WorldWideScience

Sample records for radar illusion device

  1. Broadband illusion optical devices based on conformal mappings

    Science.gov (United States)

    Xiong, Zhan; Xu, Lin; Xu, Ya-Dong; Chen, Huan-Yang

    2017-10-01

    In this paper, we propose a simple method of illusion optics based on conformal mappings. By carefully developing designs with specific conformal mappings, one can make an object look like another with a significantly different shape. In addition, the illusion optical devices can work in a broadband of frequencies.

  2. Open active cloaking and illusion devices for the Laplace equation

    International Nuclear Information System (INIS)

    Ma, Qian; Yang, Fan; Jin, Tian Yu; Mei, Zhong Lei; Cui, Tie Jun

    2016-01-01

    We propose open active cloaking and illusion devices for the Laplace equation. Compared with the closed configurations of active cloaking and illusion devices, we focus on improving the distribution schemes for the controlled sources, which do not have to surround the protected object strictly. Instead, the controlled sources can be placed in several small discrete clusters, and produce the desired voltages along the controlled boundary, to actively hide or disguise the protected object. Numerical simulations are performed with satisfactory results, which are further validated by experimental measurements. The open cloaking and illusion devices have many advantages over the closed configurations in various potential applications. (paper)

  3. Three-dimensional illusion thermal device for location camouflage.

    Science.gov (United States)

    Wang, Jing; Bi, Yanqiang; Hou, Quanwen

    2017-08-08

    Thermal metamaterials, proposed in recent years, provide a new method to manipulate the energy flux in heat transfer, and result in many novel thermal devices. In this paper, an illusion thermal device for location camouflage in 3-dimensional heat conduction regime is proposed based on the transformation thermodynamics. The heat source covered by the device produces a fake signal outside the device, which makes the source look like appearing at another position away from its real position. The parameters required by the device are deduced and the method is validated by simulations. The possible scheme to obtain the thermal conductivities required in the device by composing natural materials is supplied, and the influence of some problems in practical fabrication process of the device on the effect of the camouflage is also discussed.

  4. The Effect of Interacting with Two Devices when Creating the Illusion of Internal State in Tangible Widgets

    DEFF Research Database (Denmark)

    Bech, Christoffer; Bork, Andreas Heldbjerg; Memborg, Jakob Birch

    2017-01-01

    This paper investigates whether the illusion of internal state in passive tangible widgets is stronger when using one touchscreen device or two devices. Passive tangible widgets are an increasingly popular way to interact with tablet games. Since the production of passive widgets is usually cheaper...... than the production of widgets with internal state, it is much more cost-efficient to induce the illusion of internal state in passive widgets than to use tangible widgets with an actual internal state. An experiment was conducted where the participants’ belief in the illusion was determined by means...

  5. New Vacuum Electronic Devices for Radar

    Directory of Open Access Journals (Sweden)

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  6. Design of optical switches by illusion optics

    International Nuclear Information System (INIS)

    Shoorian, H R; Abrishamian, M S

    2013-01-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device. (paper)

  7. Design of optical switches by illusion optics

    Science.gov (United States)

    Shoorian, H. R.; Abrishamian, M. S.

    2013-05-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device.

  8. Geometric Phase Generated Optical Illusion.

    Science.gov (United States)

    Yue, Fuyong; Zang, Xiaofei; Wen, Dandan; Li, Zile; Zhang, Chunmei; Liu, Huigang; Gerardot, Brian D; Wang, Wei; Zheng, Guoxing; Chen, Xianzhong

    2017-09-12

    An optical illusion, such as "Rubin's vase", is caused by the information gathered by the eye, which is processed in the brain to give a perception that does not tally with a physical measurement of the stimulus source. Metasurfaces are metamaterials of reduced dimensionality which have opened up new avenues for flat optics. The recent advancement in spin-controlled metasurface holograms has attracted considerate attention, providing a new method to realize optical illusions. We propose and experimentally demonstrate a metasurface device to generate an optical illusion. The metasurface device is designed to display two asymmetrically distributed off-axis images of "Rubin faces" with high fidelity, high efficiency and broadband operation that are interchangeable by controlling the helicity of the incident light. Upon the illumination of a linearly polarized light beam, the optical illusion of a 'vase' is perceived. Our result provides an intuitive demonstration of the figure-ground distinction that our brains make during the visual perception. The alliance between geometric metasurface and the optical illusion opens a pathway for new applications related to encryption, optical patterning, and information processing.

  9. dc illusion and its experimental verification

    Science.gov (United States)

    Liu, Min; Lei Mei, Zhong; Ma, Xiang; Cui, Tie Jun

    2012-07-01

    Based on the transformation optics method, we propose a dc illusion device, which can transform a metallic object into a magnified dielectric object using anisotropic conducting materials. Utilizing the analogy between electric conductivities and resistor networks, we design and fabricate the device using metal film resistors. The practical measurement data agree very well with simulation results. The proposed dc illusion device is easy to process and measure, and thus has potential applications in various sectors.

  10. Illusions and Cloaks for Surface Waves

    Science.gov (United States)

    McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.

    2014-08-01

    Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.

  11. Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces.

    Science.gov (United States)

    Liu, Yongquan; Liang, Zixian; Liu, Fu; Diba, Owen; Lamb, Alistair; Li, Jensen

    2017-07-21

    Inspired by recent demonstrations of metasurfaces in achieving reduced versions of electromagnetic cloaks, we propose and experimentally demonstrate source illusion devices to manipulate flexural waves using metasurfaces. The approach is particularly useful for elastic waves due to the lack of form invariance in usual transformation methods. We demonstrate compact and simple-to-implement metasurfaces for shifting, transforming, and splitting a point source. The effects are measured to be broadband and robust against a change of source positions, with agreement from numerical simulations and the Huygens-Fresnel theory. The proposed method is potentially useful for applications such as nondestructive testing, high-resolution ultrasonography, and advanced signal modulation.

  12. Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage

    Science.gov (United States)

    Hou, Quanwen; Zhao, Xiaopeng; Meng, Tong; Liu, Cunliang

    2016-09-01

    Thermal metamaterials and devices based on transformation thermodynamics often require materials with anisotropic and inhomogeneous thermal conductivities. In this study, still based on the concept of transformation thermodynamics, we designed a planar illusion thermal device, which can delocalize a heat source in the device such that the temperature profile outside the device appears to be produced by a virtual source at another position. This device can be constructed by only one kind of material with constant anisotropic thermal conductivity. The condition which should be satisfied by the device is provided, and the required anisotropic thermal conductivity is then deduced theoretically. This study may be useful for the designs of metamaterials or devices since materials with constant anisotropic parameters have great facility in fabrication. A prototype device has been fabricated based on a composite composed by two naturally occurring materials. The experimental results validate the effectiveness of the device.

  13. Remote nano-optical beam focusing lens by illusion optics

    Science.gov (United States)

    Margousi, David; Shoorian, Hamed Reza

    2014-08-01

    In this paper, as a new application of illusion optics, a nano-optical plasmonic focusing lens structure is proposed to manipulate the light remotely by employing illusion optics theory. Plasmonic nano-optic lenses that enable super-focusing beyond the diffraction limit have been proposed as an alternative to the conventional dielectric-based refractive lenses. In the presence of an illusion device, the electromagnetic plane-waves can penetrate into a metal layer and a clear focus appears. When the illusion device is removed, waves are blocked to transmit through the metal wall. In comparison with conventional methods, our proposed method avoids any physical changes or damages in the original structure. The proposed structure can be realized by isotropic layered materials, using effective medium theory. The special feature of the proposed structure and the device concepts introduced in this work gives it an opportunity to be used as a flexible element in ultrahigh nano-scale integrated circuits for miniaturization and tuning purposes.

  14. Illusion thermodynamics: A camouflage technique changing an object into another one with arbitrary cross section

    International Nuclear Information System (INIS)

    He, Xiao; Wu, Linzhi

    2014-01-01

    The previously reported magical thermal devices, such as the thermal invisible cloak and the thermal concentrator, are generalized into one general case named here thermal illusion device. The thermal illusion device is displayed by the design of a thermal reshaper which can reshape an arbitrary thermal object into another one with arbitrary cross section. General expressions of the material parameters for the thermal reshaper are derived unambiguously to greatly facilitate the design of general thermal illusion device. We believe that this work will broaden the current research and pave a path to the thermal invisibility. Numerical simulations show good agreement with the analytical results of the thermal illusion device

  15. Illusion thermodynamics: A camouflage technique changing an object into another one with arbitrary cross section

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao; Wu, Linzhi, E-mail: wlz@hit.edu.cn [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China)

    2014-12-01

    The previously reported magical thermal devices, such as the thermal invisible cloak and the thermal concentrator, are generalized into one general case named here thermal illusion device. The thermal illusion device is displayed by the design of a thermal reshaper which can reshape an arbitrary thermal object into another one with arbitrary cross section. General expressions of the material parameters for the thermal reshaper are derived unambiguously to greatly facilitate the design of general thermal illusion device. We believe that this work will broaden the current research and pave a path to the thermal invisibility. Numerical simulations show good agreement with the analytical results of the thermal illusion device.

  16. Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation

    International Nuclear Information System (INIS)

    Yang, Fan; Mei, Zhong Lei; Jiang, Wei Xiang; Cui, Tie Jun

    2015-01-01

    A new isotropic and homogeneous illusion device for electromagnetic waves is proposed. This single-shelled device can change the fingerprint of the covered object into another one by manipulating the scattering of the composite structure. We show that an electrically small sphere can be disguised as another small one with different electromagnetic parameters. The device can even make a dielectric sphere (electrically small) behave like a conducting one. Full-wave simulations confirm the performance of proposed illusion device. (paper)

  17. Optical illusions induced by rotating medium

    Science.gov (United States)

    Zang, XiaoFei; Huang, PengCheng; Zhu, YiMing

    2018-03-01

    Different from the traditional single-function electromagnetic wave rotators (rotate the electromagnetic wavefronts), we propose that rotating medium can be extended to optical illusions such as breaking the diffraction limit and overlapping illusion. Furthermore, the homogeneous but anisotropic rotating medium is simplified by homogeneous and isotropic positive-index materials according to the effective medium theory, which is helpful for future device fabrication. Finite element simulations for the two-dimensional case are performed to demonstrate these properties.

  18. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  19. Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions.

    Science.gov (United States)

    Yao, Zhongqi; Luo, Jie; Lai, Yun

    2017-12-11

    In this work, we propose that one-dimensional ultratransparent dielectric photonic crystals with wide-angle impedance matching and shifted elliptical equal frequency contours are promising candidate materials for illusion optics. The shift of the equal frequency contour does not affect the refractive behaviors, but enables a new degree of freedom in phase modulation. With such ultratransparent photonic crystals, we demonstrate some applications in illusion optics, including creating illusions of a different-sized scatterer and a shifted source with opposite phase. Such ultratransparent dielectric photonic crystals may establish a feasible platform for illusion optics devices at optical frequencies.

  20. Overlapping illusions by transformation optics without any negative refraction material

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2016-01-01

    A novel method to achieve an overlapping illusion without any negative refraction index material is introduced with the help of the optic-null medium (ONM) designed by an extremely stretching spatial transformation. Unlike the previous methods to achieve such an optical illusion by transformation optics (TO), our method can achieve a power combination and reshape the radiation pattern at the same time. Unlike the overlapping illusion with some negative refraction index material, our method is not sensitive to the loss of the materials. Other advantages over existing methods are discussed. Numerical simulations are given to verify the performance of the proposed devices.

  1. Comparative fiscal illusion: A fiscal illusion index for the European Union

    OpenAIRE

    Dell'Anno, Roberto; Dollery, Brian

    2012-01-01

    This paper provides an empirical analysis of fiscal illusion by estimating an index of fiscal illusion for 28 European countries over the period 1995–2008 employing a structural equation approach. Using MIMIC models, the paper investigates the main indicators of fiscal illusion and develops an index of fiscal illusion. It concludes that the chief deterninants for the deployment of fiscal illusion strategies are the share of self-employment on total employment, the educational level of citizen...

  2. Experiments on Active Cloaking and Illusion for Laplace Equation

    Science.gov (United States)

    Ma, Qian; Mei, Zhong Lei; Zhu, Shou Kui; Jin, Tian Yu; Cui, Tie Jun

    2013-10-01

    In recent years, invisibility cloaks have received a lot of attention and interest. These devices are generally classified into two types: passive and active. The design and realization of passive cloaks have been intensively studied using transformation optics and plasmonic approaches. However, active cloaks are still limited to theory and numerical simulations. Here, we present the first experiment on active cloaking and propose an active illusion for the Laplace equation. We make use of a resistor network to simulate a conducting medium. Then, we surround the central region with controlled sources to protect it from outside detection. We show that by dynamically changing the controlled sources, the protected region can be cloaked or disguised as different objects (illusion). Our measurement results agree very well with numerical simulations. Compared with the passive counterparts, the active cloaking and illusion devices do not need complicated metamaterials. They are flexible, in-line controllable, and adaptable to the environment. In addition to dc electricity, the proposed method can also be used for thermodynamics and other problems governed by the Laplace equation.

  3. Directed Thermal Diffusions through Metamaterial Source Illusion with Homogeneous Natural Media

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    2018-04-01

    Full Text Available Owing to the utilization of transformation optics, many significant research and development achievements have expanded the applications of illusion devices into thermal fields. However, most of the current studies on relevant thermal illusions used to reshape the thermal fields are dependent of certain pre-designed geometric profiles with complicated conductivity configurations. In this paper, we propose a methodology for designing a new class of thermal source illusion devices for achieving directed thermal diffusions with natural homogeneous media. The employments of the space rotations in the linear transformation processes allow the directed thermal diffusions to be independent of the geometric profiles, and the utilization of natural homogeneous media improve the feasibility. Four schemes, with fewer types of homogeneous media filling the functional regions, are demonstrated in transient states. The expected performances are observed in each scheme. The related performance are analyzed by comparing the thermal distribution characteristics and the illusion effectiveness on the measured lines. The findings obtained in this paper see applications in the development of directed diffusions with minimal thermal loss, used in novel “multi-beam” thermal generation, thermal lenses, solar receivers, and waveguide.

  4. Perception, Illusion, and Magic.

    Science.gov (United States)

    Solomon, Paul R.

    1980-01-01

    Describes a psychology course in which magical illusions were used for teaching the principles of sensation and perception. Students read psychological, philosophical, historical, and magical literature on illusion, performed a magical illusion, and analyzed the illusion in terms of the psychological principles involved. (Author/KC)

  5. Cloaks and antiobject-independent illusion optics based on illusion media

    Science.gov (United States)

    Li, Zhou; Zang, XiaoFei; Cai, Bin; Shi, Cheng; Zhu, YiMing

    2013-11-01

    Based on the transformation optics, we propose a new strategy of illusion media consisting of homogeneous and anisotropic materials. By utilizing the illusion media, invisible cloak is theoretically realized, in which objects covered with the illusion media could not be detected. The cloak here allows neither the propagation of light around the concealed region nor compensates the scattering field of object outside the media. What the cloak does is to shift the region into another place where outside the trace of light, so that objects in that region can disappear. Another application of the illusion media is to create the antiobject-independent illusion optics which means that two objects appear to be like some other objects of our choice. Finite element simulations for two-dimensional cases have been performed to prove these ideas.

  6. On the aesthetic illusion.

    Science.gov (United States)

    Balter, L

    1999-01-01

    The aesthetic illusion--the experience of the content of a work of art as reality--occurs through the mobilization and intensification of typical infantile fantasies in the beholder. This necessarily evokes intrapsychic conflict in the mature adult. Two illusion-producing strategies ameliorate this conflict and effect the aesthetic illusion. The first illusion is that the artist's proffered fantasy is the beholder's own personal and private fantasy. This isolates the beholder from the shame- and guilt-evoking social surround. The second illusion is that the protagonist depicted in the work is an actual person. This defends the beholder from the painful emotions attendant upon his instinctually gratifying identification with the protagonist. The first illusion is necessary for the establishment of the second, but it is the second that establishes the aesthetic illusion. The aesthetic illusion exists in a highly unstable dynamic equilibrium with the beholder's usual reality orientation. If either orientation is too powerful, the dynamic equilibrium is disrupted and the aesthetic experience as such is abolished.

  7. Illusions.

    Science.gov (United States)

    Osterhaus, Kenneth

    An art activity introduces intermediate grade and middle school students to optical illusions. Students practice drawing geometric shapes such as cubes, cylinders, cones, and pyramids, then combine these shapes to create the illusion of their choice. Graphic outlines for each shape are provided. This document is one of a collection of materials…

  8. Spatial limits on the nonvisual self-touch illusion and the visual rubber hand illusion: subjective experience of the illusion and proprioceptive drift.

    Science.gov (United States)

    Aimola Davies, Anne M; White, Rebekah C; Davies, Martin

    2013-06-01

    The nonvisual self-touch rubber hand paradigm elicits the compelling illusion that one is touching one's own hand even though the two hands are not in contact. In four experiments, we investigated spatial limits of distance (15 cm, 30 cm, 45 cm, 60 cm) and alignment (0°, 90° anti-clockwise) on the nonvisual self-touch illusion and the well-known visual rubber hand illusion. Common procedures (synchronous and asynchronous stimulation administered for 60s with the prosthetic hand at body midline) and common assessment methods were used. Subjective experience of the illusion was assessed by agreement ratings for statements on a questionnaire and time of illusion onset. The nonvisual self-touch illusion was diminished though never abolished by distance and alignment manipulations, whereas the visual rubber hand illusion was more robust against these manipulations. We assessed proprioceptive drift, and implications of a double dissociation between subjective experience of the illusion and proprioceptive drift are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. PERFECT DEMAND ILLUSION

    Directory of Open Access Journals (Sweden)

    Alexander Yu. Sulimov

    2015-01-01

    Full Text Available The article is devoted to technique «Perfect demand illusion», which allows to strengthen the competitive advantageof retailers. Also in the paper spells out the golden rules of visual merchandising.The definition of the method «Demand illusion», formulated the conditions of its functioning, and is determined by the mainhypothesis of the existence of this method.Furthermore, given the definition of the «Perfect demand illusion», and describes its additional conditions. Also spells out the advantages of the «Perfect demandillusion», before the «Demand illusion».

  10. The Silhouette Zoetrope: A New Blend of Motion, Mirroring, Depth, and Size Illusions.

    Science.gov (United States)

    Veras, Christine; Pham, Quang-Cuong; Maus, Gerrit W

    2017-01-01

    Here, we report a novel combination of visual illusions in one stimulus device, a contemporary innovation of the traditional zoetrope, called Silhouette Zoetrope. In this new device, an animation of moving silhouettes is created by sequential cutouts placed outside a rotating empty cylinder, with slits illuminating the cutouts successively from the back. This "inside-out" zoetrope incurs the following visual effects: the resulting animated figures are perceived (a) horizontally flipped, (b) inside the cylinder, and (c) appear to be of different size than the actual cutout object. Here, we explore the unique combination of illusions in this new device. We demonstrate how the geometry of the device leads to a retinal image consistent with a mirrored and distorted image and binocular disparities consistent with the perception of an object inside the cylinder.

  11. Interim report - performance of laser and radar ranging devices in adverse environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas Hillier; Julian Ryde; Eleonora WidzykCapehart; Graham Brooker; Javier Martinez; Andrew Denman [CSIRO (Australia)

    2008-10-15

    CSIRO in conjunction with CRC Mining and the Australian Centre for Field Robotics (ACFR) conducted a series of controlled experiments to examine the performance of three scanning range devices: two scanning infrared laser range finders and millimetrewave radar. Within the controlled environment, the performance of the devices were tested in various rain, mist and dustcloud conditions. Subsequently, these sensors were installed on a P&H 2800BLE electric rope shovel at the Bracalba Quarry, near Caboolture, Queensland, and the system performance was evaluated. The three scanning range sensors tested as part of this study were: 1. A Riegl LMSQ120 scanning laser range finder; 2. A SICK LMS291S05 scanning laser range finder; and, 3. ACFR's prototype 95GHz millimetrewave radar (2D HSS). The range data from these devices is to be used to construct accurate models of the environment in which the electric rope shovel operates and to, subsequently, make control decisions for its operation. Of the currently available range sensing technologies, it is considered that the infrared laser range finders and millimetrewave radar offer the best means of obtaining this data. This report summarises the results of both the controlled (laboratory) and field testing and presents key findings on sensor performance that are likely to impact the creation of digital models of the terrain surrounding a mining shovel.

  12. Symbol recognition produced by points of tactile stimulation: the illusion of linear continuity.

    Science.gov (United States)

    Gonzales, G R

    1996-11-01

    To determine whether tactile receptive communication is possible through the use of a mechanical device that produces the phi phenomenon on the body surface. Twenty-six subjects (11 blind and 15 sighted participants) were tested with use of a tactile communication device (TCD) that produces an illusion of linear continuity forming numbers on the dorsal aspect of the wrist. Recognition of a number or number set was the goal. A TCD with protruding and vibrating solenoids produced sequentially delivered points of cutaneous stimulation along a pattern resembling numbers and created the illusion of dragging a vibrating stylet to form numbers, similar to what might be felt by testing for graphesthesia. Blind subjects recognized numbers with fewer trials than did sighted subjects, although all subjects were able to recognize all the numbers produced by the TCD. Subjects who had been blind since birth and had no prior tactile exposure to numbers were able to draw the numbers after experiencing them delivered by the TCD even though they did not recognize their meaning. The phi phenomenon is probably responsible for the illusion of continuous lines in the shape of numbers as produced by the TCD. This tactile illusion could potentially be used for more complex tactile communications such as letters and words.

  13. Visually induced reorientation illusions

    Science.gov (United States)

    Howard, I. P.; Hu, G.; Oman, C. M. (Principal Investigator)

    2001-01-01

    It is known that rotation of a furnished room around the roll axis of erect subjects produces an illusion of 360 degrees self-rotation in many subjects. Exposure of erect subjects to stationary tilted visual frames or rooms produces only up to 20 degrees of illusory tilt. But, in studies using static tilted rooms, subjects remained erect and the body axis was not aligned with the room. We have revealed a new class of disorientation illusions that occur in many subjects when placed in a 90 degrees or 180 degrees tilted room containing polarised objects (familiar objects with tops and bottoms). For example, supine subjects looking up at a wall of the room feel upright in an upright room and their arms feel weightless when held out from the body. We call this the levitation illusion. We measured the incidence of 90 degrees or 180 degrees reorientation illusions in erect, supine, recumbent, and inverted subjects in a room tilted 90 degrees or 180 degrees. We report that reorientation illusions depend on the displacement of the visual scene rather than of the body. However, illusions are most likely to occur when the visual and body axes are congruent. When the axes are congruent, illusions are least likely to occur when subjects are prone rather than supine, recumbent, or inverted.

  14. The discoloration illusion.

    Science.gov (United States)

    Pinna, Baingio

    2006-01-01

    The discoloration illusion, a new visual phenomenon, is described. This phenomenon originates from the juxtaposition of eight chromatic parallel contours on a white background, creating a luminance gradient and enclosing a light red region. Under these conditions, the inner region appears white: the light red discolors and appears white with both surface color and luminous qualities. In two experiments, the discoloration illusion was (i) compared with the coloration effect of the watercolor illusion, obtained when the number of adjacent contours was reduced to at least two, and (ii) tested under several conditions useful for understanding the roles of the luminance gradient profile. The results suggest that discoloration is not a lightness illusion and does not depend on simultaneous contrast or on achromatic mechanisms, but more likely on chromatic mechanisms that, through the luminance chromatic gradient, provide cues about the interactions of light and surface and model the volume by depicting lights and shades. The discoloration illusion suggests a possible neural scenario where multiple juxtaposed contours may stimulate neurons, selective for different asymmetric luminance profiles and signaling not only the unilateral belongingness of the boundaries and the coloration effect but also the volumetric and the illumination effects.

  15. Marvels of illusion: illusion and perception in the art of Salvador Dali.

    Science.gov (United States)

    Martinez-Conde, Susana; Conley, Dave; Hine, Hank; Kropf, Joan; Tush, Peter; Ayala, Andrea; Macknik, Stephen L

    2015-01-01

    The surrealist movement aimed to blur the distinction between the real and the imagined. Such lack of a border between demonstrable truth and fantasy is perhaps most apparent in the art of Spanish painter Salvador Dali (1904-1989). Dali included numerous illusions in his artworks, with the intent to challenge the viewers' perceptions of reality and to enable them to see beyond the surface. The "Marvels of Illusion" exhibit, shown at The Dali Museum in St. Petersburg, FL., from June 14 to October 12, 2014, showcased Dali paintings, prints and sculptures centered on illusory themes. Here, we review the significance of illusions in Dali's art, focusing on the pieces displayed at the "Marvels of Illusion" exhibit.

  16. Body Schema Illusions: A Study of the Link between the Rubber Hand and Kinesthetic Mirror Illusions through Individual Differences.

    Science.gov (United States)

    Metral, Morgane; Gonthier, Corentin; Luyat, Marion; Guerraz, Michel

    2017-01-01

    The well-known rubber hand paradigm induces an illusion by having participants feel the touch applied to a fake hand. In parallel, the kinesthetic mirror illusion elicits illusions of movement by moving the reflection of a participant's arm. Experimental manipulation of sensory inputs leads to emergence of these multisensory illusions. There are strong conceptual similarities between these two illusions, suggesting that they rely on the same neurophysiological mechanisms, but this relationship has never been investigated. Studies indicate that participants differ in their sensitivity to these illusions, which provides a possibility for studying the relationship between these two illusions. We tested 36 healthy participants to confirm that there exist reliable individual differences in sensitivity to the two illusions and that participants sensitive to one illusion are also sensitive to the other. The results revealed that illusion sensitivity was very stable across trials and that individual differences in sensitivity to the kinesthetic mirror illusion were highly related to individual differences in sensitivity to the rubber hand illusion. Overall, these results support the idea that these two illusions may be both linked to a transitory modification of body schema, wherein the most sensitive people have the most malleable body schema.

  17. Money illusion and coordination failure

    DEFF Research Database (Denmark)

    Fehr, Ernst; Tyran, Jean-Robert

    2007-01-01

    Economists long considered money illusion to be largely irrelevant. Here we show, however, that money illusion has powerful effects on equilibrium selection. If we represent payoffs in nominal terms, choices converge to the Pareto inferior equilibrium; however, if we lift the veil of money...... by representing payoffs in real terms, the Pareto efficient equilibrium is selected. We also show that strategic uncertainty about the other players' behavior is key for the equilibrium selection effects of money illusion: even though money illusion vanishes over time if subjects are given learning opportunities...... in the context of an individual optimization problem, powerful and persistent effects of money illusion are found when strategic uncertainty prevails...

  18. Body Schema Illusions: A Study of the Link between the Rubber Hand and Kinesthetic Mirror Illusions through Individual Differences

    Directory of Open Access Journals (Sweden)

    Morgane Metral

    2017-01-01

    Full Text Available Background. The well-known rubber hand paradigm induces an illusion by having participants feel the touch applied to a fake hand. In parallel, the kinesthetic mirror illusion elicits illusions of movement by moving the reflection of a participant’s arm. Experimental manipulation of sensory inputs leads to emergence of these multisensory illusions. There are strong conceptual similarities between these two illusions, suggesting that they rely on the same neurophysiological mechanisms, but this relationship has never been investigated. Studies indicate that participants differ in their sensitivity to these illusions, which provides a possibility for studying the relationship between these two illusions. Method. We tested 36 healthy participants to confirm that there exist reliable individual differences in sensitivity to the two illusions and that participants sensitive to one illusion are also sensitive to the other. Results. The results revealed that illusion sensitivity was very stable across trials and that individual differences in sensitivity to the kinesthetic mirror illusion were highly related to individual differences in sensitivity to the rubber hand illusion. Conclusions. Overall, these results support the idea that these two illusions may be both linked to a transitory modification of body schema, wherein the most sensitive people have the most malleable body schema.

  19. Marvels of Illusion: illusion and perception in the art of Salvador Dali

    Directory of Open Access Journals (Sweden)

    Susana eMartinez-Conde

    2015-09-01

    Full Text Available The surrealist movement aimed to blur the distinction between the real and the imagined. Such lack of a border between demonstrable truth and fantasy is perhaps most apparent in the art of Spanish painter Salvador Dali (1904-1989. Dali included numerous illusions in his artworks, with the intent to challenge the viewers’ perceptions of reality and to enable them to see beyond the surface. The Marvels of Illusion exhibit, shown at The Dali Museum in St. Petersburg, FL., from June 14 to October 12, 2014, showcased Dali paintings, prints and sculptures centered on illusory themes. Here we review the significance of illusions in Dali’s art, focusing on the pieces displayed at the Marvels of Illusion exhibit.

  20. Robotically enhanced rubber hand illusion.

    Science.gov (United States)

    Arata, Jumpei; Hattori, Masashi; Ichikawa, Shohei; Sakaguchi, Masamichi

    2014-01-01

    The rubber hand illusion is a well-known multisensory illusion. In brief, watching a rubber hand being stroked by a paintbrush while one's own unseen hand is synchronously stroked causes the rubber hand to be attributed to one's own body and to "feel like it's my hand." The rubber hand illusion is thought to be triggered by the synchronized tactile stimulation of both the subject's hand and the fake hand. To extend the conventional rubber hand illusion, we introduce robotic technology in the form of a master-slave telemanipulator. The developed one degree-of-freedom master-slave system consists of an exoskeleton master equipped with an optical encoder that is worn on the subject's index finger and a motor-actuated index finger on the rubber hand, which allows the subject to perform unilateral telemanipulation. The moving rubber hand illusion has been studied by several researchers in the past with mechanically connected rigs between the subject's body and the fake limb. The robotic instruments let us investigate the moving rubber hand illusion with less constraints, thus behaving closer to the classic rubber hand illusion. In addition, the temporal delay between the body and the fake limb can be precisely manipulated. The experimental results revealed that the robotic instruments significantly enhance the rubber hand illusion. The time delay is significantly correlated with the effect of the multisensory illusion, and the effect significantly decreased at time delays over 100 ms. These findings can potentially contribute to the investigations of neural mechanisms in the field of neuroscience and of master-slave systems in the field of robotics.

  1. Magic and the aesthetic illusion.

    Science.gov (United States)

    Balter, Leon

    2002-01-01

    The aesthetic illusion is the subjective experience that the content of a work of art is reality. It has an intrinsic relation to magic, an intrapsychic maneuver oriented toward modification and control of the extraspyschic world, principally through ego functioning. Magic is ontogenetically and culturally archaic, expresses the omnipotence inherent in primary narcissism, and operates according to the logic of the primary process. Magic is a constituent of all ego functioning, usually latent in later development. It may persist as an archaic feature or may be evoked regressively in global or circumscribed ways. It causes a general disinhibition of instincts and impulses attended by a sense of confidence, exhiliration, and exuberance. The aesthetic illusion is a combination of illusions: (1) that the daydream embodied by the work of art is the beholder's own, the artist being ignored, and (2) that the artistically described protagonist is a real person with a real "world." The first illusion arises through the beholder's emotional-instinctual gratification from his or her own fantasy-memory constellations; the second comes about because the beholder, by taking the protagonist as proxy, mobilizes the subjective experience of the imaginary protagonist's "reality." The first illusion is necessary for the second to take place; the second establishes the aesthetic illusion proper. Both illusions are instances of magic. Accordingly, the aesthetic illusion is accompanied by a heady experience of excitement and euphoria. The relation among the aesthetic illusion, magic, and enthusiasm is illustrated by an analytic case, J. D. Salinger's "The Laughing Man," Woody Allen's Play It Again, Sam, Don Quixote, and the medieval Cult of the Saints.

  2. Do Dogs See the Ponzo illusion?

    Directory of Open Access Journals (Sweden)

    Sarah-Elizabeth Byosiere

    2017-10-01

    Full Text Available While domestic dogs (Canis familiaris play a large role in human daily lives, little is known about how they perceive the visual world. Recent research suggests that dogs may perceive certain visual illusions differently than humans. To further evaluate geometric illusion susceptibility, eight dogs were assessed on their susceptibility to the Ponzo illusion. Four experiments were conducted: 1 a presentation of the Ponzo illusion with target circles in a ‘grid inducer context’, 2 a re-test of Experiment 1 after additional training, 3 a presentation of the Ponzo illusion with target rectangles in a ‘grid inducer context’ and 4 a presentation of the Ponzo illusion with target circles in a ‘converging lines context.’ A one-sample t-test of the dogs’ responses to the Ponzo stimuli in Experiment 1 demonstrated illusion susceptibility at the group level; however, no individual dog performed significantly above chance in binomial tests. In Experiments 2, 3, and 4, one-sample t-tests found no significant results at the group level, although one or more dogs did demonstrate a small but significant effect. Taken together, then, there was limited evidence for dogs’ susceptibility to the Ponzo illusion in a two-choice discrimination paradigm. As most animals tested previously have demonstrated human-like susceptibility to the Ponzo illusion, these findings have implications for theoretical explanations. The divergence of results between dogs and humans/other animals suggest that mechanisms underlying perception of the Ponzo illusion may differ across species and that care should be taken when using visual paradigms to test dogs’ cognitive skills.

  3. Optical illusion: apogee development

    OpenAIRE

    Elena, Chernyсhuk; Bazylevych, Viktoriya

    2015-01-01

    The article provides a classification of optical illusions performed by the authors. Briefly described each of the 11 identified species. Offered the variants using optical illusions in the urban environment, exterior and interior.

  4. Theoretical parallels between the Ponzo illusion and the Wundt-Jastrow illusion.

    Science.gov (United States)

    Pick, D F; Pierce, K A

    1993-04-01

    Misapplied-size-constancy, assimilation, and contrast theories are discussed as explanations for the Wundt-Jastrow and Ponzo illusions. An experiment is reported that questions the need to include a contrast function in the assimilation theory of Pressey and Wilson to account for the Wundt-Jastrow illusion. Several directions for further research are proposed.

  5. The Star Wars Scroll Illusion.

    Science.gov (United States)

    Shapiro, Arthur G

    2015-10-01

    The Star Wars Scroll Illusion is a dynamic version of the Leaning Tower Illusion. When two copies of a Star-Wars-like scrolling text are placed side by side (with separate vanishing points), the two scrolls appear to head in different directions even though they are physically parallel in the picture plane. Variations of the illusion are shown with one vanishing point, as well as from an inverted perspective where the scrolls appear to originate in the distance. The demos highlight the conflict between the physical lines in the picture plane and perspective interpretation: With two perspective points, the scrolling texts are parallel to each other in the picture plane but not in perspective interpretation; with one perspective point, the texts are not parallel to each other in the picture plane but are parallel to each other in perspective interpretation. The size of the effect is linearly related to the angle of rotation of the scrolls into the third dimension; the Scroll Illusion is stronger than the Leaning Tower Illusion for rotation angles between 35° and 90°. There is no effect of motion per se on the strength of the illusion.

  6. The Star Wars Scroll Illusion

    Directory of Open Access Journals (Sweden)

    Arthur G. Shapiro

    2015-09-01

    Full Text Available The Star Wars Scroll Illusion is a dynamic version of the Leaning Tower Illusion. When two copies of a Star-Wars-like scrolling text are placed side by side (with separate vanishing points, the two scrolls appear to head in different directions even though they are physically parallel in the picture plane. Variations of the illusion are shown with one vanishing point, as well as from an inverted perspective where the scrolls appear to originate in the distance. The demos highlight the conflict between the physical lines in the picture plane and perspective interpretation: With two perspective points, the scrolling texts are parallel to each other in the picture plane but not in perspective interpretation; with one perspective point, the texts are not parallel to each other in the picture plane but are parallel to each other in perspective interpretation. The size of the effect is linearly related to the angle of rotation of the scrolls into the third dimension; the Scroll Illusion is stronger than the Leaning Tower Illusion for rotation angles between 35° and 90°. There is no effect of motion per se on the strength of the illusion.

  7. Optical Illusions. Semiotic Analysis of Their Use in Commercials

    OpenAIRE

    Chromečková, Lucie

    2013-01-01

    Optical illusions are inseparably part of our lives. We are influenced by illusions on daily base, in commercials, various tests or fun web pages. But we must ask a questions about background of illusions, about their history. What was the original meaning of illusions? When we are confronted with illusion, what's happend? Do we understood illusions? How should be our attitude to illusions? These are only few questions, that this work try to answer. Due to history we try to understand illusio...

  8. The 'bookshelf illusion'--a real-world Zöllner-type illusion?

    Science.gov (United States)

    MacLin, Otto H; Peterson, Dwight J

    2010-01-01

    We discovered an interesting perceptual distortion in our office where an upright lamp in front of a bookshelf was noticeably curved to form several subtle S-shaped bends. We realized that the books in the bookshelf fell in a particular manner, leaning in alternative directions, which caused the straight lamp to appear bent, creating what may be a real-world example of the Zöllner illusion. Evidence for the production of the illusion diagrammatically and an explanation for the effect are provided.

  9. Strange-face illusions during inter-subjective gazing.

    Science.gov (United States)

    Caputo, Giovanni B

    2013-03-01

    In normal observers, gazing at one's own face in the mirror for a few minutes, at a low illumination level, triggers the perception of strange faces, a new visual illusion that has been named 'strange-face in the mirror'. Individuals see huge distortions of their own faces, but they often see monstrous beings, archetypal faces, faces of relatives and deceased, and animals. In the experiment described here, strange-face illusions were perceived when two individuals, in a dimly lit room, gazed at each other in the face. Inter-subjective gazing compared to mirror-gazing produced a higher number of different strange-faces. Inter-subjective strange-face illusions were always dissociative of the subject's self and supported moderate feeling of their reality, indicating a temporary lost of self-agency. Unconscious synchronization of event-related responses to illusions was found between members in some pairs. Synchrony of illusions may indicate that unconscious response-coordination is caused by the illusion-conjunction of crossed dissociative strange-faces, which are perceived as projections into each other's visual face of reciprocal embodied representations within the pair. Inter-subjective strange-face illusions may be explained by the subject's embodied representations (somaesthetic, kinaesthetic and motor facial pattern) and the other's visual face binding. Unconscious facial mimicry may promote inter-subjective illusion-conjunction, then unconscious joint-action and response-coordination. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. P1-19: Horizontal Vertical Illusion by Touch

    Directory of Open Access Journals (Sweden)

    Yoshinari Kinoshita

    2012-10-01

    Full Text Available Revesz (1934 Zeitschrift fur PsychologieBd. 1, Kap 20 and Bean (1938 Journal of Experimental Psychology 22 283–289. reported almost all the geometrical optical illusions existed in a tactual mode. Such a study can examine theories of visual illusions with modality-free theories. A number of articles have been devoted to the theory that repeated judgments decline the magnitude of visual illusion. In the current study, we examine whether repeated judgments decline the magnitude of geometrical haptic illusion. The Fick illusion (i.e., a horizontal vertical illusion was investigated. A graphics Braille display with 32×48 dots was used to present an inverted T haptically without vision. The horizontal line was consistently 49.2 mm long, and the vertical line was varied in each trial. Three subjects with normal sight participated. They judged which line was longer than the other. The point of subjective equality at which the subject perceives the two lines to be the same was measured using the method of constant stimuli. In the first session the mean PSE was about 13%; to compensate for the illusion, the vertical line must be set physically shorter than the horizontal line. We found that repeated judgments produced a reduction in illusion magnitude and dissolved the illusion entirely.

  11. Optical Illusions and Spatial Disorientation in Aviation Pilots.

    Science.gov (United States)

    Sánchez-Tena, Miguel Ángel; Alvarez-Peregrina, Cristina; Valbuena-Iglesias, Mª Carolina; Palomera, Pablo Ruisoto

    2018-03-19

    Optical illusions are involved in the perception of false or erroneous images which might involve disorientation. They occur by a discordance by the peripheral systems about the information captured and generally, resulting in pilots failure to recognize key signals. The aim of this study is to review the state of the art of spatial disorientation and optical illusions in aviation pilots. This kind of disorientation has important practical consequences, because a remarkable percentage of plane accidents are related to pilot's optical illusions. An exhaustive review using pubmed and semantic scholar databases was conducted to find out the most frequent optical illusions in aviation pilots. A total of 45 full text articles published English or Spanish were reviewed. To our knowledge, this is the first study to review exhaustively and describe the main factors involved in spatial disorientation and optical illusions affecting aviation pilots. Mainly, contextual factors: width of landing track lights, nocturnal operations or low visibility, inclination of the landing track, decline of the ground, size of habitual references, low level approach on the water, black hole, sky/terrain confusion, distortion by climatic factors, autokinesis or autocinetics, optional investment illusion, illusions by vection, false horizon, rain on the windshield, misalignment in the approach, vibrations, somatogravic illusion, coriolis illusion and "G" forces. In a lesser extent, human factors and pathologies of the visual systems involved in spatial disorientation and associated optical illusions affecting aviation pilots are also described. Practical implications are further discussed.

  12. Laterality in the rubber hand illusion.

    Science.gov (United States)

    Ocklenburg, Sebastian; Rüther, Naima; Peterburs, Jutta; Pinnow, Marlies; Güntürkün, Onur

    2011-03-01

    In patient studies, impairments of sense of body ownership have repeatedly been linked to right-hemispheric brain damage. To test whether a right-hemispheric dominance for sense of body ownership could also be observed in healthy adults, the rubber hand illusion was elicited on both hands of 21 left-handers and 22 right-handers. In this illusion, a participant's real hand is stroked while hidden from view behind an occluder, and a nearby visible hand prosthesis is repeatedly stroked in synchrony. Most participants experience the illusionary perception of touch sensations arising from the prosthesis. The vividness of the illusion was measured by subjective self-reports as well as by skin conductance responses to watching the rubber hand being harmed. Handedness did not affect the vividness of the illusion, but a stronger skin conductance response was observed, when the illusion was elicited on the left hand. These findings suggest a right-hemispheric dominance for sense of body ownership in healthy adults.

  13. Network simulations of optical illusions

    Science.gov (United States)

    Shinbrot, Troy; Lazo, Miguel Vivar; Siu, Theo

    We examine a dynamical network model of visual processing that reproduces several aspects of a well-known optical illusion, including subtle dependencies on curvature and scale. The model uses a genetic algorithm to construct the percept of an image, and we show that this percept evolves dynamically so as to produce the illusions reported. We find that the perceived illusions are hardwired into the model architecture and we propose that this approach may serve as an archetype to distinguish behaviors that are due to nature (i.e. a fixed network architecture) from those subject to nurture (that can be plastically altered through learning).

  14. Geometric-optical illusions at isoluminance.

    Science.gov (United States)

    Hamburger, Kai; Hansen, Thorsten; Gegenfurtner, Karl R

    2007-12-01

    The idea of a largely segregated processing of color and form was initially supported by observations that geometric-optical illusions vanish under isoluminance. However, this finding is inconsistent with some psychophysical studies and also with physiological evidence showing that color and luminance are processed together by largely overlapping sets of neurons in the LGN, in V1, and in extrastriate areas. Here we examined the strength of nine geometric-optical illusions under isoluminance (Delboeuf, Ebbinghaus, Hering, Judd, Müller-Lyer, Poggendorff, Ponzo, Vertical, Zöllner). Subjects interactively manipulated computer-generated line drawings to counteract the illusory effect. In all cases, illusions presented under isoluminance (both for colors drawn from the cardinal L-M or S-(L+M) directions of DKL color space) were as effective as the luminance versions (both for high and low contrast). The magnitudes of the illusion effects were highly correlated across subjects for the different conditions. In two additional experiments we determined that the strong illusions observed under isoluminance were not due to individual deviations from the photometric point of isoluminance or due to chromatic aberrations. Our findings show that our conscious percept is affected similarly for both isoluminance and luminance conditions, suggesting that the joint processing for chromatic and luminance defined contours may extend well beyond early visual areas.

  15. Overlapped illusion optics: a perfect lens brings a brighter feature

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yadong; Gao Lei; Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Du Shengwang, E-mail: kenyon@ust.hk [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2011-02-15

    In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  16. Overlapped illusion optics: a perfect lens brings a brighter feature

    International Nuclear Information System (INIS)

    Xu Yadong; Gao Lei; Chen Huanyang; Du Shengwang

    2011-01-01

    In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  17. Experimental demonstration of illusion optics with ``external cloaking'' effects

    Science.gov (United States)

    Li, Chao; Liu, Xiao; Liu, Guochang; Li, Fang; Fang, Guangyou

    2011-08-01

    A metamaterial "illusion optics" with "complementary medium" and "restoring medium" is designed by using inductor-capacitor (L-C) network medium. The unprecedented effects of "external cloaking" and "transforming one object to appear as another" are demonstrated experimentally. We also demonstrate that the non-resonant nature of the L-C network decreases the sensitivity of the "external cloaking" effect to the variation of the frequency and results in an acceptable bandwidth of the whole device.

  18. Optical Illusions and Effects on Clothing Design

    Directory of Open Access Journals (Sweden)

    Saliha AĞAÇ

    2015-06-01

    Full Text Available “Visual perception” is in the first ranking between the types of perception. Gestalt Theory of the major psychological theories are used in how visual perception realizes and making sense of what is effective in this process. In perception stage brain tak es into account not only stimulus from eyes but also expectations arising from previous experience and interpreted the stimulus which are not exist in the real world as if they were there. Misperception interpretations that brain revealed are called as “Pe rception Illusion” or “Optical Illusion” in psychology. Optical illusion formats come into existence due to factors such as brightness, contrast, motion, geometry and perspective, interpretation of three - dimensional images, cognitive status and color. Opti cal illusions have impacts of different disciplines within the study area on people. Among the most important types of known optical illusion are Oppel - Kundt, Curvature - Hering, Helzholtz Sqaure, Hermann Grid, Muller - Lyler, Ebbinghaus and Ponzo illusion etc . In fact, all the optical illusions are known to be used in numerous area with various techniques and different product groups like architecture, fine arts, textiles and fashion design from of old. In recent years, optical illusion types are frequently us ed especially within the field of fashion design in the clothing model, in style, silhouette and fabrics. The aim of this study is to examine the clothing design applications where optical illusion is used and works done in this subject. Some research of the design with the changing fashion of clothes of different types of optical illusions is discussed with examples of their effects on visual perception. In the study, optical illusory clothing models are scanned by visual analysis from documents like film , video, picture, web pages. The findings were analyzed in terms of the surface and design and effects of the optical illusion on clothing design has tried to put

  19. [Neuromolecular mechanism of the superiority illusion].

    Science.gov (United States)

    Yamada, Makiko

    2014-01-01

    The majority of individuals evaluate themselves as above average. This is a cognitive bias called "the superiority illusion". This illusory self-evaluation helps us to have hopes for the future, and has been central to the process of human evolution. Possessing this illusion is also important for mental health, as depressed people appear to have a more realistic perception of themselves, dubbed "depressive realism". Our recent study revealed the spontaneous brain activity and central dopaminergic neurotransmission that generate this illusion, using resting-state fMRI and PET. A functional connectivity between the frontal cortex and striatum, regulated by inhibitory dopaminergic neurotransmission, determines individual levels of the superiority illusion. We further revealed that blocking the dopamine transporter, which enhanced the level of dopamine, increased the degree of the superiority illusion. These findings suggest that dopamine acts on striatal dopamine receptors to suppress fronto-striatal functional connectivity, leading to disinhibited, heuristic, approaches to positive self-evaluation. These findings help us to understand how this key aspect of the human mind is biologically determined, and will suggest treatments for depressive symptoms by targeting specific molecules and neural circuits.

  20. The costs and benefits of positive illusions.

    Science.gov (United States)

    Makridakis, Spyros; Moleskis, Andreas

    2015-01-01

    Positive illusions are associated with unrealistic optimism about the future and an inflated assessment of one's abilities. They are prevalent in normal life and are considered essential for maintaining a healthy mental state, although, there are disagreements to the extent to which people demonstrate these positive illusions and whether they are beneficial or not. But whatever the situation, it is hard to dismiss their existence and their positive and/or negative influence on human behavior and decision making in general. Prominent among illusions is that of control, that is "the tendency for people to overestimate their ability to control events." This paper describes positive illusions, their potential benefits but also quantifies their costs in five specific fields (gambling, stock and other markets, new firms and startups, preventive medicine and wars). It is organized into three parts. First the psychological reasons giving rise to positive illusions are described and their likely harm and benefits stated. Second, their negative consequences are presented and their costs are quantified in five areas seriously affected with emphasis to those related to the illusion of control that seems to dominate those of unrealistic optimism. The costs involved are huge and serious efforts must be undertaken to understand their enormity and steps taken to avoid them in the future. Finally, there is a concluding section where the challenges related to positive illusions are noted and directions for future research are presented.

