WorldWideScience

Sample records for radar detection performance

  1. Detection performance improvement of FMCW radar using frequency shift

    Wu, Y.; Linnartz, J.P.M.G.

    2011-01-01

    Frequency modulated continuous wave (FMCW) radars have been widely used for measuring target range and speed. In this paper, we present a mathematical model that quantifies the system-level performance of FMCW radar systems. In FMCW radar, the target range is measured through measuring the beat

  2. Radar detection of Vesta

    Ostro, S.J.; Cornell University, Ithaca, N.Y.); Campbell, D.B.; Pettengill, G.H.

    1980-01-01

    Asteroid 4 Vesta was detected on November 6, 1979 with the Arecibo Observatory's S-band (12.6-cm-wavelength) radar. The echo power spectrum, received in the circular polarization opposite to that transmitted, yields a radar cross section of (0.2 + or - 0.1)pi a-squared, for a 272 km. The data are too noisy to permit derivation of Vesta's rotation period

  3. Radar application in void and bar detection

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2003-01-01

    Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)

  4. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    Grasso, Robert J.; Odhner, Jefferson E.; Stewart, Hamilton; McDaniel, Robert V.

    2004-12-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: 1) target identification; 2) target tracking; 3) target location; 4) identification friend-or-foe (IFF); 5) parcel tracking, and; 6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  5. Surface detection performance evaluation of pseudo-random noise continuous wave laser radar

    Mitev, Valentin; Matthey, Renaud; Pereira do Carmo, Joao

    2017-11-01

    A number of space missions (including in the ESA Exploration Programme) foreseen a use of laser radar sensor (or lidar) for determination of range between spacecrafts or between spacecraft and ground surface (altimetry). Such sensors need to be compact, robust and power efficient, at the same time with high detection performance. These requirements can be achieved with a Pseudo-Random Noise continuous wave lidar (PRN cw lidar). Previous studies have pointed to the advantages of this lidar with respect to space missions, but they also identified its limitations in high optical background. The progress of the lasers and the detectors in the near IR spectral range requires a re-evaluation of the PRN cw lidar potential. Here we address the performances of this lidar for surface detection (altimetry) in planetary missions. The evaluation is based on the following system configuration: (i) A cw fiber amplifier as lidar transmitter. The seeding laser exhibits a single-frequency spectral line, with subsequent amplitude modulation. The fiber amplifier allows high output power level, keeping the spectral characteristics and the modulation of the seeding light input. (ii) An avalanche photodiode in photon counting detection; (iii) Measurement scenarios representative for Earth, Mercury and Mars.

  6. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition.

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-06

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  7. Detection of Weather Radar Clutter

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  8. Development Of Signal Detection For Radar Navigation System

    Theingi Win Hlaing; Hla Myo Tun; Zaw Min Naing; Win Khaing Moe

    2017-01-01

    This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum...

  9. Sea clutter scattering, the K distribution and radar performance

    Ward, Keith; Watts, Simon

    2013-01-01

    Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd Edition gives an authoritative account of our current understanding of radar sea clutter. Topics covered include the characteristics of radar sea clutter, modelling radar scattering by the ocean surface, statistical models of sea clutter, the simulation of clutter and other random processes, detection of small targets in sea clutter, imaging ocean surface features, radar detection performance calculations, CFAR detection, and the specification and measurement of radar performance. The calculation of the performance of pract

  10. Development Of Signal Detection For Radar Navigation System

    Theingi Win Hlaing

    2017-09-01

    Full Text Available This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum for detection in non-Gaussian nature. The theory of target detection in Gaussian distributed clutter has been well established and the closed form of the detection performances can be easily obtained. However that is not the case in non-Gaussian clutter distributions. The operation of radar detection is determined by radar detection theory with different types of Swerling target models such as Swerling I II III IV and V. By using MATLAB these signal detection techniques are developed.

  11. Performance of UWB Array-Based Radar Sensor in a Multi-Sensor Vehicle-Based Suit for Landmine Detection

    Yarovoy, A.; Savelyev, T.; Zhuge, X.; Aubry, P.; Ligthart, L.; Schavemaker, J.G.M.; Tettelaar, P.; Breejen, E. de

    2008-01-01

    In this paper, integration of an UWB array-based timedomain radar sensor in a vehicle-mounted multi-sensor system for landmine detection is described. Dedicated real-time signal processing algorithms are developed to compute the radar sensor confidence map which is used for sensor fusion.

  12. Radar fall detection using principal component analysis

    Jokanovic, Branka; Amin, Moeness; Ahmad, Fauzia; Boashash, Boualem

    2016-05-01

    Falls are a major cause of fatal and nonfatal injuries in people aged 65 years and older. Radar has the potential to become one of the leading technologies for fall detection, thereby enabling the elderly to live independently. Existing techniques for fall detection using radar are based on manual feature extraction and require significant parameter tuning in order to provide successful detections. In this paper, we employ principal component analysis for fall detection, wherein eigen images of observed motions are employed for classification. Using real data, we demonstrate that the PCA based technique provides performance improvement over the conventional feature extraction methods.

  13. Performance indicators modern surveillance radar

    Nooij, P.N.C.; Theil, A.

    2014-01-01

    Blake chart computations are widely employed to rank detection coverage capabilities of competitive search radar systems. Developed for comparable 2D radar systems with a mechanically rotating reflector antenna, it was not necessary to regard update rate and plot quality in Blake's chart. To

  14. PERFORMANCE EVALUATION OF AN AIR COUPLED PHASED ARRAY RADAR FOR NEAR FIELD DETECTION OF STEEL

    2015-04-24

    compacted, dense concrete with a good cover will be more resistant to carbonation than a porous concrete . The greatest rate of carbonation occurs when the...its design life. The health and state of the concrete roadways and bridge decks that commuters rely on a daily basis can be efficiently examined and...monitored with the use of ground penetrating radar (GPR). Repair and maintenance of these concrete structures is slow and expensive. The development

  15. Radar-based hail detection

    Skripniková, Kateřina; Řezáčová, Daniela

    2014-01-01

    Roč. 144, č. 1 (2014), s. 175-185 ISSN 0169-8095 R&D Projects: GA ČR(CZ) GAP209/11/2045; GA MŠk LD11044 Institutional support: RVO:68378289 Keywords : hail detection * weather radar * hail damage risk Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.844, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169809513001804

  16. Meteor detection on ST (MST) radars

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  17. Compressive Detection Using Sub-Nyquist Radars for Sparse Signals

    Ying Sun

    2016-01-01

    Full Text Available This paper investigates the compression detection problem using sub-Nyquist radars, which is well suited to the scenario of high bandwidths in real-time processing because it would significantly reduce the computational burden and save power consumption and computation time. A compressive generalized likelihood ratio test (GLRT detector for sparse signals is proposed for sub-Nyquist radars without ever reconstructing the signal involved. The performance of the compressive GLRT detector is analyzed and the theoretical bounds are presented. The compressive GLRT detection performance of sub-Nyquist radars is also compared to the traditional GLRT detection performance of conventional radars, which employ traditional analog-to-digital conversion (ADC at Nyquist sampling rates. Simulation results demonstrate that the former can perform almost as well as the latter with a very small fraction of the number of measurements required by traditional detection in relatively high signal-to-noise ratio (SNR cases.

  18. FMWC Radar for Breath Detection

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  19. CFAR Detection from Noncoherent Radar Echoes Using Bayesian Theory

    Wataru Suganuma

    2010-01-01

    Full Text Available We propose a new constant false alarm rate (CFAR detection method from noncoherent radar echoes, considering heterogeneous sea clutter. It applies the Bayesian theory for adaptive estimation of the local clutter statistical distribution in the cell under test. The detection technique can be readily implemented in existing noncoherent marine radar systems, which makes it particularly attractive for economical CFAR detection systems. Monte Carlo simulations were used to investigate the detection performance and demonstrated that the proposed technique provides a higher probability of detection than conventional techniques, such as cell averaging CFAR (CA-CFAR, especially with a small number of reference cells.

  20. CFAR Detection from Noncoherent Radar Echoes Using Bayesian Theory

    Yamaguchi Hiroyuki

    2010-01-01

    Full Text Available Abstract We propose a new constant false alarm rate (CFAR detection method from noncoherent radar echoes, considering heterogeneous sea clutter. It applies the Bayesian theory for adaptive estimation of the local clutter statistical distribution in the cell under test. The detection technique can be readily implemented in existing noncoherent marine radar systems, which makes it particularly attractive for economical CFAR detection systems. Monte Carlo simulations were used to investigate the detection performance and demonstrated that the proposed technique provides a higher probability of detection than conventional techniques, such as cell averaging CFAR (CA-CFAR, especially with a small number of reference cells.

  1. Detecting and classifying low probability of intercept radar

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  2. Method for radar detection of persons wearing wires

    Fox, William P.

    2014-01-01

    8,730,098 B1 Methods are described for radar detection of persons wearing wires using radar spectra data including the vertical polarization (VV) radar cross section and the horizontal polarization (HH) radar cross section for a person. In one embodiment, the ratio of the vertical polarization (VV) radar cross section to the horizontal polarization (HH) radar cross section for a person is compared to a detection threshold to determine whether the person is wearing wire...

  3. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.

    Singha, Suman; Vespe, Michele; Trieschmann, Olaf

    2013-08-15

    Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. An Overview of Radar Waveform Optimization for Target Detection

    Wang Lulu

    2016-10-01

    Full Text Available An optimal waveform design method that fully employs the knowledge of the target and the environment can further improve target detection performance, thus is of vital importance to research. In this paper, methods of radar waveform optimization for target detection are reviewed and summarized and provide the basis for the research.

  5. Bistatic Forward Scattering Radar Detection and Imaging

    Hu Cheng

    2016-06-01

    Full Text Available Forward Scattering Radar (FSR is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS, FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology used in forward scattering RCS, FSR detection, and Shadow Inverse Synthetic Aperture Radar (SISAR imaging and key problems such as the statistical characteristics of forward scattering clutter, accurate parameter estimation, and multitarget discrimination are then analyzed. Subsequently, the current research progress in FSR detection and SISAR imaging are described in detail, including the theories and experiments. In addition, with reference to the BeiDou navigation satellite, the results of forward scattering experiments in civil aircraft detection are shown. Finally, this paper considers future developments in FSR target detection and imaging and presents a new, promising technique for stealth target detection.

  6. Victim Simulator for Victim Detection Radar

    Lux, James P.; Haque, Salman

    2013-01-01

    Testing of victim detection radars has traditionally used human subjects who volunteer to be buried in, or climb into a space within, a rubble pile. This is not only uncomfortable, but can be hazardous or impractical when typical disaster scenarios are considered, including fire, mud, or liquid waste. Human subjects are also inconsistent from day to day (i.e., they do not have the same radar properties), so quantitative performance testing is difficult. Finally, testing a multiple-victim scenario is difficult and expensive because of the need for multiple human subjects who must all be coordinated. The solution is an anthropomorphic dummy with dielectric properties that replicate those of a human, and that has motions comparable to human motions for breathing and heartbeat. Two airfilled bladders filled and drained by solenoid valves provide the underlying motion for vinyl bags filled with a dielectric gel with realistic properties. The entire assembly is contained within a neoprene wetsuit serving as a "skin." The solenoids are controlled by a microcontroller, which can generate a variety of heart and breathing patterns, as well as being reprogrammable for more complex activities. Previous electromagnetic simulators or RF phantoms have been oriented towards assessing RF safety, e.g., the measurement of specific absorption rate (SAR) from a cell phone signal, or to provide a calibration target for diagnostic techniques (e.g., MRI). They are optimized for precise dielectric performance, and are typically rigid and immovable. This device is movable and "positionable," and has motion that replicates the small-scale motion of humans. It is soft (much as human tissue is) and has programmable motions.

  7. Tsunami detection by high-frequency radar in British Columbia: performance assessment of the time-correlation algorithm for synthetic and real events

    Guérin, Charles-Antoine; Grilli, Stéphan T.; Moran, Patrick; Grilli, Annette R.; Insua, Tania L.

    2018-02-01

    The authors recently proposed a new method for detecting tsunamis using high-frequency (HF) radar observations, referred to as "time-correlation algorithm" (TCA; Grilli et al. Pure Appl Geophys 173(12):3895-3934, 2016a, 174(1): 3003-3028, 2017). Unlike standard algorithms that detect surface current patterns, the TCA is based on analyzing space-time correlations of radar signal time series in pairs of radar cells, which does not require inverting radial surface currents. This was done by calculating a contrast function, which quantifies the change in pattern of the mean correlation between pairs of neighboring cells upon tsunami arrival, with respect to a reference correlation computed in the recent past. In earlier work, the TCA was successfully validated based on realistic numerical simulations of both the radar signal and tsunami wave trains. Here, this algorithm is adapted to apply to actual data from a HF radar installed in Tofino, BC, for three test cases: (1) a simulated far-field tsunami generated in the Semidi Subduction Zone in the Aleutian Arc; (2) a simulated near-field tsunami from a submarine mass failure on the continental slope off of Tofino; and (3) an event believed to be a meteotsunami, which occurred on October 14th, 2016, off of the Pacific West Coast and was measured by the radar. In the first two cases, the synthetic tsunami signal is superimposed onto the radar signal by way of a current memory term; in the third case, the tsunami signature is present within the radar data. In light of these test cases, we develop a detection methodology based on the TCA, using a correlation contrast function, and show that in all three cases the algorithm is able to trigger a timely early warning.

  8. Tsunami detection by high-frequency radar in British Columbia: performance assessment of the time-correlation algorithm for synthetic and real events

    Guérin, Charles-Antoine; Grilli, Stéphan T.; Moran, Patrick; Grilli, Annette R.; Insua, Tania L.

    2018-05-01

    The authors recently proposed a new method for detecting tsunamis using high-frequency (HF) radar observations, referred to as "time-correlation algorithm" (TCA; Grilli et al. Pure Appl Geophys 173(12):3895-3934, 2016a, 174(1): 3003-3028, 2017). Unlike standard algorithms that detect surface current patterns, the TCA is based on analyzing space-time correlations of radar signal time series in pairs of radar cells, which does not require inverting radial surface currents. This was done by calculating a contrast function, which quantifies the change in pattern of the mean correlation between pairs of neighboring cells upon tsunami arrival, with respect to a reference correlation computed in the recent past. In earlier work, the TCA was successfully validated based on realistic numerical simulations of both the radar signal and tsunami wave trains. Here, this algorithm is adapted to apply to actual data from a HF radar installed in Tofino, BC, for three test cases: (1) a simulated far-field tsunami generated in the Semidi Subduction Zone in the Aleutian Arc; (2) a simulated near-field tsunami from a submarine mass failure on the continental slope off of Tofino; and (3) an event believed to be a meteotsunami, which occurred on October 14th, 2016, off of the Pacific West Coast and was measured by the radar. In the first two cases, the synthetic tsunami signal is superimposed onto the radar signal by way of a current memory term; in the third case, the tsunami signature is present within the radar data. In light of these test cases, we develop a detection methodology based on the TCA, using a correlation contrast function, and show that in all three cases the algorithm is able to trigger a timely early warning.

  9. Operational Bright-Band Snow Level Detection Using Doppler Radar

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  10. Learning Change from Synthetic Aperture Radar Images: Performance Evaluation of a Support Vector Machine to Detect Earthquake and Tsunami-Induced Changes

    Marc Wieland

    2016-09-01

    Full Text Available This study evaluates the performance of a Support Vector Machine (SVM classifier to learn and detect changes in single- and multi-temporal X- and L-band Synthetic Aperture Radar (SAR images under varying conditions. The purpose is to provide guidance on how to train a powerful learning machine for change detection in SAR images and to contribute to a better understanding of potentials and limitations of supervised change detection approaches. This becomes particularly important on the background of a rapidly growing demand for SAR change detection to support rapid situation awareness in case of natural disasters. The application environment of this study thus focuses on detecting changes caused by the 2011 Tohoku earthquake and tsunami disaster, where single polarized TerraSAR-X and ALOS PALSAR intensity images are used as input. An unprecedented reference dataset of more than 18,000 buildings that have been visually inspected by local authorities for damages after the disaster forms a solid statistical population for the performance experiments. Several critical choices commonly made during the training stage of a learning machine are being assessed for their influence on the change detection performance, including sampling approach, location and number of training samples, classification scheme, change feature space and the acquisition dates of the satellite images. Furthermore, the proposed machine learning approach is compared with the widely used change image thresholding. The study concludes that a well-trained and tuned SVM can provide highly accurate change detections that outperform change image thresholding. While good performance is achieved in the binary change detection case, a distinction between multiple change classes in terms of damage grades leads to poor performance in the tested experimental setting. The major drawback of a machine learning approach is related to the high costs of training. The outcomes of this study, however

  11. Forward scatter radar for detection of moving people inside buildings

    Wit, J.J.M. de; Rossum, W.L. van

    2017-01-01

    Through-wall radar offers capabilities that allow an important contribution to inside-building awareness, such as target detection and tracking. However, reliable radar tracking of people inside a building is not a trivial task. In monostatic operation, radar measures the backscatter from people

  12. Very Fast Algorithms and Detection Performance of Multi-Channel and 2-D Parametric Adaptive Matched Filters for Airborne Radar

    Marple, Jr., S. L; Corbell, Phillip M; Rangaswamy, Muralidhar

    2007-01-01

    ...) detection statistics under exactly known covariance (the clairvoyant case). Improved versions of the two original multichannel PAMF algorithms, one new multichannel PAMF algorithm, and a new two-dimensional (2D) PAMF algorithm...

  13. Cassini radar: Instrument description and performance status

    Johnson, W. T. K.; Im, E.; Borgarelli, L.; ZampoliniFaustini, E.

    1995-01-01

    The spacecraft of the Cassini mission is planned to be launched towards Saturn in October 1997. The mission is designed to study the physical structure and chemical composition of Titan. The results of the tests performed on the Cassini radar engineering qualification model (EQM) are summarized. The approach followed in the verification and evaluation of the performance of the radio frequency subsystem EQM is presented. The results show that the instrument satisfies the most relevant mission requirements.

  14. Target Detection Based on EBPSK Satellite Passive Radar

    Lu Zeyuan

    2015-05-01

    Full Text Available Passive radar is a topic anti stealth technology with simple structure, and low cost. Radiation source model, signal transmission model, and target detection are the key points of passive radar technology research. The paper analyzes the characteristics of EBPSK signal modulation and target detection method aspect of spaceborne radiant source. By comparison with other satellite navigation and positioning system, the characteristics of EBPSK satellite passive radar system are analyzed. It is proved that the maximum detection range of EBPSK satellite signal can satisfy the needs of the proposed model. In the passive radar model, sparse representation is used to achieve high resolution DOA detection. The comparison with the real target track by simulation demonstrates that effective detection of airborne target using EBPSK satellite passive radar system based on sparse representation is efficient.

  15. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  16. Detecting and classifying low probability of intercept radar

    Pace, Phillip E

    2003-01-01

    The drive is on to devise LPI radar systems that evade hostile detection as well as develop non-cooperative intercept devices that outsmart enemy LPI radar. Based on the author's own design experience, this comprehensive, hands-on book gives you the latest design and development techniques to innovate new LPI radar systems and discover new ways to intercept enemy LPI radar. and help you visually identify waveform parameters. Filled with more than 500 equations that provide rigorous mathematical detail, this book can be used by both entry-level and seasoned engineers. Besides thoroughly treatin

  17. Radar detection of ultra high energy cosmic rays

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.

  18. Improved Detection of Human Respiration Using Data Fusion Basedon a Multistatic UWB Radar

    Hao Lv

    2016-09-01

    Full Text Available This paper investigated the feasibility for improved detection of human respiration using data fusion based on a multistatic ultra-wideband (UWB radar. UWB-radar-based respiration detection is an emerging technology that has great promise in practice. It can be applied to remotely sense the presence of a human target for through-wall surveillance, post-earthquake search and rescue, etc. In these applications, a human target’s position and posture are not known a priori. Uncertainty of the two factors results in a body orientation issue of UWB radar, namely the human target’s thorax is not always facing the radar. Thus, the radial component of the thorax motion due to respiration decreases and the respiratory motion response contained in UWB radar echoes is too weak to be detected. To cope with the issue, this paper used multisensory information provided by the multistatic UWB radar, which took the form of impulse radios and comprised one transmitting and four separated receiving antennas. An adaptive Kalman filtering algorithm was then designed to fuse the UWB echo data from all the receiving channels to detect the respiratory-motion response contained in those data. In the experiment, a volunteer’s respiration was correctly detected when he curled upon a camp bed behind a brick wall. Under the same scenario, the volunteer’s respiration was detected based on the radar’s single transmitting-receiving channels without data fusion using conventional algorithm, such as adaptive line enhancer and single-channel Kalman filtering. Moreover, performance of the data fusion algorithm was experimentally investigated with different channel combinations and antenna deployments. The experimental results show that the body orientation issue for human respiration detection via UWB radar can be dealt well with the multistatic UWB radar and the Kalman-filter-based data fusion, which can be applied to improve performance of UWB radar in real applications.

  19. Radar and Infrared Sensors for Landmine Detection

    Borchers, Brian

    2001-01-01

    .... Data from the IR camera and GPR system, in conjunction with soil water content measurements have been used to help validate theoretical models of the performance of the IR and GPR sensors for landmine detection...

  20. Detecting weather radar clutter using satellite-based nowcasting products

    Jensen, Thomas B.S.; Gill, Rashpal S.; Overgaard, Søren

    2006-01-01

    This contribution presents the initial results from experiments with detection of weather radar clutter by information fusion with satellite based nowcasting products. Previous studies using information fusion of weather radar data and first generation Meteosat imagery have shown promising results...... for the detecting and removal of clutter. Naturally, the improved spatio-temporal resolution of the Meteosat Second Generation sensors, coupled with its increased number of spectral bands, is expected to yield even better detection accuracies. Weather radar data from three C-band Doppler weather radars...... Application Facility' of EUMETSAT and is based on multispectral images from the SEVIRI sensor of the Meteosat-8 platform. Of special interest is the 'Precipitating Clouds' product, which uses the spectral information coupled with surface temperatures from Numerical Weather Predictions to assign probabilities...

  1. Detection of Multiple Stationary Humans Using UWB MIMO Radar

    Fulai Liang

    2016-11-01

    Full Text Available Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect, detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB multiple-input and multiple-output (MIMO radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR, morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls.

  2. Performance Prediction of Constrained Waveform Design for Adaptive Radar

    2016-11-01

    the famous Woodward quote, having a ubiquitous feeling for all radar waveform design (and performance prediction) researchers , that is found at the end...discuss research that develops performance prediction models to quantify the impact on SINR when an amplitude constraint is placed on a radar waveform...optimize the radar perfor- mance for the particular scenario and tasks. There have also been several survey papers on various topics in waveform design for

  3. Movement and respiration detection using statistical properties of the FMCW radar signal

    Kiuru, Tero; Metso, Mikko; Jardak, Seifallah; Pursula, Pekka; Hakli, Janne; Hirvonen, Mervi; Sepponen, Raimo

    2016-01-01

    This paper presents a 24 GHz FMCW radar system for detection of movement and respiration using change in the statistical properties of the received radar signal, both amplitude and phase. We present the hardware and software segments of the radar

  4. Detection of Hail Storms in Radar Imagery Using Deep Learning

    Pullman, Melinda; Gurung, Iksha; Ramachandran, Rahul; Maskey, Manil

    2017-01-01

    In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest weather phenomenon in the United States. In an effort to improve hail-prediction techniques and reduce the societal impacts associated with hail storms, we propose a deep learning technique that leverages radar imagery for automatic detection of hail storms. The technique is applied to radar imagery from 2011 to 2016 for the contiguous United States and achieved a precision of 0.848. Hail storms are primarily detected through the visual interpretation of radar imagery (Mrozet al., 2017). With radars providing data every two minutes, the detection of hail storms has become a big data task. As a result, scientists have turned to neural networks that employ computer vision to identify hail-bearing storms (Marzbanet al., 2001). In this study, we propose a deep Convolutional Neural Network (ConvNet) to understand the spatial features and patterns of radar echoes for detecting hailstorms.

  5. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  6. Tsunami Arrival Detection with High Frequency (HF Radar

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  7. Radar equations for modern radar

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  8. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar.

    Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun; Huang, Yuan-Hao

    2018-04-05

    Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.

  9. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar

    Kuei-Chi Tsao

    2018-04-01

    Full Text Available Complementary metal-oxide-semiconductor (CMOS radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA. The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.

  10. On Radar Resolution in Coherent Change Detection.

    Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    It is commonly observed that resolution plays a role in coherent change detection. Although this is the case, the relationship of the resolution in coherent change detection is not yet defined . In this document, we present an analytical method of evaluating this relationship using detection theory. Specifically we examine the effect of resolution on receiver operating characteristic curves for coherent change detection.

  11. Drone Detection with Chirp‐Pulse Radar Based on Target Fluctuation Models

    Byung‐Kwan Kim

    2018-04-01

    Full Text Available This paper presents a pulse radar system to detect drones based on a target fluctuation model, specifically the Swerling target model. Because drones are small atypical objects and are mainly composed of non‐conducting materials, their radar cross‐section value is low and fluctuating. Therefore, determining the target fluctuation model and applying a proper integration method are important. The proposed system is herein experimentally verified and the results are discussed. A prototype design of the pulse radar system is based on radar equations. It adopts three different pulse modes and a coherent pulse integration to ensure a high signal‐to‐noise ratio. Outdoor measurements are performed with a prototype radar system to detect Doppler frequencies from both the drone frame and blades. The results indicate that the drone frame and blades are detected within an instrumental maximum range. Additionally, the results show that the drone's frame and blades are close to the Swerling 3 and 4 target models, respectively. By the analysis of the Swerling target models, proper integration methods for detecting drones are verified and can thus contribute to increasing in detectability.

  12. Automated Ground Penetrating Radar hyperbola detection in complex environment

    Mertens, Laurence; Lambot, Sébastien

    2015-04-01

    used on-ground. Second, we investigated the efficiency of this method for field data taken with a time-domain system connected to 400 and 900 MHz antennas in a forest environment. For all the tests explained above, the computational time is around 56 s for 10000 edge dots detected in a b-scan for the 900 MHz antenna and 228 s for the 400 MHz antenna. This value depends on the complexity of the images. For the given examples, the rate of non-detection is negligible and the rate of false alarms varies from 0 to 8.3% , although it is worth noting that these performance rates become difficult to evaluate for reflections that are ambiguous for our own eyes. Finally, we conducted a sensitivity analysis showing that all these criteria are needed and sufficient for a correct detection. In conclusion, the low computational time and its considerations to take into account the hyperbola irregularities make the proposed algorithm very suitable and robust for complex environments. The false alarms are easily removed by studying the continuity of the reflections between consecutive transects for linear targets such as pipes. This research is funded by the Fonds de la Recherche Scientifique (FNRS, Belgium) and benefits from networking activities carried out within the EU COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  13. Performance ratings and personality factors in radar controllers.

    1970-09-01

    The purpose of the study was to determine whether primary or second-order personality questionnaire factors were related to job performance ratings on the Employee Appraisal Record in a sample of 264 radar controllers. A Pearson correlation matrix wa...

  14. Moving Target Detection With Compact Laser Doppler Radar

    Sepp, G.; Breining, A.; Eisfeld, W.; Knopp, R.; Lill, E.; Wagner, D.

    1989-12-01

    This paper describes an experimental integrated optronic system for detection and tracking of moving objects. The system is based on a CO2 waveguide laser Doppler ra-dar with homodyne receiver and galvanometer mirror beam scanner. A "hot spot" seeker consisting of a thermal imager with image processor transmits the coordinates of IR-emitting, i.e. potentially powered, objects to the laser radar scanner. The scanner addresses these "hot" locations operating in a large field-of-view (FOV) random ac-cess mode. Hot spots exhibiting a Doppler shifted laser signal are indicated in the thermal image by velocity-to-colour encoded markers. After switching to a small FOV scanning mode, the laser Doppler radar is used to track fast moving objects. Labora-tory and field experiments with moving objects including rotating discs, automobiles and missiles are described.

  15. Detection of Leaks in Water Mains Using Ground Penetrating Radar

    Alaa Al Hawari; Mohammad Khader; Tarek Zayed; Osama Moselhi

    2016-01-01

    Ground Penetrating Radar (GPR) is one of the most effective electromagnetic techniques for non-destructive non-invasive subsurface features investigation. Water leak from pipelines is the most common undesirable reason of potable water losses. Rapid detection of such losses is going to enhance the use of the Water Distribution Networks (WDN) and decrease threatens associated with water mains leaks. In this study, GPR approach was developed to detect leaks by implementing an appropriate imagin...

  16. Improved OAM-Based Radar Targets Detection Using Uniform Concentric Circular Arrays

    Mingtuan Lin

    2016-01-01

    Full Text Available Without any relative moves or beam scanning, the novel Orbital-Angular-Momentum- (OAM- based radar targets detection technique using uniform concentric circular arrays (UCCAs shows the azimuthal estimation ability, which provides new perspective for radar system design. However, the main estimation method, that is, Fast Fourier Transform (FFT, under this scheme suffers from low resolution. As a solution, this paper rebuilds the OAM-based radar targets detection model and introduces the multiple signal classification (MUSIC algorithm to improve the resolution for detecting targets within the main lobes. The spatial smoothing technique is proposed to tackle the coherent problem brought by the proposed model. Analytical study and simulation demonstrate the superresolution estimation capacity the MUSIC algorithm can achieve for detecting targets within the main lobes. The performance of the MUSIC algorithm to detect targets not illuminated by the main lobes is further evaluated. Despite the fact that MUSIC algorithm loses the resolution advantage under this case, its estimation is more robust than that of the FFT method. Overall, the proposed MUSIC algorithm for the OAM-based radar system demonstrates the superresolution ability for detecting targets within the main lobes and good robustness for targets out of the main lobes.

  17. Water stress detection in the Amazon using radar

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  18. Basic study for tsunami detection with DBF ocean radar

    Sakai, Shin'ichi; Matsuyama, Masafumi; Okuda, Kouzou; Uehara, Fumihiro

    2015-01-01

    To develop early tsunami warning system utilizing ocean radars, the evaluation of the variety of measuring coverage and data accuracy is indispensable in real oceans. The field observation was carried out at 5 minutes interval with two digital beam forming ocean radars with VHF band from 2012 to 2014 in the sea of Enshu. The high data acquisition areas are found in the extent of 17 km off the coast on a hill site and of 13 km on a low ground site. The measured current by the ocean radar were well correlated with that by the current-meter in the depth of 2 m near the coast with the correlation coefficient of ∼0.6. It is inferred that the main factor of difference in both data sets was due to the presence of wind-driven current through the multi-regression analysis with both current data and wind data. In addition, the order of the temporal current deviations as to the representative time-scale of one hour is about 5 cm/s under the ordinary sea conditions, which suggest that ocean radars could sufficiently detect the current deviation due to grant tsunami. (author)

  19. A computer simulation of a CWFM radar showing the tradeoffs of performance as a function of range

    Gordy, Robert S.; Zoledziowski, Severyn

    2010-04-01

    This paper describes a study of the operation of CWFM radar using "System View" software for modeling and simulation. The System View software is currently offered by Agilent; a link to the website is given in the footnote. The models that were studied include: a model illustrating the basic principle of operation of the CWFM radar, the range resolution of the radar, the effect of nonlinear distortions on the detected signals, and the effect of interference and jamming on the reception of CWFM signals. The study was performed as part of the design of an airborne CWFM radar.

  20. Specification for a surface-search radar-detection-range model

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  1. A Performance Comparison Of A CFAR Ship Detection Algorithm Using Envisat, RadarSat, COSMO-SkyMed and Terra SAR-X Images

    Lorenzzetti, Joao A.; Paes, Rafael L.; Gheradi, Douglas M.

    2010-04-01

    In this paper we discuss the results of a CFAR ship detection algorithm for a series of SAR images of the Brazilian coast. The following configuration for the CFAR target/buffer/background windows gave the best results: 3x3/5x5/13x13 for a PFA of 0.1% for pixel spacing greater than 50m. For pixel spacing less than 50m, best results were achieved for PFA of 1% and windows sizes of 5x5/7x7/15x15. Results indicate that CFAR as implemented gave good results as measured by the Figure of Merit, as defined by Foulkes and Booth (2000), which varied from 0.79 for CosmoSkymed to 0.88 for Envisat. Results obtained should be taken so far only as an indication of the performance of the implemented CFAR due to the limited sample of images.

  2. A real-time radar pulse signal detection method and its performance analysis%一种实时雷达脉冲信号检测算法及其性能分析

    王芳; 王旭东; 潘明海

    2012-01-01

    提出了一种新的实时雷达脉冲信号检测算法,该算法首先将数据分为两路,对一路进行单点滑动、取共轭,然后与另一路信号相乘,再累加、取模,最后与门限比较,得到检测结果.算法具有递推和流水结构,硬件实现时只需一个复数乘法器、一个复数加法器、一个复数减法器和一个复数取模运算器.在此采用一阶扰动分析,推导了算法起始点检测误差的解析式,给出了算法性能边界,仿真结果验证了理论推导的正确性.与其他信号检测算法相比,该算法结构规整,易于硬件应用,可实现实时检测.%A real-time radar pulse signal detection method is proposed. Firstly, two input data sequence are got by a demultiplexer, then taking conjugate and one point delay operation is applied to one of them. Secondly, multiplying these two sequence, accumulating the multiply result and outputting its complex magnitude. Finally, after comparing with a threshold, the detection result can be gained. Since the detection algorithm is very simple, the hardware can be designed using a small a-mount of circuitry, consisting of only 1 complex multiplier, 1 complex adder, 1 complex subtracter and 1 complex magnitude calculator. Therefore, it can realize the high-speed detection of target signals by constructing a pipeline architecture. The start-point estimation error is derived based upon first order purterbation analysis, and then the performance boundary of this method is presented. Simulation results confirm the derivation. Comparing with other radar pulse signal detection method, this proposed algorithm leads to clear and neat structure, good real-time and suitable for hardware implementation.

  3. Detection and identification of human targets in radar data

    Gürbüz, Sevgi Z.; Melvin, William L.; Williams, Douglas B.

