrading of both their safety and non-safety-related instrumentation and control systems becomes more urgent. Meanwhile, the digital instrumentation and control system that is based on current fast evolving electronic and information technologies are difficult to maintain effectively. Therefore, Institute of Nuclear Energy Research was made a decision to promote the Taiwan Nuclear Instrumentation and Control System project to collaborate with domestic electronic industry to establish self-reliant capabilities on the design, manufacturing, and application of nuclear instrumentation and control systems with newer technology. In the case of safety-related applications like nuclear instrumentation and control, safety-oriented quality control is required. In order to establish a generic qualified digital platform, the world-wide licensing experience should be considered in the licensing process. This paper describes the qualification and certification tools by IEC 61508 for design and development of safety related equipment and explains the basis for many decisions made while performing the digital upgrade. (Author)

  11. Radares meteorológicos alimentados por vías alternativas; Weather Radars with Power Supply from Alternatives Ways

    Directory of Open Access Journals (Sweden)

    Milagros Diez Rodríguez

    2011-02-01

    Full Text Available La red de radares meteorológicos de Cuba está compuesta por siete radares antiguos (cuatro rusos y tresjaponeses, los cuales son mantenidos y operados por el Instituto de Meteorología de Cuba. En 1997 elInstituto de Meteorología decidió modernizar todos sus radares, tarea que tomó diez años para su ejecución.Los sistemas de accionamiento eléctrico de las antenas también fueron sometidos a la modernización,pero junto a los requerimientos impuestos por el nuevo sistema de adquisición, los sistemas deaccionamiento dibieron cumplir con las exigencias energéticas para ser alimentados de baterías. Esteartículo describe las soluciones técnicas implementadas en el nuevo sistema de accionamiento eléctricode las antenas.  Weather radar network in Cuba is composed by seven old-fashioned radars (four Russian and three Japaneseand they are maintained and operated by Cuban Meteorological Institute. In 1997 Cuban MeteorologicalInstitute decided to modernize all those radars, and this task was accomplished along ten years.Antenna motor drives were also a matter of modernization, but along with restrictions imposed by dataacquisition, drives needed to complain energy restrictions in order to be used with a battery supply. Thispaper describes technical solutions implemented in newly designed antenna motor drives.

  12. Millimeter-wave silicon-based ultra-wideband automotive radar transceivers

    Science.gov (United States)

    Jain, Vipul

    Since the invention of the integrated circuit, the semiconductor industry has revolutionized the world in ways no one had ever anticipated. With the advent of silicon technologies, consumer electronics became light-weight and affordable and paved the way for an Information-Communication-Entertainment age. While silicon almost completely replaced compound semiconductors from these markets, it has been unable to compete in areas with more stringent requirements due to technology limitations. One of these areas is automotive radar sensors, which will enable next-generation collision-warning systems in automobiles. A low-cost implementation is absolutely essential for widespread use of these systems, which leads us to the subject of this dissertation---silicon-based solutions for automotive radars. This dissertation presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors. The first CMOS 22-29-GHz pulse-radar receiver front-end for ultra-wideband radars is presented. The chip includes a low noise amplifier, I/Q mixers, quadrature voltage-controlled oscillators, pulse formers and variable-gain amplifiers. Fabricated in 0.18-mum CMOS, the receiver achieves a conversion gain of 35-38.1 dB and a noise figure of 5.5-7.4 dB. Integration of multi-mode multi-band transceivers on a single chip will enable next-generation low-cost automotive radar sensors. Two highly-integrated silicon ICs are designed in a 0.18-mum BiCMOS technology. These designs are also the first reported demonstrations of mm-wave circuits with high-speed digital circuits on the same chip. The first mm-wave dual-band frequency synthesizer and transceiver, operating in the 24-GHz and 77-GHz bands, are demonstrated. All

  13. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  14. Design and Manufacture of a Low-Profile Radar Retro-Reflector

    National Research Council Canada - National Science Library

    Bird, Dudley

    2005-01-01

    .... Radar retro-reflectors are often passive, but active elements can be included to enhance the backscattered signal, or to modify it in some way, such as by the introduction of modulation or simulation of range profiles...

  15. ''Swords into ploughshares'': Breaking new ground with radar hardware and technique in physical research after World War II

    International Nuclear Information System (INIS)

    Forman, P.

    1995-01-01

    A survey is offered of applications to fundamental physical research, in the years immediately following World War II, of the instrumentalities developed for radar during that war. Attention is given to radar astronomy and radio astronomy, linear and cyclical accelerators, microwave spectroscopy, molecular beams, nuclear magnetic resonance, electron paramagnetic and ferromagnetic resonance, measurements of resistivity at high frequencies in metals and of second sound in helium II, and to the concepts of information and signal-to-noise ratio as basic to the design and analysis of experiments. In conjunction with this survey, consideration is given to the autonomy of physics as a knowledge-producing enterprise, framed as a question of continuity in research directions. As that question implies a baseline, the survey of postwar applications is preceded by a survey of those prewar directions of physical research requiring the highest available radio frequencies. Some 500 references are given

  16. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  17. High resolution radar satellite imagery analysis for safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Christian; Eineder, Michael [German Aerospace Center, Remote Sensing Technology Institute, Department of SAR Signal Processing, Wessling, (Germany); Rezniczek, Arnold [UBA GmbH, Herzogenrath, (Germany); Niemeyer, Irmgard [Forschungszentrum Juelich, Institue of Energy and Climate Research, IEK-6: Nuclear Waste Management and Reactor Safety, Juelich, (Germany)

    2011-12-15

    For monitoring nuclear sites, the use of Synthetic Aperture Radar (SAR) imagery shows essential promises. Unlike optical remote sensing instruments, radar sensors operate under almost all weather conditions and independently of the sunlight, i.e. time of the day. Such technical specifications are required both for continuous and for ad-hoc, timed surveillance tasks. With Cosmo-Skymed, TerraSARX and Radarsat-2, high-resolution SAR imagery with a spatial resolution up to 1m has recently become available. Our work therefore aims to investigate the potential of high-resolution TerraSAR data for nuclear monitoring. This paper focuses on exploiting amplitude of a single acquisition, assessing amplitude changes and phase differences between two acquisitions, and PS-InSAR processing of an image stack.

  18. 1983 lightning, turbulence, wind shear, and Doppler radar studies at the National Severe Storms Laboratory

    Science.gov (United States)

    Lee, J. T.

    1984-01-01

    As part of continuing research on aviation related weather hazards, numerous experiments were incorporated into the 1983 Spring Observation Program. This year's program was an abbreviated one because of commitments made to the development of the Next Generation Radar (NEXRAD) project. The National Oceanic and Atmospheric Administration's (NOAA) P-3 Orion and the National Aeronautics and Space Administration's (NASA) RB-57B and U-2 were the main aircraft involved in the studies of lightning, wind shear, turbulence, and storm structure. A total of 14 flights were made by these aircraft during the period of May 16 through June 5, 1983. Aircraft instrumentation experiments are described, and resultant data sets available for research are detailed. Aircraft instrumentation and Doppler radar characteristics are detailed.

  19. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    Science.gov (United States)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  20. Aseismatic design of electrical equipments and instruments for nuclear power stations

    International Nuclear Information System (INIS)

    Suzuki, Yasuharu; Nishizawa, Kazuo; Miyazaki, Yoshio; Miura, Takumi

    1977-01-01

    The aseismatic design of electrical instruments is carried out according to IEEE Standard 344-1971 in the USA. In Japan also, the method of aseismatic design of electrical instruments has been investigated by the representatives of electric power companies and electric machine makers since 1972. In Hitachi Ltd., the statical method of confirming aseismatic property was established on the basis of the rigid design for electrical instruments. It is convenient to examine the aseismatic property of electrical equipments by classifying them into control and switch boards, electrical appliances, equipments and circuits. It is possible to use the static method treating earthquake force as static load by avoiding resonance with the electrical equipments which have the higher natural frequency than that of buildings. The purposes of the vibration test are to prove the validity of the theoretical analysis, to clarify the vibration characteristics, and to confirm the maintenance of functions and the strength of the equipments. The vibration tests of control boards, the switch boards of enclosed type, motor control centers, the racks for instrumentation, storage batteries and electrical appliances are explained. Moreover, the vibration analysis with a computer according to finite element method is described. (Kako, I.)

  1. DESIGNING AFFECTIVE INSTRUMENT BASED ON SCIENTIFIC APPROACH FOR ENGLISH LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Maisarah Ira

    2018-01-01

    Full Text Available This research was describing the designing of instrument for affective assessment in English language teaching. The focus of the designing was only for observation sheet that will be used by English teachers during the teaching and learning process. The instrument was designed based on scientific approach that has five stages namely observing, questioning, experimenting, associating, and communicating. In the designing process, ADDIE Model was used as the method of research. The designing of instrument was considering the gap between the reality and the teachers’ need. The result showed that the designing was also notice to the affective taxonomy such as receiving, responding, valuing, organization, and characterization. Then, three key words were used as the indicator to show the five levels of affective taxonomy such as seriously, volunteer, and without asked by teacher. Furthermore, eighteen types of affective such as religious, honesty, responsible, discipline, hard work, self confidence, logical thinking, critical thinking, creative, innovative, independent, curiosity, love knowledge, respect, polite, democracy, emotional intelligence, and pluralist were put on each stage of scientific approach. So, it is hoped that can be implemented in all of context of English language teaching at schools and can assess the students’ affective comprehensively.

  2. A new low-cost 10 ns pulsed K(a)-band radar.

    Science.gov (United States)

    Eskelinen, Pekka; Ylinen, Juhana

    2011-07-01

    Two Gunn oscillators, conventional intermediate frequency building blocks, and a modified GaAs diode detector are combined to form a portable monostatic 10 ns instrumentation radar for outdoor K(a)-band radar cross section measurements. At 37.8 GHz the radar gives +20 dBm output power and its tangential sensitivity is -76 dBm. Processing bandwidth is 125 MHz, which also allows for some frequency drift in the Gunn devices. Intra-pulse frequency chirp is less than 15 MHz. All functions are steered by a microcontroller. First measurements convince that the construction has a reasonable ability to reduce close-to-ground surface clutter and gives an effective way of resolving target detail. This is beneficial especially when amplitude fluctuations disturb measurements with longer pulses. The new unit operates on 12 V dc, draws a current of less than 3 A, and weighs 5 kg.

  3. A simple device for long-term radar cross section recordings.

    Science.gov (United States)

    Eskelinen, Pekka; Ruoskanen, Jukka; Peltonen, Jouni

    2009-05-01

    A sample and hold circuit with settable delay can be used for recording of radar echo amplitude variations having time scales up to 100 s at the selected range bin in systems utilizing short rf pulses. The design is based on two integrated circuits and gives 1% uncertainty for 70 ns pulses. The key benefit is a real-time display of lengthy amplitude variations because the sample rate is defined by the radar pulse repetition frequency. Additionally we get a reduction in file size at least by the inverse of the radar's duty cycle. Examples of 10 and 100 s recordings with a Ka-band short pulse radar are described.

  4. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2017-01-01

    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  5. Codesign of Beam Pattern and Sparse Frequency Waveforms for MIMO Radar

    Directory of Open Access Journals (Sweden)

    Chaoyun Mai

    2015-01-01

    Full Text Available Multiple-input multiple-output (MIMO radar takes the advantages of high degrees of freedom for beam pattern design and waveform optimization, because each antenna in centralized MIMO radar system can transmit different signal waveforms. When continuous band is divided into several pieces, sparse frequency radar waveforms play an important role due to the special pattern of the sparse spectrum. In this paper, we start from the covariance matrix of the transmitted waveform and extend the concept of sparse frequency design to the study of MIMO radar beam pattern. With this idea in mind, we first solve the problem of semidefinite constraint by optimization tools and get the desired covariance matrix of the ideal beam pattern. Then, we use the acquired covariance matrix and generalize the objective function by adding the constraint of both constant modulus of the signals and corresponding spectrum. Finally, we solve the objective function by the cyclic algorithm and obtain the sparse frequency MIMO radar waveforms with desired beam pattern. The simulation results verify the effectiveness of this method.

  6. Simulador de radar meteorológico basado en modelo de Reflectividades en el espacio; Weather radar simulator based on space Reflectivity distribution

    Directory of Open Access Journals (Sweden)

    Vladímir Rodríguez Diez

    2012-07-01

    Full Text Available Los radares meteorológicos son potentes instrumentos de medición de potencia eléctrica. Los simuladores de radar permiten estudiar la influencia de todos sus parámetros en las mediciones que realiza. Su aplicación en laactualidad comprende el estudio de la influencia de las propiedades físicas de los hidrometeoros y la configuración del radar en la observación; y el estudio del desempeño de los modelos climáticos a partir de la confrontación de lasalida del simulador con la observación real. En este trabajo se utiliza como entrada al simulador una distribución de Reflectividades (parámetro proporcional a la potencia retornada en la atmósfera; obviando la compleja relación que existe entre esta última y las propiedades físicas del blanco meteorológico. El resultado es un simulador que posibilita el estudio de los efectos de patrón de escaneo de la atmósfera y el esquema de adquisición yprocesamientos de los datos, sobre la percepción de un blanco meteorológico. Weather radar are powerful measurement instruments for electric power. Radar simulators allows to investigate the influence of its parameter on measurements.Its application comprehend the study of influence of hydrometeor's physical properties and radar configurations in observation; and the study of climate model performance upon the confrontation of simulator output versus actual observations. In this work simulator input is given as a spacial reflectivity (proportional to returned power distribution in atmosphere, obviating the complex relation between this and physical properties of meteorological target. The result is a simulator for the study of volume scan pattern and acquisition and processing scheme effects on weather target observation.

  7. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    Science.gov (United States)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  8. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  9. The study of fresh-water lake ice using multiplexed imaging radar

    Science.gov (United States)

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  10. Recommendation on Transition from Primary/Secondary Radar to Secondary- Only Radar Capability

    Science.gov (United States)

    1994-10-01

    Radar Beacon Performance Monitor RCIU Remote Control Interface Unit RCL Remote Communications Link R E&D Research, Engineering and Development RML Radar...rate. 3.1.2.5 Maintenance The current LRRs have limited remote maintenance monitoring (RMM) capabilities via the Remote Control Interface Unit ( RCIU ...1, -2 and FPS-20 radars required an upgrade of some of the radar subsystems, namely the RCIU to respond as an RMS and the CD to interface with radar

  11. Design of a novel instrument for active neutron interrogation of artillery shells.

    Science.gov (United States)

    Bélanger-Champagne, Camille; Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter

    2017-01-01

    The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.

  12. Radar-Based Depth Area Reduction Factors for Colorado

    Science.gov (United States)

    Curtis, D. C.; Humphrey, J. H.; Bare, D.

    2011-12-01

    More than 340,000 fifteen-minute storm cells, nearly 45,000 one-hour cells, and over 20,000 three-hour cells found in 21 months of gage adjusted radar-rainfall estimates (GARR) over El Paso County, CO, were identified and evaluated using TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting) software. TITAN's storm cell identification capability enabled the analysis of the geometric properties of storms, time step by time step. The gage-adjusted radar-rainfall data set was derived for months containing runoff producing events observed in the Fountain Creek Watershed within El Paso County from 1994-2008. Storm centered Depth Area Reduction Factors (DARFs) were computed and compared to DARFs published by the U.S. National Weather Service (NWS) in Technical Paper 29, which are widely used in stormwater infrastructure design. Radar-based storm centered DARFs decay much more sharply than the NWS standard curves. The results suggest lower watershed average rainfall inputs from radar-based storm centered DARFs than from standard NWS DARFs for a given watershed area. The results also suggest that DARFs are variable by return period and, perhaps, by location. Both findings could have significant impacts on design storm standards. Lower design volumes for a given return period translate to lower capacity requirements and lower cost infrastructure. Conversely, the higher volume requirements implied for the NWS DARFs translate to higher capacity requirements, higher costs, but lower risk of failure. Ultimately, a decision about which approach is to use depends on the risk tolerance of the decision maker. However, the growing volume of historical radar rainfall estimates coupled with the type of analysis described herein, supports a better understanding of risk and more informed decision-making by local officials.

  13. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  14. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  15. San Andreas Fault, Southern California , Radar Image, Wrapped Color as Height

    Science.gov (United States)

    2000-01-01

    This topographic radar image vividly displays California's famous San Andreas Fault along the southwestern edge of the Mojave Desert, 75 kilometers (46 miles) north of downtown Los Angeles. The entire segment of the fault shown in this image last ruptured during the Fort Tejon earthquake of 1857. This was one of the greatest earthquakes ever recorded in the U.S., and it left an amazing surface rupture scar over 350 kilometers in length along the San Andreas. Were the Fort Tejon shock to happen today, the damage would run into billions of dollars, and the loss of life would likely be substantial, as the communities of Wrightwood, Palmdale, and Lancaster (among others) all lie upon or near the 1857 rupture area. The Lancaster/Palmdale area appears as bright patches just below the center of the image and the San Gabriel Mountains fill the lower left half of the image. At the extreme lower left is Pasadena. High resolution topographic data such as these are used by geologists to study the role of active tectonics in shaping the landscape, and to produce earthquake hazard maps.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters, or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 2400 meters (8000 feet) of total relief.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an

  16. Social Radar

    Science.gov (United States)

    2012-01-01

    RTA HFM-201/RSM PAPER 3 - 1 © 2012 The MITRE Corporation. All Rights Reserved. Social Radar Barry Costa and John Boiney MITRE Corporation...defenders require an integrated set of capabilities that we refer to as a “ social radar.” Such a system would support strategic- to operational-level...situation awareness, alerting, course of action analysis, and measures of effectiveness for each action undertaken. Success of a social radar

  17. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design

    Science.gov (United States)

    France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason

    2017-08-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2

  18. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    Science.gov (United States)

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  19. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  20. ARM Cloud Radar Simulator Package for Global Climate Models Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuying [North Carolina State Univ., Raleigh, NC (United States); Xie, Shaocheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-01

    It has been challenging to directly compare U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground-based cloud radar measurements with climate model output because of limitations or features of the observing processes and the spatial gap between model and the single-point measurements. To facilitate the use of ARM radar data in numerical models, an ARM cloud radar simulator was developed to converts model data into pseudo-ARM cloud radar observations that mimic the instrument view of a narrow atmospheric column (as compared to a large global climate model [GCM] grid-cell), thus allowing meaningful comparison between model output and ARM cloud observations. The ARM cloud radar simulator value-added product (VAP) was developed based on the CloudSat simulator contained in the community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), which has been widely used in climate model evaluation with satellite data (Klein et al., 2013, Zhang et al., 2010). The essential part of the CloudSat simulator is the QuickBeam radar simulator that is used to produce CloudSat-like radar reflectivity, but is capable of simulating reflectivity for other radars (Marchand et al., 2009; Haynes et al., 2007). Adapting QuickBeam to the ARM cloud radar simulator within COSP required two primary changes: one was to set the frequency to 35 GHz for the ARM Ka-band cloud radar, as opposed to 94 GHz used for the CloudSat W-band radar, and the second was to invert the view from the ground to space so as to attenuate the beam correctly. In addition, the ARM cloud radar simulator uses a finer vertical resolution (100 m compared to 500 m for CloudSat) to resolve the more detailed structure of clouds captured by the ARM radars. The ARM simulator has been developed following the COSP workflow (Figure 1) and using the capabilities available in COSP

  1. Lunar ground penetrating radar: Minimizing potential data artifacts caused by signal interaction with a rover body

    Science.gov (United States)

    Angelopoulos, Michael; Redman, David; Pollard, Wayne H.; Haltigin, Timothy W.; Dietrich, Peter

    2014-11-01

    Ground-penetrating radar (GPR) is the leading geophysical candidate technology for future lunar missions aimed at mapping shallow stratigraphy (lunar materials, as well as its small size and lightweight components, make it a very attractive option from both a scientific and engineering perspective. However, the interaction between a GPR signal and the rover body is poorly understood and must be investigated prior to a space mission. In doing so, engineering and survey design strategies should be developed to enhance GPR performance in the context of the scientific question being asked. This paper explores the effects of a rover (simulated with a vertical metal plate) on GPR results for a range of heights above the surface and antenna configurations at two sites: (i) a standard GPR testing site with targets of known position, size, and material properties, and; (ii) a frozen lake for surface reflectivity experiments. Our results demonstrate that the GPR antenna configuration is a key variable dictating instrument design, with the XX polarization considered optimal for minimizing data artifact generation. These findings could thus be used to help guide design requirements for an eventual flight instrument.