  1. Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space.

    Science.gov (United States)

    Westheimer, Gerald

    2008-09-01

    Differences between the geometrical properties of simple configurations and their visual percept are called geometrical-optical illusions. They can be differentiated from illusions in the brightness or color domains, from ambiguous figures and impossible objects, from trompe l'oeil and perspective drawing with perfectly valid views, and from illusory contours. They were discovered independently by several scientists in a short time span in the 1850's. The clear distinction between object and visual space that they imply allows the question to be raised whether the transformation between the two spaces can be productively investigated in terms of differential geometry and metrical properties. Perceptual insight and psychophysical research prepares the ground for investigation of the neural representation of space but, because visual attributes are processed separately in parallel, one looks in vain for a neural map that is isomorphic with object space or even with individual forms it contains. Geometrical-optical illusions help reveal parsing rules for sensory signals by showing how conflicts are resolved when there is mismatch in the output of the processing modules for various primitives as a perceptual pattern's unitary structure is assembled. They point to a hierarchical ordering of spatial primitives: cardinal directions and explicit contours predominate over oblique orientation and implicit contours (Poggendorff illusion); rectilinearity yields to continuity (Hering illusion), point position and line length to contour orientation (Ponzo). Hence the geometrical-optical illusions show promise as analytical tools in unraveling neural processing in vision.

  2. Virtual hand illusion induced by visuomotor correlations.

    Directory of Open Access Journals (Sweden)

    Maria V Sanchez-Vives

    Full Text Available BACKGROUND: Our body schema gives the subjective impression of being highly stable. However, a number of easily-evoked illusions illustrate its remarkable malleability. In the rubber-hand illusion, illusory ownership of a rubber-hand is evoked by synchronous visual and tactile stimulation on a visible rubber arm and on the hidden real arm. Ownership is concurrent with a proprioceptive illusion of displacement of the arm position towards the fake arm. We have previously shown that this illusion of ownership plus the proprioceptive displacement also occurs towards a virtual 3D projection of an arm when the appropriate synchronous visuotactile stimulation is provided. Our objective here was to explore whether these illusions (ownership and proprioceptive displacement can be induced by only synchronous visuomotor stimulation, in the absence of tactile stimulation. METHODOLOGY/PRINCIPAL FINDINGS: To achieve this we used a data-glove that uses sensors transmitting the positions of fingers to a virtually projected hand in the synchronous but not in the asynchronous condition. The illusion of ownership was measured by means of questionnaires. Questions related to ownership gave significantly larger values for the synchronous than for the asynchronous condition. Proprioceptive displacement provided an objective measure of the illusion and had a median value of 3.5 cm difference between the synchronous and asynchronous conditions. In addition, the correlation between the feeling of ownership of the virtual arm and the size of the drift was significant. CONCLUSIONS/SIGNIFICANCE: We conclude that synchrony between visual and proprioceptive information along with motor activity is able to induce an illusion of ownership over a virtual arm. This has implications regarding the brain mechanisms underlying body ownership as well as the use of virtual bodies in therapies and rehabilitation.

  3. No pain relief with the rubber hand illusion.

    Directory of Open Access Journals (Sweden)

    Rahul Mohan

    Full Text Available The sense of body ownership can be easily disrupted during illusions and the most common illusion is the rubber hand illusion. An idea that is rapidly gaining popularity in clinical pain medicine is that body ownership illusions can be used to modify pathological pain sensations and induce analgesia. However, this idea has not been empirically evaluated. Two separate research laboratories undertook independent randomized repeated measures experiments, both designed to detect an effect of the rubber hand illusion on experimentally induced hand pain. In Experiment 1, 16 healthy volunteers rated the pain evoked by noxious heat stimuli (5 s duration; interstimulus interval 25 s of set temperatures (47°, 48° and 49°C during the rubber hand illusion or during a control condition. There was a main effect of stimulus temperature on pain ratings, but no main effect of condition (p = 0.32, nor a condition x temperature interaction (p = 0.31. In Experiment 2, 20 healthy volunteers underwent quantitative sensory testing to determine heat and cold pain thresholds during the rubber hand illusion or during a control condition. Secondary analyses involved heat and cold detection thresholds and paradoxical heat sensations. Again, there was no main effect of condition on heat pain threshold (p = 0.17, nor on cold pain threshold (p = 0.65, nor on any of the secondary measures (p<0.56 for all. We conclude that the rubber hand illusion does not induce analgesia.

  4. Geometrical illusions are not always where you think they are

    Directory of Open Access Journals (Sweden)

    Jacques eNinio

    2014-10-01

    Full Text Available Geometrical illusions are known through a small core of classical illusions that were discovered in the second half of the 19th century. Most experimental studies and most theoretical discussions revolve around this core of illusions, as though all other illusions were obvious variants of these. Yet, many illusions, mostly described by German authors at the same time or at the beginning of the 20th century have been forgotten and are awaiting their rehabilitation. Recently, several new illusions were discovered, mainly by Italian authors, and they do not seem to take place into any current classification. Among the principles that are invoked to explain the illusions, there are principles relating to the metric aspects (contrast, assimilation, shrinkage, expansion, attraction of parallels principles relating to orientations (regression to right angles, orthogonal expansion or, more recently, to gestalt effects. It is possible to oppose, to many a classical stimulus, an illusion that apparently contradicts the lesson derived from this stimulus. Furthermore, some well-known illusory patterns may not be illusions at all, they capture legitimate paradoxes of shape perception.Here, metric effects are discussed within a measurement framework, in which the geometric illusions are the outcome of a measurement process. There would be a main convexity bias in the measures: the measured value m(x of an extant x would grow more than proportionally with x. This convexity principle, completed by a principle of compromise for conflicting measures can replace, for a large number of patterns, both the assimilation and the contrast effects. We know from evolutionary theory that the most pertinent classification criteria may not be the most salient ones (e.g., a dolphin is not a mammal. In order to obtain an objective classification of illusions, I initiated with Kevin O’Regan systematic work on orientation profiles (describing how the strength of an illusion

  5. The time constant of the somatogravic illusion.

    Science.gov (United States)

    Correia Grácio, B J; de Winkel, K N; Groen, E L; Wentink, M; Bos, J E

    2013-02-01

    Without visual feedback, humans perceive tilt when experiencing a sustained linear acceleration. This tilt illusion is commonly referred to as the somatogravic illusion. Although the physiological basis of the illusion seems to be well understood, the dynamic behavior is still subject to discussion. In this study, the dynamic behavior of the illusion was measured experimentally for three motion profiles with different frequency content. Subjects were exposed to pure centripetal accelerations in the lateral direction and were asked to indicate their tilt percept by means of a joystick. Variable-radius centrifugation during constant angular rotation was used to generate these motion profiles. Two self-motion perception models were fitted to the experimental data and were used to obtain the time constant of the somatogravic illusion. Results showed that the time constant of the somatogravic illusion was on the order of two seconds, in contrast to the higher time constant found in fixed-radius centrifugation studies. Furthermore, the time constant was significantly affected by the frequency content of the motion profiles. Motion profiles with higher frequency content revealed shorter time constants which cannot be explained by self-motion perception models that assume a fixed time constant. Therefore, these models need to be improved with a mechanism that deals with this variable time constant. Apart from the fundamental importance, these results also have practical consequences for the simulation of sustained accelerations in motion simulators.

  6. The Emergence of Figural Effects in the Watercolor Illusion

    Science.gov (United States)

    Pinna, Baingio; Penna, Maria Pietronilla

    The watercolor illusion is characterized by a large-scale assimilative color spreading (coloration effect) emanating from thin colored edges. The watercolor illusion enhances the figural properties of the colored areas and imparts to the surrounding area the perceptual status of background. This work explores interactions between cortical boundary and surface processes by presenting displays and psychophysical experiments that exhibit new properties of the watercolor illusion. The watercolor illusion is investigated as supporting a new principle of figure-ground organization when pitted against principles of surroundedness, relative orientation, and Prägnanz. The work demonstrated that the watercolor illusion probes a unique combination of visual processes that set it apart from earlier Gestalt principles, and can compete successfully against them. This illusion exemplifies how long-range perceptual effects may be triggered by spatially sparse information. All the main effects are explained by the FACADE model of biological vision, which clarifies how local properties control depthful filling-in of surface lightness and color.

  7. Self-Enhancing Illusions among Chinese Schoolchildren.

    Science.gov (United States)

    Falbo, Toni; And Others

    1997-01-01

    Demonstrates that East Asian children (EAC) do engage in some forms of self-enhancing illusions. Responses from 4,000 elementary school students reveal EACs see themselves as possessing more positive attributes than others. Variations in self-enhancing illusions were found for age, gender, and region of residence. Results are discussed in terms of…

  8. No Pain Relief with the Rubber Hand Illusion

    Science.gov (United States)

    Petkova, Valeria I.; Dey, Abishikta; Barnsley, Nadia; Ingvar, Martin; McAuley, James H.; Moseley, G. Lorimer; Ehrsson, Henrik H.

    2012-01-01

    The sense of body ownership can be easily disrupted during illusions and the most common illusion is the rubber hand illusion. An idea that is rapidly gaining popularity in clinical pain medicine is that body ownership illusions can be used to modify pathological pain sensations and induce analgesia. However, this idea has not been empirically evaluated. Two separate research laboratories undertook independent randomized repeated measures experiments, both designed to detect an effect of the rubber hand illusion on experimentally induced hand pain. In Experiment 1, 16 healthy volunteers rated the pain evoked by noxious heat stimuli (5 s duration; interstimulus interval 25 s) of set temperatures (47°, 48° and 49°C) during the rubber hand illusion or during a control condition. There was a main effect of stimulus temperature on pain ratings, but no main effect of condition (p = 0.32), nor a condition x temperature interaction (p = 0.31). In Experiment 2, 20 healthy volunteers underwent quantitative sensory testing to determine heat and cold pain thresholds during the rubber hand illusion or during a control condition. Secondary analyses involved heat and cold detection thresholds and paradoxical heat sensations. Again, there was no main effect of condition on heat pain threshold (p = 0.17), nor on cold pain threshold (p = 0.65), nor on any of the secondary measures (pillusion does not induce analgesia. PMID:23285026

  9. The sound-induced phosphene illusion.

    Science.gov (United States)

    Bolognini, Nadia; Convento, Silvia; Fusaro, Martina; Vallar, Giuseppe

    2013-12-01

    Crossmodal illusions clearly show how perception, rather than being a modular and self-contained function, can be dramatically altered by interactions between senses. Here, we provide evidence for a novel crossmodal "physiological" illusion, showing that sounds can boost visual cortical responses in such a way to give rise to a striking illusory visual percept. In healthy participants, a single-pulse transcranial magnetic stimulation (sTMS) delivered to the occipital cortex evoked a visual percept, i.e., a phosphene. When sTMS is accompanied by two auditory beeps, the second beep induces in neurologically unimpaired participants the perception of an illusory second phosphene, namely the sound-induced phosphene illusion. This perceptual "fission" of a single phosphene, due to multiple beeps, is not matched by a "fusion" of double phosphenes due to a single beep, and it is characterized by an early auditory modulation of the TMS-induced visual responses (~80 ms). Multiple beeps also induce an illusory feeling of multiple TMS pulses on the participants' scalp, consistent with an audio-tactile fission illusion. In conclusion, an auditory stimulation may bring about a phenomenological change in the conscious visual experience produced by the transcranial stimulation of the occipital cortex, which reveals crossmodal binding mechanisms within early stages of visual processing.

  10. Neural correlates of auditory scale illusion.

    Science.gov (United States)

    Kuriki, Shinya; Numao, Ryousuke; Nemoto, Iku

    2016-09-01

    The auditory illusory perception "scale illusion" occurs when ascending and descending musical scale tones are delivered in a dichotic manner, such that the higher or lower tone at each instant is presented alternately to the right and left ears. Resulting tone sequences have a zigzag pitch in one ear and the reversed (zagzig) pitch in the other ear. Most listeners hear illusory smooth pitch sequences of up-down and down-up streams in the two ears separated in higher and lower halves of the scale. Although many behavioral studies have been conducted, how and where in the brain the illusory percept is formed have not been elucidated. In this study, we conducted functional magnetic resonance imaging using sequential tones that induced scale illusion (ILL) and those that mimicked the percept of scale illusion (PCP), and we compared the activation responses evoked by those stimuli by region-of-interest analysis. We examined the effects of adaptation, i.e., the attenuation of response that occurs when close-frequency sounds are repeated, which might interfere with the changes in activation by the illusion process. Results of the activation difference of the two stimuli, measured at varied tempi of tone presentation, in the superior temporal auditory cortex were not explained by adaptation. Instead, excess activation of the ILL stimulus from the PCP stimulus at moderate tempi (83 and 126 bpm) was significant in the posterior auditory cortex with rightward superiority, while significant prefrontal activation was dominant at the highest tempo (245 bpm). We suggest that the area of the planum temporale posterior to the primary auditory cortex is mainly involved in the illusion formation, and that the illusion-related process is strongly dependent on the rate of tone presentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Influence of Background Patterns in the Reverse Perspective Illusion

    Directory of Open Access Journals (Sweden)

    Takefumi Hayashi

    2011-05-01

    Full Text Available The reverse perspective (RP illusion is classified as a motion illusion due to inverted depth perception, similar to the Mach book and hollow mask illusions. Distortional motion of a rigid object surface is observed when an observer moves in front of the object which has a texture pattern giving inverted perspective cues (RP object. In this research, we studied the influence of the background pattern of the RP objects on the strength of the illusion. To perform quantitative evaluation, a stereo computer-graphics technique was used. Computer generated right- and left-eye images of an RP object were shown separately to the subjects' eyes through a haploscope. Using a computer key board, they adjusted the binocular disparity of the stereo images so that depth inversion due to the surface texture occurs. We evaluated the strength of the illusion by the critical value of the disparity and found that the background texture is an important factor determining the strength of the RP illusion. Especially, the texture in the horizontal direction creates stronger depth inversion effect compared to the vertical pattern. Using our experimental system, the influences of various pictorial cues on the RP illusion can be studied quantitatively.

  12. The Marble-Hand Illusion.

    Science.gov (United States)

    Senna, Irene; Maravita, Angelo; Bolognini, Nadia; Parise, Cesare V

    2014-01-01

    Our body is made of flesh and bones. We know it, and in our daily lives all the senses constantly provide converging information about this simple, factual truth. But is this always the case? Here we report a surprising bodily illusion demonstrating that humans rapidly update their assumptions about the material qualities of their body, based on their recent multisensory perceptual experience. To induce a misperception of the material properties of the hand, we repeatedly gently hit participants' hand with a small hammer, while progressively replacing the natural sound of the hammer against the skin with the sound of a hammer hitting a piece of marble. After five minutes, the hand started feeling stiffer, heavier, harder, less sensitive, unnatural, and showed enhanced Galvanic skin response (GSR) to threatening stimuli. Notably, such a change in skin conductivity positively correlated with changes in perceived hand stiffness. Conversely, when hammer hits and impact sounds were temporally uncorrelated, participants did not spontaneously report any changes in the perceived properties of the hand, nor did they show any modulation in GSR. In two further experiments, we ruled out that mere audio-tactile synchrony is the causal factor triggering the illusion, further demonstrating the key role of material information conveyed by impact sounds in modulating the perceived material properties of the hand. This novel bodily illusion, the 'Marble-Hand Illusion', demonstrates that the perceived material of our body, surely the most stable attribute of our bodily self, can be quickly updated through multisensory integration.

  13. Memristor: the illusive device

    KAUST Repository

    Salama, Khaled N.

    2012-05-03

    The memristor (M) is considered to be the fourth two-terminal passive element in electronics, alongside the resistor (R), the capacitor (C), and the inductor (L). Its existence was postulated in 1971 but its first implementation was reported in 2008. Where was it hiding all that time and what can we do with it? Come and learn how the memristor completes the roster of electronic devices much like a missing particle that physicists seek to complete their tableaus.

  14. Memristor: the illusive device

    KAUST Repository

    Salama, Khaled N.

    2012-01-01

    The memristor (M) is considered to be the fourth two-terminal passive element in electronics, alongside the resistor (R), the capacitor (C), and the inductor (L). Its existence was postulated in 1971 but its first implementation was reported in 2008. Where was it hiding all that time and what can we do with it? Come and learn how the memristor completes the roster of electronic devices much like a missing particle that physicists seek to complete their tableaus.

  15. Information processing correlates of a size-contrast illusion

    Directory of Open Access Journals (Sweden)

    Jason M Gold

    2014-02-01

    Full Text Available Perception is often influenced by context. A well-known class of perceptual context effects is perceptual contrast illusions, in which proximate stimulus regions interact to alter the perception of various stimulus attributes, such as perceived brightness, color and size. Although the phenomenal reality of contrast effects is well documented, in many cases the connection between these illusions and how information is processed by perceptual systems is not well understood. Here, we use noise as a tool to explore the information processing correlates of one such contrast effect: the Ebbinghaus-Titchener size-contrast illusion. In this illusion, the perceived size of a central dot is significantly altered by the sizes of a set of surrounding dots, such that the presence of larger surrounding dots tends to reduce the perceived size of the central dot (and vise-versa. In our experiments, we first replicated previous results that have demonstrated the subjective reality of the Ebbinghaus-Titchener illusion. We then used visual noise in a detection task to probe the manner in which observers processed information when experiencing the illusion. By correlating the noise with observers’ classification decisions, we found that the sizes of the surrounding contextual elements had a direct influence on the relative weight observers assigned to regions within and surrounding the central element. Specifically, observers assigned relatively more weight to the surrounding region and less weight to the central region in the presence of smaller surrounding contextual elements. These results offer new insights into the connection between the subjective experience of size-contrast illusions and their associated information processing correlates.

  16. Homo Novus - A Human Without Illusions

    CERN Document Server

    Frey, Ulrich J; Willführ, Kai P

    2010-01-01

    Converging evidence from disciplines including sociobiology, evolutionary psychology and human biology forces us to adopt a new idea of what it means to be a human. As cherished concepts such as free will, naïve realism, humans as creation's crowning glory fall and our moral roots in ape group dynamics become clearer, we have to take leave of many concepts that have been central to defining our humanness. What emerges is a new human, the homo novus, a human being without illusions. Leading authors from many different fields explore these issues by addressing these illusions and providing evidence for the need to switch to this new idea of man, in spite of understandable reluctance to let go of our most beloved illusions.

  17. A simple device for long-term radar cross section recordings.

    Science.gov (United States)

    Eskelinen, Pekka; Ruoskanen, Jukka; Peltonen, Jouni

    2009-05-01

    A sample and hold circuit with settable delay can be used for recording of radar echo amplitude variations having time scales up to 100 s at the selected range bin in systems utilizing short rf pulses. The design is based on two integrated circuits and gives 1% uncertainty for 70 ns pulses. The key benefit is a real-time display of lengthy amplitude variations because the sample rate is defined by the radar pulse repetition frequency. Additionally we get a reduction in file size at least by the inverse of the radar's duty cycle. Examples of 10 and 100 s recordings with a Ka-band short pulse radar are described.

  18. Reconfigurable signal processor designs for advanced digital array radar systems

    Science.gov (United States)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  19. The nonvisual illusion of self-touch: Misaligned hands and anatomical implausibility.

    Science.gov (United States)

    White, Rebekah C; Weinberg, Jennifer L; Aimola Davies, Anne M

    2015-01-01

    The self-touch illusion is elicited when the participant (with eyes closed) administers brushstrokes to a prosthetic hand while the examiner administers synchronous brushstrokes to the participant's other (receptive) hand. In three experiments we investigated the effects of misalignment on the self-touch illusion. In experiment 1 we manipulated alignment (0 degrees, 45 degrees, 90 degrees, 135 degrees, 180 degrees) of the prosthetic hand relative to the participant's receptive hand. The illusion was equally strong at 0 degrees and 45 degrees: the two conditions in which the prosthetic hand was in an anatomically plausible orientation. To investigate whether the illusion was diminished at 90 degrees (and beyond) by anatomical implausibility rather than by misalignment, in experiment 2 hand positioning was changed. The illusion was equally strong at 0 degrees, 45 degrees, and 90 degrees, but diminished at 135 degrees despite the prosthetic hand now being in an anatomically plausible orientation. Thus the illusion is diminished with misalignment of 135 degrees, irrespective of anatomical plausibility. Having demonstrated that the illusion was equally strong with the hands aligned (0 degrees) or misaligned by 45 degrees, in experiment 3 we demonstrated that participants did not detect a 45 degrees misalignment. Large degrees of misalignment prevent a compelling experience of the self-touch illusion, and the self-touch illusion prevents detection of small degrees of misalignment.

  20. Development of Bread Board Model of TRMM precipitation radar

    Science.gov (United States)

    Okamoto, Ken'ichi; Ihara, Toshio; Kumagai, Hiroshi

    The active array radar was selected as a reliable candidate for the TRMM (Tropical Rainfall Measuring Mission) precipitation radar after the trade off studies performed by Communications Research Laboratory (CRL) in the US-Japan joint feasibility study of TRMM in 1987-1988. Main system parameters and block diagram for TRMM precipitation radar are shown as the result of feasibility study. CRL developed key devices for the active array precipitation radar such as 8-element slotted waveguide array antenna, the 5 bit PIN diode phase shifters, solid state power amplifiers and low noise amplifiers in 1988-1990. Integration of these key devices was made to compose 8-element Bread Board Model of TRMM precipitation radar.

  1. Looking at Op Art: Gaze stability and motion illusions.

    Science.gov (United States)

    Hermens, Frouke; Zanker, Johannes

    2012-01-01

    Various Op artists have used simple geometrical patterns to create the illusion of motion in their artwork. One explanation for the observed illusion involves retinal shifts caused by small involuntary eye movements that observers make while they try to maintain fixation. Earlier studies have suggested a prominent role of the most conspicuous of these eye movements, small rapid position shifts called microsaccades. Here, we present data that could expand this view with a different interpretation. In three experiments, we recorded participants' eye movements while they tried to maintain visual fixation when being presented with variants of Bridget Riley's Fall, which were manipulated such as to vary the strength of induced motion. In the first two experiments, we investigated the properties of microsaccades for a set of stimuli with known motion strengths. In agreement with earlier observations, microsaccade rates were unaffected by the stimulus pattern and, consequently, the strength of induced motion illusion. In the third experiment, we varied the stimulus pattern across a larger range of parameters and asked participants to rate the perceived motion illusion. The results revealed that motion illusions in patterns resembling Riley's Fall are perceived even in the absence of microsaccades, and that the reported strength of the illusion decreased with the number of microsaccades in the trial. Together, the three experiments suggest that other sources of retinal image instability than microsaccades, such as slow oculomotor drift, should be considered as possible factors contributing to the illusion.

  2. Athletic footwear: unsafe due to perceptual illusions.

    Science.gov (United States)

    Robbins, S E; Gouw, G J

    1991-02-01

    Modern athletic footwear provides remarkable plantar comfort when walking, running, or jumping. However, when injurious plantar loads elicit negligible perceived plantar discomfort, a perceptual illusion is created whereby perceived impact is lower than actual impact, which results in inadequate impact-moderating behavior and consequent injury. The objective of this study was to examine how plantar tactile (mechanical) events affect perceived plantar discomfort. Also, we evaluated the feasibility of a footwear safety standard we propose, which requires elimination of the above illusion. Twenty subjects gave numerical estimates of plantar discomfort produced by simulated locomotion (concurrent vertical (0.1-0.7 kg.cm-2) and horizontal (0.1-0.9 kg.cm-2) plantar loads), with the foot supported by either a smooth rigid surface or a rigid surface with 2 mm high rigid irregularities. Vertical or horizontal load alone evoked no discomfort (P greater than 0.05), whereas together, discomfort emanated from loads as low as 0.4 kg.cm-2. Irregularities heightened discomfort by a factor of 1.89. This suggests that the proposed safety standard is feasible, since compliance could be achieved simply by adding surface irregularities to insoles and by other changes that heighten localized plantar loads. However, until this standard is adhered to, it might be more appropriate to classify athletic footwear as "safety hazards" rather than "protective devices".

  3. Relative contribution of lateral inhibition to the Delboeuf and Wundt-Hering illusions.

    Science.gov (United States)

    Coren, S

    1999-06-01

    It has been suggested that lateral neural interactions contribute to some illusions with intersecting or converging line elements but cannot be present in figures that lack these components. Most attempts to ascertain the contribution of neural interactions in visual illusions have involved changes in the actual pattern of illusion. It has now been demonstrated that certain forms of intermittent light stimulation can enhance lateral inhibitory activity. The Wundt-Hering and the Delboeuf illusions were tested under continuous illumination and "shaped" intermittent illumination which augments lateral inhibition. As expected, the Delboeuf illusion was unchanged with increased lateral inhibition while the magnitude of the Wundt-Hering illusion increased.

  4. The building blocks of the full body ownership illusion

    Directory of Open Access Journals (Sweden)

    Antonella eMaselli

    2013-03-01

    Full Text Available Previous work has reported that it is not difficult to give people the illusion of ownership over an artificial body, providing a powerful tool for the investigation of the neural and cognitive mechanisms underlying body perception and self consciousness. We present an experimental study that uses immersive virtual reality focused on identifying the perceptual building blocks of this illusion. We systematically manipulated visuotactile and visual sensorimotor contingencies, visual perspective, and the appearance of the virtual body in order to assess their relative role and mutual interaction. Consistent results from subjective reports and physiological measures showed that a first person perspective over a fake humanoid body is essential for eliciting a body ownership illusion. We found that the level of realism of the virtual body, in particular the realism of skin tone, plays a critical role: when high enough, the illusion can be triggered by the sole effect of the spatial overlap between the real and virtual bodies, providing congruent visuoproprioceptive information, with no need for the additional contribution of congruent visuotactile and/or visual sensorimotor cues. Additionally, we found that the processing of incongruent perceptual cues can be modulated by the level of the illusion: when the illusion is strong, incongruent cues are not experienced as incorrect. Participants exposed to asynchronous visuotactile stimulation can experience the ownership illusion and perceive touch as originating from an object seen to contact the virtual body. Analogously, when the level of realism of the virtual body and/or the spatial overlap of the two bodies is not high enough, the contribution of congruent multisensory and/or sensorimotor cues is required for evoking the illusion. On the basis of these results and inspired by findings from neurophysiological recordings in the monkey, we propose a model that accounts for many of the results reported

  5. The building blocks of the full body ownership illusion

    Science.gov (United States)

    Maselli, Antonella; Slater, Mel

    2013-01-01

    Previous work has reported that it is not difficult to give people the illusion of ownership over an artificial body, providing a powerful tool for the investigation of the neural and cognitive mechanisms underlying body perception and self consciousness. We present an experimental study that uses immersive virtual reality (IVR) focused on identifying the perceptual building blocks of this illusion. We systematically manipulated visuotactile and visual sensorimotor contingencies, visual perspective, and the appearance of the virtual body in order to assess their relative role and mutual interaction. Consistent results from subjective reports and physiological measures showed that a first person perspective over a fake humanoid body is essential for eliciting a body ownership illusion. We found that the illusion of ownership can be generated when the virtual body has a realistic skin tone and spatially substitutes the real body seen from a first person perspective. In this case there is no need for an additional contribution of congruent visuotactile or sensorimotor cues. Additionally, we found that the processing of incongruent perceptual cues can be modulated by the level of the illusion: when the illusion is strong, incongruent cues are not experienced as incorrect. Participants exposed to asynchronous visuotactile stimulation can experience the ownership illusion and perceive touch as originating from an object seen to contact the virtual body. Analogously, when the level of realism of the virtual body is not high enough and/or when there is no spatial overlap between the two bodies, then the contribution of congruent multisensory and/or sensorimotor cues is required for evoking the illusion. On the basis of these results and inspired by findings from neurophysiological recordings in the monkey, we propose a model that accounts for many of the results reported in the literature. PMID:23519597

  6. The Müller-Lyer illusion in ant foraging.

    Directory of Open Access Journals (Sweden)

    Tomoko Sakiyama

    Full Text Available The Müller-Lyer illusion is a classical geometric illusion in which the apparent (perceived length of a line depends on whether the line terminates in an arrow tail or arrowhead. This effect may be caused by economic compensation for the gap between the physical stimulus and visual fields. Here, we show that the Müller-Lyer illusion can also be produced by the foraging patterns of garden ants (Lasius niger and that the pattern obtained can be explained by a simple, asynchronously updated foraging ant model. Our results suggest that the geometric illusion may be a byproduct of the foraging process, in which local interactions underlying efficient exploitation can also give rise to global exploration, and that visual information processing in human could implement similar modulation between local efficient processing and widespread computation.

  7. Cortical processes of speech illusions in the general population.

    Science.gov (United States)

    Schepers, E; Bodar, L; van Os, J; Lousberg, R

    2016-10-18

    There is evidence that experimentally elicited auditory illusions in the general population index risk for psychotic symptoms. As little is known about underlying cortical mechanisms of auditory illusions, an experiment was conducted to analyze processing of auditory illusions in a general population sample. In a follow-up design with two measurement moments (baseline and 6 months), participants (n = 83) underwent the White Noise task under simultaneous recording with a 14-lead EEG. An auditory illusion was defined as hearing any speech in a sound fragment containing white noise. A total number of 256 speech illusions (SI) were observed over the two measurements, with a high degree of stability of SI over time. There were 7 main effects of speech illusion on the EEG alpha band-the most significant indicating a decrease in activity at T3 (t = -4.05). Other EEG frequency bands (slow beta, fast beta, gamma, delta, theta) showed no significant associations with SI. SIs are characterized by reduced alpha activity in non-clinical populations. Given the association of SIs with psychosis, follow-up research is required to examine the possibility of reduced alpha activity mediating SIs in high risk and symptomatic populations.

  8. Robust size illusion produced by expanding and contracting flow fields.

    Science.gov (United States)

    Dong, Xue; Bai, Jianying; Bao, Min

    2017-04-01

    A new illusion is described. Randomly positioned dots moved radially within an imaginary annular window. The dots' motion periodically changed the direction, leading to an alternating percept of expanding and contracting motion. Strikingly, the apparent size of the enclosed circular region shrank during the dots' expanding phases and dilated during the contracting phases. We quantitatively measured the illusion, and found that the presence of energy at the local kinetic edge could not account for the illusion. Besides, we reproduced the illusion on a natural scene background seen from a first-person point of view that moved forward and backward periodically. Blurring the boundaries of motion areas could not reverse the illusion in all subjects. Taken together, our observed illusion is likely induced by optic flow processing with some components of motion contrast. Expanding or contracting dots may induce the self-motion perception of either approaching or leaving way from the circle. These will make the circle appear smaller or larger since its retinal size remains constant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Illusion and Illusoriness of Color and Coloration

    Directory of Open Access Journals (Sweden)

    Baingio Pinna

    2018-01-01

    Full Text Available In this work, through a phenomenological analysis, we studied the perception of the chromatic illusion and illusoriness. The necessary condition for an illusion to occur is the discovery of a mismatch/disagreement between the geometrical/physical domain and the phenomenal one. The illusoriness is instead a phenomenal attribute related to a sense of strangeness, deception, singularity, mendacity, and oddity. The main purpose of this work is to study the phenomenology of chromatic illusion vs. illusoriness, which is useful for shedding new light on the no-man’s land between “sensory” and “cognitive” processes that have not been fully explored. Some basic psychological and biological implications for living organisms are deduced.

  10. The Illusion of Argument Justification

    Science.gov (United States)

    Fisher, Matthew; Keil, Frank

    2013-01-01

    Argumentation is an important way to reach new understanding. Strongly caring about an issue, which is often evident when dealing with controversial issues, has been shown to lead to biases in argumentation. We suggest that people are not well calibrated in assessing their ability to justify a position through argumentation, an effect we call the illusion of argument justification. Furthermore we find that caring about the issue further clouds this introspection. We first show this illusion by measuring the difference between ratings before and after producing an argument for one’s own position. The strength of the illusion is predicted by the strength of care for a given issue (Study 1). The tacit influences of framing and priming do not override the effects of emotional investment in a topic (Study 2). However, explicitly considering counterarguments removes the effect of care when initially assessing the ability to justify a position (Study 3). Finally, we consider our findings in light of other recent research and discuss the potential benefits of group reasoning. PMID:23506085

  11. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Directory of Open Access Journals (Sweden)

    Mohamad Arif Fahmi Ismail

    Full Text Available The rubber hand illusion (RHI is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI, which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms, and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  12. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Science.gov (United States)

    Ismail, Mohamad Arif Fahmi; Shimada, Sotaro

    2016-01-01

    The rubber hand illusion (RHI) is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI), which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms), and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  13. Negative polarity illusions and the format of hierarchical encodings in memory.

    Science.gov (United States)

    Parker, Dan; Phillips, Colin

    2016-12-01

    Linguistic illusions have provided valuable insights into how we mentally navigate complex representations in memory during language comprehension. Two notable cases involve illusory licensing of agreement and negative polarity items (NPIs), where comprehenders fleetingly accept sentences with unlicensed agreement or an unlicensed NPI, but judge those same sentences as unacceptable after more reflection. Existing accounts have argued that illusions are a consequence of faulty memory access processes, and make the additional assumption that the encoding of the sentence remains fixed over time. This paper challenges the predictions made by these accounts, which assume that illusions should generalize to a broader set of structural environments and a wider range of syntactic and semantic phenomena. We show across seven reading-time and acceptability judgment experiments that NPI illusions can be reliably switched "on" and "off", depending on the amount of time from when the potential licensor is processed until the NPI is encountered. But we also find that the same profile does not extend to agreement illusions. This contrast suggests that the mechanisms responsible for switching the NPI illusion on and off are not shared across all illusions. We argue that the contrast reflects changes over time in the encoding of the semantic/pragmatic representations that can license NPIs. Just as optical illusions have been informative about the visual system, selective linguistic illusions are informative not only about the nature of the access mechanisms, but also about the nature of the encoding mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Do domestic dogs (Canis lupus familiaris) perceive the Delboeuf illusion?

    Science.gov (United States)

    Miletto Petrazzini, Maria Elena; Bisazza, Angelo; Agrillo, Christian

    2017-05-01

    In the last decade, visual illusions have been repeatedly used as a tool to compare visual perception among species. Several studies have investigated whether non-human primates perceive visual illusions in a human-like fashion, but little attention has been paid to other mammals, and sensitivity to visual illusions has been never investigated in the dog. Here, we studied whether domestic dogs perceive the Delboeuf illusion. In human and non-human primates, this illusion creates a misperception of item size as a function of its surrounding context. To examine this effect in dogs, we adapted the spontaneous preference paradigm recently used with chimpanzees. Subjects were presented with two plates containing food. In control trials, two different amounts of food were presented in two identical plates. In this circumstance, dogs were expected to select the larger amount. In test trials, equal food portion sizes were presented in two plates differing in size: if dogs perceived the illusion as primates do, they were expected to select the amount of food presented in the smaller plate. Dogs significantly discriminated the two alternatives in control trials, whereas their performance did not differ from chance in test trials with the illusory pattern. The fact that dogs do not seem to be susceptible to the Delboeuf illusion suggests a potential discontinuity in the perceptual biases affecting size judgments between primates and dogs.

  15. Object representations in visual memory: evidence from visual illusions.

    Science.gov (United States)

    Ben-Shalom, Asaf; Ganel, Tzvi

    2012-07-26

    Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.

  16. What visual illusions teach us about schizophrenia

    Directory of Open Access Journals (Sweden)

    Charles-Edouard eNotredame

    2014-08-01

    Full Text Available Illusion, namely a mismatch between the objective and perceived properties of an object present in the environment, is a common feature of visual perception, both in normal and pathological conditions. This makes illusion a valuable tool with which to explore normal perception and its impairments. Although still debated, the hypothesis of a modified, and typically diminished, susceptibility to illusions in schizophrenia patients is supported by a growing number of studies. The current paper aimed to review how illusions have been used to explore and reveal the core features of visual perception in schizophrenia from a psychophysical, neurophysiological and functional point of view. We propose an integration of these findings into a common hierarchical Bayesian inference framework. The Bayesian formalism considers perception as the optimal combination between sensory evidence and prior knowledge, thereby highlighting the interweaving of perceptions and beliefs. Notably, it offers a holistic and convincing explanation for the perceptual changes observed in schizophrenia that might be ideally tested using illusory paradigms, as well as potential paths to explore neural mechanisms. Implications for psychopathology (in terms of positive symptoms, subjective experience or behavior disruptions are critically discussed.

  17. Strange-face-in-the-mirror illusion and schizotypy during adolescence.

    Science.gov (United States)

    Fonseca-Pedrero, Eduardo; Badoud, Deborah; Antico, Lia; Caputo, Giovanni B; Eliez, Stephan; Schwartz, Sophie; Debbané, Martin

    2015-03-01

    Patients with schizophrenia can sometimes report strange face illusions when staring at themselves in the mirror; such experiences have been conceptualized as anomalous self-experiences that can be experienced with a varying degree of depersonalization. During adolescence, anomalous self-experiences can also be indicative of increased risk to develop schizophrenia-spectrum disorders. To date however, the Mirror-Gazing test (MGT), an experimentally validated experiment to evaluate the propensity of strange face illusions in nonclinical and clinical adults, has yet to be investigated in an adolescent sample. The first goal of the present study was to examine experimentally induced self-face illusions in a nonclinical sample of adolescents, using the MGT. The second goal was to investigate whether dimensions of adolescent trait schizotypy were differentially related to phenomena arising during the MGT. One hundred and ten community adolescents (59 male) aged from 12 to 19 years (mean age = 16.31, SD age = 1.77) completed the MGT and Schizotypal Personality Questionnaire. The results yielded 4 types of strange face illusions; 2 types of illusions (slight change of light/color [20%] and own face deformation [45.5%]) lacked depersonalization-like phenomena (no identity change), while 2 other types (vision of other identity [27.3%], and vision of non-human identity [7.3%]) contained clear depersonalization-like phenomena. Furthermore, the disorganization dimension of schizotypy associated negatively with time of first illusion (first press), and positively with frequency of illusions during the MGT. Statistically significant differences on positive and disorganized schizotypy were found when comparing groups on the basis of degree of depersonalization-like phenomena (from slight color changes to non-human visions). Similarly to experimentally induced self-face illusions in patients with schizophrenia, such illusions in a group of nonclinical adolescents present

  18. Elevator Illusion and Gaze Direction in Hypergravity

    Science.gov (United States)

    Cohen, Malcolm M.; Hargens, Alan (Technical Monitor)

    1995-01-01

    A luminous visual target in a dark hypergravity (Gz greater than 1) environment appears to be elevated above its true physical position. This "elevator illusion" has been attributed to changes in oculomotor control caused by increased stimulation of the otolith organs. Data relating the magnitude of the illusion to the magnitude of the changes in oculomotor control have been lacking. The present study provides such data.

  19. The origins of entasis: illusion, aesthetics or engineering?

    Science.gov (United States)

    Thompson, Peter; Papadopoulou, Georgia; Vassiliou, Eleni

    2007-01-01

    A typical characteristic of columns in Doric temples is entasis; a slight convexity in the body of a column. Often, and particularly in guide-books, it is suggested that entasis is intended to compensate for an illusion of concavity in columns with truly straight sides. We have investigated whether any such visual illusion exists, both in parallel sided and in tapering columns in a series of experiments, finding little evidence to support any illusion-compensation theory. Further, we explored the possibility that entasis was employed for purely aesthetic reasons, but the results do not support this conclusion. Finally, evidence supporting an engineering role for entasis is presented.

  20. Functional cortical mapping of scale illusion

    International Nuclear Information System (INIS)

    Wang, Li-qun; Kuriki, Shinya

    2011-01-01

    We have studied cortical activation using 1.5 T fMRI during 'Scale Illusion', a kind of auditory illusion, in which subjects perceive smooth melodies while listening to dichotic irregular pitch sequences consisting of scale tones, in repeated phrases composed of eight tones. Four male and four female subjects listened to different stimuli, that including illusion-inducing tone sequence, monaural tone sequence and perceived pitch sequence with a control of white noises delivered to the right and left ears in random order. 32 scans with a repetition time (TR) 3 s Between 3 s interval for each type of the four stimuli were performed. In BOLD signals, activation was observed in the prefrontal and temporal cortices, parietal lobule and occipital areas by first-level group analysis. However, there existed large intersubject variability such that systematic tendency of the activation was not clear. The study will be continued to obtain larger number of subjects for group analysis. (author)

  1. The role of the Gestalt principle of similarity in the watercolor illusion.

    Science.gov (United States)

    Pinna, Baingio

    2005-01-01

    The watercolor illusion presents two main effects: a long-range assimilative color spreading (coloration effect), and properties imparting a strong figure status (figural effect) to a region delimited by a dark (e.g. purple) contour flanked by a lighter chromatic contour (e.g. orange). In four experiments, the strength of the watercolor illusion to determine figure-ground organization is directly compared (combined or pitted against) with the Gestalt principle of similarity both of color and line width. The results demonstrated that (i) the watercolor illusion and, particularly, its figural effect won over the classical Gestalt factors of similarity; (ii) the watercolor illusion cannot be due to the coloration effect as suggested by the similarity principle; (iii) coloration and figural effects may be independent in the watercolor illusion, and (iv) the watercolor illusion can be considered as a principle of figure-ground segregation on its own. Two parallel and independent processes as proposed within the FACADE model (Grossberg, 1994, 1997) are suggested to account for the two effects of coloration and figural enhancement in the watercolor illusion.

  2. Paradoxical perception of surfaces in the Shepard tabletop illusion

    Science.gov (United States)

    Tyler, Christopher W

    2011-01-01

    The Shepard tabletop illusion, consisting of different perspective embeddings of two identical parallelograms as tabletops, affords a profound difference in their perceived surface shapes. My analysis reveals three further paradoxical aspects of this illusion, in addition to its susceptibility to the ‘inverse perspective illusion’ of the implied orthographic perspective of the table images. These novel aspects of the illusion are: a paradoxical slant of the tabletops, a paradoxical lack of perceived depth, and a paradoxical distortion of the length of the rear legs. The construction of the illusion resembles scenes found in ancient Chinese scroll paintings, and an analysis of the source of the third effect shows that the interpretation in terms of surfaces can account for the difference in treatment of the filled-in versus open forms in the Chinese painting from more than 1000 years ago. PMID:23145230

  3. Can Visual Illusions Be Used to Facilitate Sport Skill Learning?

    Science.gov (United States)

    Cañal-Bruland, Rouwen; van der Meer, Yor; Moerman, Jelle

    2016-01-01

    Recently it has been reported that practicing putting with visual illusions that make the hole appear larger than it actually is leads to longer-lasting performance improvements. Interestingly, from a motor control and learning perspective, it may be possible to actually predict the opposite to occur, as facing a smaller appearing target should enforce performers to be more precise. To test this idea the authors invited participants to practice an aiming task (i.e., a marble-shooting task) with either a visual illusion that made the target appear larger or a visual illusion that made the target appear smaller. They applied a pre-post test design, included a control group training without any illusory effects and increased the amount of practice to 450 trials. In contrast to earlier reports, the results revealed that the group that trained with the visual illusion that made the target look smaller improved performance from pre- to posttest, whereas the group practicing with visual illusions that made the target appear larger did not show any improvements. Notably, also the control group improved from pre- to posttest. The authors conclude that more research is needed to improve our understanding of whether and how visual illusions may be useful training tools for sport skill learning.

  4. The Uniformity Illusion

    NARCIS (Netherlands)

    Otten, Marte; Pinto, Yair; Paffen, C.L.E.; Seth, Anil; Kanai, Ryota

    2017-01-01

    Vision in the fovea, the center of the visual field, is much more accurate and detailed than vision in the periphery. This is not in line with the rich phenomenology of peripheral vision. Here, we investigated a visual illusion that shows that detailed peripheral visual experience is partially based

  5. Causes of Fiscal Illusion: Lack of Information or Lack of Attention?

    DEFF Research Database (Denmark)

    Bækgaard, Martin; Serritzlew, Søren; Blom-Hansen, Jens

    2016-01-01

    the implications of fiscal illusions, whereas the question why fiscal illusions occur at all has received less attention. According to the standard argument, individuals base their opinion of policy proposals on a valuation of benefits and costs. We formalize the standard argument and show that it is a special......According to fiscal illusion theory, voters misperceive fiscal parameters because of incomplete information. The costs of public services are underestimated, implying that if voters had full information, their support for public services would drop. The literature has focused on testing...... case of the attention model of fiscal illusion. In this model, opinion depends on the saliency of attributes of the proposal. We show that the attention model can better explain fiscal illusion by deriving competing hypotheses, which are tested in a survey experiment. We conclude that the mechanism...

  6. Vibration-Induced Kinesthetic Illusions and Corticospinal Excitability Changes.

    Science.gov (United States)

    Mancheva, Kapka; Rollnik, Jens D; Wolf, Werner; Dengler, Reinhard; Kossev, Andon

    2017-01-01

    The authors' aim was to investigate the changes of corticospinal excitability during kinesthetic illusions induced by tendon vibration. Motor-evoked potentials in response to transcranial magnetic stimulation were recorded from the vibrated flexor carpi radialis and its antagonist, extensor carpi radialis. The illusions were evoked under vision conditions without feedback for the position of the wrist (open or closed eyes). In these two conditions motor-evoked potential changes during vibration in the antagonist were not identical. This discrepancy may be a result of 2 simultaneously acting, different and opposite influences and the balance between them depends on visual conditions. Thus, the illusion was accompanied by the facilitation of corticospinal excitability in both vibrated muscle and its antagonist.

  7. Millimeter wave radars raise weapon IQ

    Science.gov (United States)

    Lerner, E. J.

    1985-02-01

    The problems encountered by laser and IR homing devices for guided munitions may be tractable with warhead-mounted mm-wave radars. Operating at about 100 GHz and having several kilometers range, mm-wave radars see through darkness, fog, rain and smoke. The radar must be coupled with an analyzer that discerns moving and stationary targets and higher priority targets. The target lock-on can include shut-off of the transmitter and reception of naturally-generated mm-waves bouncing off the target when in the terminal phase of the flight. Monopulse transmitters have simplified the radar design, although mass production of finline small radar units has yet to be accomplished, particularly in combining GaAs, ferrites and other materials on one monolithic chip.

  8. Creating Virtual-hand and Virtual-face Illusions to Investigate Self-representation.

    Science.gov (United States)

    Ma, Ke; Lippelt, Dominique P; Hommel, Bernhard

    2017-03-01

    Studies investigating how people represent themselves and their own body often use variants of "ownership illusions", such as the traditional rubber-hand illusion or the more recently discovered enfacement illusion. However, these examples require rather artificial experimental setups, in which the artificial effector needs to be stroked in synchrony with the participants' real hand or face-a situation in which participants have no control over the stroking or the movements of their real or artificial effector. Here, we describe a technique to establish ownership illusions in a setup that is more realistic, more intuitive, and of presumably higher ecological validity. It allows creating the virtual-hand illusion by having participants control the movements of a virtual hand presented on a screen or in virtual space in front of them. If the virtual hand moves in synchrony with the participants' own real hand, they tend to perceive the virtual hand as part of their own body. The technique also creates the virtual-face illusion by having participants control the movements of a virtual face in front of them, again with the effect that they tend to perceive the face as their own if it moves in synchrony with their real face. Studying the circumstances that illusions of this sort can be created, increased, or reduced provides important information about how people create and maintain representations of themselves.

  9. Conjunction Illusions and Conjunction Fallacies in Episodic Memory

    Science.gov (United States)

    Brainerd, C. J.; Holliday, Robyn E.; Nakamura, Koyuki; Reyna, Valerie F.