    2007-04-01

    Radar offers unique advantages over other sensors, such as visual or seismic sensors, for human target detection. Many situations, especially military applications, prevent the placement of video cameras or implantment seismic sensors in the area being observed, because of security or other threats. However, radar can operate far away from potential targets, and functions during daytime as well as nighttime, in virtually all weather conditions. In this paper, we examine the problem of human target detection and identification using single-channel, airborne, synthetic aperture radar (SAR). Human targets are differentiated from other detected slow-moving targets by analyzing the spectrogram of each potential target. Human spectrograms are unique, and can be used not just to identify targets as human, but also to determine features about the human target being observed, such as size, gender, action, and speed. A 12-point human model, together with kinematic equations of motion for each body part, is used to calculate the expected target return and spectrogram. A MATLAB simulation environment is developed including ground clutter, human and non-human targets for the testing of spectrogram-based detection and identification algorithms. Simulations show that spectrograms have some ability to detect and identify human targets in low noise. An example gender discrimination system correctly detected 83.97% of males and 91.11% of females. The problems and limitations of spectrogram-based methods in high clutter environments are discussed. The SNR loss inherent to spectrogram-based methods is quantified. An alternate detection and identification method that will be used as a basis for future work is proposed.

  4. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    Raja Syamsul Azmir Raja Abdullah; Noor Hafizah Abdul Aziz; Nur Emileen Abdul Rashid; Asem Ahmad Salah; Fazirulhisyam Hashim

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of th...

  5. Geometric saliency to characterize radar exploitation performance

    Nolan, Adam; Keserich, Brad; Lingg, Andrew; Goley, Steve

    2014-06-01

    Based on the fundamental scattering mechanisms of facetized computer-aided design (CAD) models, we are able to define expected contributions (EC) to the radar signature. The net result of this analysis is the prediction of the salient aspects and contributing vehicle morphology based on the aspect. Although this approach does not provide the fidelity of an asymptotic electromagnetic (EM) simulation, it does provide very fast estimates of the unique scattering that can be consumed by a signature exploitation algorithm. The speed of this approach is particularly relevant when considering the high dimensionality of target configuration variability due to articulating parts which are computationally burdensome to predict. The key scattering phenomena considered in this work are the specular response from a single bounce interaction with surfaces and dihedral response formed between the ground plane and vehicle. Results of this analysis are demonstrated for a set of civilian target models.

  6. Ground Penetrating Radar (GPR) for Detection of Underground Objects

    Amry Amin Abas; Mohd Kamal Shah Shamsuddin; Wan Zainal Abidin; Awang Sarfarudin Awang Putra

    2011-01-01

    Ground Penetrating Radar (GPR) utilizes an electromagnetic microwave that is transmitted into the matter under investigation. Any objects with different dielectric properties from the medium of the matter under investigation will reflect the waves and will be picked up by the receivers embedded in the antenna. We have applied GPR in various application such as concrete inspection, underground utility detection, grave detection, archaeology, oil contamination of soil, soil layer thickness measurement and etc. This paper will give general findings of the application of GPR to provide solutions to the industry and public. The results of the GPR surveys will be discussed. (author)

  7. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    Taboada, Fernando

    2002-01-01

    ... intercept devices such as radar warning, electronic support and electronic intelligence receivers, In order to detect LPI radar waveforms new signal processing techniques are required This thesis first...

  8. Joint Direction-of-Departure and Direction-of-Arrival Estimation in a UWB MIMO Radar Detecting Targets with Fluctuating Radar Cross Sections

    Idnin Pasya

    2014-01-01

    Full Text Available This paper presents a joint direction-of-departure (DOD and direction-of-arrival (DOA estimation in a multiple-input multiple-output (MIMO radar utilizing ultra wideband (UWB signals in detecting targets with fluctuating radar cross sections (RCS. The UWB MIMO radar utilized a combination of two-way MUSIC and majority decision based on angle histograms of estimated DODs and DOAs at each frequency of the UWB signal. The proposed angle estimation scheme was demonstrated to be effective in detecting targets with fluctuating RCS, compared to conventional spectra averaging method used in subband angle estimations. It was found that a wider bandwidth resulted in improved estimation performance. Numerical simulations along with experimental evaluations in a radio anechoic chamber are presented.

  9. Radar Search and Detection With the CASA 212 S43 Aircraft

    Borges, Jose M

    2004-01-01

    .... The model can use given periscope radar cross section data, or roughly calculate radar cross section given assumptions about exposed periscope height above the sea-surface and sea-state conditions. Submarine evasion due to radar counter-detection is also modeled.

  10. Foliage penetration radar detection and characterization of objects under trees

    Davis, Mark

    2011-01-01

    This book covers all aspects of foliage penetration (FOPEN) radar, concentrating on both airborne military radar systems as well as earth resource mapping radars. It is the first concise and thorough treatment of FOPEN, covering the results of a decade-long investment by DARPA in characterizing foliage and earth surface with ultrawideband UHF and VHF synthetic aperture radar (SAR).

  11. Power allocation for target detection in radar networks based on low probability of intercept: A cooperative game theoretical strategy

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2017-08-01

    Distributed radar network systems have been shown to have many unique features. Due to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve better detection performance, which may be in contradiction with low probability of intercept (LPI). Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a cooperative game-theoretic framework such that the LPI performance can be improved. Taking into consideration both the transmit power constraints and the minimum signal to interference plus noise ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized as a metric to evaluate power allocation. Then, with the well-designed network utility function, the existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness of the proposed algorithm.

  12. Advanced radar detection schemes under mismatched signal models

    Bandiera, Francesco

    2009-01-01

    Adaptive detection of signals embedded in correlated Gaussian noise has been an active field of research in the last decades. This topic is important in many areas of signal processing such as, just to give some examples, radar, sonar, communications, and hyperspectral imaging. Most of the existing adaptive algorithms have been designed following the lead of the derivation of Kelly's detector which assumes perfect knowledge of the target steering vector. However, in realistic scenarios, mismatches are likely to occur due to both environmental and instrumental factors. When a mismatched signal

  13. Analysis of the Chirplet Transform-Based Algorithm for Radar Detection of Accelerated Targets

    Galushko, V. G.; Vavriv, D. M.

    2017-06-01

    Purpose: Efficiency analysis of an optimal algorithm of chirp signal processing based on the chirplet transform as applied to detection of radar targets in uniformly accelerated motion. Design/methodology/approach: Standard methods of the optimal filtration theory are used to investigate the ambiguity function of chirp signals. Findings: An analytical expression has been derived for the ambiguity function of chirp signals that is analyzed with respect to detection of radar targets moving at a constant acceleration. Sidelobe level and characteristic width of the ambiguity function with respect to the coordinates frequency and rate of its change have been estimated. The gain in the signal-to-noise ratio has been assessed that is provided by the algorithm under consideration as compared with application of the standard Fourier transform to detection of chirp signals against a “white” noise background. It is shown that already with a comparatively small (processing channels (elementary filters with respect to the frequency change rate) the gain in the signal-tonoise ratio exceeds 10 dB. A block diagram of implementation of the algorithm under consideration is suggested on the basis of a multichannel weighted Fourier transform. Recommendations as for selection of the detection algorithm parameters have been developed. Conclusions: The obtained results testify to efficiency of application of the algorithm under consideration to detection of radar targets moving at a constant acceleration. Nevertheless, it seems expedient to perform computer simulations of its operability with account for the noise impact along with trial measurements in real conditions.

  14. Dual-Channel Particle Filter Based Track-Before-Detect for Monopulse Radar

    Fei Cai

    2014-01-01

    Full Text Available A particle filter based track-before-detect (PF-TBD algorithm is proposed for the monopulse high pulse repetition frequency (PRF pulse Doppler radar. The actual measurement model is adopted, in which the range is highly ambiguous and the sum and difference channels exist in parallel. A quantization method is used to approximate the point spread function to reduce the computation load. The detection decisions of the PF-TBD are fed to a binary integrator to further improve the detection performance. Simulation results show that the proposed algorithm can detect and track the low SNR target efficiently. The detection performance is improved significantly for both the single frame and the multiframe detection compared with the classical detector. A performance comparison with the PF-TBD using sum channel only is also supplied.

  15. Detection and Tracking of Road Barrier Based on Radar and Vision Sensor Fusion

    Taeryun Kim

    2016-01-01

    Full Text Available The detection and tracking algorithms of road barrier including tunnel and guardrail are proposed to enhance performance and reliability for driver assistance systems. Although the road barrier is one of the key features to determine a safe drivable area, it may be recognized incorrectly due to performance degradation of commercial sensors such as radar and monocular camera. Two frequent cases among many challenging problems are considered with the commercial sensors. The first case is that few tracks of radar to road barrier are detected due to material type of road barrier. The second one is inaccuracy of relative lateral position by radar, thus resulting in large variance of distance between a vehicle and road barrier. To overcome the problems, the detection and estimation algorithms of tracks corresponding to road barrier are proposed. Then, the tracking algorithm based on a probabilistic data association filter (PDAF is used to reduce variation of lateral distance between vehicle and road barrier. Finally, the proposed algorithms are validated via field test data and their performance is compared with that of road barrier measured by lidar.

  16. Cassini Radar EQM Model: Instrument Description and Performance Status

    Borgarelli, L.; Faustini, E. Zampolini; Im, E.; Johnson, W. T. K.

    1996-01-01

    The spaeccraft of the Cassini Mission is planned to be launched towards Saturn in October 1997. The mission is designed to study the physical structure and chemical composition of Titan. The results of the tests performed on the Cassini radar engineering qualification model (EQM) are summarized. The approach followed in the verification and evaluation of the performance of the radio frequency subsystem EQM is presented. The results show that the instrument satisfies the relevant mission requirements.

  17. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity

    Jiang Tie-zhen

    2015-01-01

    Full Text Available Space target surveillance generally uses active radars. To take full advantage of passive radars, the idea of using spaceborne illuminators of opportunity for space target detection is presented in this paper. Analysis of the detectable time and direct wave suppression shows that passive radar using spaceborne illuminators of opportunity can effectively detect a Low-Earth-Orbit (LEO target. Meanwhile, Ku and L band bi-static radar cross section of passive radars that use spaceborne illuminators of opportunity are presented by simulation, providing the basis of choosing space target forward scatter. Finally the key parameters, mainly system gain, accumulation time and radiation source selection are studied. Results show that system size using satellite TV signals as illuminators of opportunity is relatively small. These encouraging results should stimulate the development of passive radar detection of space targets using spaceborne illuminators of opportunity.

  18. Detection-Discrimination Method for Multiple Repeater False Targets Based on Radar Polarization Echoes

    Z. W. ZONG

    2014-04-01

    Full Text Available Multiple repeat false targets (RFTs, created by the digital radio frequency memory (DRFM system of jammer, are widely used in practical to effectively exhaust the limited tracking and discrimination resource of defence radar. In this paper, common characteristic of radar polarization echoes of multiple RFTs is used for target recognition. Based on the echoes from two receiving polarization channels, the instantaneous polarization radio (IPR is defined and its variance is derived by employing Taylor series expansion. A detection-discrimination method is designed based on probability grids. By using the data from microwave anechoic chamber, the detection threshold of the method is confirmed. Theoretical analysis and simulations indicate that the method is valid and feasible. Furthermore, the estimation performance of IPRs of RFTs due to the influence of signal noise ratio (SNR is also covered.

  19. Interference Suppression Performance of Automotive UWB Radars Using Pseudo Random Sequences

    I. Pasya

    2015-12-01

    Full Text Available Ultra wideband (UWB automotive radars have attracted attention from the viewpoint of reducing traffic accidents. The performance of automotive radars may be degraded by interference from nearby radars using the same frequency. In this study, a scenario where two cars pass each other on a road was considered. Considering the utilization of cross-polarization, the desired-to-undesired signal power ratio (DUR was found to vary approximately from -10 to 30 dB. Different pseudo random sequences were employed for spectrum spreading the different radar signals to mitigate the interference effects. This paper evaluates the interference suppression provided by maximum length sequence (MLS and Gold sequence (GS through numerical simulations of the radar’s performance in terms of probability of false alarm and probability of detection. It was found that MLS and GS yielded nearly the same performance when the DUR is -10 dB (worst case; for example when fixing the probability of false alarm to 0.0001, the probabilities of detection were 0.964 and 0.946 respectively. The GS are more advantageous than MLS due to larger number of different sequences having the same length in GS than in MLS.

  20. A computer simulation of a long-range CWFM radar showing the tradeoffs of performance as a function of range

    Gordy, Robert S.; Zoledziowski, Severyn

    2011-06-01

    This paper describes a study of the operation of a long range CWFM radar using "System View" software for modeling and simulation. The System View software is currently offered by Agilent. The models that were studied include: a model illustrating the basic principle of operation of the CWFM radar, the range resolution of the radar, the effect of long range processing and the resultant approach with the tradeoff of detected range resolution due to Doppler frequency shift as a function of range distance. The study was performed as part of the design of an airborne CWFM radar. The radar can be designed with a single antenna or a dual antenna. The dual antenna approach is presented in this paper.

  1. A Review of Ground Target Detection and Classification Techniques in Forward Scattering Radars

    M. E. A. Kanona

    2018-06-01

    Full Text Available This paper presents a review of target detection and classification in forward scattering radar (FSR which is a special state of bistatic radars, designed to detect and track moving targets in the narrow region along the transmitter-receiver base line. FSR has advantages and incredible features over other types of radar configurations. All previous studies proved that FSR can be used as an alternative system for ground target detection and classification. The radar and FSR fundamentals were addressed and classification algorithms and techniques were debated. On the other hand, the current and future applications and the limitations of FSR were discussed.

  2. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  3. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  4. Detecting and mitigating wind turbine clutter for airspace radar systems.

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  5. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    Wen-Qin Wang

    2013-01-01

    Full Text Available It is well recognized that a wind turbine has a large radar cross-section (RCS and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  6. Golay Complementary Waveforms in Reed–Müller Sequences for Radar Detection of Nonzero Doppler Targets

    Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill

    2018-01-01

    Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708

  7. Embedded DSP-based telehealth radar system for remote in-door fall detection.

    Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique

    2015-01-01

    Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas.

  8. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P. (New Mexico State University, Las Cruces, NM); Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  9. Simulating Radar Signals for Detection Performance Evaluation.

    1981-02-01

    incurring the computation costs usually as- sociated with such simulations. With importance sampling one can modify the probability distribution of the...049.7 0110 IF (N0147-1) ?0Q,7oG.6oSi V4.48 102 61 IrF?=TFACTUIFI*VF1 O. All THryAV.THrTA 1S A I~ THF’r P THF T r/LCAT I IVF /’NF 1204!! %S1PP7FS(T4rTAW

  10. Detection and localization of multiple short range targets using FMCW radar signal

    Jardak, Seifallah

    2016-07-26

    In this paper, a 24 GHz frequency-modulated continuous wave radar is used to detect and localize both stationary and moving targets. Depending on the application, the implemented software offers different modes of operation. For example, it can simply output raw data samples for advanced offline processing or directly carry out a two dimensional fast Fourier transform to estimate the location and velocity of multiple targets. To suppress clutter and detect only moving targets, two methods based on the background reduction and the slow time processing techniques are implemented. A trade-off between the two methods is presented based on their performance and the required processing time. © 2016 IEEE.

  11. Detection of cavity migration risks using radar interferometric time series

    Chang, L.; Hanssen, R. F.

    2012-12-01

    The upward migration of near-surface underground cavities can pose a major hazard for people and infrastructure. Being the major cause of sudden collapse-sinkholes, or causing a sudden lack of support of building foundations, a migrating cavity can cause the collapse of buildings, water defense systems, drainage of water bodies, or transport infrastructure. Cavity migration can occur naturally, e.g. in karst-massifs, but could also be caused by anthropogenic activities such as mining. The chief difficulty in the assessment of sinkhole risk is the lack of prior knowledge on the location of the cavity. Although in situ measurements such as gravimetry, seismic or EM-surveying or GPR are in principle able to detect an underground void, it is generally not economically possible to use these techniques over vast areas. Moreover, the risk of casualties is highest for urbanized areas, in which it is difficult to get close enough to perform these measurements. The second problem is that there is usually no data available prior to the collapse, to understand whether there is for example precursory motion, and how far ahead in time critical levels can be detected. Here we report on the catastrophic collapse of the foundation of an underground parking garage in Heerlen, the Netherlands. In December 2011, some pillars supporting the roof of the garage and the shopping mall above it suddenly subsided more than one meter. This caused the near collapse of a part of the shopping mall, the immediate evacuation of the building, and the decision of the authorities to eliminate the building. In the analysis of the event, several hypotheses were formulated on the driving mechanisms, such as subsurface water flows and karst. However, as the region was subject to coal mining in the last century, alternative hypotheses were cavity migration due to the mining, or rebound of the surface due to mine water. Our study jointly exploits the data archives of four imaging radar satellites, ERS-1

  12. A Dual-Wavelength Radar Technique to Detect Hydrometeor Phases

    Liao, Liang; Meneghini, Robert

    2016-01-01

    This study is aimed at investigating the feasibility of a Ku- and Ka-band space/air-borne dual wavelength radar algorithm to discriminate various phase states of precipitating hydrometeors. A phase-state classification algorithm has been developed from the radar measurements of snow, mixed-phase and rain obtained from stratiform storms. The algorithm, presented in the form of the look-up table that links the Ku-band radar reflectivities and dual-frequency ratio (DFR) to the phase states of hydrometeors, is checked by applying it to the measurements of the Jet Propulsion Laboratory, California Institute of Technology, Airborne Precipitation Radar Second Generation (APR-2). In creating the statistically-based phase look-up table, the attenuation corrected (or true) radar reflectivity factors are employed, leading to better accuracy in determining the hydrometeor phase. In practice, however, the true radar reflectivities are not always available before the phase states of the hydrometeors are determined. Therefore, it is desirable to make use of the measured radar reflectivities in classifying the phase states. To do this, a phase-identification procedure is proposed that uses only measured radar reflectivities. The procedure is then tested using APR-2 airborne radar data. Analysis of the classification results in stratiform rain indicates that the regions of snow, mixed-phase and rain derived from the phase-identification algorithm coincide reasonably well with those determined from the measured radar reflectivities and linear depolarization ratio (LDR).

  13. Detection Range Estimation of UV Spectral Band Laser Radar

    V. A. Gorodnichev

    2014-01-01

    Full Text Available Recently, has come into existence an interest in the systems operating in the ultra-violet (UF band of wavelengths, which use other spectral information (coefficients of reflection or radiation in UF range about location objects, than laser systems in the visible, near or average infrared bands. Thus, a point is not only to receive additional (in another spectral range information on location objects. Laser radiation in the UF spectral band of 0.315 – 0.4 microns is safer than laser radiation with the wavelengths of 0.38 – 1.4 microns.The work presents a comparative estimation of the detection systems range of laser radars in the UV and visible spectral bands for the following wavelengths of radiation:- UF band: 0.266 microns (the fourth harmonic of YAG-laser activated by neodymium ions, 0.308 microns (the XeCl-excimer laser, 0.355 microns (the third harmonic of YAG-laser activated by neodymium ions;- visible band: 0.532 microns (the second harmonic of YAG-laser activated by neodymium ions.Results of calculations show that for the horizontal pathway in the terrestrial atmosphere at the selected radiation wavelengths a detection range is in the range of 2510m – 5690 m.The maximum range of detection corresponds to the visible spectral band. A sweep range decreases with transition to the UF band. This is caused by the fact that with transition to the UF band there is a rise of atmosphere attenuation (generally, because of absorption by ozone, this effect being smoothed by reducing background radiation.In the UF band a wavelength of 0.355 microns is the most acceptable. For this wavelength a detection range is about 1,5 times less (in comparison with the visible band of 0.532 microns. However, this is the much more eye-safe wavelength. With transition to the UV band a detection range decreases not that much and can be compensated by changing parameters of transmitting or receiving channels of laser radar.

  14. Detection scheme for a partially occluded pedestrian based on occluded depth in lidar-radar sensor fusion

    Kwon, Seong Kyung; Hyun, Eugin; Lee, Jin-Hee; Lee, Jonghun; Son, Sang Hyuk

    2017-11-01

    Object detections are critical technologies for the safety of pedestrians and drivers in autonomous vehicles. Above all, occluded pedestrian detection is still a challenging topic. We propose a new detection scheme for occluded pedestrian detection by means of lidar-radar sensor fusion. In the proposed method, the lidar and radar regions of interest (RoIs) have been selected based on the respective sensor measurement. Occluded depth is a new means to determine whether an occluded target exists or not. The occluded depth is a region projected out by expanding the longitudinal distance with maintaining the angle formed by the outermost two end points of the lidar RoI. The occlusion RoI is the overlapped region made by superimposing the radar RoI and the occluded depth. The object within the occlusion RoI is detected by the radar measurement information and the occluded object is estimated as a pedestrian based on human Doppler distribution. Additionally, various experiments are performed in detecting a partially occluded pedestrian in outdoor as well as indoor environments. According to experimental results, the proposed sensor fusion scheme has much better detection performance compared to the case without our proposed method.

  15. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar.

    Shin, Young Hoon; Seo, Jiwon

    2016-10-29

    People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker's vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing.

  16. On the Deployment and Noise Filtering of Vehicular Radar Application for Detection Enhancement in Roads and Tunnels

    Young-Duk Kim

    2018-03-01

    Full Text Available Recently, radar technology has attracted attention for the realization of an intelligent transportation system (ITS to monitor, track, and manage vehicle traffic on the roads as well as adaptive cruise control (ACC and automatic emergency braking (AEB for driving assistance of vehicles. However, when radar is installed on roads or in tunnels, the detection performance is significantly dependent on the deployment conditions and environment around the radar. In particular, in the case of tunnels, the detection accuracy for a moving vehicle drops sharply owing to the diffuse reflection of radio frequency (RF signals. In this paper, we propose an optimal deployment condition based on height and tilt angle as well as a noise-filtering scheme for RF signals so that the performance of vehicle detection can be robust against external conditions on roads and in tunnels. To this end, first, we gather and analyze the misrecognition patterns of the radar by tracking a number of randomly selected vehicles on real roads. In order to overcome the limitations, we implement a novel road watch module (RWM that is easily integrated into a conventional radar system such as Delphi ESR. The proposed system is able to perform real-time distributed data processing of the target vehicles by providing independent queues for each object of information that is incoming from the radar RF. Based on experiments with real roads and tunnels, the proposed scheme shows better performance than the conventional method with respect to the detection accuracy and delay time. The implemented system also provides a user-friendly interface to monitor and manage all traffic on roads and in tunnels. This will accelerate the popularization of future ITS services.

  17. On the Deployment and Noise Filtering of Vehicular Radar Application for Detection Enhancement in Roads and Tunnels

    Kim, Young-Duk; Son, Guk-Jin; Song, Chan-Ho

    2018-01-01

    Recently, radar technology has attracted attention for the realization of an intelligent transportation system (ITS) to monitor, track, and manage vehicle traffic on the roads as well as adaptive cruise control (ACC) and automatic emergency braking (AEB) for driving assistance of vehicles. However, when radar is installed on roads or in tunnels, the detection performance is significantly dependent on the deployment conditions and environment around the radar. In particular, in the case of tunnels, the detection accuracy for a moving vehicle drops sharply owing to the diffuse reflection of radio frequency (RF) signals. In this paper, we propose an optimal deployment condition based on height and tilt angle as well as a noise-filtering scheme for RF signals so that the performance of vehicle detection can be robust against external conditions on roads and in tunnels. To this end, first, we gather and analyze the misrecognition patterns of the radar by tracking a number of randomly selected vehicles on real roads. In order to overcome the limitations, we implement a novel road watch module (RWM) that is easily integrated into a conventional radar system such as Delphi ESR. The proposed system is able to perform real-time distributed data processing of the target vehicles by providing independent queues for each object of information that is incoming from the radar RF. Based on experiments with real roads and tunnels, the proposed scheme shows better performance than the conventional method with respect to the detection accuracy and delay time. The implemented system also provides a user-friendly interface to monitor and manage all traffic on roads and in tunnels. This will accelerate the popularization of future ITS services. PMID:29534483

  18. On the Deployment and Noise Filtering of Vehicular Radar Application for Detection Enhancement in Roads and Tunnels.

    Kim, Young-Duk; Son, Guk-Jin; Song, Chan-Ho; Kim, Hee-Kang

    2018-03-11

    Recently, radar technology has attracted attention for the realization of an intelligent transportation system (ITS) to monitor, track, and manage vehicle traffic on the roads as well as adaptive cruise control (ACC) and automatic emergency braking (AEB) for driving assistance of vehicles. However, when radar is installed on roads or in tunnels, the detection performance is significantly dependent on the deployment conditions and environment around the radar. In particular, in the case of tunnels, the detection accuracy for a moving vehicle drops sharply owing to the diffuse reflection of radio frequency (RF) signals. In this paper, we propose an optimal deployment condition based on height and tilt angle as well as a noise-filtering scheme for RF signals so that the performance of vehicle detection can be robust against external conditions on roads and in tunnels. To this end, first, we gather and analyze the misrecognition patterns of the radar by tracking a number of randomly selected vehicles on real roads. In order to overcome the limitations, we implement a novel road watch module (RWM) that is easily integrated into a conventional radar system such as Delphi ESR. The proposed system is able to perform real-time distributed data processing of the target vehicles by providing independent queues for each object of information that is incoming from the radar RF. Based on experiments with real roads and tunnels, the proposed scheme shows better performance than the conventional method with respect to the detection accuracy and delay time. The implemented system also provides a user-friendly interface to monitor and manage all traffic on roads and in tunnels. This will accelerate the popularization of future ITS services.

  19. Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement

    B. Damtie

    2009-02-01

    Full Text Available Improving an estimate of an incoherent scatter radar signal is vital to provide reliable and unbiased information about the Earth's ionosphere. Thus optimizing the measurement spatial and temporal resolutions has attracted considerable attention. The optimization usually relies on employing different kinds of pulse compression filters in the analysis and a matched filter is perhaps the most widely used one. A mismatched filter has also been used in order to suppress the undesirable sidelobes that appear in the case of matched filtering. Moreover, recently an adaptive pulse compression method, which can be derived based on the minimum mean-square error estimate, has been proposed. In this paper we have investigated the performance of matched, mismatched and adaptive pulse compression methods in terms of the output signal-to-noise ratio (SNR and the variance and bias of the estimator. This is done by using different types of optimal radar waveforms. It is shown that for the case of low SNR the signal degradation associated to an adaptive filtering is less than that of the mismatched filtering. The SNR loss of both matched and adaptive pulse compression techniques was found to be nearly the same for most of the investigated codes for the case of high SNR. We have shown that the adaptive filtering technique is a compromise between matched and mismatched filtering method when one evaluates its performance in terms of the variance and the bias of the estimator. All the three analysis methods were found to have the same performance when a sidelobe-free matched filter code is employed.

  20. Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement

    B. Damtie

    2009-02-01

    Full Text Available Improving an estimate of an incoherent scatter radar signal is vital to provide reliable and unbiased information about the Earth's ionosphere. Thus optimizing the measurement spatial and temporal resolutions has attracted considerable attention. The optimization usually relies on employing different kinds of pulse compression filters in the analysis and a matched filter is perhaps the most widely used one. A mismatched filter has also been used in order to suppress the undesirable sidelobes that appear in the case of matched filtering. Moreover, recently an adaptive pulse compression method, which can be derived based on the minimum mean-square error estimate, has been proposed. In this paper we have investigated the performance of matched, mismatched and adaptive pulse compression methods in terms of the output signal-to-noise ratio (SNR and the variance and bias of the estimator. This is done by using different types of optimal radar waveforms. It is shown that for the case of low SNR the signal degradation associated to an adaptive filtering is less than that of the mismatched filtering. The SNR loss of both matched and adaptive pulse compression techniques was found to be nearly the same for most of the investigated codes for the case of high SNR. We have shown that the adaptive filtering technique is a compromise between matched and mismatched filtering method when one evaluates its performance in terms of the variance and the bias of the estimator. All the three analysis methods were found to have the same performance when a sidelobe-free matched filter code is employed.

  1. Movement and respiration detection using statistical properties of the FMCW radar signal

    Kiuru, Tero

    2016-07-26

    This paper presents a 24 GHz FMCW radar system for detection of movement and respiration using change in the statistical properties of the received radar signal, both amplitude and phase. We present the hardware and software segments of the radar system as well as algorithms with measurement results for two distinct use-cases: 1. FMCW radar as a respiration monitor and 2. a dual-use of the same radar system for smart lighting and intrusion detection. By using change in statistical properties of the signal for detection, several system parameters can be relaxed, including, for example, pulse repetition rate, power consumption, computational load, processor speed, and memory space. We will also demonstrate, that the capability to switch between received signal strength and phase difference enables dual-use cases with one requiring extreme sensitivity to movement and the other robustness against small sources of interference. © 2016 IEEE.

  2. UWB radar technique for arc detection in coaxial cables and waveguides

    Maggiora, R.; Salvador, S.

    2009-01-01

    As spread spectrum technology has revolutionized the communications industry, Ultra Wide Band (UWB) technology is dramatically improving radar performances. These advanced signal processing techniques have been adapted to coaxial cables and waveguides to provide new features and enhanced performance on arc detection. UWB signals constituted by a sequence of chips (properly chosen to reduce side lobes and to improve detection accuracy) are transmitted along the transmission lines at a specified Pulse Repetition Frequency (PRF) and their echoes are received by means of directional couplers. The core of the receiver is an ultra high-speed correlator implemented in a Digital Signal Processor (DSP). When a target (arc) is detected, its position and its 'radar cross section' are calculated to be able to provide the arc position along the transmission line and to be able to classify the type of detected arc. The 'background scattering' is routinely extracted from the received signal at any pulse. This permits to be resilient to the background structure of transmission lines (bends, junctions, windows, etc.). Thanks to the localization feature, segmentation is also possible for creating sensed and non-sensed zones (for example, to be insensitive to antenna load variations).

  3. Impulse radar imaging system for concealed object detection

    Podd, F. J. W.; David, M.; Iqbal, G.; Hussain, F.; Morris, D.; Osakue, E.; Yeow, Y.; Zahir, S.; Armitage, D. W.; Peyton, A. J.

    2013-10-01

    Electromagnetic systems for imaging concealed objects at checkpoints typically employ radiation at millimetre and terahertz frequencies. These systems have been shown to be effective and provide a sufficiently high resolution image. However there are difficulties and current electromagnetic systems have limitations particularly in accurately differentiating between threat and innocuous objects based on shape, surface emissivity or reflectivity, which are indicative parameters. In addition, water has a high absorption coefficient at millimetre wavelength and terahertz frequencies, which makes it more difficult for these frequencies to image through thick damp clothing. This paper considers the potential of using ultra wideband (UWB) in the low gigahertz range. The application of this frequency band to security screening appears to be a relatively new field. The business case for implementing the UWB system has been made financially viable by the recent availability of low-cost integrated circuits operating at these frequencies. Although designed for the communication sector, these devices can perform the required UWB radar measurements as well. This paper reports the implementation of a 2 to 5 GHz bandwidth linear array scanner. The paper describes the design and fabrication of transmitter and receiver antenna arrays whose individual elements are a type of antipodal Vivaldi antenna. The antenna's frequency and angular response were simulated in CST Microwave Studio and compared with laboratory measurements. The data pre-processing methods of background subtraction and deconvolution are implemented to improve the image quality. The background subtraction method uses a reference dataset to remove antenna crosstalk and room reflections from the dataset. The deconvolution method uses a Wiener filter to "sharpen" the returned echoes which improves the resolution of the reconstructed image. The filter uses an impulse response reference dataset and a signal

  4. Low-Cost Radar Sensors for Personnel Detection and Tracking in Urban Areas

    2007-01-31

    progress on the reserach grant "Low-Cost Radar Sensors for Personnel Detection and Tracking in Urban Areas" during the period 1 May 2005 - 31 December...The limitations of the proposed system resulting from DOA ambiguity of multiple moving targets are studied. 2. METHODOLOGY Our radar receiver

  5. FMCW radar system for detection and classification of small vessels in high sea state conditions

    Wasselin, J.-P.; Mazuel, S.; Itcia, E.; Huizing, A.G.; Theil, A.

    2012-01-01

    The ROCKWELL COLLINS France radar department is currently developing a FMCW radar system for the detection and the classification of small maritime targets in the frame of the SISMARIS, SARGOS & I2C projects. Several test campaigns have been conducted since 2009 to develop a sensor as well as an

  6. AMSNEXRAD-Automated detection of meteorite strewnfields in doppler weather radar

    Hankey, Michael; Fries, Marc; Matson, Rob; Fries, Jeff

    2017-09-01

    For several years meteorite recovery in the United States has been greatly enhanced by using Doppler weather radar images to determine possible fall zones for meteorites produced by witnessed fireballs. While most fireball events leave no record on the Doppler radar, some large fireballs do. Based on the successful recovery of 10 meteorite falls 'under the radar', and the discovery of radar on more than 10 historic falls, it is believed that meteoritic dust and or actual meteorites falling to the ground have been recorded on Doppler weather radar (Fries et al., 2014). Up until this point, the process of detecting the radar signatures associated with meteorite falls has been a manual one and dependent on prior accurate knowledge of the fall time and estimated ground track. This manual detection process is labor intensive and can take several hours per event. Recent technological developments by NOAA now help enable the automation of these tasks. This in combination with advancements by the American Meteor Society (Hankey et al., 2014) in the tracking and plotting of witnessed fireballs has opened the possibility for automatic detection of meteorites in NEXRAD Radar Archives. Here in the processes for fireball triangulation, search area determination, radar interfacing, data extraction, storage, search, detection and plotting are explained.

  7. Detection of small targets in a marine environment using laser radar

    Kunz, G.J.; Bekman, H.H.P.T.; Benoist, K.W.; Cohen, L.H.; Heuvel, J.C. van den; Putten, F.J.M.

    2005-01-01

    Small maritime targets, e.g., periscope tubes, jet skies, swimmers and small boats, are potential threats for naval ships under many conditions, but are difficult to detect with current radar systems due to their limited radar cross section and the presence of sea clutter. On the other hand,

  8. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images.

    Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao

    2018-03-01

    We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.

  9. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  10. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    Van-Han Nguyen

    2015-03-01

    Full Text Available In indoor environments, the Global Positioning System (GPS and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  11. Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary.

    Yu, Zhibin; Zhao, Duo; Zhang, Zhiqiang

    2017-12-26

    Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k -th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences.