  2. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  3. Hardware description ADSP-21020 40-bit floating point DSP as designed in a remotely controlled digital CW Doppler radar

    Science.gov (United States)

    Morrison, R. E.; Robinson, S. H.

    A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander.

  4. Informational analysis for compressive sampling in radar imaging.

    Science.gov (United States)

    Zhang, Jingxiong; Yang, Ke

    2015-03-24

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation.

  5. Design of a novel instrument for active neutron interrogation of artillery shells.

    Directory of Open Access Journals (Sweden)

    Camille Bélanger-Champagne

    Full Text Available The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.

  6. Using raindrop size distributions from different types of disdrometer to establish weather radar algorithms

    Science.gov (United States)

    Baldini, Luca; Adirosi, Elisa; Roberto, Nicoletta; Vulpiani, Gianfranco; Russo, Fabio; Napolitano, Francesco

    2015-04-01

    Radar precipitation retrieval uses several relationships that parameterize precipitation properties (like rainfall rate and liquid water content and attenuation (in case of radars at attenuated frequencies such as those at C- and X- band) as a function of combinations of radar measurements. The uncertainty in such relations highly affects the uncertainty precipitation and attenuation estimates. A commonly used method to derive such relationships is to apply regression methods to precipitation measurements and radar observables simulated from datasets of drop size distributions (DSD) using microphysical and electromagnetic assumptions. DSD datasets are determined both by theoretical considerations (i.e. based on the assumption that the radar always samples raindrops whose sizes follow a gamma distribution) or from experimental measurements collected throughout the years by disdrometers. In principle, using long-term disdrometer measurements provide parameterizations more representative of a specific climatology. However, instrumental errors, specific of a disdrometer, can affect the results. In this study, different weather radar algorithms resulting from DSDs collected by diverse types of disdrometers, namely 2D video disdrometer, first and second generation of OTT Parsivel laser disdrometer, and Thies Clima laser disdrometer, in the area of Rome (Italy) are presented and discussed to establish at what extent dual-polarization radar algorithms derived from experimental DSD datasets are influenced by the different error structure of the different type of disdrometers used to collect the data.

  7. Venus radar mapper attitude reference quaternion

    Science.gov (United States)

    Lyons, D. T.

    1986-01-01

    Polynomial functions of time are used to specify the components of the quaternion which represents the nominal attitude of the Venus Radar mapper spacecraft during mapping. The following constraints must be satisfied in order to obtain acceptable synthetic array radar data: the nominal attitude function must have a large dynamic range, the sensor orientation must be known very accurately, the attitude reference function must use as little memory as possible, and the spacecraft must operate autonomously. Fitting polynomials to the components of the desired quaternion function is a straightforward method for providing a very dynamic nominal attitude using a minimum amount of on-board computer resources. Although the attitude from the polynomials may not be exactly the one requested by the radar designers, the polynomial coefficients are known, so they do not contribute to the attitude uncertainty. Frequent coefficient updates are not required, so the spacecraft can operate autonomously.

  8. Proposed experiment to detect air showers with the Jicamarca radar system

    International Nuclear Information System (INIS)

    Vinogradova, T.; Chapin, E.; Gorham, P.; Saltzberg, D.

    2001-01-01

    When an extremely high energy particle interacts in the atmosphere, the collision induces a multiplicative cascade of charged particles, which grows exponentially until the energy per secondary degrades enough to dissipate in ionization of the surrounding air. During this process the compact cloud of energetic secondary particles travels 10-20 km through the atmosphere, leaving a column of ionization behind it. This ionized column quickly recombines, but for a period of order 0.1 ms it is highly reflective at frequencies below 100 MHz. This ionization trail, which is comparable in ionization density to that of a micro-meteor, should be clearly detectable using standard radar methods. We propose radar measurements using the facilities operated by Cornell University and the Instituto Geofisico del Peru (IGP) at the Jicamarca Radio Observatory near Lima, Peru. This facility's primary instrument is 49.92 MHz incoherent scatter radar, transmitting up to 1.5 MW of pulse power

  9. Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-06-01

    Full Text Available The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS and phase locked loop (PLL. A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA and digital signal processor (DSP pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation.

  10. Research and development of laser radar for environmental measurement. 2; Kankyo keisokuyo laser radar no kenkyu kaihatsu. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This project was received by Optoelectronic Industry and Technology Development Association from NEDO, and aims to contribute to the improvement of Indonesia's environmental administration through the development of an air pollution observing laser radar (LR) and of an environmental information network system fit for use in the country in cooperation with Indonesian engineers. LRs will be installed at several sites in an urban area where environmental problems are increasingly serious, and a observation network system will be constructed to link the laser radar sites. The observed data will be collected, analyzed, and processed by an observation data processing center for the investigation of the three-dimensional spatial distribution of air pollution to determine the actual state of air pollution over an urban area. The laser radars and the network will be placed in the city of Djakarta. The Indonesian authority responsible for the project is Indonesian Institute of Sciences. In fiscal 1994, part of the equipment (difference absorbing LR) was designed and manufactured, the design of the environmental information network system was developed, and various researches required in this connection were conducted. (NEDO)

  11. Neutron beam-line shield design for the protein crystallography instrument at the Lujan Center

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Muhrer, G.; Ferguson, P.D.

    2001-01-01

    We have developed a very useful methodology for calculating absolute total (neutron plus gamma-ray) dose equivalent rates for use in the design of neutron beam line shields at a spallation neutron source. We have applied this technique to the design of beam line shields for several new materials science instruments being built at the Manuel Lujan Jr. Neutron Scattering Center. These instruments have a variety of collimation systems and different beam line shielding issues. We show here some specific beam line shield designs for the Protein Crystallography Instrument. (author)

  12. Manajemen Redaksional Pada Surat Kabar Harian Umum Radar Cirebon (Studi Deskriptif Kualitatif Manajemen Redaksional pada Surat Kabar Harian Umum Radar Cirebon Periode Januari-Mei 2013

    Directory of Open Access Journals (Sweden)

    M Irfan Fazryansyah

    2014-01-01

    Full Text Available Mass media after the era of reform becomes the mass communication facility and instrument shaper of public opinion , it is helping in human life to exchanging ideas, sharing of experience and information in the volume of a relatively large. This research aims to understand planning, organizing, mobilizing and supervision in the management of editorial on daily newspaper of Radar Cirebon. A method of this research is descriptive qualitative, data was gathered by direct interview, observasion and availability of literature studies. Based on covered can be drawn conclusions that ( 1 In the planning stages, daily newspaper of Radar Cirebon well to plan, it is seen from the success of meeting and a meeting of the editor. ( 2 the organizing stages, the editor management has forming the organization structure and their duty to each personel.( 3 The mobilization phase is very important to editor management in daily newspaper of Radar Cirebon, because of mobilizarion, the management of material goes well, start from the reporting process, writing, editing till becoming the news. (4 In the phase supervision in editorial management of daily newspaper of Radar Cirebon conducted in the form of direct briefing to reporters during a news manuscript edited by the editor still experiencing a shortage of data.

  13. Measuring Balance Across Multiple Radar Receiver Channels.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Bickel, Douglas L.

    2018-03-01

    When radar receivers employ multiple channels, the general intent is for the receive channels to be as alike as possible, if not as ideal as possible. This is usually done via prudent hardware design, supplemented by system calibration. Towards this end, we require a quality metric for ascertaining the goodness of a radar channel, and the degree of match to sibling channels. We propose a relevant and useable metric to do just that. Acknowledgements This report was the result of an unfunded research and development activity.

  14. Monostatic radar cross section of flying wing delta planforms

    Directory of Open Access Journals (Sweden)

    Sevoor Meenakshisundaram Vaitheeswaran

    2017-04-01

    Full Text Available The design of the flying wing and its variants shapes continues to have a profound influence in the design of the current and future use of military aircraft. There is very little in the open literature available to the understanding and by way of comparison of the radar cross section of the different wing planforms, for obvious reasons of security and sensitivity. This paper aims to provide an insight about the radar cross section of the various flying wing planforms that would aid the need and amount of radar cross section suppression to escape detection from surveillance radars. Towards this, the shooting and bouncing ray method is used for analysis. In this, the geometric optics theory is first used for launching and tracing the electromagnetic rays to calculate the electromagnetic field values as the waves bounce around the target. The physical optics theory is next used to calculate the final scattered electric field using the far field integration along the observation direction. For the purpose of comparison, all the planform shapes are assumed to be having the same area, and only the aspect ratio and taper ratio are varied to feature representative airplanes.

  15. SKB - PNC. Development of tunnel radar antennas

    International Nuclear Information System (INIS)

    Falk, L.

    1991-07-01

    Tunnel antennas for the RAMAC borehole radar system have been developed and tested in the field. The antennas are of the loaded dipole type and the receiver and transmitter electronics have been rebuilt to screen them from the antennas. A series of measurements has demonstrated that the radar pulse is short and well shaped and relatively free from ringing, even compared with the existing borehole antennas. Two antenna sets were tested: one centered at 60 MHz and another above 100 MHz. Both produced excellent radar pictures when tested in tunnels in Stripa mine. The antennas have been designed to be easy to carry, since the signal quality often depends on the way the antenna is held relative to electric conductors in the tunnels. (au) (46 figs., 57 refs.)

  16. Minimum redundancy MIMO radars

    OpenAIRE

    Chen, Chun-Yang; Vaidyanathan, P. P.

    2008-01-01

    The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, i...

  17. Multiple-scattering in radar systems: A review

    International Nuclear Information System (INIS)

    Battaglia, Alessandro; Tanelli, Simone; Kobayashi, Satoru; Zrnic, Dusan; Hogan, Robin J.; Simmer, Clemens

    2010-01-01

    Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is

  18. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    of the ST radar echoes with a particular emphasis on recent works. Their possible coupling with stable sheets is then presented and their known characteristics are described with some hypotheses concerning their generation mechanisms. Finally, measurement campaigns that took recently place or will be carried out in the near future for improving our knowledge of these small-scale structures are presented briefly.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques – Radio Science (remote sensing

  19. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    2001-08-01

    of the ST radar echoes with a particular emphasis on recent works. Their possible coupling with stable sheets is then presented and their known characteristics are described with some hypotheses concerning their generation mechanisms. Finally, measurement campaigns that took recently place or will be carried out in the near future for improving our knowledge of these small-scale structures are presented briefly.Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques – Radio Science (remote sensing

  20. Designing Successful Next-Generation Instruments to Detect the Epoch of Reionization

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Hydrogen Epoch of Reionization Array (HERA) team, Murchison Widefield Array (MWA) team

    2018-01-01

    The Epoch of Reionization (EoR) signifies a period of intense evolution of the Inter-Galactic Medium (IGM) in the early Universe caused by the first generations of stars and galaxies, wherein they turned the neutral IGM to be completely ionized by redshift ≥ 6. This important epoch is poorly explored to date. Measurement of redshifted 21 cm line from neutral Hydrogen during the EoR is promising to provide the most direct constraints of this epoch. Ongoing experiments to detect redshifted 21 cm power spectrum during reionization, including the Murchison Widefield Array (MWA), Precision Array for Probing the Epoch of Reionization (PAPER), and the Low Frequency Array (LOFAR), appear to be severely affected by bright foregrounds and unaccounted instrumental systematics. For example, the spectral structure introduced by wide-field effects, aperture shapes and angular power patterns of the antennas, electrical and geometrical reflections in the antennas and electrical paths, and antenna position errors can be major limiting factors. These mimic the 21 cm signal and severely degrade the instrument performance. It is imperative for the next-generation of experiments to eliminate these systematics at their source via robust instrument design. I will discuss a generic framework to set cosmologically motivated antenna performance specifications and design strategies using the Precision Radio Interferometry Simulator (PRISim) -- a high-precision tool that I have developed for simulations of foregrounds and the instrument transfer function intended primarily for 21 cm EoR studies, but also broadly applicable to interferometer-based intensity mapping experiments. The Hydrogen Epoch of Reionization Array (HERA), designed in-part based on this framework, is expected to detect the 21 cm signal with high significance. I will present this framework and the simulations, and their potential for designing upcoming radio instruments such as HERA and the Square Kilometre Array (SKA).

  1. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  2. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  3. Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure

    Science.gov (United States)

    Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.

    2017-03-01

    Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.

  4. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-01-01

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  5. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    Energy Technology Data Exchange (ETDEWEB)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  6. Matter in Extreme Conditions Instrument - Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; /SLAC; Lee, R.W.; /LLNL, Livermore; Nagler, B.; /Rutherford; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is

  7. Design of transmission-type phase holograms for a compact radar-cross-section measurement range at 650 GHz.

    Science.gov (United States)

    Noponen, Eero; Tamminen, Aleksi; Vaaja, Matti

    2007-07-10

    A design formalism is presented for transmission-type phase holograms for use in a submillimeter-wave compact radar-cross-section (RCS) measurement range. The design method is based on rigorous electromagnetic grating theory combined with conventional hologram synthesis. Hologram structures consisting of a curved groove pattern on a 320 mmx280 mm Teflon plate are designed to transform an incoming spherical wave at 650 GHz into an output wave generating a 100 mm diameter planar field region (quiet zone) at a distance of 1 m. The reconstructed quiet-zone field is evaluated by a numerical simulation method. The uniformity of the quiet-zone field is further improved by reoptimizing the goal field. Measurement results are given for a test hologram fabricated on Teflon.

  8. Radar-cross-section reduction of wind turbines. part 1.

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  9. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  10. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    Directory of Open Access Journals (Sweden)

    Marco Gabella

    2017-11-01

    a geostatistical approach. The GPM mission is adding significant new coverage to mountainous areas, especially in poorly instrumented parts of the world and at latitudes not previously covered by the Tropical Rainfall Measuring Mission (TRMM. According to this study, one could expect an underestimation of the precipitation product by the dual-frequency precipitation radar (DPR also in other mountainous areas of the world.

  11. A statistical model for radar images of agricultural scenes

    Science.gov (United States)

    Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.; Stiles, J. A.

    1982-01-01

    The presently derived and validated statistical model for radar images containing many different homogeneous fields predicts the probability density functions of radar images of entire agricultural scenes, thereby allowing histograms of large scenes composed of a variety of crops to be described. Seasat-A SAR images of agricultural scenes are accurately predicted by the model on the basis of three assumptions: each field has the same SNR, all target classes cover approximately the same area, and the true reflectivity characterizing each individual target class is a uniformly distributed random variable. The model is expected to be useful in the design of data processing algorithms and for scene analysis using radar images.

  12. The development of state/region owned goods management’s monitoring instrument design

    Directory of Open Access Journals (Sweden)

    Ikhwanto Yogy

    2017-01-01

    Full Text Available The problems in state/region owned goods in Indonesian state and local governments are suspected to occur because of weak monitoring programs, according to many studies. A tool or instrument in implementing this monitoring program is expected to address this problem. Such tool currently doesn’t exist yet. This research aims to fill that gap by developing a monitoring instrument design for state/region owned goods by using Daerah Istimewa Yogyakarta (DIY Local Government as a research context in order to take valuable inputs for the design. This research is using developmental research method. Government Regulation were used for normative reference and Friedman’s results-based accountability quadrat were used in developing good indicators for the instrument. This research is succeeded in formulating the indicators that made up the instrument. Indicators compiled are divided into compliance-based indicators and results-based indicators. Indicators are formulated based on the validation and inputs from employees of DIY’s Assets Management Agency and experts from academia. This instrument still has some limitations that need improvement through further research.

  13. Implementation and validation of the ISMAR High Frequency Coastal Radar Network in the Gulf of Manfredonia (Mediterranean Sea)

    DEFF Research Database (Denmark)

    Corgnati, Lorenzo; Mantovani, Carlo; Griffa, Annalisa

    2017-01-01

    are disseminated via a THREDDS catalog supporting OGC compliant distributions and protocols for data visualization, metadata interrogation and data download. HF radar velocity data were validated using in situ velocity measurements by GPS-tracked surface drifters deployed within the radar footprint. The results...... show a good agreement, with the root mean square (rms) of the difference between radial velocities from HF radar and drifters ranging between 20% - 50% of the drifter velocity rms. The HF radar data have also been compared with subsurface velocity profiles from an upward looking Acoustic Doppler...... are considered. Results show that, at least in the considered period, the velocity in the water column is well correlated, and there is a good agreement between surface HF radar and ADCP data (correlations between 0.95 - 0.75). The Gulf of Manfredonia network has been instrumental to the set up of a core...

  14. A basic design of SR4 instrumentation and control system for research reactor

    International Nuclear Information System (INIS)

    Syahrudin Yusuf; M Subhan; Ikhsan Shobari; Sutomo Budihardjo

    2010-01-01

    An SR4 instrumentation and control systems of research reactor is the equipment of nuclear research reactors as power protection devices and control systems. The equipment is to monitor safety parameters and process parameters in the state of reactor shut down, start-up, and in operation at fixed power. In the engineering of Instrumentation and control systems SR4 research reactor, its basic design consists of technical specifications of the reactor protection system devices, technical specifications of the reactor power control system devices, technical specifications information system devices, and systems process termination cabling as a support system. This basic design is used as the basis for the preparation of detailed design and subsequent engineering development of instrumentation systems and control system integrated. (author)

  15. TDMA X-band FMCW MIMO radar for short range surveillance applications

    NARCIS (Netherlands)

    Belfiori, F.; Maas, A.P.M.; Hoogeboom, P.; Rossum, W.L. van

    2011-01-01

    The work presented in this paper was aimed at the design of a compact radar device to be used for private area surveillance applications. The radar is connected to a pan tilt zoom camera and it provides the camera system with high accuracy position information (bearing and range) of moving targets;

  16. Cassini RADAR at Titan : Results in 2013/2014

    Science.gov (United States)

    Lorenz, Ralph D.; Cassini RadarTeam

    2014-05-01

    Since the last EGU meeting, several Cassini flybys of Titan have featured significant RADAR observations. These include T91 and T92 (May/July 2013) with SAR and altimetry observations of Ligeia Mare. The latter have placed tight constraints on surface roughness (Zebker et al., in press), showing that wind-driven waves were not present. A remarkable altimetry analysis by Mastrogiuseppe et al. (submitted) detects a bottom echo from the bed of Ligeia, only possible if the liquid is exceptionally radar-transparent. This opens the way to wider radar bathymetry analyses of the northern seas. SAR coverage, augmented by some distant HiSAR observations, has now allowed construction of a more-or-less complete map of the northern polar region. This map now defines the extent of the northern lakes and seas, permitting oceanographic studies. T95 (October 2013) made SAR observations of the impact crater Selk (previously observed by VIMS and RADAR). As well as a closer view of this rather polygonal crater, the observation shows dramatic change in the dune orientation around the crater and its ejecta blanket. The T98 encounter is due to occur in February 2014, and will feature the last prime SAR observation of Ontario Lacus, giving a good baseline for change detection against prior observations. Additionally, close-approach observations (mandated to avoid solar heating constraints on other instruments) will give high-resolution altimetry data on the Shangri-La dunes. Preliminary results may be available in time for the meeting, at which this solicted talk will review analyses of these and other observations.

  17. Oil Slick Characterization Using Synthetic Aperture Radar

    Science.gov (United States)

    Jones, C. E.; Breivik, O.; Brekke, C.; Skrunes, S.; Holt, B.