    2014-01-01

    Recent research on the overdistribution principle implies that episodic memory is infected by conjunction illusions. These are instances in which an item that was presented in a single context (e.g., List 1) is falsely remembered as having been presented in multiple contexts (e.g., List 1 and List 2). Robust conjunction illusions were detected in…

  10. Alexithymia Modulates the Experience of the Rubber Hand Illusion

    Directory of Open Access Journals (Sweden)

    Delphine eGrynberg

    2015-06-01

    Full Text Available Alexithymia is associated with lower awareness of emotional and non-emotional internal bodily signals. However, evidence suggesting that alexithymia modulates body awareness at an external level is scarce. This study aimed to investigate whether alexithymia is associated with disrupted multisensory integration by using the rubber hand illusion task.Fifty healthy individuals completed the Toronto Alexithymia Scale and underwent the rubber hand illusion measure. In this measure, one watches a rubber hand being stroked synchronously or asynchronously with one’s own hand, which is hidden from view. Compared to the asynchronous stimulation, the synchronous stimulation results in the illusion that the rubber hand and the participant’s hand are closer together than they really are and that the rubber hand belongs to them. Results revealed that higher levels of alexithymia are associated with a lower ownership illusion. In conclusion, our findings demonstrate that high alexithymia scorers integrate two simultaneous sensory and proprioceptive events into a single experience (lower multisensory integration to a lesser extent than low alexithymia scorers. Higher susceptibility to the illusion in high alexithymia scorers may -indicate that alexithymia is associated with impaired multisensory integration and that this association results from an abnormal focus of one's own body.

  11. A Specific Autistic Trait that Modulates Visuospatial Illusion Susceptibility

    Science.gov (United States)

    Walter, Elizabeth; Dassonville, Paul; Bochsler, Tiana M.

    2009-01-01

    Although several accounts of autism have predicted that the disorder should be associated with a decreased susceptibility to visual illusions, previous experimental results have been mixed. This study examined whether a link between autism and illusion susceptibility can be more convincingly demonstrated by assessing the relationships between…

  12. Optical Illusions: A Presentation for High School Mathematics Students.

    Science.gov (United States)

    Brandes, Louis Grant

    1983-01-01

    Optical illusions are assumed to be of interest to high school mathematics students. The article indicates how a topic can be both educational and entertaining. Readers are invited to try to construct some illusions on their own, and to see if they can classify them. (MP)

  13. Putting pain out of mind with an 'out of body' illusion.

    Science.gov (United States)

    Pamment, J; Aspell, J E

    2017-02-01

    Chronic pain is a growing societal concern that warrants scientific investigation, especially given the ineffectiveness of many treatments. Given evidence that pain experience relies on multisensory integration, there is interest in using body ownership illusions for reducing acute pain. In the present study, we investigate whether patients' experience of chronic pain could be reduced by full body illusions (FBIs) that cause participants to dissociate from their own body. Participants with chronic pain (including sciatica, osteoarthritis, fibromyalgia, muscular pain, IBS and back pain) viewed their own 'virtual' bodies via a video camera and head-mounted display for two minutes. In the 'back-stroking FBI', their backs were stroked with a stick while they viewed synchronous or asynchronous stroking on the virtual body and in the 'front-stroking FBI', they were stroked near their collarbone while viewing the stick approach their field of view in a synchronous or asynchronous fashion. Illusion strength and pain intensity were measured with self-report questionnaires. We found that full body illusions were experienced by patients with chronic pain and further, that pain intensity was reduced by an average of 37% after illusion (synchronous) conditions. These findings add support to theories that high-level multisensory body representations can interact with homeostatic regulation and pain perception. Pain intensity in chronic pain patients was reduced by 37% by 'out of body' illusions. These data demonstrate the potential of such illusions for the management of chronic pain. © 2016 European Pain Federation - EFIC®.

  14. A study on some optical illusions based upon the theory of inducing field.

    Science.gov (United States)

    Ge, Sheng; Saito, Takashi; Wu, Jing-Long; Iramina, K

    2006-01-01

    The study of optical illusion is an important method to elucidate the mechanism of visual perception. However, many details about the cause of optical illusions are still unclear. In this research, based on the characteristic of the physiological structure of the retina, we proposed an on-center receptive field model of the retina. Using this model, we simulated the distributions of the inducing field of some visual stimulus. Comparing to the past studies' results, the validity of the proposed model was proofed. Furthermore, we simulated the distributions of the inducing field of some typical illusions. The simulation results can explain these illusion phenomenon rationally. Therefore, it suggested that some of illusions are probably engendered by the distributions of the inducing field in the retina which generated by the illusions stimuli. The practicality of the proposed model was also verified.

  15. Johann Joseph on Geometrical-Optical Illusions: A Translation and Commentary.

    Science.gov (United States)

    Wade, Nicholas J; Todorović, Dejan; Phillips, David; Lingelbach, Bernd

    2017-01-01

    The term geometrical-optical illusions was coined by Johann Joseph Oppel (1815-1894) in 1855 in order to distinguish spatial distortions of size and orientation from the broader illusions of the senses. We present a translation of Oppel's article and a commentary on the material described in it. Oppel did much more than give a name to a class of visual spatial distortions. He examined a variety of figures and phenomena that were precursors of later, named illusions, and attempted to quantify and interpret them.

  16. Superiority illusion arises from resting-state brain networks modulated by dopamine.

    Science.gov (United States)

    Yamada, Makiko; Uddin, Lucina Q; Takahashi, Hidehiko; Kimura, Yasuyuki; Takahata, Keisuke; Kousa, Ririko; Ikoma, Yoko; Eguchi, Yoko; Takano, Harumasa; Ito, Hiroshi; Higuchi, Makoto; Suhara, Tetsuya

    2013-03-12

    The majority of individuals evaluate themselves as superior to average. This is a cognitive bias known as the "superiority illusion." This illusion helps us to have hope for the future and is deep-rooted in the process of human evolution. In this study, we examined the default states of neural and molecular systems that generate this illusion, using resting-state functional MRI and PET. Resting-state functional connectivity between the frontal cortex and striatum regulated by inhibitory dopaminergic neurotransmission determines individual levels of the superiority illusion. Our findings help elucidate how this key aspect of the human mind is biologically determined, and identify potential molecular and neural targets for treatment for depressive realism.

  17. The Rubble Rescue Radar (RRR): A low power hand-held microwave device for the detection of trapped human personnel

    International Nuclear Information System (INIS)

    Haddad, W.S.

    1997-01-01

    Each year, innocent human lives are lost in collapsed structures as a result of both natural and man-made disasters. We have developed a prototype device, called the Rubble Rescue Radar (RRR) as a aid to workers trying to locate trapped victims in urban search and rescue operations. The RRR is a motion sensor incorporating Micropower Impulse Radar and is capable of detecting human breathing motions through reinforced concrete. It is lightweight, and designed to be handled by a single operator for local searches in areas where trapped victims are expected. Tests of the first prototype device were conducted on site at LLNL using a mock rubble pile consisting of a reinforced concrete pipe with two concrete floor slabs placed against one side, and random concrete and asphalt debris piled against the other. This arrangement provides safe and easy access for instruments and/or human subjects. Breathing signals of a human subject were recorded with the RRR through one floor slab plus the wall of the pipe, two slabs plus the wall of the pipe, and the random rubble plus the wall of the pipe. Breathing and heart beat signals were also recorded of a seated human subject at a distance of 1 meter with no obstructions. Results and photographs of the experimental work are presented, and a design concept for the next generation device is described

  18. The moving rubber hand illusion revisited: comparing movements and visuotactile stimulation to induce illusory ownership.

    Science.gov (United States)

    Kalckert, Andreas; Ehrsson, H Henrik

    2014-05-01

    The rubber hand illusion is a perceptual illusion in which a model hand is experienced as part of one's own body. In the present study we directly compared the classical illusion, based on visuotactile stimulation, with a rubber hand illusion based on active and passive movements. We examined the question of which combinations of sensory and motor cues are the most potent in inducing the illusion by subjective ratings and an objective measure (proprioceptive drift). In particular, we were interested in whether the combination of afferent and efferent signals in active movements results in the same illusion as in the purely passive modes. Our results show that the illusion is equally strong in all three cases. This demonstrates that different combinations of sensory input can lead to a very similar phenomenological experience and indicates that the illusion can be induced by any combination of multisensory information. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Understanding human perception by human-made illusions.

    Science.gov (United States)

    Carbon, Claus-Christian

    2014-01-01

    IT MAY BE FUN TO PERCEIVE ILLUSIONS, BUT THE UNDERSTANDING OF HOW THEY WORK IS EVEN MORE STIMULATING AND SUSTAINABLE: They can tell us where the limits and capacity of our perceptual apparatus are found-they can specify how the constraints of perception are set. Furthermore, they let us analyze the cognitive sub-processes underlying our perception. Illusions in a scientific context are not mainly created to reveal the failures of our perception or the dysfunctions of our apparatus, but instead point to the specific power of human perception. The main task of human perception is to amplify and strengthen sensory inputs to be able to perceive, orientate and act very quickly, specifically and efficiently. The present paper strengthens this line of argument, strongly put forth by perceptual pioneer Richard L. Gregory (e.g., Gregory, 2009), by discussing specific visual illusions and how they can help us to understand the magic of perception.

  20. Computer Generated Optical Illusions: A Teaching and Research Tool.

    Science.gov (United States)

    Bailey, Bruce; Harman, Wade

    Interactive computer-generated simulations that highlight psychological principles were investigated in this study in which 33 female and 19 male undergraduate college student volunteers of median age 21 matched line and circle sizes in six variations of Ponzo's illusion. Prior to working with the illusions, data were collected based on subjects'…

  1. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Phillip E

    2003-01-01

    The drive is on to devise LPI radar systems that evade hostile detection as well as develop non-cooperative intercept devices that outsmart enemy LPI radar. Based on the author's own design experience, this comprehensive, hands-on book gives you the latest design and development techniques to innovate new LPI radar systems and discover new ways to intercept enemy LPI radar. and help you visually identify waveform parameters. Filled with more than 500 equations that provide rigorous mathematical detail, this book can be used by both entry-level and seasoned engineers. Besides thoroughly treatin

  2. Illusion optics: Optically transforming the nature and the location of electromagnetic emissions

    Science.gov (United States)

    Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz; de Lustrac, André

    2015-02-01

    Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication of the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device.

  3. Illusion optics: Optically transforming the nature and the location of electromagnetic emissions

    International Nuclear Information System (INIS)

    Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz; Lustrac, André de

    2015-01-01

    Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication of the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device

  4. Comparison of FPS-16 radar/jimsphere and NASA's 50-MHz radar wind profiler turbulence indicators

    Science.gov (United States)

    Susko, Michael

    1993-01-01

    Measurements of the wind and turbulent regions from the surface to 16 km by the FPS-11 radar/jimsphere system are reported with particular attention given to the use of these turbulence and wind assessments to validate the NASA 50-MHz radar wind profiler. Wind profile statistics were compared at 150-m wavelengths, a wavelength validated from 20 jimspheres, simultaneously tracked by FPS-16 and FPQ-14 radar, and the resulting analysis of auto spectra, cross-spectra, and coherence squared spectra of the wind profiles. Results demonstrate that the NASA prototype wind profiler is an excellent monitoring device illustrating the measurements of the winds within 1/2 hour of launch zero.

  5. Creating standards: Creating illusions?

    DEFF Research Database (Denmark)

    Linneberg, Mai Skjøtt

    written standards may open up for the creation of illusions. These are created when written standards' content is not in accordance with the perception standard adopters and standard users have of the specific practice phenomenon's content. This general theoretical argument is exemplified by the specific...

  6. Positive Illusions in Adolescents: The Relationship between Academic Self-Enhancement and Depressive Symptomatology

    Science.gov (United States)

    Noble, Rick N.; Heath, Nancy L.; Toste, Jessica R.

    2011-01-01

    Positive illusions are systematically inflated self-perceptions of competence, and are frequently seen in areas of great difficulty. Although these illusions have been extensively documented in children and adults, their role in typical adolescent emotion regulation is unclear. This study investigated the relationship between positive illusions,…

  7. The role of haptic versus visual volume cues in the size-weight illusion.

    Science.gov (United States)

    Ellis, R R; Lederman, S J

    1993-03-01

    Three experiments establish the size-weight illusion as a primarily haptic phenomenon, despite its having been more traditionally considered an example of vision influencing haptic processing. Experiment 1 documents, across a broad range of stimulus weights and volumes, the existence of a purely haptic size-weight illusion, equal in strength to the traditional illusion. Experiment 2 demonstrates that haptic volume cues are both sufficient and necessary for a full-strength illusion. In contrast, visual volume cues are merely sufficient, and produce a relatively weaker effect. Experiment 3 establishes that congenitally blind subjects experience an effect as powerful as that of blindfolded sighted observers, thus demonstrating that visual imagery is also unnecessary for a robust size-weight illusion. The results are discussed in terms of their implications for both sensory and cognitive theories of the size-weight illusion. Applications of this work to a human factors design and to sensor-based systems for robotic manipulation are also briefly considered.

  8. Forward Association, Backward Association, and the False-Memory Illusion

    Science.gov (United States)

    Brainerd, C. J.; Wright, Ron

    2005-01-01

    In the Deese-Roediger-McDermott false-memory illusion, forward associative strength (FAS) is unrelated to the strength of the illusion; this is puzzling, because high-FAS lists ought to share more semantic features with critical unpresented words than should low-FAS lists. The authors show that this null result is probably a truncated range…

  9. Positive illusions about a partner's physical attractiveness and relationship quality

    NARCIS (Netherlands)

    Barelds, Dick P. H.; Dijkstra, Pieternel

    The present research examined the existence of positive illusions about a partner's physical attractiveness and its relations to relationship quality. Positive illusions were assumed to exist when individuals rated their partner as more attractive than their partner rated him or herself. In two

  10. Illusions of causality: how they bias our everyday thinking and how they could be reduced.

    Science.gov (United States)

    Matute, Helena; Blanco, Fernando; Yarritu, Ion; Díaz-Lago, Marcos; Vadillo, Miguel A; Barberia, Itxaso

    2015-01-01

    Illusions of causality occur when people develop the belief that there is a causal connection between two events that are actually unrelated. Such illusions have been proposed to underlie pseudoscience and superstitious thinking, sometimes leading to disastrous consequences in relation to critical life areas, such as health, finances, and wellbeing. Like optical illusions, they can occur for anyone under well-known conditions. Scientific thinking is the best possible safeguard against them, but it does not come intuitively and needs to be taught. Teaching how to think scientifically should benefit from better understanding of the illusion of causality. In this article, we review experiments that our group has conducted on the illusion of causality during the last 20 years. We discuss how research on the illusion of causality can contribute to the teaching of scientific thinking and how scientific thinking can reduce illusion.

  11. Analysis and explanation of the Thiéry-Wundt illusion.

    Science.gov (United States)

    Day, Ross H; Kimm, Andrew C

    2010-01-01

    The midpoint of the axis of bisection in a triangle appears to be displaced toward the apex so that the apical extent seems to be shorter than the basal extent, an effect originally reported in 1895 by Thiéry and later in 1898 by Wundt and, therefore, referred to here as the Thiéry-Wundt illusion. Following a demonstration strongly suggesting that the illusion is yet another version of the Müller-Lyer effect in a stimulus figure with inward-directed angles, four exploratory experiments designed to throw more light on this group of illusions are reported. The first showed that the effect occurs in an open angle, between converging lines that do not meet to form an apex, between converging stepped lines, and when one of the converging lines is removed, leaving a single oblique line. The other three experiments showed that the illusion also occurs in an open semicircle and a rectangular bracket, is weakened by the addition of a complete or partial baseline to form a triangle, and weakly but reliably when the angle is minimally formed from dots marking the ends of oblique lines. On the basis of these data, Judd's version of the conventional Müller-Lyer figure, and informal but easily repeatable observations, it is concluded that the Thiéry-Wundt illusion is, like other variants of the Müller-Lyer group of illusions, due to a process of directional biasing-an extension of the concept of biasing proposed originally by Morgan et al (1990, Vision Research 30 1793 1810).

  12. The rubber hand illusion increases heat pain threshold.

    Science.gov (United States)

    Hegedüs, G; Darnai, G; Szolcsányi, T; Feldmann, Á; Janszky, J; Kállai, J

    2014-09-01

    Accumulating evidence shows that manipulations of cortical body representation, for example, by simply viewing one's own body, can relieve pain in healthy subjects. Despite the widespread use of the rubber hand illusion (RHI) as an effective experimental tool for the manipulation of bodily awareness, previous studies examining the analgesic effect of the RHI have produced conflicting results. We used noxious heat stimuli to induce finger pain in 29 healthy subjects, and we recorded the participants' pain thresholds and subjective pain ratings during the RHI and during the control conditions. Two control conditions were included in our experiment - a standard one with reduced illusion strength (asynchronous stroking control) and an additional one in which the participants viewed their own hand. Raw data showed that both the RHI and the vision of the own hand resulted in slightly higher pain thresholds than the asynchronous stroking control (illusion: 47.79 °C; own-hand: 47.99 °C; asynchronous: 47.52 °C). After logarithmic transformation to achieve normality, paired t-tests revealed that both increases in pain threshold were significant (illusion/asynchronous: p = 0.036; own-hand/asynchronous: p = 0.007). In contrast, there was no significant difference in pain threshold between the illusion and the own-hand conditions (p = 0.656). Pain rating scores were not log-normal, and Wilcoxon singed-rank tests found no significant differences in pain ratings between the study conditions. The RHI increases heat pain threshold and the analgesic effect of the RHI is comparable with that of seeing one's own hand. The latter finding may have clinical implications. © 2014 European Pain Federation - EFIC®

  13. The self is an illusion: a conceptual framework for psychotherapy.

    Science.gov (United States)

    Stankevicius, Steve

    2017-06-01

    To explain the illusory nature of the self and explore its implications for psychotherapy. Our usual experience of the self is an illusion. Rather than a discrete entity, it is a network of processes that maintains apparent irreducible unity via alterations of perceptions, beliefs, intentions and memories. By providing an efficient summary of an individual and its surroundings, the self-illusion allows one to predict, experience and interact with the world efficiently. Targeting mechanisms that preserve the self-illusion could provide a focus for psychotherapy. Viewing the self as a complex network offers a valuable conceptual framework for psychotherapy.

  14. Simulating Visual Learning and Optical Illusions via a Network-Based Genetic Algorithm

    Science.gov (United States)

    Siu, Theodore; Vivar, Miguel; Shinbrot, Troy

    We present a neural network model that uses a genetic algorithm to identify spatial patterns. We show that the model both learns and reproduces common visual patterns and optical illusions. Surprisingly, we find that the illusions generated are a direct consequence of the network architecture used. We discuss the implications of our results and the insights that we gain on how humans fall for optical illusions

  15. The hollow-face illusion: object-specific knowledge, general assumptions or properties of the stimulus?

    Science.gov (United States)

    Hill, Harold; Johnston, Alan

    2007-01-01

    The hollow-face illusion, in which a mask appears as a convex face, is a powerful example of binocular depth inversion occurring with a real object under a wide range of viewing conditions. Explanations of the illusion are reviewed and six experiments reported. In experiment 1 the detrimental effect of figural inversion, evidence for the importance of familiarity, was found for other oriented objects. The inversion effect held for masks lit from the side (experiment 2). The illusion was stronger for a mask rotated by 90 degrees lit from its forehead than from its chin, suggesting that familiar patterns of shading enhance the illusion (experiment 2). There were no effects of light source visibility or any left/right asymmetry (experiment 3). In experiments 4-6 we used a 'virtual' hollow face, with illusion strength quantified by the proportion of noise texture needed to eliminate the illusion. Adding characteristic surface colour enhanced the illusion, consistent with the familiar face pigmentation outweighing additional bottom-up cues (experiment 4). There was no difference between perspective and orthographic projection. Photographic negation reduced, but did not eliminate, the illusion, suggesting shading is important but not essential (experiment 5). Absolute depth was not critical, although a shallower mask was given less extreme convexity ratings (experiment 6). We argue that the illusion arises owing to a convexity preference when the raw data have ambiguous interpretations. However, using a familiar object with typical orientation, shading, and pigmentation greatly enhances the effect.

  16. The Rubber Hand Illusion paradigm as a sensory learning process in patients with schizophrenia.

    Science.gov (United States)

    Lev-Ari, L; Hirschmann, S; Dyskin, O; Goldman, O; Hirschmann, I

    2015-10-01

    The Rubber Hand Illusion (RHI) has previously been used to depict the hierarchy between visual, tactile and perceptual stimuli. Studies on schizophrenia inpatients (SZs) have found mixed results in the ability to first learn the illusion, and have yet to explain the learning process involved. This study's aim was two-fold: to examine the learning process of the RHI in SZs and healthy controls over time, and to better understand the relationship between psychotic symptoms and the RHI. Thirty schizophrenia inpatients and 30 healthy controls underwent five different trials of the RHI over a two-week period. As has been found in previous studies, SZs felt the initial illusion faster than healthy controls did, but their learning process throughout the trials was inconsistent. Furthermore, for SZs, no correlations between psychotic symptoms and the learning of the illusion emerged. Healthy individuals show a delayed reaction to first feeling the illusion (due to latent inhibition), but easily learn the illusion over time. For SZs, both strength of the illusion and the ability to learn the illusion over time are inconsistent. The cognitive impairment in SZ impedes the learning process of the RHI, and SZs are unable to utilize the repetition of the process as healthy individuals can. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Action observation with kinesthetic illusion can produce human motor plasticity.

    Science.gov (United States)

    Nojima, Ippei; Koganemaru, Satoko; Kawamata, Toshio; Fukuyama, Hidenao; Mima, Tatsuya

    2015-06-01

    After watching sports, people often feel as if their sports skills might have been improved, even without any actual training. On some occasions, this motor skill learning through observation actually occurs. This phenomenon may be due to the fact that both action and action observation (AO) can activate shared cortical areas. However, the neural basis of performance gain through AO has not yet been fully clarified. In the present study, we used transcranial magnetic stimulation to investigate whether primary motor cortex (M1) plasticity is a physiological substrate of AO-induced performance gain and whether AO itself is sufficient to change motor performance. The excitability of M1, especially that of its intracortical excitatory circuit, was enhanced after and during AO with kinesthetic illusion but not in interventions without this illusion. Moreover, behavioral improvement occurred only after AO with kinesthetic illusion, and a significant correlation existed between the performance gain and the degree of illusion. Our findings indicated that kinesthetic illusion is an essential component of the motor learning and M1 plasticity induced by AO, and this insight may be useful for the strategic rehabilitation of stroke patients. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. An Adaptation-Induced Repulsion Illusion in Tactile Spatial Perception

    Directory of Open Access Journals (Sweden)

    Lux Li

    2017-06-01

    Full Text Available Following focal sensory adaptation, the perceived separation between visual stimuli that straddle the adapted region is often exaggerated. For instance, in the tilt aftereffect illusion, adaptation to tilted lines causes subsequently viewed lines with nearby orientations to be perceptually repelled from the adapted orientation. Repulsion illusions in the nonvisual senses have been less studied. Here, we investigated whether adaptation induces a repulsion illusion in tactile spatial perception. In a two-interval forced-choice task, participants compared the perceived separation between two point-stimuli applied on the forearms successively. Separation distance was constant on one arm (the reference and varied on the other arm (the comparison. In Experiment 1, we took three consecutive baseline measurements, verifying that in the absence of manipulation, participants’ distance perception was unbiased across arms and stable across experimental blocks. In Experiment 2, we vibrated a region of skin on the reference arm, verifying that this focally reduced tactile sensitivity, as indicated by elevated monofilament detection thresholds. In Experiment 3, we applied vibration between the two reference points in our distance perception protocol and discovered that this caused an illusory increase in the separation between the points. We conclude that focal adaptation induces a repulsion aftereffect illusion in tactile spatial perception. The illusion provides clues as to how the tactile system represents spatial information. The analogous repulsion aftereffects caused by adaptation in different stimulus domains and sensory systems may point to fundamentally similar strategies for dynamic sensory coding.

  19. Positive illusions about one's partner's physical attractiveness.

    Science.gov (United States)

    Barelds-Dijkstra, Pieternel; Barelds, Dick P H

    2008-03-01

    This study examined couples' ratings of self and partner physical attractiveness. On the basis of the theory of positive illusions, it was expected that individuals would rate their partners as more attractive than their partners would rate themselves. Both members of 93 heterosexual couples, with a mean relationship length of about 14 years, provided ratings of both their own and their partner's physical attractiveness. Results support the theory that individuals hold positive illusions about their partner's physical attractiveness. Implications of these results in terms of relationship-enhancing biases are discussed.

  20. Illusions of causality: How they bias our everyday thinking and how they could be reduced

    Directory of Open Access Journals (Sweden)

    Helena eMatute

    2015-07-01

    Full Text Available Illusions of causality occur when people develop the belief that there is a causal connection between two events that are actually unrelated. Such illusions have been proposed to underlie pseudoscience and superstitious thinking, sometimes leading to disastrous consequences in relation to critical life areas, such as health, finances, and wellbeing. Like optical illusions, they can occur for anyone under well-known conditions. Scientific thinking is the best possible safeguard against them, but it does not come intuitively and needs to be taught. Teaching how to think scientifically should benefit from better understanding of the illusion of causality. In this article, we review experiments that our group has conducted on the illusion of causality during the last 20 years. We discuss how research on the illusion of causality can contribute to the teaching of scientific thinking and how scientific thinking can reduce illusion.

  1. Illusions of causality: how they bias our everyday thinking and how they could be reduced

    Science.gov (United States)

    Matute, Helena; Blanco, Fernando; Yarritu, Ion; Díaz-Lago, Marcos; Vadillo, Miguel A.; Barberia, Itxaso

    2015-01-01

    Illusions of causality occur when people develop the belief that there is a causal connection between two events that are actually unrelated. Such illusions have been proposed to underlie pseudoscience and superstitious thinking, sometimes leading to disastrous consequences in relation to critical life areas, such as health, finances, and wellbeing. Like optical illusions, they can occur for anyone under well-known conditions. Scientific thinking is the best possible safeguard against them, but it does not come intuitively and needs to be taught. Teaching how to think scientifically should benefit from better understanding of the illusion of causality. In this article, we review experiments that our group has conducted on the illusion of causality during the last 20 years. We discuss how research on the illusion of causality can contribute to the teaching of scientific thinking and how scientific thinking can reduce illusion. PMID:26191014

  2. Simulación de sistemas radar FMCW basado en Software Defined Radio

    OpenAIRE

    Vidal Morera, Marc

    2016-01-01

    This project consists of the simulation of radar systems based on a Software Defined Radio architecture. The initiation of this project was born from the idea to introduce the Software Defined Radio (SDR) in the skeleton of a radar device. The SDR aims to achieve, in a single programmable device, what a radio tramsmitter and receiver do, meaning that most of their components are running in the digital domain. Within the architecture of a radar, it comes to replace the analog components to ...

  3. The multiple-faces configuration illusion in schizophrenic patients

    OpenAIRE

    Simas, Maria Lucia de Bustamante; Rocha, Christiane Delusia de Oliveira; Sedycias, Rafael Freitas Modesto; Amaral, Viviane Ferreira do; Menezes, Felipe Schuler de

    2008-01-01

    The Multiple-Faces Configuration Illusion is observed by staring at a black dot while paying attention to a face in the peripheral visual field (Simas, 2000). Changes of facial expressions, movements, depth (EMF) or different face identities (MF) are observed in this illusion. Forty participants took part in the study: 20 outpatients diagnosed with schizophrenia, and 20 people helping friends or relatives in a hospital clinic. The face-stimulus was placed in a partition stand and participants...

  4. English: Illusion vs. Reality.

    Science.gov (United States)

    Knappe, Shirley; Hall, Peggy

    This teaching guide covers a study of significant literary works that deal with man's capacity for illusion and self-deception in his quest for identification and fulfillment. The guide lists Performance Objectives, Course Content, Teaching Strategies, Learning Activities, Student Resources, and Teacher Resources. The subject matter range is (1)…

  5. Quadri-stability of a spatially ambiguous auditory illusion

    Directory of Open Access Journals (Sweden)

    Constance May Bainbridge

    2015-01-01

    Full Text Available In addition to vision, audition plays an important role in sound localization in our world. One way we estimate the motion of an auditory object moving towards or away from us is from changes in volume intensity. However, the human auditory system has unequally distributed spatial resolution, including difficulty distinguishing sounds in front versus behind the listener. Here, we introduce a novel quadri-stable illusion, the Transverse-and-Bounce Auditory Illusion, which combines front-back confusion with changes in volume levels of a nonspatial sound to create ambiguous percepts of an object approaching and withdrawing from the listener. The sound can be perceived as traveling transversely from front to back or back to front, or bouncing to remain exclusively in front of or behind the observer. Here we demonstrate how human listeners experience this illusory phenomenon by comparing ambiguous and unambiguous stimuli for each of the four possible motion percepts. When asked to rate their confidence in perceiving each sound’s motion, participants reported equal confidence for the illusory and unambiguous stimuli. Participants perceived all four illusory motion percepts, and could not distinguish the illusion from the unambiguous stimuli. These results show that this illusion is effectively quadri-stable. In a second experiment, the illusory stimulus was looped continuously in headphones while participants identified its perceived path of motion to test properties of perceptual switching, locking, and biases. Participants were biased towards perceiving transverse compared to bouncing paths, and they became perceptually locked into alternating between front-to-back and back-to-front percepts, perhaps reflecting how auditory objects commonly move in the real world. This multi-stable auditory illusion opens opportunities for studying the perceptual, cognitive, and neural representation of objects in motion, as well as exploring multimodal perceptual

  6. The snow tire illusion: Different levels of perceptual assimilation across a single stimulus configuration.

    Science.gov (United States)

    Gulan, Tanja; Valerjev, Pavle; Dujmović, Marin

    2018-02-12

    While observing a specific traffic sign in the field, we noticed an apparent distortion of size and shape of the circle that contained the sign. This novel illusion manifests as a distortion of the horizontal compared to the vertical dimension of the sign. The illusion seems to be underlined by similar mechanisms to those in the Delboeuf illusion. The aim of our study was to determine the existence and magnitude of the snow tire illusion. We conducted two experiments using the method of constant stimuli. The first experiment was conducted on the standard sign, while in the second, the stimuli were rotated 90° counterclockwise. Both experiments consisted of three conditions: the snow tire, the ellipse, and the simple circle (control) conditions. The data showed a robust illusion effect for both the standard and rotated sign compared to the control condition, with a large majority of participants experiencing the illusion. The snow tire illusion seems to be a combination of assimilation mechanisms of different magnitudes. The assimilation is larger for one dimension of the sign, thus producing the shape distortion. The illusion may be a manifestation of a thus far undocumented non-uniform effect of assimilation on perceived size and shape. © 2018 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  7. Parietal disruption alters audiovisual binding in the sound-induced flash illusion.

    Science.gov (United States)

    Kamke, Marc R; Vieth, Harrison E; Cottrell, David; Mattingley, Jason B

    2012-09-01

    Selective attention and multisensory integration are fundamental to perception, but little is known about whether, or under what circumstances, these processes interact to shape conscious awareness. Here, we used transcranial magnetic stimulation (TMS) to investigate the causal role of attention-related brain networks in multisensory integration between visual and auditory stimuli in the sound-induced flash illusion. The flash illusion is a widely studied multisensory phenomenon in which a single flash of light is falsely perceived as multiple flashes in the presence of irrelevant sounds. We investigated the hypothesis that extrastriate regions involved in selective attention, specifically within the right parietal cortex, exert an influence on the multisensory integrative processes that cause the flash illusion. We found that disruption of the right angular gyrus, but not of the adjacent supramarginal gyrus or of a sensory control site, enhanced participants' veridical perception of the multisensory events, thereby reducing their susceptibility to the illusion. Our findings suggest that the same parietal networks that normally act to enhance perception of attended events also play a role in the binding of auditory and visual stimuli in the sound-induced flash illusion. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The Application of Visual Illusion in the Visual Communication Design

    Science.gov (United States)

    Xin, Tao; You Ye, Han

    2018-03-01

    With the development of our national reform, opening up and modernization, the science and technology has also been well developed and it has been applied in every wall of life, the development of visual illusion industry is represented in the widespread use of advanced technology in it. Ultimately, the visual illusion is a phenomenon, it should be analyzed from the angles of physics and philosophy. The widespread application of visual illusion not only can improve the picture quality, but also could maximize peoples’ sense degree through the visual communication design works, expand people’s horizons and promote the diversity of visual communication design works.

  9. BETWEEN KNOWING AND BELIEVING: SALVAGING ILLUSION'S RIGHTFUL PLACE IN PSYCHOANALYSIS.

    Science.gov (United States)

    Tuch, Richard

    2016-01-01

    Illusion has historically received insufficient psychoanalytic attention, even though it plays an indispensable and adaptive role that helps protect individuals from becoming traumatized by the most psychically noxious aspects of reality. Trauma is mitigated by an individual's knowing about the existence of such realities yet simultaneously believing them non-existent, with neither position granted exclusivity. Psychoanalytic theory is surprisingly predicated on the employment of illusions that picture an individual capable of controlling the potentially traumatic actions of others, just so long as the individual effectively manages his own intrapsychic processes (wishes, fantasies, impulses, etc.). The role of illusion in everyday life is highlighted. © 2016 The Psychoanalytic Quarterly, Inc.

  10. Analyzing Double Image Illusion through Double Indiscernibility and Lattice Theory

    Directory of Open Access Journals (Sweden)

    Kohei Sonoda

    2011-10-01

    Full Text Available The figure-ground division plays a fundamental role in all image perceptions. Although there are a lot of studies about extraction of a figure such as detection of edges or grouping of texture, there are few discussions about a relationship between obtained figure and ground. We focused on double image illusions having two complementary relationships be- tween figure and ground and analyzed them. We divided the double image illusions according to two different interpretations and using these divisions we extracted and analyzed their logical structures by lattices derived from rough sets that we had developed. As a result we discovered unusual logical structures in double image illusions.

  11. The illusion of owning a third arm.

    Directory of Open Access Journals (Sweden)

    Arvid Guterstam

    Full Text Available Could it be possible that, in the not-so-distant future, we will be able to reshape the human body so as to have extra limbs? A third arm helping us out with the weekly shopping in the local grocery store, or an extra artificial limb assisting a paralysed person? Here we report a perceptual illusion in which a rubber right hand, placed beside the real hand in full view of the participant, is perceived as a supernumerary limb belonging to the participant's own body. This effect was supported by questionnaire data in conjunction with physiological evidence obtained from skin conductance responses when physically threatening either the rubber hand or the real one. In four well-controlled experiments, we demonstrate the minimal required conditions for the elicitation of this "supernumerary hand illusion". In the fifth, and final experiment, we show that the illusion reported here is qualitatively different from the traditional rubber hand illusion as it is characterised by less disownership of the real hand and a stronger feeling of having two right hands. These results suggest that the artificial hand 'borrows' some of the multisensory processes that represent the real hand, leading to duplication of touch and ownership of two right arms. This work represents a major advance because it challenges the traditional view of the gross morphology of the human body as a fundamental constraint on what we can come to experience as our physical self, by showing that the body representation can easily be updated to incorporate an additional limb.

  12. The Honeycomb illusion: Uniform textures not perceived as such

    Directory of Open Access Journals (Sweden)

    Marco Bertamini

    2016-07-01

    Full Text Available We present a series of patterns, in which texture is perceived differently at fixation in comparison to the periphery, such that a physically uniform stimulus yields a nonuniform percept. We call this the Honeycomb illusion, and we discuss it in relation to the similar Extinction illusion (Ninio & Stevens, 2000. The effect remains strong despite multiple fixations, dynamic changes, and manipulations of the size of texture elements. We discuss the phenomenon in relation to how vision achieves a detailed and stable representation of the environment despite changes in retinal spatial resolution and dramatic changes across saccades. The Honeycomb illusion complements previous related observations in suggesting that this representation is not necessarily based on multiple fixations (i.e., memory or on extrapolation from information available to central vision.

  13. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2014-01-01

    Full Text Available Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar interferences and, then, separately matched filtering for each radar. Besides the detailed algorithm derivation, extensive numerical simulation examples are performed with the down-chirp and up-chirp waveforms, partially overlapped or inverse chirp rate linearly frequency modulation (LFM waveforms and orthogonal frequency division multiplexing (ODFM chirp diverse waveforms. The effectiveness of the algorithm is verified by the simulation results.

  14. Pathological gamblers are more vulnerable to the illusion of control in a standard associative learning task

    Directory of Open Access Journals (Sweden)

    Cristina eOrgaz

    2013-06-01

    Full Text Available An illusion of control is said to occur when a person believes that he or she controls an outcome that is uncontrollable. Pathological gambling has often been related to an illusion of control, but the assessment of the illusion has generally used introspective methods in domain-specific (i.e., gambling situations. The illusion of control of pathological gamblers, however, could be a more general problem, affecting other aspects of their daily life. Thus, we tested them using a standard associative learning task which is known to produce illusions of control in most people under certain conditions. The results showed that the illusion was significantly stronger in pathological gamblers than in a control undiagnosed sample. This suggests (a that the experimental tasks used in basic associative learning research could be used to detect illusions of control in gamblers in a more indirect way, as compared to introspective and domain-specific questionnaires; and (b, that in addition to gambling-specific problems, pathological gamblers may have a higher-than-normal illusion of control in their daily life.

  15. Sleep dissolves illusion: sleep withstands learning of visuo-tactile-proprioceptive integration induced by repeated days of rubber hand illusion training.

    Directory of Open Access Journals (Sweden)

    Motoyasu Honma

    Full Text Available Multisensory integration is a key factor in establishing bodily self-consciousness and in adapting humans to novel environments. The rubber hand illusion paradigm, in which humans can immediately perceive illusory ownership to an artificial hand, is a traditional technique for investigating multisensory integration and the feeling of illusory ownership. However, the long-term learning properties of the rubber hand illusion have not been previously investigated. Moreover, although sleep contributes to various aspects of cognition, including learning and memory, its influence on illusory learning of the artificial hand has not yet been assessed. We determined the effects of daily repetitive training and sleep on learning visuo-tactile-proprioceptive sensory integration and illusory ownership in healthy adult participants by using the traditional rubber hand illusion paradigm. Subjective ownership of the rubber hand, proprioceptive drift, and galvanic skin response were measured to assess learning indexes. Subjective ownership was maintained and proprioceptive drift increased with daily training. Proprioceptive drift, but not subjective ownership, was significantly attenuated after sleep. A significantly greater reduction in galvanic skin response was observed after wakefulness compared to after sleep. Our results suggest that although repetitive rubber hand illusion training facilitates multisensory integration and physiological habituation of a multisensory incongruent environment, sleep corrects illusional integration and habituation based on experiences in a multisensory incongruent environment. These findings may increase our understanding of adaptive neural processes to novel environments, specifically, bodily self-consciousness and sleep-dependent neuroplasticity.

  16. Sleep dissolves illusion: sleep withstands learning of visuo-tactile-proprioceptive integration induced by repeated days of rubber hand illusion training.

    Science.gov (United States)

    Honma, Motoyasu; Yoshiike, Takuya; Ikeda, Hiroki; Kim, Yoshiharu; Kuriyama, Kenichi

    2014-01-01

    Multisensory integration is a key factor in establishing bodily self-consciousness and in adapting humans to novel environments. The rubber hand illusion paradigm, in which humans can immediately perceive illusory ownership to an artificial hand, is a traditional technique for investigating multisensory integration and the feeling of illusory ownership. However, the long-term learning properties of the rubber hand illusion have not been previously investigated. Moreover, although sleep contributes to various aspects of cognition, including learning and memory, its influence on illusory learning of the artificial hand has not yet been assessed. We determined the effects of daily repetitive training and sleep on learning visuo-tactile-proprioceptive sensory integration and illusory ownership in healthy adult participants by using the traditional rubber hand illusion paradigm. Subjective ownership of the rubber hand, proprioceptive drift, and galvanic skin response were measured to assess learning indexes. Subjective ownership was maintained and proprioceptive drift increased with daily training. Proprioceptive drift, but not subjective ownership, was significantly attenuated after sleep. A significantly greater reduction in galvanic skin response was observed after wakefulness compared to after sleep. Our results suggest that although repetitive rubber hand illusion training facilitates multisensory integration and physiological habituation of a multisensory incongruent environment, sleep corrects illusional integration and habituation based on experiences in a multisensory incongruent environment. These findings may increase our understanding of adaptive neural processes to novel environments, specifically, bodily self-consciousness and sleep-dependent neuroplasticity.

  17. Early and late beta-band power reflect audiovisual perception in the McGurk illusion.

    Science.gov (United States)

    Roa Romero, Yadira; Senkowski, Daniel; Keil, Julian

    2015-04-01

    The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13-30 Hz) at short (0-500 ms) and long (500-800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept. Copyright © 2015 the American Physiological Society.

  18. [Are positive illusions adaptive?: self- and other-rating].

    Science.gov (United States)

    Toyama, Miki

    2008-08-01

    The present study investigated the relationship between children's overly positive self-perceptions of their own social competence and mental health. Elementary school students (grades fourth to sixth, n=331) and their homeroom teachers (n=9) participated in the study. The positive illusion was measured by the difference between the self-rating and the other (homeroom teachers) -rating. And, the index of mental health was administered in both self-rating and other (homeroom teachers and same-sex classmates) -rating forms. Positive illusions about children's social competence were positively related to self-ratings of mental health. However, the present study also found detrimental effects of such positive illusions. Children with excessively positive views of their social competence were viewed by teachers and same-sex classmates as significantly more aggressive than those children who showed more evidence of self-devaluation. In addition, children with overly positive self-perceptions were not as accepted by same-sex classmates.

  19. Multisensory Integration in the Virtual Hand Illusion with Active Movement.

    Science.gov (United States)

    Choi, Woong; Li, Liang; Satoh, Satoru; Hachimura, Kozaburo

    2016-01-01

    Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality.

  20. Mishaps, errors, and cognitive experiences: On the conceptualization of perceptual illusions

    Directory of Open Access Journals (Sweden)

    Daniele eZavagno

    2015-04-01

    Full Text Available Although a visual illusion is often viewed as an amusing trick, for the vision scientist it is a question that demands an answer, which leads to even more questioning. All researchers hold their own chain of questions, the links of which depend on the very theory they adhere to. Perceptual theories are devoted to answering questions concerning sensation and perception, but in doing so they shape concepts such as reality and representation, which necessarily affect the concept of illusion. Here we consider the macroscopic aspects of such concepts in vision sciences from three classic viewpoints – Ecological, Cognitive, Gestalt approaches – as we see this a starting point to understand in which terms illusions can become a tool in the hand of the neuroscientist. In fact, illusions can be effective tools in studying the brain in reference to perception and also to cognition in a much broader sense. A theoretical debate is, however, mandatory, in particular with regards to concepts such as veridicality and representation. Whether a perceptual outcome is considered as veridical or illusory (and, consequently, whether a class of phenomena should be classified as perceptual illusions or not depends on the meaning of such concepts.

  1. La Grande Guerra fra realtà ed illusione: La Grande Illusion e l’immaginario

    Directory of Open Access Journals (Sweden)

    Simone Di Blasi

    2015-12-01

    Full Text Available The aim of this brief essay is to focus on the relation between the meaning of reality and illusion in the movie La Grande Illusion (1937 by Jean Renoir and therefore to find how these ideas of the author may be productive in a thought about the imaginary. After a short look on the movies made at that time on the First World War, there is an overview of the French director poetics, which redefines the conception of the realism, contextualizing its work at the point of convergence of two imaginary “technological lines”, the cinema and the aviation. It follows the analysis of the movie and the illusions, as social largely shared imaginaries, described by the author. In the end it is showed the importance and the of illusion in Renoir’s poetics. Beyond the relationship realityfiction, he thought a dynamic reciprocity among illusion and reality: so that the reality is as “illusion” (a ruled horizon in which it is possible to enjoy a world of play and the illusion as an activity creating contents of “reality”.

  2. Rubber hand illusion under delayed visual feedback.

    Directory of Open Access Journals (Sweden)

    Sotaro Shimada

    Full Text Available BACKGROUND: Rubber hand illusion (RHI is a subject's illusion of the self-ownership of a rubber hand that was touched synchronously with their own hand. Although previous studies have confirmed that this illusion disappears when the rubber hand was touched asynchronously with the subject's hand, the minimum temporal discrepancy of these two events for attenuation of RHI has not been examined. METHODOLOGY/PRINCIPAL FINDINGS: In this study, various temporal discrepancies between visual and tactile stimulations were introduced by using a visual feedback delay experimental setup, and RHI effects in each temporal discrepancy condition were systematically tested. The results showed that subjects felt significantly greater RHI effects with temporal discrepancies of less than 300 ms compared with longer temporal discrepancies. The RHI effects on reaching performance (proprioceptive drift showed similar conditional differences. CONCLUSIONS/SIGNIFICANCE: Our results first demonstrated that a temporal discrepancy of less than 300 ms between visual stimulation of the rubber hand and tactile stimulation to the subject's own hand is preferable to induce strong sensation of RHI. We suggest that the time window of less than 300 ms is critical for multi-sensory integration processes constituting the self-body image.

  3. Miniaturized Ka-Band Dual-Channel Radar

    Science.gov (United States)

    Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian

    2011-01-01

    Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.

  4. Complementarity in false memory illusions.

    Science.gov (United States)

    Brainerd, C J; Reyna, V F

    2018-03-01

    For some years, the DRM illusion has been the most widely studied form of false memory. The consensus theoretical interpretation is that the illusion is a reality reversal, in which certain new words (critical distractors) are remembered as though they are old list words rather than as what they are-new words that are similar to old ones. This reality-reversal interpretation is supported by compelling lines of evidence, but prior experiments are limited by the fact that their memory tests only asked whether test items were old. We removed that limitation by also asking whether test items were new-similar. This more comprehensive methodology revealed that list words and critical distractors are remembered quite differently. Memory for list words is compensatory: They are remembered as old at high rates and remembered as new-similar at very low rates. In contrast, memory for critical distractors is complementary: They are remembered as both old and new-similar at high rates, which means that the DRM procedure induces a complementarity illusion rather than a reality reversal. The conjoint recognition model explains complementarity as a function of three retrieval processes (semantic familiarity, target recollection, and context recollection), and it predicts that complementarity can be driven up or down by varying the mix of those processes. Our experiments generated data on that prediction and introduced a convenient statistic, the complementarity ratio, which measures (a) the level of complementarity in memory performance and (b) whether its direction is reality-consistent or reality-reversed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Combined induction of rubber-hand illusion and out-of-body experiences

    Directory of Open Access Journals (Sweden)

    Isadora eOlivé

    2012-05-01

    Full Text Available The emergence of self-consciousness depends on several processes: those of body ownership, attributing self-identity to the body, and those of self-location, localizing our sense of self. Studies of phenomena like the rubber hand illusion (RHi and out-of-body experience (OBE investigate these processes, respectively for representations of a body-part and the full-body. It is supposed that RHi only target processes related to body-part representations, while OBE only relates to full-body representations. The fundamental question whether the body-part and the full-body illusions relate to each other is nevertheless insufficiently investigated. In search for a link between body-part and full-body illusions in the brain we developed a behavioural task combining adapted versions of the RHi and OBE. Furthermore, for the investigation of this putative link we investigated the role of sensory and motor cues. We established a spatial dissociation between visual and proprioceptive feedback of a hand perceived through virtual reality in rest or action. Two experimental measures were introduced: one for the body-part illusion, the proprioceptive drift of the perceived localisation of the hand, and one for the full-body illusion, the shift in subjective-straight-ahead. In the rest and action conditions it was observed that the proprioceptive drift of the left hand and the shift in subjective-straight-ahead towards the manipulation side are equivalent. The combined effect was dependent on the manipulation of the visual representation of body-parts, rejecting any main or even modulatory role for relevant motor programs. Our study demonstrates for the first time that there is a systematic relationship between the body-part illusion and the full-body illusion, as shown by our measures. This suggests a link between the representations in the brain of a body-part and the full-body, and consequently a common mechanism underpinning both forms of ownership and self-location.

  6. Multisensory Integration in the Virtual Hand Illusion with Active Movement

    Directory of Open Access Journals (Sweden)

    Woong Choi

    2016-01-01

    Full Text Available Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality.