  12. Design And Analysis Of Doppler Radar-Based Vehicle Speed Detection

    Su Myat Paing

    2015-08-01

    Full Text Available The most unwanted thing to happen to a road user is road accident. Most of the fatal accidents occur due to over speeding. Faster vehicles are more prone to accident than the slower one. Among the various methods for detecting speed of the vehicle object detection systems based on Radar have been replaced for about a century for various purposes like detection of aircrafts spacecraft ships navigation reading weather formations and terrain mapping. The essential feature in adaptive vehicle activated sign systems is the accurate measurement of a vehicles velocity. The velocities of the vehicles are acquired from a continuous wave Doppler radar. A very low amount of power is consumed in this system and only batteries can use to operate. The system works on the principle of Doppler Effect by detecting the Doppler shift in microwaves reflected from a moving object. Since the output of the sensor is sinusoidal wave with very small amplitude and needs to be amplified with the help of the amplifier before further processing. The purpose to calculate and display the speed on LCD is performed by the microcontroller.

  13. Performance limits for maritime Inverse Synthetic Aperture Radar (ISAR)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    The performance of an Inverse Synthetic Aperture Radar (ISAR) system depends on a variety of factors, many which are interdependent in some manner. In this report we specifically examine ISAR as applied to maritime targets (e.g. ships). It is often difficult to get your arms around the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall ISAR system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the seek time.

  14. Time-Frequency Analysis of Terahertz Radar Signals for Rapid Heart and Breath Rate Detection

    Massar, Melody L

    2008-01-01

    We develop new time-frequency analytic techniques which facilitate the detection of a person's heart and breath rates from the Doppler shift the movement of their body induces in a terahertz radar signal...

  15. Detection and localization of multiple short range targets using FMCW radar signal

    Jardak, Seifallah; Kiuru, Tero; Metso, Mikko; Pursula, Pekka; Hakli, Janne; Hirvonen, Mervi; Ahmed, Sajid; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, a 24 GHz frequency-modulated continuous wave radar is used to detect and localize both stationary and moving targets. Depending on the application, the implemented software offers different modes of operation. For example, it can

  16. Detecting and characterizing unroofed caves by ground penetrating radar

    Čeru, Teja; Šegina, Ela; Knez, Martin; Benac, Čedomir; Gosar, Andrej

    2018-02-01

    The bare karst surface in the southeastern part of Krk Island (Croatia) is characterized by different surface karst features, such as valley-like shallow linear depressions and partially or fully sediment-filled depressions of various shapes and sizes. They were noticed due to locally increased thickness of sediment and enhanced vegetation but had not yet been systematically studied and defined. Considering only the geometry of the investigated surface features and the rare traces of cave environments detected by field surveys, it was unclear which processes (surface karstification and/or speleogenesis) contributed most to their formation. The low-frequency ground penetrating radar (GPR) method using a special 50 MHz RTA antenna was applied to study and describe these karst features. Three study sites were chosen and 5 km of GPR profiles were positioned to include various surface features. The results obtained from the GPR investigation lead to the following conclusions: (1) an increased thickness of sediment was detected in all the investigated depressions indicating their considerable depth; (2) areas between different depressions expressed as attenuated zones in GPR images reveal their interconnection; (3) transitions between surface and underground features are characterized by a collapsed passage visible in the GPR data; and (4) an underground continuation of surface valley-like depressions was detected, proving the speleogenetic origin of such features. Subsurface information obtained using GPR indicates that the valley-like depressions, irregular depressions completely or partially filled with sediment, and some dolines are associated with a nearly 4 km-long unroofed cave and developed as a result of karst denudation. In the regional context, these results suggest long-lasting karstification processes in the area, in contrast to the pre-karstic fluvial phase previously assumed to have occurred here. This research is the first application of the GPR method to

  17. Radiosonde pressure sensor performance - Evaluation using tracking radars

    Parsons, C. L.; Norcross, G. A.; Brooks, R. L.

    1984-01-01

    The standard balloon-borne radiosonde employed for synoptic meteorology provides vertical profiles of temperature, pressure, and humidity as a function of elapsed time. These parameters are used in the hypsometric equation to calculate the geopotential altitude at each sampling point during the balloon's flight. It is important that the vertical location information be accurate. The present investigation was conducted with the objective to evaluate the altitude determination accuracy of the standard radiosonde throughout the entire balloon profile. The tests included two other commercially available pressure sensors to see if they could provide improved accuracy in the stratosphere. The pressure-measuring performance of standard baroswitches, premium baroswitches, and hypsometers in balloon-borne sondes was correlated with tracking radars. It was found that the standard and premium baroswitches perform well up to about 25 km altitude, while hypsometers provide more reliable data above 25 km.

  18. A novel through-wall respiration detection algorithm using UWB radar.

    Li, Xin; Qiao, Dengyu; Li, Ye; Dai, Huhe

    2013-01-01

    Through-wall respiration detection using Ultra-wideband (UWB) impulse radar can be applied to the post-disaster rescue, e.g., searching living persons trapped in ruined buildings after an earthquake. Since strong interference signals always exist in the real-life scenarios, such as static clutter, noise, etc., while the respiratory signal is very weak, the signal to noise and clutter ratio (SNCR) is quite low. Therefore, through-wall respiration detection using UWB impulse radar under low SNCR is a challenging work in the research field of searching survivors after disaster. In this paper, an improved UWB respiratory signal model is built up based on an even power of cosine function for the first time. This model is used to reveal the harmonic structure of respiratory signal, based on which a novel high-performance respiration detection algorithm is proposed. This novel algorithm is assessed by experimental verification and simulation and shows about a 1.5dB improvement of SNR and SNCR.

  19. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all

  20. Doppler radar observation of thunderstorm circulation in the 1977 trip program. [triple Doppler radar network for lightning detection and ranging

    Lhermitte, R. M.; Conte, D.; Pasqualucci, F.; Lennon, C.; Serafin, R. J.

    1978-01-01

    Storm data obtained on August 1, 1977 are examined in an attempt to interpret the relationship between lightning occurrence and the thunderstorm inner dynamics and precipitation processes. Horizontal maps are presented which indicated the position of radiation sources detected by the Lightning Detection and Ranging (LDAR) network, together with the horizontal motion fields and radar reflectivity data. Detailed inspection of these fields showed that, although radiation sources are found in the vicinity of precipitation cells, they are not located in the heavy precipitation areas, but rather on their rear side in regions where the configuration of the wind fields suggests the presence of updrafts.

  1. Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field

    Xiuwei Liu; Xuejun Dong; Qingwu Xue; Daniel I. Leskovar; John Jifon; John R. Butnor; Thomas Marek

    2018-01-01

    Aim Ground penetrating radar (GPR) as a non-invasive technique is widely used in coarse root detection. However, the applicability of the technique to detect fine roots of agricultural crops is unknown. The objective of this study was to assess the feasibility of utilizing GPR to detect fine roots in the field.

  2. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale...

  3. Statistical problems with weather-radar images, II: Attenuation detection

    Fernandez-Duran, Juan-Jose; Upton, Graham

    2003-01-01

    A procedure based on the combination of a Bayesian changepoint model and ordinary least squares is used to identify and quantify regions where a radar signal has been attenuated (i.e.diminished) as a consequence of intervening weather. A graphical polar display is introduced that illustrates the location and importance of the attenuation

  4. Compressive Sensing and Fast Simulations : Applications to Radar Detection

    Anitori, L.

    2012-01-01

    In most modern high-resolution multi-channel radar systems one of the major problems to deal with is the huge amount of data to be acquired, processed and/or stored. But why do we need all these data? According to the well known Nyquist-Shannon sampling theorem, real signals have to be sampled at at

  5. NAPL detection with ground-penetrating radar (Invited)

    Bradford, J. H.

    2013-12-01

    Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency

  6. Automatic detection of subglacial lakes in radar sounder data acquired in Antarctica

    Ilisei, Ana-Maria; Khodadadzadeh, Mahdi; Dalsasso, Emanuele; Bruzzone, Lorenzo

    2017-10-01

    Subglacial lakes decouple the ice sheet from the underlying bedrock, thus facilitating the sliding of the ice masses towards the borders of the continents, consequently raising the sea level. This motivated increasing attention in the detection of subglacial lakes. So far, about 70% of the total number of subglacial lakes in Antarctica have been detected by analysing radargrams acquired by radar sounder (RS) instruments. Although the amount of radargrams is expected to drastically increase, from both airborne and possible future Earth observation RS missions, currently the main approach to the detection of subglacial lakes in radargrams is by visual interpretation. This approach is subjective and extremely time consuming, thus difficult to apply to a large amount of radargrams. In order to address the limitations of the visual interpretation and to assist glaciologists in better understanding the relationship between the subglacial environment and the climate system, in this paper, we propose a technique for the automatic detection of subglacial lakes. The main contribution of the proposed technique is the extraction of features for discriminating between lake and non-lake basal interfaces. In particular, we propose the extraction of features that locally capture the topography of the basal interface, the shape and the correlation of the basal waveforms. Then, the extracted features are given as input to a supervised binary classifier based on Support Vector Machine to perform the automatic subglacial lake detection. The effectiveness of the proposed method is proven both quantitatively and qualitatively by applying it to a large dataset acquired in East Antarctica by the MultiChannel Coherent Radar Depth Sounder.

  7. Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images

    Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong

    2018-01-01

    Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.

  8. Effects of Atmospheric Refraction on an Airborne Weather Radar Detection and Correction Method

    Lei Wang

    2015-01-01

    Full Text Available This study investigates the effect of atmospheric refraction, affected by temperature, atmospheric pressure, and humidity, on airborne weather radar beam paths. Using three types of typical atmospheric background sounding data, we established a simulation model for an actual transmission path and a fitted correction path of an airborne weather radar beam during airplane take-offs and landings based on initial flight parameters and X-band airborne phased-array weather radar parameters. Errors in an ideal electromagnetic beam propagation path are much greater than those of a fitted path when atmospheric refraction is not considered. The rates of change in the atmospheric refraction index differ with weather conditions and the radar detection angles differ during airplane take-off and landing. Therefore, the airborne radar detection path must be revised in real time according to the specific sounding data and flight parameters. However, an error analysis indicates that a direct linear-fitting method produces significant errors in a negatively refractive atmosphere; a piecewise-fitting method can be adopted to revise the paths according to the actual atmospheric structure. This study provides researchers and practitioners in the aeronautics and astronautics field with updated information regarding the effect of atmospheric refraction on airborne weather radar detection and correction methods.

  9. High performance ground penetrating radar survey of TA-49/Area 2. Final report

    Hoeberling, R.F.; Rangel, M.J. III

    1994-09-01

    The results of high performance ground penetrating radar study of Area 2 at Technical Area 49 are presented. The survey was commissioned as part of Los Alamos Laboratory's continuing Environmental Remediation program and was completed and analyzed before borehole studies in Area 2 were started. Based upon the ground penetrating radar results, the location of one of the planned boreholes was moved to assure the drilling area was as safe as possible. While earlier attempts to use commercial radar devices at this facility had not been successful, the radar and digital processing system developed at Los Alamos were able to significantly improve the buried physical detail of the site

  10. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    Raja Syamsul Azmir Raja Abdullah

    2016-09-01

    Full Text Available The passive bistatic radar (PBR system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR. The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  11. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  12. Multiscale-Driven approach to detecting change in Synthetic Aperture Radar (SAR) imagery

    Gens, R.; Hogenson, K.; Ajadi, O. A.; Meyer, F. J.; Myers, A.; Logan, T. A.; Arnoult, K., Jr.

    2017-12-01

    Detecting changes between Synthetic Aperture Radar (SAR) images can be a useful but challenging exercise. SAR with its all-weather capabilities can be an important resource in identifying and estimating the expanse of events such as flooding, river ice breakup, earthquake damage, oil spills, and forest growth, as it can overcome shortcomings of optical methods related to cloud cover. However, detecting change in SAR imagery can be impeded by many factors including speckle, complex scattering responses, low temporal sampling, and difficulty delineating boundaries. In this presentation we use a change detection method based on a multiscale-driven approach. By using information at different resolution levels, we attempt to obtain more accurate change detection maps in both heterogeneous and homogeneous regions. Integrated within the processing flow are processes that 1) improve classification performance by combining Expectation-Maximization algorithms with mathematical morphology, 2) achieve high accuracy in preserving boundaries using measurement level fusion techniques, and 3) combine modern non-local filtering and 2D-discrete stationary wavelet transform to provide robustness against noise. This multiscale-driven approach to change detection has recently been incorporated into the Alaska Satellite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3) using radiometrically terrain corrected SAR images. Examples primarily from natural hazards are presented to illustrate the capabilities and limitations of the change detection method.

  13. Non-contact acquisition of respiration and heart rates using Doppler radar with time domain peak-detection algorithm.

    Xiaofeng Yang; Guanghao Sun; Ishibashi, Koichiro

    2017-07-01

    The non-contact measurement of the respiration rate (RR) and heart rate (HR) using a Doppler radar has attracted more attention in the field of home healthcare monitoring, due to the extremely low burden on patients, unconsciousness and unconstraint. Most of the previous studies have performed the frequency-domain analysis of radar signals to detect the respiration and heartbeat frequency. However, these procedures required long period time (approximately 30 s) windows to obtain a high-resolution spectrum. In this study, we propose a time-domain peak detection algorithm for the fast acquisition of the RR and HR within a breathing cycle (approximately 5 s), including inhalation and exhalation. Signal pre-processing using an analog band-pass filter (BPF) that extracts respiration and heartbeat signals was performed. Thereafter, the HR and RR were calculated using a peak position detection method, which was carried out via LABVIEW. To evaluate the measurement accuracy, we measured the HR and RR of seven subjects in the laboratory. As a reference of HR and RR, the persons wore contact sensors i.e., an electrocardiograph (ECG) and a respiration band. The time domain peak-detection algorithm, based on the Doppler radar, exhibited a significant correlation coefficient of HR of 0.92 and a correlation coefficient of RR of 0.99, between the ECG and respiration band, respectively.

  14. Detection of motion and posture change using an IR-UWB radar.

    Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary A

    2016-08-01

    Impulse radio ultra-wide band (IR-UWB) radar has recently emerged as a promising candidate for non-contact monitoring of respiration and heart rate. Different studies have reported various radar based algorithms for estimation of these physiological parameters. The radar can be placed under a subject's mattress as he lays stationary on his back or it can be attached to the ceiling directly above the subject's bed. However, advertent or inadvertent movement on part of the subject and different postures can affect the radar returned signal and also the accuracy of the estimated parameters from it. The detection and analysis of these postural changes can not only lead to improvement in estimation algorithms but also towards prevention of bed sores and ulcers in patients who require periodic posture changes. In this paper, we present an algorithm that detects and quantifies different types of motion events using an under-the-mattress IR-UWB radar. The algorithm also indicates a change in posture after a macro-movement event. Based on the findings of this paper, we anticipate that IR-UWB radar can be used for extracting posture related information in non-clinical enviroments for patients who are bed-ridden.

  15. Meteorite Fall Detection and Analysis via Weather Radar: Worldwide Potential for Citizen Science

    Fries, M.; Bresky, C.; Laird, C.; Reddy, V.; Hankey, M.

    2017-12-01

    Meteorite falls can be detected using weather radars, facilitating rapid recovery of meteorites to minimize terrestrial alteration. Imagery from the US NEXRAD radar network reveals over two dozen meteorite falls where meteorites have been recovered, and about another dozen that remain unrecovered. Discovery of new meteorite falls is well suited to "citizen science" and similar outreach activities, as well as automation of computational components into internet-based search tools. Also, there are many more weather radars employed worldwide than those in the US NEXRAD system. Utilization of weather radars worldwide for meteorite recovery can not only expand citizen science opportunities but can also lead to significant improvement in the number of freshly-fallen meteorites available for research. We will discuss the methodologies behind locating and analyzing meteorite falls using weather radar, and how to make them available for citizen science efforts. An important example is the Aquarius Project, a Chicago-area consortium recently formed with the goal of recovering meteorites from Lake Michigan. This project has extensive student involvement geared toward development of actual hardware for recovering meteorites from the lake floor. Those meteorites were identified in weather radar imagery as they fell into the lake from a large meteor on 06 Feb 2017. Another example of public interaction is the meteor detection systems operated by the American Meteor Society (AMS). The AMS website has been developed to allow public reporting of meteors, effectively enabling citizen science to locate and describe significant meteor events worldwide.

  16. A New Methodology for 3D Target Detection in Automotive Radar Applications

    Fabio Baselice

    2016-04-01

    Full Text Available Today there is a growing interest in automotive sensor monitoring systems. One of the main challenges is to make them an effective and valuable aid in dangerous situations, improving transportation safety. The main limitation of visual aid systems is that they do not produce accurate results in critical visibility conditions, such as in presence of rain, fog or smoke. Radar systems can greatly help in overcoming such limitations. In particular, imaging radar is gaining interest in the framework of Driver Assistance Systems (DAS. In this manuscript, a new methodology able to reconstruct the 3D imaged scene and to detect the presence of multiple targets within each line of sight is proposed. The technique is based on the use of Compressive Sensing (CS theory and produces the estimation of multiple targets for each line of sight, their range distance and their reflectivities. Moreover, a fast approach for 2D focus based on the FFT algorithm is proposed. After the description of the proposed methodology, different simulated case studies are reported in order to evaluate the performances of the proposed approach.

  17. The Reliability and Effectiveness of a Radar-Based Animal Detection System

    2017-09-22

    This document contains data on the reliability and effectiveness of an animal detection system along U.S. Hwy 95 near Bonners Ferry, Idaho. The system uses a Doppler radar to detect large mammals (e.g., deer and elk) when they approach the highway. T...

  18. The Reliability and Effectiveness of a Radar-Based Animal Detection System

    2017-09-01

    This document contains data on the reliability and effectiveness of an animal detection system along U.S. Hwy 95 near Bonners Ferry, Idaho. The system uses a Doppler radar to detect large mammals (e.g., deer and elk) when they approach the highway. T...

  19. A systematic method for characterizing the time-range performance of ground penetrating radar

    Strange, A D

    2013-01-01

    The fundamental performance of ground penetrating radar (GPR) is linked to the ability to measure the signal time-of-flight in order to provide an accurate radar-to-target range estimate. Having knowledge of the actual time range and timing nonlinearities of a trace is therefore important when seeking to make quantitative range estimates. However, very few practical methods have been formally reported in the literature to characterize GPR time-range performance. This paper describes a method to accurately measure the true time range of a GPR to provide a quantitative assessment of the timing system performance and detect and quantify the effects of timing nonlinearity due to timing jitter. The effect of varying the number of samples per trace on the true time range has also been investigated and recommendations on how to minimize the effects of timing errors are described. The approach has been practically applied to characterize the timing performance of two commercial GPR systems. The importance of the method is that it provides the GPR community with a practical method to readily characterize the underlying accuracy of GPR systems. This in turn leads to enhanced target depth estimation as well as facilitating the accuracy of more sophisticated GPR signal processing methods. (paper)

  20. An in-tube radar for detecting cracks in metal tubing

    Caffey, Thurlow W. H.; Nassersharif, Bahram; Garcia, Gabe V.; Smith, Phillip R.; Jedlicka, Russell P.; Hensel, Edward C.

    2000-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique will be described for detection of defects using a continuous-wave radar device within metal tubing. The technique is 100% volumetric, and may find smaller defects, find them more rapidly, and find them less expensively than present methods. Because this project was started only recently, there is no demonstrated performance to report so far. However, the basic engineering concepts will be presented together with a description of the milestone tasks and dates

  1. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  2. An improved hydrometeor detection method for millimeter-wavelength cloud radar

    J. Ge

    2017-07-01

    Full Text Available A modified method with a new noise reduction scheme that can reduce the noise distribution to a narrow range is proposed to distinguish clouds and other hydrometeors from noise and recognize more features with weak signal in cloud radar observations. A spatial filter with central weighting, which is widely used in cloud radar hydrometeor detection algorithms, is also applied in our method to examine radar return for significant levels of signals. Square clouds were constructed to test our algorithm and the method used for the US Department of Energy Atmospheric Radiation Measurements Program millimeter-wavelength cloud radar. We also applied both the methods to 6 months of cloud radar observations at the Semi-Arid Climate and Environment Observatory of Lanzhou University and compared the results. It was found that our method has significant advantages in reducing the rates of both failed negative and false positive hydrometeor identifications in simulated clouds and recognizing clouds with weak signal from our cloud radar observations.

  3. Change detection for synthetic aperture radar images based on pattern and intensity distinctiveness analysis

    Wang, Xiao; Gao, Feng; Dong, Junyu; Qi, Qiang

    2018-04-01

    Synthetic aperture radar (SAR) image is independent on atmospheric conditions, and it is the ideal image source for change detection. Existing methods directly analysis all the regions in the speckle noise contaminated difference image. The performance of these methods is easily affected by small noisy regions. In this paper, we proposed a novel change detection framework for saliency-guided change detection based on pattern and intensity distinctiveness analysis. The saliency analysis step can remove small noisy regions, and therefore makes the proposed method more robust to the speckle noise. In the proposed method, the log-ratio operator is first utilized to obtain a difference image (DI). Then, the saliency detection method based on pattern and intensity distinctiveness analysis is utilized to obtain the changed region candidates. Finally, principal component analysis and k-means clustering are employed to analysis pixels in the changed region candidates. Thus, the final change map can be obtained by classifying these pixels into changed or unchanged class. The experiment results on two real SAR images datasets have demonstrated the effectiveness of the proposed method.

  4. Design, Performance and Optimization for Multimodal Radar Operation

    Surendra S. Bhat

    2012-09-01

    Full Text Available This paper describes the underlying methodology behind an adaptive multimodal radar sensor that is capable of progressively optimizing its range resolution depending upon the target scattering features. It consists of a test-bed that enables the generation of linear frequency modulated waveforms of various bandwidths. This paper discusses a theoretical approach to optimizing the bandwidth used by the multimodal radar. It also discusses the various experimental results obtained from measurement. The resolution predicted from theory agrees quite well with that obtained from experiments for different target arrangements.

  5. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  6. Ground penetrating radar system and method for detecting an object on or below a ground surface

    De Jongth, R.; Yarovoy, A.; Schukin, A.

    2001-01-01

    Ground penetrating radar system for detecting objects (17) on or below a ground surface (18), comprising at least one transmit antenna (13) having a first foot print (14) at the ground surface, at least one receive antenna (15) having a second foot print (16) at the ground surface, and processing

  7. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  8. Detection and Classification of Objects in Synthetic Aperture Radar Imagery

    Cooke, Tristrom

    2006-01-01

    .... The reports concern the detection of faint trails, and the theory and evaluation of a number of existing and novel methods for the detection and classification of ground and maritime targets with SAR imagery...

  9. Beam Expansion of Blind Spot Detection Radar Antennas Using a Radome with Defected Corrugated Inner Wall

    Hayeon Kim

    2017-01-01

    Full Text Available A beam expanding radome for 76.5 GHz automotive radar antennas is presented whose inner surface is engraved with corrugations. The radar used for blind spot detection (BSD requires a very wide beam width to ensure longer time for tracking out-of-sight objects. It is found that the corrugations modulate the phase velocities of the waves along the surface, which increases beam width in the far field. In addition, defects in the corrugation increase beam width even further. The presented structure satisfies the beam width requirement while keeping a low profile.

  10. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  11. Turbulence scales in the high-latitude ionosphere and their signatures upon echoes detected by SuperDARN HF radars

    Vallieres, Xavier

    2002-01-01

    SuperDARN is a coherent HF radar network dedicated to the study of high-latitude ionospheric plasma convection and finds its major applications in the field of Sun/Earth connection. This work deals with the interactions between a transmitted radar wave and ionisation gradients at different scales and their impact on measurements. Studies are performed in order to detect the ion cyclotron signature, superimposed to turbulent motions, in observed spectra. On the other hand, the role of intermediate scales (from hundreds of meters to kilometers) on spectral width estimation is evidenced. Statistical studies show that the value of this parameter depends upon transmitted frequency and echo range. We propose an interpretation in terms of a wave front de-correlation during propagation and validate it with numerical simulations based upon realistic ionospheric parameters. (author) [fr

  12. Proposed experiment to detect air showers with the Jicamarca radar system

    Vinogradova, T.; Chapin, E.; Gorham, P.; Saltzberg, D.

    2001-01-01

    When an extremely high energy particle interacts in the atmosphere, the collision induces a multiplicative cascade of charged particles, which grows exponentially until the energy per secondary degrades enough to dissipate in ionization of the surrounding air. During this process the compact cloud of energetic secondary particles travels 10-20 km through the atmosphere, leaving a column of ionization behind it. This ionized column quickly recombines, but for a period of order 0.1 ms it is highly reflective at frequencies below 100 MHz. This ionization trail, which is comparable in ionization density to that of a micro-meteor, should be clearly detectable using standard radar methods. We propose radar measurements using the facilities operated by Cornell University and the Instituto Geofisico del Peru (IGP) at the Jicamarca Radio Observatory near Lima, Peru. This facility's primary instrument is 49.92 MHz incoherent scatter radar, transmitting up to 1.5 MW of pulse power

  13. Radar search and detection with the CASA 212 S43 aircraft

    Landa Borges, José Manuel

    2004-01-01

    Approved for public release; distribution in unlimited. This research develops a detection rate model to analyze the effectiveness of the RDR 1500B search radar installed in the CASA 212 S43 aircraft belonging to Venezuelan Naval Aviation. The model is based on a search and detection mission to find a diesel submarine executing an incursion inside the Venezuelan Caribbean Sea area, assumed to be intermittently operating with periscopes or masts exposed above the sea surface. The analysis o...

  14. Range performance calculations using the NVEOL-Georgia Tech Research Institute 0.1- to 100-GHz radar performance model

    Rodak, S. P.; Thomas, N. I.

    1983-05-01

    A computer model that can be used to calculate radar range performance at any frequency in the 0.1-to 100-GHz electromagnetic spectrum is described. These different numerical examples are used to demonstrate how to use the radar range performance model. Input/output documentation are included for each case that was run on the MERADCOM CDC 6600 computer at Fort Belvoir, Virginia.

  15. Probabilities of False Alarm for Vital Sign Detection on the Basis of a Doppler Radar System

    Nguyen Thi Phuoc Van

    2018-02-01

    Full Text Available Vital detection on the basis of Doppler radars has drawn a great deal of attention from researchers because of its high potential for applications in biomedicine, surveillance, and finding people alive under debris during natural hazards. In this research, the signal-to-noise ratio (SNR of the remote vital-sign detection system is investigated. On the basis of different types of noise, such as phase noise, Gaussian noise, leakage noise between the transmitting and receiving antennae, and so on, the SNR of the system has first been examined. Then the research has focused on the investigation of the detection and false alarm probabilities of the system when the transmission link between the human and the radar sensor system took the Nakagami-m channel model. The analytical model for the false alarm and the detection probabilities of the system have been derived. The proposed theoretical models for the SNR and detection probability match with the simulation and measurement results. These theoretical models have the potential to be used as good references for the hardware development of the vital-sign detection radar sensor system.

  16. Generic framework for vessel detection and tracking based on distributed marine radar image data

    Siegert, Gregor; Hoth, Julian; Banyś, Paweł; Heymann, Frank

    2018-04-01

    Situation awareness is understood as a key requirement for safe and secure shipping at sea. The primary sensor for maritime situation assessment is still the radar, with the AIS being introduced as supplemental service only. In this article, we present a framework to assess the current situation picture based on marine radar image processing. Essentially, the framework comprises a centralized IMM-JPDA multi-target tracker in combination with a fully automated scheme for track management, i.e., target acquisition and track depletion. This tracker is conditioned on measurements extracted from radar images. To gain a more robust and complete situation picture, we are exploiting the aspect angle diversity of multiple marine radars, by fusing them a priori to the tracking process. Due to the generic structure of the proposed framework, different techniques for radar image processing can be implemented and compared, namely the BLOB detector and SExtractor. The overall framework performance in terms of multi-target state estimation will be compared for both methods based on a dedicated measurement campaign in the Baltic Sea with multiple static and mobile targets given.

  17. A 24 GHz integrated SiGe BiCMOS vital signs detection radar front-end

    Jensen, Brian Sveistrup; Johansen, Tom K.; Zhurbenko, Vitaliy

    2013-01-01

    In this paper a 24 GHz integrated front-end transceiver for vital signs detection (VSD) radars is described. The heterodyne radar transceiver integrates LO buffering and quadrature splitting circuits, up- and down-conversion SSB mixers and two cascaded receiver LNA's. The chip has been manufactured...

  18. Preliminary Analysis of X-Band and Ka-Band Radar for Use in the Detection of Icing Conditions Aloft

    Reehorst, Andrew L.; Koenig, George G.

    2004-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. Radar has been identified as a strong tool for this work. However, since the remote detection of icing conditions with the intent to identify areas of icing hazard is a new and evolving capability, there are no set requirements for radar sensitivity. This work is an initial attempt to quantify, through analysis, the sensitivity requirements for an icing remote sensing radar. The primary radar of interest for cloud measurements is Ka-band, however, since NASA is currently using an X-band unit, this frequency is also examined. Several aspects of radar signal analysis were examined. Cloud reflectivity was calculated for several forms of cloud using two different techniques. The Air Force Geophysical Laboratory (AFGL) cloud models, with different drop spectra represented by a modified gamma distribution, were utilized to examine several categories of cloud formation. Also a fundamental methods approach was used to allow manipulation of the cloud droplet size spectra. And an analytical icing radar simulator was developed to examine the complete radar system response to a configurable multi-layer cloud environment. Also discussed is the NASA vertical pointing X-band radar. The radar and its data system are described, and several summer weather events are reviewed.

  19. Convolutional neural network based side attack explosive hazard detection in three dimensional voxel radar

    Brockner, Blake; Veal, Charlie; Dowdy, Joshua; Anderson, Derek T.; Williams, Kathryn; Luke, Robert; Sheen, David

    2018-04-01

    The identification followed by avoidance or removal of explosive hazards in past and/or present conflict zones is a serious threat for both civilian and military personnel. This is a challenging task as variability exists with respect to the objects, their environment and emplacement context, to name a few factors. A goal is the development of automatic or human-in-the-loop sensor technologies that leverage signal processing, data fusion and machine learning. Herein, we explore the detection of side attack explosive hazards (SAEHs) in three dimensional voxel space radar via different shallow and deep convolutional neural network (CNN) architectures. Dimensionality reduction is performed by using multiple projected images versus the raw three dimensional voxel data, which leads to noteworthy savings in input size and associated network hyperparameters. Last, we explore the accuracy and interpretation of solutions learned via random versus intelligent network weight initialization. Experiments are provided on a U.S. Army data set collected over different times, weather conditions, target types and concealments. Preliminary results indicate that deep learning can perform as good as, if not better, than a skilled domain expert, even in light of limited training data with a class imbalance.

  20. Wind farm radar study

    Davies, N.G.

    1995-01-01

    This report examines the possible degradations of radar performance that may be caused by the presence of a wind turbine generator within the radar coverage area. A brief literature survey reviews the previously published work, which is mainly concerned with degradation of broadcast TV reception. Estimates are made of wind turbine generator scattering cross-sections, and of the time and Doppler characteristics of the echo signals from representative wind turbine generator. The general characteristics of radar detection and tracking methods are described, and the behaviour of such systems in the presence of strong returns from a wind turbine generator (or an array of them) is discussed. (author)

  1. Balloon-borne pressure sensor performance evaluation utilizing tracking radars

    Norcross, G. A.; Brooks, R. L.

    1983-01-01

    The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the Earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute significant height errors to their measurements of atmospheric constituent concentrations and properties. A series of radiosonde flights was conducted. In most cases, each flight consisted of two sondes attached to a single balloon and each flight was tracked by a highly accurate C-band radar. For the first 19 radiosonde flights, the standard aneroid cell baroswitch assembly used was the pressure sensor. The last 26 radiosondes were equipped with a premium grade aneroid cell baroswitch assembly sensor and with a hypsometer. It is shown that both aneroid cell baroswitch sensors become increasingly inaccurate with altitude. The hypsometer radar differences are not strongly dependent upon altitude and it is found that the standard deviation of the differences at 35 km is 0.179 km.

  2. Detection of Moving Targets Based on Doppler Spectrum Analysis Technique for Passive Coherent Radar

    Zhao Yao-dong

    2013-06-01

    Full Text Available A novel method of moving targets detection taking Doppler spectrum analysis technique for Passive Coherent Radar (PCR is provided. After dividing the receiving signals into segments as pulse series, it utilizes the technique of pulse compress and Doppler processing to detect and locate the targets. Based on the algorithm for Pulse-Doppler (PD radar, the equipollence between continuous and pulsed wave in match filtering is proved and details of this method are introduced. To compare it with the traditional method of Cross-Ambiguity Function (CAF calculation, the relationship and mathematical modes of them are analyzed, with some suggestions on parameters choosing. With little influence to the gain of targets, the method can greatly promote the processing efficiency. The validity of the proposed method is demonstrated by offline processing real collected data sets and simulation results.

  3. Analysis of Radar and ADS-B Influences on Aircraft Detect and Avoid (DAA Systems

    William Semke

    2017-09-01

    Full Text Available Detect and Avoid (DAA systems are complex communication and locational technologies comprising multiple independent components. DAA technologies support communications between ground-based and space-based operations with aircraft. Both manned and unmanned aircraft systems (UAS rely on DAA communication and location technologies for safe flight operations. We examined the occurrence and duration of communication losses between radar and automatic dependent surveillance–broadcast (ADS-B systems with aircraft operating in proximate airspace using data collected during actual flight operations. Our objectives were to identify the number and duration of communication losses for both radar and ADS-B systems that occurred within a discrete time period. We also investigated whether other unique communication behavior and anomalies were occurring, such as reported elevation deviations. We found that loss of communication with both radar and ADS-B systems does occur, with variation in the length of communication losses. We also discovered that other unexpected behaviors were occurring with communications. Although our data were gathered from manned aircraft, there are also implications for UAS that are operating within active airspaces. We are unaware of any previously published work on occurrence and duration of communication losses between radar and ADS-B systems.

  4. Detection of hail signatures from single-polarization C-band radar reflectivity

    Kunz, Michael; Kugel, Petra I. S.

    2015-02-01

    Five different criteria that estimate hail signatures from single-polarization radar data are statistically evaluated over a 15-year period by categorical verification against loss data provided by a building insurance company. The criteria consider different levels or thresholds of radar reflectivity, some of them complemented by estimates of the 0 °C level or cloud top temperature. Applied to reflectivity data from a single C-band radar in southwest Germany, it is found that all criteria are able to reproduce most of the past damage-causing hail events. However, the criteria substantially overestimate hail occurrence by up to 80%, mainly due to the verification process using damage data. Best results in terms of highest Heidke Skill Score HSS or Critical Success Index CSI are obtained for the Hail Detection Algorithm (HDA) and the Probability of Severe Hail (POSH). Radar-derived hail probability shows a high spatial variability with a maximum on the lee side of the Black Forest mountains and a minimum in the broad Rhine valley.