    2015-12-01

    Oil spills are a hazard worldwide with potential of causing high impact disasters, and require an active oil spill response capability to protect personnel, the ecosystem, and the energy supply. As the amount of oil in traditionally accessible reserves decline, there will be increasing oil extraction from the Arctic and deep-water wells, both new sources with high risk and high cost for monitoring and response. Although radar has long been used for mapping the spatial extent of oil slicks, it is only since the Deepwater Horizon spill that synthetic aperture radar (SAR) has been shown capable of characterizing oil properties within a slick, and therefore useful for directing response to the recoverable thicker slicks or emulsions. Here we discuss a 2015 Norwegian oil-on-water spill experiment in which emulsions of known quantity and water-to-oil ratio along with a look-alike slick of plant oil were released in the North Sea and imaged with polarimetric SAR (PolSAR) by NASA's UAVSAR instrument for several hours following release. During the experiment, extensive in situ measurements were made from ship or aircraft with meteorological instruments, released drift buoys, and optical/IR imagers. The experiment was designed to provide validation data for development of a physical model relating polarization-dependent electromagnetic scattering to the dielectric properties of oil mixed with ocean water, which is the basis for oil characterization with SAR. Data were acquired with X-, C-, and L-band satellite-based SARs to enable multi-frequency comparison of characterization capabilities. In addition, the data are used to develop methods to differentiate mineral slicks from biogenic look-alikes, and to better understand slick weathering and dispersion. The results will provide a basis for modeling oil-in-ice spills, currently a high priority for nations involved in Arctic oil exploration. Here we discuss the Norwegian experiment, the validation data, and the results of

  18. Letter to the Editor: Complete maps of the aspect sensitivity of VHF atmospheric radar echoes

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    1999-08-01

    Full Text Available Using the MU radar at Shigaraki, Japan (34.85°N, 136.10°E, we measure the power distribution pattern of VHF radar echoes from the mid-troposphere. The large number of radar beam-pointing directions (320 allows the mapping of echo power from 0° to 40° from zenith, and also the dependence on azimuth, which has not been achieved before at VHF wavelengths. The results show how vertical shear of the horizontal wind is associated with a definite skewing of the VHF echo power distribution, for beam angles as far as 30° or more from zenith, so that aspect sensitivity cannot be assumed negligible at any beam-pointing angle that most existing VHF radars are able to use. Consequently, the use of VHF echo power to calculate intensity of atmospheric turbulence, which assumes only isotropic backscatter at large beam zenith angles, will sometimes not be valid.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; instruments and techniques

  19. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  20. Diseño y validación de un radar CW-FM a 94 GHz

    OpenAIRE

    Varela Agrelo, David

    2013-01-01

    Diseño y validación de un radar CW-FM a 9g GHz 94 GHz CW-FM radar design and mesurement campaign validation. Desarrollo de un radar CW-FM a 94GHz y verificación de los resultados obtenidos durante la etapa de medidas. Desevolupament d'un radar CW-FM a 94GHz i verificació dels resultat obteinguts durante l'etapa de mesures.

  1. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  2. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  3. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  4. The effect of recombination and attachment on meteor radar diffusion coefficient profiles

    Science.gov (United States)

    Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.

    2013-04-01

    Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.

  5. Frequency Adaptability and Waveform Design for OFDM Radar Space-Time Adaptive Processing

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Glover, Charles Wayne [ORNL

    2012-01-01

    We propose an adaptive waveform design technique for an orthogonal frequency division multiplexing (OFDM) radar signal employing a space-time adaptive processing (STAP) technique. We observe that there are inherent variabilities of the target and interference responses in the frequency domain. Therefore, the use of an OFDM signal can not only increase the frequency diversity of our system, but also improve the target detectability by adaptively modifying the OFDM coefficients in order to exploit the frequency-variabilities of the scenario. First, we formulate a realistic OFDM-STAP measurement model considering the sparse nature of the target and interference spectra in the spatio-temporal domain. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. With numerical examples we demonstrate that the resultant OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  6. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. An inspector-instrument interface design that allows communication of procedures, responses, and results between the instrument and user is presented. This capability has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  7. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. This report describes an inspector-instrument interface design which allows communication of procedures, responses, and results between the instrument and user. The interface has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  8. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  9. Miniaturized Ka-Band Dual-Channel Radar

    Science.gov (United States)

    Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian

    2011-01-01

    Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.

  10. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  11. Design and installation of advanced computer safety related instrumentation

    International Nuclear Information System (INIS)

    Koch, S.; Andolina, K.; Ruether, J.

    1993-01-01

    The rapidly developing area of computer systems creates new opportunities for commercial utilities operating nuclear reactors to improve plant operation and efficiency. Two of the main obstacles to utilizing the new technology in safety-related applications is the current policy of the licensing agencies and the fear of decision making managers to introduce new technologies. Once these obstacles are overcome, advanced diagnostic systems, CRT-based displays, and advanced communication channels can improve plant operation considerably. The article discusses outstanding issues in the area of designing, qualifying, and licensing of computer-based instrumentation and control systems. The authors describe the experience gained in designing three safety-related systems, that include a Programmable Logic Controller (PLC) based Safeguard Load Sequencer for NSP Prairie Island, a digital Containment Isolation monitoring system for TVA Browns Ferry, and a study that was conducted for EPRI/NSP regarding a PLC-based Reactor Protection system. This article presents the benefits to be gained in replacing existing, outdated equipment with new advanced instrumentation

  12. MicroRadarNet: A network of weather micro radars for the identification of local high resolution precipitation patterns

    Science.gov (United States)

    Turso, S.; Paolella, S.; Gabella, M.; Perona, G.

    2013-01-01

    In this paper, MicroRadarNet, a novel micro radar network for continuous, unattended meteorological monitoring is presented. Key aspects and constraints are introduced. Specific design strategies are highlighted, leading to the technological implementations of this wireless, low-cost, low power consumption sensor network. Raw spatial and temporal datasets are processed on-board in real-time, featuring a consistent evaluation of the signals from the sensors and optimizing the data loads to be transmitted. Network servers perform the final post-elaboration steps on the data streams coming from each unit. Final network products are meteorological mappings of weather events, monitored with high spatial and temporal resolution, and lastly served to the end user through any Web browser. This networked approach is shown to imply a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range monitoring strategy. Adoption of the TITAN storm identification and nowcasting engine is also here evaluated for in-loop integration within the MicroRadarNet data processing chain. A brief description of the engine workflow is provided, to present preliminary feasibility results and performance estimates. The outcomes were not so predictable, taking into account relevant operational differences between a Western Alps micro radar scenario and the long range radar context in the Denver region of Colorado. Finally, positive results from a set of case studies are discussed, motivating further refinements and integration activities.

  13. Design of Wireless Automatic Synchronization for the Low-Frequency Coded Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Zhenghuan Xia

    2015-01-01

    Full Text Available Low-frequency coded ground penetrating radar (GPR with a pair of wire dipole antennas has some advantages for deep detection. Due to the large distance between the two antennas, the synchronization design is a major challenge of implementing the GPR system. This paper proposes a simple and stable wireless automatic synchronization method based on our developed GPR system, which does not need any synchronization chips or modules and reduces the cost of the hardware system. The transmitter omits the synchronization preamble and pseudorandom binary sequence (PRBS at an appropriate time interval, while receiver automatically estimates the synchronization time and receives the returned signal from the underground targets. All the processes are performed in a single FPGA. The performance of the proposed synchronization method is validated with experiment.

  14. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    2001-08-01

    these levels. The analysis of simultaneous lidar and MST Radar observations can thus yield valuable information on the structure and dynamics of the cirrus, specifically near the boundaries of such clouds.Key words. Atmospheric composition and structure (cloud physics and chemistry; instruments and technique - Meteorology and atmospheric dynamics (tropical meteorology

  15. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    these levels. The analysis of simultaneous lidar and MST Radar observations can thus yield valuable information on the structure and dynamics of the cirrus, specifically near the boundaries of such clouds.

    Key words. Atmospheric composition and structure (cloud physics and chemistry; instruments and technique - Meteorology and atmospheric dynamics (tropical meteorology

  16. Coupling Between Doppler Radar Signatures and Tornado Damage Tracks

    Science.gov (United States)

    Jedlovec, Gary J.; Molthan, Andrew L.; Carey, Lawrence; Carcione, Brian; Smith, Matthew; Schultz, Elise V.; Schultz, Christopher; Lafontaine, Frank

    2011-01-01

    On April 27, 2011, the southeastern United States was raked with several episodes of severe weather. Numerous tornadoes caused extensive damage, and tragically, the deaths of over 300 people. In Alabama alone, there were 61 confirmed tornados, 4 of them produced EF5 damage, and several were on the ground an hour or more with continuous damage tracks exceeding 80km. The use of Doppler radars covering the region provided reflectivity and velocity signatures that allowed forecasters to monitors the severe storms from beginning to end issuing hundreds of severe weather warnings throughout the day. Meteorologists from the the NWS performed extensive surveys to assess the intensity, duration, and ground track of tornadoes reported during the event. Survey activities included site visits to the affected locations, analysis of radar and satellite data, aerial surveys, and interviews with eyewitnesses. Satellite data from NASA's MODIS and ASTER instruments played a helpful role in determining the location of tornado damage paths and in the assessment. High resolution multispectral and temporal composites helped forecasters corroborate their damage assessments, determine starting and ending points for tornado touchdowns, and helped to provide forecasters with a better big-picture view of the damage region. The imagery also helped to separate damage from the April 27th tornados from severe weather that occurred earlier that month. In a post analysis of the outbreak, tornado damage path signatures observed in the NASA satellite data have been correlated to "debris ball" signatures in the NWS Doppler radars and a special ARMOR dual-polarization radar operated by the University of Alabama Huntsville during the event. The Doppler radar data indicates a circular enhanced reflectivity signal and rotational couplet in the radial velocity likely associated with the tornado that is spatially correlated with the damage tracks in the observed satellite data. An algorithm to detect and

  17. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  18. Design and performance of wideband DRFM for radar test and evaluation

    CSIR Research Space (South Africa)

    Olivier, K

    2011-07-01

    Full Text Available low that it is unlikely that advanced electronic counter countermeasures (ECCM?s) in the radar will be able to distinguish between a physical target return and one generated by the DRFM. The authors would like to express their gratitude...

  19. Design of an intelligent flight instrumentation unit using embedded RTOS

    Science.gov (United States)

    Estrada-Marmolejo, R.; García-Torales, G.; Torres-Ortega, H. H.; Flores, J. L.

    2011-09-01

    Micro Unmanned Aerial Vehicles (MUAV) must calculate its spatial position to control the flight dynamics, which is done by Inertial Measurement Units (IMUs). MEMS Inertial sensors have made possible to reduce the size and power consumption of such units. Commonly the flight instrumentation operates independently of the main processor. This work presents an instrumentation block design, which reduces size and power consumption of the complete system of a MUAV. This is done by coupling the inertial sensors to the main processor without considering any intermediate level of processing aside. Using Real Time Operating Systems (RTOS) reduces the number of intermediate components, increasing MUAV reliability. One advantage is the possibility to control several different sensors with a single communication bus. This feature of the MEMS sensors makes a smaller and less complex MUAV design possible.

  20. A User Guide for Smoothing Air Traffic Radar Data

    Science.gov (United States)

    Bach, Ralph E.; Paielli, Russell A.

    2014-01-01

    Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.

  1. A Workshop on Methods for Neutron Scattering Instrument Design. Introduction and Summary

    International Nuclear Information System (INIS)

    Hjelm, Rex P.

    1996-09-01

    The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop on ''Methods for Neutron Scattering Instrument Design'' September 23-25 at the E.O. Lawrence Berkeley National Laboratory. These proceedings are a collection of a portion of the invited and contributed presentations

  2. Design and manufacturing of 05F-01K instrumented capsule for nuclear fuel irradiation in Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J. M.; Shin, Y. T.; Park, S. J. (and others)

    2007-07-15

    An instrumented capsule was developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel pellet elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in Hanaro. The instrumented capsule(02F-11K) for measuring and monitoring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. It was successfully irradiated in the test hole OR5 of Hanaro from March 14, 2003 to June 1, 2003 (53.84 full power days at 24 MW). In the year of 2004, 3 test fuel rods and the instrumented capsule(03F-05K) were designed and manufactured to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. This capsule was irradiated in the test hole OR5 of Hanaro reactor from April 26, 2004 to October 1, 2004 (59.5 EFPD at 24 {approx} 30 MW). The six typed dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been designed and manufactured to enhance the efficiency of the irradiation test using the instrumented fuel capsule. The 05F-01K instrumented fuel capsule was designed and manufactured for a design verification test of the three dual instrumented fuel rods. The irradiation test of the 05F-01K instrumented fuel capsule will be carried out at the OR5 vertical experimental hole of Hanaro.

  3. A Twin Spiral Planar Antenna for UWB Medical Radars

    Directory of Open Access Journals (Sweden)

    Giuseppe A. Zito

    2013-01-01

    Full Text Available A planar-spiral antenna to be used in an ultrawideband (UWB radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

  4. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  5. Basic Radar Altimetry Toolbox: Tools and Tutorial To Use Radar Altimetry For Cryosphere

    Science.gov (United States)

    Benveniste, J. J.; Bronner, E.; Dinardo, S.; Lucas, B. M.; Rosmorduc, V.; Earith, D.

    2010-12-01

    Radar altimetry is very much a technique expanding its applications. If quite a lot of efforts have been made for oceanography users (including easy-to-use data), the use of those data for cryosphere application, especially with the new ESA CryoSat-2 mission data is still somehow tedious, especially for new Altimetry data products users. ESA and CNES thus had the Basic Radar Altimetry Toolbox developed a few years ago, and are improving and upgrading it to fit new missions and the growing number of altimetry uses. The Basic Radar Altimetry Toolbox is an "all-altimeter" collection of tools, tutorials and documents designed to facilitate the use of radar altimetry data. The software is able: - to read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, Jason- 2, CryoSat and the future Saral missions, - to perform some processing, data editing and statistic, - and to visualize the results. It can be used at several levels/several ways: - as a data reading tool, with APIs for C, Fortran, Matlab and IDL - as processing/extraction routines, through the on-line command mode - as an educational and a quick-look tool, with the graphical user interface As part of the Toolbox, a Radar Altimetry Tutorial gives general information about altimetry, the technique involved and its applications, as well as an overview of past, present and future missions, including information on how to access data and additional software and documentation. It also presents a series of data use cases, covering all uses of altimetry over ocean, cryosphere and land, showing the basic methods for some of the most frequent manners of using altimetry data. It is an opportunity to teach remote sensing with practical training. It has been available from April 2007, and had been demonstrated during training courses and scientific meetings. About 1200 people downloaded it (Summer 2010), with many "newcomers" to altimetry among them, including teachers

  6. Gesture recognition for smart home applications using portable radar sensors.

    Science.gov (United States)

    Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip

    2014-01-01

    In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.

  7. Research cooperation of the development of laser radar for environmental measurements; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development of the laser radar for measuring the air pollution in urban areas and the environmental information network have been conducted through the cooperation with Indonesian researchers. A measurement system suitable to actual situation of Indonesia has been constructed. In FY 1996, some works have been conducted as in the final fiscal year. To set the laser radar for environmental measurements and to make a plan of measurement research, conditions of air pollution in Indonesia and setting places of systems have been investigated. Opinions for the cooperation research have been exchanged with Indonesian researchers. Actual trends of the environmental measurements technology using laser radar have been surveyed. Indonesian researchers have been invited to learn operation and data processing of the system. One unit of MIE diffusion laser radar system has been designed and fabricated, and an additional data processing program has been made. The system has been delivered to Jakarta and installed. After the adjustment, performance tests have been conducted to complete the construction of the system. 3 refs., 72 figs., 10 tabs.

  8. Designer's handbook of instrumentation and control circuits

    CERN Document Server

    Carr, Joseph J

    1991-01-01

    Here is a comprehensive, practical guide to the entire process of analog instrumentation and control, from sensor input to data conversion circuitry and final output. This readable handbook avoids complex mathematical treatments, instead taking an applications-oriented approach and presenting many sample circuits and concrete examples. It is an essential reference for engineers and high-level technicians in a variety of scientific and engineering fields--anywhere data is collected electronically and where such data is used to control physical processes.Key Features* Covers design o

  9. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  10. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Koch, Wolfgang

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Waveform diversity and cognitive radar and Target tracking and data fusion.

  11. High intensity multi beam design of SANS instrument for Dhruva reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Sohrab, E-mail: abbas@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Désert, S. [Laboratoire Leon Brillouin, CEA, Saclay, 91191 (France)

    2016-05-23

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10{sup −4} Å{sup −1} with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies of agglomerates larger than few tens of nm.

  12. Testing the Solar Probe Cup, an Instrument Designed to Touch the Sun

    Science.gov (United States)

    Whittlesey, Phyllis L.; Case, Anthony W.; Kasper, Justin Christophe; Wright, Kenneth H., Jr.; Alterman, Ben; Cirtain, Jonathan W.; Bookbinder, Jay; Korreck, Kelly E.; Stevens, Michael Louis

    2014-01-01

    Solar Probe Plus will be the first, fastest, and closest mission to the sun, providing the first direct sampling of the sub-Alfvenic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.

  13. Design and operation of dust measuring instrumentation based on the beta-radiation method

    International Nuclear Information System (INIS)

    Lilienfeld, P.

    1975-01-01

    The theory, instrument design aspects and applications of beta-radiation attenuation for the measurement of the mass concentration of airborne particulates are reviewed. Applicable methods of particle collection, beta sensing configurations, source ( 63 Ni, 14 C, 147 Pr, 85 Kr) and detector design criteria, electronic signal processing, digital control and instrument programming techniques are treated. Advantages, limitations and error sources of beta-attenuation instrumentation are analyzed. Applications to industrial dust measurements, source testing, ambient monitoring, and particle size analysis are the major areas of practical utilization of this technique, and its inherent capability for automated and unattended operation provides compatibility with process control synchronization and alarm, telemetry, and incorporation into pollution monitoring network sensing stations. (orig.) [de

  14. 14 CFR 91.205 - Powered civil aircraft with standard category U.S. airworthiness certificates: Instrument and...

    Science.gov (United States)

    2010-01-01

    ... type of operation, and those instruments and items of equipment are in operable condition. (b) Visual... required instruments and equipment; and (7) Radar altimeter. (i) Exclusions. Paragraphs (f) and (g) of this... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC...

  15. Design And Analysis Of Doppler Radar-Based Vehicle Speed Detection

    Directory of Open Access Journals (Sweden)

    Su Myat Paing

    2015-08-01

    Full Text Available The most unwanted thing to happen to a road user is road accident. Most of the fatal accidents occur due to over speeding. Faster vehicles are more prone to accident than the slower one. Among the various methods for detecting speed of the vehicle object detection systems based on Radar have been replaced for about a century for various purposes like detection of aircrafts spacecraft ships navigation reading weather formations and terrain mapping. The essential feature in adaptive vehicle activated sign systems is the accurate measurement of a vehicles velocity. The velocities of the vehicles are acquired from a continuous wave Doppler radar. A very low amount of power is consumed in this system and only batteries can use to operate. The system works on the principle of Doppler Effect by detecting the Doppler shift in microwaves reflected from a moving object. Since the output of the sensor is sinusoidal wave with very small amplitude and needs to be amplified with the help of the amplifier before further processing. The purpose to calculate and display the speed on LCD is performed by the microcontroller.