  7. Strange-face Illusions During Interpersonal-Gazing and Personality Differences of Spirituality.

    Science.gov (United States)

    Caputo, Giovanni B

    Strange-face illusions are produced when two individuals gaze at each other in the eyes in low illumination for more than a few minutes. Usually, the members of the dyad perceive numinous apparitions, like the other's face deformations and perception of a stranger or a monster in place of the other, and feel a short lasting dissociation. In the present experiment, the influence of the spirituality personality trait on strength and number of strange-face illusions was investigated. Thirty participants were preliminarily tested for superstition (Paranormal Belief Scale, PBS) and spirituality (Spiritual Transcendence Scale, STS); then, they were randomly assigned to 15 dyads. Dyads performed the intersubjective gazing task for 10 minutes and, finally, strange-face illusions (measured through the Strange-Face Questionnaire, SFQ) were evaluated. The first finding was that SFQ was independent of PBS; hence, strange-face illusions during intersubjective gazing are authentically perceptual, hallucination-like phenomena, and not due to superstition. The second finding was that SFQ depended on the spiritual-universality scale of STS (a belief in the unitive nature of life; e.g., "there is a higher plane of consciousness or spirituality that binds all people") and the two variables were negatively correlated. Thus, strange-face illusions, in particular monstrous apparitions, could potentially disrupt binding among human beings. Strange-face illusions can be considered as 'projections' of the subject's unconscious into the other's face. In conclusion, intersubjective gazing at low illumination can be a tool for conscious integration of unconscious 'shadows of the Self' in order to reach completeness of the Self. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Johann Joseph Oppel (1855) on Geometrical–Optical Illusions: A Translation and Commentary

    Science.gov (United States)

    Todorović, Dejan; Phillips, David; Lingelbach, Bernd

    2017-01-01

    The term geometrical–optical illusions was coined by Johann Joseph Oppel (1815–1894) in 1855 in order to distinguish spatial distortions of size and orientation from the broader illusions of the senses. We present a translation of Oppel’s article and a commentary on the material described in it. Oppel did much more than give a name to a class of visual spatial distortions. He examined a variety of figures and phenomena that were precursors of later, named illusions, and attempted to quantify and interpret them. PMID:28694957

  9. Introducing the White Noise task in childhood: associations between speech illusions and psychosis vulnerability.

    Science.gov (United States)

    Rimvall, M K; Clemmensen, L; Munkholm, A; Rask, C U; Larsen, J T; Skovgaard, A M; Simons, C J P; van Os, J; Jeppesen, P

    2016-10-01

    Auditory verbal hallucinations (AVH) are common during development and may arise due to dysregulation in top-down processing of sensory input. This study was designed to examine the frequency and correlates of speech illusions measured using the White Noise (WN) task in children from the general population. Associations between speech illusions and putative risk factors for psychotic disorder and negative affect were examined. A total of 1486 children aged 11-12 years of the Copenhagen Child Cohort 2000 were examined with the WN task. Psychotic experiences and negative affect were determined using the Kiddie-SADS-PL. Register data described family history of mental disorders. Exaggerated Theory of Mind functioning (hyper-ToM) was measured by the ToM Storybook Frederik. A total of 145 (10%) children experienced speech illusions (hearing speech in the absence of speech stimuli), of which 102 (70%) experienced illusions perceived by the child as positive or negative (affectively salient). Experiencing hallucinations during the last month was associated with affectively salient speech illusions in the WN task [general cognitive ability: adjusted odds ratio (aOR) 2.01, 95% confidence interval (CI) 1.03-3.93]. Negative affect, both last month and lifetime, was also associated with affectively salient speech illusions (aOR 2.01, 95% CI 1.05-3.83 and aOR 1.79, 95% CI 1.11-2.89, respectively). Speech illusions were not associated with delusions, hyper-ToM or family history of mental disorders. Speech illusions were elicited in typically developing children in a WN-test paradigm, and point to an affective pathway to AVH mediated by dysregulation in top-down processing of sensory input.

  10. Illusion induced overlapped optics.

    Science.gov (United States)

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.

  11. Optical Illusions: Why You Should NOT Trust Your Eyes

    Science.gov (United States)

    Hockberger, Phil; Hockberger, Philip

    2013-01-01

    Digital image processing utilizes computer-aided enhancement to turn subjective features of an image into data that can be measured, quantified and evaluated. The first step in this process is deciding what features are of interest and tractable. This presentation will address how optical illusions distort and fabricate features due to fundamental properties of human visual perception. Examples of common illusions generated by microscope-based imaging systems will be described as well as ways in which to avoid or account for them.

  12. Body ownership and the four-hand illusion.

    Science.gov (United States)

    Chen, Wen-Yeo; Huang, Hsu-Chia; Lee, Yen-Tung; Liang, Caleb

    2018-02-01

    Recent studies of the rubber hand illusion (RHI) have shown that the sense of body ownership is constrained by several factors and yet is still very flexible. However, exactly how flexible is our sense of body ownership? In this study, we address this issue by investigating the following question: is it possible that one may have the illusory experience of owning four hands? Under visual manipulation, the participant adopted the experimenter's first-person perspective (1PP) as if it was his/her own. Sitting face to face, the participant saw four hands-the experimenter's two hands from the adopted 1PP together with the subject's own two hands from the adopted third-person perspective (3PP). We found that: (1) the four-hand illusion did not occur in the passive four-hand condition. (2) In the active four-hand condition, the participants tapped their index fingers, imitated by the experimenter. When tactile stimulations were not provided, the key illusion was not induced, either. (3) Strikingly, once all four hands began to act with the same pattern and received synchronous tactile stimulations at the same time, many participants felt as if they had two more hands. These results show that the sense of body ownership is much more flexible than most researchers have suggested.

  13. Corporeal illusions in chronic spinal cord injuries.

    Science.gov (United States)

    Scandola, Michele; Aglioti, Salvatore Maria; Avesani, Renato; Bertagnoni, Gianettore; Marangoni, Anna; Moro, Valentina

    2017-03-01

    While several studies have investigated corporeal illusions in patients who have suffered from a stroke or undergone an amputation, only anecdotal or single case reports have explored this phenomenon after spinal cord injury. Here we examine various different types of bodily misperceptions in a comparatively large group of 49 people with spinal cord injury in the post-acute and chronic phases after the traumatic lesion onset. An extensive battery of questionnaires concerning a variety of body related feelings was administered and the results were correlated to the main clinical variables. Six different typologies of Corporeal Illusion emerged: Sensations of Body Loss; Body-Part Misperceptions; Somatoparaphrenia-like sensations; Disownership-like sensations; Illusory motion and Misoplegia. All of these (with the exception of Misoplegia) are modulated by clinical variables such as pain (visceral, neuropathic and musculoskeletal), completeness of the lesion, level of the lesion and the length of time since lesion onset. In contrast, no significant correlations between bodily illusions and personality variables were found. These results support data indicating that at least some cognitive functions (in particular the body, action and space representations) are embodied and that somatosensory input and motor output may be necessary to build and maintain a typical self-body representation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Illusion as a Basic Psychic Principle: Winnicott, Freud, Oedipus, and Trump.

    Science.gov (United States)

    Seligman, Stephen

    2018-04-01

    Illusion can be viewed as a creative engagement with the world, and as a central psychic motivation and capacity, rather than as a form of self-deception. Winnicott and other Middle Group writers have understood integrative, imaginative illusion as an essential part of healthy living and psychosocial development. As such, it emerges and presents itself in a variety of ways, in transaction with the realities that support or degrade it. In its absence, varied difficulties in living ensue. To elaborate and illustrate this conceptualization, Freud's notion that the oedipus complex is resolved is reconsidered as a creative misreading of Sophocles' Oedipus trilogy, one based on the plausible illusion of a civilizing psychosocial development that would serve as a protective bastion against his experience of the political chaos and violence of the first decades of twentieth-century European history. Finally, the place of illusion and disillusionment among those most disillusioned by the recent election of Donald Trump in the United States is considered in relation to the recent right-wing populist turn.

  15. Removal of proprioception by BCI raises a stronger body ownership illusion in control of a humanlike robot.

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-09-22

    Body ownership illusions provide evidence that our sense of self is not coherent and can be extended to non-body objects. Studying about these illusions gives us practical tools to understand the brain mechanisms that underlie body recognition and the experience of self. We previously introduced an illusion of body ownership transfer (BOT) for operators of a very humanlike robot. This sensation of owning the robot's body was confirmed when operators controlled the robot either by performing the desired motion with their body (motion-control) or by employing a brain-computer interface (BCI) that translated motor imagery commands to robot movement (BCI-control). The interesting observation during BCI-control was that the illusion could be induced even with a noticeable delay in the BCI system. Temporal discrepancy has always shown critical weakening effects on body ownership illusions. However the delay-robustness of BOT during BCI-control raised a question about the interaction between the proprioceptive inputs and delayed visual feedback in agency-driven illusions. In this work, we compared the intensity of BOT illusion for operators in two conditions; motion-control and BCI-control. Our results revealed a significantly stronger BOT illusion for the case of BCI-control. This finding highlights BCI's potential in inducing stronger agency-driven illusions by building a direct communication between the brain and controlled body, and therefore removing awareness from the subject's own body.

  16. The Wundt-Jastrow illusion in the study of spatial hemi-inattention.

    Science.gov (United States)

    Massironi, M; Antonucci, G; Pizzamiglio, L; Vitale, M V; Zoccolotti, P

    1988-01-01

    A new test to detect unilateral neglect was devised using a modified version of the Wundt-Jastrow area illusion. The test was given to three groups of subjects: left brain damaged (LBD), right brain damaged (RBD) patients and controls. Of RBD patients, 40.4% but no LBD patient or control, showed responses inconsistent with the visual illusion when the determinant features of the illusion pointed to the left visual field. These unexpected responses were highly related to a clinical evaluation of the severity of the hemi-inattention disorder. The sensitivity of this test and of other standard measures of hemi-neglect were compared. The possibility of identifying qualitatively different forms of hemi-neglect was also discussed.

  17. The illusion of parental celibacy. A necessary stage in adolescent development.

    Science.gov (United States)

    Shopper, Moisy

    2002-01-01

    The paper begins by reviewing Freud's case history of Dora and emphasizing her involvement in and overstimulation by her parents' sexual behavior. This markedly interfered with her ability to desexualize her relationship with them. As a result she was unable to develop the illusion of parental celibacy, which I postulate is an important and necessary defensive stage in normal adolescence. This illusion facilitates the desexualization of the adolescent's relationship to the parents and so contributes to separation from them and the seeking of non-incestuous sexual outlets. The disruption of this illusion of parental celibacy by parental sex education, or by the complications of parental divorce may contribute significantly to the development of adolescent psychopathology. Clinical vignettes are presented.

  18. Second-Order Footsteps Illusions

    Directory of Open Access Journals (Sweden)

    Akiyoshi Kitaoka

    2015-12-01

    Full Text Available In the “footsteps illusion”, light and dark squares travel at constant speed across black and white stripes. The squares appear to move faster and slower as their contrast against the stripes varies. We now demonstrate some second-order footsteps illusions, in which all edges are defined by colors or textures—even though luminance-based neural motion detectors are blind to such edges.

  19. Approaching Stan Laurel's illusion: the self-induced rubber hand phenomenon.

    Science.gov (United States)

    Neuf, Hartmut; Hamburger, Kai

    2013-01-01

    The classical rubber hand illusion is induced by an experimenter (eg stimulation with a brush) and usually realized with some sort of visual occlusion. Here, we demonstrate a new phenomenon: the self-induced rubber hand illusion. It is possible to elicit the feeling of a third hand without any help from an experimenter and under conditions of no occlusion. The findings are discussed within the context of neural plasticity.

  20. Does affective touch influence the virtual reality full body illusion?

    Science.gov (United States)

    de Jong, Jutta R; Keizer, Anouk; Engel, Manja M; Dijkerman, H Chris

    2017-06-01

    The sense of how we experience our physical body as our own represents a fundamental component of human self-awareness. Body ownership can be studied with bodily illusions which are generated by inducing a visuo-tactile conflict where individuals experience illusionary ownership over a fake body or body part, such as a rubber hand. Previous studies showed that different types of touch modulate the strength of experienced ownership over a rubber hand. Specifically, participants experienced more ownership after the rubber hand illusion was induced through affective touch vs non-affective touch. It is, however, unclear whether this effect would also occur for an entire fake body. The aim of this study was, therefore, to investigate whether affective touch modulates the strength of ownership in a virtual reality full body illusion. To elicit this illusion, we used slow (3 cm/s; affective touch) and fast (30 cm/s; non-affective touch) stroking velocities on the participants' abdomen. Both stroking velocities were performed either synchronous or asynchronous (control condition), while participants viewed a virtual body from a first-person-perspective. In our first study, we found that participants experienced more subjective ownership over a virtual body in the affective touch condition, compared to the non-affective touch condition. In our second study, we found higher levels of subjective ownership for synchronous stimulation, compared to asynchronous, for both touch conditions, but failed to replicate the findings from study 1 that show a difference between affective and non-affective touch. We, therefore, cannot conclude unequivocally that affective touch enhances the full-body illusion. Future research is required to study the effects of affective touch on body ownership.

  1. Assessing collision risk for birds and bats : radar survey

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, R. [Genivar SEC, Sherbrooke, PQ (Canada)

    2010-07-01

    This PowerPoint presentation described some of the inventories and instrumentation available for monitoring winged fauna in and around wind farms. In addition to visual observations, bird calls and songs can be recorded to determine the amount and different types of birds located at wind farm sites. Radio-telemetry devices are also used to evaluate bird activities, and nest searches are conducted to determine the amount of eggs or young birds that will soon add to the bird population. Between 90 and 100 percent of birds and bats migrate at night. Acoustic radar, Doppler radar, and maritime surveillance radar instruments are used to monitor night-time activities in wind farm locations. Doppler radar is also used to detect bird and bat migration corridors. Screen-shots of various radar interfaces were presented. tabs., figs.

  2. Touching my left elbow: the anatomical structure of the body affects the illusion of self-touch.

    Science.gov (United States)

    White, Rebekah C; Aimola Davies, Anne M

    2011-01-01

    A self-touch paradigm is used to create the illusion that one is touching one's own left elbow when one is actually touching the examiner's arm. Our new self-touch illusion is sensitive to the anatomical structure of the body: you can touch your left elbow with your right index finger but not with your left index finger. Illusion onset was faster and illusion ratings were higher when participants administered touch using the plausible right index finger compared with the implausible left index finger.

  3. White noise speech illusion and psychosis expression: An experimental investigation of psychosis liability.

    Science.gov (United States)

    Pries, Lotta-Katrin; Guloksuz, Sinan; Menne-Lothmann, Claudia; Decoster, Jeroen; van Winkel, Ruud; Collip, Dina; Delespaul, Philippe; De Hert, Marc; Derom, Catherine; Thiery, Evert; Jacobs, Nele; Wichers, Marieke; Simons, Claudia J P; Rutten, Bart P F; van Os, Jim

    2017-01-01

    An association between white noise speech illusion and psychotic symptoms has been reported in patients and their relatives. This supports the theory that bottom-up and top-down perceptual processes are involved in the mechanisms underlying perceptual abnormalities. However, findings in nonclinical populations have been conflicting. The aim of this study was to examine the association between white noise speech illusion and subclinical expression of psychotic symptoms in a nonclinical sample. Findings were compared to previous results to investigate potential methodology dependent differences. In a general population adolescent and young adult twin sample (n = 704), the association between white noise speech illusion and subclinical psychotic experiences, using the Structured Interview for Schizotypy-Revised (SIS-R) and the Community Assessment of Psychic Experiences (CAPE), was analyzed using multilevel logistic regression analyses. Perception of any white noise speech illusion was not associated with either positive or negative schizotypy in the general population twin sample, using the method by Galdos et al. (2011) (positive: ORadjusted: 0.82, 95% CI: 0.6-1.12, p = 0.217; negative: ORadjusted: 0.75, 95% CI: 0.56-1.02, p = 0.065) and the method by Catalan et al. (2014) (positive: ORadjusted: 1.11, 95% CI: 0.79-1.57, p = 0.557). No association was found between CAPE scores and speech illusion (ORadjusted: 1.25, 95% CI: 0.88-1.79, p = 0.220). For the Catalan et al. (2014) but not the Galdos et al. (2011) method, a negative association was apparent between positive schizotypy and speech illusion with positive or negative affective valence (ORadjusted: 0.44, 95% CI: 0.24-0.81, p = 0.008). Contrary to findings in clinical populations, white noise speech illusion may not be associated with psychosis proneness in nonclinical populations.

  4. The Müller-Lyer Illusion in a computational model of biological object recognition.

    Directory of Open Access Journals (Sweden)

    Astrid Zeman

    Full Text Available Studying illusions provides insight into the way the brain processes information. The Müller-Lyer Illusion (MLI is a classical geometrical illusion of size, in which perceived line length is decreased by arrowheads and increased by arrowtails. Many theories have been put forward to explain the MLI, such as misapplied size constancy scaling, the statistics of image-source relationships and the filtering properties of signal processing in primary visual areas. Artificial models of the ventral visual processing stream allow us to isolate factors hypothesised to cause the illusion and test how these affect classification performance. We trained a feed-forward feature hierarchical model, HMAX, to perform a dual category line length judgment task (short versus long with over 90% accuracy. We then tested the system in its ability to judge relative line lengths for images in a control set versus images that induce the MLI in humans. Results from the computational model show an overall illusory effect similar to that experienced by human subjects. No natural images were used for training, implying that misapplied size constancy and image-source statistics are not necessary factors for generating the illusion. A post-hoc analysis of response weights within a representative trained network ruled out the possibility that the illusion is caused by a reliance on information at low spatial frequencies. Our results suggest that the MLI can be produced using only feed-forward, neurophysiological connections.

  5. Perception of contextual size illusions by honeybees in restricted and unrestricted viewing conditions.

    Science.gov (United States)

    Howard, Scarlett R; Avarguès-Weber, Aurore; Garcia, Jair E; Stuart-Fox, Devi; Dyer, Adrian G

    2017-11-29

    How different visual systems process images and make perceptual errors can inform us about cognitive and visual processes. One of the strongest geometric errors in perception is a misperception of size depending on the size of surrounding objects, known as the Ebbinghaus or Titchener illusion. The ability to perceive the Ebbinghaus illusion appears to vary dramatically among vertebrate species, and even populations, but this may depend on whether the viewing distance is restricted. We tested whether honeybees perceive contextual size illusions, and whether errors in perception of size differed under restricted and unrestricted viewing conditions. When the viewing distance was unrestricted, there was an effect of context on size perception and thus, similar to humans, honeybees perceived contrast size illusions. However, when the viewing distance was restricted, bees were able to judge absolute size accurately and did not succumb to visual illusions, despite differing contextual information. Our results show that accurate size perception depends on viewing conditions, and thus may explain the wide variation in previously reported findings across species. These results provide insight into the evolution of visual mechanisms across vertebrate and invertebrate taxa, and suggest convergent evolution of a visual processing solution. © 2017 The Author(s).

  6. Illusion of control: the role of personal involvement.

    Science.gov (United States)

    Yarritu, Ion; Matute, Helena; Vadillo, Miguel A

    2014-01-01

    The illusion of control consists of overestimating the influence that our behavior exerts over uncontrollable outcomes. Available evidence suggests that an important factor in development of this illusion is the personal involvement of participants who are trying to obtain the outcome. The dominant view assumes that this is due to social motivations and self-esteem protection. We propose that this may be due to a bias in contingency detection which occurs when the probability of the action (i.e., of the potential cause) is high. Indeed, personal involvement might have been often confounded with the probability of acting, as participants who are more involved tend to act more frequently than those for whom the outcome is irrelevant and therefore become mere observers. We tested these two variables separately. In two experiments, the outcome was always uncontrollable and we used a yoked design in which the participants of one condition were actively involved in obtaining it and the participants in the other condition observed the adventitious cause-effect pairs. The results support the latter approach: Those acting more often to obtain the outcome developed stronger illusions, and so did their yoked counterparts.

  7. Enhancing performance expectancies through visual illusions facilitates motor learning in children.

    Science.gov (United States)

    Bahmani, Moslem; Wulf, Gabriele; Ghadiri, Farhad; Karimi, Saeed; Lewthwaite, Rebecca

    2017-10-01

    In a recent study by Chauvel, Wulf, and Maquestiaux (2015), golf putting performance was found to be affected by the Ebbinghaus illusion. Specifically, adult participants demonstrated more effective learning when they practiced with a hole that was surrounded by small circles, making it look larger, than when the hole was surrounded by large circles, making it look smaller. The present study examined whether this learning advantage would generalize to children who are assumed to be less sensitive to the visual illusion. Two groups of 10-year olds practiced putting golf balls from a distance of 2m, with perceived larger or smaller holes resulting from the visual illusion. Self-efficacy was increased in the group with the perceived larger hole. The latter group also demonstrated more accurate putting performance during practice. Importantly, learning (i.e., delayed retention performance without the illusion) was enhanced in the group that practiced with the perceived larger hole. The findings replicate previous results with adult learners and are in line with the notion that enhanced performance expectancies are key to optimal motor learning (Wulf & Lewthwaite, 2016). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Light Refraction by Water as a Rationale for the Poggendorff Illusion.

    Science.gov (United States)

    Bozhevolnyi, Sergey I

    2016-08-24

    The Poggendorff illusion in its classical form of parallel lines interrupting a transversal is viewed from the perspective of being related to the everyday experience of observing the light refraction in water. It is argued that if one considers a transversal to be a light ray in air and the parallel lines to form an occluding strip of a medium with the refractive index being between that of air and water, then one should be able to account, both qualitatively and quantitatively, for most of the features associated with the Poggendorff illusion. Statistical treatment of the visual experiments conducted with seven participants, each analyzing 50 configurations having different intercepting angles and strip widths, resulted in the effective refractive index of the occluding strip N = 1.13 ± 0.15, which is sufficiently close to the average (between that of water and air) refractive index of ∼1.17. It is further argued that the same mechanism can also be employed to account for many variants of the Poggendorff illusion, including the corner-Poggendorff pattern, as well as for the Hering illusion. © The Author(s) 2016.

  9. Robust brightness enhancement across a luminance range of the glare illusion.

    Science.gov (United States)

    Tamura, Hideki; Nakauchi, Shigeki; Koida, Kowa

    2016-01-01

    The glare illusion refers to brightness enhancement and the perception of a self-luminous appearance that occurs when a central region is surrounded by a luminance gradient. The center region appears to be a light source, with its light dispersing into the surrounding region. If the luminous edge is critical for generating the illusion, modulating the perceived luminance of the image, and switching its appearance from luminous to nonluminous, would have a strong impact on lightness and brightness estimation. Here, we quantified the illusion in two ways, by assessing brightness enhancement and examining whether the center region appeared luminous. Thus, we could determine whether the two effects occurred jointly or independently. We examined a wide luminance range of center regions, from 0 to 200% relative to background. Brightness enhancement in the illusion was observed for a wide range of luminances (20% to 200% relative to background), while a luminous-white appearance was observed when the center region luminance was 145% of the background. These results exclude the possibility that brightness enhancement occurs because the stimuli appear self-luminous. We suggest that restoring the original image intensity precedes the perceptual process of lightness estimation.

  10. Individual differences in the rubber-hand illusion: predicting self-reports of people's personal experiences.

    Science.gov (United States)

    Haans, Antal; Kaiser, Florian G; Bouwhuis, Don G; Ijsselsteijn, Wijnand A

    2012-10-01

    Can we assess individual differences in the extent to which a person perceives the rubber-hand illusion on the basis of self-reported experiences? In this research, we develop such an instrument using Rasch-type models. In our conception, incorporating an object (e.g., a rubber hand) into one's body image requires various sensorimotor and cognitive processes. The extent to which people can meet these requirements thus determines how intensely people experience and, simultaneously, describe the illusion. As a consequence, individual differences in people's susceptibility to the rubber-hand illusion can be determined by inspecting reports of their personal experiences. The proposed model turned out to be functional in its capability to predict self-reports of people's experiences and to reliably assess individual differences in susceptibility to the illusion. Regarding validity, we found a small, but significant, correlation between individual susceptibility and proprioceptive drift. Additionally, we found that asynchrony, and tapping rather than stroking the fingers constrain the experience of the illusion. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    Science.gov (United States)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  12. Modern Radar Techniques for Geophysical Applications: Two Examples

    Science.gov (United States)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  13. Tuning and disrupting the brain – modulating the McGurk illusion with electrical stimulation

    Directory of Open Access Journals (Sweden)

    Lucas M Marques

    2014-08-01

    Full Text Available In the so-called McGurk illusion, when the synchronized presentation of the visual stimulus /ga/ is paired with the auditory stimulus /ba/, people in general hear it as /da/. Multisensory integration processing underlying this illusion seems to occur within the Superior Temporal Sulcus (STS. Herein, we present evidence demonstrating that bilateral cathodal transcranial direct current stimulation (tDCS of this area can decrease the McGurk illusion-type responses. Additionally, we show that the manipulation of this audio-visual integrated output occurs irrespective of the number of eye-fixations on the mouth of the speaker. Bilateral anodal tDCS of the Parietal Cortex also modulates the illusion, but in the opposite manner, inducing more illusion-type responses. This is the first demonstration of using non-invasive brain stimulation to modulate multisensory speech perception in an illusory context (i.e., both increasing and decreasing illusion-type responses to a verbal audio-visual integration task. These findings provide clear evidence that both the superior temporal and parietal areas contribute to multisensory integration processing related to speech perception. Specifically, STS seems fundamental for the temporal synchronization and integration of auditory and visual inputs. For its part, PPC may adjust the arrival of incoming audio and visual information to STS thereby enhancing their interaction in this latter area.

  14. Dissociation of color and figure-ground effects in the watercolor illusion.

    Science.gov (United States)

    Von der Heydt, Rüdiger; Pierson, Rachel

    2006-01-01

    Two phenomena can be observed in the watercolor illusion: illusory color spreading and figure-ground organization. We performed experiments to determine whether the figure-ground effect is a consequence of the color illusion or due to an independent mechanism. Subjects were tested with displays consisting of six adjacent compartments--three that generated the illusion alternating with three that served for comparison. In a first set of experiments, the illusory color was measured by finding the matching physical color in the alternate compartments. Figureness (probability of 'figure' responses, 2AFC) of the watercolor compartments was then determined with and without the matching color in the alternate compartments. The color match reduced figureness, but did not abolish it. There was a range of colors in which the watercolor compartments dominated as figures over the alternate compartments although the latter appeared more saturated in color. In another experiment, the effect of tinting alternate compartments was measured in displays without watercolor illusion. Figureness increased with color contrast, but its value at the equivalent contrast fell short of the figureness value obtained for the watercolor pattern. Thus, in both experiments, figureness produced by the watercolor pattern was stronger than expected from the color effect, suggesting independent mechanisms. Considering the neurophysiology, we propose that the color illusion follows from the principles of representation of surface color in the visual cortex, while the figure-ground effect results from two mechanisms of border ownership assignment, one that is sensitive to asymmetric shape of edge profile, the other to consistency of color borders.

  15. Asymmetric effects of luminance and chrominance in the watercolor illusion

    Directory of Open Access Journals (Sweden)

    Andrew eCoia

    2014-09-01

    Full Text Available When bounded by a line of sufficient contrast, the desaturated hue of a colored line will spread over an enclosed area, an effect known as the watercolor illusion. The contrast of the two lines can be in luminance, chromaticity, or a combination of both. The effect is most salient when the enclosing line has greater contrast with the background than the line that induces the spreading color. In most prior experiments with watercolor spreading, the luminance of both lines has been lower than the background. An achromatic version of the illusion exists where a dark line will spread while being bounded by either a darker or brighter line. In a previous study we measured the strength of the watercolor effect in which the colored inducing line was isoluminant to the background, and found an illusion for both brighter and darker achromatic outer contours. We also found the strength of spreading is stronger for bluish (+S cone input colors compared to yellowish (-S cone input ones, when bounded by a dark line. The current study set out to measure the hue dependence of the watercolor illusion when inducing colors are flanked with brighter (increment as opposed to darker outer lines. The asymmetry in the watercolor effect with S cone input was enhanced when the inducing contrast was an increment rather than a decrement. Further experiments explored the relationship between the perceived contrast of these chromatic lines when paired with luminance increments and decrements and revealed that the perceived contrast of luminance increments and decrements is dependent on which isoluminant color they are paired with. In addition to known hue asymmetries in the watercolor illusion there are asymmetries between luminance increments and decrements that are also hue dependent. These latter asymmetries may be related to the perceived contrast of the hue/luminance parings.

  16. Asymmetric effects of luminance and chrominance in the watercolor illusion.

    Science.gov (United States)

    Coia, Andrew J; Crognale, Michael A

    2014-01-01

    When bounded by a line of sufficient contrast, the desaturated hue of a colored line will spread over an enclosed area, an effect known as the watercolor illusion. The contrast of the two lines can be in luminance, chromaticity, or a combination of both. The effect is most salient when the enclosing line has greater contrast with the background than the line that induces the spreading color. In most prior experiments with watercolor spreading, the luminance of both lines has been lower than the background. An achromatic version of the illusion exists where a dark line will spread while being bounded by either a darker or brighter line. In a previous study we measured the strength of the watercolor effect in which the colored inducing line was isoluminant to the background, and found an illusion for both brighter and darker achromatic outer contours. We also found the strength of spreading is stronger for bluish (+S cone input) colors compared to yellowish (-S cone input) ones, when bounded by a dark line. The current study set out to measure the hue dependence of the watercolor illusion when inducing colors are flanked with brighter (increment) as opposed to darker outer lines. The asymmetry in the watercolor effect with S cone input was enhanced when the inducing contrast was an increment rather than a decrement. Further experiments explored the relationship between the perceived contrast of these chromatic lines when paired with luminance increments and decrements and revealed that the perceived contrast of luminance increments and decrements is dependent on which isoluminant color they are paired with. In addition to known hue asymmetries in the watercolor illusion there are asymmetries between luminance increments and decrements that are also hue dependent. These latter asymmetries may be related to the perceived contrast of the hue/luminance parings.

  17. Mysterious quantum Cheshire cat: an illusion

    Science.gov (United States)

    Michielsen, K.; Lippert, Th.; De Raedt, H.

    2015-09-01

    We provide a mystery-free explanation for the experimentally observed facts in the neutron interferometry quantum Cheshire cat experiment of Denkmayr et al. [Nat. Comm. 5, 4492, 2014] in terms of a discrete-event simulation model, demonstrating that the quantum Cheshire cat is an illusion.

  18. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  19. Negative cognitive errors and positive illusions for negative divorce events: predictors of children's psychological adjustment.

    Science.gov (United States)

    Mazur, E; Wolchik, S A; Sandler, I N

    1992-12-01

    This study examined the relations among negative cognitive errors regarding hypothetical negative divorce events, positive illusions about those same events, actual divorce events, and psychological adjustment in 38 8- to 12-year-old children whose parents had divorced within the previous 2 years. Children's scores on a scale of negative cognitive errors (catastrophizing, overgeneralizing, and personalizing) correlated significantly with self-reported symptoms of anxiety and self-esteem, and with maternal reports of behavior problems. Children's scores on a scale measuring positive illusions (high self-regard, illusion of personal control, and optimism for the future) correlated significantly with less self-reported aggression. Both appraisal types accounted for variance in some measures of symptomatology beyond that explained by actual events. There was no significant association between children's negative cognitive errors and positive illusions. The implications of these results for theories of negative cognitive errors and of positive illusions, as well as for future research, are discussed.

  20. Why do animals differ in their susceptibility to geometrical illusions?

    Science.gov (United States)

    Feng, Lynna C; Chouinard, Philippe A; Howell, Tiffani J; Bennett, Pauleen C

    2017-04-01

    In humans, geometrical illusions are thought to reflect mechanisms that are usually helpful for seeing the world in a predictable manner. These mechanisms deceive us given the right set of circumstances, correcting visual input where a correction is not necessary. Investigations of non-human animals' susceptibility to geometrical illusions have yielded contradictory results, suggesting that the underlying mechanisms with which animals see the world may differ across species. In this review, we first collate studies showing that different species are susceptible to specific illusions in the same or reverse direction as humans. Based on a careful assessment of these findings, we then propose several ecological and anatomical factors that may affect how a species perceives illusory stimuli. We also consider the usefulness of this information for determining whether sight in different species might be more similar to human sight, being influenced by contextual information, or to how machines process and transmit information as programmed. Future testing in animals could provide new theoretical insights by focusing on establishing dissociations between stimuli that may or may not alter perception in a particular species. This information could improve our understanding of the mechanisms behind illusions, but also provide insight into how sight is subjectively experienced by different animals, and the degree to which vision is innate versus acquired, which is difficult to examine in humans.

  1. TDMA X-band FMCW MIMO radar for short range surveillance applications

    NARCIS (Netherlands)

    Belfiori, F.; Maas, A.P.M.; Hoogeboom, P.; Rossum, W.L. van

    2011-01-01

    The work presented in this paper was aimed at the design of a compact radar device to be used for private area surveillance applications. The radar is connected to a pan tilt zoom camera and it provides the camera system with high accuracy position information (bearing and range) of moving targets;

  2. Effects of age and brightness contrast on perception of the Wundt-Hering illusion.

    Science.gov (United States)

    Astor-Stetson, E; Purnell, T G

    1990-10-01

    Susceptibility to the Wundt-Hering illusion was studied as a function of age and contrast. Preschoolers, third-graders and college students were shown light-grey, medium-grey, and black Wundt-Hering figures on white ground. Pre-schoolers were most susceptible to the illusion, differing from third graders in the medium and high contrast conditions and from college students in all contrast conditions. Low contrast figures resulted in significantly less distortion than did high contrast figures for the preschoolers. The significant interaction of age and contrast effects highlights the importance of a developmental approach to the study of illusions.

  3. Assessment of Positive Illusions of the Physical Attractiveness of Romantic Partners

    OpenAIRE

    Barelds, D.P.H.; Dijkstra, Pieternel; Koudenburg, N.; Swami, V.

    2011-01-01

    Positive illusions about a partner's physical attractiveness occur when individuals' ratings of their partner's attractiveness are more positive than more objective ratings. Ratings that may serve as a''reality benchmark' include ratings by the partner him/herself and observer ratings. The present study compared the effects of using different reality benchmarks on the strength of positive partner physical attractiveness illusions (n = 70 couples). Results showed that individuals positively bi...

  4. A Virtual Reality Full Body Illusion Improves Body Image Disturbance in Anorexia Nervosa

    NARCIS (Netherlands)

    Keizer, Anouk; van Elburg, Annemarie; Helms, Rossa; Dijkerman, H Chris

    2016-01-01

    BACKGROUND: Patients with anorexia nervosa (AN) have a persistent distorted experience of the size of their body. Previously we found that the Rubber Hand Illusion improves hand size estimation in this group. Here we investigated whether a Full Body Illusion (FBI) affects body size estimation of

  5. Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2013-08-01

    Operators of a pair of robotic hands report ownership for those hands when they hold image of a grasp motion and watch the robot perform it. We present a novel body ownership illusion that is induced by merely watching and controlling robot's motions through a brain machine interface. In past studies, body ownership illusions were induced by correlation of such sensory inputs as vision, touch and proprioception. However, in the presented illusion none of the mentioned sensations are integrated except vision. Our results show that during BMI-operation of robotic hands, the interaction between motor commands and visual feedback of the intended motions is adequate to incorporate the non-body limbs into one's own body. Our discussion focuses on the role of proprioceptive information in the mechanism of agency-driven illusions. We believe that our findings will contribute to improvement of tele-presence systems in which operators incorporate BMI-operated robots into their body representations.

  6. Weber's Illusion and Body Shape: Anisotropy of Tactile Size Perception on the Hand

    Science.gov (United States)

    Longo, Matthew R.; Haggard, Patrick

    2011-01-01

    The perceived distance between touches on a single skin surface is larger on regions of high tactile sensitivity than those with lower acuity, an effect known as "Weber's illusion". This illusion suggests that tactile size perception involves a representation of the perceived size of body parts preserving characteristics of the somatosensory…

  7. Application of Riesz transforms to the isotropic AM-PM decomposition of geometrical-optical illusion images.

    Science.gov (United States)

    Sierra-Vázquez, Vicente; Serrano-Pedraza, Ignacio

    2010-04-01

    The existence of a special second-order mechanism in the human visual system, able to demodulate the envelope of visual stimuli, suggests that spatial information contained in the image envelope may be perceptually relevant. The Riesz transform, a natural isotropic extension of the Hilbert transform to multidimensional signals, was used here to demodulate band-pass filtered images of well-known visual illusions of length, size, direction, and shape. We show that the local amplitude of the monogenic signal or envelope of each illusion image conveys second-order information related to image holistic spatial structure, whereas the local phase component conveys information about the spatial features. Further low-pass filtering of the illusion image envelopes creates physical distortions that correspond to the subjective distortions perceived in the illusory images. Therefore the envelope seems to be the image component that physically carries the spatial information about these illusions. This result contradicts the popular belief that the relevant spatial information to perceive geometrical-optical illusions is conveyed only by the lower spatial frequencies present in their Fourier spectrum.

  8. Explaining away the body: experiences of supernaturally caused touch and touch on non-hand objects within the rubber hand illusion.

    Directory of Open Access Journals (Sweden)

    Jakob Hohwy

    2010-02-01

    Full Text Available In rubber hand illusions and full body illusions, touch sensations are projected to non-body objects such as rubber hands, dolls or virtual bodies. The robustness, limits and further perceptual consequences of such illusions are not yet fully explored or understood. A number of experiments are reported that test the limits of a variant of the rubber hand illusion.A variant of the rubber hand illusion is explored, in which the real and foreign hands are aligned in personal space. The presence of the illusion is ascertained with participants' scores and temperature changes of the real arm. This generates a basic illusion of touch projected to a foreign arm. Participants are presented with further, unusual visuotactile stimuli subsequent to onset of the basic illusion. Such further visuotactile stimulation is found to generate very unusual experiences of supernatural touch and touch on a non-hand object. The finding of touch on a non-hand object conflicts with prior findings, and to resolve this conflict a further hypothesis is successfully tested: that without prior onset of the basic illusion this unusual experience does not occur.A rubber hand illusion is found that can arise when the real and the foreign arm are aligned in personal space. This illusion persists through periods of no tactile stimulation and is strong enough to allow very unusual experiences of touch felt on a cardboard box and experiences of touch produced at a distance, as if by supernatural causation. These findings suggest that one's visual body image is explained away during experience of the illusion and they may be of further importance to understanding the role of experience in delusion formation. The findings of touch on non-hand objects may help reconcile conflicting results in this area of research. In addition, new evidence is provided that relates to the recently discovered psychologically induced temperature changes that occur during the illusion.

  9. The working memory Ponzo illusion: Involuntary integration of visuospatial information stored in visual working memory.

    Science.gov (United States)

    Shen, Mowei; Xu, Haokui; Zhang, Haihang; Shui, Rende; Zhang, Meng; Zhou, Jifan

    2015-08-01

    Visual working memory (VWM) has been traditionally viewed as a mental structure subsequent to visual perception that stores the final output of perceptual processing. However, VWM has recently been emphasized as a critical component of online perception, providing storage for the intermediate perceptual representations produced during visual processing. This interactive view holds the core assumption that VWM is not the terminus of perceptual processing; the stored visual information rather continues to undergo perceptual processing if necessary. The current study tests this assumption, demonstrating an example of involuntary integration of the VWM content, by creating the Ponzo illusion in VWM: when the Ponzo illusion figure was divided into its individual components and sequentially encoded into VWM, the temporally separated components were involuntarily integrated, leading to the distorted length perception of the two horizontal lines. This VWM Ponzo illusion was replicated when the figure components were presented in different combinations and presentation order. The magnitude of the illusion was significantly correlated between VWM and perceptual versions of the Ponzo illusion. These results suggest that the information integration underling the VWM Ponzo illusion is constrained by the laws of visual perception and similarly affected by the common individual factors that govern its perception. Thus, our findings provide compelling evidence that VWM functions as a buffer serving perceptual processes at early stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. How virtual reality works: illusions of vision in "real" and virtual environments

    Science.gov (United States)

    Stark, Lawrence W.

    1995-04-01

    Visual illusions abound in normal vision--illusions of clarity and completeness, of continuity in time and space, of presence and vivacity--and are part and parcel of the visual world inwhich we live. These illusions are discussed in terms of the human visual system, with its high- resolution fovea, moved from point to point in the visual scene by rapid saccadic eye movements (EMs). This sampling of visual information is supplemented by a low-resolution, wide peripheral field of view, especially sensitive to motion. Cognitive-spatial models controlling perception, imagery, and 'seeing,' also control the EMs that shift the fovea in the Scanpath mode. These illusions provide for presence, the sense off being within an environment. They equally well lead to 'Telepresence,' the sense of being within a virtual display, especially if the operator is intensely interacting within an eye-hand and head-eye human-machine interface that provides for congruent visual and motor frames of reference. Interaction, immersion, and interest compel telepresence; intuitive functioning and engineered information flows can optimize human adaptation to the artificial new world of virtual reality, as virtual reality expands into entertainment, simulation, telerobotics, and scientific visualization and other professional work.

  11. The Mirrored Hand Illusion: I Control, So I Possess?

    Science.gov (United States)

    Zhou, Aibao; Zhang, Yanchi; Yin, Yulong; Yang, Yang

    2015-01-01

    Certain situations may not only cause people to misjudge external information but also distort people's perception of themselves. The present study is the first to report the mirrored hand illusion which could be generated when the experimenter imitated the fist-clenching movements of the subject synchronously. The subjects formed the illusion that the experimenter's hand was "something I can control" when being imitated synchronously. In addition, a sense of ownership over the alien hand was established by integrating multisensory signals and comparing these signals with preexisting body presentations. This method might represent a new avenue for research on the formation of self-consciousness. © The Author(s) 2015.

  12. Development of the False-Memory Illusion

    Science.gov (United States)

    Brainerd, C. J.; Forrest, T. J.; Karibian, D.; Reyna, V. F.

    2006-01-01

    The counterintuitive developmental trend in the Deese-Roediger-McDermott (DRM) illusion (that false-memory responses increase with age) was investigated in learning-disabled and nondisabled children from the 6- to 14-year-old age range. Fuzzy-trace theory predicts that because there are qualitative differences in how younger versus older children…

  13. Size and direction of distortion in geometric-optical illusions: conciliation between the Müller-Lyer and Titchener configurations.

    Science.gov (United States)

    Nemati, Farshad

    2009-01-01

    Over the past few decades, different theories have been advanced to explain geometric-optical illusions based on various perceptual processes such as assimilation and/or contrast. Consistent with the contradictory effects of assimilation and contrast, Pressey's assimilation theory provided an explanation for the Müller-Lyer illusion, but failed to account for the Titchener (Ebbinghaus) illusion. A model that explains both Müller-Lyer and Titchener illusions according to a common underlying process may outline a unified explanation for a variety of geometric-optical illusions. In order to develop such a model, the concept of empty space is introduced as an area of the illusory figure that is not filled by line drawings. It was predicted that the magnitude of illusion would increase with the area of the empty space around the illusory figures. The effect of empty space on the magnitude of perceptual distortion was measured in Müller-Lyer figures, with outward arrowheads of different length. The results indicated an overestimation of the target stimulus in all of the figures. Nevertheless, consistent with the prediction of the present model, the horizontal line in the Müller-Lyer figure with the longest arrowheads appeared shorter than that with the shortest arrowheads, although the size contrast of these figures was the same. According to the analysis proposed in the present study, the area of empty space not only affects the magnitude of illusion but also serves as a contextual cue for the perceptual system to determine the direction of illusion (orientation). The functional relationships between the size contrast and empty space provide a common explanation for the Müller-Lyer, Titchener, and a variety of other geometric-optical illusions.

  14. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  15. A mass-density model can account for the size-weight illusion

    Science.gov (United States)

    Bergmann Tiest, Wouter M.; Drewing, Knut

    2018-01-01

    When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object’s mass, and the other from the object’s density, with estimates’ weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects’ density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object’s density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness

  16. A mass-density model can account for the size-weight illusion.

    Science.gov (United States)

    Wolf, Christian; Bergmann Tiest, Wouter M; Drewing, Knut

    2018-01-01

    When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object's mass, and the other from the object's density, with estimates' weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects' density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object's density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception.

  17. Modern devices of optimum filtration for the active radar system

    OpenAIRE

    V. E. Bychkov; O. D. Mrachkovskiy; V. I. Pravda

    2006-01-01

    The principle of construction the matched filter and correlator, for the active radar system operating with a broadband noise signal is esteemed. The example of construction a сhan-nel of processing on the basis of microcircuits of a programmed logic (PLD) is shown

  18. Active inference, sensory attenuation and illusions.

    Science.gov (United States)

    Brown, Harriet; Adams, Rick A; Parees, Isabel; Edwards, Mark; Friston, Karl

    2013-11-01

    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference

  19. The Bicycle Illusion: Sidewalk Science Informs the Integration of Motion and Shape Perception

    Science.gov (United States)

    Masson, Michael E. J.; Dodd, Michael D.; Enns, James T.

    2009-01-01

    The authors describe a new visual illusion first discovered in a natural setting. A cyclist riding beside a pair of sagging chains that connect fence posts appears to move up and down with the chains. In this illusion, a static shape (the chains) affects the perception of a moving shape (the bicycle), and this influence involves assimilation…

  20. The Illusion of Owning a Third Arm

    Science.gov (United States)

    Ehrsson, H. Henrik

    2011-01-01

    Could it be possible that, in the not-so-distant future, we will be able to reshape the human body so as to have extra limbs? A third arm helping us out with the weekly shopping in the local grocery store, or an extra artificial limb assisting a paralysed person? Here we report a perceptual illusion in which a rubber right hand, placed beside the real hand in full view of the participant, is perceived as a supernumerary limb belonging to the participant's own body. This effect was supported by questionnaire data in conjunction with physiological evidence obtained from skin conductance responses when physically threatening either the rubber hand or the real one. In four well-controlled experiments, we demonstrate the minimal required conditions for the elicitation of this “supernumerary hand illusion”. In the fifth, and final experiment, we show that the illusion reported here is qualitatively different from the traditional rubber hand illusion as it is characterised by less disownership of the real hand and a stronger feeling of having two right hands. These results suggest that the artificial hand ‘borrows’ some of the multisensory processes that represent the real hand, leading to duplication of touch and ownership of two right arms. This work represents a major advance because it challenges the traditional view of the gross morphology of the human body as a fundamental constraint on what we can come to experience as our physical self, by showing that the body representation can easily be updated to incorporate an additional limb. PMID:21383847

  1. Illusions and delusions: relating experimentally-induced false memories to anomalous experiences and ideas

    Directory of Open Access Journals (Sweden)

    Philip R Corlett

    2009-11-01

    Full Text Available The salience hypothesis of psychosis rests on a simple but profound observation that subtle alterations in the way that we perceive and experience stimuli have important consequences for how important these stimuli become for us, how much they draw our attention, how they embed themselves in our memory and, ultimately, how they shape our beliefs. We put forward the idea that a classical memory illusion – the Deese-Roediger-McDermott (DRM effect – offers a useful way of exploring processes related to such aberrant belief formation. The illusion occurs when, as a consequence of its relationship to previous stimuli, a stimulus is asserted to be remembered even when has not been previously presented. Such illusory familiarity is thought to be generated by the surprising fluency with which the stimulus is processed. In this respect, the illusion relates directly to the salience hypothesis and may share common cognitive underpinnings with aberrations of perception and attribution that are found in psychosis. In this paper, we explore the theoretical importance of this experimentally-induced illusion in relation to the salience model of psychosis. We present data showing that, in healthy volunteers, the illusion relates directly to self reported anomalies of experience and magical thinking. We discuss this finding in terms of the salience hypothesis and of a broader Bayesian framework of perception and cognition which emphasizes the salience both of predictable and unpredictable experiences..

  2. Memory illusion in high-functioning autism and Asperger's disorder.

    Science.gov (United States)

    Kamio, Yoko; Toichi, Motomi

    2007-05-01

    In this study, 13 individuals with high-functioning autism (HFA), 15 individuals with Asperger's disorder (AD), and age-, and IQ-matched controls were presented a list of sentences auditorily. Participants then evaluated semantically related but new sentences and reported whether they were old or new. The total rates of false recognition for semantically related sentences were similar among the three groups. Nevertheless, memory illusion on some aspects was reduced in HFA participants. These results suggest that HFA have difficulties in semantic association. Although individuals with AD showed no quantitative abnormalities of memory illusion, some contributing factors were atypical. These findings are discussed in terms of schema theory, enhanced perceptual processing hypothesis, and weak central coherence hypothesis.