  5. Portable concealed weapon detection using millimeter-wave FMCW radar imaging

    Johnson, Michael A.; Chang, Yu-Wen

    2001-02-01

    Unobtrusive detection of concealed weapons on persons or in abandoned bags would provide law enforcement a powerful tool to focus resources and increase traffic throughput in high- risk situations. We have developed a fast image scanning 94 GHz radar system that is suitable for portable operation and remote viewing of radar data. This system includes a novel fast image-scanning antenna that allows for the acquisition of medium resolution 3D millimeter wave images of stationary targets with frame times on order of one second. The 3D radar data allows for potential isolation of concealed weapons from body and environmental clutter such as nearby furniture or other people. The radar is an active system so image quality is not affected indoors, emitted power is however very low so there are no health concerns for operator or targets. The low power operation is still sufficient to penetrate heavy clothing or material. Small system size allows for easy transport and rapid deployment of the system as well as an easy migration path to future hand held systems.

  6. Automatic detection of the unknown number point targets in FMICW radar signals

    Rejfek, L.; Mošna, Zbyšek; Beran, L.; Fišer, O.; Dobrovolný, M.

    2017-01-01

    Roč. 4, č. 11 (2017), s. 116-120 ISSN 2313-626X R&D Projects: GA ČR(CZ) GA15-24688S Institutional support: RVO:68378289 Keywords : FMICW radar * 2D FFT * signal filtration * taraget detection * target parameter estimation Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences http://science-gate.com/IJAAS/Articles/2017-4-11/18%202017-4-11-pp.116-120.pdf

  7. System for Automatic Detection and Analysis of Targets in FMICW Radar Signal

    Rejfek, Luboš; Mošna, Zbyšek; Urbář, Jaroslav; Koucká Knížová, Petra

    2016-01-01

    Roč. 67, č. 1 (2016), s. 36-41 ISSN 1335-3632 R&D Projects: GA ČR(CZ) GAP209/12/2440; GA ČR(CZ) GA15-24688S Institutional support: RVO:68378289 Keywords : power spectral density (PSD) * FMICW radar * Doppler measurement * thresholding * false alert detection Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.483, year: 2016 http://iris.elf.stuba.sk/JEEEC/data/pdf/1_116-05.pdf

  8. Using ground penetrating radar in levee assessment to detect small scale animal burrows

    Chlaib, Hussein K.; Mahdi, Hanan; Al-Shukri, Haydar; Su, Mehmet M.; Catakli, Aycan; Abd, Najah

    2014-04-01

    Levees are civil engineering structures built to protect human lives, property, and agricultural lands during flood events. To keep these important structures in a safe condition, continuous monitoring must be performed regularly and thoroughly. Small rodent burrows are one of the major defects within levees; however, their early detection and repair helps in protecting levees during flooding events. A set of laboratory experiments was conducted to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Ground Penetrating Radar (GPR) surveys using multi frequency antennas (400 MHz and 900 MHz) were conducted along an 875 meter section of the Lollie Levee near Conway, Arkansas, USA, to assess the levee's structural integrity. Many subsurface animal burrows, water-filled cavities, clay clasts, and metallic objects were investigated and identified. These anomalies were located at different depths and have different sizes. To ground truth the observations, hand dug trenches were excavated to confirm several anomalies. Results show an excellent match between GPR interpreted anomalies and the observed features. In-situ dielectric constant measurements were used to calculate the feature depths. The results of this research show that the 900 MHz antenna has more advantages over the 400 MHz antenna.

  9. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images

    Guandong Chen

    2017-09-01

    Full Text Available Polarimetric synthetic aperture radar (SAR remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms. In this paper, deep learning algorithms such as the stacked autoencoder (SAE and deep belief network (DBN are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM and traditional artificial neural networks (ANN with similar parameter settings, especially when the number of training data samples is limited.

  10. Improving buried threat detection in ground-penetrating radar with transfer learning and metadata analysis

    Colwell, Kenneth A.; Torrione, Peter A.; Morton, Kenneth D.; Collins, Leslie M.

    2015-05-01

    Ground-penetrating radar (GPR) technology has proven capable of detecting buried threats. The system relies on a binary classifier that is trained to distinguish between two classes: a target class, encompassing many types of buried threats and their components; and a nontarget class, which includes false alarms from the system prescreener. Typically, the training process involves a simple partition of the data into these two classes, which allows for straightforward application of standard classifiers. However, since training data is generally collected in fully controlled environments, it includes auxiliary information about each example, such as the specific type of threat, its purpose, its components, and its depth. Examples from the same specific or general type may be expected to exhibit similarities in their GPR data, whereas examples from different types may differ greatly. This research aims to leverage this additional information to improve overall classification performance by fusing classifier concepts for multiple groups, and to investigate whether structure in this information can be further utilized for transfer learning, such that the amount of expensive training data necessary to learn a new, previously-unseen target type may be reduced. Methods for accomplishing these goals are presented with results from a dataset containing a variety of target types.

  11. Developing an Automated Machine Learning Marine Oil Spill Detection System with Synthetic Aperture Radar

    Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.

    2016-02-01

    Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.

  12. A millimetre-wave MIMO radar system for threat detection in urban environments

    Kirschner, A. J.; Guetlein, J.; Bertl, S.; Detlefsen, J.

    2012-10-01

    The European Defence Agency (EDA) engages countermeasures against Improvised Explosive Devices (IEDs) by funding several scientific programs on threat awareness, countermeasures IEDs or land-mine detection, in which this work is only one of numerous projects. The program, denoted as Surveillance in an urban environment using mobile sensors (SUM), covers the idea of equipping one or more vehicles of a patrol or a convoy with a set of sensors exploiting different physical principles in order to gain detailed insights of the road situation ahead. In order to give an added value to a conventional visual camera system, measurement data from an infra-red (IR) camera, a radiometer and a millimetre-wave radar are fused with data from an optical image and are displayed on a human-machine-interface (HMI) which shall assist the vehicle's co-driver to identify suspect objects or persons on or next to the road without forcing the vehicle to stop its cruise. This paper shall especially cover the role of the millimetre-wave radar sensor and its different operational modes. Measurement results are discussed. It is possible to alter the antenna mechanically which gives two choices for a field of view and angular resolution trade-off. Furthermore a synthetic aperture radar mode is possible and has been tested successfully. MIMO radar principles like orthogonal signal design were exploited tofrom a virtual array by 4 transmitters and 4 receivers. In joint evaluation, it was possible to detect e.g. grenade shells under cardboard boxes or covered metal barrels which were invisible for optical or infra-red detection.

  13. A parametric study of rate of advance and area coverage rate performance of synthetic aperture radar.

    Raynal, Ann Marie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hensley, Jr., William H. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Burns, Bryan L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Doerry, Armin Walter [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage rate performance.

  14. Data Fusion and Fuzzy Clustering on Ratio Images for Change Detection in Synthetic Aperture Radar Images

    Wenping Ma

    2014-01-01

    Full Text Available The unsupervised approach to change detection via synthetic aperture radar (SAR images becomes more and more popular. The three-step procedure is the most widely used procedure, but it does not work well with the Yellow River Estuary dataset obtained by two synthetic aperture radars. The difference of the two radars in imaging techniques causes severe noise, which seriously affects the difference images generated by a single change detector in step two, producing the difference image. To deal with problem, we propose a change detector to fuse the log-ratio (LR and the mean-ratio (MR images by a context independent variable behavior (CIVB operator and can utilize the complement information in two ratio images. In order to validate the effectiveness of the proposed change detector, the change detector will be compared with three other change detectors, namely, the log-ratio (LR, mean-ratio (MR, and the wavelet-fusion (WR operator, to deal with three datasets with different characteristics. The four operators are applied not only in a widely used three-step procedure but also in a new approach. The experiments show that the false alarms and overall errors of change detection are greatly reduced, and the kappa and KCC are improved a lot. And its superiority can also be observed visually.

  15. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  16. Development and Testing of a Multiple Frequency Continuous Wave Radar for Target Detection and Classification

    2007-03-01

    1 2’ VIH " 1 ’ 󈧏) (34) where is the modified Bessel function of zero order. Here is the conditional variance and is the conditional probability...10, the probability of detection is the area under the signal-plus-noise curve above the detection threshold co M vF (V 2+ A2)]10 ( vAPd= fnp~ju,( vIH ...Spectrogram O /STFT < 12 +J F Q’I " ’ " ""-’"’" -STFT TFRgram 2I1+ IST 21 U- •’j -/STFT,, I HP STFT ISTFTI Figure 19. 3FCW radar processing prior to

  17. Multi-Feature Based Multiple Landmine Detection Using Ground Penetration Radar

    S. Park

    2014-06-01

    Full Text Available This paper presents a novel method for detection of multiple landmines using a ground penetrating radar (GPR. Conventional algorithms mainly focus on detection of a single landmine, which cannot linearly extend to the multiple landmine case. The proposed algorithm is composed of four steps; estimation of the number of multiple objects buried in the ground, isolation of each object, feature extraction and detection of landmines. The number of objects in the GPR signal is estimated by using the energy projection method. Then signals for the objects are extracted by using the symmetry filtering method. Each signal is then processed for features, which are given as input to the support vector machine (SVM for landmine detection. Three landmines buried in various ground conditions are considered for the test of the proposed method. They demonstrate that the proposed method can successfully detect multiple landmines.

  18. Weather radar performance monitoring using a metallic-grid ground-scatterer

    Falconi, Marta Tecla; Montopoli, Mario; Marzano, Frank Silvio; Baldini, Luca

    2017-10-01

    The use of ground return signals is investigated for checks on the calibration of power measurements of a polarimetric C-band radar. To this aim, a peculiar permanent single scatterer (PSS) consisting of a big metallic roof with a periodic mesh grid structure and having a hemisphere-like shape is considered. The latter is positioned in the near-field region of the weather radar and its use, as a reference calibrator, shows fairly good results in terms of reflectivity and differential reflectivity monitoring. In addition, the use of PSS indirectly allows to check for the radar antenna de-pointing which is another issue usually underestimated when dealing with weather radars. Because of the periodic structure of the considered PSS, simulations of its electromagnetic behavior were relatively easy to perform. To this goal, we used an electromagnetic Computer-Aided-Design (CAD) with an ad-hoc numerical implementation of a full-wave solution to model our PSS in terms of reflectivity and differential reflectivity factor. Comparison of model results and experimental measurements are then shown in this work. Our preliminary investigation can pave the way for future studies aiming at characterizing ground-clutter returns in a more accurate way for radar calibration purposes.

  19. A blind test of nondestructive underground void detection by ground penetrating radar (GPR)

    Lai, Wallace W. L.; Chang, Ray K. W.; Sham, Janet F. C.

    2018-02-01

    Blind test/experiment is widely adopted in various scientific disciplines like medicine drug testing/clinical trials/psychology, but not popular in nondestructive testing and evaluation (NDTE) nor near-surface geophysics (NSG). This paper introduces a blind test of nondestructive underground void detection in highway/pavement using ground penetrating radar (GPR). Purpose of which is to help the Highways Department (HyD) of the Hong Kong Government to evaluate the feasibility of large-scale and nationwide application, and examine the ability of appropriate service providers to carry out such works. In the past failure case of such NDTE/NSG based on lowest bid price, it is not easy to know which part(s) in SWIMS (S - service provider, i.e. people; W - work procedure; I - instrumentation; M - materials in the complex underground; S - specifications by client) fails, and how it/they fail(s). This work attempts to carry out the blind test by burying fit balls (as voids) under a site with reinforced concrete road and paving block by PolyU team A. The blind test about the void centroid, spread and cover depth was then carried out by PolyU team B without prior information given. Then with this baseline, a marking scheme, acceptance criteria and passing mark were set to test six local commercial service providers, determine their scores and evaluate the performance. A pass is a prerequisite of the award of a service contract of similar nature. In this first attempt of the blind test, results were not satisfactory and it is concluded that 'S-service provider' and 'W-work procedure' amongst SWIMS contributed to most part of the unsatisfactory performance.+

  20. Design and performance Assessment of an Airborne Ice Sounding Radar Front-End

    Hernández, Carlos Cilla; Krozer, Viktor; Vidkjær, Jens

    2008-01-01

    The paper describes the design and experimental performance assessment of the RF front-end of an airborne P-band ice sounding radar. The ice sounder design features newly developed components at a centre frequency of 435 MHz, such as, antenna 20% bandwidth at RL ≪ 13 dB, compact high power in...

  1. Novel Method of Unambiguous Moving Target Detection in Pulse-Doppler Radar with Random Pulse Repetition Interval

    Liu Zhen

    2012-03-01

    Full Text Available Blind zones and ambiguities in range and velocity measurement are two important issues in traditional pulse-Doppler radar. By generating random deviations with respect to a mean Pulse Repetition Interval (PRI, this paper proposes a novel algorithm of Moving Target Detection (MTD based on the Compressed Sensing (CS theory, in which the random deviations of the PRIare converted to the Restricted Isometry Property (RIP of the observing matrix. The ambiguities of range and velocity are eliminated by designing the signal parameters. The simulation results demonstrate that this scheme has high performance of detection, and there is no ambiguity and blind zones as well. It can also shorten the coherent processing interval compared to traditional staggered PRI mode because only one pulse train is needed instead of several trains.

  2. Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection.

    Ozana, Nisan; Bauer, Reuven; Ashkenazy, Koby; Sasson, Nissim; Schwarz, Ariel; Shemer, Amir; Zalevsky, Zeev

    2018-05-03

    In previous works, an optical technique for extraction and separation of remote static vibrations has been demonstrated. In this paper, we will describe an approach in which RF speckle movement is used to extract remote vibrations of a static target. The use of conventional radar Doppler methods is not suitable for detecting vibrations of static targets. In addition, the speckle method has an important advantage, in that it is able to detect vibrations at far greater distances than what is normally detected in classical optical methods. The experiment described in this paper was done using a motorized vehicle, which engine was turned on and off. The results showed that the system was able to distinguish between the different engine states, and in addition, was able to determine the vibration frequency of the engine. The first step towards real time detection of human vital signs using RF speckle patterns is presented.

  3. Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection

    Nisan Ozana

    2018-05-01

    Full Text Available In previous works, an optical technique for extraction and separation of remote static vibrations has been demonstrated. In this paper, we will describe an approach in which RF speckle movement is used to extract remote vibrations of a static target. The use of conventional radar Doppler methods is not suitable for detecting vibrations of static targets. In addition, the speckle method has an important advantage, in that it is able to detect vibrations at far greater distances than what is normally detected in classical optical methods. The experiment described in this paper was done using a motorized vehicle, which engine was turned on and off. The results showed that the system was able to distinguish between the different engine states, and in addition, was able to determine the vibration frequency of the engine. The first step towards real time detection of human vital signs using RF speckle patterns is presented.

  4. Principles of modern radar systems

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  5. Implementation of a custom time-domain firmware trigger for RADAR-based cosmic ray detection

    Prohira, S.; Besson, D.; Kunwar, S.; Ratzlaff, K.; Young, R.

    2018-05-01

    Interest in Radio-based detection schemes for ultra-high energy cosmic rays (UHECR) has surged in recent years, owing to the potentially very low cost/detection ratio. The method of radio-frequency (RF) scatter has been proposed as potentially the most economical detection technology. Though the first dedicated experiment to employ this method, the Telescope Array RADAR experiment (TARA) reported no signal, efforts to develop more robust and sensitive trigger techniques continue. This paper details the development of a time-domain firmware trigger that exploits characteristics of the expected scattered signal from an UHECR extensive-air shower (EAS). The improved sensitivity of this trigger is discussed, as well as implementation in two separate field deployments from 2016 to 2017.

  6. Detection of Ground Clutter from Weather Radar Using a Dual-Polarization and Dual-Scan Method

    Mohammad-Hossein Golbon-Haghighi

    2016-06-01

    Full Text Available A novel dual-polarization and dual-scan (DPDS classification algorithm is developed for clutter detection in weather radar observations. Two consecutive scans of dual-polarization radar echoes are jointly processed to estimate auto- and cross-correlation functions. Discriminants are then defined and estimated in order to separate clutter from weather based on their physical and statistical properties. An optimal Bayesian classifier is used to make a decision on clutter presence from the estimated discriminant functions. The DPDS algorithm is applied to the data collected with the KOUN polarimetric radar and compared with the existing detection methods. It is shown that the DPDS algorithm yields a higher probability of detection and lower false alarm rate in clutter detection.

  7. Performance limits for exo-clutter Ground Moving Target Indicator (GMTI) radar.

    Doerry, Armin Walter

    2010-09-01

    The performance of a Ground Moving Target Indicator (GMTI) radar system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to 'get your arms around' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall GMTI radar system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the 'seek time'.

  8. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  9. Borehole radar measurements performed on preliminary investigation areas in Finland for final disposal of spent nuclear fuel

    Carlsten, S.

    1991-05-01

    Borehole radar measurements with the RAMAC system have been performed in 24 boreholes distributed between the investigation areas Kuhmo Romuvaara, Hyrynsalmi Veitsivaara, Konginkangas Kivetty, Sievi Syyry, and Eurajoki Olkiluoto. The purpose of the borehole radar measurement program has been to investigate the bedrock in the vicinity of the boreholes in order to obtain information about geometry and extent of fracture zones, lithological contacts and other structures. The measurements have been performed as singlehole radar reflection measurements and Vertical Radar Profiling (VRP) measurements, using antennas with 22 MHz frequency range in both configurations. The total measured length in the singlehole radar reflection mode is 13304 meter and in the VRP mode 9200 meter. The VRP measurements are not presented in the report. Radar data from the singlehole reflection measurements are presented as grey scale radar maps after digital filtering with a bandpass filter and a moving average filter. Interpreted zones from the singlehole radar measurements are presented in tables for each borehole. It has been possible to study structures at distances of more than 110 meter from the borehole

  10. Interim report - performance of laser and radar ranging devices in adverse environmental conditions

    Nicholas Hillier; Julian Ryde; Eleonora WidzykCapehart; Graham Brooker; Javier Martinez; Andrew Denman [CSIRO (Australia)

    2008-10-15

    CSIRO in conjunction with CRC Mining and the Australian Centre for Field Robotics (ACFR) conducted a series of controlled experiments to examine the performance of three scanning range devices: two scanning infrared laser range finders and millimetrewave radar. Within the controlled environment, the performance of the devices were tested in various rain, mist and dustcloud conditions. Subsequently, these sensors were installed on a P&H 2800BLE electric rope shovel at the Bracalba Quarry, near Caboolture, Queensland, and the system performance was evaluated. The three scanning range sensors tested as part of this study were: 1. A Riegl LMSQ120 scanning laser range finder; 2. A SICK LMS291S05 scanning laser range finder; and, 3. ACFR's prototype 95GHz millimetrewave radar (2D HSS). The range data from these devices is to be used to construct accurate models of the environment in which the electric rope shovel operates and to, subsequently, make control decisions for its operation. Of the currently available range sensing technologies, it is considered that the infrared laser range finders and millimetrewave radar offer the best means of obtaining this data. This report summarises the results of both the controlled (laboratory) and field testing and presents key findings on sensor performance that are likely to impact the creation of digital models of the terrain surrounding a mining shovel.

  11. Performance of ground-penetrating radar on granitic regoliths with different mineral composition

    Breiner, J.M.; Doolittle, James A.; Horton, Radley M.; Graham, R.C.

    2011-01-01

    Although ground-penetrating radar (GPR) is extensively used to characterize the regolith, few studies have addressed the effects of chemical and mineralogical compositions of soils and bedrock on its performance. This investigation evaluated the performance of GPR on two different granitic regoliths of somewhat different mineralogical composition in the San Jacinto Mountains of southern California. Radar records collected at a site where soils are Alfisols were more depth restricted than the radar record obtained at a site where soils are Entisols. Although the Alfisols contain an argillic horizon, and the Entisols have no such horizon of clay accumulation, the main impact on GPR effectiveness is related to mineralogy. The bedrock at the Alfisol site, which contains more mafic minerals (5% hornblende and 20% biotite), is more attenuating to GPR than the bedrock at the Entisol site, where mafic mineral content is less (<1% hornblende and 10% biotite). Thus, a relatively minor variation in bedrock mineralogy, specifically the increased biotite content, severely restricts the performance of GPR. Copyright ?? 2011 by Lippincott Williams & Wilkins.

  12. Coherent Performance Analysis of the HJ-1-C Synthetic Aperture Radar

    Li Hai-ying

    2014-06-01

    Full Text Available Synthetic Aperture Radar (SAR is a coherent imaging radar. Hence, coherence is critical in SAR imaging. In a coherent system, several sources can degrade performance. Based on the HJ-1-C SAR system implementation and sensor characteristics, this study evaluates the effect of frequency stability and pulse-to-pulse timing jitter on the SAR coherent performance. A stable crystal oscillator with short-term stability of 10×1.0−10 / 5 ms is used to generate the reference frequency by using a direct multiplier and divider. Azimuth ISLR degradation owing to the crystal oscillator phase noise is negligible. The standard deviation of the pulse-to-pulse timing jitter of HJ-1-C SAR is lower than 2ns (rms and the azimuth random phase error in the synthetic aperture time slightly degrades the side lobe of the azimuth impulse response. The mathematical expressions and simulation results are presented and suggest that the coherent performance of the HJ-1-C SAR system meets the requirements of synthetic aperture radar imaging.

  13. Detecting Interplanetary Dust Particles with Radars to Study the Dynamics at the Edge of the Space

    Janches, Diego

    2015-01-01

    The Earth's mesosphere is the region of the atmosphere between approximately 60-120 km altitude, where the transition from hydrodynamic flow to molecular diffusion occurs. It is highly dynamic region where turbulence by wave braking is produced and energy is deposited from sources from both, below and above this altitude range. Because aircraft and nearly all balloons reach altitudes below approximately 50 km and orbital spacecrafts are well above approximately 400 km, the mesosphere has only been accessed through the use of sounding rockets or remote sensing techniques, and as a result, it is the most poorly understood part of the atmosphere. In addition, millions of Interplanetary Dust Particles (IDPs) enter the atmosphere. Within the mesosphere most of these IDPs melt or vaporize as a result of collisions with the air particles producing meteors that can be detected with radars. This provides a mean to study the dynamics of this region. In this lecture the basic principles of the utilization of meteor radars to study the dynamics of the mesosphere will be presented. A system overview of these systems will be provided as well as discuss the advantages/disadvantages of these systems, provide details of the data processing methodology and give a brief overview of the current status of the field as well as the vision for the next decade.

  14. Application of Ground-Penetrating Radar for Detecting Internal Anomalies in Tree Trunks with Irregular Contours.

    Li, Weilin; Wen, Jian; Xiao, Zhongliang; Xu, Shengxia

    2018-02-22

    To assess the health conditions of tree trunks, it is necessary to estimate the layers and anomalies of their internal structure. The main objective of this paper is to investigate the internal part of tree trunks considering their irregular contour. In this respect, we used ground penetrating radar (GPR) for non-invasive detection of defects and deteriorations in living trees trunks. The Hilbert transform algorithm and the reflection amplitudes were used to estimate the relative dielectric constant. The point cloud data technique was applied as well to extract the irregular contours of trunks. The feasibility and accuracy of the methods were examined through numerical simulations, laboratory and field measurements. The results demonstrated that the applied methodology allowed for accurate characterizations of the internal inhomogeneity. Furthermore, the point cloud technique resolved the trunk well by providing high-precision coordinate information. This study also demonstrated that cross-section tomography provided images with high resolution and accuracy. These integrated techniques thus proved to be promising for observing tree trunks and other cylindrical objects. The applied approaches offer a great promise for future 3D reconstruction of tomographic images with radar wave.

  15. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  16. The bistatic radar capabilities of the Medicina radiotelescopes in space debris detection and tracking

    Montebugnoli, S.; Pupillo, G.; Salerno, E.; Pluchino, S.; di Martino, M.

    2010-03-01

    An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities.

  17. Detection of oil spills near offshore installations using synthetic aperture radar (SAR)

    Espedal, H.A.; Johannessen, O.M.

    2000-01-01

    Remote sensing using synthetic aperture radar (SAR) is attracting increasing interest for the detection of oil spills from offshore oil installations. Three systems are already operating and three more are planned. SAR can provide high spatial resolution and is not affected by the time of day or cloud conditions. Examples of images obtained from UK and Norwegian offshore installations are shown and their interpretation are explained. SAR image analysis is used by a satellite-based oil spill monitoring service covering the Norwegian sector of the North Sea and part of the North Sea, the Norwegian Sea and the Baltic Sea. An algorithm has been developed at the Nansen Environmental and Remote Sensing Centre (NERSC) in Norway to help distinguish between oil spills, natural films, current shear zones and rain cells

  18. Physics-Based Predictions for Coherent Change Detection Using X-Band Synthetic Aperture Radar

    Mark Preiss

    2005-12-01

    Full Text Available A theoretical model is developed to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The model is derived using a dyadic form for surface reflectivity in the Kirchhoff approximation. This permits the combination of Kirchhoff theory and spotlight synthetic aperture radar (SAR image formation theory. The resulting model is used to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The theoretical model is applied to SAR images formed before and after surface changes observed by a repeat-pass SAR system. The change in surface associated with a tyre track following vehicle passage is modelled and SAR coherency estimates are obtained. Predicted coherency distributions for both the change and no-change scenarios are used to estimate receiver operator curves for the detection of the changes using a high-resolution, X-band SAR system.

  19. Signal processing techniques for damage detection with piezoelectric wafer active sensors and embedded ultrasonic structural radar

    Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor

    2004-07-01

    Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.

  20. On the design and construction of drifting-mine test targets for sonar, radar and electro-optical detection experiments

    Dol, H.S.

    2014-01-01

    The timely detection of small hazardous objects at the sea surface, such as drifting mines, is challenging for ship-mounted sensor systems, both for underwater sensor systems like sonar and above-water sensor systems like radar and electro-optics (lidar, infrared/visual cameras). This is due to the

  1. Minimum redundancy MIMO radars

    Chen, Chun-Yang; Vaidyanathan, P. P.

    2008-01-01

    The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, i...

  2. An experimental vital signs detection radar using low-IF heterodyne architecture and single-sideband transmission

    Jensen, Brian Sveistrup; Johansen, Tom Keinicke; Yan, Lei

    2013-01-01

    In this paper an experimental X-band radar system, called DTU-VISDAM, developed for the detection and monitoring of human vital signs is described. The DTU-VISDAM radar exploits a low intermediate frequency (IF) heterodyne RF front-end architecture and single-sideband (SSB) transmission for easier...... and more reliable extraction of the vital signs. The hardware implementation of the proposed low-IF RF front-end architecture and associated IF circuitry is discussed. Furthermore, the signal processing and calibration steps necessary to extract the vital signs information measured on a human subject...

  3. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  4. Micropower Impulse Radar: A Novel Technology for Rapid, Real-Time Detection of Pneumothorax

    Phillip D. Levy

    2011-01-01

    Full Text Available Pneumothorax detection in emergency situations must be rapid and at the point of care. Current standards for detection of a pneumothorax are supine chest X-rays, ultrasound, and CT scans. Unfortunately these tools and the personnel necessary for their facile utilization may not be readily available in acute circumstances, particularly those which occur in the pre-hospital setting. The decision to treat therefore, is often made without adequate information. In this report, we describe a novel hand-held device that utilizes Micropower Impulse Radar to reliably detect the presence of a pneumothorax. The technology employs ultra wide band pulses over a frequency range of 500 MHz to 6 GHz and a proprietary algorithm analyzes return echoes to determine if a pneumothorax is present with no user interpretation required. The device has been evaluated in both trauma and surgical environments with sensitivity of 93% and specificity of 85%. It is has the CE Mark and is available for sale in Europe. Post market studies are planned starting in May of 2011. Clinical studies to support the FDA submission will be completed in the first quarter of 2012.

  5. Lipa, B. et al. Tsunami Arrival Detection with High Frequency (HF Radar. Remote Sens. 2012, 4, 1448-1461

    Donald Barrick

    2012-11-01

    Full Text Available We neglected to state that the radar data from Tokushima and Anan is owned by the Ministry of Land, Infrastructure, Transport and Tourism, Shikoku Regional Development Bureau, Komatsushima port and airport office, Japan. Lipa et al. [1] describe results on tsunami detection using data measured by two radars located at Tokushima and Anan on the Kii channel. This data is owned by the Ministry of Land, Infrastructure, Transport and Tourism, Shikoku Regional Development Bureau, Komatsushima port and airport office, Japan. Locations of the radars are shown in Figure 4(a,c [1]. Results of the data analysis are given in Section 3.1.2, plotted in Figure 6 and listed in Table 1 [1].

  6. Reduction of snapshots for MIMO radar detection by block/group orthogonal matching pursuit

    Ali, Hussain El Hosiny

    2014-10-01

    Multiple-input multiple-output (MIMO) radar works on the principle of transmission of independent waveforms at each element of its antenna array and is widely used for surveillance purposes. In this work, we investigate MIMO radar target localization problem with compressive sensing. Specifically, we try to solve the problem of estimation of target location in MIMO radar by group and block sparsity algorithms. It will lead us to a reduced number of snapshots required and also we can achieve better radar resolution. We will use group orthogonal matching pursuit (GOMP) and block orthogonal matching pursuit (BOMP) for our problem. © 2014 IEEE.

  7. An integrated radar model solution for mission level performance and cost trades

    Hodge, John; Duncan, Kerron; Zimmerman, Madeline; Drupp, Rob; Manno, Mike; Barrett, Donald; Smith, Amelia

    2017-05-01

    A fully integrated Mission-Level Radar model is in development as part of a multi-year effort under the Northrop Grumman Mission Systems (NGMS) sector's Model Based Engineering (MBE) initiative to digitally interconnect and unify previously separate performance and cost models. In 2016, an NGMS internal research and development (IR and D) funded multidisciplinary team integrated radio frequency (RF), power, control, size, weight, thermal, and cost models together using a commercial-off-the-shelf software, ModelCenter, for an Active Electronically Scanned Array (AESA) radar system. Each represented model was digitally connected with standard interfaces and unified to allow end-to-end mission system optimization and trade studies. The radar model was then linked to the Air Force's own mission modeling framework (AFSIM). The team first had to identify the necessary models, and with the aid of subject matter experts (SMEs) understand and document the inputs, outputs, and behaviors of the component models. This agile development process and collaboration enabled rapid integration of disparate models and the validation of their combined system performance. This MBE framework will allow NGMS to design systems more efficiently and affordably, optimize architectures, and provide increased value to the customer. The model integrates detailed component models that validate cost and performance at the physics level with high-level models that provide visualization of a platform mission. This connectivity of component to mission models allows hardware and software design solutions to be better optimized to meet mission needs, creating cost-optimal solutions for the customer, while reducing design cycle time through risk mitigation and early validation of design decisions.

  8. Radar and ARPA manual

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  9. Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder

    Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.

    2014-12-01

    SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and

  10. Real-Time Landmine Detection with Ground-Penetrating Radar Using Discriminative and Adaptive Hidden Markov Models

    Ho KC

    2005-01-01

    Full Text Available We propose a real-time software system for landmine detection using ground-penetrating radar (GPR. The system includes an efficient and adaptive preprocessing component; a hidden Markov model- (HMM- based detector; a corrective training component; and an incremental update of the background model. The preprocessing is based on frequency-domain processing and performs ground-level alignment and background removal. The HMM detector is an improvement of a previously proposed system (baseline. It includes additional pre- and postprocessing steps to improve the time efficiency and enable real-time application. The corrective training component is used to adjust the initial model parameters to minimize the number of misclassification sequences. This component could be used offline, or online through feedback to adapt an initial model to specific sites and environments. The background update component adjusts the parameters of the background model to adapt it to each lane during testing. The proposed software system is applied to data acquired from three outdoor test sites at different geographic locations, using a state-of-the-art array GPR prototype. The first collection was used as training, and the other two (contain data from more than 1200 m of simulated dirt and gravel roads for testing. Our results indicate that, on average, the corrective training can improve the performance by about 10% for each site. For individual lanes, the performance gain can reach 50%.

  11. Information-Aided Smart Schemes for Vehicle Flow Detection Enhancements of Traffic Microwave Radar Detectors

    Tan-Jan Ho

    2016-07-01

    Full Text Available For satisfactory traffic management of an intelligent transport system, it is vital that traffic microwave radar detectors (TMRDs can provide real-time traffic information with high accuracy. In this study, we develop several information-aided smart schemes for traffic detection improvements of TMRDs in multiple-lane environments. Specifically, we select appropriate thresholds not only for removing noise from fast Fourier transforms (FFTs of regional lane contexts but also for reducing FFT side lobes within each lane. The resulting FFTs of reflected vehicle signals and those of clutter are distinguishable. We exploit FFT and lane-/or time stamp-related information for developing smart schemes, which mitigate adverse effects of lane-crossing FFT side lobes of a vehicle signal. As such, the proposed schemes can enhance the detection accuracy of both lane vehicle flow and directional traffic volume. On-site experimental results demonstrate the advantages and feasibility of the proposed methods, and suggest the best smart scheme.

  12. Detection of Oil near Shorelines during the Deepwater Horizon Oil Spill Using Synthetic Aperture Radar (SAR

    Oscar Garcia-Pineda

    2017-06-01

    Full Text Available During any marine oil spill, floating oil slicks that reach shorelines threaten a wide array of coastal habitats. To assess the presence of oil near shorelines during the Deepwater Horizon (DWH oil spill, we scanned the library of Synthetic Aperture Radar (SAR imagery collected during the event to determine which images intersected shorelines and appeared to contain oil. In total, 715 SAR images taken during the DWH spill were analyzed and processed, with 188 of the images clearly showing oil. Of these, 156 SAR images showed oil within 10 km of the shoreline with appropriate weather conditions for the detection of oil on SAR data. We found detectable oil in SAR images within 10 km of the shoreline from west Louisiana to west Florida, including near beaches, marshes, and islands. The high number of SAR images collected in Barataria Bay, Louisiana in 2010 allowed for the creation of a nearshore oiling persistence map. This analysis shows that, in some areas inside Barataria Bay, floating oil was detected on as many as 29 different days in 2010. The nearshore areas with persistent floating oil corresponded well with areas where ground survey crews discovered heavy shoreline oiling. We conclude that satellite-based SAR imagery can detect oil slicks near shorelines, even in sheltered areas. These data can help assess potential shoreline oil exposure without requiring boats or aircraft. This method can be particularly helpful when shoreline assessment crews are hampered by difficult access or, in the case of DWH, a particularly large spatial and temporal spill extent.