  16. VIMOS Instrument Control Software Design: an Object Oriented Approach

    Science.gov (United States)

    Brau-Nogué, Sylvie; Lucuix, Christian

    2002-12-01

    The Franco-Italian VIMOS instrument is a VIsible imaging Multi-Object Spectrograph with outstanding multiplex capabilities, allowing to take spectra of more than 800 objects simultaneously, or integral field spectroscopy mode in a 54x54 arcsec area. VIMOS is being installed at the Nasmyth focus of the third Unit Telescope of the European Southern Observatory Very Large Telescope (VLT) at Mount Paranal in Chile. This paper will describe the analysis, the design and the implementation of the VIMOS Instrument Control System, using UML notation. Our Control group followed an Object Oriented software process while keeping in mind the ESO VLT standard control concepts. At ESO VLT a complete software library is available. Rather than applying waterfall lifecycle, ICS project used iterative development, a lifecycle consisting of several iterations. Each iteration consisted in : capture and evaluate the requirements, visual modeling for analysis and design, implementation, test, and deployment. Depending of the project phases, iterations focused more or less on specific activity. The result is an object model (the design model), including use-case realizations. An implementation view and a deployment view complement this product. An extract of VIMOS ICS UML model will be presented and some implementation, integration and test issues will be discussed.

  17. Comparison of cyclic fatigue resistance of three different rotary nickel-titanium instruments designed for retreatment.

    Science.gov (United States)

    Inan, Ugur; Aydin, Cumhur

    2012-01-01

    A number of rotary nickel-titanium (NiTi) systems have been developed to provide better, faster, and easier cleaning and shaping of the root canal system, and recently, rotary NiTi systems designed for root canal retreatment have been introduced. Because the main problem with the rotary NiTi files is fracture, the aim of this study was to compare the cyclic fatigue resistance of 3 different rotary NiTi systems designed for root canal retreatment. Total of 60 instruments of 3 different rotary NiTi systems designed for root canal retreatment were used in this study. Twenty R-Endo R3, 20 ProTaper D3, and 20 Mtwo R (Retreatment) 25.05 instruments were tested. Cyclic fatigue testing of instruments was performed by using a device that allowed the instruments to rotate freely inside an artificial canal. Each instrument was rotated until fracture occurred, and the number of cycles to fracture for each instrument was calculated. Representative samples were also evaluated under a scanning electron microscope to confirm the fracture was flexural. Data were analyzed by using 1-way analysis of variance test. R-Endo R3 instruments showed better cyclic fatigue resistance than ProTaper D3 and Mtwo R 25.05 instruments, and the difference was statistically significant (P instruments were more resistant to fatigue failure than ProTaper D3 and Mtwo R 25.05. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. A digital beamforming processor for the joint DoD/NASA space based radar mission

    Science.gov (United States)

    Fischman, Mark A.; Le, Charles; Rosen, Paul A.

    2004-01-01

    The Space Based Radar (SBR) program includes a joint technology demonstration between NASA and the Air Force to design a low-earth orbiting, 2x50 m L-band radar system for both Earth science and intelligence related observations.

  19. Impact of Passive Safety on FHR Instrumentation Systems Design and Classification

    International Nuclear Information System (INIS)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, through an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate

  20. Space Radar Image of Kilauea Volcano, Hawaii

    Science.gov (United States)

    1994-01-01

    This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data -- that is data acquired on different passes of the space shuttle which are then overlayed to obtain elevation information -- acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 kilometers by 80 kilometers (25 miles by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in the direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrains on Earth. Several regions show motions over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's 'plumbing' system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data acquired by SIR-C/X-SAR and future imaging

  1. Radar remote sensing in biology

    Science.gov (United States)

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  2. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  3. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  4. Measurements of millimeter wave radar transmission and backscatter during dusty infrared test 2, dirt 2

    Science.gov (United States)

    Petito, F. C.; Wentworth, E. W.

    1980-05-01

    Recently there has been much interest expressed to determine the ability of millimeter wave radar to perform target acquisition during degraded visibility conditions. In this regard, one of the primary issues of concern has been the potential of high-explosive artillery barrages to obscure the battlefield from millimeter wave radar systems. To address this issue 95 GHz millimeter wave radar measurements were conducted during the Dusty Infrared Test 2 (DIRT 2). This test was held at White Sands Missile Range, NM, 18-28 July 1979. Millimeter wave transmission and backscatter measurements were performed during singular live firings and static detonations of 155 mm and 105 mm high-explosive artillery rounds in addition to static detonations of C-4 explosives. A brief description of the millimeter wave portion of the test and instrumentation is given. The data along with some preliminary conclusions are presented.

  5. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently....... The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...

  6. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  7. Minefield overwatch using moving target indicator radar

    Science.gov (United States)

    Donadio, Anthony; Ewing, Robert; Kenneally, William J.; Santapietro, John J.

    1999-07-01

    Traditional antipersonnel land mines are an effective military tool, but they are unable to distinguish friend from foe, or civilian from military personnel. The concept described here uses an advanced moving target indicator (MTI) radar to scan the minefield in order to detect movement towards or within the minefield, coupled with visual identification by a human operator and a communication link for command and control. Selected mines in the minefield can then be activated by means of the command link. In order to demonstrate this concept, a 3D, interactive simulation has been developed. This simulation builds on previous work by integrating a detailed analytical model of an MTI radar. This model has been tailored to the specific application of detection of slowly moving dismounted entities immersed in ground clutter. The model incorporates the effects of internal scatterer motion and antenna scanning modulation in order to provide a realistic representation of the detection problem in this environment. The angle information on the MTI target detection is then passed to a virtual 3D sight which cues a human operator to the target location. In addition, radar propagation effects and an experimental design in which the radar itself is used as a command link are explored.

  8. [Design and implementation of medical instrument standard information retrieval system based on APS.NET].

    Science.gov (United States)

    Yu, Kaijun

    2010-07-01

    This paper Analys the design goals of Medical Instrumentation standard information retrieval system. Based on the B /S structure,we established a medical instrumentation standard retrieval system with ASP.NET C # programming language, IIS f Web server, SQL Server 2000 database, in the. NET environment. The paper also Introduces the system structure, retrieval system modules, system development environment and detailed design of the system.

  9. A Review of Ground Target Detection and Classification Techniques in Forward Scattering Radars

    Directory of Open Access Journals (Sweden)

    M. E. A. Kanona

    2018-06-01

    Full Text Available This paper presents a review of target detection and classification in forward scattering radar (FSR which is a special state of bistatic radars, designed to detect and track moving targets in the narrow region along the transmitter-receiver base line. FSR has advantages and incredible features over other types of radar configurations. All previous studies proved that FSR can be used as an alternative system for ground target detection and classification. The radar and FSR fundamentals were addressed and classification algorithms and techniques were debated. On the other hand, the current and future applications and the limitations of FSR were discussed.

  10. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  11. A computer simulation of a long-range CWFM radar showing the tradeoffs of performance as a function of range

    Science.gov (United States)

    Gordy, Robert S.; Zoledziowski, Severyn

    2011-06-01

    This paper describes a study of the operation of a long range CWFM radar using "System View" software for modeling and simulation. The System View software is currently offered by Agilent. The models that were studied include: a model illustrating the basic principle of operation of the CWFM radar, the range resolution of the radar, the effect of long range processing and the resultant approach with the tradeoff of detected range resolution due to Doppler frequency shift as a function of range distance. The study was performed as part of the design of an airborne CWFM radar. The radar can be designed with a single antenna or a dual antenna. The dual antenna approach is presented in this paper.

  12. Design and validation of portable optical instrument for crop diagnose

    Science.gov (United States)

    Sun, Gang; Zheng, Wengang; Huang, Wengjiang; Wan, Huawei; Liu, Liangyun

    2005-12-01

    In this paper, a portable diagnostic instrument was designed and tested, which can measure the normalized difference vegetation index (NDVI) and structure insensitive pigment index (SIPI) of crop canopy in field. The instrument have a valid survey area of 1 m*1 m when the height between instrument and the ground was fixed to 1.3 meter The crop growth condition can be assessed based on their NDVI and SIPI values, so it will be very important for crop management to get these values. The instrument uses sunlight as its light source. There are six special different photoelectrical detectors within red, blue and near infrared bands, which are used for detecting incidence sunlight and reflex light from the canopy of crop. This optical instrument includes photoelectric detector module, signal process and A/D convert module, the data storing and transmission module and human-machine interface module. The detector is the core of the instrument which measures the spectrums at special bands. The microprocessor calculates the NDVI and SIPI value based on the A/D value. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's RS232 serial interface. The prototype was tested in the crop field at different view directions. This paper also provided the method of calibration, the results showed that the average measurement error to SIPI value of instrument was 5.25% and the average measurement error to NDVI value in vegetation-covered region is 6.40%. It reveals the on-site and non-sampling mode of crop growth monitoring by fixed on the agricultural machine traveling in the field.

  13. Development of a global education environment to study the Equatorial Ionosphere with Cognitive Radars

    Science.gov (United States)

    Urbina, J. V.

    2011-12-01

    The author has recently been awarded the NSF Career award to develop a radar with cognitive sensing capabilities to study Equatorial plasma instabilities in the Peruvian Andes. Educational research has shown that a rich learning environment contributes tremendously toward improvement in learning achievements and also attitudes toward studies. One of the benefits of this project is that it provides such an environment and a global platform to involve several students at both graduate and undergraduate levels from the US, Puerto Rico, and Peru, and who will benefit from designing, installing, and deploying a radar in multi-instrument science campaigns. In addition to working in the laboratories, students will gain invaluable real world experience building this complex instrument and making it work under challenging conditions at remote sites. The PI will describe how these components are being developed in a Freshman Seminar course and Graduate courses in the Department of Electrical Engineering at Penn State University, and how they are aligned well with the department's and university's strategy for greater global engagement through a network of Global Engagement Nodes in South America (GENSA). The issues of mentoring, recruitment, and retention become particularly important in consideration of the educational objective of this career project to involve underrepresented students with diverse backgrounds and interest them in research projects. The author is working very closely with the Office of Engineering Diversity to leverage existing programs at Penn State designed to increase the participation of women and minority students in science and engineering research: (a) WISER (Women In Science and Engineering Research), and (b) MURE (Minority Undergraduate Research Experience). The Electrical Engineering Department at Penn State is also currently an NSF REU (Research Experience for Undergraduates) site. The PI will also present his efforts in connecting his career

  14. CONCEPTUAL AND DESIGN ISSUES IN INSTRUMENT DEVELOPMENT FOR RESEARCH WITH BEREAVED PARENTS*

    Science.gov (United States)

    Briller, Sherylyn H.; Schim, Stephanie Myers; Thurston, Celia S.; Meert, Kathleen L.

    2013-01-01

    Many childhood deaths in the United States occur in pediatric intensive care units (PICUs) and parents have special needs in this death context. As an interdisciplinary research team, we discuss conceptual and design issues encountered in creating a new instrument, the Bereaved Parent Needs Assessment–PICU, for assessing parents’ needs in this setting. Using a qualitative approach, our team previously explored how the culture and related ways of providing care in one urban Midwestern children’s hospital PICU affected parents’ bereavement needs and experiences. We describe using this qualitative foundation in the development of a new quantitative instrument to more widely validate and measure bereaved parents’ needs around the time of a child’s death across multiple PICUs. We highlight a series of issues that warrant consideration in designing a research instrument for this vulnerable population including setting and context, format and content, temporality, recruitment, and content expertise. PMID:22953511

  15. Shaded Relief and Radar Image with Color as Height, Madrid, Spain

    Science.gov (United States)

    2002-01-01

    The white, mottled area in the right-center of this image from NASA's Shuttle Radar Topography Mission (SRTM) is Madrid, the capital of Spain. Located on the Meseta Central, a vast plateau covering about 40 percent of the country, this city of 3 million is very near the exact geographic center of the Iberian Peninsula. The Meseta is rimmed by mountains and slopes gently to the west and to the series of rivers that form the boundary with Portugal. The plateau is mostly covered with dry grasslands, olive groves and forested hills.Madrid is situated in the middle of the Meseta, and at an elevation of 646 meters (2,119 feet) above sea level is the highest capital city in Europe. To the northwest of Madrid, and visible in the upper left of the image, is the Sistema Central mountain chain that forms the 'dorsal spine' of the Meseta and divides it into northern and southern subregions. Rising to about 2,500 meters (8,200 feet), these mountains display some glacial features and are snow-capped for most of the year. Offering almost year-round winter sports, the mountains are also important to the climate of Madrid.Three visualization methods were combined to produce this image: shading and color coding of topographic height and radar image intensity. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and brown to white at the highest elevations. The shade image was combined with the radar intensity image in the flat areas.Elevation data used in this image was acquired by the SRTM aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to

  16. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar

    Energy Technology Data Exchange (ETDEWEB)

    P Kollias; MA Miller; KB Widener; RT Marchand; TP Ackerman

    2005-12-30

    The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digital Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.

  17. Design and Implementation of Data Collection Instruments for Neonatology Research

    Directory of Open Access Journals (Sweden)

    Monica G. HĂŞMĂŞANU

    2014-12-01

    Full Text Available im: The aim of our research was to design and implement data collection instruments to be use in context of an observational prospective clinical study with follow-up conducted on new born with intrauterine growth restriction. Methods: The structure of the data collection forms (paper based and electronic based was first identified and for each variable the best type to accomplish the research aim was established. The code for categorical variables has also been decided as well as the units of measurements for quantitative variables. In respect of good practice, a set of confounding factors (as gender, date of birth, etc. have also been identified and integrated in data collection instruments. Data-entry validation rules were implemented for each variable to reduce data input errors when the electronic data collection instrument was created. Results: Two data collection instruments have been developed and successfully implemented: a paper-based form and an electronic data collection instrument. The developed forms included demographics, neonatal complications (as hypoglycemia, hypocalcemia, etc., biochemical data at birth and follow-up, immunological data, as well as basal and follow-up echocardiographic data. Data-entry validation criteria have been implemented in electronic data collection instrument to assure validity and precision when paper-based data are translated in electronic form. Furthermore, to assure subject’s confidentiality a careful attention was given to HIPPA identifiers when electronic data collection instrument was developed. Conclusion: Data collection instruments were successfully developed and implemented as an a priori step in a clinical research for assisting data collection and management in a case of an observational prospective study with follow-up visits.

  18. Use of the SAR (Synthetic Aperture Radar) P band for detection of the Moche and Lambayeque canal networks in the Apurlec region, Perù

    Science.gov (United States)

    Ilaria Pannaccione Apa, Maria; Santovito, Maria Rosaria; Pica, Giulia; Catapano, Ilaria; Fornaro, Gianfranco; Lanari, Riccardo; Soldovieri, Francesco; Wester La Torre, Carlos; Fernandez Manayalle, Marco Antonio; Longo, Francesco; Facchinetti, Claudia; Formaro, Roberto

    2016-04-01

    , glaciers investigation, biomass monitoring, detection of buried targets. Its extension to non-civil application concerns sub-surface target detection and foliage penetration (FOPEN). In order to achieve the flexibility to face all the above mentioned fields of application, the CORISTA system has been designed as a multi-mode and multi-frequency radar. Multimode stands for the functionality of the system both as Sounder and Imager. In addition, P-band radar is a multi-frequency instrument, since it is designed to work in three different frequency bands, as mentioned above: lower frequency band is used in sounder operative mode, higher frequency in imager operative mode. In the Imager operative mode, low resolution and high resolution capabilities are implemented. The data collected by the radar system have been processed using a model-based microwave tomographic approach, recently developed by IREA-CNR, with the aim to enhance the interpretability of the raw-data radar images. Currently, the non-invasive SAR P band application is under evaluation for testing in the Northern Coast of Perù, in collaboration with the Museo Arqueológico Nacional Brüning. The project will aim to recognize the subsurface ancient Moche (100-700 d.C.) and Lambayeque (700-1375 d.C.) canal networks, whose water supply comes from the Canal Taymi, started to be dug by the Mochicas, still in use by local communities.

  19. Adaptive OFDM Waveform Design for Spatio-Temporal-Sparsity Exploited STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2017-11-01

    In this chapter, we describe a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly moving target using an orthogonal frequency division multiplexing (OFDM) radar. The motivation of employing an OFDM signal is that it improves the target-detectability from the interfering signals by increasing the frequency diversity of the system. However, due to the addition of one extra dimension in terms of frequency, the adaptive degrees-of-freedom in an OFDM-STAP also increases. Therefore, to avoid the construction a fully adaptive OFDM-STAP, we develop a sparsity-based STAP algorithm. We observe that the interference spectrum is inherently sparse in the spatio-temporal domain, as the clutter responses occupy only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere only from a few spatial directions. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data compared to the other existing STAP techniques, and produces nearly optimum STAP performance. In addition to designing the STAP filter, we optimally design the transmit OFDM signals by maximizing the output signal-to-interference-plus-noise ratio (SINR) in order to improve the STAP performance. The computation of output SINR depends on the estimated value of the interference covariance matrix, which we obtain by applying the sparse recovery algorithm. Therefore, we analytically assess the effects of the synthesized OFDM coefficients on the sparse recovery of the interference covariance matrix by computing the coherence measure of the sparse measurement matrix. Our numerical examples demonstrate the achieved STAP-performance due to sparsity-based technique and adaptive waveform design.

  20. Principles relating to the digital instrumentation and control design approach 2017

    International Nuclear Information System (INIS)

    2017-01-01

    The design of the instrumentation and control of nuclear facilities uses digital systems that offer increasing computation and interconnection capabilities. They enable advanced functions to be carried out, such as calculation of the critical heat flux ratio, help to detect hardware failures in real time and provide operators with rich, flexible interfaces. However, these evolved functions may be affected by faults that make their logic systematically inadequate in certain cases, which introduces sources of failure other than random hardware failures and raises questions about the informal concept of the increased 'complexity' of instrumentation and control. Appropriate design principles shall therefore be applied so that this logic is as fault-free as possible and can be assessed by an independent body such as IRSN. This document presents the main problems associated with the design of the digital instrumentation and control of a complex facility, as well as the general principles to follow to demonstrate that a satisfactory safety level has been achieved. The doctrine elements presented in this document are the result of the experience acquired during assessments carried out for the French nuclear power plants, enhanced by exchanges with experts from the nuclear sector, and reflect French practice; they apply in other sectors in which a high level of confidence can be attributed to instrumentation and control. The normative texts cited in this document provide detailed requirements that are open to considerable interpretation, as the nature of the problem posed does not enable relevant and measurable criteria to be defined in all cases. This document aims to explain the principles underlying these detailed requirements and to give the means for interpreting them in each situation. (authors)

  1. Survey of Ultra-wideband Radar

    Science.gov (United States)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  2. German Radar Observation Shuttle Experiment (ROSE)

    Science.gov (United States)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  3. Meteor detection on ST (MST) radars

    International Nuclear Information System (INIS)

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  4. Compact U-Slotted Antenna for Broadband Radar Applications

    Directory of Open Access Journals (Sweden)

    S. Costanzo

    2013-01-01

    Full Text Available The original U-shaped patch antenna is properly modified in this work to provide a compact and broadband antenna configuration with reduced cross-polar effects, well suitable for modern radar applications. The proposed antenna layout is applied to design, realize, and test two different prototypes working at P-band and C-band, typically adopted for ground-penetrating radar. The experimental results successfully demonstrate a large operating bandwidth between 15% and 20%, a significant reduction of size (about half of the standard configuration, and a low cross-polarization level within the operating frequency range.

  5. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  6. Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument

    Science.gov (United States)

    Stout, Kevin D.; Masterson, Rebecca A.