  3. Sensory illusions: Common mistakes in physics regarding sound, light and radio waves

    Science.gov (United States)

    Briles, T. M.; Tabor-Morris, A. E.

    2013-03-01

    Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education

  4. Positive illusions about one's partner's physical attractiveness

    NARCIS (Netherlands)

    Barelds-Dijkstra, Pieternel; Barelds, Dick P. H.

    This study examined couples' ratings of self and partner physical attractiveness. On the basis of the theory of positive illusions, it was expected that individuals would rate their partners as more attractive than their partners would rate themselves. Both members of 93 heterosexual couples, with a

  5. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  6. Category Selectivity of Human Visual Cortex in Perception of Rubin Face–Vase Illusion

    Directory of Open Access Journals (Sweden)

    Xiaogang Wang

    2017-09-01

    Full Text Available When viewing the Rubin face–vase illusion, our conscious perception spontaneously alternates between the face and the vase; this illusion has been widely used to explore bistable perception. Previous functional magnetic resonance imaging (fMRI studies have studied the neural mechanisms underlying bistable perception through univariate and multivariate pattern analyses; however, no studies have investigated the issue of category selectivity. Here, we used fMRI to investigate the neural mechanisms underlying the Rubin face–vase illusion by introducing univariate amplitude and multivariate pattern analyses. The results from the amplitude analysis suggested that the activity in the fusiform face area was likely related to the subjective face perception. Furthermore, the pattern analysis results showed that the early visual cortex (EVC and the face-selective cortex could discriminate the activity patterns of the face and vase perceptions. However, further analysis of the activity patterns showed that only the face-selective cortex contains the face information. These findings indicated that although the EVC and face-selective cortex activities could discriminate the visual information, only the activity and activity pattern in the face-selective areas contained the category information of face perception in the Rubin face–vase illusion.

  7. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Tabei, Ken-Ichi; Satoh, Masayuki; Kida, Hirotaka; Kizaki, Moeni; Sakuma, Haruno; Sakuma, Hajime; Tomimoto, Hidekazu

    2015-01-01

    Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI), we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions.

  8. Towards a digital body: the virtual arm illusion

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The integration of the human brain with computers is an interesting new area of applied neuroscience, where one application is replacement of a person’s real body by a virtual representation. Here we demonstrate that a virtual limb can be made to feel part of your body if appropriate multisensory correlations are provided. We report an illusion that is invoked through tactile stimulation on a person’s hidden real right hand with synchronous virtual visual stimulation on an aligned 3D stereo virtual arm projecting horizontally out of their shoulder. An experiment with 21 male participants showed displacement of ownership towards the virtual hand, as illustrated by questionnaire responses and proprioceptive drift. A control experiment with asynchronous tapping was carried out with a different set of 20 male participants who did not experience the illusion. After 5 minutes of stimulation the virtual arm rotated. Evidence suggests that the extent of the illusion was also correlated with the degree of muscle activity onset in the right arm as measured by EMG during this period that the arm was rotating, for the synchronous but not the asynchronous condition. A completely virtual object can therefore be experienced as part of one’s self, which opens up the possibility that an entire virtual body could be felt as one’s own in future virtual reality applications or online games, and be an invaluable tool for the understanding of the brain mechanisms underlying body ownership.

  9. Mouth reversal extinguishes mismatch negativity induced by the McGurk illusion

    DEFF Research Database (Denmark)

    Eskelund, Kasper; Andersen, Tobias

    2013-01-01

    The sight of articulatory mouth movements (visual speech) influences auditory speech perception. This is demonstrated by the McGurk illusion in which incongruent visual speech alters the auditory phonetic percept. In behavioral studies, reversal of the vertical mouth direction has been reported...... by visual speech with either upright (unaltered) or vertically reversed mouth area. In a preliminary analysis, we found a Mismatch Negativity component induced by the McGurk illusion for 6 of 17 participants at electrode Cz when the mouth area was upright. In comparison, these participants produced...

  10. Application of ranging technique of radar level meter for draft survey

    Directory of Open Access Journals (Sweden)

    SHEN Yijun

    2017-12-01

    Full Text Available [Objectives] This paper aims to solve the problems of the high subjectivity and low accuracy and efficiency of draft surveying relying on human visual inspection.[Methods] Radar-level oil and liquid measurement technology products are widely used in the petrochemical industry. A device is developed that uses radar to survey the draft of a boat, designed with data series optimization formulae to ensure that the data results are true and correct. At the same time, a test is designed to prove the accuracy of the results.[Results] According to the conditions of the ship,the device is composed of a radar sensor, triangular bracket and display,and is put to use in the test.[Conclusions] With 15 vessels as the research objects,the comparison experiment shows a difference in range between 0.001-0.022 meters, with an average difference rate of 0.028%, which meets the requirements for ship draft survey accuracy.

  11. The Pareidolia Test: A Simple Neuropsychological Test Measuring Visual Hallucination-Like Illusions

    OpenAIRE

    Mamiya, Yasuyuki; Nishio, Yoshiyuki; Watanabe, Hiroyuki; Yokoi, Kayoko; Uchiyama, Makoto; Baba, Toru; Iizuka, Osamu; Kanno, Shigenori; Kamimura, Naoto; Kazui, Hiroaki; Hashimoto, Mamoru; Ikeda, Manabu; Takeshita, Chieko; Shimomura, Tatsuo; Mori, Etsuro

    2016-01-01

    Background Visual hallucinations are a core clinical feature of dementia with Lewy bodies (DLB), and this symptom is important in the differential diagnosis and prediction of treatment response. The pareidolia test is a tool that evokes visual hallucination-like illusions, and these illusions may be a surrogate marker of visual hallucinations in DLB. We created a simplified version of the pareidolia test and examined its validity and reliability to establish the clinical utility of this test....

  12. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    National Research Council Canada - National Science Library

    Taboada, Fernando

    2002-01-01

    ... intercept devices such as radar warning, electronic support and electronic intelligence receivers, In order to detect LPI radar waveforms new signal processing techniques are required This thesis first...

  13. Removal of proprioception by BCI raises a stronger body ownership illusion in control of a humanlike robot

    OpenAIRE

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-01-01

    Body ownership illusions provide evidence that our sense of self is not coherent and can be extended to non-body objects. Studying about these illusions gives us practical tools to understand the brain mechanisms that underlie body recognition and the experience of self. We previously introduced an illusion of body ownership transfer (BOT) for operators of a very humanlike robot. This sensation of owning the robot?s body was confirmed when operators controlled the robot either by performing t...

  14. Tactile Radar: experimenting a computer game with visually disabled.

    Science.gov (United States)

    Kastrup, Virgínia; Cassinelli, Alvaro; Quérette, Paulo; Bergstrom, Niklas; Sampaio, Eliana

    2017-09-18

    Visually disabled people increasingly use computers in everyday life, thanks to novel assistive technologies better tailored to their cognitive functioning. Like sighted people, many are interested in computer games - videogames and audio-games. Tactile-games are beginning to emerge. The Tactile Radar is a device through which a visually disabled person is able to detect distal obstacles. In this study, it is connected to a computer running a tactile-game. The game consists in finding and collecting randomly arranged coins in a virtual room. The study was conducted with nine congenital blind people including both sexes, aged 20-64 years old. Complementary methods of first and third person were used: the debriefing interview and the quasi-experimental design. The results indicate that the Tactile Radar is suitable for the creation of computer games specifically tailored for visually disabled people. Furthermore, the device seems capable of eliciting a powerful immersive experience. Methodologically speaking, this research contributes to the consolidation and development of first and third person complementary methods, particularly useful in disabled people research field, including the evaluation by users of the Tactile Radar effectiveness in a virtual reality context. Implications for rehabilitation Despite the growing interest in virtual games for visually disabled people, they still find barriers to access such games. Through the development of assistive technologies such as the Tactile Radar, applied in virtual games, we can create new opportunities for leisure, socialization and education for visually disabled people. The results of our study indicate that the Tactile Radar is adapted to the creation of video games for visually disabled people, providing a playful interaction with the players.

  15. High performance ground penetrating radar survey of TA-49/Area 2. Final report

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Rangel, M.J. III

    1994-09-01

    The results of high performance ground penetrating radar study of Area 2 at Technical Area 49 are presented. The survey was commissioned as part of Los Alamos Laboratory's continuing Environmental Remediation program and was completed and analyzed before borehole studies in Area 2 were started. Based upon the ground penetrating radar results, the location of one of the planned boreholes was moved to assure the drilling area was as safe as possible. While earlier attempts to use commercial radar devices at this facility had not been successful, the radar and digital processing system developed at Los Alamos were able to significantly improve the buried physical detail of the site

  16. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Tabei

    Full Text Available Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI, we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions.

  17. Transcending the Self – the Illusion of Body Ownership in Immersive Virtual Reality and its Impact on Behaviour

    Directory of Open Access Journals (Sweden)

    Mel Slater

    2011-10-01

    Full Text Available Virtual reality in various forms has been around for about 40 years. It has been considered mainly as a technology that can be used to generate the illusion of a transformation of place. However, it has recently been shown that it can successfully be used to transcend the self, through illusions of body ownership and transformation. Several papers have shown that it is possible to generate in people the illusory sense of ownership of a fake body using virtual reality techniques [1-5]. This can be achieved through synchronous multisensory stimulation with respect to the real and virtual body. For example, the participant sees his or her virtual body touched, while feeling the touch synchronously and in the same place on the real body. This can also lead to illusions of body transformation, such as a thin person having the illusion of being fat [6]. Our research suggests the prime importance of a first person perspective for the illusion of ownership, however, in [7] we also found that a representation of a person in a virtual mirror with synchronous visual-motor effects also results in a body ownership illusion. Although virtual body ownership has been established, what is also of interest are the consequences of this in terms of the attitudes and behaviour of the participant who experiences the transformed body. Our very recent work suggests that the illusion of ownership of a virtual body may also result in at least short-term transformations of behaviour and attitudes of the participant towards those that are appropriate to the virtual body. This talk will describe several experiments illustrating both the illusion of body ownership and its transformative effect on attitudes and behaviour.

  18. The spatial distance rule in the moving and classical rubber hand illusions.

    Science.gov (United States)

    Kalckert, Andreas; Ehrsson, H Henrik

    2014-11-01

    The rubber hand illusion (RHI) is a perceptual illusion in which participants perceive a model hand as part of their own body. Here, through the use of one questionnaire experiment and two proprioceptive drift experiments, we investigated the effect of distance (12, 27.5, and 43cm) in the vertical plane on both the moving and classical RHI. In both versions of the illusion, we found an effect of distance on ownership of the rubber hand for both measures tested. Our results further suggested that the moving RHI might follow a narrower spatial rule. Finally, whereas ownership of the moving rubber hand was affected by distance, this was not the case for agency, which was present at all distances tested. In sum, the present results generalize the spatial distance rule in terms of ownership to the vertical plane of space and demonstrate that also the moving RHI obeys this rule. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Perceiving a stranger's voice as being one's own: a 'rubber voice' illusion?

    Directory of Open Access Journals (Sweden)

    Zane Z Zheng

    2011-04-01

    Full Text Available We describe an illusion in which a stranger's voice, when presented as the auditory concomitant of a participant's own speech, is perceived as a modified version of their own voice. When the congruence between utterance and feedback breaks down, the illusion is also broken. Compared to a baseline condition in which participants heard their own voice as feedback, hearing a stranger's voice induced robust changes in the fundamental frequency (F0 of their production. Moreover, the shift in F0 appears to be feedback dependent, since shift patterns depended reliably on the relationship between the participant's own F0 and the stranger-voice F0. The shift in F0 was evident both when the illusion was present and after it was broken, suggesting that auditory feedback from production may be used separately for self-recognition and for vocal motor control. Our findings indicate that self-recognition of voices, like other body attributes, is malleable and context dependent.

  20. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  1. Restoring tactile awareness through the rubber hand illusion in cervical spinal cord injury.

    Science.gov (United States)

    Lenggenhager, Bigna; Scivoletto, Giorgio; Molinari, Marco; Pazzaglia, Mariella

    2013-10-01

    Bodily sensations are an important component of corporeal awareness. Spinal cord injury can leave affected body parts insentient and unmoving, leading to specific disturbances in the mental representation of one's own body and the sense of self. Here, we explored how illusions induced by multisensory stimulation influence immediate sensory signals and tactile awareness in patients with spinal cord injuries. The rubber hand illusion paradigm was applied to 2 patients with chronic and complete spinal cord injury of the sixth cervical spine, with severe somatosensory impairments in 2 of 5 fingers. Both patients experienced a strong illusion of ownership of the rubber hand during synchronous, but not asynchronous, stroking. They also, spontaneously reported basic tactile sensations in their previously numb fingers. Tactile awareness from seeing the rubber hand was enhanced by progressively increasing the stimulation duration. Multisensory illusions directly and specifically modulate the reemergence of sensory memories and enhance tactile sensation, despite (or as a result of) prior deafferentation. When sensory inputs are lost, and are later illusorily regained, the brain updates a coherent body image even several years after the body has become permanently unable to feel. This particular example of neural plasticity represents a significant opportunity to strengthen the sense of the self and the feelings of embodiment in patients with spinal cord injury.

  2. Error and objectivity: cognitive illusions and qualitative research.

    Science.gov (United States)

    Paley, John

    2005-07-01

    Psychological research has shown that cognitive illusions, of which visual illusions are just a special case, are systematic and pervasive, raising epistemological questions about how error in all forms of research can be identified and eliminated. The quantitative sciences make use of statistical techniques for this purpose, but it is not clear what the qualitative equivalent is, particularly in view of widespread scepticism about validity and objectivity. I argue that, in the light of cognitive psychology, the 'error question' cannot be dismissed as a positivist obsession, and that the concepts of truth and objectivity are unavoidable. However, they constitute only a 'minimal realism', which does not necessarily bring a commitment to 'absolute' truth, certainty, correspondence, causation, reductionism, or universal laws in its wake. The assumption that it does reflects a misreading of positivism and, ironically, precipitates a 'crisis of legitimation and representation', as described by constructivist authors.

  3. A short educational intervention diminishes causal illusions and specific paranormal beliefs in undergraduates.

    Science.gov (United States)

    Barberia, Itxaso; Tubau, Elisabet; Matute, Helena; Rodríguez-Ferreiro, Javier

    2018-01-01

    Cognitive biases such as causal illusions have been related to paranormal and pseudoscientific beliefs and, thus, pose a real threat to the development of adequate critical thinking abilities. We aimed to reduce causal illusions in undergraduates by means of an educational intervention combining training-in-bias and training-in-rules techniques. First, participants directly experienced situations that tend to induce the Barnum effect and the confirmation bias. Thereafter, these effects were explained and examples of their influence over everyday life were provided. Compared to a control group, participants who received the intervention showed diminished causal illusions in a contingency learning task and a decrease in the precognition dimension of a paranormal belief scale. Overall, results suggest that evidence-based educational interventions like the one presented here could be used to significantly improve critical thinking skills in our students.

  4. A short educational intervention diminishes causal illusions and specific paranormal beliefs in undergraduates.

    Directory of Open Access Journals (Sweden)

    Itxaso Barberia

    Full Text Available Cognitive biases such as causal illusions have been related to paranormal and pseudoscientific beliefs and, thus, pose a real threat to the development of adequate critical thinking abilities. We aimed to reduce causal illusions in undergraduates by means of an educational intervention combining training-in-bias and training-in-rules techniques. First, participants directly experienced situations that tend to induce the Barnum effect and the confirmation bias. Thereafter, these effects were explained and examples of their influence over everyday life were provided. Compared to a control group, participants who received the intervention showed diminished causal illusions in a contingency learning task and a decrease in the precognition dimension of a paranormal belief scale. Overall, results suggest that evidence-based educational interventions like the one presented here could be used to significantly improve critical thinking skills in our students.

  5. More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches.

    Science.gov (United States)

    Riecke, Bernhard E; Feuereissen, Daniel; Rieser, John J; McNamara, Timothy P

    2015-01-01

    Self-motion can facilitate perspective switches and "automatic spatial updating" and help reduce disorientation in applications like virtual reality (VR). However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion ("circular vection") can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields ("auditory vection") and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective VR simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  6. 3D Viewing: Odd Perception - Illusion? reality? or both?

    Science.gov (United States)

    Kisimoto, K.; Iizasa, K.

    2008-12-01

    We live in the three dimensional space, don't we? It could be at least four dimensions, but that is another story. In either way our perceptual capability of 3D-Viewing is constrained by our 2D-perception (our intrinsic tools of perception). I carried out a few visual experiments using topographic data to show our intrinsic (or biological) disability (or shortcoming) in 3D-recognition of our world. Results of the experiments suggest: (1) 3D-surface model displayed on a 2D-computer screen (or paper) always has two interpretations of the 3D- surface geometry, if we choose one of the interpretation (in other word, if we are hooked by one perception of the two), we maintain its perception even if the 3D-model changes its viewing perspective in time shown on the screen, (2) more interesting is that 3D-real solid object (e.g.,made of clay) also gives above mentioned two interpretations of the geometry of the object, if we observe the object with one-eye. Most famous example of this viewing illusion is exemplified by a magician, who died in 2007, Jerry Andrus who made a super-cool paper crafted dragon which causes visual illusion to one-eyed viewer. I, by the experiments, confirmed this phenomenon in another perceptually persuasive (deceptive?) way. My conclusion is that this illusion is intrinsic, i.e. reality for human, because, even if we live in 3D-space, our perceptional tool (eyes) is composed of 2D sensors whose information is reconstructed or processed to 3D by our experience-based brain. So, (3) when we observe the 3D-surface-model on the computer screen, we are always one eye short even if we use both eyes. One last suggestion from my experiments is that recent highly sophisticated 3D- models might include too many information that human perceptions cannot handle properly, i.e. we might not be understanding the 3D world (geospace) at all, just illusioned.

  7. Cortical evoked potentials to an auditory illusion: binaural beats.

    Science.gov (United States)

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  8. Combined visual illusion effects on the perceived index of difficulty and movement outcomes in discrete and continuous fitts' tapping.

    Science.gov (United States)

    Alphonsa, Sushma; Dai, Boyi; Benham-Deal, Tami; Zhu, Qin

    2016-01-01

    The speed-accuracy trade-off is a fundamental movement problem that has been extensively investigated. It has been established that the speed at which one can move to tap targets depends on how large the targets are and how far they are apart. These spatial properties of the targets can be quantified by the index of difficulty (ID). Two visual illusions are known to affect the perception of target size and movement amplitude: the Ebbinghaus illusion and Muller-Lyer illusion. We created visual images that combined these two visual illusions to manipulate the perceived ID, and then examined people's visual perception of the targets in illusory context as well as their performance in tapping those targets in both discrete and continuous manners. The findings revealed that the combined visual illusions affected the perceived ID similarly in both discrete and continuous judgment conditions. However, the movement outcomes were affected by the combined visual illusions according to the tapping mode. In discrete tapping, the combined visual illusions affected both movement accuracy and movement amplitude such that the effective ID resembled the perceived ID. In continuous tapping, none of the movement outcomes were affected by the combined visual illusions. Participants tapped the targets with higher speed and accuracy in all visual conditions. Based on these findings, we concluded that distinct visual-motor control mechanisms were responsible for execution of discrete and continuous Fitts' tapping. Although discrete tapping relies on allocentric information (object-centered) to plan for action, continuous tapping relies on egocentric information (self-centered) to control for action. The planning-control model for rapid aiming movements is supported.

  9. Sixteenth International Laser Radar Conference, Part 2

    International Nuclear Information System (INIS)

    Mccormick, M.P.

    1992-07-01

    Given here are extended abstracts of papers presented at the 16th International Laser Radar Conference, held in Cambridge, Massachusetts, July 20-24, 1992. Topics discussed include the Mt. Pinatubo volcanic dust laser observations, global change, ozone measurements, Earth mesospheric measurements, wind measurements, imaging, ranging, water vapor measurements, and laser devices and technology

  10. Klubi Illusion toob Tartusse New Yorgi ja Londoni / Riho Laurisaar

    Index Scriptorium Estoniae

    Laurisaar, Riho

    2006-01-01

    Stalini-aegses kinohoones Tartus avati suurlinlik klubi "Illusion". Sisekujunduses pole jälgitud kindlat stiili, koos on kitsh ja glamuur, klassika ja ajalooline arhitektuur. Sisearhitekt Jaanis Ilves

  11. Psychosis-proneness and the rubber hand illusion of body ownership.

    Science.gov (United States)

    Germine, Laura; Benson, Taylor Leigh; Cohen, Francesca; Hooker, Christine I'lee

    2013-05-15

    Psychosis and psychosis-proneness are associated with abnormalities in subjective experience of the self, including distortions in bodily experience that are difficult to study experimentally due to lack of structured methods. In 55 healthy adults, we assessed the relationship between self-reported psychosis-like characteristics and susceptibility to the rubber hand illusion of body ownership. In this illusion, a participant sees a rubber hand being stroked by a brush at the same time that they feel a brush stroking their own hand. In some individuals, this creates the bodily sense that the rubber hand is their own hand. Individual differences in positive (but not negative) psychosis-like characteristics predicted differences in susceptibility to experiencing the rubber hand illusion. This relationship was specific to the subjective experience of rubber hand ownership, and not other unusual experiences or sensations, and absent when a small delay was introduced between seeing and feeling the brush stroke. This indicates that individual differences in susceptibility are related to visual-tactile integration and cannot be explained by differences in the tendency to endorse unusual experiences. Our findings suggest that susceptibility to body representation distortion by sensory information may be related or contribute to the development of psychosis and positive psychosis-like characteristics. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. The McGurk Illusion in the Oddity Task

    DEFF Research Database (Denmark)

    Andersen, Tobias

    2010-01-01

    Despite many studies of audiovisual integration in speech perception very few studies have addressed the issue of cross- modal response bias. Using synthetic acoustic speech, the current study demonstrates the McGurk illusion in the oddity task which is not prone to cross-modal response bias...

  13. Software Radar Technology

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-08-01

    Full Text Available In this paper, the definition and the key features of Software Radar, which is a new concept, are proposed and discussed. We consider the development of modern radar system technology to be divided into three stages: Digital Radar, Software radar and Intelligent Radar, and the second stage is just commencing now. A Software Radar system should be a combination of various modern digital modular components conformed to certain software and hardware standards. Moreover, a software radar system with an open system architecture supporting to decouple application software and low level hardware would be easy to adopt "user requirements-oriented" developing methodology instead of traditional "specific function-oriented" developing methodology. Compared with traditional Digital Radar, Software Radar system can be easily reconfigured and scaled up or down to adapt to the changes of requirements and technologies. A demonstration Software Radar signal processing system, RadarLab 2.0, which has been developed by Tsinghua University, is introduced in this paper and the suggestions for the future development of Software Radar in China are also given in the conclusion.

  14. The functional subdivision of the visual brain: Is there a real illusion effect on action? A multi-lab replication study.

    Science.gov (United States)

    Kopiske, Karl K; Bruno, Nicola; Hesse, Constanze; Schenk, Thomas; Franz, Volker H

    2016-06-01

    It has often been suggested that visual illusions affect perception but not actions such as grasping, as predicted by the "two-visual-systems" hypothesis of Milner and Goodale (1995, The Visual Brain in Action, Oxford University press). However, at least for the Ebbinghaus illusion, relevant studies seem to reveal a consistent illusion effect on grasping (Franz & Gegenfurtner, 2008. Grasping visual illusions: consistent data and no dissociation. Cognitive Neuropsychology). Two interpretations are possible: either grasping is not immune to illusions (arguing against dissociable processing mechanisms for vision-for-perception and vision-for-action), or some other factors modulate grasping in ways that mimic a vision-for perception effect in actions. It has been suggested that one such factor may be obstacle avoidance (Haffenden Schiff & Goodale, 2001. The dissociation between perception and action in the Ebbinghaus illusion: nonillusory effects of pictorial cues on grasp. Current Biology, 11, 177-181). In four different labs (total N = 144), we conducted an exact replication of previous studies suggesting obstacle avoidance mechanisms, implementing conditions that tested grasping as well as multiple perceptual tasks. This replication was supplemented by additional conditions to obtain more conclusive results. Our results confirm that grasping is affected by the Ebbinghaus illusion and demonstrate that this effect cannot be explained by obstacle avoidance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Does my step look big in this? A visual illusion leads to safer stepping behaviour.

    Directory of Open Access Journals (Sweden)

    David B Elliott

    Full Text Available BACKGROUND: Tripping is a common factor in falls and a typical safety strategy to avoid tripping on steps or stairs is to increase foot clearance over the step edge. In the present study we asked whether the perceived height of a step could be increased using a visual illusion and whether this would lead to the adoption of a safer stepping strategy, in terms of greater foot clearance over the step edge. The study also addressed the controversial question of whether motor actions are dissociated from visual perception. METHODOLOGY/PRINCIPAL FINDINGS: 21 young, healthy subjects perceived the step to be higher in a configuration of the horizontal-vertical illusion compared to a reverse configuration (p = 0.01. During a simple stepping task, maximum toe elevation changed by an amount corresponding to the size of the visual illusion (p<0.001. Linear regression analyses showed highly significant associations between perceived step height and maximum toe elevation for all conditions. CONCLUSIONS/SIGNIFICANCE: The perceived height of a step can be manipulated using a simple visual illusion, leading to the adoption of a safer stepping strategy in terms of greater foot clearance over a step edge. In addition, the strong link found between perception of a visual illusion and visuomotor action provides additional support to the view that the original, controversial proposal by Goodale and Milner (1992 of two separate and distinct visual streams for perception and visuomotor action should be re-evaluated.

  16. Radar Emission Sources Identification Based on Hierarchical Agglomerative Clustering for Large Data Sets

    Directory of Open Access Journals (Sweden)

    Janusz Dudczyk

    2016-01-01

    Full Text Available More advanced recognition methods, which may recognize particular copies of radars of the same type, are called identification. The identification process of radar devices is a more specialized task which requires methods based on the analysis of distinctive features. These features are distinguished from the signals coming from the identified devices. Such a process is called Specific Emitter Identification (SEI. The identification of radar emission sources with the use of classic techniques based on the statistical analysis of basic measurable parameters of a signal such as Radio Frequency, Amplitude, Pulse Width, or Pulse Repetition Interval is not sufficient for SEI problems. This paper presents the method of hierarchical data clustering which is used in the process of radar identification. The Hierarchical Agglomerative Clustering Algorithm (HACA based on Generalized Agglomerative Scheme (GAS implemented and used in the research method is parameterized; therefore, it is possible to compare the results. The results of clustering are presented in dendrograms in this paper. The received results of grouping and identification based on HACA are compared with other SEI methods in order to assess the degree of their usefulness and effectiveness for systems of ESM/ELINT class.

  17. Characterizing Illusions of Competence in Introductory Chemistry Students

    Science.gov (United States)

    Pazicni, Samuel; Bauer, Christopher F.

    2014-01-01

    The Dunning-Kruger effect is a cognitive bias that plagues a particular population of students--the unskilled. This population suffers from illusory competence, as determined by inaccurate ratings of their own ability/performance. These mistakenly high self-ratings (i.e. ''illusions of competence'') are typically explained by a metacognitive…

  18. Inflation and Stock Prices: No Illusion

    OpenAIRE

    Chao Wei

    2007-01-01

    Campbell and Vuolteenaho (2004) use VAR results to advocate inflation illusion as the explanation for the positive association between inflation and the dividend yield. Contrary to their results, we find that a fully rational dynamic general equilibrium model can generate a positive correlation between the dividend yield and inflation of comparable size to its data counterpart. The model results support a proxy hypothesis, according to which, a third factor, which in our model represents tech...

  19. The Café Wall Illusion: Local and Global Perception from Multiple Scales to Multiscale

    Directory of Open Access Journals (Sweden)

    Nasim Nematzadeh

    2017-01-01

    Full Text Available Geometrical illusions are a subclass of optical illusions in which the geometrical characteristics of patterns in particular orientations and angles are distorted and misperceived as a result of low-to-high-level retinal/cortical processing. Modelling the detection of tilt in these illusions, and its strength, is a challenging task and leads to the development of techniques that explain important features of human perception. We present here a predictive and quantitative approach for modelling foveal and peripheral vision for the induced tilt in the Café Wall illusion, in which parallel mortar lines between shifted rows of black and white tiles appear to converge and diverge. Difference of Gaussians is used to define a bioderived filtering model for the responses of retinal simple cells to the stimulus, while an analytical processing pipeline is developed to quantify the angle of tilt in the model and develop confidence intervals around them. Several sampling sizes and aspect ratios are explored to model variant foveal views, and a variety of pattern configurations are tested to model variant Gestalt views. The analysis of our model across this range of test configurations presents a precisely quantified comparison contrasting local tilt detection in the foveal sample sets with pattern-wide Gestalt tilt.

  20. More than a Cool Illusion? Functional Significance of Self-Motion Illusion (Circular Vection for Perspective Switches

    Directory of Open Access Journals (Sweden)

    Bernhard E. Riecke

    2015-08-01

    Full Text Available Self-motion can facilitate perspective switches and automatic spatial updating and help reduce disorientation in applications like Virtual Reality. However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion (circular vection can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously-learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields (auditory vection and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective Virtual Reality simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  1. The human touch: skin temperature during the rubber hand illusion in manual and automated stroking procedures.

    Directory of Open Access Journals (Sweden)

    Marieke Rohde

    Full Text Available A difference in skin temperature between the hands has been identified as a physiological correlate of the rubber hand illusion (RHI. The RHI is an illusion of body ownership, where participants perceive body ownership over a rubber hand if they see it being stroked in synchrony with their own occluded hand. The current study set out to replicate this result, i.e., psychologically induced cooling of the stimulated hand using an automated stroking paradigm, where stimulation was delivered by a robot arm (PHANToM(TM force-feedback device. After we found no evidence for hand cooling in two experiments using this automated procedure, we reverted to a manual stroking paradigm, which is closer to the one employed in the study that first produced this effect. With this procedure, we observed a relative cooling of the stimulated hand in both the experimental and the control condition. The subjective experience of ownership, as rated by the participants, by contrast, was strictly linked to synchronous stroking in all three experiments. This implies that hand-cooling is not a strict correlate of the subjective feeling of hand ownership in the RHI. Factors associated with the differences between the two designs (differences in pressure of tactile stimulation, presence of another person that were thus far considered irrelevant to the RHI appear to play a role in bringing about this temperature effect.

  2. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  3. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  4. Optical illusions and life-threatening traffic crashes: A perspective on aerial perspective.

    Science.gov (United States)

    Redelmeier, Donald A; Raza, Sheharyar

    2018-05-01

    Aerial perspective illusion is a feature of visual perception where landscapes appear relatively close in clear light and distant in dim light. We hypothesized that bright sunlight might cause drivers to perceive distant terrain as relatively close and misinterpret the approach speed of surrounding landscape as unduly slow. This hypothesis would mean, in turn, that drivers in bright sunlight may underestimate their progress on the road, compensate by traveling at a faster baseline speed, and ultimately increase the prevailing risk of a life-threatening traffic crash. We conducted three pilot studies to illustrate how the illusion might contribute to a life- threatening traffic crash. The first illustration used a questionnaire to demonstrate that most respondents were mistaken when judging the distance between simple balls in different positions. The second illustration involved an experimental manipulation to assess whether aerial perspective influenced judgments about the relative positions of vehicles in traffic. The third illustration analyzed a segment of high-volume fast-speed traffic and found an increased frequency of speeding under bright sunlight. Together with past work based on the visual arts, these examples illustrate how an aerial perspective illusion can affect distance perception, may appear in realistic traffic situations, and could potentially contribute to the risk of a life-threatening traffic crash. An awareness of this hypothesis might lead to applications on how optical illusions could extend to everyday traffic and might potentially inform safety warnings to prevent life- threatening crashes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Medically unexplained symptom reports are associated with a decreased response to the rubber hand illusion.

    Science.gov (United States)

    Miles, Eleanor; Poliakoff, Ellen; Brown, Richard J

    2011-10-01

    Medically unexplained symptoms (MUS) have been hypothesized to result from a distortion in perception, whereby top-down factors influence the process of body representation. Perceptual illusions provide a novel method of investigating this hypothesis. This study aimed to investigate whether self-reported unexplained symptoms are associated with altered experience of the rubber hand illusion (RHI). A non-clinical MUS group with high scores on the Somatoform Dissociation Questionnaire (SDQ), and a control group with low scores on this scale, were exposed to the RHI. Illusion experience was measured by self-reports and by proprioceptive alteration. After controlling for somatosensory amplification and trait anxiety, the low-SDQ group responded significantly more strongly to the RHI on both questionnaire and proprioceptive measures of the illusion. In contrast, the high-SDQ group scored significantly higher on the Perceptual Aberrations Scale, a measure of bodily distortions in daily life. These findings support the proposed link between MUS and disturbances in body representation, and suggest that a decreased reliance on current sensory inputs may contribute to symptom experience in susceptible individuals. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Tuning self-motion perception in virtual reality with visual illusions.

    Science.gov (United States)

    Bruder, Gerd; Steinicke, Frank; Wieland, Phil; Lappe, Markus

    2012-07-01

    Motion perception in immersive virtual environments significantly differs from the real world. For example, previous work has shown that users tend to underestimate travel distances in virtual environments (VEs). As a solution to this problem, researchers proposed to scale the mapped virtual camera motion relative to the tracked real-world movement of a user until real and virtual motion are perceived as equal, i.e., real-world movements could be mapped with a larger gain to the VE in order to compensate for the underestimation. However, introducing discrepancies between real and virtual motion can become a problem, in particular, due to misalignments of both worlds and distorted space cognition. In this paper, we describe a different approach that introduces apparent self-motion illusions by manipulating optic flow fields during movements in VEs. These manipulations can affect self-motion perception in VEs, but omit a quantitative discrepancy between real and virtual motions. In particular, we consider to which regions of the virtual view these apparent self-motion illusions can be applied, i.e., the ground plane or peripheral vision. Therefore, we introduce four illusions and show in experiments that optic flow manipulation can significantly affect users' self-motion judgments. Furthermore, we show that with such manipulations of optic flow fields the underestimation of travel distances can be compensated.

  7. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  8. Evaluation for the design of experience in virtual environments: modeling breakdown of interaction and illusion.

    Science.gov (United States)

    Marsh, T; Wright, P; Smith, S

    2001-04-01

    New and emerging media technologies have the potential to induce a variety of experiences in users. In this paper, it is argued that the inducement of experience presupposes that users are absorbed in the illusion created by these media. Looking to another successful visual medium, film, this paper borrows from the techniques used in "shaping experience" to hold spectators' attention in the illusion of film, and identifies what breaks the illusion/experience for spectators. This paper focuses on one medium, virtual reality (VR), and advocates a transparent or "invisible style" of interaction. We argue that transparency keeps users in the "flow" of their activities and consequently enhances experience in users. Breakdown in activities breaks the experience and subsequently provides opportunities to identify and analyze potential causes of usability problems. Adopting activity theory, we devise a model of interaction with VR--through consciousness and activity--and introduce the concept of breakdown in illusion. From this, a model of effective interaction with VR is devised and the occurrence of breakdown in interaction and illusion is identified along a continuum of engagement. Evaluation guidelines for the design of experience are proposed and applied to usability problems detected in an empirical study of a head-mounted display (HMD) VR system. This study shows that the guidelines are effective in the evaluation of VR. Finally, we look at the potential experiences that may be induced in users and propose a way to evaluate user experience in virtual environments (VEs) and other new and emerging media.

  9. The neural signature of the Fraser illusion: An explorative EEG study on Fraser-like displays

    Directory of Open Access Journals (Sweden)

    Xuyan eYun

    2015-07-01

    Full Text Available We studied neural correlates accompanying the Fraser spiral illusion. The Fraser spiral illusion consists of twisted cords superimposed on a patchwork background arranged in concentric circles, which is typically perceived as a spiral. We tested four displays: the Fraser spiral illusion and three variants derived from it by orthogonally combining featural properties. In our stimuli, the shape of the cords comprised either concentric circles or a single spiral. The cords themselves consisted of black and white lines in parallel to the contour of the cords (i.e. parallel cords, or oblique line elements (i.e. twisted cords. The displays with twisted cords successfully induced illusory percepts, i.e. circles looked like spirals (the Fraser spiral illusion and spirals looked like circles (i.e., a ‘reverse Fraser illusion’. We compared the event-related potentials in a Stimulus (Circle, Spiral × Percept (Circle, Spiral design. A significant main effect of Stimulus was found at the posterior scalp in an early component (P220-280 and a significant main effect of Percept was found over the anterior scalp in a later component (P350-450. Although the EEG data suggest stimulus-based processing in posterior area in an early time window and Percept based processing in the later time window, an overall clear-cut stimulus-percept segregation was not found due to additional interaction effects. Instead, the data, especially in the later time window in the anterior area, point at differential processing for the condition comprising circle shapes but spiral percepts (i.e. the Fraser illusion.

  10. Empathy in intimate relationships : The role of positive illusions

    NARCIS (Netherlands)

    Dijkstra, Pieternel; Barelds, Dick P.H.; Groothof, Hinke A.K.; Van Bruggen, Marnix

    2014-01-01

    Previous studies have shown empathy to be an important aspect of a high quality intimate relationship. Likewise, positive illusions about a partner's characteristics have been shown to contribute to relationship quality. The present study connects these issues by examining the degree to which

  11. Visual illusions and direct perception : Elaborating on Gibson's insights

    NARCIS (Netherlands)

    de Wit, Matthieu M.; van der Kamp, John; Withagen, Rob

    Gibson argued that illusory pictorial displays contain "inadequate" information (1966, p. 288) but also that a "very special kind of selective attention" (p.313) can dispel the illusion -suggesting that adequate perceptual information could in fact be potentially available to observers. The present

  12. Visual illusions and direct perception: Elaborating on Gibson's insights

    NARCIS (Netherlands)

    de Wit, M.M.; van der Kamp, J.; Withagen, R

    2015-01-01

    Gibson argued that illusory pictorial displays contain "inadequate" information (1966, p. 288) but also that a "very special kind of selective attention" (p. 313) can dispel the illusion-suggesting that adequate perceptual information could in fact be potentially available to observers. The present

  13. The rubber hand illusion in complex regional pain syndrome: preserved ability to integrate a rubber hand indicates intact multisensory integration.

    Science.gov (United States)

    Reinersmann, Annika; Landwehrt, Julia; Krumova, Elena K; Peterburs, Jutta; Ocklenburg, Sebastian; Güntürkün, Onur; Maier, Christoph

    2013-09-01

    In patients with complex regional pain syndrome (CRPS) type 1, processing of static tactile stimuli is impaired, whereas more complex sensory integration functions appear preserved. This study investigated higher order multisensory integration of body-relevant stimuli using the rubber hand illusion in CRPS patients. Subjective self-reports and skin conductance responses to watching the rubber hand being harmed were compared among CRPS patients (N=24), patients with upper limb pain of other origin (N=21, clinical control group), and healthy subjects (N=24). Additionally, the influence of body representation (body plasticity [Trinity Assessment of Body Plasticity], neglect-like severity symptoms), and clinical signs of illusion strength were investigated. For statistical analysis, 1-way analysis of variance, t test, Pearson correlation, with α=0.05 were used. CRPS patients did not differ from healthy subjects and the control group with regard to their illusion strength as assessed by subjective reports or skin conductance response values. Stronger left-sided rubber hand illusions were reported by healthy subjects and left-side-affected CRPS patients. Moreover, for this subgroup, illness duration and illusion strength were negatively correlated. Overall, severity of neglect-like symptoms and clinical signs were not related to illusion strength. However, patients with CRPS of the right hand reported significantly stronger neglect-like symptoms and significantly lower illusion strength of the affected hand than patients with CRPS of the left hand. The weaker illusion of CRPS patients with strong neglect-like symptoms on the affected hand supports the role of top-down processes modulating body ownership. Moreover, the intact ability to perceive illusory ownership confirms the notion that, despite impaired processing of proprioceptive or tactile input, higher order multisensory integration is unaffected in CRPS. Copyright © 2013 International Association for the Study

  14. The design of infrared laser radar for vehicle initiative safety

    Science.gov (United States)

    Gong, Ping; Xu, Xi-ping; Li, Xiao-yu; Li, Tian-zhi; Liu, Yu-long; Wu, Jia-hui

    2013-09-01

    Laser radar for vehicle is mainly used in advanced vehicle on-board active safety systems, such as forward anti-collision systems, active collision warning systems and adaptive cruise control systems, etc. Laser radar for vehicle plays an important role in the improvement of vehicle active safety and the reduction of traffic accidents. The stability of vehicle active anti-collision system in dynamic environment is still one of the most difficult problems to break through nowadays. According to people's driving habit and the existed detecting technique of sensor, combining the infrared laser range and galvanometer scanning technique , design a 3-D infrared laser radar which can be used to assist navigation, obstacle avoidance and the vehicle's speed control for the vehicle initiative safety. The device is fixed to the head of vehicle. Then if an accident happened, the device could give an alarm to remind the driver timely to decelerate or brake down, by which way can people get the purpose of preventing the collision accidents effectively. To accomplish the design, first of all, select the core components. Then apply Zemax to design the transmitting and receiving optical system. Adopt 1550 nm infrared laser transmitter as emission unit in the device, a galvanometer scanning as laser scanning unit and an InGaAs-APD detector as laser echo signal receiving unit. Perform the construction of experimental system using FPGA and ARM as the core controller. The system designed in this paper can not only detect obstacle in front of the vehicle and make the control subsystem to execute command, but also transfer laser data to PC in real time. Lots of experiments using the infrared laser radar prototype are made, and main performance of it is under tested. The results of these experiments show that the imaging speed of the laser radar can reach up to 25 frames per second, the frame resolution of each image can reach 30×30 pixels, the horizontal angle resolution is about 6. 98

  15. Modulation of fronto-parietal connections during the rubber hand illusion

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Ritterband-Rosenbaum, Anina; Christensen, Mark Schram

    2017-01-01

    Accumulating evidence suggests that parieto-frontal connections play a role in adjusting body ownership during the Rubber Hand Illusion (RHI). Using a motor version of the rubber hand illusion paradigm, we applied single-site and dual-site transcranial magnetic stimulation (TMS) to investigate...... and during three RHI conditions: a) agency and ownership, b) agency but no ownership and c) neither agency nor ownership. Parietal-motor communication differed among experimental conditions. The induction of action ownership was associated with an inhibitory parietal-to-motor connectivity, which...... cortico-spinal and parietal-frontal connectivity during perceived rubber hand ownership. Healthy volunteers received a conditioning TMS pulse over left anterior intraparietal sulcus (aIPS) and a test TMS pulse over left primary motor cortex (M1). Motor Evoked Potentials (MEPs) were recorded at rest...

  16. Motor imagery enhancement paradigm using moving rubber hand illusion system.

    Science.gov (United States)

    Minsu Song; Jonghyun Kim

    2017-07-01

    Motor imagery (MI) has been widely used in neurorehabilitation and brain computer interface. The size of event-related desynchronization (ERD) is a key parameter for successful motor imaginary rehabilitation and BCI adaptation. Many studies have used visual guidance for enhancement/ amplification of motor imagery ERD amplitude, but their enhancements were not significant. We propose a novel ERD enhancing paradigm using body-ownership illusion, or also known as rubber hand illusion (RHI). The system was made by motorized, moving rubber hand which can simulate wrist extension. The amplifying effects of the proposed RHI paradigm were evaluated by comparing ERD sizes of the proposed paradigm with motor imagery and actual motor execution paradigms. The comparison result shows that the improvement of ERD size due to the proposed paradigm was statistically significant (pparadigms.

  17. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion

    OpenAIRE

    Harvie, Daniel S.; Smith, Ross T.; Hunter, Estin V.; Davis, Miles G.; Sterling, Michele; Moseley, G. Lorimer

    2017-01-01

    Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothe...

  18. Quantifying the Ebbinghaus figure effect: Target size, context size, and target-context distance determine the presence and direction of the illusion.

    Directory of Open Access Journals (Sweden)

    Hester eKnol

    2015-11-01

    Full Text Available Over the last 20 years, visual illusions, like the Ebbinghaus figure, have become widespread to investigate functional segregation of the visual system. This segregation reveals itself, so it is claimed, in the insensitivity of movement to optical illusions. This claim, however, faces contradictory results (and interpretations in the literature. These contradictions may be due to methodological weaknesses in, and differences across studies, some of which may hide a lack of perceptual illusion effects. Indeed, despite the long history of research with the Ebbinghaus figure, standardized configurations to predict the illusion effect are missing. Here, we present a complete geometrical description of the Ebbinghaus figure with three target sizes compatible with Fitts’ task. Each trial consisted of a stimulus and an isolated probe. The probe was controlled by the participant’s response through a staircase procedure. The participant was asked whether the probe or target appeared bigger. The factors target size, context size, target-context distance, and a control condition resulted in a 3×3×3+3 factorial design. The results indicate that the illusion magnitude, the perceptual distinctiveness, and the response time depend on the context size, distance, and especially, target size. In 33% of the factor combinations there was no illusion effect. The illusion magnitude ranged from zero to (exceptionally ten percent of the target size. The small (or absent illusion effects on perception and its possible influence on motor tasks might have been overlooked or misinterpreted in previous studies. Our results provide a basis for the application of the Ebbinghaus figure in psychophysical and motor control studies.

  19. Conditioned pain modulation dampens the thermal grill illusion.

    Science.gov (United States)

    Harper, D E; Hollins, M

    2017-10-01

    The thermal grill illusion (TGI) refers to the perception of burning heat and often pain that arises from simultaneous cutaneous application of innocuous warm and cool stimuli. This study utilized conditioned pain modulation (CPM) to help elucidate the TGI's underlying neural mechanisms, including the debated role of ascending nociceptive signals in generating the illusion. To trigger CPM, subjects placed the left hand in noxious cold (6 °C) water before placing the right volar forearm onto a thermal grill. Lower pain and unpleasantness ratings of the grill in this CPM run compared to those in a control run (i.e. 33 °C water) were taken as evidence of CPM. To determine whether CPM reduces noxious heat pain and illusory heat pain equally, an experimental group of subjects rated pain and unpleasantness of a grill consisting of innocuous alternating warm (42 °C) and cool (18 °C) bars, while a control group rated a grill with all bars controlled to a noxious temperature (45 °C). CPM produced significant and comparable reductions in pain, unpleasantness and perceived heat of both noxious heat and the TGI. This result suggests that the TGI results from signals in nociceptive dorsal horn convergent neurons, since CPM involves descending inhibition with high selectivity for this neuronal population. More broadly, CPM's ability to produce a shift in perceived thermal sensation of both noxious heat and the TGI from 'hot' to 'warm' implies that nociceptive signals generated by a cutaneous stimulus can contribute to its perceived thermal intensity. Conditioned pain modulation reduces the perceived painfulness, unpleasantness and heat of the thermal grill illusion and noxious heat similarly. The results have important theoretical implications for both types of pain. © 2017 European Pain Federation - EFIC®.

  20. Knowing the Limits of One's Understanding: The Development of an Awareness of an Illusion of Explanatory Depth

    Science.gov (United States)

    Mills, Candice M.; Keil, Frank C.

    2004-01-01

    Adults overestimate the detail and depth of their explanatory knowledge, but through providing explanations they recognize their initial illusion of understanding. By contrast, they are much more accurate in making self-assessments for other kinds of knowledge, such as for procedures, narratives, and facts. Two studies examined this "illusion of…

  1. Uncertainty in visual processes predicts geometrical optical illusions.

    Science.gov (United States)

    Fermüller, Cornelia; Malm, Henrik

    2004-03-01

    It is proposed in this paper that many geometrical optical illusions, as well as illusory patterns due to motion signals in line drawings, are due to the statistics of visual computations. The interpretation of image patterns is preceded by a step where image features such as lines, intersections of lines, or local image movement must be derived. However, there are many sources of noise or uncertainty in the formation and processing of images, and they cause problems in the estimation of these features; in particular, they cause bias. As a result, the locations of features are perceived erroneously and the appearance of the patterns is altered. The bias occurs with any visual processing of line features; under average conditions it is not large enough to be noticeable, but illusory patterns are such that the bias is highly pronounced. Thus, the broader message of this paper is that there is a general uncertainty principle which governs the workings of vision systems, and optical illusions are an artifact of this principle.