  13. Adaptive radar resource management

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  14. Observations of Phobos by the Mars Express radar MARSIS: Description of the detection techniques and preliminary results

    Cicchetti, A.; Nenna, C.; Plaut, J. J.; Plettemeier, D.; Noschese, R.; Cartacci, M.; Orosei, R.

    2017-11-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005) is a synthetic aperture low frequency radar altimeter, onboard the ESA Mars Express orbiter, launched in June 2003. It is the first and so far the only spaceborne radar that has observed the Martian moon Phobos. Radar echoes were collected on different flyby trajectories. The primary aim of sounding Phobos is to prove the feasibility of deep sounding, into its subsurface. MARSIS is optimized for deep penetration investigations and is capable of transmitting at four different bands between 1.3 MHz and 5.5 MHz with a 1 MHz bandwidth. Unfortunately the instrument was originally designed to operate exclusively on Mars, assuming that Phobos would not be observed. Following this assumption, a protection mechanism was implemented in the hardware (HW) to maintain a minimum time separation between transmission and reception phases of the radar. This limitation does not have any impact on Mars observation but it prevented the observation of Phobos. In order to successfully operate the instrument at Phobos, a particular configuration of the MARSIS onboard software (SW) parameters, called ;Range Ambiguity,; was implemented to override the HW protection zone, ensuring at the same time a high level of safety of the instrument. This paper describes the principles of MARSIS onboard processing, and the procedure through which the parameters of the processing software were tuned to observe targets below the minimum distance allowed by hardware. Some preliminary results of data analysis will be shown, with the support of radar echo simulations. A qualitative comparison between the simulated results and the actual data, does not support the detection of subsurface reflectors.

  15. Radar-based Flood Warning System for Houston, Texas and Its Performance Evaluation

    Fang, N.; Bedient, P.

    2009-12-01

    Houston has a long history of flooding problems as a serious nature. For instance, Houstonians suffered from severe flood inundation during Tropical Storm Allison in 2001 and Hurricane Ike in 2008. Radar-based flood warning systems as non-structural tools to provide accurate and timely warnings to the public and private entities are greatly needed for urban areas prone to flash floods. Fortunately, the advent of GIS, radar-based rainfall estimation using NEXRAD, and real-time delivery systems on the internet have allowed flood alert systems to provide important advanced warning of impending flood conditions. Thus, emergency personnel can take proper steps to mitigate against catastrophic losses. The Rice and Texas Medical Center (TMC) Flood Alert System (FAS2) has been delivering warning information with 2 to 3 hours of lead time to facility personnel in a readily understood format for more than 40 events since 1997. The system performed well during these major rainfall events with R square value of 93%. The current system has been improved by incorporating a new hydraulic prediction tool - FloodPlain Map Library (FPML). The FPML module aims to provide visualized information such as floodplain maps and water surface elevations instead of just showing hydrographs in real time based on NEXRAD radar rainfall data. During Hurricane Ike (September, 2008), FAS2 successfully provided precise and timely flood warning information to TMC with the peak flow difference of 3.6% and the volume difference of 5.6%; timing was excellent for this double-peaked event. With the funding from the Texas Department of Transportation, a similar flood warning system has been developed at a critical transportation pass along Highway 288 in Houston, Texas. In order to enable emergency personnel to begin flood preparation with as much lead time as possible, FAS2 is being used as a prototype to develop warning system for other flood-prone areas such as City of Sugar Land.

  16. Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes; Revised September 3, 2003

    Rochau, Gary E.; Caffey, Thurlow W.H.; Bahram Nassersharif; Garcia, Gabe V.; Jedlicka, Russell P.

    2003-01-01

    OAK B204 Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The technique is 100% volumetric, and may find smaller defects, more rapidly, and less expensively than present methods. The project described in this report was a joint development effort between Sandia National Laboratories (SNL) and New Mexico State University (NMSU) funded by the US Department of Energy. The goal of the project was to research, design, and develop a new concept utilizing a continuous wave radar to detect defects inside metallic tubes and in particular nuclear plant steam generator tubing. The project was divided into four parallel tracks: computational modeling, experimental prototyping, thermo-mechanical design, and signal detection and analysis

  17. Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003

    Gary E. Rochau and Thurlow W.H. Caffey, Sandia National Laboratories, Albuquerque, NM 87185-0740; Bahram Nassersharif and Gabe V. Garcia, Department of Mechanical Engineering, New Mexico State University, Las Cruces, NM 88003-8001; Russell P. Jedlicka, Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003-8001

    2003-05-01

    OAK B204 Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The technique is 100% volumetric, and may find smaller defects, more rapidly, and less expensively than present methods. The project described in this report was a joint development effort between Sandia National Laboratories (SNL) and New Mexico State University (NMSU) funded by the US Department of Energy. The goal of the project was to research, design, and develop a new concept utilizing a continuous wave radar to detect defects inside metallic tubes and in particular nuclear plant steam generator tubing. The project was divided into four parallel tracks: computational modeling, experimental prototyping, thermo-mechanical design, and signal detection and analysis.

  18. Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR Data

    Alisa L. Gallant

    2014-03-01

    Full Text Available Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  19. Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data

    Gallant, Alisa L.; Kaya, Shannon G.; White, Lori; Brisco, Brian; Roth, Mark F.; Sadinski, Walter J.; Rover, Jennifer

    2014-01-01

    Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  20. Phased-array radar design application of radar fundamentals

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  1. Ultra-wideband short-pulse radar with range accuracy for short range detection

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  2. Impact of Soil Water Content on Landmine Detection Using Radar and Thermal Infrared Sensors

    Hong, Sung-ho

    2001-01-01

    .... The most important of these is water content since it directly influences the three other properties in this study, the ground penetrating radar and thermal infrared sensors were used to identify non...

  3. Radar Resource Management in a Dense Target Environment

    2014-03-01

    linear programming MFR multifunction phased array radar MILP mixed integer linear programming NATO North Atlantic Treaty Organization PDF probability...1: INTRODUCTION Multifunction phased array radars ( MFRs ) are capable of performing various tasks in rapid succession. The performance of target search...detect, and track operations concurrently with missile guidance functions allow MFRs to deliver superior battle space awareness and air defense

  4. Use of the X-Band Radar to Support the Detection of In-Flight Icing Hazards by the NASA Icing Remote Sensing System

    Serke, David J.; Politovich, Marcia K.; Reehorst, Andrew L.; Gaydos, Andrew

    2009-01-01

    The Alliance Icing Research Study-II (AIRS-II) field program was conducted near Montreal, Canada during the winter of 2003. The NASA Icing Remote Detection System (NIRSS) was deployed to detect in-flight icing hazards and consisted of a vertically pointing multichannel radiometer, a ceilometer and an x-band cloud radar. The radiometer was used to derive atmospheric temperature soundings and integrated liquid water, while the ceilometer and radar were used only to define cloud boundaries. The purpose of this study is to show that the radar reflectivity profiles from AIRS-II case studies could be used to provide a qualitative icing hazard.

  5. Performance of high-resolution X-band radar for rainfall measurement in The Netherlands

    C. Z. van de Beek

    2010-02-01

    Full Text Available This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The aim of this paper is to present a thorough analysis of a climatological dataset using a high spatial (120 m and temporal (16 s resolution X-band radar. This makes it a study of the potential for high-resolution rainfall measurements with non-polarimetric X-band radar over flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than what can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.

  6. Can handheld micropower impulse radar technology be used to detect pneumothorax? Initial experience in a European trauma centre.

    Albers, C E; Haefeli, P C; Zimmermann, H; de Moya, M; Exadaktylos, A K

    2013-05-01

    Pneumothoraces are a common injury pattern in emergency medicine. Rapid and safe identification can reduce morbidity and mortality. A new handheld, battery powered device, the Pneumoscan (CE 561036, PneumoSonics Inc., Cleveland, OH, USA), using micropower impulse radar (MIR) technology, has recently been introduced in Europe for the rapid and reliable detection of PTX. However, this technology has not yet been tested in trauma patients. This is the first quality control evaluation to report on emergency room performance of a new device used in the trauma setting. This study was performed at a Level I trauma centre in Switzerland. All patients with thoracic trauma and undergoing chest X-ray and CT-scan were eligible for the study. Readings were performed before the chest X-ray and CT scan. The patients had eight lung fields tested (four on each side). All readings with the Pneumoscan were performed by two junior residents in our department who had previously received an instructional tutorial of 15min. The qualitative MIR results were blinded, and stored on the device. We then compared the results of the MIR to those of the clinical examination, chest X-ray and CT-scan. 50 patients were included, with a mean age of 46 (SD 17) years. Seven patients presented with PTX diagnosed by CT; six of these were detected by Pneumoscan, leading to an overall sensitivity of 85.7 (95% confidence interval 42.1-99.6)%. Only two of seven PTX were found during clinical examination and on chest X-ray (sensitivity 28.6 (95% CI 3.7-71.0)%). Of the remaining 43 of 50 patients without PTX, one false-positive PTX was found by the Pneumoscan, resulting in a specificity of 97.7 (95% CI 87.7-99.9)%. The Pneumoscan is an easy to use handheld technology with reliable results. In this series, the sensitivity to detect a PTX by the Pneumoscan was higher than by clinical examination and chest X-ray. Further studies with higher case numbers and a prospective study design are needed to confirm our

  7. Research Progress of Space-Time Adaptive Detection for Airborne Radar

    Wang Yong-liang

    2014-04-01

    Full Text Available Compared with Space-Time Adaptive Processing (STAP, Space-Time Adaptive Detection (STAD employs the data in the cell under test and those in the training to form reasonable detection statistics and consequently decides whether the target exists or not. The STAD has concise processing procedure and flexible design. Furthermore, the detection statistics usually possess the Constant False Alarm Rate (CFAR property, and hence it needs no additional CFAR processing. More importantly, the STAD usually exhibits improved detection performance than that of the conventional processing, which first suppresses the clutter then adopts other detection strategy. In this paper, we first summarize the key strongpoint of the STAD, then make a classification for the STAD, and finally give some future research tracks.

  8. Performance Analysis of Ultra-Wideband Channel for Short-Range Monopulse Radar at Ka-Band

    Naohiko Iwakiri

    2012-01-01

    Full Text Available High-range resolution is inherently provided with Ka-band ultra-wideband (UWB vehicular radars. The authors have developed a prototype UWB monopulse radar equipped with a two-element receiving antenna array and reported its measurement results. In this paper, a more detailed verification using these measurements is presented. The measurements were analyzed employing matched filtering and eigendecomposition, and then multipath components were extracted to examine the behavior of received UWB monopulse signals. Next, conventional direction finding algorithms based on narrowband assumption were evaluated using the extracted multipath components, resulting in acceptable angle-of-arrival (AOA from the UWB monopulse signal regardless of wideband signals. Performance degradation due to a number of averaging the received monopulses was also examined to design suitable radar's waveforms.

  9. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  10. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    Eugin Hyun

    2016-01-01

    Full Text Available For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  11. Noncontact Detection and Analysis of Respiratory Function Using Microwave Doppler Radar

    Yee Siong Lee

    2015-01-01

    Full Text Available Real-time respiratory measurement with Doppler Radar has an important advantage in the monitoring of certain conditions such as sleep apnoea, sudden infant death syndrome (SIDS, and many other general clinical uses requiring fast nonwearable and non-contact measurement of the respiratory function. In this paper, we demonstrate the feasibility of using Doppler Radar in measuring the basic respiratory frequencies (via fast Fourier transform for four different types of breathing scenarios: normal breathing, rapid breathing, slow inhalation-fast exhalation, and fast inhalation-slow exhalation conducted in a laboratory environment. A high correlation factor was achieved between the Doppler Radar-based measurements and the conventional measurement device, a respiration strap. We also extended this work from basic signal acquisition to extracting detailed features of breathing function (I : E ratio. This facilitated additional insights into breathing activity and is likely to trigger a number of new applications in respiratory medicine.

  12. Reduction of snapshots for MIMO radar detection by block/group orthogonal matching pursuit

    Ali, Hussain El Hosiny; Ahmed, Sajid; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2014-01-01

    localization problem with compressive sensing. Specifically, we try to solve the problem of estimation of target location in MIMO radar by group and block sparsity algorithms. It will lead us to a reduced number of snapshots required and also we can achieve

  13. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection

    Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A.

    2016-01-01

    The concept of a coherent interferometric dual frequency laser radar, that measures both the target range and velocity, is presented and experimentally demonstrated. The innovative architecture combines the dual frequency lidar concept, allowing a precise and robust Doppler estimation, with the

  14. Submillimetric motion detection with a 94 GHz ground based synthetic aperture radar

    Martinez Cervera, Arturo; Lort Cuenca, Marc; Aguasca Solé, Alberto; Broquetas Ibars, Antoni

    2015-01-01

    The paper presents the validation and experimental assessment of a 94 GHz (W-Band) CW-FM Radar that can be configured as a Ground Based SAR for high resolution imaging and interferometry. Several experimental campaigns have been carried out to assess the capability of the system to remotely observe submillimetric deformation and vibration in infrastructures. Peer Reviewed

  15. Low cost low power 24 GHz FMCW radar transceiver for indoor presence detection

    Suijker, E.M.; Bolt, R.J.; Wanum, M. van; Heijningen, M. van; Maas, A.P.M.; Vliet, F.E. van

    2014-01-01

    In this paper a first time right 24 GHz FMCW radar transceiver is presented. The MMIC has a low power consumption of 86 mW and an output power of -10 dBm. Due to the integrated IF amplifier, the conversion gain of the receiver is 51 dB and the base band signals are directly processed with an ADC.

  16. Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves

    2017-07-01

    by Acoustic Modulation of Electromagnetic Waves 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory J... Program 13 List of Symbols, Abbreviations, and Acronyms 18 Distribution List 19 Approved for public release; distribution is...4 Fig. 4 Flowchart of wireless experiment to receive acoustically modulated radar waveforms

  17. New Vacuum Electronic Devices for Radar

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  18. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks

    Wen-Qin Wang

    2014-01-01

    Full Text Available Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar interferences and, then, separately matched filtering for each radar. Besides the detailed algorithm derivation, extensive numerical simulation examples are performed with the down-chirp and up-chirp waveforms, partially overlapped or inverse chirp rate linearly frequency modulation (LFM waveforms and orthogonal frequency division multiplexing (ODFM chirp diverse waveforms. The effectiveness of the algorithm is verified by the simulation results.

  19. Rainfall Estimation and Performance Characterization Using an X-band Dual-Polarization Radar in the San Francisco Bay Area

    Cifelli, R.; Chen, H.; Chandra, C. V.

    2016-12-01

    estimation (QPE) in the Bay Area. The radar rainfall products are evaluated with rain gauge observations collected by SCVWD. The comparison with gages show the excellent performance of X-band radar for rainfall monitoring in the Bay Area.

  20. Soil remediation: New strategy by the combine of F.I.S. H. and Geo-Radar Tele detection

    Garbi, C.; Mengs, G.; Gonzalez Motalvo, D.; Martin, M.

    2009-01-01

    One of the most important targets in bioremediation to treat contaminated soils is the developing of new technologies. In this project we have developed a new strategy to eliminate in situ pollutants from hydrocarbons contaminated soils, supported with two specific techniques: FISH and Geo-Radar tele detection. With these techniques we try to delimit the pollutants distribution is oil, and to develop DNA and PNA biosensors with high specificity to evaluate the natural attenuation soil capacity using fluorescence in situ hybridization (FISH). (Author)

  1. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    John H. Bradford; Stephen Holbrook; Scott B. Smithson

    2004-12-09

    The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.

  2. Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB Radar for Intended Use in Car Crash Prevention

    Seong Kyu Leem; Faheem Khan; Sung Ho Cho

    2017-01-01

    In order to avoid car crashes, active safety systems are becoming more and more important. Many crashes are caused due to driver drowsiness or mobile phone usage. Detecting the drowsiness of the driver is very important for the safety of a car. Monitoring of vital signs such as respiration rate and heart rate is important to determine the occurrence of driver drowsiness. In this paper, robust vital signs monitoring through impulse radio ultra-wideband (IR-UWB) radar is discussed. We propose a...

  3. Soil remediation: New strategy by the combine of F.I.S. H. and Geo-Radar Tele detection

    Garbi, C.; Mengs, G.; Gonzalez Motalvo, D.; Martin, M.

    2009-07-01

    One of the most important targets in bioremediation to treat contaminated soils is the developing of new technologies. In this project we have developed a new strategy to eliminate in situ pollutants from hydrocarbons contaminated soils, supported with two specific techniques: FISH and Geo-Radar tele detection. With these techniques we try to delimit the pollutants distribution is oil, and to develop DNA and PNA biosensors with high specificity to evaluate the natural attenuation soil capacity using fluorescence in situ hybridization (FISH). (Author)

  4. Performance trade-off in an adaptive IEEE 802.11ad waveform design for a joint automotive radar and communication system.

    2017-05-01

    The IEEE 802.11ad waveform can be used for automotive radar by exploiting the Golay complementary sequences in the preamble of a frame. The performance of radar, however, is limited by the preamble structure. In this paper, we propose an adaptive pre...

  5. Study on moving target detection to passive radar based on FM broadcast transmitter

    2007-01-01

    Target detection by a noncooperative illuminator is a topic of general interest in the electronic warfare field.First of all,direct-path interference(DPI)suppression which is the technique of bottleneck of moving target detection by a noncooperative frequency modulation(FM) broadcast transmitter is analyzed in this article;Secondly,a space-time-frequency domain synthetic solution to this problem is introduced:Adaptive nulling array processing is considered in the space domain,DPI cancellation based on adaptive fractional delay interpolation(AFDI)technique is used in planned time domain,and long-time coherent integration is utilized in the frequency domain;Finally,an experimental system is planned by considering FM broadcast transmitter as a noncooperative illuminator,Simulation results by real collected data show that the proposed method has a better performance of moving target detection.

  6. Ship Detection and Measurement of Ship Motion by Multi-Aperture Synthetic Aperture Radar

    2014-06-01

    otherwise they would break. Both transverse and torsional modes are present and are driven by the ship structure, the shape of the sea surface, bow slamming...used, the ship’s loading and the ship’s operation [11], [16]. Very large vessels are the most flexible . The schematic shown in Figure 4 [12] provides...different orientations and thin (with respect to a radar wavelength) rods and cables act as linear diffraction centers. The orientation of the

  7. Mutual information-based LPI optimisation for radar network

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  8. Performance of the Multi-Radar Multi-Sensor System over the Lower Colorado River, Texas

    Bayabil, H. K.; Sharif, H. O.; Fares, A.; Awal, R.; Risch, E.

    2017-12-01

    Recently observed increases in intensities and frequencies of climate extremes (e.g., floods, dam failure, and overtopping of river banks) necessitate the development of effective disaster prevention and mitigation strategies. Hydrologic models can be useful tools in predicting such events at different spatial and temporal scales. However, accuracy and prediction capability of such models are often constrained by the availability of high-quality representative hydro-meteorological data (e.g., precipitation) that are required to calibrate and validate such models. Improved technologies and products such as the Multi-Radar Multi-Sensor (MRMS) system that allows gathering and transmission of vast meteorological data have been developed to provide such data needs. While the MRMS data are available with high spatial and temporal resolutions (1 km and 15 min, respectively), its accuracy in estimating precipitation is yet to be fully investigated. Therefore, the main objective of this study is to evaluate the performance of the MRMS system in effectively capturing precipitation over the Lower Colorado River, Texas using observations from a dense rain gauge network. In addition, effects of spatial and temporal aggregation scales on the performance of the MRMS system were evaluated. Point scale comparisons were made at 215 gauging locations using rain gauges and MRMS data from May 2015. Moreover, the effects of temporal and spatial data aggregation scales (30, 45, 60, 75, 90, 105, and 120 min) and (4 to 50 km), respectively on the performance of the MRMS system were tested. Overall, the MRMS system (at 15 min temporal resolution) captured precipitation reasonably well, with an average R2 value of 0.65 and RMSE of 0.5 mm. In addition, spatial and temporal data aggregations resulted in increases in R2 values. However, reduction in RMSE was achieved only with an increase in spatial aggregations.

  9. Application of ground penetrating radar in detecting the hazards and risks of termites and ants in soil levees.

    Yang, Xiuhao; Henderson, Gregg; Mao, Lixin; Evans, Ahmad

    2009-08-01

    A ground penetrating radar (GPR) technique was used to detect Formosan subterranean termite (Coptotermes formosanus) and red imported fire ant (Solenopsis invicta) hazards and risks (targets) in a soil levee at the London Avenue Canal in New Orleans, LA. To make this assessment, GPR signal scans were examined for features produced by termite or ant activities and potential sources of food and shelter such as nests, tree roots, and voids (tunnels). The total scanned length of the soil levee was 4,125 m. The average velocity and effective depth of the radar penetration was 0.080 m/ns and 0.61 m, respectively. Four hundred twenty-seven targets were identified. Tree roots (38), voids (31), fire ant nests (209), and metal objects (149) were detected, but no Formosan termite carton nests were identified. The lack of identified termite nests may be related to drowning events at the time to the flood. Based on the target density (TD), the two new floodwall and levee sections that were rebuilt or reinforced after they were destroyed by Hurricane Katrina in 2005 were determined to be at low potential risk from termites and ants. A merging target density (MTD) method indicated a high potential risk near one of the breached sections still remains. Foraging and nesting activity of Formosan subterranean termites and red imported fire ants may be a contributory factor to the levee failure at the London Avenue Canal.

  10. Analysis of X-band radar images for the detection of the reflected and diffracted waves in coastal zones

    Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco

    2014-05-01

    The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no

  11. Void detection beneath reinforced concrete sections: The practical application of ground-penetrating radar and ultrasonic techniques

    Cassidy, Nigel J.; Eddies, Rod; Dods, Sam

    2011-08-01

    Ground-penetrating radar (GPR) and ultrasonic 'pulse echo' techniques are well-established methods for the imaging, investigation and analysis of steel reinforced concrete structures and are important civil engineering survey tools. GPR is, arguably, the more widely-used technique as it is suitable for a greater range of problem scenarios (i.e., from rebar mapping to moisture content determination). Ultrasonic techniques are traditionally associated with the engineering-based, non-destructive testing of concrete structures and their integrity analyses (e.g., flaw detection, shear/longitudinal velocity determination, etc). However, when used in an appropriate manner, both techniques can be considered complementary and provide a unique way of imaging the sub-surface that is suited to a range of geotechnical problems. In this paper, we present a comparative study between mid-to-high frequency GPR (450 MHz and 900 MHz) and array-based, shear wave, pulse-echo ultrasonic surveys using proprietary instruments and conventional GPR data processing and visualisation techniques. Our focus is the practical detection of sub-metre scale voids located under steel reinforced concrete sections in realistic survey conditions (e.g., a capped, relict mine shaft or vent). Representative two-dimensional (2D) sections are presented for both methods illustrating the similarities/differences in signal response and the temporal-spatial target resolutions achieved with each technique. The use of three-dimensional data volumes and time slices (or 'C-scans') for advanced interpretation is also demonstrated, which although common in GPR applications is under-utilised as a technique in general ultrasonic surveys. The results show that ultrasonic methods can perform as well as GPR for this specific investigation scenario and that they have the potential of overcoming some of the inherent limitations of GPR investigations (i.e., the need for careful antenna frequency selection and survey design in

  12. Grimsel test site. Analysis of radar measurements performed at the Grimsel rock laboratory in October 1985

    Falk, L.; Magnusson, K.A.; Olsson, O.; Ammann, M.; Keusen, H.R.; Sattel, G.

    1988-02-01

    In October 1985 Swedish Geological Co. conducted a radar reflection survey at Grimsel Test Site to map discontinuities in the rock mass of the Underground Seismic (US) test field. These measurements first designed as a test of the equipment at that specific site allowed a comprehensive interpretation of the geometrical structure of the test field. The geological interpretation of the radar reflectors observed is discussed and a possible way is shown to construct a geological model of a site using the combination of radar results and geological information. Additionally to these results the report describes the radar equipment and the theoretical background for the analysis of the data. The main geological features in the area under investigation, situated in the 'Zentraler Aaregranit', are lamprophyre dykes and fracture/shear zones. Their position and strike have been determined using single- and crosshole radar data, SABIS data (accoustic televiewer) as well as existing geological information from the boreholes or the drifts under the assumption of steep dipping elements (70 to 90 o ). (author) 10 refs., 32 figs., 17 tabs

  13. Detection of subglacial lakes in airborne radar sounding data from East Antarctica.

    Carter, S. P.; Blankenship, D. D.; Peters, M. E.; Morse, D. L.

    2004-12-01

    Airborne ice penetrating radar is an essential tool for the identification of subglacial lakes. With it, we can measure the ice thickness, the amplitude of the reflected signal from the base of the ice, the depth to isochronous surfaces and, with high quality GPS, the elevation of the ice surface. These four measurements allow us to calculate the reflection coefficient from the base of the ice, the hydrostatic head, the surface slope and basal temperature. A subglacial lake will be characterized by: a consistently high reflection coefficient from the base of the ice, a nearly flat hydraulic gradient at a relative minimum in the hydraulic potential, an exceptionally smooth ice surface, and an estimated basal temperature that is at or near the pressure melting point of ice. We have developed a computerized algorithm to identify concurrences of the above-mentioned criteria in the radar data sets for East Antarctica collected by the University of Texas (UT). This algorithm is henceforth referred to as the "lake detector". Regions which meet three or more of the above mentioned criteria are identified as subglacial lakes, contingent upon a visual inspection by the human operator. This lake detector has added over 40 lakes to the most recent inventory of subglacial lakes for Antarctica. In locations where the UT flight lines approach or intersect flight lines from other airborne radar surveys, there is generally good agreement between the "lake detector" lakes and lakes identified in these data sets. In locations where the "lake detector" fails to identify a lake which is present in another survey, the most common failing is the estimated basal temperature. However, in some regions where a bright, smooth basal reflector is shown to exist, the lake detector may be failing due to a persistent slope in the hydraulic gradient. The nature of these "frozen" and "sloping" lakes is an additional focus of this presentation.

  14. Examples of mesoscale structures and short-term wind variations detected by VHF Doppler radar

    Forbes, G. S.

    1986-01-01

    The first of three wind profilers planned for operation in central and western Pennsylvania began full-time, high-quality operation during July 1985. It is located about 20 km south-southeast of University Park and operates at 50 MHz. Another 50-MHz radar and a 400-MHz radar are to be installed over the next few months, to complete a mesoscale triangle with sides of 120 to 160 km. During the period since early July, a number of weather systems have passed over the wind profiler. Those accompanied by thunderstorms caused data losses either because the Department computer system lost power or because power went out at the profiler site. A backup power supply and an automatic re-start program will be added to the profiler system to minimize such future losses. Data have normally been averaged over a one-hour period, although there have been some investigations of shorter-period averaging. In each case, preliminary examinations reveal that the profiler winds are indicative of meteorological phenomena. The only occasions of bad or missing data are obtained when airplane noise is occasionally experienced and when the returned power is nearly at the noise level, at the upper few gates, where a consensus wind cannot be determined. Jets streams, clouds, and diurnal variations of winds are discussed.

  15. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  16. A Novel Blind Source Separation Algorithm and Performance Analysis of Weak Signal against Strong Interference in Passive Radar Systems

    Chengjie Li

    2016-01-01

    Full Text Available In Passive Radar System, obtaining the mixed weak object signal against the super power signal (jamming is still a challenging task. In this paper, a novel framework based on Passive Radar System is designed for weak object signal separation. Firstly, we propose an Interference Cancellation algorithm (IC-algorithm to extract the mixed weak object signals from the strong jamming. Then, an improved FastICA algorithm with K-means cluster is designed to separate each weak signal from the mixed weak object signals. At last, we discuss the performance of the proposed method and verify the novel method based on several simulations. The experimental results demonstrate the effectiveness of the proposed method.

  17. A Truncated Waveguide Fed by a Microstrip as a Radiating Element for High-Performance Automotive Anticollision Radars

    Giovanni Andrea Casula

    2012-01-01

    Full Text Available A small truncated waveguide fed by a microstrip line through a transverse coupling slot is proposed and assessed as a high-performance antenna and array element in the K band and above. This antenna allows to obtain a high radiated power, with a very low cross-polar component in the radiated field. It is therefore particularly suitable for application in automotive anticollision radars. The proposed radiating element has been analyzed by a numerical code based on an in-house method of moments, and the microstrip feeding line has been modeled by its equivalent magnetic-wall waveguide. A linear array of such elements has been designed and matched with a BPF-inspired matching network allowing an in-band behavior suitable for anti-collision radar use, with an out-of-band rejection large enough to avoid the first receiving BPF.

  18. The Rubble Rescue Radar (RRR): A low power hand-held microwave device for the detection of trapped human personnel

    Haddad, W.S.

    1997-01-01

    Each year, innocent human lives are lost in collapsed structures as a result of both natural and man-made disasters. We have developed a prototype device, called the Rubble Rescue Radar (RRR) as a aid to workers trying to locate trapped victims in urban search and rescue operations. The RRR is a motion sensor incorporating Micropower Impulse Radar and is capable of detecting human breathing motions through reinforced concrete. It is lightweight, and designed to be handled by a single operator for local searches in areas where trapped victims are expected. Tests of the first prototype device were conducted on site at LLNL using a mock rubble pile consisting of a reinforced concrete pipe with two concrete floor slabs placed against one side, and random concrete and asphalt debris piled against the other. This arrangement provides safe and easy access for instruments and/or human subjects. Breathing signals of a human subject were recorded with the RRR through one floor slab plus the wall of the pipe, two slabs plus the wall of the pipe, and the random rubble plus the wall of the pipe. Breathing and heart beat signals were also recorded of a seated human subject at a distance of 1 meter with no obstructions. Results and photographs of the experimental work are presented, and a design concept for the next generation device is described

  19. The impact of ambient dose rate measuring network and precipitation radar system for detection of environmental radioactivity released by accident

    Bleher, M; Stoehlker, U.

    2003-01-01

    For the surveillance of environmental radioactivity, the German measuring network of BfS consists of more than 2000 stations where the ambient gamma dose rate is continuously measured. This network is a helpful tool to detect and localise enhanced environmental contamination from artificial radionuclides. The threshold for early warning is so low, that already an additional dose rate contribution of 0,07 μGy/h is detectable. However, this threshold is frequently exceeded due to precipitation events caused by washout of natural activity in air. Therefore, the precipitation radar system of the German Weather Service provides valuable information on the problem, whether the increase of the ambient dose rate is due to natural or man-made events. In case of an accidental release, the data of this radar system show small area precipitation events and potential local hot spots not detected by the measuring network. For the phase of cloud passage, the ambient dose rate measuring network provides a reliable database for the evaluation of the current situation and its further development. It is possible to compare measured data for dose rate with derived intervention levels for countermeasures like ''sheltering''. Thus, critical regions can be identified and it is possible to verify implemented countermeasures. During and after this phase of cloud passage the measured data of the monitoring network help to adapt the results of the national decision support systems PARK and RODOS. Therefore, it is necessary to derive the actual additional contribution to the ambient dose rate. Map representations of measured dose rate are rapidly available and helpful to optimise measurement strategies of mobile systems and collection strategies for samples of agricultural products. (orig.)

  20. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  1. Performance of Scattering Matrix Decomposition and Color Spaces for Synthetic Aperture Radar Imagery

    2010-03-01

    Color Spaces and Synthetic Aperture Radar (SAR) Multicolor Imaging. 15 2.3.1 Colorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2...III. Decomposition Techniques on SAR Polarimetry and Colorimetry applied to SAR Imagery...space polarimetric SAR systems. Colorimetry is also introduced in this chapter, presenting the fundamentals of the RGB and CMY color spaces, defined for

  2. Design and performance of wideband DRFM for radar test and evaluation

    Olivier, K

    2011-07-01

    Full Text Available low that it is unlikely that advanced electronic counter countermeasures (ECCM?s) in the radar will be able to distinguish between a physical target return and one generated by the DRFM. The authors would like to express their gratitude...

  3. Techniques for Clutter Suppression in the Presence of Body Movements during the Detection of Respiratory Activity through UWB Radars

    Antonio Lazaro

    2014-02-01

    Full Text Available This paper focuses on the feasibility of tracking the chest wall movement of a human subject during respiration from the waveforms recorded using an impulse-radio (IR ultra-wideband radar. The paper describes the signal processing to estimate sleep apnea detection and breathing rate. Some techniques to solve several problems in these types of measurements, such as the clutter suppression, body movement and body orientation detection are described. Clutter suppression is achieved using a moving averaging filter to dynamically estimate it. The artifacts caused by body movements are removed using a threshold method before analyzing the breathing signal. The motion is detected using the time delay that maximizes the received signal after a clutter removing algorithm is applied. The periods in which the standard deviations of the time delay exceed a threshold are considered macro-movements and they are neglected. The sleep apnea intervals are detected when the breathing signal is below a threshold. The breathing rate is determined from the robust spectrum estimation based on Lomb periodogram algorithm. On the other hand the breathing signal amplitude depends on the body orientation respect to the antennas, and this could be a problem. In this case, in order to maximize the signal-to-noise ratio, multiple sensors are proposed to ensure that the backscattered signal can be detected by at least one sensor, regardless of the direction the human subject is facing. The feasibility of the system is compared with signals recorded by a microphone.

  4. Establishment Criteria for Integrated Wind Shear Detection Systems: Low-Level Wind Shear Alert System (LLWAS), Terminal Doppler Weather Radar (TDWR), and Modified Airport Surveillance Radar

    1990-12-01

    Overviev . ......................................... 9 2. Programs , Syr!ems, and Services ........................ 11 a. National Weather Service...Equipment Appropriation. ADA, a computer system developed and maintained by the Office of Aviation Policy and rlans, facilitates APS-I processing... Program Plan. The primary benefit of LLWAS, TDWR, and modified airport surveillance radar is reduced risk and expected incidence of wind shear-related

  5. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can

  6. Radar detectability studies of slow and small zodiacal dust cloud particles. I. The case of Arecibo 430 MHz meteor head echo observations

    Janches, D.; Plane, J. M. C.; Feng, W.; Nesvorný, D.; Vokrouhlický, D.; Nicolls, M. J.

    2014-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) argues that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper, we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization, and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when (1) we invoke the lower limit of the model predicted flux (∼16 t d –1 ) and (2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high-speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones for low-speed meteors. However, even at this lower limit, the model overpredicts the slow portion of the Arecibo radial velocity distributions by a factor of three, suggesting that the model requires some revision.