    2014-08-01

    The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with

  7. Micropower impulse radar technology and applications

    Energy Technology Data Exchange (ETDEWEB)

    Mast, J., LLNL

    1998-04-15

    The LLNL-developed Micropower Impulse Radar (MIR) technology has quickly gone from laboratory concept to embedded circuitry in numerous government and commercial systems in the last few years[l]. The main ideas behind MIR, invented by T. McEwan in the Laser Program, are the generation and detection systems for extremely low- power ultra-wideband pulses in the gigaHertz regime using low-cost components. These ideas, coupled with new antenna systems, timing and radio-frequency (RF) circuitry, computer interfaces, and signal processing, have provided the catalyst for a new generation of compact radar systems. Over the past several years we have concentrated on a number of applications of MIR which address a number of remote-sensing applications relevant to emerging programs in defense, transportation, medical, and environmental research. Some of the past commercial successes have been widely publicized [2] and are only now starting to become available for market. Over 30 patents have been filed and over 15 licenses have been signed on various aspects of the MIR technology. In addition, higher performance systems are under development for specific laboratory programs and government reimbursables. The MIR is an ultra- wideband, range-gated radar system that provides the enabling hardware technology used in the research areas mentioned above. It has numerous performance parameters that can be Selected by careful design to fit the requirements. We have improved the baseline, short- range, MIR system to demonstrate its effectiveness. The radar operates over the hand from approximately I to 4 GHz with pulse repetition frequencies up to 10 MHz. It provides a potential range resolution of I cm at ranges of greater than 20 m. We have developed a suite of algorithms for using MIR for image formation. These algorithms currently support Synthetic aperture and multistate array geometries. This baseline MIR radar imaging system has been used for several programmatic applications.

  8. State-of-the-Art Report on the Piping and Instrumentation Design of RHRS in the Commercial NPPs

    International Nuclear Information System (INIS)

    Lee, Jun; Park, C. T.; Kim, Y. I.; Kim, S. H.; Choi, B. S.; Yoon, Ju Hyeon

    2004-12-01

    The objective of the study is for system designers to understand the technical state of the piping and instrumentation design of RHRS (or SCS) in the commercial nuclear power plants, thus to design more uncomplicated and advanced system. In this study, we have reviewed the design requirements and the technical state of piping and instrumentation design. Firstly we have reviewed the design requirements, including functional, isolation, pressure relief, pump protection, test requirements, etc.. Especially we have separately reviewed the design requirements of the low temperature overpressure, including ASME code requirements. Also we have reviewed the technical state of piping and instrumentation design, including piping design, PAMS design, ESFAS design, relief valve design, and instrument/valve/pump control design. In the piping design, the technical state of design has been investigated classified by the five regions, which have a little different design features, from the RCS suction line to the LPSI header line. Commonly, the P and ID is the design output which the related design requirements of the system have been all applied, also the operations for in-service inspection, heat-up/normal/cool-down, and emergency have been all considered. If we can understand well the design bases and its meanings of the P and ID, it would be helpful for us to design more uncomplicated and advanced system

  9. Radar-eddy current GPR

    OpenAIRE

    A. O. Abramovych

    2014-01-01

    Introduction. At present there are many electrical schematic metal detectors (the most common kind of ground penetrating radar), which are differ in purpose. Each scheme has its own advantages and disadvantages compared to other schemes. Designing metal detector problem of optimal selection of functional units most schemes can only work with a narrow range of special purpose units. Functional units used in circuits can be replaced by better ones, but specialization schemes do not provide such...

  10. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  11. Design of nuclear instruments for industrial use

    International Nuclear Information System (INIS)

    Maggio, G.E.

    1988-01-01

    Following an introduction to the atomic structure and the radioactive desintegration, the applications of radioisotopic sealed sources are described. The laws that govern the interaction of radiation with matter and the statistics applied to the radioactive measurements are presented. Different measurement techniques, basic equations of design, the way to provide the activity calculation of a source and the detector's characteristics are given, according to the parameters to be measured and the conditions imposed. Finally, the principles of operation and the most important characteristics of different nuclear instruments to be used in industrial measurements are described. (Author) [es

  12. A 24GHz Radar Receiver in CMOS

    NARCIS (Netherlands)

    Kwok, K.C.

    2015-01-01

    This thesis investigates the system design and circuit implementation of a 24GHz-band short-range radar receiver in CMOS technology. The propagation and penetration properties of EM wave offer the possibility of non-contact based remote sensing and through-the-wall imaging of distance stationary or

  13. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  14. Efficient two-dimensional compressive sensing in MIMO radar

    Science.gov (United States)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad

    2017-12-01

    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  15. Quality assessment of water cycle parameters in REMO by radar-lidar synergy

    Directory of Open Access Journals (Sweden)

    B. Hennemuth

    2008-01-01

    Full Text Available A comparison study of water cycle parameters derived from ground-based remote-sensing instruments and from the regional model REMO is presented. Observational data sets were collected during three measuring campaigns in summer/autumn 2003 and 2004 at Richard Aßmann Observatory, Lindenberg, Germany. The remote sensing instruments which were used are differential absorption lidar, Doppler lidar, ceilometer, cloud radar, and micro rain radar for the derivation of humidity profiles, ABL height, water vapour flux profiles, cloud parameters, and rain rate. Additionally, surface latent and sensible heat flux and soil moisture were measured. Error ranges and representativity of the data are discussed. For comparisons the regional model REMO was run for all measuring periods with a horizontal resolution of 18 km and 33 vertical levels. Parameter output was every hour. The measured data were transformed to the vertical model grid and averaged in time in order to better match with gridbox model values. The comparisons show that the atmospheric boundary layer is not adequately simulated, on most days it is too shallow and too moist. This is found to be caused by a wrong partitioning of energy at the surface, particularly a too large latent heat flux. The reason is obviously an overestimation of soil moisture during drying periods by the one-layer scheme in the model. The profiles of water vapour transport within the ABL appear to be realistically simulated. The comparison of cloud cover reveals an underestimation of low-level and mid-level clouds by the model, whereas the comparison of high-level clouds is hampered by the inability of the cloud radar to see cirrus clouds above 10 km. Simulated ABL clouds apparently have a too low cloud base, and the vertical extent is underestimated. The ice water content of clouds agree in model and observation whereas the liquid water content is unsufficiently derived from cloud radar reflectivity in the present study

  16. Conceptual design for the NSTX Central Instrumentation and Control System

    International Nuclear Information System (INIS)

    Bashore, D.; Oliaro, G.; Roney, P.; Sichta, P.; Tindall, K.

    1997-01-01

    The design and construction phase for the National Spherical Torus Experiment (NSTX) is under way at the Princeton Plasma Physics Laboratory (PPPL). Operation is scheduled to begin on April 30, 1999. This paper describes the conceptual design for the NSTX Central Instrumentation and Control (I and C) System. Major elements of the Central I and C System include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System to support the NSTX experimental device

  17. Application of ranging technique of radar level meter for draft survey

    Directory of Open Access Journals (Sweden)

    SHEN Yijun

    2017-12-01

    Full Text Available [Objectives] This paper aims to solve the problems of the high subjectivity and low accuracy and efficiency of draft surveying relying on human visual inspection.[Methods] Radar-level oil and liquid measurement technology products are widely used in the petrochemical industry. A device is developed that uses radar to survey the draft of a boat, designed with data series optimization formulae to ensure that the data results are true and correct. At the same time, a test is designed to prove the accuracy of the results.[Results] According to the conditions of the ship,the device is composed of a radar sensor, triangular bracket and display,and is put to use in the test.[Conclusions] With 15 vessels as the research objects,the comparison experiment shows a difference in range between 0.001-0.022 meters, with an average difference rate of 0.028%, which meets the requirements for ship draft survey accuracy.

  18. Plans for the Meter Class Autonomous Telescope and Potential Coordinated Measurements with Kwajalein Radars

    Science.gov (United States)

    Stansberry, Gene; Kervin, Paul; Mulrooney, Mark

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Orbital Debris Program Office is teaming with the US Air Force Research Laboratory's (AFRL) Maui Optical Site to deploy a moderate field-of-view, 1.3 m aperture, optical telescope for orbital debris applications. The telescope will be located on the island of Legan in the Kwajalein Atoll and is scheduled for completion in the Spring of 2011. The telescope is intended to sample both low inclination/high eccentricity orbits and near geosynchronous orbits. The telescope will have a 1 deg diagonal field-of-view on a 4K x 4K CCD. The telescope is expected to be able to detect 10-cm diameter debris at geosynchronous altitudes (5 sec exposure assuming a spherical specular phase function w/ albedo =0.13). Once operational, the telescope has the potential of conducting simultaneous observations with radars operated by the US Army at Kwajalein Atoll (USAKA) and located on the island of Roi-Namur, approximately 55 km to the north of Legan. Four radars, representing 6 frequency bands, are available for use: ALTAIR (ARPA-Long Range Tracking and Instrumentation Radar) operating at VHF & UHF, TRADEX (Target Resolution and Discrimination Experiment) operating at L-band and S-band, ALCOR (ARPA-Lincoln C-band Observables Radar) operating at S-band, and MMW (Millimeter Wave) Radar operating at Ka-band. Also potentially available is the X-band GBRP (Ground Based Radar-Prototype located 25 km to the southeast of Legan on the main island of Kwajalein.

  19. New Techniques for Radar Altimetry of Sea Ice and the Polar Oceans

    Science.gov (United States)

    Armitage, T. W. K.; Kwok, R.; Egido, A.; Smith, W. H. F.; Cullen, R.

    2017-12-01

    Satellite radar altimetry has proven to be a valuable tool for remote sensing of the polar oceans, with techniques for estimating sea ice thickness and sea surface height in the ice-covered ocean advancing to the point of becoming routine, if not operational, products. Here, we explore new techniques in radar altimetry of the polar oceans and the sea ice cover. First, we present results from fully-focused SAR (FFSAR) altimetry; by accounting for the phase evolution of scatterers in the scene, the FFSAR technique applies an inter-burst coherent integration, potentially over the entire duration that a scatterer remains in the altimeter footprint, which can narrow the effective along track resolution to just 0.5m. We discuss the improvement of using interleaved operation over burst-more operation for applying FFSAR processing to data acquired by future missions, such as a potential CryoSat follow-on. Second, we present simulated sea ice retrievals from the Ka-band Radar Interferometer (KaRIn), the instrument that will be launched on the Surface Water and Ocean Topography (SWOT) mission in 2021, that is capable of producing swath images of surface elevation. These techniques offer the opportunity to advance our understanding of the physics of the ice-covered oceans, plus new insight into how we interpret more conventional radar altimetry data in these regions.

  20. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    Science.gov (United States)

    Vacek, Austin

    2016-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  1. The use of radar for bathymetry assessment

    OpenAIRE

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered bathymetric data. The paper reviews the concepts of bathymetry assessment by radar, the radar imaging mechanism, and the possibilities and limitations of the use of radar data in rapid assessment.

  2. 7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report

    International Nuclear Information System (INIS)

    1992-12-01

    In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R ampersand D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R ampersand D

  3. Scanning ARM Cloud Radars. Part II: Data Quality Control and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen L.; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACR’s) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the HS-RHI SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  4. [System design of small intellectualized ultrasound hyperthermia instrument in the LabVIEW environment].

    Science.gov (United States)

    Jiang, Feng; Bai, Jingfeng; Chen, Yazhu

    2005-08-01

    Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.

  5. Mechanical design and vibro-acoustic testing of ultrathin carbon foils for a spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    IBEX-Hi is an electrostatic analyzer spacecraft instrument designed to measure the energy and flux distribution of energetic neutral atoms (ENAs) emanating from the interaction zone between the Earth's solar system and the Milky Way galaxy. A key element to this electro-optic instrument is an array of fourteen carbon foils that are used to ionize the ENAs. The foils are comprised of an ultrathin (50-100 {angstrom} thick) layer of carbon suspended across the surface of an electroformed Nickel wire screen, which in turn is held taught by a metal frame holder. The electro formed orthogonal screen has square wire elements, 12.7 {micro}m thick, with a pitch of 131.1 wires/cm. Each foil holder has an open aperture approximately 5 cm by 2.5 cm. Designing and implementing foil holders with such a large surface area has not been attempted for spaceflight in the past and has proven to be extremely challenging. The delicate carbon foils are subject to fatigue failure from the large acoustic and vibration loads that they will be exposed to during launch of the spacecraft. This paper describes the evolution of the foil holder design from previous space instrument applications to a flight-like IBEX-Hi prototype. Vibro-acoustic qualification tests of the IBEX-Hi prototype instrument and the resulting failure of several foils are summarized. This is followed by a discussion of iterative foil holder design modifications and laser vibrometer modal testing to support future fatigue failure analyses, along with additional acoustic testing of the IBEX-Hi prototype instrument. The results of these design and testing activities are merged and the resulting flight-like foil holder assembly is proposed.

  6. SRTM Radar Image, Wrapped Color as Height/EarthKam Optical Honolulu, Hawaii

    Science.gov (United States)

    2000-01-01

    about EarthKAM is available at http://Earthkam.sdsc.edu/geo/ .The Shuttle Radar Topography Mission (SRTM) was carried onboard the Space Shuttle Endeavor, which launched on February 11,2000. It uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI)space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: 35 by 35 kilometers (22 by 22 miles) Location: 21.4 degrees North latitude, 157.8 degrees West longitude Orientation: North at top Original Data Resolution: SRTM, 30 meters (99 feet), EarthKAM Electronic Still Camera, 40 meters (132 feet) Date Acquired: SRTM, February 18, 2000; EarthKAM, February 12, 2000 Image: NASA/JPL/NIMA

  7. Estimation of Mesospheric Densities at Low Latitudes Using the Kunming Meteor Radar Together With SABER Temperatures

    Science.gov (United States)

    Yi, Wen; Xue, Xianghui; Reid, Iain M.; Younger, Joel P.; Chen, Jinsong; Chen, Tingdi; Li, Na

    2018-04-01

    Neutral mesospheric densities at a low latitude have been derived during April 2011 to December 2014 using data from the Kunming meteor radar in China (25.6°N, 103.8°E). The daily mean density at 90 km was estimated using the ambipolar diffusion coefficients from the meteor radar and temperatures from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The seasonal variations of the meteor radar-derived density are consistent with the density from the Mass Spectrometer and Incoherent Scatter (MSIS) model, show a dominant annual variation, with a maximum during winter, and a minimum during summer. A simple linear model was used to separate the effects of atmospheric density and the meteor velocity on the meteor radar peak detection height. We find that a 1 km/s difference in the vertical meteor velocity yields a change of approximately 0.42 km in peak height. The strong correlation between the meteor radar density and the velocity-corrected peak height indicates that the meteor radar density estimates accurately reflect changes in neutral atmospheric density and that meteor peak detection heights, when adjusted for meteoroid velocity, can serve as a convenient tool for measuring density variations around the mesopause. A comparison of the ambipolar diffusion coefficient and peak height observed simultaneously by two co-located meteor radars indicates that the relative errors of the daily mean ambipolar diffusion coefficient and peak height should be less than 5% and 6%, respectively, and that the absolute error of the peak height is less than 0.2 km.

  8. Experimental design and quality assurance: in situ fluorescence instrumentation

    Science.gov (United States)

    Conmy, Robyn N.; Del Castillo, Carlos E.; Downing, Bryan D.; Chen, Robert F.

    2014-01-01

    Both instrument design and capabilities of fluorescence spectroscopy have greatly advanced over the last several decades. Advancements include solid-state excitation sources, integration of fiber optic technology, highly sensitive multichannel detectors, rapid-scan monochromators, sensitive spectral correction techniques, and improve data manipulation software (Christian et al., 1981, Lochmuller and Saavedra, 1986; Cabniss and Shuman, 1987; Lakowicz, 2006; Hudson et al., 2007). The cumulative effect of these improvements have pushed the limits and expanded the application of fluorescence techniques to numerous scientific research fields. One of the more powerful advancements is the ability to obtain in situ fluorescence measurements of natural waters (Moore, 1994). The development of submersible fluorescence instruments has been made possible by component miniaturization and power reduction including advances in light sources technologies (light-emitting diodes, xenon lamps, ultraviolet [UV] lasers) and the compatible integration of new optical instruments with various sampling platforms (Twardowski et at., 2005 and references therein). The development of robust field sensors skirt the need for cumbersome and or time-consuming filtration techniques, the potential artifacts associated with sample storage, and coarse sampling designs by increasing spatiotemporal resolution (Chen, 1999; Robinson and Glenn, 1999). The ability to obtain rapid, high-quality, highly sensitive measurements over steep gradients has revolutionized investigations of dissolved organic matter (DOM) optical properties, thereby enabling researchers to address novel biogeochemical questions regarding colored or chromophoric DOM (CDOM). This chapter is dedicated to the origin, design, calibration, and use of in situ field fluorometers. It will serve as a review of considerations to be accounted for during the operation of fluorescence field sensors and call attention to areas of concern when making

  9. Design of software platform based on linux operating system for γ-spectrometry instrument

    International Nuclear Information System (INIS)

    Hong Tianqi; Zhou Chen; Zhang Yongjin

    2008-01-01

    This paper described the design of γ-spectrometry instrument software platform based on s3c2410a processor with arm920t core, emphases are focused on analyzing the integrated application of embedded linux operating system, yaffs file system and qt/embedded GUI development library. It presented a new software platform in portable instrument for γ measurement. (authors)

  10. Ergonomics in designing process: dialogue between designers, executors and users in the maintenance activity of radars in an oil refinery.

    Science.gov (United States)

    Menegon, Fabrício Augusto; Rodrigues, Daniela da Silva; Fontes, Andréa Regina Martins; Menegon, Nilton Luiz

    2012-01-01

    This paper aims to discuss the role of ergonomics in design process using the dialogue developed by designers, implementers and users in an oil refinery. It was possible to identify the need of minimizing the postural constraints, risk of accidents, mechanical shocks and to enlarge safety perception in the access and permanency of the users at the workspace. It has been determined and validated by workers and managers to implement different deadlines depending on programming, viability and execution time for the improvements proposed. In a long-term: it was proposed the substitution of the ladders with time planning according to the maintenance program of the tanks; in a short-time: it was suggested the expansion of the existing platforms, implementation of a walkway connection provided with guardrails between the upper access of the side ladder and the repositioning of radar set and aerial aiming at the usage by workers at the workstation of the new platform. It was also elaborated eight typologies of intervention, according to the request, type of tank, material stored, and its setting place. The design process arises from ergonomics workplace analysis that presents concepts for solutions which was a mediator tool to be settled between users and implementers.

  11. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, R.; Othman, M. Abou Bakr [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Allen, C. [University of Kansas, Lawrence, KS 66045 (United States); Beard, L. [Purdue University, West Lafayette, IN 47907 (United States); Belz, J. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Besson, D. [University of Kansas, Lawrence, KS 66045 (United States); Moscow Engineering and Physics Institute, 31 Kashirskaya Shosse, Moscow 115409 (Russian Federation); Byrne, M.; Farhang-Boroujeny, B.; Gardner, A. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT 84106 (United States); Hanlon, W. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Hanson, J. [University of Kansas, Lawrence, KS 66045 (United States); Jayanthmurthy, C. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Kunwar, S. [University of Kansas, Lawrence, KS 66045 (United States); Larson, S.L. [Utah State University, Logan, Utah 84322 (United States); Myers, I., E-mail: isaac@cosmic.utah.edu [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Prohira, S.; Ratzlaff, K. [University of Kansas, Lawrence, KS 66045 (United States); Sokolsky, P. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Takai, H. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-12-11

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  12. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    International Nuclear Information System (INIS)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S.L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.

    2014-01-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems

  13. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Science.gov (United States)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  14. Recent antenna- and microwave systems designed at CSIR, DPSS for radar systems

    CSIR Research Space (South Africa)

    Botha, Louis

    2016-07-01

    Full Text Available We have decided to develop some common building blocks for use in radar system at the CSIR, DPSS. The reasons for doing this are: a) The cost of ad-hoc- developed RF subsystems (using connectorised components) is getting to be prohibitive as a...