  2. Taking aim at Müller-Lyer goalkeeper illusion: An illusion bias in action that originates from the target not being optically specified.

    NARCIS (Netherlands)

    Shim, J.; van der Kamp, J.; Rigby, B.R.; Lutz, R.; Poolton, J.M.; Masters, R.S.W.

    2014-01-01

    Van der Kamp and Masters (2008) reported that goalkeeper postures that mimic the Müller-Lyer (1889) illusion affect the location of handball penalty throws. In four experiments, we aimed to verify that the effects on throwing are consistent with an illusorybias(Experiments 1 and 2), and to examine

  3. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  4. Integration eller Illusion

    DEFF Research Database (Denmark)

    Rezaei, Shahamak; Goli, Marco

    2012-01-01

    Integration or illusion – a deviance perspective Denmark experienced one of its most successful periods of economic growth in 2004–2008 with a tremendous reduction of unemployment, which in June 2008 was around. 1.5 percent, far below the expected level of structural unemployment. In the wake...... of migrants’ skills. 2. Whether there were patterns of over-education as expression of institutional and societal discrimination. The focus of the present study is, however, quite different: We examine the pattern of deviance in relation to labour market participation (not integration), and instead...... of searching for explanations for the lack of integration, we attempt to identify and explain the deviance pattern as a product of institutionally inherent possibilities and barriers on the one hand and articulating immigrants as rational actors (not victims) on the other. We argue that deviance is not only...

  5. Applying the Helmholtz Illusion to Fashion: Horizontal Stripes Won't Make You Look Fatter

    Directory of Open Access Journals (Sweden)

    Peter Thompson

    2011-01-01

    Full Text Available A square composed of horizontal lines appears taller and narrower than an identical square made up of vertical lines. Reporting this illusion, Hermann von Helmholtz noted that such illusions, in which filled space seems to be larger than unfilled space, were common in everyday life, adding the observation that ladies' frocks with horizontal stripes make the figure look taller. As this assertion runs counter to modern popular belief, we have investigated whether vertical or horizontal stripes on clothing should make the wearer appear taller or fatter. We find that a rectangle of vertical stripes needs to be extended by 7.1% vertically to match the height of a square of horizontal stripes and that a rectangle of horizontal stripes must be made 4.5% wider than a square of vertical stripes to match its perceived width. This illusion holds when the horizontal or vertical lines are on the dress of a line drawing of a woman. We have examined the claim that these effects apply only for 2-dimensional figures in an experiment with 3-D cylinders and find no support for the notion that horizontal lines would be ‘fattening’ on clothes. Significantly, the illusion persists when the horizontal or vertical lines are on pictures of a real half-body mannequin viewed stereoscopically. All the evidence supports Helmholtz's original assertion.

  6. Network connectivity paradigm for the large data produced by weather radar systems

    Science.gov (United States)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona

    2014-05-01

    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  7. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Transformation magneto-statics and illusions for magnets

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2014-10-01

    Based on the form-invariant of Maxwell's equations under coordinate transformations, we extend the theory of transformation optics to transformation magneto-statics, which can design magnets through coordinate transformations. Some novel DC magnetic field illusions created by magnets (e.g. rescaling magnets, cancelling magnets and overlapping magnets) are designed and verified by numerical simulations. Our research will open a new door to designing magnets and controlling DC magnetic fields.

  9. The effect of working memory load on semantic illusions: what the phonological loop and central executive have to contribute.

    Science.gov (United States)

    Büttner, Anke Caroline

    2012-01-01

    When asked how many animals of each kind Moses took on the Ark, most people respond with "two" despite the substituted name (Moses for Noah) in the question. Possible explanations for semantic illusions appear to be related to processing limitations such as those of working memory. Indeed, individual working memory capacity has an impact upon how sentences containing substitutions are processed. This experiment examined further the role of working memory in the occurrence of semantic illusions using a dual-task working memory load approach. Participants verified statements while engaging in either articulatory suppression or random number generation. Secondary task type had a significant effect on semantic illusion rate, but only when comparing the control condition to the two dual-task conditions. Furthermore, secondary task performance in the random number generation condition declined, suggesting a tradeoff between tasks. Response time analyses also showed a different pattern of processing across the conditions. The findings suggest that the phonological loop plays a role in representing semantic illusion sentences coherently and in monitoring for details, while the role of the central executive is to assist gist-processing of sentences. This usually efficient strategy leads to error in the case of semantic illusions.

  10. Perception, action, and Roelofs effect: a mere illusion of dissociation.

    Directory of Open Access Journals (Sweden)

    Paul Dassonville

    2004-11-01

    Full Text Available A prominent and influential hypothesis of vision suggests the existence of two separate visual systems within the brain, one creating our perception of the world and another guiding our actions within it. The induced Roelofs effect has been described as providing strong evidence for this perception/action dissociation: When a small visual target is surrounded by a large frame positioned so that the frame's center is offset from the observer's midline, the perceived location of the target is shifted in the direction opposite the frame's offset. In spite of this perceptual mislocalization, however, the observer can accurately guide movements to the target location. Thus, perception is prone to the illusion while actions seem immune. Here we demonstrate that the Roelofs illusion is caused by a frame-induced transient distortion of the observer's apparent midline. We further demonstrate that actions guided to targets within this same distorted egocentric reference frame are fully expected to be accurate, since the errors of target localization will exactly cancel the errors of motor guidance. These findings provide a mechanistic explanation for the various perceptual and motor effects of the induced Roelofs illusion without requiring the existence of separate neural systems for perception and action. Given this, the behavioral dissociation that accompanies the Roelofs effect cannot be considered evidence of a dissociation of perception and action. This indicates a general need to re-evaluate the broad class of evidence purported to support this hypothesized dissociation.

  11. Lighting, backlighting and watercolor illusions and the laws of figurality.

    Science.gov (United States)

    Pinna, Baingio; Reeves, Adam

    2006-01-01

    We report some novel 'lighting' and 'backlighting' effects in plane figures similar to those which induce the 'watercolor illusion', that is, figures made with outlines composed of juxtaposed parallel lines varying in brightness and chromatic color. These new effects show 'illumination' as an emergent percept, and show how arrangements of 'dark and light' along the boundaries of various plane figures model the volume and strengthen the illusion of depth. To account for these various effects we propose several phenomenological 'laws of figurality' to add to the Gestalt laws of organization and figure-ground segregation. We offer a set of meta-laws which are speculative but which serve to integrate and organize the phenomenological laws. These laws indicate how luminance gradient profiles across boundary contours define both the 3D appearance of figures and the properties of the light reflected from their volumetric shapes.

  12. Sleeping on the rubber-hand illusion: Memory reactivation during sleep facilitates multisensory recalibration.

    Science.gov (United States)

    Honma, Motoyasu; Plass, John; Brang, David; Florczak, Susan M; Grabowecky, Marcia; Paller, Ken A

    2016-01-01

    Plasticity is essential in body perception so that physical changes in the body can be accommodated and assimilated. Multisensory integration of visual, auditory, tactile, and proprioceptive signals contributes both to conscious perception of the body's current state and to associated learning. However, much is unknown about how novel information is assimilated into body perception networks in the brain. Sleep-based consolidation can facilitate various types of learning via the reactivation of networks involved in prior encoding or through synaptic down-scaling. Sleep may likewise contribute to perceptual learning of bodily information by providing an optimal time for multisensory recalibration. Here we used methods for targeted memory reactivation (TMR) during slow-wave sleep to examine the influence of sleep-based reactivation of experimentally induced alterations in body perception. The rubber-hand illusion was induced with concomitant auditory stimulation in 24 healthy participants on 3 consecutive days. While each participant was sleeping in his or her own bed during intervening nights, electrophysiological detection of slow-wave sleep prompted covert stimulation with either the sound heard during illusion induction, a counterbalanced novel sound, or neither. TMR systematically enhanced feelings of bodily ownership after subsequent inductions of the rubber-hand illusion. TMR also enhanced spatial recalibration of perceived hand location in the direction of the rubber hand. This evidence for a sleep-based facilitation of a body-perception illusion demonstrates that the spatial recalibration of multisensory signals can be altered overnight to stabilize new learning of bodily representations. Sleep-based memory processing may thus constitute a fundamental component of body-image plasticity.

  13. Effect of field-of-view on the Coriolis illusion

    NARCIS (Netherlands)

    Groen, E.L.; Muis, H.; Kooi, F.L.

    2008-01-01

    Tilting the head during rotation about an Earth-vertical axis produces cross-coupled stimulation of the semicircular canals. Without visual feedback on the actual self-motion, this leads to the so-called Coriolis illusion. We investigated the effect of the field-of-view (FOV) on the magnitude and

  14. Auralization of CFD Vorticity Using an Auditory Illusion

    Science.gov (United States)

    Volpe, C. R.

    2005-12-01

    One way in which scientists and engineers interpret large quantities of data is through a process called visualization, i.e. generating graphical images that capture essential characteristics and highlight interesting relationships. Another approach, which has received far less attention, is to present complex information with sound. This approach, called ``auralization" or ``sonification", is the auditory analog of visualization. Early work in data auralization frequently involved directly mapping some variable in the data to a sound parameter, such as pitch or volume. Multi-variate data could be auralized by mapping several variables to several sound parameters simultaneously. A clear drawback of this approach is the limited practical range of sound parameters that can be presented to human listeners without exceeding their range of perception or comfort. A software auralization system built upon an existing visualization system is briefly described. This system incorporates an aural presentation synchronously and interactively with an animated scientific visualization, so that alternate auralization techniques can be investigated. One such alternate technique involves auditory illusions: sounds which trick the listener into perceiving something other than what is actually being presented. This software system will be used to present an auditory illusion, known for decades among cognitive psychologists, which produces a sound that seems to ascend or descend endlessly in pitch. The applicability of this illusion for presenting Computational Fluid Dynamics data will be demonstrated. CFD data is frequently visualized with thin stream-lines, but thicker stream-ribbons and stream-tubes can also be used, which rotate to convey fluid vorticity. But a purely graphical presentation can yield drawbacks of its own. Thicker stream-tubes can be self-obscuring, and can obscure other scene elements as well, thus motivating a different approach, such as using sound. Naturally

  15. Brain Process for Perception of the “Out of the Body” Tactile Illusion for Virtual Object Interaction

    Directory of Open Access Journals (Sweden)

    Hye Jin Lee

    2015-04-01

    Full Text Available “Out of the body” tactile illusion refers to the phenomenon in which one can perceive tactility as if emanating from a location external to the body without any stimulator present there. Taking advantage of such a tactile illusion is one way to provide and realize richer interaction feedback without employing and placing actuators directly at all stimulation target points. However, to further explore its potential, it is important to better understand the underlying physiological and neural mechanism. As such, we measured the brain wave patterns during such tactile illusion and mapped out the corresponding brain activation areas. Participants were given stimulations at different levels with the intention to create veridical (i.e., non-illusory and phantom sensations at different locations along an external hand-held virtual ruler. The experimental data and analysis indicate that both veridical and illusory sensations involve, among others, the parietal lobe, one of the most important components in the tactile information pathway. In addition, we found that as for the illusory sensation, there is an additional processing resulting in the delay for the ERP (event-related potential and involvement by the limbic lobe. These point to regarding illusion as a memory and recognition task as a possible explanation. The present study demonstrated some basic understanding; how humans process “virtual” objects and the way associated tactile illusion is generated will be valuable for HCI (Human-Computer Interaction.

  16. Analysis on an illusion unexpected occurred on a moving statue leaving in fact but approaching by environmental judgment

    Science.gov (United States)

    He, Youwu; Li, Zhifang; Qiu, Yishen; Li, Hui

    2017-08-01

    Earlier this year we visited Sanya, Hainan Province, China. There is a huge statue, the South Sea Avalokitesvara (南海观世音菩萨), at Sanya Nanshan Buddhism Cultural Tourism Resort. When we were gazing at the statue on a leaving car on gradually rising road, an unexpected visual illusion took place in which the statue seemed running after us. In this presentation, an optical model is developed to explain the illusion occurred on a moving object leaving in fact but approaching by environmental judgement. Such an interesting illusion analysis will play a significant role in having students understood the main principles in geometrical optics.

  17. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  18. Radar rainfall estimation in a hilly environment and implications for runoff modeling

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2010-05-01

    Radars are known for their ability to obtain a wealth of information about the spatial stormfield characteristics. Unfortunately, rainfall estimates obtained by this instrument are known to be affected by multiple sources of error. Especially for stratiform precipitation systems, the quality of radar rainfall estimates starts to decrease at relatively close ranges. In the current study the hydrological potential of weather radar is analyzed during a winter half-year for the hilly region of the Belgian Ardennes. A correction algorithm is proposed taking into account attenuation, ground clutter, anomalous propagation, the vertical profile of reflectivity (VPR) and advection. No final bias correction with respect to rain gauge data were implemented, because that does not add to a better understanding of the quality of the radar. Largest quality improvements in the radar data are obtained by ground clutter removal. The influence of VPR correction and advection depends on the precipitation system observed. Overall, the radar shows an underestimation as compared to the rain gauges, which becomes smaller after averaging at the scale of the medium-sized Ourthe catchment. Remaining differences between both devices can mainly be attributed to an improper choice of the Z-R relationship. Conceptual rainfall-runoff simulations show similar results using either catchment average radar or rain gauge data, although the largest discharge peak observed, is seriously underestimated when applying radar data. Overall, for hydrological applications corrected weather radar information in a hilly environment can be used up to 70 km during a winter half-year.

  19. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  20. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  1. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  2. Illusion optics in chaotic light

    International Nuclear Information System (INIS)

    Zhang Suheng; Gan Shu; Xiong Jun; Zhang Xiangdong; Wang Kaige

    2010-01-01

    The time-reversal process provides the possibility to counteract the time evolution of a physical system. Recent research has shown that such a process can occur in the first-order field correlation of chaotic light and result in the spatial interference and phase-reversal diffraction in an unbalanced interferometer. Here we report experimental investigations on the invisibility cloak and illusion phenomena in chaotic light. In an unbalanced interferometer illuminated by thermal light, we have observed the cloak effect and the optical transformation of one object into another object. The experimental results can be understood by the phase-reversal diffraction, and they demonstrate the theoretical proposal of similar effects in complementary media.

  3. Causality Illusion and Overconfidence in Predicting (QuasiStochastic Financial Events

    Directory of Open Access Journals (Sweden)

    Petr Houdek

    2017-03-01

    Full Text Available We argue that individuals systematically interpret sequences of events in a  causal manner. The aim of this article is to show that people do so even if they are aware of the stochastic nature of the respective sequence. The bias can explain some anomalous behaviour of investors in financial markets. Small as well as professional investors may illusorily perceive causality of former random success and future yield. Laboratory experiments testing the interpretation of stochastically occurring events in financial designs as well as analyses of real trading data from financial markets confirm that investors indeed interpret (quasirandom events casually; they make incorrect predictions and they egocentrically allocate responsibility for their success. The causality illusion induces overconfidence, inefficient investment and risk seeking. In the conclusion, we discuss factors that may limit effects of the causality illusion and suggest future areas for research.

  4. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    Science.gov (United States)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  5. [Complex visual hallucinations following occipital infarct and perception of optical illusions].

    Science.gov (United States)

    Renou, P; Deltour, S; Samson, Y

    2008-05-01

    The physiopathology of visual hallucinations in the hemianopic field secondary to occipital infarct is uncertain. We report the case of a patient with a history of occipital infarct who presented nonstereotyped complex hallucinations in the quadranopic field resulting from a second controlateral occipital infarct. Based on an experience with motion optical illusions, we suggested that the association of these two occipital lesions, involving the V5 motion area on the one side and the V1 area on the other side, could have produced the complex hallucinations due to a release phenomenon. The patient experienced simultaneously a double visual consciousness, with both hallucinations and real visual perceptions. The study of perceptual illusions in patients with visual hallucinations could illustrate the innovative theory of visual consciousness as being not unified but constituted of multiple microconsciousnesses.

  6. Probing perceptual antinomies with the watercolor illusion and explaining how the brain resolves them.

    Science.gov (United States)

    Tanca, Maria; Grossberg, Stephen; Pinna, Baingio

    2010-01-01

    The purpose of this work is to study how the brain solves perceptual antinomies, induced by the watercolor illusion in the color and in the figure-ground segregation domain, when they are present in different parts of the same object. The watercolor illusion shows two main effects: a long-range coloration and an object-hole effect across large enclosed areas (Pinna, 1987, 2005, 2008a, b; Pinna and Grossberg, 2005; Pinna et al., 2001). This illusion strongly enhances the unilateral belongingness of the boundaries (Rubin, 1915) determining grouping and figure-ground segregation more strongly than the well-known Gestalt principles. Due to the watercolor illusion, both the figure and the background assume new properties becoming, respectively, a bulging object and a hole both with a 3-D volumetric appearance (object-hole effect). When the coloration and the object-hole effects induced by the watercolor illusion are opposite (antinomic) within different portions of the same shape, some questions emerge: Do the antinomies split the shape in two parts (a half shape appears as an object and the other half as a hole) or are they solved through a new emergent perceptual result beyond the single effects? Is there a predominance of one component over the other that is less visible or totally invisible? What is perceptible and what is invisible? Is there a wholeness process under conditions where perceptual antinomies coexist? By imparting motion to a watercolored object that gradually should become a hole while overlapping another object placed behind, is the wholeness of the watercolor object weakened or reorganized in a new way? The results of phenomenological experiments suggested that the antinomies tend to be solved through two complement processes of phenomenal wholeness and partialness. These processes are explained in the light of the FACADE neural model of 3-D vision and figure-ground separation (Grossberg, 1994, 2003), notably of how complementary cortical boundary

  7. Can visual illusions be used to facilitate sport skill learning?

    NARCIS (Netherlands)

    Canal Bruland, R.; van der Meer, Y.; Moerman, J.

    2016-01-01

    Recently it has been reported that practicing putting with visual illusions that make the hole appear larger than it actually is leads to longer-lasting performance improvements. Interestingly, from a motor control and learning perspective, it may be possible to actually predict the opposite to

  8. Personality correlates of reporting Chinese words from the Deutsch “high-low” word illusion by Chinese-speaking people

    Institute of Scientific and Technical Information of China (English)

    You Xu; Junpeng Zhu; Wanzhen Chen; Hao Chai; Wei He; Wei Wang

    2012-01-01

    [Objective] When English-speaking people listen to the Deutseh “high-low” word illusion,they report hearing English words.Whether Chinese-speaking people report Chinese words when listening to the illusion,or whether any reported words might be correlated with personality traits as previous investigations have demonstrated for listening to music in other cultures,is open to question.The present study aimed to address this.[Methods] A total of 308 right-handed,healthy volunteers (177 women and 131 men) were given the illusion test and asked to answer the Zuckerman-Kuhlman personality questionnaire (ZKPQ).Their depressive tendency was measured by the Plutchik-van Praag depression inventory (PVP).[Results] There was no gender effect regarding either the PVP score or the number of reported Chinese words from the illusion.Women scored higher on ZKPQ neuroticism-anxiety than men.The number of meaningful Chinese words reported was correlated with the ZKPQ impulsive sensation-seeking,aggression-hostility,and activity scores.Some words reported by participants who scored higher on these three traits were related in meaning to those scales.[[Conclusion

  9. Rubber hand illusion, empathy, and schizotypal experiences in terms of self-other representations.

    Science.gov (United States)

    Asai, Tomohisa; Mao, Zhu; Sugimori, Eriko; Tanno, Yoshihiko

    2011-12-01

    When participants observed a rubber hand being touched, their sense of touch was activated (rubber hand illusion: RHI). While this illusion might be caused by multi-modal integration, it may also be related to empathic function, which enables us to simulate the observed information. We examined individual differences in the RHI, including empathic and schizotypal personality traits, as previous research had suggested that schizophrenic patients would be more subject to the RHI. The results indicated that people who experience a stronger RHI might have stronger empathic and schizotypal personalites simultaneously. We discussed these relationships in terms of self-other representations. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Pareidolias: complex visual illusions in dementia with Lewy bodies.

    Science.gov (United States)

    Uchiyama, Makoto; Nishio, Yoshiyuki; Yokoi, Kayoko; Hirayama, Kazumi; Imamura, Toru; Shimomura, Tatsuo; Mori, Etsuro

    2012-08-01

    Patients rarely experience visual hallucinations while being observed by clinicians. Therefore, instruments to detect visual hallucinations directly from patients are needed. Pareidolias, which are complex visual illusions involving ambiguous forms that are perceived as meaningful objects, are analogous to visual hallucinations and have the potential to be a surrogate indicator of visual hallucinations. In this study, we explored the clinical utility of a newly developed instrument for evoking pareidolic illusions, the Pareidolia test, in patients with dementia with Lewy bodies-one of the most common causes of visual hallucinations in the elderly. Thirty-four patients with dementia with Lewy bodies, 34 patients with Alzheimer's disease and 26 healthy controls were given the Pareidolia test. Patients with dementia with Lewy bodies produced a much greater number of pareidolic illusions compared with those with Alzheimer's disease or controls. A receiver operating characteristic analysis demonstrated that the number of pareidolias differentiated dementia with Lewy bodies from Alzheimer's disease with a sensitivity of 100% and a specificity of 88%. Full-length figures and faces of people and animals accounted for >80% of the contents of pareidolias. Pareidolias were observed in patients with dementia with Lewy bodies who had visual hallucinations as well as those who did not have visual hallucinations, suggesting that pareidolias do not reflect visual hallucinations themselves but may reflect susceptibility to visual hallucinations. A sub-analysis of patients with dementia with Lewy bodies who were or were not treated with donepzil demonstrated that the numbers of pareidolias were correlated with visuoperceptual abilities in the former and with indices of hallucinations and delusional misidentifications in the latter. Arousal and attentional deficits mediated by abnormal cholinergic mechanisms and visuoperceptual dysfunctions are likely to contribute to the development

  11. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  12. Recommendation on Transition from Primary/Secondary Radar to Secondary- Only Radar Capability

    Science.gov (United States)

    1994-10-01

    Radar Beacon Performance Monitor RCIU Remote Control Interface Unit RCL Remote Communications Link R E&D Research, Engineering and Development RML Radar...rate. 3.1.2.5 Maintenance The current LRRs have limited remote maintenance monitoring (RMM) capabilities via the Remote Control Interface Unit ( RCIU ...1, -2 and FPS-20 radars required an upgrade of some of the radar subsystems, namely the RCIU to respond as an RMS and the CD to interface with radar

  13. The Binding Ring Illusion: assimilation affects the perceived size of a circular array [v2; ref status: indexed, http://f1000r.es/12q

    Directory of Open Access Journals (Sweden)

    J Daniel McCarthy

    2013-04-01

    Full Text Available Our perception of an object’s size arises from the integration of multiple sources of visual information including retinal size, perceived distance and its size relative to other objects in the visual field. This constructive process is revealed through a number of classic size illusions such as the Delboeuf Illusion, the Ebbinghaus Illusion and others illustrating size constancy. Here we present a novel variant of the Delbouef and Ebbinghaus size illusions that we have named the Binding Ring Illusion. The illusion is such that the perceived size of a circular array of elements is underestimated when superimposed by a circular contour – a binding ring – and overestimated when the binding ring slightly exceeds the overall size of the array. Here we characterize the stimulus conditions that lead to the illusion, and the perceptual principles that underlie it. Our findings indicate that the perceived size of an array is susceptible to the assimilation of an explicitly defined superimposed contour. Our results also indicate that the assimilation process takes place at a relatively high level in the visual processing stream, after different spatial frequencies have been integrated and global shape has been constructed. We hypothesize that the Binding Ring Illusion arises due to the fact that the size of an array of elements is not explicitly defined and therefore can be influenced (through a process of assimilation by the presence of a superimposed object that does have an explicit size.

  14. Progress in coherent laser radar

    Science.gov (United States)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  15. Do you see what I see? A comparative investigation of the Delboeuf illusion in humans (Homo sapiens), rhesus monkeys (Macaca mulatta), and capuchin monkeys (Cebus apella).

    Science.gov (United States)

    Parrish, Audrey E; Brosnan, Sarah F; Beran, Michael J

    2015-10-01

    Studying visual illusions is critical to understanding typical visual perception. We investigated whether rhesus monkeys (Macaca mulatta) and capuchin monkeys (Cebus apella) perceived the Delboeuf illusion in a similar manner as human adults (Homo sapiens). To test this, in Experiment 1, we presented monkeys and humans with a relative discrimination task that required subjects to choose the larger of 2 central dots that were sometimes encircled by concentric rings. As predicted, humans demonstrated evidence of the Delboeuf illusion, overestimating central dots when small rings surrounded them and underestimating the size of central dots when large rings surrounded them. However, monkeys did not show evidence of the illusion. To rule out an alternate explanation, in Experiment 2, we presented all species with an absolute classification task that required them to classify a central dot as "small" or "large." We presented a range of ring sizes to determine whether the Delboeuf illusion would occur for any dot-to-ring ratios. Here, we found evidence of the Delboeuf illusion in all 3 species. Humans and monkeys underestimated central dot size to a progressively greater degree with progressively larger rings. The Delboeuf illusion now has been extended to include capuchin monkeys and rhesus monkeys, and through such comparative investigations we can better evaluate hypotheses regarding illusion perception among nonhuman animals. (c) 2015 APA, all rights reserved).

  16. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  17. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  18. Social Radar

    Science.gov (United States)

    2012-01-01

    RTA HFM-201/RSM PAPER 3 - 1 © 2012 The MITRE Corporation. All Rights Reserved. Social Radar Barry Costa and John Boiney MITRE Corporation...defenders require an integrated set of capabilities that we refer to as a “ social radar.” Such a system would support strategic- to operational-level...situation awareness, alerting, course of action analysis, and measures of effectiveness for each action undertaken. Success of a social radar

  19. Does affective touch influence the virtual reality full body illusion?

    NARCIS (Netherlands)

    de Jong, Jutta R; Keizer, Anouk; Engel, Manja M; Dijkerman, H Chris

    The sense of how we experience our physical body as our own represents a fundamental component of human self-awareness. Body ownership can be studied with bodily illusions which are generated by inducing a visuo-tactile conflict where individuals experience illusionary ownership over a fake body or

  20. The doctrinal illusion of heterogeneity of international law-making processes

    NARCIS (Netherlands)

    d' Aspremont, J.; Ruiz Fabri, H.; Wofrum, R.; Gogolin, J.

    2010-01-01

    Contemporary practice shows that the image of international lawmaking as a diverse and heterogeneous process, understood in terms of the multiplicity of the actors involved, is mostly an illusion. Despite strong empirical evidence, many scholars have been lured by this idea or have tried to promote

  1. A novel upper limb rehabilitation system with self-driven virtual arm illusion.

    Science.gov (United States)

    Aung, Yee Mon; Al-Jumaily, Adel; Anam, Khairul

    2014-01-01

    This paper proposes a novel upper extremity rehabilitation system with virtual arm illusion. It aims for fast recovery from lost functions of the upper limb as a result of stroke to provide a novel rehabilitation system for paralyzed patients. The system is integrated with a number of technologies that include Augmented Reality (AR) technology to develop game like exercise, computer vision technology to create the illusion scene, 3D modeling and model simulation, and signal processing to detect user intention via EMG signal. The effectiveness of the developed system has evaluated via usability study and questionnaires which is represented by graphical and analytical methods. The evaluation provides with positive results and this indicates the developed system has potential as an effective rehabilitation system for upper limb impairment.

  2. Illusory object motion in the centre of a radial pattern: The Pursuit–Pursuing illusion

    Science.gov (United States)

    Ito, Hiroyuki

    2012-01-01

    A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed. PMID:23145267

  3. Illusory object motion in the centre of a radial pattern: The Pursuit-Pursuing illusion.

    Science.gov (United States)

    Ito, Hiroyuki

    2012-01-01

    A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed.

  4. Tüür, Erkki-Sven: Architectonics VI. Passion. Illusion / Guy S. Rickards

    Index Scriptorium Estoniae

    Rickards, Guy S.

    1996-01-01

    Uuest heliplaadist "Tüür, Erkki-Sven: Architectonics VI. Passion. Illusion. Crystallisatio. Requiem. Estonian Philharmonic Chamber Choir, Tallinn Chamber Orchestra, Tõnu Kaljuste. ECM New Series 449 459-2 (64 minutes: DDD)

  5. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  6. Radar Image, Hokkaido, Japan

    Science.gov (United States)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62

  7. Antigravity hills are visual illusions.

    Science.gov (United States)

    Bressan, Paola; Garlaschelli, Luigi; Barracano, Monica

    2003-09-01

    Antigravity hills, also known as spook hills or magnetic hills, are natural places where cars put into neutral are seen to move uphill on a slightly sloping road, apparently defying the law of gravity. We show that these effects, popularly attributed to gravitational anomalies, are in fact visual illusions. We re-created all the known types of antigravity spots in our laboratory using tabletop models; the number of visible stretches of road, their slant, and the height of the visible horizon were systematically varied in four experiments. We conclude that antigravity-hill effects follow from a misperception of the eye level relative to gravity, caused by the presence of either contextual inclines or a false horizon line.

  8. Hallucinators find meaning in noises: pareidolic illusions in dementia with Lewy bodies.

    Science.gov (United States)

    Yokoi, Kayoko; Nishio, Yoshiyuki; Uchiyama, Makoto; Shimomura, Tatsuo; Iizuka, Osamu; Mori, Etsuro

    2014-04-01

    By definition, visual illusions and hallucinations differ in whether the perceived objects exist in reality. A recent study challenged this dichotomy, in which pareidolias, a type of complex visual illusion involving ambiguous forms being perceived as meaningful objects, are very common and phenomenologically similar to visual hallucinations in dementia with Lewy bodies (DLB). We hypothesise that a common psychological mechanism exists between pareidolias and visual hallucinations in DLB that confers meaning upon meaningless visual information. Furthermore, we believe that these two types of visual misperceptions have a common underlying neural mechanism, namely, cholinergic insufficiency. The current study investigated pareidolic illusions using meaningless visual noise stimuli (the noise pareidolia test) in 34 patients with DLB, 34 patients with Alzheimer׳s disease and 28 healthy controls. Fifteen patients with DLB were administered the noise pareidolia test twice, before and after donepezil treatment. Three major findings were discovered: (1) DLB patients saw meaningful illusory images (pareidolias) in meaningless visual stimuli, (2) the number of pareidolic responses correlated with the severity of visual hallucinations, and (3) cholinergic enhancement reduced both the number of pareidolias and the severity of visual hallucinations in patients with DLB. These findings suggest that a common underlying psychological and neural mechanism exists between pareidolias and visual hallucinations in DLB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Six-month-old infants' perception of the hollow face illusion: evidence for a general convexity bias.

    Science.gov (United States)

    Corrow, Sherryse L; Mathison, Jordan; Granrud, Carl E; Yonas, Albert

    2014-01-01

    Corrow, Granrud, Mathison, and Yonas (2011, Perception, 40, 1376-1383) found evidence that 6-month-old infants perceive the hollow face illusion. In the present study we asked whether 6-month-old infants perceive illusory depth reversal for a nonface object and whether infants' perception of the hollow face illusion is affected by mask orientation inversion. In experiment 1 infants viewed a concave bowl, and their reaches were recorded under monocular and binocular viewing conditions. Infants reached to the bowl as if it were convex significantly more often in the monocular than in the binocular viewing condition. These results suggest that infants perceive illusory depth reversal with a nonface stimulus and that the infant visual system has a bias to perceive objects as convex. Infants in experiment 2 viewed a concave face-like mask in upright and inverted orientations. Infants reached to the display as if it were convex more in the monocular than in the binocular condition; however, mask orientation had no effect on reaching. Previous findings that adults' perception of the hollow face illusion is affected by mask orientation inversion have been interpreted as evidence of stored-knowledge influences on perception. However, we found no evidence of such influences in infants, suggesting that their perception of this illusion may not be affected by stored knowledge, and that perceived depth reversal is not face-specific in infants.

  10. Minimum redundancy MIMO radars

    OpenAIRE

    Chen, Chun-Yang; Vaidyanathan, P. P.

    2008-01-01

    The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, i...

  11. Amplification of radar and lidar signatures using quantum sensors

    Science.gov (United States)

    Lanzagorta, Marco

    2013-05-01

    One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramat­ ically increase the performance of a wide variety of classical devices. These advances in quantum information science have had a considerable impact on the development of photonic-based quantum sensors. Even though quantum radar and quantum lidar remain theoretical proposals, preliminary results suggest that these sensors have the potential of becoming disruptive technologies able to revolutionize reconnaissance systems. In this paper we will discuss how quantum entanglement can be exploited to increase the radar and lidar signature of rectangular targets. In particular, we will show how the effective visibility of the target is increased if observed with an entangled multi-photon quantum sensor.

  12. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  13. Adaptation of postural recovery responses to a vestibular sensory illusion in individuals with Parkinson disease and healthy controls.

    Science.gov (United States)

    Lester, Mark E; Cavanaugh, James T; Foreman, K Bo; Shaffer, Scott W; Marcus, Robin; Dibble, Leland E

    2017-10-01

    The ability to adapt postural responses to sensory illusions diminishes with age and is further impaired by Parkinson disease. However, limited information exists regarding training-related adaptions of sensory reweighting in these populations. This study sought to determine whether Parkinson disease or age would differentially affect acute postural recovery or adaptive postural responses to novel or repeated exposure to sensory illusions using galvanic vestibular stimulation during quiet stance. Acutely, individuals with Parkinson disease demonstrated larger center of pressure coefficient of variation compared to controls. Unlike individuals with Parkinson disease and asymptomatic older adults, healthy young adults acutely demonstrated a reduction in Sample Entropy to the sensory illusion. Following a period of consolidation Sample Entropy increased in the healthy young group, which coincided with a decreased center of pressure coefficient of variation. Similar changes were not observed in the Parkinson disease or older adult groups. Taken together, these results suggest that young adults learn to adapt to vestibular illusion in a more robust manner than older adults or those with Parkinson disease. Further investigation into the nature of this adaptive difference is warranted. Published by Elsevier Ltd.

  14. Visual illusion in mass estimation of cut food.

    Science.gov (United States)

    Wada, Yuji; Tsuzuki, Daisuke; Kobayashi, Naoki; Hayakawa, Fumiyo; Kohyama, Kaoru

    2007-07-01

    We investigated the effect of the appearance of cut food on visual mass estimation. In this experiment, we manipulated the shape (e.g., a block, fine strips, or small cubes) of food samples of various masses, and presented them on a CRT display as stimuli. Eleven subjects participated in tasks to choose the picture of the food sample which they felt indicated a target mass. We used raw carrots and surimi (ground fish) gel as hard and soft samples, respectively. The results clearly confirm an existence of an illusion, and this indicates that the appearance of food interferes with visual mass estimation. Specifically, participants often overestimated the mass of finely cut food, especially fine strips, whereas they could accurately estimate the mass of block samples, regardless of the physical characteristics of the foods. The overestimation of the mass of cut food increased with the food's actual mass, and was particularly obvious with increases of apparent volume when cut into fine strips. These results suggest that the apparent volume of a food sample effects the visual estimation of its mass. Hence we can conclude that there are illusions associated with the visual presentation of food that may influence various food impressions, including satisfaction and eating behaviour.

  15. Assessment of Positive Illusions of the Physical Attractiveness of Romantic Partners

    NARCIS (Netherlands)

    Barelds, D.P.H.; Dijkstra, Pieternel; Koudenburg, N.; Swami, V.

    2011-01-01

    Positive illusions about a partner's physical attractiveness occur when individuals' ratings of their partner's attractiveness are more positive than more objective ratings. Ratings that may serve as a''reality benchmark' include ratings by the partner him/herself and observer ratings. The present

  16. A new low-cost 10 ns pulsed K(a)-band radar.

    Science.gov (United States)

    Eskelinen, Pekka; Ylinen, Juhana

    2011-07-01

    Two Gunn oscillators, conventional intermediate frequency building blocks, and a modified GaAs diode detector are combined to form a portable monostatic 10 ns instrumentation radar for outdoor K(a)-band radar cross section measurements. At 37.8 GHz the radar gives +20 dBm output power and its tangential sensitivity is -76 dBm. Processing bandwidth is 125 MHz, which also allows for some frequency drift in the Gunn devices. Intra-pulse frequency chirp is less than 15 MHz. All functions are steered by a microcontroller. First measurements convince that the construction has a reasonable ability to reduce close-to-ground surface clutter and gives an effective way of resolving target detail. This is beneficial especially when amplitude fluctuations disturb measurements with longer pulses. The new unit operates on 12 V dc, draws a current of less than 3 A, and weighs 5 kg.

  17. Reports of Wins and Risk Taking : An Investigation of the Mediating Effect of the Illusion of Control.

    OpenAIRE

    Martinez , Frederic; Le Floch , Valérie; Gaffié , Bernard; Villejoubert , Gaëlle

    2011-01-01

    International audience; Two experiments examined the relationships between the knowledge that another person has won in a gamble, the illusion of control and risk taking. Participants played a computer-simulated French roulette game individually. Before playing, some participants learnt that another person won a large amount of money. Results from a first experiment (n=24) validated a causal model where the knowledge of another person's win increased the illusion of control, measured with bet...

  18. Bodily pleasure matters: Velocity of touch modulates body ownership during the rubber hand illusion

    Directory of Open Access Journals (Sweden)

    Laura eCrucianelli

    2013-10-01

    Full Text Available The sense of body ownership represents a fundamental aspect of our self-consciousness. Influential experimental paradigms, such as the rubber hand illusion (RHI, in which a seen rubber hand is experienced as part of one’s body when one’s own unseen hand receives congruent tactile stimulation, have extensively examined the role of exteroceptive, multisensory integration on body ownership. However, remarkably, despite the more general current interest in the nature and role of interoception in emotion and consciousness, no study has investigated how the illusion may be affected by interoceptive bodily signals, such as affective touch. Here, we recruited 52 healthy, adult participants and we investigated for the first time, whether applying slow velocity, light tactile stimuli, known to elicit interoceptive feelings of pleasantness, would influence the illusion more than faster, emotionally-neutral, tactile stimuli. We also examined whether seeing another person’s hand versus a rubber hand would reduce the illusion in slow versus fast stroking conditions, as interoceptive signals are used to represent one’s own body from within and it is unclear how they would be integrated with visual signals from another person’s hand. We found that slow velocity touch was perceived as more pleasant and it produced higher levels of subjective embodiment during the RHI compared with fast touch. Moreover, this effect applied irrespective of whether the seen hand was a rubber or a confederate’s hand. These findings provide support for the idea that affective touch, and more generally interoception, may have a unique contribution to the sense of body ownership, and by implication to our embodied psychological self.

  19. The continuous Wagon Wheel Illusion depends on, but is not identical to neuronal adaptation.

    Science.gov (United States)

    VanRullen, Rufin

    2007-07-01

    The occurrence of perceived reversed motion while observers view a continuous, periodically moving stimulus (a bistable phenomenon coined the "continuous Wagon Wheel Illusion" or "c-WWI") has been taken as evidence that some aspects of motion perception rely on discrete sampling of visual information. Alternative accounts rely on the possibility of a motion aftereffect that may become visible even while the adapting stimulus is present. Here I show that motion adaptation might be necessary, but is not sufficient to explain the illusion. When local adaptation is prevented by slowly drifting the moving wheel across the retina, the c-WWI illusion tends to decrease, as do other bistable percepts (e.g. binocular rivalry). However, the strength of the c-WWI and that of adaptation (as measured by either the static or flicker motion aftereffects) are not directly related: although the c-WWI decreases with increasing eccentricity, the aftereffects actually intensify concurrently. A similar dissociation can be induced by manipulating stimulus contrast. This indicates that the c-WWI may be enabled by, but is not equivalent to, local motion adaptation - and that other factors such as discrete sampling may be involved in its generation.

  20. The Flushtration Count Illusion: Attribute substitution tricks our interpretation of a simple visual event sequence.

    Science.gov (United States)

    Thomas, Cyril; Didierjean, André; Kuhn, Gustav

    2018-04-17

    When faced with a difficult question, people sometimes work out an answer to a related, easier question without realizing that a substitution has taken place (e.g., Kahneman, 2011, Thinking, fast and slow. New York, Farrar, Strauss, Giroux). In two experiments, we investigated whether this attribute substitution effect can also affect the interpretation of a simple visual event sequence. We used a magic trick called the 'Flushtration Count Illusion', which involves a technique used by magicians to give the illusion of having seen multiple cards with identical backs, when in fact only the back of one card (the bottom card) is repeatedly shown. In Experiment 1, we demonstrated that most participants are susceptible to the illusion, even if they have the visual and analytical reasoning capacity to correctly process the sequence. In Experiment 2, we demonstrated that participants construct a biased and simplified representation of the Flushtration Count by substituting some attributes of the event sequence. We discussed of the psychological processes underlying this attribute substitution effect. © 2018 The British Psychological Society.

  1. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  2. Tactile mouse generating velvet hand illusion on human palm

    Directory of Open Access Journals (Sweden)

    Nadar Rajaei

    2016-09-01

    Full Text Available To enhance virtual reality (VR generated by tactile displays, we have focused on a novel tactile illusion, called the Velvet Hand Illusion (VHI. In VHI, moving two parallel wires back and forth between the two hands leads humans to perceive a velvet-like surface between their hands. In earlier studies, we revealed that the intensity of VHI could be controlled by a ratio (r/D, where r and D are the wire stroke and wire distance, respectively. According to these findings, we investigate in this study whether a common tactile display is able to produce VHI, and whether the ratio can also control VHI intensity. We prepare a dot-matrix display as a tactile display in which moving one line of the display’s pins is considered as a wire pattern. We investigate the VHI intensity with regard to changing the stroke r and the line distance D using paired comparison. Experimental results show that the VHI intensity is increased or decreased by changing r and D. We conclude that VHI can be created by the tactile display, and the intensity of VHI is controlled by changing the ratio of r/D.

  3. Stimulus meanings alter illusory self-motion (vection)--experimental examination of the train illusion.

    Science.gov (United States)

    Seno, Takeharu; Fukuda, Haruaki

    2012-01-01

    Over the last 100 years, numerous studies have examined the effective visual stimulus properties for inducing illusory self-motion (known as vection). This vection is often experienced more strongly in daily life than under controlled experimental conditions. One well-known example of vection in real life is the so-called 'train illusion'. In the present study, we showed that this train illusion can also be generated in the laboratory using virtual computer graphics-based motion stimuli. We also demonstrated that this vection can be modified by altering the meaning of the visual stimuli (i.e., top down effects). Importantly, we show that the semantic meaning of a stimulus can inhibit or facilitate vection, even when there is no physical change to the stimulus.

  4. Body ownership and experiential ownership in the self-touching illusion

    Directory of Open Access Journals (Sweden)

    Caleb eLiang

    2015-01-01

    Full Text Available We investigate two issues about the subjective experience of one’s body: first, is the experience of owning a full-body fundamentally different from the experience of owning a body-part? Second, when I experience a bodily sensation, does it guarantee that I cannot be wrong about whether it is me who feels it? To address these issues, we conducted a series of experiments that combined the rubber hand illusion (RHI and the body swap illusion. The subject wore a head mounted display (HMD connected with a stereo camera set on the experimenter’s head. Sitting face to face, they used their right hand holding a paintbrush to brush each other’s left hand. Through the HMD, the subject adopted the experimenter’s first-person perspective (1PP as if it was his/her own 1PP: the subject watched either the experimenter’s hand from the adopted 1PP, and/or the subject’s own hand from the adopted third-person perspective (3PP in the opposite direction (180°, or the subject’s full body from the adopted 3PP (180°, with or without face. The synchronous full-body conditions generate a self-touching illusion: many participants felt that I was brushing my own hand! We found that (1 the sense of body-part ownership and the sense of full-body ownership are not fundamentally different from each other; and (2 our data present a strong case against the mainstream philosophical view called the immunity principle (IEM. We argue that it is possible for misrepresentation to occur in the subject’s sense of experiential ownership (the sense that I am the one who is having this bodily experience. We discuss these findings and conclude that not only the sense of body ownership but also the sense of experiential ownership call for further interdisciplinary studies.

  5. On an illusion of superluminal velocities produced by gravitational lenses

    International Nuclear Information System (INIS)

    Ingel, L.Kh.

    1981-01-01

    It is noted that gravitational lenses, by focusing the radiation of an object, increase the angle which it subtends. This in turn produces the illusion of an increase in velocities at right angles to the line of sight. Preliminary estimates are made which indicate a rather high probability of strong distortion of the observed velocities

  6. Visual Spatial Disorientation: Re-Visiting the Black Hole Illusion

    Science.gov (United States)

    2007-01-24

    National Transportation Safety Board. Controlled Flight into Terrain, Korean Air Flight 801 , Nimitz Hill, Guam; 1997. 50. National Transportation Safety...According to a Boeing study of worldwide commercial airline accidents, the approach and landing phase of flying, although only accounting for 4% of the...VISUAL SPATIAL DISORIENTATION Kraft (31) described four night visual, landing airline accidents. Black Hole Illusion 5 1. In 1965, a United Airlines

  7. An illusion of control modulates the reluctance to tempt fate

    Directory of Open Access Journals (Sweden)

    Chloe L. Swirsky

    2011-10-01

    Full Text Available The tempting fate effect is that the probability of a fateful outcome is deemed higher following an action that ``tempts'' the outcome than in the absence of such an action. In this paper we evaluate the hypothesis that the effect is due to an illusion of control induced by a causal framing of the situation. Causal frames require that the action make a difference to an outcome and that the action precedes the outcome. If an illusion of control modulates the reluctance to tempt fate, then actions that make a difference to well-being and that occur prior to the outcome should tempt fate most strongly. In Experiments 1--3 we varied whether the action makes a difference and the temporal order of action and outcome. In Experiment 4 we tested whether an action can tempt fate if all outcomes are negative. The results of all four experiments supported our hypothesis that the tempting fate effect depends on a causal construal that gives rise to a false sense of control.

  8. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  9. Testing day: The effects of processing bias induced by Navon stimuli on the strength of the Müller-Lyer illusion.

    Science.gov (United States)

    Mundy, Matthew E

    2014-01-01

    Explanations for the cognitive basis of the Müller-Lyer illusion are still frustratingly mixed. To date, Day's (1989) theory of perceptual compromise has received little empirical attention. In this study, we examine the merit of Day's hypothesis for the Müller-Lyer illusion by biasing participants toward global or local visual processing through exposure to Navon (1977) stimuli, which are known to alter processing level preference for a short time. Participants (N = 306) were randomly allocated to global, local, or control conditions. Those in global or local conditions were exposed to Navon stimuli for 5 min and participants were required to report on the global or local stimulus features, respectively. Subsequently, participants completed a computerized Müller-Lyer experiment where they adjusted the length of a line to match an illusory-figure. The illusion was significantly stronger for participants with a global bias, and significantly weaker for those with a local bias, compared with the control condition. These findings provide empirical support for Day's "conflicting cues" theory of perceptual compromise in the Müller-Lyer illusion.

  10. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  11. Monitoring internal organ motion with continuous wave radar in CT

    International Nuclear Information System (INIS)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-01-01

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  12. Noncontact Detection and Analysis of Respiratory Function Using Microwave Doppler Radar

    Directory of Open Access Journals (Sweden)

    Yee Siong Lee

    2015-01-01

    Full Text Available Real-time respiratory measurement with Doppler Radar has an important advantage in the monitoring of certain conditions such as sleep apnoea, sudden infant death syndrome (SIDS, and many other general clinical uses requiring fast nonwearable and non-contact measurement of the respiratory function. In this paper, we demonstrate the feasibility of using Doppler Radar in measuring the basic respiratory frequencies (via fast Fourier transform for four different types of breathing scenarios: normal breathing, rapid breathing, slow inhalation-fast exhalation, and fast inhalation-slow exhalation conducted in a laboratory environment. A high correlation factor was achieved between the Doppler Radar-based measurements and the conventional measurement device, a respiration strap. We also extended this work from basic signal acquisition to extracting detailed features of breathing function (I : E ratio. This facilitated additional insights into breathing activity and is likely to trigger a number of new applications in respiratory medicine.