  7. Radar detectability studies of slow and small zodiacal dust cloud particles. I. The case of Arecibo 430 MHz meteor head echo observations

    Janches, D. [Space Weather Laboratory, Mail Code 674, GSFC/NASA, Greenbelt, MD 20771 (United States); Plane, J. M. C.; Feng, W. [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Nesvorný, D. [SouthWest Research Institute, Boulder, CO 80302 (United States); Vokrouhlický, D. [Institute of Astronomy, Charles University, Prague (Czech Republic); Nicolls, M. J., E-mail: diego.janches@nasa.gov, E-mail: j.m.c.plane@leeds.ac.uk, E-mail: w.feng@leeds.ac.uk, E-mail: davidn@boulder.swri.edu, E-mail: vokrouhl@cesnet.cz, E-mail: Michael.Nicolls@sri.com [SRI International, Menlo Park, CA 94025 (United States)

    2014-11-20

    Recent model development of the Zodiacal Dust Cloud (ZDC) argues that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper, we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization, and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when (1) we invoke the lower limit of the model predicted flux (∼16 t d{sup –1}) and (2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high-speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones for low-speed meteors. However, even at this lower limit, the model overpredicts the slow portion of the Arecibo radial velocity distributions by a factor of three, suggesting that the model requires some revision.

  8. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: I. The Case of Arecibo 430 MHz Meteor Head Echo Observations

    Janches, D.; Plane, J. M. C.; Nesvorny, D.; Feng, W.; Vokrouhlicky, D.; Nicolls, M. J.

    2014-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorny et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when: 1) we invoke the lower limit of the model predicted flux (approximately 16 t/d) and 2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones (1997) for low speeds meteors. However, even at this lower limit the model over predicts the slow portion of the Arecibo radial velocity distributions by a factor of 3, suggesting the model requires some revision.

  9. Study of laser radar system using the differential absorption method for detection of air pollutants

    Inomata, H; Igarashi, T

    1975-11-01

    A laser radar system using the differential absorption method for remote measurement of atmospheric NO/sub 2/ and SO/sub 2/ is studied. A simultaneous two-wavelength dye laser for the transmitter and a simultaneous two-wavelength signal processer for the receiver are developed. In using this technique, one laser shot allows the determination of NO/sub 2/ concentrations with an uncertainty equivalent to 44 ppM times the range interval (in meters). It seems that the technique is most promising for a range-resolved measurement of ambient molecular pollutants, since it has the advantage of canceling the effect of atmospheric variation in a measurement when atmospheric aerosols are used as a distributed reflector.

  10. Detection and delineation of underground septic tanks in sandy terrain using ground penetrating radar

    Omolaiye, Gabriel Efomeh; Ayolabi, Elijah A.

    2010-09-01

    A ground penetrating radar (GPR) survey was conducted on the Lekki Peninsula, Lagos State, Nigeria. The primary target of the survey was the delineation of underground septic tanks (ST). A total of four GPR profiles were acquired on the survey site using Ramac X3M GPR equipment with a 250MHz antenna, chosen based on the depth of interest and resolution. An interpretable depth of penetration of 4.5m below the surface was achieved after processing. The method accurately delineated five underground ST. The tops of the ST were easily identified on the radargram based on the strong-amplitude anomalies, the length and the depths to the base of the ST were estimated with 99 and 73 percent confidence respectively. The continuous vertical profiles provide uninterrupted subsurface data along the lines of traverse, while the non-intrusive nature makes it an ideal tool for the accurate mapping and delineation of underground utilities.

  11. INVESTIGATION OF GROUND PENETRATING RADAR FOR DETECTION OF ROAD SUBSIDENCE NORTHCOAST OF JAKARTA, INDONESIA

    Kris Budiono

    2017-07-01

    Full Text Available A survey of Ground Penetrating Radar (GPR was conducted in the coastal zone of northern part of Jakarta, Indonesia. The purpose of this survey was to provide the subsurface of coastal Quaternary sedimentary features and stratigraphy disturbances associated with induce post road subsidence 2009. The possibility of subsurface lithology disturbance shown by the GPR record. This record resulted from GPR methods using SIR system 20 GSSI, 270 MHz and 400 MHz and MLF 3200 transducer. The method is a promising tool for resolving changes of physical properties in subsurface lithology condition at the natural scale due to composition changes of physical properties.The reflection data resulted that GPR can distinguish between image the basic geometry forms such as lithology , structure geology , soil and subsurface utilities condition

  12. A FUZZY LOGIC-BASED APPROACH FOR THE DETECTION OF FLOODED VEGETATION BY MEANS OF SYNTHETIC APERTURE RADAR DATA

    V. Tsyganskaya

    2016-06-01

    Full Text Available In this paper an algorithm designed to map flooded vegetation from synthetic aperture radar (SAR imagery is introduced. The approach is based on fuzzy logic which enables to deal with the ambiguity of SAR data and to integrate multiple ancillary data containing topographical information, simple hydraulic considerations and land cover information. This allows the exclusion of image elements with a backscatter value similar to flooded vegetation, to significantly reduce misclassification errors. The flooded vegetation mapping procedure is tested on a flood event that occurred in Germany over parts of the Saale catchment on January 2011 using a time series of high resolution TerraSAR-X data covering the time interval from 2009 to 2015. The results show that the analysis of multi-temporal X-band data combined with ancillary data using a fuzzy logic-based approach permits the detection of flooded vegetation areas.

  13. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field

    Shiping Zhu

    2014-06-01

    Full Text Available The objectives of this study were to detect coarse tree root and to estimate root biomass in the field by using an advanced 3D Ground Penetrating Radar (3D GPR system. This study obtained full-resolution 3D imaging results of tree root system using 500 MHz and 800 MHz bow-tie antennas, respectively. The measurement site included two larch trees, and one of them was excavated after GPR measurements. In this paper, a searching algorithm, based on the continuity of pixel intensity along the root in 3D space, is proposed, and two coarse roots whose diameters are more than 5 cm were detected and delineated correctly. Based on the detection results and the measured root biomass, a linear regression model is proposed to estimate the total root biomass in different depth ranges, and the total error was less than 10%. Additionally, based on the detected root samples, a new index named “magnitude width” is proposed to estimate the root diameter that has good correlation with root diameter compared with other common GPR indexes. This index also provides direct measurement of the root diameter with 13%–16% error, providing reasonable and practical root diameter estimation especially in the field.

  14. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method

    Yang Zhang

    2016-10-01

    Full Text Available Ultra-wideband (UWB radar has been widely used for detecting human physiological signals (respiration, movement, etc. in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc., the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  15. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method.

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-10-27

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  16. Radar techniques using array antennas

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  17. Determination of radar MTF

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  18. Quantum radar

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  19. A Fast Time-Delay Calculation Method in Through-Wall-Radar Detection Scenario

    Zhang Qi

    2016-01-01

    Full Text Available In TWR (Through Wall Radar signal processing procedure, time delay estimation is one of the key steps in target localization and high resolution imaging. In time domain imaging procedure such as back projection imaging algorithm, round trip propagation time delay at the path of “transmitter-target-receiver” needs to be calculated for each pixel in imaging region. In typical TWR scenario, transmitter and receiver are at one side and targets at the other side of a wall. Based on two-dimensional searching algorithm or solving two variables equation of four times, traditional time delay calculation algorithms are complex and time consuming, and cannot be used to real-time imaging procedure. In this paper, a new fast time-delay (FTD algorithm is presented. Because of that incident angle at one side equals to refracting angle at the other side, an equation of lateral distance through the wall can be established. By solving this equation, the lateral distance can be obtained and total propagation time delay can be calculated subsequently. Through processing simulation data, the result shows that new algorithm can be applied effectively to real-time time-delay calculation in TWR signal processing.

  20. Detection of hail through the three-body scattering signatures and its effects on radar algorithms observed in Romania

    CARBUNARU, DANIEL VICTOR; SASU, MONICA; BURCEA, SORIN; BELL, AURORA

    2014-01-01

    The Romanian National Meteorological Administration (NMA) radar network consists of five S-band and four C-band radars. Observation of convection in Romania through the Doppler radar network offered a new perspective in understanding the climatologic risk of certain regions and mesoscale environments. Highly organized convective systems, such as supercells, are better observed and their subsequent threat can be better anticipated during the nowcasting process using Doppler velocity fields and...

  1. Effect of H-wave polarization on laser radar detection of partially convex targets in random media.

    El-Ocla, Hosam

    2010-07-01

    A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.

  2. Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB Radar for Intended Use in Car Crash Prevention.

    Leem, Seong Kyu; Khan, Faheem; Cho, Sung Ho

    2017-05-30

    In order to avoid car crashes, active safety systems are becoming more and more important. Many crashes are caused due to driver drowsiness or mobile phone usage. Detecting the drowsiness of the driver is very important for the safety of a car. Monitoring of vital signs such as respiration rate and heart rate is important to determine the occurrence of driver drowsiness. In this paper, robust vital signs monitoring through impulse radio ultra-wideband (IR-UWB) radar is discussed. We propose a new algorithm that can estimate the vital signs even if there is motion caused by the driving activities. We analyzed the whole fast time vital detection region and found the signals at those fast time locations that have useful information related to the vital signals. We segmented those signals into sub-signals and then constructed the desired vital signal using the correlation method. In this way, the vital signs of the driver can be monitored noninvasively, which can be used by researchers to detect the drowsiness of the driver which is related to the vital signs i.e., respiration and heart rate. In addition, texting on a mobile phone during driving may cause visual, manual or cognitive distraction of the driver. In order to reduce accidents caused by a distracted driver, we proposed an algorithm that can detect perfectly a driver's mobile phone usage even if there are various motions of the driver in the car or changes in background objects. These novel techniques, which monitor vital signs associated with drowsiness and detect phone usage before a driver makes a mistake, may be very helpful in developing techniques for preventing a car crash.

  3. Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB Radar for Intended Use in Car Crash Prevention

    Seong Kyu Leem

    2017-05-01

    Full Text Available In order to avoid car crashes, active safety systems are becoming more and more important. Many crashes are caused due to driver drowsiness or mobile phone usage. Detecting the drowsiness of the driver is very important for the safety of a car. Monitoring of vital signs such as respiration rate and heart rate is important to determine the occurrence of driver drowsiness. In this paper, robust vital signs monitoring through impulse radio ultra-wideband (IR-UWB radar is discussed. We propose a new algorithm that can estimate the vital signs even if there is motion caused by the driving activities. We analyzed the whole fast time vital detection region and found the signals at those fast time locations that have useful information related to the vital signals. We segmented those signals into sub-signals and then constructed the desired vital signal using the correlation method. In this way, the vital signs of the driver can be monitored noninvasively, which can be used by researchers to detect the drowsiness of the driver which is related to the vital signs i.e., respiration and heart rate. In addition, texting on a mobile phone during driving may cause visual, manual or cognitive distraction of the driver. In order to reduce accidents caused by a distracted driver, we proposed an algorithm that can detect perfectly a driver's mobile phone usage even if there are various motions of the driver in the car or changes in background objects. These novel techniques, which monitor vital signs associated with drowsiness and detect phone usage before a driver makes a mistake, may be very helpful in developing techniques for preventing a car crash.

  4. Radar Chart

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  5. Deployment and Performance of an X-Band Dual-Polarization Radar during the Southern China Monsoon Rainfall Experiment

    Zhao Shi

    2017-12-01

    Full Text Available An X-band dual-polarization radar (XPRAD was deployed in Guangdong province as part of the Southern China Monsoon Rainfall Experiment (SCMREX during the storm season in 2016. This paper presents a comprehensive assessment of XPRAD observations during SCMREX with emphasis on data processing and rainfall products. The differential phase-based attenuation correction and radar calibration using self-consistency of dual-polarization observables are presented. It is found that the standard deviation of the Z d r bias is less than 0.2 dB based on ‘light rain at low angle’ and ‘dry aggregate snow’ observations. Cross-comparison with two standard S-band China New Generation Weather Radars (CINRAD shows that the bias of Z h has a mean value less than 1.5 dBZ and a standard deviation less than 0.5 dBZ. In addition, fifteen rainfall events that occurred during the intensive observing period (IOP are analyzed to demonstrate the rainfall estimation performance of XPRAD. In particular, rainfall accumulations at 1-, 2- and 3-h scales derived using R( K d p and R( Z h , Z d r relations are evaluated using national level rain gauge data and CINRAD-based rainfall estimation. The results show that both R( K d p - and R( Z h , Z d r -based products agree well with the rain gauge observations and CINRAD estimation. The difference between R ( K d p and R ( Z h , Z d r is not significant, although R ( K d p shows slightly better performance than R ( Z h , Z d r .

  6. Impact of soil water content on landmine detection using radar and thermal infared sensors

    Hong, S.-H.; Miller, T.W.; Tobin, H.; Borchers, B.; Hendrickx, J.M.H.; Lensen, H.A.; Schwering, P.B.W.

    2001-01-01

    Land mines are a major problem in many areas of the world. In spite of the fact that many different types of land mines sensors have been developed, the detection of non-metallic land mines remains very difficult. Most landmine detection sensors are affected by soil properties such as water content,

  7. Enhanced research in ground-penetrating radar and multisensor fusion with application to the detection and visualization of buried waste. Final report

    Devney, A.J.; DiMarzio, C.; Kokar, M.; Miller, E.L.; Rappaport, C.M.; Weedon, W.H.

    1996-05-14

    Recognizing the difficulty and importance of the landfill remediation problems faced by DOE, and the fact that no one sensor alone can provide complete environmental site characterization, a multidisciplinary team approach was chosen for this project. The authors have developed a multisensor fusion approach that is suitable for the wide variety of sensors available to DOE, that allows separate detection algorithms to be developed and custom-tailored to each sensor. This approach is currently being applied to the Geonics EM-61 and Coleman step-frequency radar data. High-resolution array processing techniques were developed for detecting and localizing buried waste containers. A soil characterization laboratory facility was developed using a HP-8510 network analyzer and near-field coaxial probe. Both internal and external calibration procedures were developed for de-embedding the frequency-dependent soil electrical parameters from the measurements. Dispersive soil propagation modeling algorithms were also developed for simulating wave propagation in dispersive soil media. A study was performed on the application of infrared sensors to the landfill remediation problem, particularly for providing information on volatile organic compounds (VOC`s) in the atmosphere. A dust-emission lidar system is proposed for landfill remediation monitoring. Design specifications are outlined for a system which could be used to monitor dust emissions in a landfill remediation effort. The detailed results of the investigations are contained herein.

  8. Enhanced research in ground-penetrating radar and multisensor fusion with application to the detection and visualization of buried waste. Final report

    Devney, A.J.; DiMarzio, C.; Kokar, M.; Miller, E.L.; Rappaport, C.M.; Weedon, W.H.

    1996-01-01

    Recognizing the difficulty and importance of the landfill remediation problems faced by DOE, and the fact that no one sensor alone can provide complete environmental site characterization, a multidisciplinary team approach was chosen for this project. The authors have developed a multisensor fusion approach that is suitable for the wide variety of sensors available to DOE, that allows separate detection algorithms to be developed and custom-tailored to each sensor. This approach is currently being applied to the Geonics EM-61 and Coleman step-frequency radar data. High-resolution array processing techniques were developed for detecting and localizing buried waste containers. A soil characterization laboratory facility was developed using a HP-8510 network analyzer and near-field coaxial probe. Both internal and external calibration procedures were developed for de-embedding the frequency-dependent soil electrical parameters from the measurements. Dispersive soil propagation modeling algorithms were also developed for simulating wave propagation in dispersive soil media. A study was performed on the application of infrared sensors to the landfill remediation problem, particularly for providing information on volatile organic compounds (VOC's) in the atmosphere. A dust-emission lidar system is proposed for landfill remediation monitoring. Design specifications are outlined for a system which could be used to monitor dust emissions in a landfill remediation effort. The detailed results of the investigations are contained herein

  9. Change detection in multitemporal synthetic aperture radar images using dual-channel convolutional neural network

    Liu, Tao; Li, Ying; Cao, Ying; Shen, Qiang

    2017-10-01

    This paper proposes a model of dual-channel convolutional neural network (CNN) that is designed for change detection in SAR images, in an effort to acquire higher detection accuracy and lower misclassification rate. This network model contains two parallel CNN channels, which can extract deep features from two multitemporal SAR images. For comparison and validation, the proposed method is tested along with other change detection algorithms on both simulated SAR images and real-world SAR images captured by different sensors. The experimental results demonstrate that the presented method outperforms the state-of-the-art techniques by a considerable margin.

  10. Shoreline Erosion and Slope Failure Detection over Southwest Lakeshore Michigan using Temporal Radar and Digital Elevation Model

    Sataer, G.; Sultan, M.; Yellich, J. A.; Becker, R.; Emil, M. K.; Palaseanu, M.

    2017-12-01

    Throughout the 20th century and into the 21st century, significant losses of residential, commercial and governmental property were reported along the shores of the Great Lakes region due to one or more of the following factors: high lake levels, wave actions, groundwater discharge. A collaborative effort (Western Michigan University, University of Toledo, Michigan Geological Survey [MGS], United States Geological Survey [USGS], National Oceanographic and Atmospheric Administration [NOAA]) is underway to examine the temporal topographic variations along the shoreline and the adjacent bluff extending from the City of South Haven in the south to the City of Saugatuck in the north within the Allegan County. Our objectives include two main tasks: (1) identification of the timing of, and the areas, witnessing slope failure and shoreline erosion, and (2) investigating the factors causing the observed failures and erosion. This is being accomplished over the study area by: (1) detecting and measuring slope subsidence rates (velocities along line of site) and failures using radar interferometric persistent scatter (PS) techniques applied to ESA's European Remote Sensing (ERS) satellites, ERS-1 and -2 (spatial resolution: 25 m) that were acquired in 1995 to 2007, (2) extracting temporal high resolution (20 cm) digital elevation models (DEM) for the study area from temporal imagery acquired by Unmanned Aerial Vehicles (UAVs), and applying change detection techniques to the extracted DEMs, (3) detecting change in elevation and slope profiles extracted from two LIDAR Coastal National Elevation Database (CoNED) DEMs (spatial resolution: 0.5m), acquired on 2008 and 2012, and (4) spatial and temporal correlation of the detected changes in elevation with relevant data sets (e.g., lake levels, precipitation, groundwater levels) in search of causal effects.

  11. Analysis of sea-surface radar signatures by means of wavelet-based edge detection and detection of regularities; Analyse von Radarsignaturen der Meeresoberflaeche mittels auf Wavelets basierender Kantenerkennung und Regularitaetsbestimmung

    Wolff, U. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik

    2000-07-01

    The derivation and implementation of an algorithm for edge detection in images and for the detection of the Lipschitz regularity in edge points are described. The method is based on the use of the wavelet transform for edge detection at different resolutions. The Lipschitz regularity is a measure that characterizes the edges. The description of the derivation is first performed in one dimension. The approach of Mallat is formulated consistently and proved. Subsequently, the two-dimensional case is addressed, for which the derivation, as well as the description of the algorithm, is analogous. The algorithm is applied to detect edges in nautical radar images using images collected at the island of Sylt. The edges discernible in the images and the Lipschitz values provide information about the position and nature of spatial variations in the depth of the seafloor. By comparing images from different periods of measurement, temporal changes in the bottom structures can be localized at different resolutions and interpreted. The method is suited to the monitoring of coastal areas. It is an inexpensive way to observe long-term changes in the seafloor character. Thus, the results of this technique may be used by the authorities responsible for coastal protection to decide whether measures should be taken or not. (orig.)

  12. Use of the SAR (Synthetic Aperture Radar) P band for detection of the Moche and Lambayeque canal networks in the Apurlec region, Perù

    Ilaria Pannaccione Apa, Maria; Santovito, Maria Rosaria; Pica, Giulia; Catapano, Ilaria; Fornaro, Gianfranco; Lanari, Riccardo; Soldovieri, Francesco; Wester La Torre, Carlos; Fernandez Manayalle, Marco Antonio; Longo, Francesco; Facchinetti, Claudia; Formaro, Roberto

    2016-04-01

    In recent years, research attention has been devoted to the development of a new class of airborne radar systems using low frequency bands ranging from VHF/UHF to P and L ones. In this frame, the Italian Space Agency (ASI) has promoted the development of a new multi-mode and multi-band airborne radar system, which can be considered even a "proof-of-concept" for the next space-borne missions. In particular, in agreement with the ASI, the research consortium CO.RI.S.T.A. has in charge the design, development and flight validation of such a kind of system, which is the first airborne radar entirely built in Italy. The aim was to design and realize a radar system able to work in different modalities as: nadir-looking sounder at VHF band (163 MHz); side-looking imager (SAR) at P band with two channels at 450 MHz and 900 MHz. The P-band is a penetration radar. Exploiting penetration features of low frequency electromagnetic waves, dielectric discontinuities of observed scene due to inhomogeneous materials rise up and can be detected on the resulting image. Therefore buried objects or targets placed under vegetation may be detected. Penetration capabilities essentially depend on microwave frequency. Typically, penetration distance is inversely proportional to microwave frequency. The higher the frequency, the lower the penetration depth. Terrain characteristics affect penetration capabilities. Humidity acts as a shield to microwave penetration. Hence terrain with high water content are not good targets for P-band applicability. Science community, governments and space agencies have increased their interest about low frequency radar for their useful applicability in climatology, ecosystem monitoring, glaciology, archaeology. The combination of low frequency and high relative bandwidth of such a systems has a large applicability in both military and civilian applications, ranging from forestry applications, biomass measuring, archaeological and geological exploration

  13. Radar Fundamentals, Presentation

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  14. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  15. Radar network communication through sensing of frequency hopping

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  16. Performance Analysis of Ship Wake Detection on Sentinel-1 SAR Images

    Maria Daniela Graziano

    2017-10-01

    Full Text Available A novel technique for ship wake detection has been recently proposed and applied on X-band Synthetic Aperture Radar images provided by COSMO/SkyMed and TerraSAR-X. The approach shows that the vast majority of wake features are correctly detected and validated in critical situations. In this paper, the algorithm was applied to 28 wakes imaged by Sentinel-1 mission with different polarizations and incidence angles with the aim of testing the method’s robustness with reference to radar frequency and resolution. The detection process is properly modified. The results show that the features were correctly classified in 78.5% of cases, whereas false confirmations occur mainly on Kelvin cusps. Finally, the results were compared with the algorithm performance on X-band images, showing that no significant difference arises. In fact, the total false confirmations rate was 15.8% on X-band images and 18.5% on C-band images. Moreover, since the main criticality concerns again the false confirmation of Kelvin cusps, the same empirical criterion suggested for the X-band SAR images yielded a negligible 1.5% of false detection rate.

  17. Radar reflection off extensive air showers

    Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J

    2012-01-01

    We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  18. Social Radar

    2012-01-01

    RTA HFM-201/RSM PAPER 3 - 1 © 2012 The MITRE Corporation. All Rights Reserved. Social Radar Barry Costa and John Boiney MITRE Corporation...defenders require an integrated set of capabilities that we refer to as a “ social radar.” Such a system would support strategic- to operational-level...situation awareness, alerting, course of action analysis, and measures of effectiveness for each action undertaken. Success of a social radar

  19. A method of detection of respiration rate on Android using UWB Impulse Radar

    Young-Jin Park

    2016-12-01

    Full Text Available Monitoring respiration rate is important because it can help to detect and prevent abnormal respiratory rates that can lead to cardiac arrest and chronic obstructive pulmonary disease. Nowadays, most medical measurement and monitoring devices are either invasive or wired but people are hesitant to attach physiological sensors to their body. In this study, we investigated whether real-time medical measurement of breathing using Novelda’s Ultra-Wideband Impulse Radio (IR-UWB–which does not need to be attached to the human body and is also non-invasive–is possible on Android. Experimental results obtained were found to be comparable to those of a commercial healthcare device.

  20. Planetary Radar

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  1. Radon detection system, design, test and performance

    Balcazar, M.; Chavez, A.; Pina-Villalpando, G.; Navarrete, M.

    1999-01-01

    A portable radon detection system (α-Inin) has been designed and constructed for using it in adverse environmental conditions where humidity, temperature and chemical vaporous are present. The minimum integration time is in periods of 15 min during 41 days. A 12 V battery and a photovoltaic module allow the α-Inin autonomy in field measurements. Data is collected by means of a laptop computer where data processing and α-Inin programming are carried out. α-Inin performance was simultaneously tested in a controlled radon chamber, together with a commercial α-Meter

  2. Precipitation evidences on X-Band Synthetic Aperture Radar imagery: an approach for quantitative detection and estimation

    Mori, Saverio; Marzano, Frank S.; Montopoli, Mario; Pulvirenti, Luca; Pierdicca, Nazzareno

    2017-04-01

    Spaceborne synthetic aperture radars (SARs) operating at L-band and above are nowadays a well-established tool for Earth remote sensing; among the numerous civil applications we can indicate flood areas detection and monitoring, earthquakes analysis, digital elevation model production, land use monitoring and classification. Appealing characteristics of this kind of instruments is the high spatial resolution ensured in almost all-weather conditions and with a reasonable duty cycle and coverage. This result has achieved by the by the most recent generation of SAR missions, which moreover allow polarimetric observation of the target. Nevertheless, atmospheric clouds, in particular the precipitating ones, can significantly affect the signal backscattered from the ground surface (e.g. Ferrazzoli and Schiavon, 1997), on both amplitude and phase, with effects increasing with the operating frequency. In this respect, proofs are given by several recent works (e.g. Marzano et al., 2010, Baldini et al., 2014) using X-Band SAR data by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions. On the other hand, this sensitivity open interesting perspectives towards the SAR observation, and eventually quantification, of precipitations. In this respect, a proposal approach for X-SARs precipitation maps production and cloud masking arise from our work. Cloud masking allows detection of precipitation compromised areas. Respect precipitation maps, satellite X-SARs offer the unique possibility to ingest within flood forecasting model precipitation data at the catchment scale. This aspect is particularly innovative, even if work has been done the late years, and some aspects need to still address. Our developed processing framework allows, within the cloud masking stage, distinguishing flooded areas, precipitating clouds together with permanent water bodies, all appearing dark in the SAR image. The procedure is mainly based on image segmentation techniques and fuzzy logic (e.g. Pulvirenti et

  3. Stepped-Frequency Ground-Penetrating Radar for Detection of Small Non-metallic Buried Objects

    Jakobsen, Kaj Bjarne; Sørensen, Helge Bjarup Dissing; Nymann, Ole

    1997-01-01

    -shaped objects. Two-dimensional probe-correction and addition signal processing are applied to the raw probe-data. The probe used in this experiment was an open-ended waveguide operating at S-band. The movements of the probe are controlled by two stepmotors via an RS-232 interface. The probe is connected...... at each measurement point using a mesh-grid with a resolution down to 1 mm by 1 mm. The size of the scan area is 1410 mm by 210 mm. Measurements have been performed on loamy soil containing a buried M-56, a non-metallic AP-mine, and various other mine-like objects made of solid plastic, brass, aluminum...

  4. Performance of the first European 482 MHz wind profiler radar with RASS under operational conditions

    Steinhagen, H.; Engelbart, D.; Goersdorf, U.; Lehmann, V.; Neisser, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorologisches Observatorium; Dibbern, J.; Neuschaefer, J.W.

    1998-10-01

    The first 482 MHz wind profiler radar (WPR) in Europe completed with a radio-acoustic sounding system (RASS) has been operated at the meteorological observatory Lindenberg since July 3rd, 1996 after a comprehensive study regarding the investigation of frequency compatibility between the WPR and the television channel 22 (478-486 MHz). The WPR can operate with different height and time resolutions (e.g. 250 m in the so-called low mode or 500 m in the high mode). A height range of up to approximately 16 km can be realized in the high mode. The installed WPR/RASS combination allows also the measurement of profiles of the virtual temperature with the low mode resolution in the height range from 500 m up to approximately 4000 m. The main objective of this contribution is the investigation of the accuracy and the availability of this new remote sensing system. First results of the accuracy can be given on the base of about 1000 intercomparisons between WPR/RASS and rawinsonde data. The bias of the horizontal wind velocities is less than 0.4 m/s in the low mode and 0.7 m/s in the high mode (from 3 to 10 km) and therefore smaller than the average accuracy of both systems. The bias of the temperature measurements is less than 1 K and can be improved by some corrections in future. A first statistics of the data availability can be shown based on nearly 6000 profiles of wind and temperature. The 80% availability of the WPR/RASS was determined with 12.8 km for wind and 2.3 km for temperature measurements. The new possibilities of investigating the troposphere as well as the lowest part of the stratosphere are presented by measurement examples from February and March 1997. (orig.) 22 refs.

  5. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer

    Ashkan Ghanbarzadeh Dagheyan

    2018-01-01

    Full Text Available Accurate and early detection of breast cancer is of high importance, as it is directly associated with the patients’ overall well-being during treatment and their chances of survival. Uncertainties in current breast imaging methods can potentially cause two main problems: (1 missing newly formed or small tumors; and (2 false alarms, which could be a source of stress for patients. A recent study at the Massachusetts General Hospital (MGH indicates that using Digital Breast Tomosynthesis (DBT can reduce the number of false alarms, when compared to conventional mammography. Despite the image quality enhancement DBT provides, the accurate detection of cancerous masses is still limited by low radiological contrast (about 1% between the fibro-glandular tissue and affected tissue at X-ray frequencies. In a lower frequency region, at microwave frequencies, the contrast is comparatively higher (about 10% between the aforementioned tissues; yet, microwave imaging suffers from low spatial resolution. This work reviews conventional X-ray breast imaging and describes the preliminary results of a novel near-field radar imaging mechatronic system (NRIMS that can be fused with the DBT, in a co-registered fashion, to combine the advantages of both modalities. The NRIMS consists of two antipodal Vivaldi antennas, an XY positioner, and an ethanol container, all of which are particularly designed based on the DBT physical specifications. In this paper, the independent performance of the NRIMS is assessed by (1 imaging a bearing ball immersed in sunflower oil and (2 computing the heat Specific Absorption Rate (SAR due to the electromagnetic power transmitted into the breast. The preliminary results demonstrate that the system is capable of generating images of the ball. Furthermore, the SAR results show that the system complies with the standards set for human trials. As a result, a configuration based on this design might be suitable for use in realistic clinical

  6. Pocket radar guide key facts, equations, and data

    Curry, G Richard

    2010-01-01

    ThePocket Radar Guideis a concise collection of key radar facts and important radar data that provides you with necessary radar information when you are away from your office or references. It includes statements and comments on radar design, operation, and performance; equations describing the characteristics and performance of radar systems and their components; and tables with data on radar characteristics and key performance issues.It is intended to supplement other radar information sources by providing a pocket companion to refresh memory and provide details whenever you need them such a

  7. Terahertz radar cross section measurements

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  8. Assessment of the Performance of the Chilbolton 3-GHz Advanced Meteorological Radar for Cloud-Top-Height Retrieval.

    Naud, C. M.; Muller, J.-P.; Slack, E. C.; Wrench, C. L.; Clothiaux, E. E.

    2005-06-01

    The Chilbolton 3-GHz Advanced Meteorological Radar (CAMRa), which is mounted on a fully steerable 25-m dish, can provide three-dimensional information on the presence of hydrometeors. The potential for this radar to make useful measurements of low-altitude liquid water cloud structure is investigated. To assess the cloud-height assignment capabilities of the 3-GHz radar, low-level cloud-top heights were retrieved from CAMRa measurements made between May and July 2003 and were compared with cloud-top heights retrieved from a vertically pointing 94-GHz radar that operates alongside CAMRa. The average difference between the 94- and 3-GHz radar-derived cloud-top heights is shown to be -0.1 ± 0.4 km. To assess the capability of 3-GHz radar scans to be used for satellite-derived cloud-top-height validation, multiangle imaging spectroradiometer (MISR) cloud-top heights were compared with both 94- and 3-GHz radar retrievals. The average difference between 94-GHz radar and MISR cloud-top heights is shown to be 0.1 ± 0.3 km, while the 3-GHz radar and MISR average cloud-top-height difference is shown to be -0.2 ± 0.6 km. In assessing the value of the CAMRa measurements, the problems associated with low-reflectivity values from stratiform liquid water clouds, ground clutter, and Bragg scattering resulting from turbulent mixing are all addressed. It is shown that, despite the difficulties, the potential exists for CAMRa measurements to contribute significantly to liquid water cloud-top-height retrievals, leading to the production of two-dimensional transects (i.e., maps) of cloud-top height.

  9. Etude de la performance des radars hautes-frequences CODAR et WERA pour la mesure des courants marins en presence partielle de glace de mer

    Kamli, Emna

    Les radars hautes-frequences (RHF) mesurent les courants marins de surface avec une portee pouvant atteindre 200 kilometres et une resolution de l'ordre du kilometre. Cette etude a pour but de caracteriser la performance des RHF, en terme de couverture spatiale, pour la mesure des courants de surface en presence partielle de glace de mer. Pour ce faire, les mesures des courants de deux radars de type CODAR sur la rive sud de l'estuaire maritime du Saint-Laurent, et d'un radar de type WERA sur la rive nord, prises pendant l'hiver 2013, ont ete utilisees. Dans un premier temps, l'aire moyenne journaliere de la zone ou les courants sont mesures par chaque radar a ete comparee a l'energie des vagues de Bragg calculee a partir des donnees brutes d'acceleration fournies par une bouee mouillee dans la zone couverte par les radars. La couverture des CODARs est dependante de la densite d'energie de Bragg, alors que la couverture du WERA y est pratiquement insensible. Un modele de fetch appele GENER a ete force par la vitesse du vent predite par le modele GEM d'Environnement Canada pour estimer la hauteur significative ainsi que la periode modale des vagues. A partir de ces parametres, la densite d'energie des vagues de Bragg a ete evaluee pendant l'hiver a l'aide du spectre theorique de Bretschneider. Ces resultats permettent d'etablir la couverture normale de chaque radar en absence de glace de mer. La concentration de glace de mer, predite par le systeme canadien operationnel de prevision glace-ocean, a ete moyennee sur les differents fetchs du vent selon la direction moyenne journaliere des vagues predites par GENER. Dans un deuxieme temps, la relation entre le ratio des couvertures journalieres obtenues pendant l'hiver 2013 et des couvertures normales de chaque radar d'une part, et la concentration moyenne journaliere de glace de mer d'autre part, a ete etablie. Le ratio des couvertures decroit avec l'augmentation de la concentration de glace de mer pour les deux types

  10. Joint Optimization of Receiver Placement and Illuminator Selection for a Multiband Passive Radar Network.

    Xie, Rui; Wan, Xianrong; Hong, Sheng; Yi, Jianxin

    2017-06-14

    The performance of a passive radar network can be greatly improved by an optimal radar network structure. Generally, radar network structure optimization consists of two aspects, namely the placement of receivers in suitable places and selection of appropriate illuminators. The present study investigates issues concerning the joint optimization of receiver placement and illuminator selection for a passive radar network. Firstly, the required radar cross section (RCS) for target detection is chosen as the performance metric, and the joint optimization model boils down to the partition p -center problem (PPCP). The PPCP is then solved by a proposed bisection algorithm. The key of the bisection algorithm lies in solving the partition set covering problem (PSCP), which can be solved by a hybrid algorithm developed by coupling the convex optimization with the greedy dropping algorithm. In the end, the performance of the proposed algorithm is validated via numerical simulations.