  15. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    Science.gov (United States)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  16. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    Science.gov (United States)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  17. Human walking estimation with radar

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2003-01-01

    Radar can be used to observe humans that are obscured by objects such as walls. These humans cannot be visually observed. The radar measurements are used to animate an obscured human in virtual reality. This requires detailed information about the motion. The radar measurements give detailed

  18. Preliminary Analysis of Assessment Instrument Design to Reveal Science Generic Skill and Chemistry Literacy

    Science.gov (United States)

    Sumarni, Woro; Sudarmin; Supartono, Wiyanto

    2016-01-01

    The purpose of this research is to design assessment instrument to evaluate science generic skill (SGS) achievement and chemistry literacy in ethnoscience-integrated chemistry learning. The steps of tool designing refers to Plomp models including 1) Investigation Phase (Prelimenary Investigation); 2) Designing Phase (Design); 3)…

  19. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  20. Radar meteor rates and solar activity

    International Nuclear Information System (INIS)

    Prikryl, P.

    1983-01-01

    The short-term variation of diurnal radar meteor rates with solar activity represented by solar microwave flux Fsub(10.7), and sunspots relative number Rsub(z), is investigated. Applying the superposed-epoch analysis to the observational material of radar meteor rates from Christchurch (1960-61 and 1963-65), a decrease in the recorded radar rates is found during days of enhanced solar activity. No effect of geomagnetic activity similar to the one reported for the Swedish and Canadian radar meteor data was found by the author in the Christchurch data. A possible explanation of the absence of the geomagnetic effect on radar meteor rates from New Zealand due to a lower echo ceiling height of the Christchurch radar is suggested. The variation of the atmospheric parameters as a possible cause of the observed variation in radar meteor rates is also discussed. (author)

  1. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Science.gov (United States)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  2. Design and validation of an observational instrument for technical and tactical actions in beach volleyball

    Directory of Open Access Journals (Sweden)

    José Manuel Palao

    2015-06-01

    Full Text Available Technical and tactical actions determine performance in beach volleyball. This research develops and tests an instrument to monitor and evaluate the manner of execution and efficacy of the actions in beach volleyball. The purpose of this paper was to design and validate an observational instrument to analyze technical and tactical actions in beach volleyball. The instrument collects information regarding: a information about the match (context, b information about game situations, c information about technical situations (serve, reception, set, attack, block, and court defense in relation to player execution, role, manner of execution, execution zone, and efficacy, and d information about the result of the play (win-lose and way point is obtained. Instrument design and validation was done in seven stages: a review of literature and consultation of experts; b pilot observation and data analysis; c expert review of instrument (qualitative and quantitative evaluation; d observer training test; e expert review of instrument (content validity; f measurement of the ability of the instrument to discriminate the result of the set; and g measurement of the ability of the instrument to differentiate between competition age groups. The results show that the instrument allows for obtaining objective and valid information about the players and team from offensive and defensive technical and tactical actions, as well as indirectly from physical actions. The instrument can be used, in its entirety or partially, for researching and coaching purposes.

  3. Sentinel-5 instrument: status of design, performance, and development

    Science.gov (United States)

    Gühne, T.; Keim, C.; Bartsch, P.; Weiß, S.; Melf, M.; Seefelder, W.

    2017-09-01

    The Sentinel-5 instrument is currently under development by a consortium led by Airbus Defence and Space in the frame of the European Union Copernicus program. It is a customer furnished item to the MetOp Second Generation satellite platform, which will provide operational meteorological data for the coming decades. Mission objective of the Sentinel-5 is to monitor the composition of the Earth atmosphere for Copernicus Atmosphere Services by taking measurements of trace gases and aerosols impacting air quality and climate with high resolution and daily global coverage. Therefore the Sentinel-5 provides five dispersive spectrometers covering the UV-VIS (270…500 nm), NIR (685 …773 nm) and SWIR (1590…1675 and 2305…2385 nm) spectral bands with resolutions <=1nm. Spatially the Sentinel-5 provides a 108° field of view with a ground sampling of 7.5 x 7 km2 at Nadir. The development program is post PDR and the build-up of the industrial team is finalised. We report on the instrument architecture and design derived from the driving requirements, the predicted instrument performance, and the general status of the program.

  4. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  5. Classification and correction of the radar bright band with polarimetric radar

    Science.gov (United States)

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  6. Conceptual thermal design and analysis of a far-infrared/mid-infrared remote sensing instrument

    Science.gov (United States)

    Roettker, William A.

    1992-07-01

    This paper presents the conceptual thermal design and analysis results for the Spectroscopy of the Atmosphere using Far-Infrared Emission (SAFIRE) instrument. SAFIRE has been proposed for Mission to Planet Earth to study ozone chemistry in the middle atmosphere using remote sensing of the atmosphere in the far-infrared (21-87 microns) and mid-infrared (9-16 microns) spectra. SAFIRE requires that far-IR detectors be cooled to 3-4 K and mid-IR detectors to 80 K for the expected mission lifetime of five years. A superfluid helium dewar and Stirling-cycle cryocoolers provide the cryogenic temperatures required by the infrared detectors. The proposed instrument thermal design uses passive thermal control techniques to reject 465 watts of waste heat from the instrument.

  7. Weather radar performance monitoring using a metallic-grid ground-scatterer

    Science.gov (United States)

    Falconi, Marta Tecla; Montopoli, Mario; Marzano, Frank Silvio; Baldini, Luca

    2017-10-01

    The use of ground return signals is investigated for checks on the calibration of power measurements of a polarimetric C-band radar. To this aim, a peculiar permanent single scatterer (PSS) consisting of a big metallic roof with a periodic mesh grid structure and having a hemisphere-like shape is considered. The latter is positioned in the near-field region of the weather radar and its use, as a reference calibrator, shows fairly good results in terms of reflectivity and differential reflectivity monitoring. In addition, the use of PSS indirectly allows to check for the radar antenna de-pointing which is another issue usually underestimated when dealing with weather radars. Because of the periodic structure of the considered PSS, simulations of its electromagnetic behavior were relatively easy to perform. To this goal, we used an electromagnetic Computer-Aided-Design (CAD) with an ad-hoc numerical implementation of a full-wave solution to model our PSS in terms of reflectivity and differential reflectivity factor. Comparison of model results and experimental measurements are then shown in this work. Our preliminary investigation can pave the way for future studies aiming at characterizing ground-clutter returns in a more accurate way for radar calibration purposes.

  8. Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake

    Science.gov (United States)

    Shariff, Karim

    2016-01-01

    Aircraft trailing vortices pose a danger to following aircraft during take-off and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in IFR (Instrument Flight Regulations) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional precipitation and cloud radars. This is enabled by spraying a small quantity water into the wake from near the wing. The vortex strength is revealed by the doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow-field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles behind the aircraft. Small droplets evaporate away while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher frequency radars combined with spectral processing gives good SNR.

  9. 46 CFR 184.404 - Radars.

    Science.gov (United States)

    2010-10-01

    ... within one mile of land must be fitted with a FCC Type Accepted general marine radar system for surface... Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD...

  10. Standards for radiation protection instrumentation: design of safety standards and testing procedures

    International Nuclear Information System (INIS)

    Meissner, Frank

    2008-01-01

    This paper describes by means of examples the role of safety standards for radiation protection and the testing and qualification procedures. The development and qualification of radiation protection instrumentation is a significant part of the work of TUV NORD SysTec, an independent expert organisation in Germany. The German Nuclear Safety Standards Commission (KTA) establishes regulations in the field of nuclear safety. The examples presented may be of importance for governments and nuclear safety authorities, for nuclear operators and for manufacturers worldwide. They demonstrate the advantage of standards in the design of radiation protection instrumentation for new power plants, in the upgrade of existing instrumentation to nuclear safety standards or in the application of safety standards to newly developed equipment. Furthermore, they show how authorities may proceed when safety standards for radiation protection instrumentation are not yet established or require actualization. (author)

  11. The Gas Turbine Modular Helium Reactor Optimum Design for Instrumentation and Control

    International Nuclear Information System (INIS)

    Quinn, Edward 'Ted'; Rodriguez, Carmelo

    2002-01-01

    Nuclear power plants rely on instrumentation and control (I and C) systems for monitoring, control and protection. While the earlier generations of nuclear plants were built with largely analog instrumentation systems, the industrial base has moved to digital based system. The reason for this transition to digital I and C systems lies in their important advantage over existing analog systems. In essence, the challenge is to prove that the new digital guidelines included in NUREG 0800, Standard Review Plan Chapter 7 and all associated documents provided adequate direction and safety review for an advanced control design for a new nuclear plant in the United States. This paper focuses on how one of the new designs incorporates the latest technology and meets the new NRC requirements. (authors)

  12. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Science.gov (United States)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  13. Radar network communication through sensing of frequency hopping

    Science.gov (United States)

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  14. Sensor management in RADAR/IRST track fusion

    Science.gov (United States)

    Hu, Shi-qiang; Jing, Zhong-liang

    2004-07-01

    In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.

  15. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. The Comet Radar Explorer Mission

    Science.gov (United States)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  17. ISTEF Laser Radar Program

    National Research Council Canada - National Science Library

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  18. Design and evaluation of a new ergonomic handle for instruments in minimally invasive surgery.

    Science.gov (United States)

    Sancibrian, Ramon; Gutierrez-Diez, María C; Torre-Ferrero, Carlos; Benito-Gonzalez, Maria A; Redondo-Figuero, Carlos; Manuel-Palazuelos, Jose C

    2014-05-01

    Laparoscopic surgery techniques have been demonstrated to provide massive benefits to patients. However, surgeons are subjected to hardworking conditions because of the poor ergonomic design of the instruments. In this article, a new ergonomic handle design is presented. This handle is designed using ergonomic principles, trying to provide both more intuitive manipulation of the instrument and a shape that reduces the high-pressure zones in the contact with the surgeon's hand. The ergonomic characteristics of the new handle were evaluated using objective and subjective studies. The experimental evaluation was performed using 28 volunteers by means of the comparison of the new handle with the ring-handle (RH) concept in an instrument available on the market. The volunteers' muscle activation and motions of the hand, wrist, and arm were studied while they performed different tasks. The data measured in the experiment include electromyography and goniometry values. The results obtained from the subjective analysis reveal that most volunteers (64%) preferred the new prototype to the RH, reporting less pain and less difficulty to complete the tasks. The results from the objective study reveal that the hyperflexion of the wrist required for the manipulation of the instrument is strongly reduced. The new ergonomic handle not only provides important ergonomic advantages but also improves the efficiency when completing the tasks. Compared with RH instruments, the new prototype reduced the high-pressure areas and the extreme motions of the wrist. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. CryoSat SIRAL: Instrument Performance After 5 Years of Operations

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2016-08-01

    CryoSat's Synthetic Interferometric Radar Altimeter (SIRAL) [1] is a Ku-band pulsewidth limited radar altimeter that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for Delay/Doppler processing [2]. Moreover SIRAL takes advantage of two antennas mounted across-track for interferometric capability, in order to determine the across-track direction from which the echo is received [3].The calibration strategy for SIRAL includes both internal calibrations and external calibration [1,7]. Due to the fact that SIRAL is an interferometric phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed. In this paper we will describe as first the internal calibration strategy and then the different calibration corrections that are applied to science data. The internal calibration results over more than five years of mission will be presented, analysing their temporal evolution in order to highlight the stability of the instrument over its life.

  20. Overview of Experimental Pulse-Doppler Radar Data Collected Oct 1999

    National Research Council Canada - National Science Library

    Hughes, Steven

    2000-01-01

    The Defence Research Establishment Ottawa has designed and constructed an experimental air-to-air radar system as the first step in demonstrating an air-to-air surveillance capability for the Canadian...

  1. The Development of a Plan for the Assessment, Improvement and Deployment of a Radar Acoustic Sounding System (RASS) for Wake Vortex Detection

    Science.gov (United States)

    Morris, Philip J.; McLaughlin, Dennis K.; Gabrielson, Thomas B.; Boluriaan, Said

    2004-01-01

    This report describes the activities completed under a grant from the NASA Langley Research Center to develop a plan for the assessment, improvement, and deployment of a Radar Acoustic Sounding System (RASS) for the detection of wake vortices. A brief review is provided of existing alternative instruments for wake vortex detection. This is followed by a review of previous implementations and assessment of a RASS. As a result of this review, it is concluded that the basic features of a RASS have several advantages over other commonly used wake vortex detection and measurement systems. Most important of these features are the good fidelity of the measurements and the potential for all weather operation. To realize the full potential of this remote sensing instrument, a plan for the development of a RASS designed specifically for wake vortex detection and measurement has been prepared. To keep costs to a minimum, this program would start with the development an inexpensive laboratory-scale version of a RASS system. The new instrument would be developed in several stages, each allowing for a critical assessment of the instrument s potential and limitations. The instrument, in its initial stages of development, would be tested in a controlled laboratory environment. A jet vortex simulator, a prototype version of which has already been fabricated, would be interrogated by the RASS system. The details of the laboratory vortex would be measured using a Particle Image Velocimetry (PIV) system. In the early development stages, the scattered radar signal would be digitized and the signal post-processed to determine how extensively and accurately the RASS could measure properties of the wake vortex. If the initial tests prove to be successful, a real-time, digital signal processing system would be developed as a component of the RASS system. At each stage of the instrument development and testing, the implications of the scaling required for a full-scale instrument would be

  2. Design, Modelling and Teleoperation of a 2 mm Diameter Compliant Instrument for the da Vinci Platform.

    Science.gov (United States)

    Francis, P; Eastwood, K W; Bodani, V; Looi, T; Drake, J M

    2018-05-07

    This work explores the feasibility of creating and accurately controlling an instrument for robotic surgery with a 2 mm diameter and a three degree-of-freedom (DoF) wrist which is compatible with the da Vinci platform. The instrument's wrist is composed of a two DoF bending notched-nitinol tube pattern, for which a kinematic model has been developed. A base mechanism for controlling the wrist is designed for integration with the da Vinci Research Kit. A basic teleoperation task is successfully performed using two of the miniature instruments. The performance and accuracy of the instrument suggest that creating and accurately controlling a 2 mm diameter instrument is feasible and the design and modelling proposed in this work provide a basis for future miniature instrument development.

  3. Software design for the VIS instrument onboard the Euclid mission: a multilayer approach

    Science.gov (United States)

    Galli, E.; Di Giorgio, A. M.; Pezzuto, S.; Liu, S. J.; Giusi, G.; Li Causi, G.; Farina, M.; Cropper, M.; Denniston, J.; Niemi, S.

    2014-07-01

    The Euclid mission scientific payload is composed of two instruments: a VISible Imaging Instrument (VIS) and a Near Infrared Spectrometer and Photometer instrument (NISP). Each instrument has its own control unit. The Instrument Command and Data Processing Unit (VI-CDPU) is the control unit of the VIS instrument. The VI-CDPU is connected directly to the spacecraft by means of a MIL-STD-1553B bus and to the satellite Mass Memory Unit via a SpaceWire link. All the internal interfaces are implemented via SpaceWire links and include 12 high speed lines for the data provided by the 36 focal plane CCDs readout electronics (ROEs) and one link to the Power and Mechanisms Control Unit (VI-PMCU). VI-CDPU is in charge of distributing commands to the instrument sub-systems, collecting their housekeeping parameters and monitoring their health status. Moreover, the unit has the task of acquiring, reordering, compressing and transferring the science data to the satellite Mass Memory. This last feature is probably the most challenging one for the VI-CDPU, since stringent constraints about the minimum lossless compression ratio, the maximum time for the compression execution and the maximum power consumption have to be satisfied. Therefore, an accurate performance analysis at hardware layer is necessary, which could delay too much the design and development of software. In order to mitigate this risk, in the multilayered design of software we decided to design a middleware layer that provides a set of APIs with the aim of hiding the implementation of the HW connected layer to the application one. The middleware is built on top of the Operating System layer (which includes the Real-Time OS that will be adopted) and the onboard Computer Hardware. The middleware itself has a multi-layer architecture composed of 4 layers: the Abstract RTOS Adapter Layer (AOSAL), the Speci_c RTOS Adapter Layer (SOSAL), the Common Patterns Layer (CPL), the Service Layer composed of two subgroups which

  4. Mechanical response of nickel-titanium instruments with different cross-sectional designs during shaping of simulated curved canals.

    Science.gov (United States)

    Kim, H C; Kim, H J; Lee, C J; Kim, B M; Park, J K; Versluis, A

    2009-07-01

    To evaluate how different cross-sectional designs affect stress distribution in nickel-titanium (NiTi) instruments during bending, torsion and simulated shaping of a curved canal. Four NiTi rotary instruments with different cross-sectional geometries were selected: ProFile and HeroShaper systems with a common triangle-based cross section, Mtwo with an S-shaped rectangle-based design and NRT with a modified rectangle-based design. The geometries of the selected files were scanned in a micro-CT and three-dimensional finite-element models were created for each system. Stiffness characteristics for each file system were determined in a series of bending and torsional conditions. Canal shaping was simulated by inserting models of the rotating file into a 45 degrees curved canal model. Stress distribution in the instruments was recorded during simulated shaping. After the instruments were retracted from the canal, residual stresses and permanent bending of their tips due to plastic deformation were determined. The greatest bending and torsional stiffness occurred in the NRT file. During simulated shaping, the instruments with triangle-based cross-sectional geometry had more even stress distributions along their length and had lower stress concentrations than the instruments with rectangle-based cross sections. Higher residual stresses and plastic deformations were found in the Mtwo and NRT with rectangle-based cross-sectional geometries. Nickel-titanium instruments with rectangle-based cross-sectional designs created higher stress differentials during simulated canal shaping and may encounter higher residual stress and plastic deformation than instruments with triangle-based cross sections.

  5. Frequency-Modulated Continuous-Wave Fm-Cw Radar for Evaluation of Refractory Structures Used in Glass Manufacturing Furnaces

    Science.gov (United States)

    Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.

    2009-03-01

    A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.

  6. Integrating Instrumental Data Provides the Full Science in 3D

    Science.gov (United States)

    Turrin, M.; Boghosian, A.; Bell, R. E.; Frearson, N.

    2017-12-01

    Looking at data sparks questions, discussion and insights. By integrating multiple data sets we deepen our understanding of how cryosphere processes operate. Field collected data provide measurements from multiple instruments supporting rapid insights. Icepod provides a platform focused on the integration of multiple instruments. Over the last three seasons, the ROSETTA-Ice project has deployed Icepod to comprehensively map the Ross Ice Shelf, Antarctica. This integrative data collection along with new methods of data visualization allows us to answer questions about ice shelf structure and evolution that arise during data processing and review. While data are vetted and archived in the field to confirm instruments are operating, upon return to the lab data are again reviewed for accuracy before full analysis. Recent review of shallow ice radar data from the Beardmore Glacier, an outlet glacier into the Ross Ice Shelf, presented an abrupt discontinuity in the ice surface. This sharp 8m surface elevation drop was originally interpreted as a processing error. Data were reexamined, integrating the simultaneously collected shallow and deep ice radar with lidar data. All the data sources showed the surface discontinuity, confirming the abrupt 8m drop in surface elevation. Examining high resolution WorldView satellite imagery revealed a persistent source for these elevation drops. The satellite imagery showed that this tear in the ice surface was only one piece of a larger pattern of "chatter marks" in ice that flows at a rate of 300 m/yr. The markings are buried over a distance of 30 km or after 100 years of travel down Beardmore Glacier towards the front of the Ross Ice Shelf. Using Icepod's lidar and cameras we map this chatter mark feature in 3D to reveal its full structure. We use digital elevation models from WorldView to map the other along flow chatter marks. In order to investigate the relationship between these surface features and basal crevasses, the deep ice

  7. A Compact, Versatile Six-Port Radar Module for Industrial and Medical Applications

    Directory of Open Access Journals (Sweden)

    Sarah Linz

    2013-01-01

    Full Text Available The Six-port receiver has been intensively investigated in the last decade to be implemented as an alternative radar architecture. Plenty of current scientific publications demonstrate the effectiveness and versatility of the Six-port radar for special industrial, automotive, and medical applications, ranging from accurate contactless vibration analysis, through automotive radar calibration, to remote breath and heartbeat monitoring. Its highlights, such as excellent phase discrimination, trivial signal processing, low circuit complexity, and cost, have lately drawn the attention of companies working with radar technology. A joint project involving the University of Erlangen-Nuremberg and InnoSenT GmbH (Innovative Sensor Technology led to the development of a highly accurate, compact, and versatile Six-port radar module aiming at a reliable high-integration of all subcomponents such as antenna, Six-port front-end, baseband circuitry, and digital signal processing in one single package. Innovative aspects in the RF front-end design as well as in the integration strategy are hereby presented, together with a system overview and measurement results.