  13. Sliding perspectives: dissociating ownership from self-location during full body illusions in virtual reality.

    Science.gov (United States)

    Maselli, Antonella; Slater, Mel

    2014-01-01

    Bodily illusions have been used to study bodily self-consciousness and disentangle its various components, among other the sense of ownership and self-location. Congruent multimodal correlations between the real body and a fake humanoid body can in fact trigger the illusion that the fake body is one's own and/or disrupt the unity between the perceived self-location and the position of the physical body. However, the extent to which changes in self-location entail changes in ownership is still matter of debate. Here we address this problem with the support of immersive virtual reality. Congruent visuotactile stimulation was delivered on healthy participants to trigger full body illusions from different visual perspectives, each resulting in a different degree of overlap between real and virtual body. Changes in ownership and self-location were measured with novel self-posture assessment tasks and with an adapted version of the cross-modal congruency task. We found that, despite their strong coupling, self-location and ownership can be selectively altered: self-location was affected when having a third person perspective over the virtual body, while ownership toward the virtual body was experienced only in the conditions with total or partial overlap. Thus, when the virtual body is seen in the far extra-personal space, changes in self-location were not coupled with changes in ownership. If a partial spatial overlap is present, ownership was instead typically experienced with a boosted change in the perceived self-location. We discussed results in the context of the current knowledge of the multisensory integration mechanisms contributing to self-body perception. We argue that changes in the perceived self-location are associated to the dynamical representation of peripersonal space encoded by visuotactile neurons. On the other hand, our results speak in favor of visuo-proprioceptive neuronal populations being a driving trigger in full body ownership illusions.

  14. Sliding perspectives: dissociating ownership from self-location during full body illusions in virtual reality

    Science.gov (United States)

    Maselli, Antonella; Slater, Mel

    2014-01-01

    Bodily illusions have been used to study bodily self-consciousness and disentangle its various components, among other the sense of ownership and self-location. Congruent multimodal correlations between the real body and a fake humanoid body can in fact trigger the illusion that the fake body is one's own and/or disrupt the unity between the perceived self-location and the position of the physical body. However, the extent to which changes in self-location entail changes in ownership is still matter of debate. Here we address this problem with the support of immersive virtual reality. Congruent visuotactile stimulation was delivered on healthy participants to trigger full body illusions from different visual perspectives, each resulting in a different degree of overlap between real and virtual body. Changes in ownership and self-location were measured with novel self-posture assessment tasks and with an adapted version of the cross-modal congruency task. We found that, despite their strong coupling, self-location and ownership can be selectively altered: self-location was affected when having a third person perspective over the virtual body, while ownership toward the virtual body was experienced only in the conditions with total or partial overlap. Thus, when the virtual body is seen in the far extra-personal space, changes in self-location were not coupled with changes in ownership. If a partial spatial overlap is present, ownership was instead typically experienced with a boosted change in the perceived self-location. We discussed results in the context of the current knowledge of the multisensory integration mechanisms contributing to self-body perception. We argue that changes in the perceived self-location are associated to the dynamical representation of peripersonal space encoded by visuotactile neurons. On the other hand, our results speak in favor of visuo-proprioceptive neuronal populations being a driving trigger in full body ownership illusions. PMID

  15. Monitoring of the MU radar antenna pattern by Satellite Ohzora (EXOS-C)

    Science.gov (United States)

    Sato, T.; Inooka, Y.; Fukao, S.; Kato, S.

    1986-01-01

    As the first attempt among MST (mesosphere stratosphere troposphere) type radars, the MU (middle and upper atmosphere) radar features an active phased array system. Unlike the conventional large VHF radars, in which output power of a large vacuum tube is distributed to individual antenna elements, each of 475 solid state power amplifier feeds each antenna element. This system configuration enables very fast beam steering as well as various flexible operations by dividing the antenna into independent subarrays, because phase shift and signal division/combination are performed at a low signal level using electronic devices under control of a computer network. The antenna beam can be switched within 10 microsec to any direction within the zenith angle of 30 deg. Since a precise phase alignment of each element is crucial to realize the excellent performance of this system, careful calibration of the output phase of each power amplifier and antenna element was carried out. Among various aircraft which may be used for this purpose artificial satellites have an advantage of being able to make a long term monitoring with the same system. An antenna pattern monitoring system for the MU radar was developed using the scientific satellite OHZORA (EXOS-C). A receiver named MUM (MU radar antenna Monitor) on board the satellite measures a CW signal of 100 to 400 watts transmitted from the MU radar. The principle of the measurement and results are discussed.

  16. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  17. Real-time decreased sensitivity to an audio-visual illusion during goal-directed reaching.

    Directory of Open Access Journals (Sweden)

    Luc Tremblay

    Full Text Available In humans, sensory afferences are combined and integrated by the central nervous system (Ernst MO, Bülthoff HH (2004 Trends Cogn. Sci. 8: 162-169 and appear to provide a holistic representation of the environment. Empirical studies have repeatedly shown that vision dominates the other senses, especially for tasks with spatial demands. In contrast, it has also been observed that sound can strongly alter the perception of visual events. For example, when presented with 2 flashes and 1 beep in a very brief period of time, humans often report seeing 1 flash (i.e. fusion illusion, Andersen TS, Tiippana K, Sams M (2004 Brain Res. Cogn. Brain Res. 21: 301-308. However, it is not known how an unfolding movement modulates the contribution of vision to perception. Here, we used the audio-visual illusion to demonstrate that goal-directed movements can alter visual information processing in real-time. Specifically, the fusion illusion was linearly reduced as a function of limb velocity. These results suggest that cue combination and integration can be modulated in real-time by goal-directed behaviors; perhaps through sensory gating (Chapman CE, Beauchamp E (2006 J. Neurophysiol. 96: 1664-1675 and/or altered sensory noise (Ernst MO, Bülthoff HH (2004 Trends Cogn. Sci. 8: 162-169 during limb movements.

  18. All-cause mortality and radar exposure among french navy personnel: a 30 years cohort study

    International Nuclear Information System (INIS)

    Dabouis, V.; Arvers, P.; Debouzy, J.C.; Perrin, A.; Hours, M.

    2006-01-01

    To improve operational performance in a modern navy force, radiofrequency (RF) and microwaves emitting devices are widely used. It has been suggested that exposure to electromagnetic fields could be associated with greater health hazards and higher mortality. The all-cause mortality of 39488 militaries of the French navy forces was studied over the period 1975-2001 with a cohort epidemiological study. They served from 1975 until 1995. In a first step, the mortality of radar exposed militaries was compared to a control group formed by militaries who served during the same period in the same environment but without radar exposure. Administrative procedures for identifying militaries and their vital status were equivalent in the radar and the control groups. The age standardized mortality ratio in the radar navy personnel was 0.70 (95% CI: 0.54-0.90). In professional militaries, no difference in mortality ratio was found according to duration of estimated exposure. During a 30 years period of observation, we found no increase in all-cause mortality in the French navy personnel who were close to radar equipments

  19. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  20. Reduction of the elevator illusion from continued hypergravity exposure and visual error-corrective feedback

    Science.gov (United States)

    Welch, R. B.; Cohen, M. M.; DeRoshia, C. W.

    1996-01-01

    Ten subjects served as their own controls in two conditions of continuous, centrifugally produced hypergravity (+2 Gz) and a 1-G control condition. Before and after exposure, open-loop measures were obtained of (1) motor control, (2) visual localization, and (3) hand-eye coordination. During exposure in the visual feedback/hypergravity condition, subjects received terminal visual error-corrective feedback from their target pointing, and in the no-visual feedback/hypergravity condition they pointed open loop. As expected, the motor control measures for both experimental conditions revealed very short lived underreaching (the muscle-loading effect) at the outset of hypergravity and an equally transient negative aftereffect on returning to 1 G. The substantial (approximately 17 degrees) initial elevator illusion experienced in both hypergravity conditions declined over the course of the exposure period, whether or not visual feedback was provided. This effect was tentatively attributed to habituation of the otoliths. Visual feedback produced a smaller additional decrement and a postexposure negative after-effect, possible evidence for visual recalibration. Surprisingly, the target-pointing error made during hypergravity in the no-visual-feedback condition was substantially less than that predicted by subjects' elevator illusion. This finding calls into question the neural outflow model as a complete explanation of this illusion.

  1. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  2. Normal temporal binding window but no sound-induced flash illusion in people with one eye.

    Science.gov (United States)

    Moro, Stefania S; Steeves, Jennifer K E

    2018-04-19

    Integrating vision and hearing is an important way in which we process our rich sensory environment. Partial deprivation of the visual system from the loss of one eye early in life results in adaptive changes in the remaining senses (e.g., Hoover et al. in Exp Brain Res 216:565-74, 2012). The current study investigates whether losing one eye early in life impacts the temporal window in which audiovisual events are integrated and whether there is vulnerability to the sound-induced flash illusion. In Experiment 1, we measured the temporal binding window with a simultaneity judgement task where low-level auditory and visual stimuli were presented at different stimulus onset asynchronies. People with one eye did not differ in the width of their temporal binding window, but they took longer to make judgements compared to binocular viewing controls. In Experiment 2, we measured how many light flashes were perceived when a single flash was paired with multiple auditory beeps in close succession (sound induced flash illusion). Unlike controls, who perceived multiple light flashes with two, three or four beeps, people with one eye were not susceptible to the sound-induced flash illusion. In addition, they took no longer to respond compared to both binocular and monocular (eye-patched) viewing controls. Taken together, these results suggest that the lack of susceptibility to the sound-induced flash illusion in people with one eye cannot be accounted for by the width of the temporal binding window. These results provide evidence for adaptations in audiovisual integration due to the reduction of visual input from the loss of one eye early in life.

  3. Synthetic impulse and aperture radar (SIAR) a novel multi-frequency MIMO radar

    CERN Document Server

    Chen, Baixiao

    2014-01-01

    Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing me

  4. Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)

    Science.gov (United States)

    Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.

    2016-05-01

    This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.

  5. Ego depletion and positive illusions: does the construction of positivity require regulatory resources?

    Science.gov (United States)

    Fischer, Peter; Greitemeyer, Tobias; Frey, Dieter

    2007-09-01

    Individuals frequently exhibit positive illusions about their own abilities, their possibilities to control their environment, and future expectations. The authors propose that positive illusions require resources of self-control, which is considered to be a limited resource similar to energy or strength. Five studies revealed that people with depleted self-regulatory resources indeed exhibited a less-optimistic sense of their own abilities (Study 1), a lower sense of subjective control (Study 2), and less-optimistic expectations about their future (Study 3). Two further studies shed light on the underlying psychological process: Ego-depleted (compared to nondepleted) individuals generated/retrieved less positive self-relevant attributes (Studies 4 and 5) and reported a lower sense of general self-efficacy (Study 5), which both partially mediated the impact of ego depletion on positive self-views (Study 5).

  6. Agile beam laser radar using computational imaging for robotic perception

    Science.gov (United States)

    Powers, Michael A.; Stann, Barry L.; Giza, Mark M.

    2015-05-01

    This paper introduces a new concept that applies computational imaging techniques to laser radar for robotic perception. We observe that nearly all contemporary laser radars for robotic (i.e., autonomous) applications use pixel basis scanning where there is a one-to-one correspondence between world coordinates and the measurements directly produced by the instrument. In such systems this is accomplished through beam scanning and/or the imaging properties of focal-plane optics. While these pixel-basis measurements yield point clouds suitable for straightforward human interpretation, the purpose of robotic perception is the extraction of meaningful features from a scene, making human interpretability and its attendant constraints mostly unnecessary. The imposing size, weight, power and cost of contemporary systems is problematic, and relief from factors that increase these metrics is important to the practicality of robotic systems. We present a system concept free from pixel basis sampling constraints that promotes efficient and adaptable sensing modes. The cornerstone of our approach is agile and arbitrary beam formation that, when combined with a generalized mathematical framework for imaging, is suited to the particular challenges and opportunities of robotic perception systems. Our hardware concept looks toward future systems with optical device technology closely resembling modern electronically-scanned-array radar that may be years away from practicality. We present the design concept and results from a prototype system constructed and tested in a laboratory environment using a combination of developed hardware and surrogate devices for beam formation. The technological status and prognosis for key components in the system is discussed.

  7. Light Refraction by Water as a Rationale for the Poggendorff Illusion

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    2017-01-01

    The Poggendorff illusion in its classical form of parallel lines interrupting a transversal is viewed from the perspective of being related to the everyday experience of observing the light refraction in water. It is argued that if one considers a transversal to be a light ray in air and the para...

  8. Dynamics of the G-excess illusion

    Science.gov (United States)

    Baylor, K. A.; Reschke, M.; Guedry, F. E.; Mcgrath, B. J.; Rupert, A. H.

    1992-01-01

    The G-excess illusion is increasingly recognized as a cause of aviation mishaps especially when pilots perform high-speed, steeply banked turns at low altitudes. Centrifuge studies of this illusion have examined the perception of subject orientation and/or target displacement during maintained hypergravity with the subject's head held stationary. The transient illusory perceptions produced by moving the head in hypergravity are difficult to study onboard centrifuges because the high angular velocity ensures the presence of strong Coriolis cross-coupled semicircular canal effects that mask immediate transient otolith-organ effects. The present study reports perceptions following head movements in hypergravity produced by high-speed aircraft maintaining a banked attitude with low angular velocity to minimize cross-coupled effects. Methods: Fourteen subjects flew on the NASA KC-135 and were exposed to resultant gravity forces of 1.3, 1.5, and 1.8 G for 3 minute periods. On command, seated subjects made controlled head movements in roll, pitch, and yaw at 30 second intervals both in the dark and with faint targets at a distance of 5 feet. Results: head movement produced transient perception of target displacement and velocity at levels as low as 1.3 G. Reports of target velocity without appropriate corresponding displacement were common. At 1.8 G when yaw head movements were made from a face down position, 4 subjects reported oscillatory rotational target displacement with fast and slow alternating components suggestive of torsional nystagmus. Head movements evoked symptoms of nausea in most subjects, with 2 subjects and 1 observer vomiting. Conclusions: The transient percepts present conflicting signals, which introduced confusion in target and subject orientation. Repeated head movements in hypergravity generate nausea by mechanisms distinct from cross-coupled Coriolis effects.

  9. Array-Based Ultrawideband through-Wall Radar: Prediction and Assessment of Real Radar Abilities

    Directory of Open Access Journals (Sweden)

    Nadia Maaref

    2013-01-01

    Full Text Available This paper deals with a new through-the-wall (TTW radar demonstrator for the detection and the localisation of people in a room (in a noncooperative way with the radar situated outside but in the vicinity of the first wall. After modelling the propagation through various walls and quantifying the backscattering by the human body, an analysis of the technical considerations which aims at defining the radar design is presented. Finally, an ultrawideband (UWB frequency modulated continuous wave (FMCW radar is proposed, designed, and implemented. Some representative trials show that this radar is able to localise and track moving people behind a wall in real time.

  10. Trend of Average Wages as Indicator of Hypothetical Money Illusion

    Directory of Open Access Journals (Sweden)

    Julian Daszkowski

    2010-06-01

    Full Text Available The definition of wage in Poland not before 1998 includes any value of social security contribution. Changed definition creates higher level of reported wages, but was expected not to influence the take home pay. Nevertheless, the trend of average wages, after a short period, has returned to its previous line. Such effect is explained in the term of money illusion.

  11. The Rubber Hand Illusion Revisited: Visuotactile Integration and Self-Attribution

    Science.gov (United States)

    Tsakiris, Manos; Haggard, Patrick

    2005-01-01

    Watching a rubber hand being stroked, while one's own unseen hand is synchronously stroked, may cause the rubber hand to be attributed to one's own body, to "feel like it's my hand." A behavioral measure of the rubber hand illusion (RHI) is a drift of the perceived position of one's own hand toward the rubber hand. The authors investigated (a) the…

  12. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Koch, Wolfgang

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Waveform diversity and cognitive radar and Target tracking and data fusion.

  13. Eye movement instructions modulate motion illusion and body sway with Op Art.

    Science.gov (United States)

    Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul

    2015-01-01

    Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth-Bridget Riley's Movements in Squares and Akiyoshi Kitaoka's Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka's image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway.

  14. Brain Regions Associated to a Kinesthetic Illusion Evoked by Watching a Video of One's Own Moving Hand.

    Science.gov (United States)

    Kaneko, Fuminari; Blanchard, Caroline; Lebar, Nicolas; Nazarian, Bruno; Kavounoudias, Anne; Romaiguère, Patricia

    2015-01-01

    It is well known that kinesthetic illusions can be induced by stimulation of several sensory systems (proprioception, touch, vision…). In this study we investigated the cerebral network underlying a kinesthetic illusion induced by visual stimulation by using functional magnetic resonance imaging (fMRI) in humans. Participants were instructed to keep their hand still while watching the video of their own moving hand (Self Hand) or that of someone else's moving hand (Other Hand). In the Self Hand condition they experienced an illusory sensation that their hand was moving whereas the Other Hand condition did not induce any kinesthetic illusion. The contrast between the Self Hand and Other Hand conditions showed significant activation in the left dorsal and ventral premotor cortices, in the left Superior and Inferior Parietal lobules, at the right Occipito-Temporal junction as well as in bilateral Insula and Putamen. Most strikingly, there was no activation in the primary motor and somatosensory cortices, whilst previous studies have reported significant activation in these regions for vibration-induced kinesthetic illusions. To our knowledge, this is the first study that indicates that humans can experience kinesthetic perception without activation in the primary motor and somatosensory areas. We conclude that under some conditions watching a video of one's own moving hand could lead to activation of a network that is usually involved in processing copies of efference, thus leading to the illusory perception that the real hand is indeed moving.

  15. Brain Regions Associated to a Kinesthetic Illusion Evoked by Watching a Video of One's Own Moving Hand.

    Directory of Open Access Journals (Sweden)

    Fuminari Kaneko

    Full Text Available It is well known that kinesthetic illusions can be induced by stimulation of several sensory systems (proprioception, touch, vision…. In this study we investigated the cerebral network underlying a kinesthetic illusion induced by visual stimulation by using functional magnetic resonance imaging (fMRI in humans. Participants were instructed to keep their hand still while watching the video of their own moving hand (Self Hand or that of someone else's moving hand (Other Hand. In the Self Hand condition they experienced an illusory sensation that their hand was moving whereas the Other Hand condition did not induce any kinesthetic illusion. The contrast between the Self Hand and Other Hand conditions showed significant activation in the left dorsal and ventral premotor cortices, in the left Superior and Inferior Parietal lobules, at the right Occipito-Temporal junction as well as in bilateral Insula and Putamen. Most strikingly, there was no activation in the primary motor and somatosensory cortices, whilst previous studies have reported significant activation in these regions for vibration-induced kinesthetic illusions. To our knowledge, this is the first study that indicates that humans can experience kinesthetic perception without activation in the primary motor and somatosensory areas. We conclude that under some conditions watching a video of one's own moving hand could lead to activation of a network that is usually involved in processing copies of efference, thus leading to the illusory perception that the real hand is indeed moving.

  16. Effects of high-frequency yoga breathing called kapalabhati compared with breath awareness on the degree of optical illusion perceived.

    Science.gov (United States)

    Telles, Shirley; Maharana, Kanchan; Balrana, Budhi; Balkrishna, Acharya

    2011-06-01

    Prior research has shown that methods of meditation, breath control, and different kinds of yoga breathing affect attention and visual perception, including decreasing the size of certain optical illusions. Evaluating relationships sheds light on the perceptual and cognitive changes induced by yoga and related methods, and the locus of the effects. In the present study, the degree of optical illusion was assessed using Müller-Lyer stimuli before and immediately after two different kinds of practice, a high frequency yoga breathing called kapalabhati, and breath awareness. A nonyoga, control session tested for practice effects. Thirty participants (with group M age = 26.9 yr., SD = 5.7) practiced the two techniques for 18 min. on two separate days. The control group had 15 nonyoga practitioners assessed before and after 18 min. in which they did not perform any specific activity but were seated and relaxed. After both kapalabhati and breath awareness there was a significant decrease in the degree of optical illusion. The possibility that this was due to a practice or repetition effect was ruled out when 15 nonyoga practitioners showed no change in the degree of illusion when retested after 18 min. The changes were interpreted as due to changes in perception related to the way the stimuli were judged.

  17. The Viewing-from-Above Bias and the Silhouette Illusion

    Directory of Open Access Journals (Sweden)

    Nikolaus F Troje

    2010-12-01

    Full Text Available The silhouette illusion published online a number of years ago by the Japanese Flash designer Nobuyuki Kayahara has received substantial attention from the online community. One feature that seems to make it interesting is an apparent rotational bias: Observers see it spinning more often clockwise than counter-clockwise. Here, we show that this rotational bias is in fact due to the visual system's preference for viewpoints from above rather than from below.

  18. High working memory load leads to more Ebbinghaus illusion

    OpenAIRE

    De Fockert, J. W.; Wu, Si

    2009-01-01

    The evidence that distractor processing increases with greater load on working memory has come mainly from Stroop-type interference tasks, making it difficult to establish whether cognitive load affects distractor processing at the perceptual level or during response selection. We measured the Ebbinghaus illusion under varying levels of working memory load to test whether cognitive control is also relevant for preventing processing of distractors that do not produce any response conflict, and...

  19. Radar remote sensing in biology

    Science.gov (United States)

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  20. Hearing visuo-tactile synchrony - Sound-induced proprioceptive drift in the invisible hand illusion.

    Science.gov (United States)

    Darnai, Gergely; Szolcsányi, Tibor; Hegedüs, Gábor; Kincses, Péter; Kállai, János; Kovács, Márton; Simon, Eszter; Nagy, Zsófia; Janszky, József

    2017-02-01

    The rubber hand illusion (RHI) and its variant the invisible hand illusion (IHI) are useful for investigating multisensory aspects of bodily self-consciousness. Here, we explored whether auditory conditioning during an RHI could enhance the trisensory visuo-tactile-proprioceptive interaction underlying the IHI. Our paradigm comprised of an IHI session that was followed by an RHI session and another IHI session. The IHI sessions had two parts presented in counterbalanced order. One part was conducted in silence, whereas the other part was conducted on the backdrop of metronome beats that occurred in synchrony with the brush movements used for the induction of the illusion. In a first experiment, the RHI session also involved metronome beats and was aimed at creating an associative memory between the brush stroking of a rubber hand and the sounds. An analysis of IHI sessions showed that the participants' perceived hand position drifted more towards the body-midline in the metronome relative to the silent condition without any sound-related session differences. Thus, the sounds, but not the auditory RHI conditioning, influenced the IHI. In a second experiment, the RHI session was conducted without metronome beats. This confirmed the conditioning-independent presence of sound-induced proprioceptive drift in the IHI. Together, these findings show that the influence of visuo-tactile integration on proprioceptive updating is modifiable by irrelevant auditory cues merely through the temporal correspondence between the visuo-tactile and auditory events. © 2016 The British Psychological Society.

  1. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar.

    Science.gov (United States)

    Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun; Huang, Yuan-Hao

    2018-04-05

    Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.

  2. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar

    Directory of Open Access Journals (Sweden)

    Kuei-Chi Tsao

    2018-04-01

    Full Text Available Complementary metal-oxide-semiconductor (CMOS radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA. The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.

  3. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  4. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  5. A low-cost, high-resolution, video-rate imaging optical radar

    Energy Technology Data Exchange (ETDEWEB)

    Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

    1998-04-01

    Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

  6. Effect of slow, small movement on the vibration-evoked kinesthetic illusion.

    Science.gov (United States)

    Cordo, P J; Gurfinkel, V S; Brumagne, S; Flores-Vieira, C

    2005-12-01

    The study reported in this paper investigated how vibration-evoked illusions of joint rotation are influenced by slow (0.3 degrees /s), small (2-4 degrees ) passive rotation of the joint. Normal human adults (n=15) matched the perceived position of the left ("reference") arm with the right ("matching") arm while vibration (50 pps, 0.5 mm) was applied for 30 s to the relaxed triceps brachii of the reference arm. Both arms were constrained to rotate horizontally at the elbow. Three experimental conditions were investigated: (1) vibration of the stationary reference arm, (2) slow, small passive extension or flexion of the reference arm during vibration, and (3) slow, small passive extension or flexion of the reference arm without vibration. Triceps brachii vibration at 50 pps induced an illusion of elbow flexion. The movement illusion began after several seconds, relatively fast to begin with and gradually slowing down to a stop. On average, triceps vibration produced illusory motion at an average latency of 6.3 s, amplitude of 9.7 degrees , velocity of 0.6 degrees /s, and duration of 16.4 s. During vibration, slow, small ( approximately 0.3 degrees /s, 1.3 degrees ) passive rotations of the joint dramatically enhanced, stopped, or reversed the direction of illusory movement, depending on the direction of the passive joint rotation. However, the subjects' perceptions of these passive elbow rotations were exaggerated: 2-3 times the size of the actual movement. In the absence of vibration, the subjects accurately reproduced these passive joint rotations. We discuss whether the exaggerated perception of slow, small movement during vibration is better explained by contributions of non muscle spindle Ia afferents or by changes in the mechanical transmission of vibration to the receptor.

  7. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  8. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  9. Hot or Not: The Role of Instructor Quality and Gender on the Formation of Positive Illusions among Students Using RateMyProfessors.com

    Directory of Open Access Journals (Sweden)

    Katherine C. Theyson

    2015-02-01

    Full Text Available Existing literature indicates that physical attractiveness positively affects variables such as income, perceived employee quality and performance evaluations. Similarly, in the academic arena, studies indicate instructors who are better looking receive better teaching evaluations from their students. Previous analysis of the website RateMyProfessors.com confirms this, indicating that instructors who are viewed by students as - hot- receive higher - quality- ratings than those who are - not.- However, psychology literature indicates that perceptions of attractiveness are influenced by positive illusions, a property whereby individuals with higher quality relationships view each other more positively than objective observers. This paper uses data from Rate My Professors to investigate the existence of positive illusions in the instructor-student relationship. It finds that positive illusions exist, suggesting that existing literature overestimates the premium associated with physical attractiveness. Furthermore, the source of these illusions varies significantly between male and female instructors with important implications for the role of gender in workplace evaluations, hiring, promotion, and tenure.

  10. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  11. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  12. On the role of spatial phase and phase correlation in vision, illusion, and cognition.

    Science.gov (United States)

    Gladilin, Evgeny; Eils, Roland

    2015-01-01

    Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dis)similarity that can be used for experimental validation of our hypothesis of "cognition by phase correlation."

  13. On the role of spatial phase and phase correlation in vision, illusion and cognition

    Directory of Open Access Journals (Sweden)

    Evgeny eGladilin

    2015-04-01

    Full Text Available Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dissimilarity that can be used for experimental validation of our hypothesis of 'cognition by phase correlation'.

  14. Susceptibility to the rubber hand illusion does not tell the whole body-awareness story.

    Science.gov (United States)

    David, Nicole; Fiori, Francesca; Aglioti, Salvatore M

    2014-03-01

    The rubber hand illusion (RHI) is an enigmatic illusion that creates a feeling of owning an artificial limb. Enthusiasts of this paradigm assert that it operationalizes bodily self-awareness, but there are reasons to doubt such a clear link. Because little is known about other functional contributions to the RHI, including effects of context-dependent visual processing and cognitive control or the ability to resolve intermodal conflict, we carried out two complementary experiments. In the first, we examined the relationships between the RHI and (1) body awareness, as assessed by the Body Perception Questionnaire (BPQ); (2) context-dependent visual processing, as assessed by the rod-and-frame test (RFT); and (3) conflict resolution, as assessed by the Stroop test. We found a significant positive correlation between the RHI-associated proprioceptive drift and context-dependent visual processing on the RFT, but not between the RHI and body awareness on the BPQ. In the second experiment, we examined the RHI in advanced yoga practitioners with an embodied lifestyle and a heightened sense of their own body in space. They succumbed to the illusion just as much as did yoga-naïve control participants, despite significantly greater body awareness on the BPQ. These findings suggest that susceptibility to the RHI and awareness of one's own body are at least partially independent processes.

  15. Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar

    Directory of Open Access Journals (Sweden)

    Xikun Hu

    2016-11-01

    Full Text Available The radar sensor described realizes healthcare monitoring capable of detecting subject chest-wall movement caused by cardiopulmonary activities and wirelessly estimating the respiration and heartbeat rates of the subject without attaching any devices to the body. Conventional single-tone Doppler radar can only capture Doppler signatures because of a lack of bandwidth information with noncontact sensors. In contrast, we take full advantage of impulse radio ultra-wideband (IR-UWB radar to achieve low power consumption and convenient portability, with a flexible detection range and desirable accuracy. A noise reduction method based on improved ensemble empirical mode decomposition (EEMD and a vital sign separation method based on the continuous-wavelet transform (CWT are proposed jointly to improve the signal-to-noise ratio (SNR in order to acquire accurate respiration and heartbeat rates. Experimental results illustrate that respiration and heartbeat signals can be extracted accurately under different conditions. This noncontact healthcare sensor system proves the commercial feasibility and considerable accessibility of using compact IR-UWB radar for emerging biomedical applications.

  16. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  17. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke.

    Science.gov (United States)

    Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin

    2016-01-01

    [Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls.

  18. Auditory evoked responses to binaural beat illusion: stimulus generation and the derivation of the Binaural Interaction Component (BIC).

    Science.gov (United States)

    Ozdamar, Ozcan; Bohorquez, Jorge; Mihajloski, Todor; Yavuz, Erdem; Lachowska, Magdalena

    2011-01-01

    Electrophysiological indices of auditory binaural beats illusions are studied using late latency evoked responses. Binaural beats are generated by continuous monaural FM tones with slightly different ascending and descending frequencies lasting about 25 ms presented at 1 sec intervals. Frequency changes are carefully adjusted to avoid any creation of abrupt waveform changes. Binaural Interaction Component (BIC) analysis is used to separate the neural responses due to binaural involvement. The results show that the transient auditory evoked responses can be obtained from the auditory illusion of binaural beats.

  19. Modeling and simulation the computer science of illusion

    CERN Document Server

    Raczynski, Stanislaw

    2006-01-01

    Simulation is the art of using tools - physical or conceptual models, or computer hardware and software, to attempt to create the illusion of reality. The discipline has in recent years expanded to include the modelling of systems that rely on human factors and therefore possess a large proportion of uncertainty, such as social, economic or commercial systems. These new applications make the discipline of modelling and simulation a field of dynamic growth and new research. Stanislaw Raczynski outlines the considerable and promising research that is being conducted to counter the problems of

  20. Veblen effect, marginal utility of money, and money illusion

    OpenAIRE

    Malakhov, Sergey

    2013-01-01

    The paper discovers microeconomic mechanism of Veblen effect as well as of Giffen case as results of the negative marginal utility of money. The marginal utility of consumption also becomes negative. The total consumption-leisure utility is increased due to the increase in leisure time. This overall effect results in the phenomenon of money illusion on the macroeconomic level. This general effect has deep historical and institutional grounds and, in order to minimize its disequilibrium econom...

  1. Applying volumetric weather radar data for rainfall runoff modeling: The importance of error correction.

    Science.gov (United States)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.; Delobbe, L.; Weerts, A.; Reggiani, P.

    2009-04-01

    In the current study half a year of volumetric radar data for the period October 1, 2002 until March 31, 2003 is being analyzed which was sampled at 5 minutes intervals by C-band Doppler radar situated at an elevation of 600 m in the southern Ardennes region, Belgium. During this winter half year most of the rainfall has a stratiform character. Though radar and raingauge will never sample the same amount of rainfall due to differences in sampling strategies, for these stratiform situations differences between both measuring devices become even larger due to the occurrence of a bright band (the point where ice particles start to melt intensifying the radar reflectivity measurement). For these circumstances the radar overestimates the amount of precipitation and because in the Ardennes bright bands occur within 1000 meter from the surface, it's detrimental effects on the performance of the radar can already be observed at relatively close range (e.g. within 50 km). Although the radar is situated at one of the highest points in the region, very close to the radar clutter is a serious problem. As a result both nearby and farther away, using uncorrected radar results in serious errors when estimating the amount of precipitation. This study shows the effect of carefully correcting for these radar errors using volumetric radar data, taking into account the vertical reflectivity profile of the atmosphere, the effects of attenuation and trying to limit the amount of clutter. After applying these correction algorithms, the overall differences between radar and raingauge are much smaller which emphasizes the importance of carefully correcting radar rainfall measurements. The next step is to assess the effect of using uncorrected and corrected radar measurements on rainfall-runoff modeling. The 1597 km2 Ourthe catchment lies within 60 km of the radar. Using a lumped hydrological model serious improvement in simulating observed discharges is found when using corrected radar

  2. Survey of Ultra-wideband Radar

    Science.gov (United States)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  3. The invisible hand illusion: multisensory integration leads to the embodiment of a discrete volume of empty space.

    Science.gov (United States)

    Guterstam, Arvid; Gentile, Giovanni; Ehrsson, H Henrik

    2013-07-01

    The dynamic integration of signals from different sensory modalities plays a key role in bodily self-perception. When visual information is used in the multisensory process of localizing and identifying one's own limbs, the sight of a body part often plays a dominant role. For example, it has repeatedly been shown that a viewed object must resemble a humanoid body part to permit illusory self-attribution of that object. Here, we report a perceptual illusion that challenges these assumptions by demonstrating that healthy (nonamputated) individuals can refer somatic sensations to a discrete volume of empty space and experience having an invisible hand. In 10 behavioral and one fMRI experiment, we characterized the perceptual rules and multisensory brain mechanisms that produced this "invisible hand illusion." Our behavioral results showed that the illusion depends on visuotactile-proprioceptive integration that obeys key spatial and temporal multisensory rules confined to near-personal space. The fMRI results associate the illusion experience with increased activity in regions related to the integration of multisensory body-related signals, most notably the bilateral ventral premotor, intraparietal, and cerebellar cortices. We further showed that a stronger feeling of having an invisible hand is associated with a higher degree of effective connectivity between the intraparietal and ventral premotor cortices. These findings demonstrate that the integration of temporally and spatially congruent multisensory signals in a premotor-intraparietal circuit is sufficient to redefine the spatial boundaries of the bodily self, even when visual information directly contradicts the presence of a physical limb at the location of the perceived illusory hand.

  4. German Radar Observation Shuttle Experiment (ROSE)

    Science.gov (United States)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  5. Meteor detection on ST (MST) radars

    International Nuclear Information System (INIS)

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  6. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  7. No need for a social cue! A masked magician can also trick the audience in the vanishing ball illusion.

    Science.gov (United States)

    Thomas, Cyril; Didierjean, André

    2016-01-01

    In the vanishing ball illusion (VBI), a magician throws a ball up in the air twice, after which he pretends to toss it up again, when in fact it remains secretly concealed in his hand. Observers perceive an imaginary ball disappearing into the air. According to Kuhn and Land (2006), the VBI during the fake throw is mediated by the magician's gaze and/or head direction (also called "social cues") as he looks toward the imaginary ball. The aim of this article is to test an alternative interpretation. According to our hypothesis, the magician's social cues are not essential to the VBI. We compared the numbers of participants experiencing the VBI when the magician's social cues were directed toward the illusory ball and when the magician's social cues were either hidden behind a black mask (Exp. 1) or stationary (Exp. 2). The results showed that the number of observers experiencing the VBI was high (almost two-thirds of the participants), regardless of whether the magician's social cueing was directed toward the illusion, hidden behind a mask, or stationary. In a third experiment (Exp. 3), we replicated Kuhn and Land's initial results and attempted to further explain their "anti-illusion" social-cue effect. This study confirms that social cueing is not required in the VBI: Its presence did not increase the number of participants experiencing the illusion.

  8. White noise speech illusion and psychosis expression : An experimental investigation of psychosis liability

    NARCIS (Netherlands)

    Pries, Lotta-Katrin; Guloksuz, Sinan; Menne-Lothmann, Claudia; Decoster, Jeroen; van Winkel, Ruud; Collip, Dina; Delespaul, Philippe; De Hert, Marc; Derom, Catherine; Thiery, Evert; Jacobs, Nele; Wichers, Marieke; Simons, Claudia J. P.; Rutten, Bart P. F.; van Os, Jim

    2017-01-01

    Background: An association between white noise speech illusion and psychotic symptoms has been reported in patients and their relatives. This supports the theory that bottom-up and top-down perceptual processes are involved in the mechanisms underlying perceptual abnormalities. However, findings in

  9. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  10. Space Radar Image of Flevoland, Netherlands

    Science.gov (United States)

    1999-01-01

    This is a three-frequency false color image of Flevoland, The Netherlands, centered at 52.4 degrees north latitude, 5.4 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard space shuttle Endeavour on April 14, 1994. It was produced by combining data from the X-band, C-band and L-band radars. The area shown is approximately 25 kilometers by 28 kilometers (15-1/2 by 17-1/2 miles). Flevoland, which fills the lower two-thirds of the image, is a very flat area that is made up of reclaimed land that is used for agriculture and forestry. At the top of the image, across the canal from Flevoland, is an older forest shown in red; the city of Harderwijk is shown in white on the shore of the canal. At this time of the year, the agricultural fields are bare soil, and they show up in this image in blue. The changes in the brightness of the blue areas are equal to the changes in roughness. The dark blue areas are water and the small dots in the canal are boats. This SIR-C/X-SAR supersite is being used for both calibration and agricultural studies. Several soil and crop ground-truth studies will be conducted during the shuttle flight. In addition, about 10calibration devices and 10 corner reflectors have been deployed to calibrate and monitor the radar signal. One of these transponders can be seen as a bright star in the lower right quadrant of the image. This false-color image was made using L-band total power in the red channel, C-band total power in the green channel, and X-band VV polarization in the blue channel. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by

  11. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  12. A Virtual Reality Full Body Illusion Improves Body Image Disturbance in Anorexia Nervosa.

    Directory of Open Access Journals (Sweden)

    Anouk Keizer

    Full Text Available Patients with anorexia nervosa (AN have a persistent distorted experience of the size of their body. Previously we found that the Rubber Hand Illusion improves hand size estimation in this group. Here we investigated whether a Full Body Illusion (FBI affects body size estimation of body parts more emotionally salient than the hand. In the FBI, analogue to the RHI, participants experience ownership over an entire virtual body in VR after synchronous visuo-tactile stimulation of the actual and virtual body.We asked participants to estimate their body size (shoulders, abdomen, hips before the FBI was induced, directly after induction and at ~2 hour 45 minutes follow-up. The results showed that AN patients (N = 30 decrease the overestimation of their shoulders, abdomen and hips directly after the FBI was induced. This effect was strongest for estimates of circumference, and also observed in the asynchronous control condition of the illusion. Moreover, at follow-up, the improvements in body size estimation could still be observed in the AN group. Notably, the HC group (N = 29 also showed changes in body size estimation after the FBI, but the effect showed a different pattern than that of the AN group.The results lead us to conclude that the disturbed experience of body size in AN is flexible and can be changed, even for highly emotional body parts. As such this study offers novel starting points from which new interventions for body image disturbance in AN can be developed.

  13. The elevator illusion results from the combination of body orientation and egocentric perception.

    Science.gov (United States)

    Paillard, A; Denise, P; Barraud, P-A; Roux, A; Cian, C

    2009-10-30

    Perception of body orientation and apparent location of objects are altered when humans are using assisted means of locomotion and the resultant of the imposed acceleration and gravity is no longer aligned with the gravitational vertical. As the otolithic system cannot discriminate the acceleration of gravity from sustained inertial accelerations, individuals would perceive the resultant acceleration vector (GiA) as the vertical. However, when subjects are aligned on the GiA, an increase in the magnitude of GiA induced a lowering of the apparent visual horizon (i.e. "elevator illusion"). The main aim of this study was to quantify the contribution of body and egocentric perception in the elevator illusion. While being exposed to 1G and 1.3G and aligned on the GiA acceleration, subjects (N=20) were asked (1) to set a luminous target to the subjective horizon, (2) to set a luminous target on "straight ahead" position (egocentric task) and (3) to rotate a tilting tube to their subjective perception of body orientation. Results showed that increasing GiA lowered horizon and egocentric settings and induces a backward body tilt perception. Moreover, the elevator illusion can be expressed as the additive combination of two processes: one that is dependent on body tilt perception, and the other that is dependent on egocentric perception. Both misperceptions in hypergravity may be considered to be a consequence of excessive shearing of the otolith organs. However large inter-individual differences in body tilt perception were observed. This last result was discussed in terms of the contribution of extravestibular graviceptors.

  14. Fun with maths and physics: brain teasers tricks illusions

    CERN Document Server

    Perelman, Yakov

    2013-01-01

    Fun with Maths and Physics details a large number of intriguing physics experiments, entertaining mathematics problems, and amazing optical illusions.The book’s main objective is to arouse the reader’s scientific imagination, teach him to think in a scientific manner, and create in his mind a variety of associations between physical knowledge and a large number of real daily life observations.Immensely instructive and entertaining, it has been one of the best sellers in Russia during the first part of last century.

  15. Bodily illusions disrupt tactile sensations.

    Science.gov (United States)

    D'Amour, Sarah; Pritchett, Lisa M; Harris, Laurence R

    2015-02-01

    To accurately interpret tactile information, the brain needs to have an accurate representation of the body to which to refer the sensations. Despite this, body representation has only recently been incorporated into the study of tactile perception. Here, we investigate whether distortions of body representation affect tactile sensations. We perceptually altered the length of the arm and the width of the waist using a tendon vibration illusion and measured spatial acuity and sensitivity. Surprisingly, we found reduction in both tactile acuity and sensitivity thresholds when the arm or waist was perceptually altered, which indicates a general disruption of low-level tactile processing. We postulate that the disruptive changes correspond to the preliminary stage as the body representation starts to change and may give new insights into sensory processing in people with long-term or sudden abnormal body representation such as are found in eating disorders or following amputation.

  16. A novel approach for absolute radar calibration: formulation and theoretical validation

    Directory of Open Access Journals (Sweden)

    C. Merker

    2015-06-01

    Full Text Available The theoretical framework of a novel approach for absolute radar calibration is presented and its potential analysed by means of synthetic data to lay out a solid basis for future practical application. The method presents the advantage of an absolute calibration with respect to the directly measured reflectivity, without needing a previously calibrated reference device. It requires a setup comprising three radars: two devices oriented towards each other, measuring reflectivity along the same horizontal beam and operating within a strongly attenuated frequency range (e.g. K or X band, and one vertical reflectivity and drop size distribution (DSD profiler below this connecting line, which is to be calibrated. The absolute determination of the calibration factor is based on attenuation estimates. Using synthetic, smooth and geometrically idealised data, calibration is found to perform best using homogeneous precipitation events with rain rates high enough to ensure a distinct attenuation signal (reflectivity above ca. 30 dBZ. Furthermore, the choice of the interval width (in measuring range gates around the vertically pointing radar, needed for attenuation estimation, is found to have an impact on the calibration results. Further analysis is done by means of synthetic data with realistic, inhomogeneous precipitation fields taken from measurements. A calibration factor is calculated for each considered case using the presented method. Based on the distribution of the calculated calibration factors, the most probable value is determined by estimating the mode of a fitted shifted logarithmic normal distribution function. After filtering the data set with respect to rain rate and inhomogeneity and choosing an appropriate length of the considered attenuation path, the estimated uncertainty of the calibration factor is of the order of 1 to 11 %, depending on the chosen interval width. Considering stability and accuracy of the method, an interval of

  17. The changes in perception of visual illusions during long-term isolation

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal; Lukavský, Jiří

    2009-01-01

    Roč. 2009, č. 38 (2009), s. 31-32 ISSN 0301-0066. [European Conference on Visual Perception. 24.08.2009-28.08.2009, Regensburg] R&D Projects: GA ČR GA406/09/2003 Institutional research plan: CEZ:AV0Z70250504 Keywords : long-term isolation * geometrical illusions * perspective Subject RIV: AN - Psychology http://www.perceptionweb.com/abstract.cgi?id=v090766

  18. The use of radar for bathymetry assessment

    OpenAIRE

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered bathymetric data. The paper reviews the concepts of bathymetry assessment by radar, the radar imaging mechanism, and the possibilities and limitations of the use of radar data in rapid assessment.

  19. The Illusion of Transparency and Normative Beliefs about Anxiety during Public Speaking

    Science.gov (United States)

    MacInnis, Cara C.; Mackinnon, Sean P.; MacIntyre, Peter D.

    2010-01-01

    Public speakers believe their nervousness is more apparent to others than is actually the case, a phenomenon known as the illusion of transparency. Study 1, in which participants delivered a public speech to an audience, provided evidence of this phenomenon. Despite this, a substantial minority of participants (36%) thought that the audience would…

  20. On the susceptibility of adaptive memory to false memory illusions.

    Science.gov (United States)

    Howe, Mark L; Derbish, Mary H

    2010-05-01

    Previous research has shown that survival-related processing of word lists enhances retention for that material. However, the claim that survival-related memories are more accurate has only been examined when true recall and recognition of neutral material has been measured. In the current experiments, we examined the adaptive memory superiority effect for different types of processing and material, measuring accuracy more directly by comparing true and false recollection rates. Survival-related information and processing was examined using word lists containing backward associates of neutral, negative, and survival-related critical lures and type of processing (pleasantness, moving, survival) was varied using an incidental memory paradigm. Across four experiments, results showed that survival-related words were more susceptible than negative and neutral words to the false memory illusion and that processing information in terms of its relevance to survival independently increased this susceptibility to the false memory illusion. Overall, although survival-related processing and survival-related information resulted in poorer, not more accurate, memory, such inaccuracies may have adaptive significance. These findings are discussed in the context of false memory research and recent theories concerning the importance of survival processing and the nature of adaptive memory. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Diamond-shaped electromagnetic transparent devices with homogeneous material parameters

    International Nuclear Information System (INIS)

    Li Tinghua; Huang Ming; Yang Jingjing; Yu Jiang; Lan Yaozhong

    2011-01-01

    Based on the linear coordinate transformation method, two-dimensional and three-dimensional electromagnetic transparent devices with diamond shape composed of homogeneous and non-singular materials are proposed in this paper. The permittivity and permeability tensors of the transparent devices are derived. The performance and scattering properties of the transparent devices are confirmed by a full-wave simulation. It can physically protect electric devices such as an antenna and a radar station inside, without sacrificing their performance. This work represents important progress towards the practical realization of metamaterial-assisted transparent devices and expands the application of transformation optics.

  2. Acoustic foundations of the speech-to-song illusion.

    Science.gov (United States)

    Tierney, Adam; Patel, Aniruddh D; Breen, Mara

    2018-06-01

    In the "speech-to-song illusion," certain spoken phrases are heard as highly song-like when isolated from context and repeated. This phenomenon occurs to a greater degree for some stimuli than for others, suggesting that particular cues prompt listeners to perceive a spoken phrase as song. Here we investigated the nature of these cues across four experiments. In Experiment 1, participants were asked to rate how song-like spoken phrases were after each of eight repetitions. Initial ratings were correlated with the consistency of an underlying beat and within-syllable pitch slope, while rating change was linked to beat consistency, within-syllable pitch slope, and melodic structure. In Experiment 2, the within-syllable pitch slope of the stimuli was manipulated, and this manipulation changed the extent to which participants heard certain stimuli as more musical than others. In Experiment 3, the extent to which the pitch sequences of a phrase fit a computational model of melodic structure was altered, but this manipulation did not have a significant effect on musicality ratings. In Experiment 4, the consistency of intersyllable timing was manipulated, but this manipulation did not have an effect on the change in perceived musicality after repetition. Our methods provide a new way of studying the causal role of specific acoustic features in the speech-to-song illusion via subtle acoustic manipulations of speech, and show that listeners can rapidly (and implicitly) assess the degree to which nonmusical stimuli contain musical structure. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Transient experimental demonstration of an elliptical thermal camouflage device.