  11. Recommendation on Transition from Primary/Secondary Radar to Secondary- Only Radar Capability

    1994-10-01

    Radar Beacon Performance Monitor RCIU Remote Control Interface Unit RCL Remote Communications Link R E&D Research, Engineering and Development RML Radar...rate. 3.1.2.5 Maintenance The current LRRs have limited remote maintenance monitoring (RMM) capabilities via the Remote Control Interface Unit ( RCIU ...1, -2 and FPS-20 radars required an upgrade of some of the radar subsystems, namely the RCIU to respond as an RMS and the CD to interface with radar

  12. Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography.

    Thiel, F; Kreiseler, D; Seifert, F

    2009-11-01

    Electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. Therefore the reason for using ultrawideband (UWB) radar for probing the human body in the frequency range from 100 MHz up to 10 GHz is obvious and suggests an ability to monitor the motion of organs within the human body as well as obtaining images of internal structures. The specific advantages of UWB sensors are high temporal and spatial resolutions, penetration into object, low integral power, and compatibility with established narrowband systems. The sensitivity to ultralow power signals makes them suitable for human medical applications including mobile and continuous noncontact supervision of vital functions. Since no ionizing radiation is used, and due to the ultralow specific absorption rate applied, UWB techniques permit noninvasive sensing with no potential risks. This research aims at the synergetic use of UWB sounding combined with magnetic resonance imaging (MRI) to gain complementary information for improved functional diagnosis and imaging, especially to accelerate and enhance cardiac MRI by applying UWB radar as a noncontact navigator of myocardial contraction. To this end a sound understanding of how myocardial's mechanic is rendered by reflected and postprocessed UWB radar signals must be achieved. Therefore, we have executed the simultaneous acquisition and evaluation of radar signals with signals from a high-resolution electrocardiogram. The noncontact UWB illumination was done from several radiographic standard positions to monitor selected superficial myocardial areas during the cyclic physiological myocardial deformation in three different respiratory states. From our findings we could conclude that UWB radar can serve as a navigator technique for high and ultrahigh field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it

  13. Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography

    Thiel, F.; Kreiseler, D.; Seifert, F.

    2009-11-01

    Electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. Therefore the reason for using ultrawideband (UWB) radar for probing the human body in the frequency range from 100 MHz up to 10 GHz is obvious and suggests an ability to monitor the motion of organs within the human body as well as obtaining images of internal structures. The specific advantages of UWB sensors are high temporal and spatial resolutions, penetration into object, low integral power, and compatibility with established narrowband systems. The sensitivity to ultralow power signals makes them suitable for human medical applications including mobile and continuous noncontact supervision of vital functions. Since no ionizing radiation is used, and due to the ultralow specific absorption rate applied, UWB techniques permit noninvasive sensing with no potential risks. This research aims at the synergetic use of UWB sounding combined with magnetic resonance imaging (MRI) to gain complementary information for improved functional diagnosis and imaging, especially to accelerate and enhance cardiac MRI by applying UWB radar as a noncontact navigator of myocardial contraction. To this end a sound understanding of how myocardial's mechanic is rendered by reflected and postprocessed UWB radar signals must be achieved. Therefore, we have executed the simultaneous acquisition and evaluation of radar signals with signals from a high-resolution electrocardiogram. The noncontact UWB illumination was done from several radiographic standard positions to monitor selected superficial myocardial areas during the cyclic physiological myocardial deformation in three different respiratory states. From our findings we could conclude that UWB radar can serve as a navigator technique for high and ultrahigh field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it

  14. Ka-Band ARM Zenith Radar Corrections Value-Added Product

    Johnson, Karen [Brookhaven National Lab. (BNL), Upton, NY (United States); Toto, Tami [Brookhaven National Lab. (BNL), Upton, NY (United States); Giangrande, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-10-15

    The KAZRCOR Value -added Product (VAP) performs several corrections to the ingested KAZR moments and also creates a significant detection mask for each radar mode. The VAP computes gaseous attenuation as a function of time and radial distance from the radar antenna, based on ambient meteorological observations, and corrects observed reflectivities for that effect. KAZRCOR also dealiases mean Doppler velocities to correct velocities whose magnitudes exceed the radar’s Nyquist velocity. Input KAZR data fields are passed through into the KAZRCOR output files, in their native time and range coordinates. Complementary corrected reflectivity and velocity fields are provided, along with a mask of significant detections and a number of data quality flags. This report covers the KAZRCOR VAP as applied to the original KAZR radars and the upgraded KAZR2 radars. Currently there are two separate code bases for the different radar versions, but once KAZR and KAZR2 data formats are harmonized, only a single code base will be required.

  15. Rate of initial recovery and subsequent radar monitoring performance following a simulated emergency involving startle.

    1983-09-01

    The present study employed auditory startle to simulate the principal components (unexpectedness, fear, and physiological arousal) that are common to many types of sudden emergencies and compared performance recovery following startle with recovery f...

  16. Radar ornithology and the conservation of migratory birds

    Sidney A. Gauthreaux; Carroll G. Belser

    2005-01-01

    It is possible to study with surveillance radar the movements of migrating birds in the atmosphere at different spatial scales. At a spatial scale within a range of 6 kilometers, high-resolution, 3-centimeter wavelength surveillance radar (e.g. BIRDRAD) can detect the departure of migrants from different types of habitat within a few kilometers of the radar. The radar...

  17. Marine target detection in quad-pol synthetic aperture radar imagery based on the relative phase of cross-polarized channels

    Wang, Yunhua; Li, Huimin; Zhang, Yanmin; Guo, Lixin

    2015-01-01

    A focus on marine target detection in noise corrupted fully polarimetric synthetic aperture radar (SAR) is presented. The property of the relative phase between two cross-polarized channels reveals that the relative phases evaluated within sea surface area or noise corrupted area are widely spread phase angle region [-π,π] due to decorrelation effect; however, the relative phases are concentrated to zero and ±π for real target and its first-order azimuth ambiguities (FOAAs), respectively. Exploiting this physical behavior, the reciprocal of the mean square value of the relative phase (RMSRP) is defined as a new parameter for target detection, and the experiments based on fully polarimetric Radarsat-2 SAR images show that the strong noise and the FOAAs can be effectively suppressed in RMSRP image. Meanwhile, validity of the new parameter for target detection is also verified by two typical Radarsat-2 SAR images, in which targets' ambiguities and strong noise are present.

  18. Sounding Cratonic Fill in Small Buried Craters Using Ground Penetrating Radar: Analog Study to the Martian Case

    Heggy , Essam; Paillou , Philippe

    2006-01-01

    We report results from a 270 MHz GPR survey performed on a recently discovered impact field in the southwestern Egyptian desert. The investigation suggests the ability of radar techniques to detect small-buried craters and probe their filling

  19. Coseismic Deformation of Chi-Chi Earthquake as Detected by Differential Synthetic Aperture Radar Interferometry and GPS Data

    Chia-Sheng Hsieh Tian-Yuan Shih

    2006-01-01

    Full Text Available A rupture in the Chelungpu fault caused an Mw 7.6 earthquake on 21 September 1999 near Chi-Chi in central Taiwan. This earthquake was the most destructive experienced in Taiwan for the past century along this fault. In this study, we examined the earthquake-induced surface deformation pattern using differential synthetic aperture radar interferometry (D-InSAR combined with global positioning system (GPS data regarding the footwall of the Chelungpu fault. Six synthetic aperture radar (SAR scenes, approximately 100 × 100 km each, recorded by the European Remote Sensing Satellite 2 (ERS-2, spanning the rupture area, were selected for study. The data were used to generate a high-resolution, wide-area map of displacements in flat or semi-flat areas. Interferograms show radar line contours indicating line-of-sight (LOS changes corresponding to surface displacements caused by earthquake ruptures. These results were compared to synthetic interferograms generated from GPS data. Displacements shown by GPS data were interpolated onto wide-area maps and transformed to coincide with the radar LOS direction. The resulting coseismic displacement contour map showed a lobed pattern consistent with the precise GPSbased displacement field. Highly accurate vertical displacement was determined using D-InSAR data using the coordinate transform method, while GPS data was effective in showing the horizontal component. Thus, this study confirmed the effectiveness of the D-InSAR method for determining the coseismic deformation caused by the Chi-Chi earthquake at the footwall of the Chelungpu fault.

  20. Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle

    Hermann, Dan; Galeazzi, Roberto; Andersen, Jens Christian

    2015-01-01

    This paper describes an obstacle detection system for a high-speed and agile unmanned surface vehicle (USV), running at speeds up to 30 m/s. The aim is a real-time and high performance obstacle detection system using both radar and vision technologies to detect obstacles within a range of 175 m. ...... performance using sensor fusion of radar and computer vision....

  1. Weather Radar Stations

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  2. Design and analysis of compressed sensing radar detectors

    Anitori, L.; Maleki, A.; Otten, M.P.G.; Baraniuk, R.G.; Hoogeboom, P.

    2013-01-01

    We consider the problem of target detection from a set of Compressed Sensing (CS) radar measurements corrupted by additive white Gaussian noise. We propose two novel architectures and compare their performance by means of Receiver Operating Characteristic (ROC) curves. Using asymptotic arguments and

  3. Synthetic aperture radar capabilities in development

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  4. Bistatic radar

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  5. Extended Target Recognition in Cognitive Radar Networks

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  6. Interception of LPI radar signals

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  7. A Novel Ship Detection Method Based on Gradient and Integral Feature for Single-Polarization Synthetic Aperture Radar Imagery

    Hao Shi

    2018-02-01

    Full Text Available With the rapid development of remote sensing technologies, SAR satellites like China’s Gaofen-3 satellite have more imaging modes and higher resolution. With the availability of high-resolution SAR images, automatic ship target detection has become an important topic in maritime research. In this paper, a novel ship detection method based on gradient and integral features is proposed. This method is mainly composed of three steps. First, in the preprocessing step, a filter is employed to smooth the clutters and the smoothing effect can be adaptive adjusted according to the statistics information of the sub-window. Thus, it can retain details while achieving noise suppression. Second, in the candidate area extraction, a sea-land segmentation method based on gradient enhancement is presented. The integral image method is employed to accelerate computation. Finally, in the ship target identification step, a feature extraction strategy based on Haar-like gradient information and a Radon transform is proposed. This strategy decreases the number of templates found in traditional Haar-like methods. Experiments were performed using Gaofen-3 single-polarization SAR images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency. In addition, this method has the potential for on-board processing.

  8. Introduction to radar target recognition

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  9. THz impulse radar for biomedical sensing: nonlinear system behavior

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  10. Micropower impulse radar technology and applications

    Mast, J., LLNL

    1998-04-15

    The LLNL-developed Micropower Impulse Radar (MIR) technology has quickly gone from laboratory concept to embedded circuitry in numerous government and commercial systems in the last few years[l]. The main ideas behind MIR, invented by T. McEwan in the Laser Program, are the generation and detection systems for extremely low- power ultra-wideband pulses in the gigaHertz regime using low-cost components. These ideas, coupled with new antenna systems, timing and radio-frequency (RF) circuitry, computer interfaces, and signal processing, have provided the catalyst for a new generation of compact radar systems. Over the past several years we have concentrated on a number of applications of MIR which address a number of remote-sensing applications relevant to emerging programs in defense, transportation, medical, and environmental research. Some of the past commercial successes have been widely publicized [2] and are only now starting to become available for market. Over 30 patents have been filed and over 15 licenses have been signed on various aspects of the MIR technology. In addition, higher performance systems are under development for specific laboratory programs and government reimbursables. The MIR is an ultra- wideband, range-gated radar system that provides the enabling hardware technology used in the research areas mentioned above. It has numerous performance parameters that can be Selected by careful design to fit the requirements. We have improved the baseline, short- range, MIR system to demonstrate its effectiveness. The radar operates over the hand from approximately I to 4 GHz with pulse repetition frequencies up to 10 MHz. It provides a potential range resolution of I cm at ranges of greater than 20 m. We have developed a suite of algorithms for using MIR for image formation. These algorithms currently support Synthetic aperture and multistate array geometries. This baseline MIR radar imaging system has been used for several programmatic applications.

  11. The time course of cancer detection performance

    Taylor-Phillips, Sian; Clarke, Aileen; Wallis, Matthew; Wheaton, Margot; Duncan, Alison; Gale, Alastair G.

    2011-03-01

    The purpose of this study was to measure how mammography readers' performance varies with time of day and time spent reading. This was investigated in screening practice and when reading an enriched case set. In screening practice records of time and date that each case was read, along with outcome (whether the woman was recalled for further tests, and biopsy results where performed) was extracted from records from one breast screening centre in UK (4 readers). Patterns of performance with time spent reading was also measured using an enriched test set (160 cases, 41% malignant, read three times by eight radiologists). Recall rates varied with time of day, with different patterns for each reader. Recall rates decreased as the reading session progressed both when reading the enriched test set and in screening practice. Further work is needed to expand this work to a greater number of breast screening centres, and to determine whether these patterns of performance over time can be used to optimize overall performance.

  12. Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dubbert, Dale F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tise, Bertice L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the relationship of INL to GMTI performance.

  13. Radar reflection off extensive air showers

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  14. Ensemble of classifiers based network intrusion detection system performance bound

    Mkuzangwe, Nenekazi NP

    2017-11-01

    Full Text Available This paper provides a performance bound of a network intrusion detection system (NIDS) that uses an ensemble of classifiers. Currently researchers rely on implementing the ensemble of classifiers based NIDS before they can determine the performance...

  15. Performance evaluation of differential detection of MSK

    Crozier, S.; Mazur, B.; Matyas, R.

    Various predetection bandpass filters for use in a differential MSK detector are compared. Filter types include 2- and 4-pole Butterworth, Gaussian and ideal brickwall. It is found that the 4-pole Butterworth provides the least E sub b/N sub 0 degradation: with BT = 1.1, the degradation relative to coherent PSK detection at Pe = 5 x 10 to the -4th is 2.9 dB. This can be reduced to approximately 1.9 dB with the addition of a single error correction circuit which does not require the addition of redundancy bits. The additional degradations due to transmit and post-demodulation filters, carrier frequency offset, and bit timing errors are also presented.

  16. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  17. Low-resolution Airborne Radar Air/ground Moving Target Classification and Recognition

    Wang Fu-you

    2014-10-01

    Full Text Available Radar Target Recognition (RTR is one of the most important needs of modern and future airborne surveillance radars, and it is still one of the key technologies of radar. The majority of present algorithms are based on wide-band radar signal, which not only needs high performance radar system and high target Signal-to-Noise Ratio (SNR, but also is sensitive to angle between radar and target. Low-Resolution Airborne Surveillance Radar (LRASR in downward-looking mode, slow flying aircraft and ground moving truck have similar Doppler velocity and Radar Cross Section (RCS, leading to the problem that LRASR air/ground moving targets can not be distinguished, which also disturbs detection, tracking, and classification of low altitude slow flying aircraft to solve these issues, an algorithm based on narrowband fractal feature and phase modulation feature is presented for LRASR air/ground moving targets classification. Real measured data is applied to verify the algorithm, the classification results validate the proposed method, helicopters and truck can be well classified, the average discrimination rate is more than 89% when SNR ≥ 15 dB.

  18. Broadband Counter-Wound Spiral Antenna for Subsurface Radar Applications

    Yong, Lim

    2003-01-01

    Subsurface radar also known as ground-penetrating radar is increasingly being used for the detection and location of buried objects such as mines and structure that are found within the upper regions...

  19. Coherent Doppler Laser Radar: Technology Development and Applications

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  20. The Development of a Plan for the Assessment, Improvement and Deployment of a Radar Acoustic Sounding System (RASS) for Wake Vortex Detection

    Morris, Philip J.; McLaughlin, Dennis K.; Gabrielson, Thomas B.; Boluriaan, Said

    2004-01-01

    This report describes the activities completed under a grant from the NASA Langley Research Center to develop a plan for the assessment, improvement, and deployment of a Radar Acoustic Sounding System (RASS) for the detection of wake vortices. A brief review is provided of existing alternative instruments for wake vortex detection. This is followed by a review of previous implementations and assessment of a RASS. As a result of this review, it is concluded that the basic features of a RASS have several advantages over other commonly used wake vortex detection and measurement systems. Most important of these features are the good fidelity of the measurements and the potential for all weather operation. To realize the full potential of this remote sensing instrument, a plan for the development of a RASS designed specifically for wake vortex detection and measurement has been prepared. To keep costs to a minimum, this program would start with the development an inexpensive laboratory-scale version of a RASS system. The new instrument would be developed in several stages, each allowing for a critical assessment of the instrument s potential and limitations. The instrument, in its initial stages of development, would be tested in a controlled laboratory environment. A jet vortex simulator, a prototype version of which has already been fabricated, would be interrogated by the RASS system. The details of the laboratory vortex would be measured using a Particle Image Velocimetry (PIV) system. In the early development stages, the scattered radar signal would be digitized and the signal post-processed to determine how extensively and accurately the RASS could measure properties of the wake vortex. If the initial tests prove to be successful, a real-time, digital signal processing system would be developed as a component of the RASS system. At each stage of the instrument development and testing, the implications of the scaling required for a full-scale instrument would be

  1. Array-Based Ultrawideband through-Wall Radar: Prediction and Assessment of Real Radar Abilities

    Nadia Maaref

    2013-01-01

    Full Text Available This paper deals with a new through-the-wall (TTW radar demonstrator for the detection and the localisation of people in a room (in a noncooperative way with the radar situated outside but in the vicinity of the first wall. After modelling the propagation through various walls and quantifying the backscattering by the human body, an analysis of the technical considerations which aims at defining the radar design is presented. Finally, an ultrawideband (UWB frequency modulated continuous wave (FMCW radar is proposed, designed, and implemented. Some representative trials show that this radar is able to localise and track moving people behind a wall in real time.

  2. Remote sensing with laser spectrum radar

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  3. Wind turbine clutter mitigation in coastal UHF radar.

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  4. RADAR PPI Scope Overlay

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  5. Advances in bistatic radar

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  6. LPI Optimization Framework for Target Tracking in Radar Network Architectures Using Information-Theoretic Criteria

    Chenguang Shi

    2014-01-01

    Full Text Available Widely distributed radar network architectures can provide significant performance improvement for target detection and localization. For a fixed radar network, the achievable target detection performance may go beyond a predetermined threshold with full transmitted power allocation, which is extremely vulnerable in modern electronic warfare. In this paper, we study the problem of low probability of intercept (LPI design for radar network and propose two novel LPI optimization schemes based on information-theoretic criteria. For a predefined threshold of target detection, Schleher intercept factor is minimized by optimizing transmission power allocation among netted radars in the network. Due to the lack of analytical closed-form expression for receiver operation characteristics (ROC, we employ two information-theoretic criteria, namely, Bhattacharyya distance and J-divergence as the metrics for target detection performance. The resulting nonconvex and nonlinear LPI optimization problems associated with different information-theoretic criteria are cast under a unified framework, and the nonlinear programming based genetic algorithm (NPGA is used to tackle the optimization problems in the framework. Numerical simulations demonstrate that our proposed LPI strategies are effective in enhancing the LPI performance for radar network.

  7. Navy Needs to Establish Effective Metrics to Achieve Desired Outcomes for SPY1 Radar Sustainment (Redacted)

    2016-08-01

    subsystems in the AEGIS Weapon System that searches, detects, and tracks air and surface targets to support Anti -Air Warfare and Ballistic Missile... System that searches, detects, and tracks air and surface targets to support Anti -Air Warfare and Ballistic Missile Defense missions. The SPY-1 radar...a series on SPY-1 radar spare parts. The SPY-1 radar is an advanced, automatic detect and track radar system . The SPY-1 radar is one of 13 major

  8. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Radar principles for the nonspecialist, 3rd edition

    Toomay, John

    2004-01-01

    Radar Principles for the Non-specialist, Third Edition continues its popular tradition: to distill the very complex technology of radar into its fundamentals, tying them to the laws of nature on one end and to the most modern and complex systems on the other. It starts with electromagnetic propagation, describes a radar of the utmost simplicity, and derives the radar range equation from that simple radar. Once the range equation is available, the book attacks the meaning of each term in it, moving through antennas, detection and tracking, radar cross-section, waveforms andsignal proces

  10. A statistical analysis on the leak detection performance of ...

    Chinedu Duru

    2017-11-09

    Nov 9, 2017 ... of underground and overground pipelines with wireless sensor networks through the .... detection performance analysis of pipeline leakage. This study and ..... case and apply to all materials transported through the pipeline.

  11. Rain/snow radar remote sensing with two X-band radars operating over an altitude gradient in the French Alps

    Delrieu, Guy; Cazenave, Frédéric; Yu, Nan; Boudevillain, Brice; Faure, Dominique; Gaussiat, Nicolas

    2017-04-01

    Operating weather radars in high-mountain regions faces the following well-known dilemma: (1) installing radar on top of mountains allows for the detection of severe summer convective events over 360° but may give poor QPE performance during a very significant part of the year when the 0°C isotherm is located below or close to the radar altitude; (2) installing radar at lower altitudes may lead to better QPE over sensitive areas such as cities located in valleys, but at the cost of reduced visibility and detection capability in other geographical sectors. We have the opportunity to study this question in detail in the region of Grenoble (an Alpine city of 500 000 inhabitants with an average altitude of 210 m asl) with a pair of X-band polarimetric weather radars operated respectively by Meteo-France on top of Mount Moucherotte (1920 m asl) and by IGE on the Grenoble Campus (213 m asl). The XPORT radar (IGE) performs a combination of PPIs at elevations of 3.5, 7.5, 15 and 25° complemented by two RHIs in the vertical plane passing by the two radar sites, in order to document the 4D precipitation variability within the Grenoble intermountain valley. In the proposed communication, preliminary results of this experiment (started in September 2016) will be presented with highlights on (1) the calibration of the two radar systems, (2) the characterization of the melting layer during significant precipitation events (>5mm/day) occurring in autumn, winter and spring; (3) the simulation of the relative effects of attenuation and non-uniform beam filling at X-band and (4) the possibility to use the mountain returns for quantifying the attenuation by the rain and the melting layer.

  12. Radar Scan Methods in Modern Multifunctional Radars

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  13. Prediction of buried mine-like target radar signatures using wideband electromagnetic modeling

    Warrick, A.L.; Azevedo, S.G.; Mast, J.E.

    1998-04-06

    Current ground penetrating radars (GPR) have been tested for land mine detection, but they have generally been costly and have poor performance. Comprehensive modeling and experimentation must be done to predict the electromagnetic (EM) signatures of mines to access the effect of clutter on the EM signature of the mine, and to understand the merit and limitations of using radar for various mine detection scenarios. This modeling can provide a basis for advanced radar design and detection techniques leading to superior performance. Lawrence Livermore National Laboratory (LLNL) has developed a radar technology that when combined with comprehensive modeling and detection methodologies could be the basis of an advanced mine detection system. Micropower Impulse Radar (MIR) technology exhibits a combination of properties, including wideband operation, extremely low power consumption, extremely small size and low cost, array configurability, and noise encoded pulse generation. LLNL is in the process of developing an optimal processing algorithm to use with the MIR sensor. In this paper, we use classical numerical models to obtain the signature of mine-like targets and examine the effect of surface roughness on the reconstructed signals. These results are then qualitatively compared to experimental data.

  14. Penn State Radar Systems: Implementation and Observations

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  15. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    Taboada, Fernando

    2002-01-01

    Low probability of intercept (LPI) is that property of an emitter that because of its low power, wide bandwidth, frequency variability, or other design attributes, makes it difficult to be detected or identified by means of passive...

  16. Forward scatter radar for remote intelligence of building interiors

    Rossum, W.L. van; Wit, J.J.M. de

    2017-01-01

    Through-wall radar allows for remote intelligence of building interiors including stand-off detection and tracking of persons inside a building. However, reliable radar tracking of people inside a building is not trivial. Conventional, monostatic through-wall radar measures the backscatter of moving

  17. SMAP RADAR Calibration and Validation

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  18. Radar and Lidar Radar DEM

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  19. Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments

    Zhang, Hong-Bo; Zheng, Lei; Su, Yan; Fang, Guang-You; Zhou, Bin; Feng, Jian-Qing; Xing, Shu-Guo; Dai, Shun; Li, Jun-Duo; Ji, Yi-Cai; Gao, Yun-Ze; Xiao, Yuan; Li, Chun-Lai

    2014-12-01

    Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm.

  20. Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments

    Zhang Hong-Bo; Zheng Lei; Su Yan; Feng Jian-Qing; Xing Shu-Guo; Dai Shun; Li Jun-Duo; Xiao Yuan; Li Chun-Lai; Fang Guang-You; Zhou Bin; Ji Yi-Cai; Gao Yun-Ze

    2014-01-01

    Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm

  1. On the performance of pre-microRNA detection algorithms

    Saçar Demirci, Müşerref Duygu; Baumbach, Jan; Allmer, Jens

    2017-01-01

    assess 13 ab initio pre-miRNA detection approaches using all relevant, published, and novel data sets while judging algorithm performance based on ten intrinsic performance measures. We present an extensible framework, izMiR, which allows for the unbiased comparison of existing algorithms, adding new...

  2. Survey of Ultra-wideband Radar

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  3. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems.

    Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo

    2017-04-01

    Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.

  4. Performance Verification on UWB Antennas for Breast Cancer Detection

    Vijayasarveswari V.

    2017-01-01

    Full Text Available Breast cancer is a common disease among women and death figure is continuing to increase. Early breast cancer detection is very important. Ultra wide-band (UWB is the promising candidate for short communication applications. This paper presents the performance of different types of UWB antennas for breast cancer detection. Two types of antennas are used i.e: UWB pyramidal antenna and UWB horn antenna. These antennas are used to transmit and receive the UWB signal. The collected signals are fed into developed neural network module to measure the performance efficiency of each antenna. The average detection efficiency is 88.46% and 87.55% for UWB pyramidal antenna and UWB horn antenna respectively. These antennas can be used to detect breast cancer in the early stage and save precious lives.

  5. Microchannel electron multiplier: improvement in gain performances and detection dynamics

    Audier, M.; Delmotte, J.C.; Boutot, J.P.

    1978-01-01

    The performances of an MCP are a function of its geometrical characteristics (diameter d and ratio 1/d of a channel, useful area) and of the applied voltage. Gain and mean output current are limited by saturation phenomena. By using a particular cascaded MCP's configuration, it is possible to simultaneously improve the gain, its associated fluctuations and the detection dynamics (detected level, counting rate). For gains 10 6 7 , the fluctuations, can be kept as low as 20% and an improvement by a factor > 10 can be obtained on the detection dynamics [fr

  6. Analysis of detection performance of multi band laser beam analyzer

    Du, Baolin; Chen, Xiaomei; Hu, Leili

    2017-10-01

    Compared with microwave radar, Laser radar has high resolution, strong anti-interference ability and good hiding ability, so it becomes the focus of laser technology engineering application. A large scale Laser radar cross section (LRCS) measurement system is designed and experimentally tested. First, the boundary conditions are measured and the long range laser echo power is estimated according to the actual requirements. The estimation results show that the echo power is greater than the detector's response power. Secondly, a large scale LRCS measurement system is designed according to the demonstration and estimation. The system mainly consists of laser shaping, beam emitting device, laser echo receiving device and integrated control device. Finally, according to the designed lidar cross section measurement system, the scattering cross section of target is simulated and tested. The simulation results are basically the same as the test results, and the correctness of the system is proved.

  7. Airborne Radar Search for Diesel Submarines (ARSDS)

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of an airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  8. Airborne Radar Search for Diesel Submarines

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  9. VERTICAL ACTIVITY ESTIMATION USING 2D RADAR

    hennie

    estimates on aircraft vertical behaviour from a single 2D radar track. ... Fortunately, the problem of detecting relative vertical motion using a single 2D ..... awareness tools in scenarios where aerial activity sensing is typically limited to 2D.

  10. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    N. N. Halimshah; A. Yusup; Z. Mat Amin; M. D. Ghazalli

    2015-01-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and effic...

  11. Performance evaluation software moving object detection and tracking in videos

    Karasulu, Bahadir

    2013-01-01

    Performance Evaluation Software: Moving Object Detection and Tracking in Videos introduces a software approach for the real-time evaluation and performance comparison of the methods specializing in moving object detection and/or tracking (D&T) in video processing. Digital video content analysis is an important item for multimedia content-based indexing (MCBI), content-based video retrieval (CBVR) and visual surveillance systems. There are some frequently-used generic algorithms for video object D&T in the literature, such as Background Subtraction (BS), Continuously Adaptive Mean-shift (CMS),

  12. Notch Filter Analysis and Its Application in Passive Coherent Location Radar (in English

    Li Ji-chuan

    2015-01-01

    Full Text Available The Normalized Least-Mean-Squares (NLMS algorithm is widely used to cancel the direct and multiple path interferences in Passive Coherent Location (PCL radar systems. This study proposes that the interference cancelation using the NLMS algorithm and the calculation of the radar Cross Ambiguity Function (CAF can be modeled as a notch filter, with the notch located at zero Doppler frequency in the surface of the radar CAF. The analysis shows that the notch’s width and depth are closely related to the step size of the NLMS algorithm. Subsequently, the effect of the notch in PCL radar target detection is analyzed. The results suggest that the detection performance of the PCL radar deteriorates because of the wide notch. Furthermore, the Nonuniform NLMS (NNLMS algorithm is proposed for removing the clutter with the Doppler frequency by using notch filtering. A step-size matrix is adopted to mitigate the low Doppler frequency clutter and lower the floor of the radar CAF. With the step-size matrix, can be obtained notches of different depths and widths in different range units of the CAF, which can filter the low Doppler frequency clutter. In addition, the convergence rate of the NNLMS algorithm is better than that of the traditional NLMS algorithm. The validity of the NNLMS algorithm is verified by experimental results.

  13. MIMO scheme performance and detection in epsilon noise

    Stepanov, Sander

    2006-01-01

    New approach for analysis and decoding MIMO signaling is developed for usual model of nongaussion noise consists of background and impulsive noise named epsilon - noise. It is shown that non-gaussion noise performance significantly worse than gaussion ones. Stimulation results strengthen out theory. Robust in statistical sense detection rule is suggested for such kind of noise features much best robust detector performance than detector designed for Gaussian noise in impulsive environment and...

  14. Optimal Power Allocation Strategy in a Joint Bistatic Radar and Communication System Based on Low Probability of Intercept.

    Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-11-25

    In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.

  15. Using intraindividual variability to detect malingering in cognitive performance.

    Strauss, E; Hultsch, D F; Hunter, M; Slick, D J; Patry, B; Levy-Bencheton, J

    1999-11-01

    The utility of measures for detecting malingering was evaluated using a simulation design in which half the participants were encouraged to do their best and half were asked to feign head injury. Particular attention was focused on the utility of repeated assessment (intraindividual variability) in discriminating the groups. Participants were tested on three occasions on measures commonly used to detect malingering including a specific symptom validity test (SVT). The results indicated that multiple measures of malingering obtained in single assessment (occasion one) discriminated the groups effectively. In addition, however, intraindividual variability in performance, particularly of indicators from the SVT, provided unique information beyond level of performance. The results suggest that response inconsistency across testing sessions may be a clinically useful measure for the detection of malingering.

  16. Comet radar explorer

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  17. Coupling Between Doppler Radar Signatures and Tornado Damage Tracks

    Jedlovec, Gary J.; Molthan, Andrew L.; Carey, Lawrence; Carcione, Brian; Smith, Matthew; Schultz, Elise V.; Schultz, Christopher; Lafontaine, Frank

    2011-01-01

    On April 27, 2011, the southeastern United States was raked with several episodes of severe weather. Numerous tornadoes caused extensive damage, and tragically, the deaths of over 300 people. In Alabama alone, there were 61 confirmed tornados, 4 of them produced EF5 damage, and several were on the ground an hour or more with continuous damage tracks exceeding 80km. The use of Doppler radars covering the region provided reflectivity and velocity signatures that allowed forecasters to monitors the severe storms from beginning to end issuing hundreds of severe weather warnings throughout the day. Meteorologists from the the NWS performed extensive surveys to assess the intensity, duration, and ground track of tornadoes reported during the event. Survey activities included site visits to the affected locations, analysis of radar and satellite data, aerial surveys, and interviews with eyewitnesses. Satellite data from NASA's MODIS and ASTER instruments played a helpful role in determining the location of tornado damage paths and in the assessment. High resolution multispectral and temporal composites helped forecasters corroborate their damage assessments, determine starting and ending points for tornado touchdowns, and helped to provide forecasters with a better big-picture view of the damage region. The imagery also helped to separate damage from the April 27th tornados from severe weather that occurred earlier that month. In a post analysis of the outbreak, tornado damage path signatures observed in the NASA satellite data have been correlated to "debris ball" signatures in the NWS Doppler radars and a special ARMOR dual-polarization radar operated by the University of Alabama Huntsville during the event. The Doppler radar data indicates a circular enhanced reflectivity signal and rotational couplet in the radial velocity likely associated with the tornado that is spatially correlated with the damage tracks in the observed satellite data. An algorithm to detect and

  18. Computer-aided detection of pulmonary nodules: influence of nodule characteristics on detection performance

    Marten, K.; Engelke, C.; Seyfarth, T.; Grillhoesl, A.; Obenauer, S.; Rummeny, E.J.