  8. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P. (New Mexico State University, Las Cruces, NM); Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  9. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Yang Jun

    2016-02-01

    Full Text Available A multiple targets cognitive radar tracking method based on Compressed Sensing (CS is proposed. In this method, the theory of CS is introduced to the case of cognitive radar tracking process in multiple targets scenario. The echo signal is sparsely expressed. The designs of sparse matrix and measurement matrix are accomplished by expressing the echo signal sparsely, and subsequently, the restruction of measurement signal under the down-sampling condition is realized. On the receiving end, after considering that the problems that traditional particle filter suffers from degeneracy, and require a large number of particles, the particle swarm optimization particle filter is used to track the targets. On the transmitting end, the Posterior Cramér-Rao Bounds (PCRB of the tracking accuracy is deduced, and the radar waveform parameters are further cognitively designed using PCRB. Simulation results show that the proposed method can not only reduce the data quantity, but also provide a better tracking performance compared with traditional method.

  10. Older drivers' attitudes about instrument cluster designs in vehicles.

    Science.gov (United States)

    Owsley, Cynthia; McGwin, Gerald; Seder, Thomas

    2011-11-01

    Little is known about older drivers' preferences and attitudes about instrumentation design in vehicles. Yet visual processing impairments are common among older adults and could impact their ability to interface with a vehicle's dashboard. The purpose of this study is to obtain information from them about this topic, using focus groups and content analysis methodology. A trained facilitator led 8 focus groups of older adults. Discussion was stimulated by an outline relevant to dashboard interfaces, audiotaped, and transcribed. Using multi-step content analysis, a trained coder placed comments into thematic categories and coded comments as positive, negative, or neutral in meaning. Comments were coded into these categories: gauges, knobs/switches, interior lighting, color, lettering, symbols, location, entertainment, GPS, cost, uniformity, and getting information. Comments on gauges and knobs/switches represented half the comments. Women made more comments about getting information; men made more comments about uniformity. Positive and negative comments were made in each category; individual differences in preferences were broad. The results of this study will be used to guide the design of a population-based survey of older drivers about instrument cluster format, which will also examine how their responses are related to their visual processing capabilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The Rubble Rescue Radar (RRR): A low power hand-held microwave device for the detection of trapped human personnel

    International Nuclear Information System (INIS)

    Haddad, W.S.

    1997-01-01

    Each year, innocent human lives are lost in collapsed structures as a result of both natural and man-made disasters. We have developed a prototype device, called the Rubble Rescue Radar (RRR) as a aid to workers trying to locate trapped victims in urban search and rescue operations. The RRR is a motion sensor incorporating Micropower Impulse Radar and is capable of detecting human breathing motions through reinforced concrete. It is lightweight, and designed to be handled by a single operator for local searches in areas where trapped victims are expected. Tests of the first prototype device were conducted on site at LLNL using a mock rubble pile consisting of a reinforced concrete pipe with two concrete floor slabs placed against one side, and random concrete and asphalt debris piled against the other. This arrangement provides safe and easy access for instruments and/or human subjects. Breathing signals of a human subject were recorded with the RRR through one floor slab plus the wall of the pipe, two slabs plus the wall of the pipe, and the random rubble plus the wall of the pipe. Breathing and heart beat signals were also recorded of a seated human subject at a distance of 1 meter with no obstructions. Results and photographs of the experimental work are presented, and a design concept for the next generation device is described

  12. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  13. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  14. Flood Monitoring using X-band Dual-polarization Radar Network

    Science.gov (United States)

    Chandrasekar, V.; Wang, Y.; Maki, M.; Nakane, K.

    2009-09-01

    sensitivity and fast temporal update across the coverage. Strong clutter is expected from buildings in the neighborhood which act as perfect reflectors. The reduction in radar size enables flexible deployment, such as rooftop installation, with small infrastructure requirement, which is critical in a metropolitan region. Dual-polarization based technologies can be implemented for real-time mitigation of rain attenuations and accurate estimation of rainfall. The NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is developing the technologies and the systems for network centric weather observation. The Differential propagation phase (Kdp) has higher sensitivity at X-band compared to S and C band. It is attractive to use Kdp to derive Quantitative Precipitation Estimation (QPE) because it is immune to rain attenuation, calibration biases, partial beam blockage, and hail contamination. Despite the advantage of Kdp for radar QPE, the estimation of Kdp itself is a challenge as the range derivative of the differential propagation phase profiles. An adaptive Kdp algorithm was implemented in the CASA IP1 testbed that substantially reduces the fluctuation in light rain and the bias at heavy rain. The Kdp estimation also benefits from the higher resolution in the IP1 radar network. The performance of the IP1 QPE product was evaluated for all major rain events against the USDA Agriculture Research Service's gauge network (MicroNet) in the Little Washita watershed, which comprises 20 weather stations in the center of the test bed. The cross-comparison with gauge measurements shows excellent agreement for the storm events during the Spring Experiments of 2007 and 2008. The hourly rainfall estimates compared to the gauge measurements have a very small bias of few percent and a normalized standard error of 21%. The IP1 testbed was designed with overlapping coverage among its radar nodes. The study area is covered by multiple radars and the aspect of

  15. Scanning ARM Cloud Radars Part II. Data Quality Control and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, Pavlos [McGill Univ., Montreal, QC (Canada); Jo, Ieng [McGill Univ., Montreal, QC (Canada); Borque, Paloma [McGill Univ., Montreal, QC (Canada); Tatarevic, Aleksandra [McGill Univ., Montreal, QC (Canada); Lamer, Katia [McGill Univ., Montreal, QC (Canada); Bharadwaj, Nitin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widener, Kevin B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Karen [Brookhaven National Lab. (BNL), Upton, NY (United States); Clothiaux, Eugene E. [Pennsylvania State Univ., State College, PA (United States)

    2013-10-04

    The Scanning ARM Cloud Radars (SACR’s) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the Hemispherical Sky – Range Height Indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  16. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  17. Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument

    Science.gov (United States)

    Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.

    2012-09-01

    We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.

  18. Hardware in the loop radar environment simulation on wideband DRFM platforms

    CSIR Research Space (South Africa)

    Strydom, JJ

    2012-10-01

    Full Text Available @csir.co.za, dnaiker@csir.co.za, kolivier@csir.co.za Keywords: DRFM, ECM, Complex Targets, Clutter, HIL, radar environment, simulation. Abstract This paper describes the development and testing of a digital radio frequency memory (DRFM) kernel, as well... as follows: Section 2 describes the design of a high performance DRFM kernel. Section 3 describes the integration of this kernel into a radar environment simulator system. Sections 4, 5 and 6 then present the generation of realistic targets, ECM...

  19. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  20. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the

  1. Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet

    Science.gov (United States)

    Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight

  2. Millimeter-Wave Receiver Concepts for 77 GHz Automotive Radar in Silicon-Germanium Technology

    CERN Document Server

    Kissinger, Dietmar

    2012-01-01

    The book presents the analysis and design of integrated automotive radar receivers in Silicon-Germanium technology, for use in complex multi-channel radar transceiver front-ends in the 77GHz frequency band. The main emphasis of the work is the realization of high-linearity and low-power modular receiver channels as well as the investigation of millimeter-wave integrated test concepts for the receiver front-end.

  3. Design of analytical instrumentation with D-T sealed neutron generators

    International Nuclear Information System (INIS)

    Qiao Yahua; Wu Jizong; Zheng Weiming; Liu Quanwei; Zhang Min

    2008-01-01

    Analytical instrumentation with D-T sealed neutron generators source activation, The 14 MeV D-T sealed neutron tube with 10 9 n · s -1 neutron yield is used as generator source. The optimal structure of moderator and shield was achieved by MC computing.The instrumentation's configuration is showed. The instrumentation is made up of the SMY-DT50.8-2.1 sealed neutron tube and the high-voltage power supply system, which center is the sealed neutron generators. 6 cm Pb and 20 cm polythene is chosen as moderator, Pb, polythene and 10 cm boron-PE was chosen as shield .The sample box is far the source from 9 cm, the measurement system were made up of HPGe detector and the sample transforming system. After moderator and shield, the thermal neutron fluence rate at the point of sample is 0.93 × 10 6 n · s -1 cm -2 , which is accorded with design demand, and the laboratory and surroundings reaches the safety standard of the dose levels. (authors)

  4. Research on conceptual design of simplified nuclear safety instrument and control system

    International Nuclear Information System (INIS)

    Huang Jie

    2015-01-01

    The Nuclear safety instrument and control system is directly related to the safety of the reactor. So redundant and diversity design is used to ensure the system's security and reliability. This make the traditional safety system large, more cabinets and wiring complexity. To solve these problem, we can adopt new technology to make the design more simple. The simplify conceptual design can make the system less cabinets, less wiring, but high security, strong reliability. (author)

  5. The mechanical design and dynamic testing of the IBEX-H1 electrostatic analyzer spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.

  6. Mechanical Design of NESSI: New Mexico Tech Extrasolar Spectroscopic Survey Instrument

    Science.gov (United States)

    Santoro, Fernando G.; Olivares, Andres M.; Salcido, Christopher D.; Jimenez, Stephen R.; Jurgenson, Colby A.; Hrynevych, Michael A.; Creech-Eakman, Michelle J.; Boston, Penny J.; Schmidt, Luke M.; Bloemhard, Heather; hide

    2011-01-01

    NESSI: the New Mexico Tech Extrasolar Spectroscopic Survey Instrument is a ground-based multi-object spectrograph that operates in the near-infrared. It will be installed on one of the Nasmyth ports of the Magdalena Ridge Observatory (MRO) 2.4-meter Telescope sited in the Magdalena Mountains, about 48 km west of Socorro-NM. NESSI operates stationary to the telescope fork so as not to produce differential flexure between internal opto-mechanical components during or between observations. An appropriate mechanical design allows the instrument alignment to be highly repeatable and stable for both short and long observation timescales, within a wide-range of temperature variation. NESSI is optically composed of a field lens, a field de-rotator, re-imaging optics, an auto-guider and a Dewar spectrograph that operates at LN2 temperature. In this paper we report on NESSI's detailed mechanical and opto-mechanical design, and the planning for mechanical construction, assembly, integration and verification.

  7. Crosshole investigations - results from borehole radar investigations

    International Nuclear Information System (INIS)

    Olsson, O.; Falk, L.; Sandberg, E.; Forslund, O.; Lundmark, L.

    1987-05-01

    A new borehole radar system has been designed, built and tested. The system consists of borehole transmitter and receiver probes, a signal control unit for communication with the borehole probes, and a computer unit for storage and display of data. The system can be used both in singlehole and crosshole modes and probing ranges of 115 m and 300 m, respectively, have been obtained at Stripa. The borehole radar is a short pulse system which uses center frequencies in the range 20 to 60 MHz. Single hole reflection measurements have been used to identify fracture zones and to determine their position and orientation. The travel time and amplitude of the first arrival measured in a crosshole experiment can be used as input data in a tomographic analysis. (orig./DG)

  8. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    Science.gov (United States)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  9. Thermal architecture design tests for the Planck/HFI instrument

    Energy Technology Data Exchange (ETDEWEB)

    Piat, M.; Leriche, B.; Torre, J.-P.; Lamarre, J.-M.; Benoit, A.; Crussaire, J.-P

    2000-04-07

    The ESA satellite project Planck is designed to survey the sky at sub-millimetre and millimetre wavelengths in a drift scan mode. The High-Frequency Instrument (HFI) will use 48 bolometers cooled to 100 mK by a dilution cooler. In this paper, we describe how the scan strategy leads to requirements on the 0.1 K stage temperature stability and how a combination of a passive and an active system can be used to approach this specification.

  10. Intensity-Duration-Frequency curves from remote sensing datasets: direct comparison of weather radar and CMORPH over the Eastern Mediterranean

    Science.gov (United States)

    Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.

    2017-04-01

    Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall

  11. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  12. A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    2000-04-01

    Full Text Available Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint.Key words: Magnetospheric physics (magnetosphere-ionosphere interactions; plasma convection; solar wind-magnetosphere interactions

  13. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  14. Radar Cross Section measurements on the stealth metamaterial objects

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, Kim; Strikwerda, Andrew C.

    have been realized in the form of thin, flexible metallized films of polyimide [1]. Here we apply a near-unity absorbing MM as a way to reduce the radar cross section of an object, and consider the real-life situation where the probe beam is significantly larger than the MM film and the object under...... investigation. We use a terahertz radar cross section (RCS) setup [2] for the characterization of the RCS of a real object covered with an absorbing MM film designed for high absorption in the THz frequency range, specifically at 0.8 THz. The results are in a form of 2D maps (sinograms), from which the RCS...

  15. Comparison of gimbal approaches to decrease drag force and radar cross sectional area in missile application

    Science.gov (United States)

    Sakarya, Doǧan Uǧur

    2017-05-01

    Drag force effect is an important aspect of range performance in missile applications especially for long flight time. However, old fashioned gimbal approaches force to increase missile diameter. This increase has negative aspect of rising in both drag force and radar cross sectional area. A new gimbal approach was proposed recently. It uses a beam steering optical arrangement. Therefore, it needs less volume envelope for same field of regard and same optomechanical assembly than the old fashioned gimbal approaches. In addition to longer range performance achieved with same fuel in the new gimbal approach, this method provides smaller cross sectional area which can be more invisible in enemies' radar. In this paper, the two gimbal approaches - the old fashioned one and the new one- are compared in order to decrease drag force and radar cross sectional area in missile application. In this study; missile parameters are assumed to generate gimbal and optical design parameters. Optical design is performed according to these missile criteria. Two gimbal configurations are designed with respect to modeled missile parameters. Also analyzes are performed to show decreased drag force and radar cross sectional area in the new approach for comparison.

  16. Numerical Design of Ultra-Wideband Printed Antenna for Surface Penetrating Radar Application

    Directory of Open Access Journals (Sweden)

    Achmad Munir

    2011-08-01

    Full Text Available Surface penetrating radar (SPR is an imaging device of electromagnetic wave that works by emitting and transmitting a narrow period pulse through the antenna. Due to the use of narrow period pulse, according to the Fourier transform duality, therefore ultra-wideband (UWB antenna becomes one of the most important needs in SPR system. In this paper, a novel UWB printed antenna is proposed to be used for SPR application. Basically, the proposed antenna is developed from a rectangular microstrip antenna fed by symmetric T-shaped. Some investigation methods such as resistive loading, abrupt transition, and ground plane modification are attempted to achieve required characteristics of bandwidth, radiation efficiency, and compactness needed by the system. To obtain the optimum design, the characteristics of proposed antenna are numerically investigated through the physical parameters of antenna. It is shown that proposed antenna deployed on an FR-4 Epoxy substrate with permittivity of 4.3 and thickness of 1.6mm has a compact size of 72.8mm x 60.0mm and a large bandwidth of 50MHz-5GHz which is suitable for SPR application.

  17. Differential Absorption Radar: An Emerging Technology for Remote Sounding of Water Vapor Within Clouds

    Science.gov (United States)

    Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.

    2017-12-01

    We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential

  18. Radar rainfall estimation for the identification of debris-flow precipitation thresholds

    Science.gov (United States)

    Marra, Francesco; Nikolopoulos, Efthymios I.; Creutin, Jean-Dominique; Borga, Marco

    2014-05-01

    variogram) of the triggering rainfall. These results show that weather radar has the potential to effectively increase the accuracy of rainfall thresholds for debris flow occurrence. However, these benefits may only be achieved if the same monitoring instrumentation is used both to derive the rainfall thresholds and for use of thresholds for real-time identification of debris flows occurrence. References Nikolopoulos, E.I., Borga M., Crema S., Marchi L, Marra F. & Guzzetti F., 2014. Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris-flow occurrence. Geomorphology (conditionally accepted) Peruccacci, S., Brunetti, M.T., Luciani, S., Vennari, C., and Guzzetti, F., 2012. Lithological and seasonal control of rainfall thresholds for the possible initiation of landslides in central Italy, Geomorphology, 139-140, 79-90, 2012.

  19. Radar spectrum opportunities for cognitive communications transmission

    OpenAIRE

    Wang, L; McGeehan, JP; Williams, C; Doufexi, A

    2008-01-01

    In relation to opportunistic access to radar spectrum, the impact of the radar on a communication system is investigated in this paper. This paper illustrates that by exploring the spatial and temporal opportunities in the radar spectrum and therefore improving the tolerance level to radar interference, a substantial increase on the throughput of a communication system is possible. Results are presented regarding the impact of swept radars on a WiMAX system. The results show the impact of SIR...

  20. Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002

    Directory of Open Access Journals (Sweden)

    N. Engler

    2005-06-01

    Full Text Available During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100mW kg-1 in the altitude range of 80-92km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.

  1. Validation and Sensitivity Analysis of 3D Synthetic Aperture Radar (SAR) Imaging of the Interior of Primitive Solar System Bodies: Comets and Asteroids

    Data.gov (United States)

    National Aeronautics and Space Administration — This task will demonstrate that using Radar Reflection Imager Instrument in an orbing platform , we can perform 3D mapping of the Cometary Nucleus. To probe the...

  2. A computer simulation of a CWFM radar showing the tradeoffs of performance as a function of range

    Science.gov (United States)

    Gordy, Robert S.; Zoledziowski, Severyn

    2010-04-01

    This paper describes a study of the operation of CWFM radar using "System View" software for modeling and simulation. The System View software is currently offered by Agilent; a link to the website is given in the footnote. The models that were studied include: a model illustrating the basic principle of operation of the CWFM radar, the range resolution of the radar, the effect of nonlinear distortions on the detected signals, and the effect of interference and jamming on the reception of CWFM signals. The study was performed as part of the design of an airborne CWFM radar.

  3. Instrumentation and control of future sodium cooled fast reactors - Design improvements

    International Nuclear Information System (INIS)

    Madhusoodanan, K.; Sakthivel, M.; Chellapandi, P.

    2013-06-01

    India's fast reactor program started with the 40 MWt Fast Breeder Test Reactor. 500 MWe Prototype Fast Breeder Reactor (PFBR) is currently under construction at Kalpakkam. Safety of PFBR is enhanced by improved design features of I and C system. Since the design of Instrumentation and control (I and C) of PFBR, considerable improvements in terms of advancement in technology and indigenization has taken place. Further improvements in I and C is proposed for solving many of the difficulties faced during the design and construction phases of PFBR. Design improvements proposed are covered in this paper which will make the implementation and maintenance of I and C of future SFRs easier. (authors)

  4. Prediction of buried mine-like target radar signatures using wideband electromagnetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Warrick, A.L.; Azevedo, S.G.; Mast, J.E.

    1998-04-06

    Current ground penetrating radars (GPR) have been tested for land mine detection, but they have generally been costly and have poor performance. Comprehensive modeling and experimentation must be done to predict the electromagnetic (EM) signatures of mines to access the effect of clutter on the EM signature of the mine, and to understand the merit and limitations of using radar for various mine detection scenarios. This modeling can provide a basis for advanced radar design and detection techniques leading to superior performance. Lawrence Livermore National Laboratory (LLNL) has developed a radar technology that when combined with comprehensive modeling and detection methodologies could be the basis of an advanced mine detection system. Micropower Impulse Radar (MIR) technology exhibits a combination of properties, including wideband operation, extremely low power consumption, extremely small size and low cost, array configurability, and noise encoded pulse generation. LLNL is in the process of developing an optimal processing algorithm to use with the MIR sensor. In this paper, we use classical numerical models to obtain the signature of mine-like targets and examine the effect of surface roughness on the reconstructed signals. These results are then qualitatively compared to experimental data.