    Science.gov (United States)

    He, Xiao; Yang, Tianzhi; Zhang, Xingwei; Wu, Linzhi; He, Xiao Qiao

    2017-11-30

    The camouflage phenomenon (invisibility or illusion) of thermodynamics has attracted great attentions and many experimental demonstrations have been achieved by virtue of simplified approaches or the scattering cancellation. However, all of the experiments conducted are limited in the invisibility of spheres or two-dimensional (2D) cylinders. An ellipsoid camouflage device with a homogenous and isotropic shell is firstly reported based on the idea of the neutral inclusion and a 2D elliptical thermal camouflage device is realized by a thin-layer cloak of homogeneous isotropic material firstly. The robustness of this scheme is validated in both 2D and 3D configurations. The current work may provide a new avenue to the control of the thermal signatures and we believe this work will broaden the current research and pave a new path to the control of the path of the heat transfer.

  4. Review of Studies on Visual Perception in Grey Parrots (Psittacus erithacus: The Muller-Lyer Illusion, Amodal and Modal Completion

    Directory of Open Access Journals (Sweden)

    Irene M. Pepperberg

    2017-08-01

    Full Text Available Few avian studies on optical illusions are directly comparable to those with humans. Grey parrots that have some referential use of English speech, however, allow for such comparative studies, as these birds can be tested just as are humans, by asking them to describe exactly what they have seen. Here I review two studies, one on the Müller-Lyer illusion (Pepperberg, Vicinay, & Cavanagh, 2008, one on amodal and modal perception (Pepperberg & Nakayama, 2016, that demonstrate similarities between human and Grey parrot perceptual abilities.

  5. San Gabriel Mountains, California, Radar image, color as height

    Science.gov (United States)

    2000-01-01

    This topographic radar image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the

  6. An investigation of 3D images of the simultaneous-lightness-contrast illusion using a virtual-reality technique

    Directory of Open Access Journals (Sweden)

    Menshikova, G.Ya.

    2013-09-01

    Full Text Available This article investigates the problem of lightness perception. To clarify the role of depth in lightness perception two current models—the albedo hypothesis and the coplanar-ratio hypothesis—are discussed. To compare them the strength of the simultaneous-lightnesscontrast (SLC illusion was investigated as a function of three-dimensional (3D configurations of the test and background squares. In accordance with both hypotheses the changes in the depth arrangements of the test and background squares should result in changes in the illusory effect. However, the reasons for and the directions of these changes should be different. Five different types of 3D configurations were created in which the test squares were tilted at different angles to the background squares. A virtual-reality technique was used to present stereo pairs of different 3D configurations. Thirty-seven observers took part in the experiment. The method of constant stimuli was used to obtain psychometric functions. The displacements of these functions for 3D configurations in comparison with the 2D configuration allowed the estimation of illusion strength. The analysis of individual values of illusion strength revealed two groups of subjects. For the first group (38% of all participants the strength changed insignificantly depending on the 3D configurations. For the second group (62% of all participants significant differences were obtained for those configurations in which the test and background squares were perceived as differently illuminated. The changes in the SLC illusion strength for the second group were consistent with predictions made by the albedo hypothesis. Thus, it seems that the perceived illumination of a surface should be considered the main parameter for lightness estimations in 3D scenes.

  7. Fiscal Effectiveness and Debt Illusion in a Rational Expectations Model

    OpenAIRE

    Basil A. DALAMAGAS

    1993-01-01

    The question of how substitution of debt for taxes affects private sector wealth and consumption has long been an unresolved macroeconomic theory and policy dispute. The present study attempts to address this problem within a modified fiscal-illusion setting, by utilizing an explicit rational expectations optimizing model of consumer behaviour for a sample of six developed countries. The empirical evidence presented is strongly supportive of the assertion that consumers make their consumption...

  8. Individual Differences in the Rubber Hand Illusion Are Related to Sensory Suggestibility.

    Directory of Open Access Journals (Sweden)

    Angela Marotta

    Full Text Available In the rubber hand illusion (RHI, watching a rubber hand being stroked in synchrony with one's own hidden hand may induce a sense of ownership over the rubber hand. The illusion relies on bottom-up multisensory integration of visual, tactile, and proprioceptive information, and on top-down processes through which the rubber hand is incorporated into pre-existing representations of the body. Although the degree of illusory experience varies largely across individuals, the factors influencing individual differences are unknown. We investigated whether sensory suggestibility might modulate susceptibility to the RHI. Sensory suggestibility is a personality trait related to how individuals react to sensory information. Because of its sensory nature, this trait could be relevant for studies using the RHI paradigm. Seventy healthy volunteers were classified by Sensory Suggestibility Scale (SSS scores as having high or low suggestibility and assigned to either a high- (High-SSS or a low-suggestibility (Low-SSS group. Two components of the RHI were evaluated in synchronous and asynchronous stroking conditions: subjective experience of sense of ownership over the rubber hand via a 9-statement questionnaire, and proprioceptive drift as measured with a ruler. The High-SSS group was generally more susceptible to the subjective component; in the synchronous condition, they rated the statement assessing the sense of ownership higher than the Low-SSS group. The scores for this statement significantly correlated with the total SSS score, indicating that the higher the sensory suggestibility, the stronger the sense of ownership. No effect of sensory suggestibility on proprioceptive drift was observed, suggesting that the effect is specific for the subjective feeling of ownership. This study demonstrates that sensory suggestibility may contribute to participants' experience of the illusion and should be considered when using the RHI paradigm.

  9. Individual Differences in the Rubber Hand Illusion Are Related to Sensory Suggestibility.

    Science.gov (United States)

    Marotta, Angela; Tinazzi, Michele; Cavedini, Clelia; Zampini, Massimiliano; Fiorio, Mirta

    2016-01-01

    In the rubber hand illusion (RHI), watching a rubber hand being stroked in synchrony with one's own hidden hand may induce a sense of ownership over the rubber hand. The illusion relies on bottom-up multisensory integration of visual, tactile, and proprioceptive information, and on top-down processes through which the rubber hand is incorporated into pre-existing representations of the body. Although the degree of illusory experience varies largely across individuals, the factors influencing individual differences are unknown. We investigated whether sensory suggestibility might modulate susceptibility to the RHI. Sensory suggestibility is a personality trait related to how individuals react to sensory information. Because of its sensory nature, this trait could be relevant for studies using the RHI paradigm. Seventy healthy volunteers were classified by Sensory Suggestibility Scale (SSS) scores as having high or low suggestibility and assigned to either a high- (High-SSS) or a low-suggestibility (Low-SSS) group. Two components of the RHI were evaluated in synchronous and asynchronous stroking conditions: subjective experience of sense of ownership over the rubber hand via a 9-statement questionnaire, and proprioceptive drift as measured with a ruler. The High-SSS group was generally more susceptible to the subjective component; in the synchronous condition, they rated the statement assessing the sense of ownership higher than the Low-SSS group. The scores for this statement significantly correlated with the total SSS score, indicating that the higher the sensory suggestibility, the stronger the sense of ownership. No effect of sensory suggestibility on proprioceptive drift was observed, suggesting that the effect is specific for the subjective feeling of ownership. This study demonstrates that sensory suggestibility may contribute to participants' experience of the illusion and should be considered when using the RHI paradigm.

  10. Self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus III network.

    Science.gov (United States)

    Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi

    2017-04-21

    Proprioception is somatic sensation that allows us to sense and recognize position, posture, and their changes in our body parts. It pertains directly to oneself and may contribute to bodily awareness. Likewise, one's face is a symbol of oneself, so that visual self-face recognition directly contributes to the awareness of self as distinct from others. Recently, we showed that right-hemispheric dominant activity in the inferior fronto-parietal cortices, which are connected by the inferior branch of the superior longitudinal fasciculus (SLF III), is associated with proprioceptive illusion (awareness), in concert with sensorimotor activity. Herein, we tested the hypothesis that visual self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal SLF III network. We scanned brain activity using functional magnetic resonance imaging while twenty-two right-handed healthy adults performed two tasks. One was a proprioceptive illusion task, where blindfolded participants experienced a proprioceptive illusion of right hand movement. The other was a visual self-face recognition task, where the participants judged whether an observed face was their own. We examined whether the self-face recognition and the proprioceptive illusion commonly activated the inferior fronto-parietal cortices connected by the SLF III in a right-hemispheric dominant manner. Despite the difference in sensory modality and in the body parts involved in the two tasks, both tasks activated the right inferior fronto-parietal cortices, which are likely connected by the SLF III, in a right-side dominant manner. Here we discuss possible roles for right inferior fronto-parietal activity in bodily awareness and self-awareness. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Influence of 'optical illusion' on the detectability of pneumothorax in diagnosis for chest CT images. Substantiation by visual psychological simulation images

    International Nuclear Information System (INIS)

    Henmi, Shuichi

    2008-01-01

    Some cases have been reported in which an optical illusion of lightness perception influences the detectability in diagnosis of low-density hematoma in head CT images in addition to the visual impression of the photographic density of the brain. Therefore, in this study, the author attempted to compare the detectability in diagnosis for chest images with pneumothorax using visual subjective evaluation, and investigated the influence of optical illusion on that detectability in diagnosis. Results indicated that in the window setting of lung, on such an occasion when the low-absorption free space with pneumothorax forms a crescent or the reduced lung borders on the chest-wall, an optical illusion in which the visual impression on the difference of the film contrast between the lung and the low-absorption free space with pneumothorax was psychologically emphasized when contrast was observed. In all cases the detectability in diagnosis for original images with the white thorax and mediastinum was superior to virtual images. Further, in case of the virtual double window setting of lung, thorax, and mediastinum, under the influence of the difference in the radiological anatomy of thorax and mediastinum as a result of the grouping theories of lightness computation, an optical illusion different from the original images was observed. (author)

  12. Interception of LPI radar signals

    Science.gov (United States)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  13. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  14. Human walking estimation with radar

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2003-01-01

    Radar can be used to observe humans that are obscured by objects such as walls. These humans cannot be visually observed. The radar measurements are used to animate an obscured human in virtual reality. This requires detailed information about the motion. The radar measurements give detailed

  15. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  16. Radar meteor rates and solar activity

    International Nuclear Information System (INIS)

    Prikryl, P.

    1983-01-01

    The short-term variation of diurnal radar meteor rates with solar activity represented by solar microwave flux Fsub(10.7), and sunspots relative number Rsub(z), is investigated. Applying the superposed-epoch analysis to the observational material of radar meteor rates from Christchurch (1960-61 and 1963-65), a decrease in the recorded radar rates is found during days of enhanced solar activity. No effect of geomagnetic activity similar to the one reported for the Swedish and Canadian radar meteor data was found by the author in the Christchurch data. A possible explanation of the absence of the geomagnetic effect on radar meteor rates from New Zealand due to a lower echo ceiling height of the Christchurch radar is suggested. The variation of the atmospheric parameters as a possible cause of the observed variation in radar meteor rates is also discussed. (author)

  17. Visual capture of action, experience of ownership, and the illusion of self-touch: a new rubber hand paradigm.

    Science.gov (United States)

    Aimola Davies, Anne M; White, Rebekah C; Thew, Graham; Aimola, Natalie M V; Davies, Martin

    2010-01-01

    A new rubber hand paradigm evokes an illusion with three conceptually distinct components: (i) the participant experiences her/his hidden right hand as administering touch at the location of the examiner's viewed administering hand (visual capture of action); (ii) the participant experiences the examiner's administering hand as being the participant's own hand (experience of ownership); and (iii) the participant experiences her/his two hands as being in contact, as if she/he were touching her/his own hand (illusion of self-touch). The presence of these illusory experiences was confirmed by questionnaire responses and proprioceptive drift data.

  18. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  19. Classification and correction of the radar bright band with polarimetric radar

    Science.gov (United States)

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  20. Hurricane Rita Track Radar Image with Topographic Overlay

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Animation About the animation: This simulated view of the potential effects of storm surge flooding on Galveston and portions of south Houston was generated with data from the Shuttle Radar Topography Mission. Although it is protected by a 17-foot sea wall against storm surges, flooding due to storm surges caused by major hurricanes remains a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments. About the image: The Gulf Coast from the Mississippi Delta through the Texas coast is shown in this satellite image from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) overlain with data from the Shuttle Radar Topography Mission (SRTM), and the predicted storm track for Hurricane Rita. The prediction from the National Weather Service was published Sept. 22 at 4 p.m. Central Time, and shows the expected track center in black with the lighter shaded area indicating the range of potential tracks the storm could take. Low-lying terrain along the coast has been highlighted using the SRTM elevation data, with areas within 15 feet of sea level shown in red, and within 30 feet in yellow. These areas are more at risk for flooding and the destructive effects of storm surge and high waves. Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial

  1. The Monitoring Case of Ground-Based Synthetic Aperture Radar with Frequency Modulated Continuous Wave System

    Science.gov (United States)

    Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.

    2017-09-01

    The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.

  2. The more-or-less morphing face illusion: A case of fixation-dependent modulation

    NARCIS (Netherlands)

    Lier, R.J. van; Koning, A.R.

    2014-01-01

    A visual illusion is presented in which the perceived changes in a morphing sequence depend on eye movements. The phenomenon is illustrated using face morphs: when tracking a moving dot superimposed on a face morphing sequence, the changes in the morphing sequence seem rather small, but when the dot

  3. Visual Illusions and the Control of Ball Placement in Goal-Directed Hitting

    Science.gov (United States)

    Caljouw, Simone R.; Van der Kamp, John; Savelsbergh, Geert J. P.

    2010-01-01

    When hitting, kicking, or throwing balls at targets, online control in the target area is impossible. We assumed this lack of late corrections in the target area would induce an effect of a single-winged Muller-Lyer illusion on ball placement. After extensive practice in hitting balls to different landing locations, participants (N = 9) had to hit…

  4. Perception-action dissociation generalizes to the size-inertia illusion.

    Science.gov (United States)

    Platkiewicz, Jonathan; Hayward, Vincent

    2014-04-01

    Two objects of similar visual aspects and of equal mass, but of different sizes, generally do not elicit the same percept of heaviness in humans. The larger object is consistently felt to be lighter than the smaller, an effect known as the "size-weight illusion." When asked to repeatedly lift the two objects, the grip forces were observed to adapt rapidly to the true object weight while the size-weight illusion persisted, a phenomenon interpreted as a dissociation between perception and action. We investigated whether the same phenomenon can be observed if the mass of an object is available to participants through inertial rather than gravitational cues and if the number and statistics of the stimuli is such that participants cannot remember each individual stimulus. We compared the responses of 10 participants in 2 experimental conditions, where they manipulated 33 objects having uncorrelated masses and sizes, supported by a frictionless, air-bearing slide that could be oriented vertically or horizontally. We also analyzed the participants' anticipatory motor behavior by measuring the grip force before motion onset. We found that the perceptual illusory effect was quantitatively the same in the two conditions and observed that both visual size and haptic mass had a negligible effect on the anticipatory gripping control of the participants in the gravitational and inertial conditions, despite the enormous differences in the mechanics of the two conditions and the large set of uncorrelated stimuli.

  5. 46 CFR 184.404 - Radars.

    Science.gov (United States)

    2010-10-01

    ... within one mile of land must be fitted with a FCC Type Accepted general marine radar system for surface... Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD...

  6. Radar network communication through sensing of frequency hopping

    Science.gov (United States)

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  7. Sensor management in RADAR/IRST track fusion

    Science.gov (United States)

    Hu, Shi-qiang; Jing, Zhong-liang

    2004-07-01

    In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.

  8. ISTEF Laser Radar Program

    National Research Council Canada - National Science Library

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  9. Does affective touch influence the virtual reality full body illusion?

    OpenAIRE

    de Jong, Jutta R; Keizer, Anouk; Engel, Manja M; Dijkerman, H Chris

    2017-01-01

    The sense of how we experience our physical body as our own represents a fundamental component of human self-awareness. Body ownership can be studied with bodily illusions which are generated by inducing a visuo-tactile conflict where individuals experience illusionary ownership over a fake body or body part, such as a rubber hand. Previous studies showed that different types of touch modulate the strength of experienced ownership over a rubber hand. Specifically, participants experienced mor...

  10. The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms

    Science.gov (United States)

    Pinna, Baingio; Grossberg, Stephen

    2005-10-01

    Coloration and figural properties of neon color spreading and the watercolor illusion are studied using phenomenal and psychophysical observations. Coloration properties of both effects can be reduced to a common limiting condition, a nearby color transition called the two-dot limiting case, which clarifies their perceptual similarities and dissimilarities. The results are explained by the FACADE neural model of biological vision. The model proposes how local properties of color transitions activate spatial competition among nearby perceptual boundaries, with boundaries of lower-contrast edges weakened by competition more than boundaries of higher-contrast edges. This asymmetry induces spreading of more color across these boundaries than conversely. The model also predicts how depth and figure-ground effects are generated in these illusions.

  11. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    Science.gov (United States)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  12. Age is in the Eye of the Beholder: Examining the Cues Employed to Construct the Illusion of Youth in Teen Pornography

    OpenAIRE

    Peters, Evyn M.; Morrison, Todd G.; McDermott, Daragh T.; Bishop, C. J.; Kiss, Mark

    2014-01-01

    Past research has identified a subgenre of mainstream pornography that attempts to create the illusion for consumers that sex is occurring between an adult and a minor (i.e., a child or young adolescent under the age of 18). This illusion is established through various textual, verbal, visual, and behavioural cues. Although the construction of adult–minor relationships in pornography has received some scholarly attention, there has been no attempt to investigate this phenomenon within pornogr...

  13. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  14. Deficits in pain perception in borderline personality disorder: results from the thermal grill illusion.

    Science.gov (United States)

    Bekrater-Bodmann, Robin; Chung, Boo Young; Richter, Ingmarie; Wicking, Manon; Foell, Jens; Mancke, Falk; Schmahl, Christian; Flor, Herta

    2015-10-01

    It is well documented that borderline personality disorder (BPD) is characterized by reduced pain sensitivity, which might be related to nonsuicidal self-injury and dissociative experiences in patients with BPD. However, it remains an open question whether this insensitivity relies at least partly on altered sensory integration or on an altered evaluation of pain or a combination of both. In this study, we used the thermal grill illusion (TGI), describing a painful sensation induced by the application of alternating cold and warm nonnoxious stimuli, in patients with either current or remitted BPD as well as matched healthy controls. Two additional conditions, applying warm or cold temperatures only, served as control. We further assessed thermal perception, discrimination, and pain thresholds. We found significantly reduced heat and cold pain thresholds for the current BPD group, as well as reduced cold pain thresholds for the remitted BPD group, as compared with the HC group. Current BPD patients perceived a less-intense TGI in terms of induced pain and unpleasantness, while their general ability to perceive this kind of illusion seemed to be unaffected. Thermal grill illusion magnitude was negatively correlated with dissociation and traumatization only in the current BPD patients. These results indicate that higher-order pain perception is altered in current BPD, which seems to normalize after remission. We discuss these findings against the background of neurophysiological evidence for the TGI in general and reduced pain sensitivity in BPD and suggest a relationship to alterations in N-methyl-D-aspartate neurotransmission.

  15. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  16. Pocket radar guide key facts, equations, and data

    CERN Document Server

    Curry, G Richard

    2010-01-01

    ThePocket Radar Guideis a concise collection of key radar facts and important radar data that provides you with necessary radar information when you are away from your office or references. It includes statements and comments on radar design, operation, and performance; equations describing the characteristics and performance of radar systems and their components; and tables with data on radar characteristics and key performance issues.It is intended to supplement other radar information sources by providing a pocket companion to refresh memory and provide details whenever you need them such a

  17. Body ownership and agency: task-dependent effects of the virtual hand illusion on proprioceptive drift.

    Science.gov (United States)

    Shibuya, Satoshi; Unenaka, Satoshi; Ohki, Yukari

    2017-01-01

    Body ownership and agency are fundamental to self-consciousness. These bodily experiences have been intensively investigated using the rubber hand illusion, wherein participants perceive a fake hand as their own. After presentation of the illusion, the position of the participant's hand then shifts toward the location of the fake hand (proprioceptive drift). However, it remains controversial whether proprioceptive drift is able to provide an objective measurement of body ownership, and whether agency also affects drift. Using the virtual hand illusion (VHI), the current study examined the effects of body ownership and agency on proprioceptive drift, with three different visuo-motor tasks. Twenty healthy adults (29.6 ± 9.2 years old) completed VH manipulations using their right hand under a 2 × 2 factorial design (active vs. passive manipulation, and congruent vs. incongruent virtual hand). Prior to and after VH manipulation, three different tasks were performed to assess proprioceptive drift, in which participants were unable to see their real hands. The effects of the VHI on proprioceptive drift were task-dependent. When participants were required to judge the position of their right hand using a ruler, or by reaching toward a visual target, both body ownership and agency modulated proprioceptive drift. Comparatively, when participants aligned both hands, drift was influenced by ownership but not agency. These results suggest that body ownership and agency might differentially modulate various body representations in the brain.

  18. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  19. Extended Target Recognition in Cognitive Radar Networks

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  20. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  1. When Does Modality Matter? Perceptual versus Conceptual Fluency-Based Illusions in Recognition Memory

    Science.gov (United States)

    Miller, Jeremy K.; Lloyd, Marianne E.; Westerman, Deanne L.

    2008-01-01

    Previous research has shown that illusions of recognition memory based on enhanced perceptual fluency are sensitive to the perceptual match between the study and test phases of an experiment. The results of the current study strengthen that conclusion, as they show that participants will not interpret enhanced perceptual fluency as a sign of…

  2. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  3. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  4. Solid-state radar switchboard

    Science.gov (United States)

    Thiebaud, P.; Cross, D. C.

    1980-07-01

    A new solid-state radar switchboard equipped with 16 input ports which will output data to 16 displays is presented. Each of the ports will handle a single two-dimensional radar input, or three ports will accommodate a three-dimensional radar input. A video switch card of the switchboard is used to switch all signals, with the exception of the IFF-mode-control lines. Each card accepts inputs from up to 16 sources and can pass a signal with bandwidth greater than 20 MHz to the display assigned to that card. The synchro amplifier of current systems has been eliminated and in the new design each PPI receives radar data via a single coaxial cable. This significant reduction in cabling is achieved by adding a serial-to-parallel interface and a digital-to-synchro converter located at the PPI.

  5. The predictive power of dividend yields for future inflation: Money illusion or rational causes?

    DEFF Research Database (Denmark)

    Engsted, Tom; Pedersen, Thomas Quistgaard

    slope coefficients that increase numerically with the horizon in regressions of future inflation onto the dividend yield, in accordance with the data. A purely rational version of the model with no money illusion, but with a link from expected inflation to real consumption growth, also generates...

  6. The Role of Head Movements and Signal Spectrum in an Auditory Front/Back Illusion

    Directory of Open Access Journals (Sweden)

    W Owen Brimijoin

    2012-04-01

    Full Text Available We used a dynamic auditory spatial illusion to investigate the role of self-motion and acoustics in shaping our spatial percept of the environment. Using motion capture, we smoothly moved a sound source around listeners as a function of their own head movements. A lowpass filtered sound behind a listener that moved in the direction it would have moved if it had been located in the front was perceived as statically located in front. The contrariwise effect occurred if the sound was in front but moved as if it were behind. The illusion was strongest for sounds lowpass filtered at 500 Hz and weakened as a function of increasing lowpass cutoff frequency. The signals with the most high frequency energy were often associated with an unstable location percept that flickered from front to back as self-motion cues and spectral cues for location came into conflict with one another.

  7. A Common Framework for the Analysis of Complex Motion? Standstill and Capture Illusions

    Directory of Open Access Journals (Sweden)

    Max Reinhard Dürsteler

    2014-12-01

    Full Text Available A series of illusions was created by presenting stimuli, which consisted of two overlapping surfaces each defined by textures of independent visual features (i.e. modulation of luminance, color, depth, etc.. When presented concurrently with a stationary 2-D luminance texture, observers often fail to perceive the motion of an overlapping stereoscopically defined depth-texture. This illusory motion standstill arises due to a failure to represent two independent surfaces (one for luminance and one for depth textures and motion transparency (the ability to perceive motion of both surfaces simultaneously. Instead the stimulus is represented as a single non-transparent surface taking on the stationary nature of the luminance-defined texture. By contrast, if it is the 2D-luminance defined texture that is in motion, observers often perceive the stationary depth texture as also moving. In this latter case, the failure to represent the motion transparency of the two textures gives rise to illusionary motion capture. Our past work demonstrated that the illusions of motion standstill and motion capture can occur for depth-textures that are rotating, or expanding / contracting, or else spiraling. Here I extend these findings to include stereo-shearing. More importantly, it is the motion (or lack thereof of the luminance texture that determines how the motion of the depth will be perceived. This observation is strongly in favor of a single pathway for complex motion that operates on luminance-defines texture motion signals only. In addition, these complex motion illusions arise with chromatically-defined textures with smooth, transitions between their colors. This suggests that in respect to color motion perception the complex motions’ pathway is only able to accurately process signals from isoluminant colored textures with sharp transitions between colors, and/or moving at high speeds, which is conceivable if it relies on inputs from a hypothetical dual

  8. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    Science.gov (United States)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  9. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  10. Success-slope effects on the illusion of control and on remembered success-frequency

    Directory of Open Access Journals (Sweden)

    Anastasia Ejova

    2013-07-01

    Full Text Available The illusion of control refers to the inference of action-outcome contingency in situations where outcomes are in fact random. The strength of this illusion has been found to be affected by whether the frequency of successes increases or decreases over repeated trials, in what can be termed a ``success-slope'' effect. Previous studies have generated inconsistent findings regarding the nature of this effect. In this paper we present an experiment (N = 334 that overcomes several methodological limitations within this literature, employing a wider range of dependent measures (measures of two different types of illusory control, primary (by self and secondary (by luck, as well as measures of remembered success-frequency. Results indicate that different dependent measures lead to different effects. On measures of (primary, but not secondary control over the task, scores were highest when the rate of success increased over time. Meanwhile, estimates of success-frequency in the task did not vary across conditions and showed trends consistent with the broader literature on human memory.

  11. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  12. Radar spectrum opportunities for cognitive communications transmission

    OpenAIRE

    Wang, L; McGeehan, JP; Williams, C; Doufexi, A

    2008-01-01

    In relation to opportunistic access to radar spectrum, the impact of the radar on a communication system is investigated in this paper. This paper illustrates that by exploring the spatial and temporal opportunities in the radar spectrum and therefore improving the tolerance level to radar interference, a substantial increase on the throughput of a communication system is possible. Results are presented regarding the impact of swept radars on a WiMAX system. The results show the impact of SIR...

  13. ILLUSION, DISILLUSION, AND IRONY IN PSYCHOANALYSIS.

    Science.gov (United States)

    Steiner, John

    2016-04-01

    The author draws a parallel between an analyst listening to a patient and a member of an audience watching a play. In both situations, it is important to be able to adopt a dual identity in order to participate in the action through identification and then to withdraw from the identification to adopt the position of an observer. The author discusses two plays, Ibsen's The Wild Duck (1884) and Sophocles's Oedipus the King (5th century BC, a), and concludes that an ironic attitude to these works can help the spectator to adopt these dual identities and to recognize the value of truth, while at the same time appreciating that reality can be harsh and sometimes unbearable. A similar ironic vision in relation to his patients can enable the analyst to retain a respect for truth alongside a sympathetic awareness of the need for illusion. © 2016 The Psychoanalytic Quarterly, Inc.

  14. The magnetic touch illusion: A perceptual correlate of visuo-tactile integration in peripersonal space.

    Science.gov (United States)

    Guterstam, Arvid; Zeberg, Hugo; Özçiftci, Vedat Menderes; Ehrsson, H Henrik

    2016-10-01

    To accurately localize our limbs and guide movements toward external objects, the brain must represent the body and its surrounding (peripersonal) visual space. Specific multisensory neurons encode peripersonal space in the monkey brain, and neurobehavioral studies have suggested the existence of a similar representation in humans. However, because peripersonal space lacks a distinct perceptual correlate, its involvement in spatial and bodily perception remains unclear. Here, we show that applying brushstrokes in mid-air at some distance above a rubber hand-without touching it-in synchrony with brushstrokes applied to a participant's hidden real hand results in the illusory sensation of a "magnetic force" between the brush and the rubber hand, which strongly correlates with the perception of the rubber hand as one's own. In eight experiments, we characterized this "magnetic touch illusion" by using quantitative subjective reports, motion tracking, and behavioral data consisting of pointing errors toward the rubber hand in an intermanual pointing task. We found that the illusion depends on visuo-tactile synchrony and exhibits similarities with the visuo-tactile receptive field properties of peripersonal space neurons, featuring a non-linear decay at 40cm that is independent of gaze direction and follows changes in the rubber hand position. Moreover, the "magnetic force" does not penetrate physical barriers, thus further linking this phenomenon to body-specific visuo-tactile integration processes. These findings provide strong support for the notion that multisensory integration within peripersonal space underlies bodily self-attribution. Furthermore, we propose that the magnetic touch illusion constitutes a perceptual correlate of visuo-tactile integration in peripersonal space. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Agency Enhances Body Ownership Illusion of Being a Virtual Bat

    DEFF Research Database (Denmark)

    Andreasen, Anastassia; Nilsson, Niels Chr.; Serafin, Stefania

    2018-01-01

    This poster describes a within-subject study of agency´s influence on virtual body ownership (VBO) using anatomically similar but morphologically different body of a virtual bat. Paricipants were exposed to flight under four conditions: voluntary movement through virtual environment (VE......) with avatar present, voluntary movement through virtual environment (VE) with avatar absent, voluntary limbs movement without movements through VE, and finally involuntary movement of the avatar through VE. The results suggest that agency enhances VBO illusion the most under participants´ full control during...

  16. Counter-rotating standing spin waves: A magneto-optical illusion

    Science.gov (United States)

    Shihab, S.; Thevenard, L.; Lemaître, A.; Gourdon, C.

    2017-04-01

    We excite perpendicular standing spin waves by a laser pulse in a GaMnAsP ferromagnetic layer and detect them using time-resolved magneto-optical effects. Quite counterintuitively, we find the first two excited modes to be of opposite chirality. We show that this can only be explained by taking into account absorption and optical phase shift inside the layer. This optical illusion is particularly strong in weakly absorbing layers. These results provide a correct identification of spin waves modes, enabling a trustworthy estimation of their respective weight as well as an unambiguous determination of the spin stiffness parameter.

  17. Complex cells decrease errors for the Müller-Lyer illusion in a model of the visual ventral stream

    Directory of Open Access Journals (Sweden)

    Astrid eZeman

    2014-09-01

    Full Text Available To improve robustness in object recognition, many artificial visual systems imitate the way in which the human visual cortex encodes object information as a hierarchical set of features. These systems are usually evaluated in terms of their ability to accurately categorize well-defined, unambiguous objects and scenes. In the real world, however, not all objects and scenes are presented clearly, with well-defined labels and interpretations. Visual illusions demonstrate a disparity between perception and objective reality, allowing psychophysicists to methodically manipulate stimuli and study our interpretation of the environment. One prominent effect, the Müller-Lyer illusion, is demonstrated when the perceived length of a line is contracted (or expanded by the addition of arrowheads (or arrow-tails to its ends. HMAX, a benchmark object recognition system, consistently produces a bias when classifying Müller-Lyer images. HMAX is a hierarchical, artificial neural network that imitates the ‘simple’ and ‘complex’ cell layers found in the visual ventral stream. In this study, we perform two experiments to explore the Müller-Lyer illusion in HMAX, asking: 1 How do simple versus complex cell operations within HMAX affect illusory bias and precision? 2 How does varying the position of the figures in the input image affect classification using HMAX? In our first experiment, we assessed classification after traversing each layer of HMAX and found that in general, kernel operations performed by simple cells increase bias and uncertainty while max-pooling operations executed by complex cells decrease bias and uncertainty. In our second experiment, we increased variation in the positions of figures in the input that reduced bias and uncertainty in HMAX. Our findings suggest that the Müller-Lyer illusion is exacerbated by the vulnerability of simple cell operations to positional fluctuations, but ameliorated by the robustness of complex cell

  18. Complex cells decrease errors for the Müller-Lyer illusion in a model of the visual ventral stream.

    Science.gov (United States)

    Zeman, Astrid; Obst, Oliver; Brooks, Kevin R

    2014-01-01

    To improve robustness in object recognition, many artificial visual systems imitate the way in which the human visual cortex encodes object information as a hierarchical set of features. These systems are usually evaluated in terms of their ability to accurately categorize well-defined, unambiguous objects and scenes. In the real world, however, not all objects and scenes are presented clearly, with well-defined labels and interpretations. Visual illusions demonstrate a disparity between perception and objective reality, allowing psychophysicists to methodically manipulate stimuli and study our interpretation of the environment. One prominent effect, the Müller-Lyer illusion, is demonstrated when the perceived length of a line is contracted (or expanded) by the addition of arrowheads (or arrow-tails) to its ends. HMAX, a benchmark object recognition system, consistently produces a bias when classifying Müller-Lyer images. HMAX is a hierarchical, artificial neural network that imitates the "simple" and "complex" cell layers found in the visual ventral stream. In this study, we perform two experiments to explore the Müller-Lyer illusion in HMAX, asking: (1) How do simple vs. complex cell operations within HMAX affect illusory bias and precision? (2) How does varying the position of the figures in the input image affect classification using HMAX? In our first experiment, we assessed classification after traversing each layer of HMAX and found that in general, kernel operations performed by simple cells increase bias and uncertainty while max-pooling operations executed by complex cells decrease bias and uncertainty. In our second experiment, we increased variation in the positions of figures in the input images that reduced bias and uncertainty in HMAX. Our findings suggest that the Müller-Lyer illusion is exacerbated by the vulnerability of simple cell operations to positional fluctuations, but ameliorated by the robustness of complex cell responses to such

  19. Evidence for thalamic involvement in the thermal grill illusion: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Fredrik Lindstedt

    Full Text Available BACKGROUND: Perceptual illusions play an important role in untangling neural mechanisms underlying conscious phenomena. The thermal grill illusion (TGI has been suggested as a promising model for exploring percepts involved in neuropathic pain, such as cold-allodynia (pain arising from contact with innocuous cold. The TGI is an unpleasant/painful sensation from touching juxtapositioned bars of cold and warm innocuous temperatures. AIM: To develop an MRI-compatible TGI-unit and explore the supraspinal correlates of the illusion, using fMRI, in a group of healthy volunteers. METHODS: We constructed a TGI-thermode allowing the rapid presentation of warm(41°C, cold(18°C and interleaved(41°C+18°C = TGI temperatures in an fMRI-environment. Twenty volunteers were tested. The affective-motivational ("unpleasantness" and sensory-disciminatory ("pain-intensity" dimensions of each respective stimulus were rated. Functional images were analyzed at a corrected α-level <0.05. RESULTS: The TGI was rated as significantly more unpleasant and painful than stimulation with each of its constituent temperatures. Also, the TGI was rated as significantly more unpleasant than painful. Thermal stimulation versus neutral baseline revealed bilateral activations of the anterior insulae and fronto-parietal regions. Unlike its constituent temperatures the TGI displayed a strong activation of the right (contralateral thalamus. Exploratory contrasts at a slightly more liberal threshold-level also revealed a TGI-activation of the right mid/anterior insula, correlating with ratings of unpleasantness (rho = 0.31. CONCLUSION/SIGNIFICANCE: To the best of our knowledge, this is the first fMRI-study of the TGI. The activation of the anterior insula is consistent with this region's putative role in processing of homeostatically relevant feeling-states. Our results constitute the first neurophysiologic evidence of thalamic involvement in the TGI. Similar thalamic activity

  20. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    2001-08-01

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  1. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  2. Radar observations of Mercury

    International Nuclear Information System (INIS)

    Harmon, J.K.; Campbell, D.B.

    1988-01-01

    Some of the radar altimetry profiles of Mercury obtained on the basis of data from the Arecibo Observatory are presented. In these measurements, the delay-Doppler method was used to measure altitudes along the Doppler equator, rather than to map radar reflectivity. The profiles, derived from observations made over a 6-yr period, provide extensive coverage over a restricted equatorial band and permit the identification of radar signatures for features as small as 50-km diameter craters and 1-km-high arcuate scarps. The data allowed identification of large-scale topographic features such as smooth plains subsidence zones and major highland regions

  3. Experiment for buried pipes by stepped FM-CW radar; Step shiki FM-CW radar ni yoru maisetsukan tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Ito, M. [Kawasaki Geological Engineering, Co. Ltd., Tokyo (Japan); Tanabe, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-27

    The underground radar exploration is adopted to surveys of cavity under the road and buried pipes since the result of high resolution is obtained. However, the explorative depth of the radar is shallow, 2-3m in soil basement, and its applicable field has been limited. The continuous wave radar (FM-CW radar) was devised to get deeper explorative depth, but has been used for the geological structure survey such as the fault survey since it is lower in resolution as compared with the pulse radar. Therefore, to make use of characteristics of the continuous wave radar and enhance resolution in the shallow part, an experiment on buried pipes was conducted for the purpose of assessing and improving the FM-CW radar. In this processing, the wave form treatment used in the reflection method seismic survey was adopted for the radar survey. There are some problems, but it is effective to adopt the same algorithm to that used in the seismic survey to the radar exploration. The explorative depth was discussed from the damping rate of electromagnetic waves and dynamic range of facilities of the experimental site, and 7m was obtained. 5 figs., 1 tab.

  4. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion

    Science.gov (United States)

    Suzuki, Masahiro

    2014-07-01

    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  5. Radar reflection off extensive air showers

    CERN Document Server

    Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J

    2012-01-01

    We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  6. Is the Moon Illusion a Celestial Ames Demonstration?

    Science.gov (United States)

    Brecher, Kenneth

    2010-01-01

    To most naked eye observers, the Moon appears larger when seen near the horizon than it does when seen near the zenith. This "Moon Illusion” has been reported from as early as the fourth century BC and has been the subject of hundreds of papers and two books. Its explanation does not lie in the realm of physics (atmospheric refraction) or astronomy (eccentric lunar orbit) but, rather, in the realm of visual perception. Theories for the cause of the effect abound but, at present, there is no universally accepted explanation. Because the effect can be easily observed in many locations and during the course of an academic year, the moon illusion can provide a nice astronomical example that involves both direct observations and theoretical analysis. As part of the NSF funded "Project LITE: Light Inquiry Through Experiments", we have been developing inexpensive experiments and demonstrations that can be done at home. One of these is a miniature version of the classic "Ames Room". The life size version was originally developed by Adelbert Ames, Jr. and can be seen in many science museums. Our "digital” Ames Room has been designed to be printed on heavy paper using an inexpensive inkjet printer from a PDF file that is posted on the Project LITE web site http://lite.bu.edu and then cut and folded to make the room. When viewed through one wall using a commonly available door viewer, it dramatically demonstrates how the eye and brain system assesses the relative size of objects by making comparisons with the surrounding environment in which the objects are placed. In this presentation we will discuss some insights that the Ames Room provides that may offer clues to the correct explanation for the Moon Illusion. Project LITE is supported by the NSF through DUE Grant # 0715975.

  7. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  8. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  9. Radar probing of the auroral plasma

    International Nuclear Information System (INIS)

    Brekke, A.

    1977-01-01

    The European Incoherent Scatter Radar in the Auroral Zone (EISCAT) is an intereuropean organization planning to install an incoherent scatter radar system in Northern Scandinavia. It is supported by Finland, France, Norway, Great Britain, Sweden and West Germany, and its headquarters is in Kiruna, Sweden. The radar is planned to be operating in 1979. In order to introduce students and young scientists to the incoherent scatter radar technique, a summer school was held in Tromsoe, from 5th to 13th June 1975. In these proceedings an introduction to the basic theory of fluctuations in a plasma is given. Some of the present incoherent scatter radars now in use are presented and special considerations with respect to the planned EISACT facility are discussed. Reviews of some recent results and scientific problems relevant to EISCAT are also presented and finally a presentation of some observational techniques complementary to incoherent scatter radars is included. (Ed.)

  10. Individuals Who Believe in the Paranormal Expose Themselves to Biased Information and Develop More Causal Illusions than Nonbelievers in the Laboratory.

    Science.gov (United States)

    Blanco, Fernando; Barberia, Itxaso; Matute, Helena

    2015-01-01

    In the reasoning literature, paranormal beliefs have been proposed to be linked to two related phenomena: a biased perception of causality and a biased information-sampling strategy (believers tend to test fewer hypotheses and prefer confirmatory information). In parallel, recent contingency learning studies showed that, when two unrelated events coincide frequently, individuals interpret this ambiguous pattern as evidence of a causal relationship. Moreover, the latter studies indicate that sampling more cause-present cases than cause-absent cases strengthens the illusion. If paranormal believers actually exhibit a biased exposure to the available information, they should also show this bias in the contingency learning task: they would in fact expose themselves to more cause-present cases than cause-absent trials. Thus, by combining the two traditions, we predicted that believers in the paranormal would be more vulnerable to developing causal illusions in the laboratory than nonbelievers because there is a bias in the information they experience. In this study, we found that paranormal beliefs (measured using a questionnaire) correlated with causal illusions (assessed by using contingency judgments). As expected, this correlation was mediated entirely by the believers' tendency to expose themselves to more cause-present cases. The association between paranormal beliefs, biased exposure to information, and causal illusions was only observed for ambiguous materials (i.e., the noncontingent condition). In contrast, the participants' ability to detect causal relationships which did exist (i.e., the contingent condition) was unaffected by their susceptibility to believe in paranormal phenomena.

  11. Individuals Who Believe in the Paranormal Expose Themselves to Biased Information and Develop More Causal Illusions than Nonbelievers in the Laboratory.

    Directory of Open Access Journals (Sweden)

    Fernando Blanco

    Full Text Available In the reasoning literature, paranormal beliefs have been proposed to be linked to two related phenomena: a biased perception of causality and a biased information-sampling strategy (believers tend to test fewer hypotheses and prefer confirmatory information. In parallel, recent contingency learning studies showed that, when two unrelated events coincide frequently, individuals interpret this ambiguous pattern as evidence of a causal relationship. Moreover, the latter studies indicate that sampling more cause-present cases than cause-absent cases strengthens the illusion. If paranormal believers actually exhibit a biased exposure to the available information, they should also show this bias in the contingency learning task: they would in fact expose themselves to more cause-present cases than cause-absent trials. Thus, by combining the two traditions, we predicted that believers in the paranormal would be more vulnerable to developing causal illusions in the laboratory than nonbelievers because there is a bias in the information they experience. In this study, we found that paranormal beliefs (measured using a questionnaire correlated with causal illusions (assessed by using contingency judgments. As expected, this correlation was mediated entirely by the believers' tendency to expose themselves to more cause-present cases. The association between paranormal beliefs, biased exposure to information, and causal illusions was only observed for ambiguous materials (i.e., the noncontingent condition. In contrast, the participants' ability to detect causal relationships which did exist (i.e., the contingent condition was unaffected by their susceptibility to believe in paranormal phenomena.

  12. A standing posture is associated with increased susceptibility to the sound-induced flash illusion in fall-prone older adults.

    Science.gov (United States)

    Stapleton, John; Setti, Annalisa; Doheny, Emer P; Kenny, Rose Anne; Newell, Fiona N

    2014-02-01

    Recent research has provided evidence suggesting a link between inefficient processing of multisensory information and incidence of falling in older adults. Specifically, Setti et al. (Exp Brain Res 209:375-384, 2011) reported that older adults with a history of falling were more susceptible than their healthy, age-matched counterparts to the sound-induced flash illusion. Here, we investigated whether balance control in fall-prone older adults was directly associated with multisensory integration by testing susceptibility to the illusion under two postural conditions: sitting and standing. Whilst standing, fall-prone older adults had a greater body sway than the age-matched healthy older adults and their body sway increased when presented with the audio-visual illusory but not the audio-visual congruent conditions. We also found an increase in susceptibility to the sound-induced flash illusion during standing relative to sitting for fall-prone older adults only. Importantly, no performance differences were found across groups in either the unisensory or non-illusory multisensory conditions across the two postures. These results suggest an important link between multisensory integration and balance control in older adults and have important implications for understanding why some older adults are prone to falling.

  13. Method for radar detection of persons wearing wires

    OpenAIRE

    Fox, William P.

    2014-01-01

    8,730,098 B1 Methods are described for radar detection of persons wearing wires using radar spectra data including the vertical polarization (VV) radar cross section and the horizontal polarization (HH) radar cross section for a person. In one embodiment, the ratio of the vertical polarization (VV) radar cross section to the horizontal polarization (HH) radar cross section for a person is compared to a detection threshold to determine whether the person is wearing wire...

  14. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    processing altitude or in the aircraft roll angle are possible causes of error in computing the antenna patterns inside the processor. POLCAL uses an altitude error correction algorithm to correctly remove the antenna pattern from the SAR images. POLCAL also uses a topographic calibration algorithm to reduce calibration errors resulting from ground topography. By utilizing the backscatter measurements from either the corner reflectors or a well-known distributed target, POLCAL can correct the residual amplitude offsets in the various polarization channels and correct for the absolute gain of the radar system. POLCAL also gives the user the option of calibrating a scene using the calibration data from a nearby site. This allows precise calibration of all the scenes acquired on a flight line where corner reflectors were present. Construction and positioning of corner reflectors is covered extensively in the program documentation. In an effort to keep the POLCAL code as transportable as possible, the authors eliminated all interactions with a graphics display system. For this reason, it is assumed that users will have their own software for doing the following: (1) synthesize an image using HH or VV polarization, (2) display the synthesized image on any display device, and (3) read the pixel locations of the corner reflectors from the image. The only inputs used by the software (in addition to the input Stokes matrix data file) is a small data file with the corner reflector information. POLCAL is written in FORTRAN 77 for use on Sun series computers running SunOS and DEC VAX computers running VMS. It requires 4Mb of RAM under SunOS and 3.7Mb of RAM under VMS for execution. The standard distribution medium for POLCAL is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format or on a TK50 tape cartridge in DEC VAX FILES-11 format. Other distribution media may be available upon request

  15. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  16. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  17. Pond of Illusion: Interacting through Mixed Reality

    DEFF Research Database (Denmark)

    Nobel-Jørgensen, Morten; Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo

    2013-01-01

    Pond of Illusion is a mixed reality installation where a virtual space (the pond) is injected between two real spaces. The users are in either of the real spaces, and they can see each other through windows in the virtual space as illustrated in Figure 1(left). The installation attracts people...... to a large display in either of the real spaces by allowing them to feed virtual fish swimming in the pond. Figure 1(middle) shows how a Microsoft Kinect mounted on top of the display is used for detecting throw motions, which triggers virtual breadcrumbs to be thrown into the pond for feeding the nearby...... fish. Of course, the fish may not be available because they are busy eating what people have thrown into the pond from the other side....

  18. An ordinal model of the McGurk illusion

    DEFF Research Database (Denmark)

    Andersen, Tobias

    2011-01-01

    Audiovisual information is integrated in speech perception. One manifestation of this is the McGurk illusion in which watching the articulating face alters the auditory phonetic percept. Understanding this phenomenon fully requires a computational model with predictive power. Here, we describe...... model it also employed 30 free parameters where the ordinal model needed only 14. Testing the predictive power of the models using a form of cross-validation we found that, although both models performed rather poorly, the ordinal model performed better than the FLMP. Based on these findings we suggest...... that ordinal models generally have greater predictive power because they are constrained by a priori information about the adjacency of phonetic categories....

  19. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  20. Proprioceptive body illusions modulate the visual perception of reaching distance.

    Directory of Open Access Journals (Sweden)

    Agustin Petroni

    Full Text Available The neurobiology of reaching has been extensively studied in human and non-human primates. However, the mechanisms that allow a subject to decide-without engaging in explicit action-whether an object is reachable are not fully understood. Some studies conclude that decisions near the reach limit depend on motor simulations of the reaching movement. Others have shown that the body schema plays a role in explicit and implicit distance estimation, especially after motor practice with a tool. In this study we evaluate the causal role of multisensory body representations in the perception of reachable space. We reasoned that if body schema is used to estimate reach, an illusion of the finger size induced by proprioceptive stimulation should propagate to the perception of reaching distances. To test this hypothesis we induced a proprioceptive illusion of extension or shrinkage of the right index finger while participants judged a series of LEDs as reachable or non-reachable without actual movement. Our results show that reach distance estimation depends on the illusory perceived size of the finger: illusory elongation produced a shift of reaching distance away from the body whereas illusory shrinkage produced the opposite effect. Combining these results with previous findings, we suggest that deciding if a target is reachable requires an integration of body inputs in high order multisensory parietal areas that engage in movement simulations through connections with frontal premotor areas.