  5. An inter-hemispheric, statistical study of nightside spectral width distributions from coherent HF scatter radars

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2002-12-01

    Full Text Available A statistical investigation of the Doppler spectral width parameter routinely observed by HF coherent radars has been conducted between the Northern and Southern Hemispheres for the nightside ionosphere. Data from the SuperDARN radars at Thykkvibær, Iceland and Syowa East, Antarctica have been employed for this purpose. Both radars frequently observe regions of high (>200 ms-1 spectral width polewards of low (<200 ms-1 spectral width. Three years of data from both radars have been analysed both for the spectral width and line of sight velocity. The pointing direction of these two radars is such that the flow reversal boundary may be estimated from the velocity data, and therefore, we have an estimate of the open/closed field line boundary location for comparison with the high spectral widths. Five key observations regarding the behaviour of the spectral width on the nightside have been made. These are (i the two radars observe similar characteristics on a statistical basis; (ii a latitudinal dependence related to magnetic local time is found in both hemispheres; (iii a seasonal dependence of the spectral width is observed by both radars, which shows a marked absence of latitudinal dependence during the summer months; (iv in general, the Syowa East spectral width tends to be larger than that from Iceland East, and (v the highest spectral widths seem to appear on both open and closed field lines. Points (i and (ii indicate that the cause of high spectral width is magnetospheric in origin. Point (iii suggests that either the propagation of the HF radio waves to regions of high spectral width or the generating mechanism(s for high spectral width is affected by solar illumination or other seasonal effects. Point (iv suggests that the radar beams from each of the radars are subject either to different instrumental or propagation effects, or different geophysical conditions due to their locations, although we suggest that this result is more likely to

  6. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    2001-08-01

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  7. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  8. Radar observations of Mercury

    International Nuclear Information System (INIS)

    Harmon, J.K.; Campbell, D.B.

    1988-01-01

    Some of the radar altimetry profiles of Mercury obtained on the basis of data from the Arecibo Observatory are presented. In these measurements, the delay-Doppler method was used to measure altitudes along the Doppler equator, rather than to map radar reflectivity. The profiles, derived from observations made over a 6-yr period, provide extensive coverage over a restricted equatorial band and permit the identification of radar signatures for features as small as 50-km diameter craters and 1-km-high arcuate scarps. The data allowed identification of large-scale topographic features such as smooth plains subsidence zones and major highland regions

  9. Experiment for buried pipes by stepped FM-CW radar; Step shiki FM-CW radar ni yoru maisetsukan tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Ito, M. [Kawasaki Geological Engineering, Co. Ltd., Tokyo (Japan); Tanabe, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-27

    The underground radar exploration is adopted to surveys of cavity under the road and buried pipes since the result of high resolution is obtained. However, the explorative depth of the radar is shallow, 2-3m in soil basement, and its applicable field has been limited. The continuous wave radar (FM-CW radar) was devised to get deeper explorative depth, but has been used for the geological structure survey such as the fault survey since it is lower in resolution as compared with the pulse radar. Therefore, to make use of characteristics of the continuous wave radar and enhance resolution in the shallow part, an experiment on buried pipes was conducted for the purpose of assessing and improving the FM-CW radar. In this processing, the wave form treatment used in the reflection method seismic survey was adopted for the radar survey. There are some problems, but it is effective to adopt the same algorithm to that used in the seismic survey to the radar exploration. The explorative depth was discussed from the damping rate of electromagnetic waves and dynamic range of facilities of the experimental site, and 7m was obtained. 5 figs., 1 tab.

  10. Reconfigurable L-band Radar Transceiver using Digital Signal Synthesis, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II proposal, builds upon the extensive research and digital radar design that has been successfully completed during the Phase I contract. Key innovations...

  11. Radar reflection off extensive air showers

    CERN Document Server

    Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J

    2012-01-01

    We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  12. Forest Biomass Mapping From Lidar and Radar Synergies

    Science.gov (United States)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  13. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  14. Radar probing of the auroral plasma

    International Nuclear Information System (INIS)

    Brekke, A.

    1977-01-01

    The European Incoherent Scatter Radar in the Auroral Zone (EISCAT) is an intereuropean organization planning to install an incoherent scatter radar system in Northern Scandinavia. It is supported by Finland, France, Norway, Great Britain, Sweden and West Germany, and its headquarters is in Kiruna, Sweden. The radar is planned to be operating in 1979. In order to introduce students and young scientists to the incoherent scatter radar technique, a summer school was held in Tromsoe, from 5th to 13th June 1975. In these proceedings an introduction to the basic theory of fluctuations in a plasma is given. Some of the present incoherent scatter radars now in use are presented and special considerations with respect to the planned EISACT facility are discussed. Reviews of some recent results and scientific problems relevant to EISCAT are also presented and finally a presentation of some observational techniques complementary to incoherent scatter radars is included. (Ed.)

  15. Customizable Digital Receivers for Radar

    Science.gov (United States)

    Moller, Delwyn; Heavey, Brandon; Sadowy, Gregory

    2008-01-01

    Compact, highly customizable digital receivers are being developed for the system described in 'Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets' (NPO-43962), NASA Tech Briefs, Vol. 31, No. 7 (August 2007), page 72. The receivers are required to operate in unison, sampling radar returns received by the antenna elements in a digital beam-forming (DBF) mode. The design of these receivers could also be adapted to commercial radar systems. At the time of reporting the information for this article, there were no commercially available digital receivers capable of satisfying all of the operational requirements and compact enough to be mounted directly on the antenna elements. A provided figure depicts the overall system of which the digital receivers are parts. Each digital receiver includes an analog-to-digital converter (ADC), a demultiplexer (DMUX), and a field-programmable gate array (FPGA). The ADC effects 10-bit band-pass sampling of input signals having frequencies up to 3.5 GHz. The input samples are demultiplexed at a user-selectable rate of 1:2 or 1:4, then buffered in part of the FPGA that functions as a first-in/first-out (FIFO) memory. Another part of the FPGA serves as a controller for the ADC, DMUX, and FIFO memory and as an interface between (1) the rest of the receiver and (2) a front-panel data port (FPDP) bus, which is an industry-standard parallel data bus that has a high data-rate capability and multichannel configuration suitable for DBF. Still other parts of the FPGA in each receiver perform signal-processing functions. The digital receivers can be configured to operate in a stand-alone mode, or in a multichannel mode as needed for DBF. The customizability of the receiver makes it applicable to a broad range of system architectures. The capability for operation of receivers in either a stand-alone or a DBF mode enables the use of the receivers in an unprecedentedly wide variety of radar systems.

  16. Method for radar detection of persons wearing wires

    OpenAIRE

    Fox, William P.

    2014-01-01

    8,730,098 B1 Methods are described for radar detection of persons wearing wires using radar spectra data including the vertical polarization (VV) radar cross section and the horizontal polarization (HH) radar cross section for a person. In one embodiment, the ratio of the vertical polarization (VV) radar cross section to the horizontal polarization (HH) radar cross section for a person is compared to a detection threshold to determine whether the person is wearing wire...

  17. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  18. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  19. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  20. LOFT instrumented fuel design and operating experience

    International Nuclear Information System (INIS)

    Russell, M.L.

    1979-01-01

    A summary description of the Loss-of-Fluid Test (LOFT) system instrumented core construction details and operating experience through reactor startup and loss-of-coolant experiment (LOCE) operations performed to date are discussed. The discussion includes details of the test instrumentation attachment to the fuel assembly, the structural response of the fuel modules to the forces generated by a double-ended break of a pressurized water reactor (PWR) coolant pipe at the inlet to the reactor vessel, the durability of the LOFT fuel and test instrumentation, and the plans for incorporation of improved fuel assembly test instrumentation features in the LOFT core

  1. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures.

    Science.gov (United States)

    Zhou, Zhi; Cao, Zongjie; Pi, Yiming

    2017-12-21

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.

  2. [Design and implementation of real-time continuous glucose monitoring instrument].

    Science.gov (United States)

    Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian

    2017-12-01

    Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.

  3. HF Radar Sea-echo from Shallow Water

    Directory of Open Access Journals (Sweden)

    Josh Kohut

    2008-08-01

    Full Text Available HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information far more than first-order (which gives information on current velocities, the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  4. Design and manufacturing of non-instrumented capsule for advanced PWR fuel pellet irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Song, K. W. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This project is preparing to irradiation test of the developed large grain UO{sub 2} fuel pellet in HANARO for pursuit fuel safety and high burn-up in 'Advanced LWR Fuel Technology Development Project' as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented capsule are designed and manufactured for irradiation test in HANARO. This non-instrumented irradiation capsule of Advanced PWR Fuel pellet was referred the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO(DUPIC Rig-001) and 18-element HANARO fuel, was designed to ensure the integrity and the endurance of non-instrumented capsule during the long term(2.5 years) irradiation. To irradiate the UO{sub 2} pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. This non-instrumented irradiation capsule will be based to develope the non-instrumented capsule for the more long term irradiation in HANARO. 22 refs., 13 figs., 5 tabs. (Author)

  5. Marine X-band Weather Radar Data Calibration

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2012-01-01

    estimates. This paper presents some of the challenges in small marine X-band radar calibration by comparing three calibration procedures for assessing the relationship between radar and rain gauge data. Validation shows similar results for precipitation volumes but more diverse results on peak rain......Application of weather radar data in urban hydrology is evolving and radar data is now applied for both modelling, analysis, and real time control purposes. In these contexts, it is allimportant that the radar data is well calibrated and adjusted in order to obtain valid quantitative precipitation...

  6. Raindrop size distribution and radar reflectivity-rain rate relationships for radar hydrology

    NARCIS (Netherlands)

    Uijlenhoet, R.

    2001-01-01

    The conversion of the radar reflectivity factor Z (mm6m-3) to rain rate R (mm h-1) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the

  7. Microphysical retrievals from simultaneous polarimetric and profiling radar observations

    Directory of Open Access Journals (Sweden)

    M. P. Morris

    2009-12-01

    Full Text Available The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD. This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009, in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009. Furthermore, the the study presents a method of investigating the time and height structure of DSDs.

  8. 5 year radar-based rainfall statistics: disturbances analysis and development of a post-correction scheme for the German radar composite

    Science.gov (United States)

    Wagner, A.; Seltmann, J.; Kunstmann, H.

    2015-02-01

    A radar-based rainfall statistic demands high quality data that provide realistic precipitation amounts in space and time. Instead of correcting single radar images, we developed a post-correction scheme for long-term composite radar data that corrects corrupted areas, but preserves the original precipitation patterns. The post-correction scheme is based on a 5 year statistical analysis of radar composite data and its constituents. The accumulation of radar images reveals artificial effects that are not visible in the individual radar images. Some of them are already inherent to single radar data such as the effect of increasing beam height, beam blockage or clutter remnants. More artificial effects are introduced in the process of compositing such as sharp gradients at the boundaries of overlapping areas due to different beam heights and resolution. The cause of these disturbances, their behaviour with respect to reflectivity level, season or altitude is analysed based on time-series of two radar products: the single radar reflectivity product PX for each of the 16 radar systems of the German Meteorological Service (DWD) for the time span 2000 to 2006 and the radar composite product RX of DWD from 2005 through to 2009. These statistics result in additional quality information on radar data that is not available elsewhere. The resulting robust characteristics of disturbances, e.g. the dependency of the frequencies of occurrence of radar reflectivities on beam height, are then used as a basis for the post-correction algorithm. The scheme comprises corrections for shading effects and speckles, such as clutter remnants or overfiltering, as well as for systematic differences in frequencies of occurrence of radar reflectivities between the near and the far ranges of individual radar sites. An adjustment to rain gauges is also included. Applying this correction, the Root-Mean-Square-Error for the comparison of radar derived annual rain amounts with rain gauge data

  9. A multi-channel S-band FMCW radar front-end

    NARCIS (Netherlands)

    Maas, A.P.M.; Vliet, F.E. van

    2008-01-01

    This paper describes the design and performance of a low-cost synthesized FMCW radar module, operating in S band. The bi-layer PCB contains a frequency-agile low phase-noise synthesizer and three identical coherent receive-channels. The transmit channel has an automatic power control system that

  10. Suitability of open-field autorefractors as pupillometers and instrument design effects

    Directory of Open Access Journals (Sweden)

    Carles Otero

    2017-04-01

    Full Text Available AIM: To determine the agreement and repeatability of the pupil measurement obtained with VIP-200 (Neuroptics, PowerRef II (Plusoptix, WAM-5500 (Grand Seiko and study the effects of instrument design on pupillometry. METHODS: Forty patients were measured twice in low, mid and high mesopic. Repeatability was analyzed with the within-subject standard deviation (Sw and paired t-tests. Agreement was studied with Bland-Altman plots and repeated measures ANOVA. Instrument design analysis consisted on measuring pupil size with PowerRef II simulating monocular and binocular conditions as well as with proximity cues and without proximity cues. RESULTS: The mean difference (±standard deviation between test-retest for low, mid and high mesopic conditions were, respectively: -0.09 (±0.16, -0.05 (±0.18 and -0.08 (±0.23 mm for Neuroptics, -0.05 (±0.17, -0.12 (±0.23 and -0.17 (±0.34 mm for WAM-5500, -0.04 (±0.27, -0.13 (±0.37 and -0.11 (±0.28 mm for PowerRef II. Regarding agreement with Neuroptics, the mean difference for low, mid and high mesopic conditions were, respectively: -0.48 (±0.35, -0.83 (±0.52 and -0.38 (±0.56 mm for WAM-5500, -0.28 (±0.56, -0.70 (±0.55 and -0.61 (±0.54 mm for PowerRef II. The mean difference of binocular minus monocular pupil measurements was: -0.83 (±0.87 mm; and with proximity cues minus without proximity cues was: -0.30 (±0.77 mm. CONCLUSION: All the instruments show similar repeat-ability. In all illumination conditions, agreement of Neuroptics with WAM-5500 and PowerRef II is not good enough, which can be partially induced due to their open field design.

  11. Suitability of open-field autorefractors as pupillometers and instrument design effects.

    Science.gov (United States)

    Otero, Carles; Aldaba, Mikel; Ferrer, Oriol; Gascón, Andrea; Ondategui-Parra, Juan C; Pujol, Jaume

    2017-01-01

    To determine the agreement and repeatability of the pupil measurement obtained with VIP-200 (Neuroptics), PowerRef II (Plusoptix), WAM-5500 (Grand Seiko) and study the effects of instrument design on pupillometry. Forty patients were measured twice in low, mid and high mesopic. Repeatability was analyzed with the within-subject standard deviation (Sw) and paired t -tests. Agreement was studied with Bland-Altman plots and repeated measures ANOVA. Instrument design analysis consisted on measuring pupil size with PowerRef II simulating monocular and binocular conditions as well as with proximity cues and without proximity cues. The mean difference (±standard deviation) between test-retest for low, mid and high mesopic conditions were, respectively: -0.09 (±0.16), -0.05 (±0.18) and -0.08 (±0.23) mm for Neuroptics, -0.05 (±0.17), -0.12 (±0.23) and -0.17 (±0.34) mm for WAM-5500, -0.04 (±0.27), -0.13 (±0.37) and -0.11 (±0.28) mm for PowerRef II. Regarding agreement with Neuroptics, the mean difference for low, mid and high mesopic conditions were, respectively: -0.48 (±0.35), -0.83 (±0.52) and -0.38 (±0.56) mm for WAM-5500, -0.28 (±0.56), -0.70 (±0.55) and -0.61 (±0.54) mm for PowerRef II. The mean difference of binocular minus monocular pupil measurements was: -0.83 (±0.87) mm; and with proximity cues minus without proximity cues was: -0.30 (±0.77) mm. All the instruments show similar repeat-ability. In all illumination conditions, agreement of Neuroptics with WAM-5500 and PowerRef II is not good enough, which can be partially induced due to their open field design.

  12. A conceptual framework for designing micro electrical connectors for hearing aid instruments

    DEFF Research Database (Denmark)

    Doagou Rad, Saeed; Islam, Aminul; Fuglsang-Philip, M.

    2016-01-01

    technological advancements have urged them to incorporate increased number of electrical contacts. The current paper presents a conceptual framework for designing and manufacturing novel plug and socket systems for hearing aid instruments by using the state of art manufacturing technologies for micro components...

  13. Radar efficiency and the calculation of decade-long PMSE backscatter cross-section for the Resolute Bay VHF radar

    Directory of Open Access Journals (Sweden)

    N. Swarnalingam

    2009-04-01

    Full Text Available The Resolute Bay VHF radar, located in Nunavut, Canada (75.0° N, 95.0° W and operating at 51.5 MHz, has been used to investigate Polar Mesosphere Summer Echoes (PMSE since 1997. PMSE are a unique form of strong coherent radar echoes, and their understanding has been a challenge to the scientific community since their discovery more than three decades ago. While other high latitude radars have recorded strong levels of PMSE activities, the Resolute Bay radar has observed relatively lower levels of PMSE strengths. In order to derive absolute measurements of PMSE strength at this site, a technique is developed to determine the radar efficiency using cosmic (sky noise variations along with the help of a calibrated noise source. VHF radars are only rarely calibrated, but determination of efficiency is even less common. Here we emphasize the importance of efficiency for determination of cross-section measurements. The significant advantage of this method is that it can be directly applied to any MST radar system anywhere in the world as long as the sky noise variations are known. The radar efficiencies for two on-site radars at Resolute Bay are determined. PMSE backscatter cross-section is estimated, and decade-long PMSE strength variations at this location are investigated. It was noticed that the median of the backscatter cross-section distribution remains relatively unchanged, but over the years a great level of variability occurs in the high power tail of the distribution.

  14. Wind farm radar study

    International Nuclear Information System (INIS)

    Davies, N.G.

    1995-01-01

    This report examines the possible degradations of radar performance that may be caused by the presence of a wind turbine generator within the radar coverage area. A brief literature survey reviews the previously published work, which is mainly concerned with degradation of broadcast TV reception. Estimates are made of wind turbine generator scattering cross-sections, and of the time and Doppler characteristics of the echo signals from representative wind turbine generator. The general characteristics of radar detection and tracking methods are described, and the behaviour of such systems in the presence of strong returns from a wind turbine generator (or an array of them) is discussed. (author)

  15. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  16. New look at radar auroral motions

    International Nuclear Information System (INIS)

    Greenwald, R.A.; Ecklund, W.L.

    1975-01-01

    During October 1974, three modifications were temporarily added to the NOAA radar auroral backscatter facility located at Anchorage, Alaska. These modifications included (1) a multiple azimuth antenna system. (2) an on-line computer for processing amplitude and mean Doppler profiles of the radar backscatter, and (3) a 13-baud Barker coder. In combination with the radar these modifications provided data relevant to understanding both the microscopic and the macroscopic nature of the radar aurora. Appreciable structure was often found in the Doppler velocity profiles of radar auroral irregularities. Doppler velocities of nearly 2000 m/s were observed. By combining scatter amplitude profiles and mean Doppler profiles from the five azimuths we have produced contour maps of the scatter intensity and the Doppler velocity. The scatter intensity maps often indicate appreciable temporal and spatial structure in the radar auroral irregularities, corroborating the results of Tsunoda et al. (1974). The mean Doppler contour maps indicate that there is also appreciable temporal and spatial structure in the flow velocities of radar auroral irregularities. At those times when there appears to be large-scale uniformity in the irregularity flow, the Doppler velocity varies with azimuth in a manner that is consistent with a cosine-dependent azimuthal variation

  17. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1998-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  18. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1999-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  19. A diffuse radar scattering model from Martian surface rocks

    Science.gov (United States)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  20. Correction Capability in the 3 Anatomic Planes of Different Pedicle Screw Designs in Scoliosis Instrumentation.

    Science.gov (United States)

    Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy

    2017-05-01

    Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of