    2005-01-01

    AIM: To evaluate prospectively the influence of pulmonary nodule characteristics on detection performances of a computer-aided diagnosis (CAD) tool and experienced chest radiologists using multislice CT (MSCT). MATERIALS AND METHODS: MSCT scans of 20 consecutive patients were evaluated by a CAD system and two independent chest radiologists for presence of pulmonary nodules. Nodule size, position, margin, matrix characteristics, vascular and pleural attachments and reader confidence were recorded and data compared with an independent standard of reference. Statistical analysis for predictors influencing nodule detection or reader performance included chi-squared, retrograde stepwise conditional logistic regression with odds ratios and nodule detection proportion estimates (DPE), and ROC analysis. RESULTS: For 135 nodules, detection rates for CAD and readers were 76.3, 52.6 and 52.6%, respectively; false-positive rates were 0.55, 0.25 and 0.15 per examination, respectively. In consensus with CAD the reader detection rate increased to 93.3%, and the false-positive rate dropped to 0.1/scan. DPEs for nodules ≤5 mm were significantly higher for ICAD than for the readers (p<0.05). Absence of vascular attachment was the only significant predictor of nodule detection by CAD (p=0.0006-0.008). There were no predictors of nodule detection for reader consensus with CAD. In contrast, vascular attachment predicted nodule detection by the readers (p=0.0001-0.003). Reader sensitivity was higher for nodules with vascular attachment than for unattached nodules (sensitivities 0.768 and 0.369; 95% confidence intervals=0.651-0.861 and 0.253-0.498, respectively). CONCLUSION: CAD increases nodule detection rates, decreases false-positive rates and compensates for deficient reader performance in detection of smallest lesions and of nodules without vascular attachment

  19. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  20. Meteor observation by the Kyoto meteor radar

    Kato, S.; Tsuda, T.

    1987-01-01

    The Kyoto Meteor Radar is a monostatic coherent pulsed Doppler radar operating on the frequency of 31.57 MH. The system is computer controlled and uses radio interferometry for echo height determination. The antenna, an improvement, can be directed either to the north or the east. The system has been continuously collecting data on winds at meteor heights by radar observation. The meteor echo rate was also measured, the echo rate distribution with height and the daily variation in height integrated echo rate are discussed. Investigations of atmospheric tides are being pursued by cooperative observations. A novel approach to the study of gravity waves was attempted using the meteor radar which is able to detect the horizontal propagation of the waves by observing the changing phase through the region illuminated by the radar

  1. Oblique Projection Polarization Filtering-Based Interference Suppressions for Radar Sensor Networks

    Cao Bin

    2010-01-01

    Full Text Available The interferences coming from the radar members degrade the detection and recognition performance of the radar sensor networks (RSNs if the waveforms of the radar members are nonorthogonal. In this paper, we analyze the interferences by exploring the polarization information of the electromagnetic (EM waves. Then, we propose the oblique projection polarization filtering- (OPPF- based scheme to suppress the interferences while keeping the amplitude and phase of its own return in RSNs, even if the polarized states of the radar members are not orthogonal. We consider the cooperative RSNs environment where the polarization information of each radar member is known to all. The proposed method uses all radar members' polarization information to establish the corresponding filtering operator. The Doppler-shift and its uncertainty are independent of the polarization information, which contributes that the interferences can be suppressed without the utilization of the spatial, the temporal, the frequency, the time-delay and the Doppler-shift information. Theoretical analysis and the mathematical deduction show that the proposed scheme is a valid and simple implementation. Simulation results also demonstrate that this method can obtain a good filtering performance when dealing with the problem of interference suppressions for RSNs.

  2. Vertical Pointing Weather Radar for Built-up Urban Areas

    Rasmussen, Michael R.; Thorndahl, Søren; Schaarup-Jensen, Kjeld

    2008-01-01

      A cost effective vertical pointing X-band weather radar (VPR) has been tested for measurement of precipitation in urban areas. Stationary tests indicate that the VPR performs well compared to horizontal weather radars, such as the local area weather radars (LAWR). The test illustrated...

  3. Detection of Operator Performance Breakdown as an Automation Triggering Mechanism

    Yoo, Hyo-Sang; Lee, Paul U.; Landry, Steven J.

    2015-01-01

    Performance breakdown (PB) has been anecdotally described as a state where the human operator "loses control of context" and "cannot maintain required task performance." Preventing such a decline in performance is critical to assure the safety and reliability of human-integrated systems, and therefore PB could be useful as a point at which automation can be applied to support human performance. However, PB has never been scientifically defined or empirically demonstrated. Moreover, there is no validated objective way of detecting such a state or the transition to that state. The purpose of this work is: 1) to empirically demonstrate a PB state, and 2) to develop an objective way of detecting such a state. This paper defines PB and proposes an objective method for its detection. A human-in-the-loop study was conducted: 1) to demonstrate PB by increasing workload until the subject reported being in a state of PB, and 2) to identify possible parameters of a detection method for objectively identifying the subjectively-reported PB point, and 3) to determine if the parameters are idiosyncratic to an individual/context or are more generally applicable. In the experiment, fifteen participants were asked to manage three concurrent tasks (one primary and two secondary) for 18 minutes. The difficulty of the primary task was manipulated over time to induce PB while the difficulty of the secondary tasks remained static. The participants' task performance data was collected. Three hypotheses were constructed: 1) increasing workload will induce subjectively-identified PB, 2) there exists criteria that identifies the threshold parameters that best matches the subjectively-identified PB point, and 3) the criteria for choosing the threshold parameters is consistent across individuals. The results show that increasing workload can induce subjectively-identified PB, although it might not be generalizable-only 12 out of 15 participants declared PB. The PB detection method based on

  4. RNA interference for performance enhancement and detection in doping control.

    Kohler, Maxie; Schänzer, Wilhelm; Thevis, Mario

    2011-10-01

    RNA interference represents a comparably new route of regulating and manipulating specific gene expression. Promising results were obtained in experimental therapies aim at the treatment of different kinds of diseases including cancer, diabetes mellitus or Dychenne muscular dystrophy. While studies on down-regulation efficiency are often performed by analyzing the regulated protein, the direct detection of small, interfering RNA molecules and antisense oligonucleotides is of great interest for the investigation of the metabolism and degradation and also for the detection of a putative misuse of these molecules in sports. Myostatin down-regulation was shown to result in increased performance and muscle growth and the regulation of several other proteins could be relevant for performance enhancement. This mini-review summarizes current approaches for the mass spectrometric analysis of siRNA and antisense oligonucleotides from biological matrices and the available data on biodistribution, metabolism, and half-life of relevant substances are discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Radar Weather Observation

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  6. ISTEF Laser Radar Program

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  7. Weather Radar Impact Zones

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  8. Novel radar techniques and applications

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  9. Biologically Inspired Target Recognition in Radar Sensor Networks

    Liang Qilian

    2010-01-01

    Full Text Available One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC. Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms to target detection in cognitive radar sensor network. Humans' information integration mechanisms have been modelled using maximum-likelihood estimation (MLE or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT is used to process the integrated data from MLE or soft-max. We apply fuzzy logic system (FLS to automatic target detection based on the AC power values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the existing 2D construction algorithm does not work in this study.

  10. Adaptive Waveform Design for Cognitive Radar in Multiple Targets Situations

    Xiaowen Zhang

    2018-02-01

    Full Text Available In this paper, the problem of cognitive radar (CR waveform optimization design for target detection and estimation in multiple extended targets situations is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended targets with unknown target impulse response (TIR. To address this problem, an improved algorithm is employed for target detection by maximizing the detection probability of the received echo on the promise of ensuring the TIR estimation precision. In this algorithm, an additional weight vector is introduced to achieve a trade-off among different targets. Both the estimate of TIR and transmit waveform can be updated at each step based on the previous step. Under the same constraint on waveform energy and bandwidth, the information theoretical approach is also considered. In addition, the relationship between the waveforms that are designed based on the two criteria is discussed. Unlike most existing works that only consider single target with temporally correlated characteristics, waveform design for multiple extended targets is considered in this method. Simulation results demonstrate that compared with linear frequency modulated (LFM signal, waveforms designed based on maximum detection probability and maximum mutual information (MI criteria can make radar echoes contain more multiple-target information and improve radar performance as a result.

  11. Software Radar Technology

    Tang Jun

    2015-08-01

    Full Text Available In this paper, the definition and the key features of Software Radar, which is a new concept, are proposed and discussed. We consider the development of modern radar system technology to be divided into three stages: Digital Radar, Software radar and Intelligent Radar, and the second stage is just commencing now. A Software Radar system should be a combination of various modern digital modular components conformed to certain software and hardware standards. Moreover, a software radar system with an open system architecture supporting to decouple application software and low level hardware would be easy to adopt "user requirements-oriented" developing methodology instead of traditional "specific function-oriented" developing methodology. Compared with traditional Digital Radar, Software Radar system can be easily reconfigured and scaled up or down to adapt to the changes of requirements and technologies. A demonstration Software Radar signal processing system, RadarLab 2.0, which has been developed by Tsinghua University, is introduced in this paper and the suggestions for the future development of Software Radar in China are also given in the conclusion.

  12. Bayesian image reconstruction for improving detection performance of muon tomography.

    Wang, Guobao; Schultz, Larry J; Qi, Jinyi

    2009-05-01

    Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.

  13. First Joint Observations of Radio Aurora by the VHF and HF Radars of the ISTP SB RAS

    Berngardt, O. I.; Lebedev, V. P.; Kutelev, K. A.; Kushnarev, D. S.; Grkovich, K. V.

    2018-01-01

    Two modern radars for diagnosis of the ionosphere by the radio-wave backscattering method, namely, the Irkutsk incoherent scatter radar at VHF (IISR, 154-162 MHz) and the Ekaterinburg coherent radar at HF (EKB, 8-20 MHz) are operated at the Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS). The paper analyzes the results of joint observations of strong scattering (radio aurora) on June 8, 2015. To determine the geographical position of the radio aurora, we developed original methods that take into account both the features of the radio-wave propagation and the features of the radar antenna systems. It is shown that there are areas where the spatial position of the HF and VHF radio aurora can coincide. This permits using the radars as a single complex for diagnosis of the characteristics of small-scale high-latitude irregularities in the ionospheric E and F layers. A comparative analysis of the characteristics and temporal dynamics of the radio-aurora region in the HF and VHF ranges is performed. Using the DMSP satellite data, it has been shown that the radio aurora dynamics during this experiment with the EKB radar can be related with the spatial dynamics of the localized area with high electric field, which moves from high to equatorial latitudes. It is found that due to the broader field of view, radio aurora at the HF radar was stably observed 6-12 min earlier than at the VHF radar. This permits using the EKB radar data for prediction of the radio-aurora detection by the IISR radar.

  14. Wind Turbine Radar Cross Section

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  15. Performance Assessment Method for a Forged Fingerprint Detection Algorithm

    Shin, Yong Nyuo; Jun, In-Kyung; Kim, Hyun; Shin, Woochang

    The threat of invasion of privacy and of the illegal appropriation of information both increase with the expansion of the biometrics service environment to open systems. However, while certificates or smart cards can easily be cancelled and reissued if found to be missing, there is no way to recover the unique biometric information of an individual following a security breach. With the recognition that this threat factor may disrupt the large-scale civil service operations approaching implementation, such as electronic ID cards and e-Government systems, many agencies and vendors around the world continue to develop forged fingerprint detection technology, but no objective performance assessment method has, to date, been reported. Therefore, in this paper, we propose a methodology designed to evaluate the objective performance of the forged fingerprint detection technology that is currently attracting a great deal of attention.

  16. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    Marchevsky, M.; Wang, X.; Sabbi, G.; Prestemon, S.

    2014-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01 [...

  17. Experiment in Onboard Synthetic Aperture Radar Data Processing

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  18. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  19. Understanding radar systems

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  20. Pulse Doppler radar

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  1. Radar Detectability of Light Aircraft

    1976-04-01

    a vestigial blind speed at 121 knots. Aircraft radial velocity compon- ents for the flights discussed here varied between zero and 125 knots. Typi.cal...the contributions of Mr. D.M. Selwyn who designed the digital recording equipment and organized the flight tests, and Dr. A.W.R. Gilchrist who edited

  2. Water stress detection using radar

    van Emmerik, T.H.M.

    2017-01-01

    Vegetation is a crucial part of the water and carbon cycle. Through photosynthesis carbon is assimilated for biomass production, and oxygen is released into the atmosphere. During this process, water is transpired through the stomata, and is redistributed in the plant. Transpired water is refilled

  3. Standalone computer-aided detection compared to radiologists' performance for the detection of mammographic masses

    Hupse, Rianne; Samulski, Maurice; Imhof-Tas, Mechli W.; Karssemeijer, Nico; Lobbes, Marc; Boetes, Carla; Heeten, Ard den; Beijerinck, David; Pijnappel, Ruud

    2013-01-01

    We developed a computer-aided detection (CAD) system aimed at decision support for detection of malignant masses and architectural distortions in mammograms. The effect of this system on radiologists' performance depends strongly on its standalone performance. The purpose of this study was to compare the standalone performance of this CAD system to that of radiologists. In a retrospective study, nine certified screening radiologists and three residents read 200 digital screening mammograms without the use of CAD. Performances of the individual readers and of CAD were computed as the true-positive fraction (TPF) at a false-positive fraction of 0.05 and 0.2. Differences were analysed using an independent one-sample t-test. At a false-positive fraction of 0.05, the performance of CAD (TPF = 0.487) was similar to that of the certified screening radiologists (TPF = 0.518, P = 0.17). At a false-positive fraction of 0.2, CAD performance (TPF = 0.620) was significantly lower than the radiologist performance (TPF = 0.736, P <0.001). Compared to the residents, CAD performance was similar for all false-positive fractions. The sensitivity of CAD at a high specificity was comparable to that of human readers. These results show potential for CAD to be used as an independent reader in breast cancer screening. (orig.)

  4. Radar Image Simulation: Validation of the Point Scattering Method. Volume 2

    1977-09-01

    the Engineer Topographic Labor - atory (ETL), Fort Belvoir, Virginia. This Radar Simulation Study was performed to validate the point tcattering radar...e.n For radar, the number of Independent samples in a given re.-olution cell is given by 5 ,: N L 2w (16) L Acoso where: 0 Radar incidence angle; w

  5. Radar sensing via a Micro-UAV-borne system

    Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine

    2017-04-01

    In recent years, the miniaturization of flight control systems and payloads has contributed to a fast and widespread diffusion of micro-UAV (Unmanned Aircraft Vehicle). While micro-UAV can be a powerful tool in several civil applications such as environmental monitoring and surveillance, unleashing their full potential for societal benefits requires augmenting their sensing capability beyond the realm of active/passive optical sensors [1]. In this frame, radar systems are drawing attention since they allow performing missions in all-weather and day/night conditions and, thanks to the microwave ability to penetrate opaque media, they enable the detection and localization not only of surface objects but also of sub-surface/hidden targets. However, micro-UAV-borne radar imaging represents still a new frontier, since it is much more than a matter of technology miniaturization or payload installation, which can take advantage of the newly developed ultralight systems. Indeed, micro-UAV-borne radar imaging entails scientific challenges in terms of electromagnetic modeling and knowledge of flight dynamics and control. As a consequence, despite Synthetic Aperture Radar (SAR) imaging is a traditional remote sensing tool, its adaptation to micro-UAV is an open issue and so far only few case studies concerning the integration of SAR and UAV technologies have been reported worldwide [2]. In addition, only early results concerning subsurface imaging by means of an UAV-mounted radar are available [3]. As a contribution to radar imaging via autonomous micro-UAV, this communication presents a proof-of-concept experiment. This experiment represents the first step towards the development of a general methodological approach that exploits expertise about (sub-)surface imaging and aerospace systems with the aim to provide high-resolution images of the surveyed scene. In details, at the conference, we will present the results of a flight campaign carried out by using a single radar

  6. Synthetic pulse radar including a microprocessor based controller

    Fowler, J.C.; Rubin, L.A.; Still, W.L.

    1980-01-01

    This invention relates to pulse radar detection of targets in extended media, including natural phenomena such as oil, coal and ore deposits within the earth. In particular, this invention relates to a pulse radar system employing a synthetic pulse formed from a fourier spectrum of frequencies generated and detected by a digitally controlled transmitter and receiver circuits

  7. Orthogonal on-off control of radar pulses for the suppression of mutual interference

    Kim, Yong Cheol

    1998-10-01

    Intelligent vehicles of the future will be guided by radars and other sensors to avoid obstacles. When multiple vehicles move simultaneously in autonomous navigational mode, mutual interference among car radars becomes a serious problem. An obstacle is illuminated with electromagnetic pulses from several radars. The signal at a radar receiver is actually a mixture of the self-reflection and the reflection of interfering pulses emitted by others. When standardized pulse- type radars are employed on vehicles for obstacle avoidance and so self-pulse and interfering pulses have identical pulse repetition interval, this SI (synchronous Interference) is very difficult to separate from the true reflection. We present a method of suppressing such a synchronous interference. By controlling the pulse emission of a radar in a binary orthogonal ON, OFF pattern, the true self-reflection can be separated from the false one. Two range maps are generated, TRM (true-reflection map) and SIM (synchronous- interference map). TRM is updated for every ON interval and SIM is updated for every OFF interval of the self-radar. SIM represents the SI of interfering radars while TRM keeps a record of a mixture of the true self-reflection and SI. Hence the true obstacles can be identified by the set subtraction operation. The performance of the proposed method is compared with that of the conventional M of N method. Bayesian analysis shows that the probability of false alarm is improved by order of 103 to approximately 106 while the deterioration in the probability of detection is negligible.

  8. Towards Reliable Evaluation of Anomaly-Based Intrusion Detection Performance

    Viswanathan, Arun

    2012-01-01

    This report describes the results of research into the effects of environment-induced noise on the evaluation process for anomaly detectors in the cyber security domain. This research was conducted during a 10-week summer internship program from the 19th of August, 2012 to the 23rd of August, 2012 at the Jet Propulsion Laboratory in Pasadena, California. The research performed lies within the larger context of the Los Angeles Department of Water and Power (LADWP) Smart Grid cyber security project, a Department of Energy (DoE) funded effort involving the Jet Propulsion Laboratory, California Institute of Technology and the University of Southern California/ Information Sciences Institute. The results of the present effort constitute an important contribution towards building more rigorous evaluation paradigms for anomaly-based intrusion detectors in complex cyber physical systems such as the Smart Grid. Anomaly detection is a key strategy for cyber intrusion detection and operates by identifying deviations from profiles of nominal behavior and are thus conceptually appealing for detecting "novel" attacks. Evaluating the performance of such a detector requires assessing: (a) how well it captures the model of nominal behavior, and (b) how well it detects attacks (deviations from normality). Current evaluation methods produce results that give insufficient insight into the operation of a detector, inevitably resulting in a significantly poor characterization of a detectors performance. In this work, we first describe a preliminary taxonomy of key evaluation constructs that are necessary for establishing rigor in the evaluation regime of an anomaly detector. We then focus on clarifying the impact of the operational environment on the manifestation of attacks in monitored data. We show how dynamic and evolving environments can introduce high variability into the data stream perturbing detector performance. Prior research has focused on understanding the impact of this

  9. Performance evaluation of sea surface simulation methods for target detection

    Xia, Renjie; Wu, Xin; Yang, Chen; Han, Yiping; Zhang, Jianqi

    2017-11-01

    With the fast development of sea surface target detection by optoelectronic sensors, machine learning has been adopted to improve the detection performance. Many features can be learned from training images by machines automatically. However, field images of sea surface target are not sufficient as training data. 3D scene simulation is a promising method to address this problem. For ocean scene simulation, sea surface height field generation is the key point to achieve high fidelity. In this paper, two spectra-based height field generation methods are evaluated. Comparison between the linear superposition and linear filter method is made quantitatively with a statistical model. 3D ocean scene simulating results show the different features between the methods, which can give reference for synthesizing sea surface target images with different ocean conditions.

  10. Sparse Representation Based Range-Doppler Processing for Integrated OFDM Radar-Communication Networks

    Bo Kong

    2017-01-01

    Full Text Available In an integrated radar-communication network, multiuser access techniques with minimal performance degradation and without range-Doppler ambiguities are required, especially in a dense user environment. In this paper, a multiuser access scheme with random subcarrier allocation mechanism is proposed for orthogonal frequency division multiplexing (OFDM based integrated radar-communication networks. The expression of modulation Symbol-Domain method combined with sparse representation (SR for range-Doppler estimation is introduced and a parallel reconstruction algorithm is employed. The radar target detection performance is improved with less spectrum occupation. Additionally, a Doppler frequency detector is exploited to decrease the computational complexity. Numerical simulations show that the proposed method outperforms the traditional modulation Symbol-Domain method under ideal and realistic nonideal scenarios.

  11. Small battery operated unattended radar sensor for security systems

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  12. Condor equatorial electrojet campaign: Radar results

    Kudeki, E.; Fejer, B.G.; Farley, D.T.; Hanuise, C.

    1987-01-01

    A review of the experimental and theoretical background to the Condor equatorial electrojet compaign is followed by the presentation and discussion of VHF radar interferometer and HF radar backscatter data taken concurrently with two rocket in situ experiments reported in companion papers (Pfaff et al., this issue (a, b). Both experiments were conducted in strongly driven periods with the on-line radar interferometer displaying signatures of what has been interpreted in earlier radar work (Kudeki et al., 1982) as kilometer scale gradient drift waves. Low-frequency density fluctuations detected by in situ rocket sensors confirm the earlier interpretation. VHF radar/rocket data comparisons also indicate the existence of a turbulent layer in the upper portion of the daytime electrojet at about 108 km altitude driven purely by the two-stream instability. Nonlinear mode coupling of linearly growing two-stream waves to linearly damped 3-m vertical modes could account for the radar echoes scattered from this layer, which showed no indication of large-scale gradient drift waves. Nonlinear mode coupling may therefore compete with the wave-induced anomalous diffusion mechanism proposed recently by Sudan (1983) for the saturation of directly excited two-stream waves. Nighttime radar data show a bifurcated layer with the two parts having comparable echo strength but oppositely directed zonal drift velocities. The lower layer shows narrow backscatter spectra; the upper layer is characterized by kilometer scale waves and vertically propagating type 1 waves

  13. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    Marchevsky, M; Wang, X; Sabbi, G; Prestemon, S

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01, we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed. (author)

  14. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    Marchevsky, M.; Sabbi, G.; Prestemon, S.

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb$_{3}$Sn quadrupole HQ01 [1], we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed.

  15. Tornado detection data reduction and analysis

    Davisson, L. D.

    1977-01-01

    Data processing and analysis was provided in support of tornado detection by analysis of radio frequency interference in various frequency bands. Sea state determination data from short pulse radar measurements were also processed and analyzed. A backscatter simulation was implemented to predict radar performance as a function of wind velocity. Computer programs were developed for the various data processing and analysis goals of the effort.

  16. Using phase for radar scatterer classification

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  17. Study of the coastal atmospheric boundary layer during ESCOMPTE 2001. Evaluation and improvement of the efficiency of a UHF radar; Etude de la couche limite atmospherique cotiere durant ESCOMPTE 2001. Evaluation et amelioration des performances d'un radar UHF

    Puygrenier, V

    2005-12-15

    Forecasting of pollution events was the main objective of the ESCOMPTE-2001 campaign, which took place in the Marseille/Fos/Berre heterogeneous area (southeastern France) in the early summer 2001. This goal requires good understanding and taking into account, by physico-chemical numerical models, of the physical processes in the Atmospheric Boundary Layer (ABL), in which pollutants are emitted, transported and diffused. In the ESCOMPTE-2001 campaign context, this work was devoted to study the low troposphere during sea breeze events, related to meteorological conditions responsible for poor air quality of coastal areas. It presents notably an oscillation of the sea breeze intensity and competitions of locals and regional sea breeze, which change the advective time of the marine air above the continental surface and thus influence the ABL development and its pollutants concentration. This study is based principally on the network of four UHF wind profilers radars set up on the coastal area of Marseille/Fos/Berre, allowing a continuous three-dimensional description of the sea breeze flow and the ABL. For the needs of this phenomenological work, methodological developments was realized to improve the measurement of ABL turbulent properties with UHF radars (terms of turbulent kinetic energy budget) and the use of wind profilers network for the study of pollutants plumes trajectory-graphy. (author)

  18. Performance Test of BF3 Neutron Detection System

    Choi, Yu Sun; Shin, Ho Cheol [KHNP-CRI, Daejeon (Korea, Republic of); Cho, Jin Bok; Oh, Sae Hyun; Ryou, Seok Jean [USERS, Daejeon (Korea, Republic of)

    2015-10-15

    The neutron detecting system of First-of-a-kind plant such an APR1400 at Shin Kori should have been verified in the condition of low operating temperature and pressure of the primary coolant system before receiving the operation license. Auxiliary Ex-core Neutron Flux Monitoring System (AENFMS) is supposed to be installed using BF3 neutron detector in Shin Kori plant. The performance test of AENFMS was conducted to measure neutron sensitivity, moderation ratio and count rate in the same condition with Ex-core Neutron Flux Monitoring System (ENFMS) of APR1400 to verify its detection characteristics in compliance with the functional requirement. Performance test has been conducted for AENFMS of APR1400 to verify BF3 neutron sensitivity, moderation ration of PE, expecting neutron signal count rate from AENFMS, possible extending cable length from detector to pre-amplifier. As a result of measurement, the neutron sensitivity of 34.246±0.168(95%CI)cps/nv, moderation ratio of 11.343±0.039(95%CI) and AENFMS expecting count rate related to ENFMS of 17.8 times are acceptable in compliance with functional requirement, respectively.

  19. Suggestibility and signal detection performance in hallucination-prone students.

    Alganami, Fatimah; Varese, Filippo; Wagstaff, Graham F; Bentall, Richard P

    2017-03-01

    Auditory hallucinations are associated with signal detection biases. We examine the extent to which suggestions influence performance on a signal detection task (SDT) in highly hallucination-prone and low hallucination-prone students. We also explore the relationship between trait suggestibility, dissociation and hallucination proneness. In two experiments, students completed on-line measures of hallucination proneness (the revised Launay-Slade Hallucination Scale; LSHS-R), trait suggestibility (Inventory of Suggestibility) and dissociation (Dissociative Experiences Scale-II). Students in the upper and lower tertiles of the LSHS-R performed an auditory SDT. Prior to the task, suggestions were made pertaining to the number of expected targets (Experiment 1, N = 60: high vs. low suggestions; Experiment 2, N = 62, no suggestion vs. high suggestion vs. no voice suggestion). Correlational and regression analyses indicated that trait suggestibility and dissociation predicted hallucination proneness. Highly hallucination-prone students showed a higher SDT bias in both studies. In Experiment 1, both bias scores were significantly affected by suggestions to the same degree. In Experiment 2, highly hallucination-prone students were more reactive to the high suggestion condition than the controls. Suggestions may affect source-monitoring judgments, and this effect may be greater in those who have a predisposition towards hallucinatory experiences.

  20. Detecting nuclear materials smuggling: performance evaluation of container inspection policies.

    Gaukler, Gary M; Li, Chenhua; Ding, Yu; Chirayath, Sunil S

    2012-03-01

    In recent years, the United States, along with many other countries, has significantly increased its detection and defense mechanisms against terrorist attacks. A potential attack with a nuclear weapon, using nuclear materials smuggled into the country, has been identified as a particularly grave threat. The system for detecting illicit nuclear materials that is currently in place at U.S. ports of entry relies heavily on passive radiation detectors and a risk-scoring approach using the automated targeting system (ATS). In this article we analyze this existing inspection system and demonstrate its performance for several smuggling scenarios. We provide evidence that the current inspection system is inherently incapable of reliably detecting sophisticated smuggling attempts that use small quantities of well-shielded nuclear material. To counter the weaknesses of the current ATS-based inspection system, we propose two new inspection systems: the hardness control system (HCS) and the hybrid inspection system (HYB). The HCS uses radiography information to classify incoming containers based on their cargo content into "hard" or "soft" containers, which then go through different inspection treatment. The HYB combines the radiography information with the intelligence information from the ATS. We compare and contrast the relative performance of these two new inspection systems with the existing ATS-based system. Our studies indicate that the HCS and HYB policies outperform the ATS-based policy for a wide range of realistic smuggling scenarios. We also examine the impact of changes in adversary behavior on the new inspection systems and find that they effectively preclude strategic gaming behavior of the adversary. © 2011 Society for Risk Analysis.

  1. Physical working principles of medical radar.

    Aardal, Øyvind; Paichard, Yoann; Brovoll, Sverre; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-04-01

    There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.

  2. Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z- M relationship

    Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di

    2018-02-01

    With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.

  3. Terahertz radar cross section measurements.

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  4. Space communication and radar with lasers

    Witteman, W.J.

    2005-01-01

    Sensitive heterodyne detection with lasers applied .to radar and satellite communication is seriously hampered by the large electronic bandwidth due to random Doppler shift and frequency instability. These drawbacks can be circumvented by dual signal heterodyne detection. The system consists of

  5. Doppler radar physiological sensing

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  6. Radar Signature Calculation Facility

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  7. Doppler HF Radar Application for the Study of Spatial Structure of Currents in the Black Sea

    V.V. Gorbatskiy

    2017-06-01

    Full Text Available The results of the surface current spatial structure observations performed by SeaSonde Doppler HF radar (operating frequency is 25 MHz in the Black Sea region adjacent to the city of Gelendzhik are represented. The observations imply a special technique consisting in successive measurements at two selected points of the coastline. Initially, the measurements are carried out in the first of two selected coastal points during two hours. Then the radar system is transferred to the second point on the coast where the procedure is repeated. At that the velocity field is assumed to remain unchanged during the total measurement period (including the time of the radar displacement from both points. The measurement results are shown in a form of a spatial map of the current velocity vectors in the research region (with 20 × 20 km dimensions. Some features of the current spatial and temporal variability in the coastal waters are revealed. Particularly, the eddy-like formations (the diameter is a few kilometers which rapidly move and collapse. Since similar eddies are detected using the contact measurement methods, complex and variable structure of the surface currents measured by a radar does not seem to be an artifact. Nevertheless, reliability of the data resulted from the radar measurements of the surface current velocity field should be verified in future by comparing it with the results of the quasi-synchronous velocity field measurements performed by stationary, drifting and towed velocity meters.

  8. Radar-based collision avoidance for unmanned surface vehicles

    Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing

    2016-12-01

    Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.

  9. Radar Plan Position Indicator Scope

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  10. Radar target classification method with high accuracy and decision speed performance using MUSIC spectrum vectors and PCA projection

    Secmen, Mustafa

    2011-10-01

    This paper introduces the performance of an electromagnetic target recognition method in resonance scattering region, which includes pseudo spectrum Multiple Signal Classification (MUSIC) algorithm and principal component analysis (PCA) technique. The aim of this method is to classify an "unknown" target as one of the "known" targets in an aspect-independent manner. The suggested method initially collects the late-time portion of noise-free time-scattered signals obtained from different reference aspect angles of known targets. Afterward, these signals are used to obtain MUSIC spectrums in real frequency domain having super-resolution ability and noise resistant feature. In the final step, PCA technique is applied to these spectrums in order to reduce dimensionality and obtain only one feature vector per known target. In the decision stage, noise-free or noisy scattered signal of an unknown (test) target from an unknown aspect angle is initially obtained. Subsequently, MUSIC algorithm is processed for this test signal and resulting test vector is compared with feature vectors of known targets one by one. Finally, the highest correlation gives the type of test target. The method is applied to wire models of airplane targets, and it is shown that it can tolerate considerable noise levels although it has a few different reference aspect angles. Besides, the runtime of the method for a test target is sufficiently low, which makes the method suitable for real-time applications.

  11. Radar observations of Comet Halley

    Campbell, D.B.; Harmon, J.K.; Shapiro, I.I.

    1989-01-01

    Five nights of Arecibo radar observations of Comet Halley are reported which reveal a feature in the overall average spectrum which, though weak, seems consistent with being an echo from the comet. The large radar cross section and large bandwidth of the feature suggest that the echo is predominantly from large grains which have been ejected from the nucleus. Extrapolation of the dust particle size distribution to large grain sizes gives a sufficient number of grains to account for the echo. The lack of a detectable echo from the nucleus, combined with estimates of its size and rotation rate from spacecraft encounters and other data, indicate that the nucleus has a surface of relatively high porosity. 33 references

  12. The design of infrared laser radar for vehicle initiative safety

    Gong, Ping; Xu, Xi-ping; Li, Xiao-yu; Li, Tian-zhi; Liu, Yu-long; Wu, Jia-hui

    2013-09-01

    Laser radar for vehicle is mainly used in advanced vehicle on-board active safety systems, such as forward anti-collision systems, active collision warning systems and adaptive cruise control systems, etc. Laser radar for vehicle plays an important role in the improvement of vehicle active safety and the reduction of traffic accidents. The stability of vehicle active anti-collision system in dynamic environment is still one of the most difficult problems to break through nowadays. According to people's driving habit and the existed detecting technique of sensor, combining the infrared laser range and galvanometer scanning technique , design a 3-D infrared laser radar which can be used to assist navigation, obstacle avoidance and the vehicle's speed control for the vehicle initiative safety. The device is fixed to the head of vehicle. Then if an accident happened, the device could give an alarm to remind the driver timely to decelerate or brake down, by which way can people get the purpose of preventing the collision accidents effectively. To accomplish the design, first of all, select the core components. Then apply Zemax to design the transmitting and receiving optical system. Adopt 1550 nm infrared laser transmitter as emission unit in the device, a galvanometer scanning as laser scanning unit and an InGaAs-APD detector as laser echo signal receiving unit. Perform the construction of experimental system using FPGA and ARM as the core controller. The system designed in this paper can not only detect obstacle in front of the vehicle and make the control subsystem to execute command, but also transfer laser data to PC in real time. Lots of experiments using the infrared laser radar prototype are made, and main performance of it is under tested. The results of these experiments show that the imaging speed of the laser radar can reach up to 25 frames per second, the frame resolution of each image can reach 30×30 pixels, the horizontal angle resolution is about 6. 98

  13. Combined radar and telemetry system

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  14. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Abbasi, R.; Othman, M. Abou Bakr [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Allen, C. [University of Kansas, Lawrence, KS 66045 (United States); Beard, L. [Purdue University, West Lafayette, IN 47907 (United States); Belz, J. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Besson, D. [University of Kansas, Lawrence, KS 66045 (United States); Moscow Engineering and Physics Institute, 31 Kashirskaya Shosse, Moscow 115409 (Russian Federation); Byrne, M.; Farhang-Boroujeny, B.; Gardner, A. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT 84106 (United States); Hanlon, W. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Hanson, J. [University of Kansas, Lawrence, KS 66045 (United States); Jayanthmurthy, C. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Kunwar, S. [University of Kansas, Lawrence, KS 66045 (United States); Larson, S.L. [Utah State University, Logan, Utah 84322 (United States); Myers, I., E-mail: isaac@cosmic.utah.edu [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Prohira, S.; Ratzlaff, K. [University of Kansas, Lawrence, KS 66045 (United States); Sokolsky, P. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Takai, H. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-12-11

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  15. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S.L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.

    2014-01-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems

  16. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  17. Micro-crack detection in high-performance cementitious materials

    Lura, Pietro; Guang, Ye; Tanaka, Kyoji

    2005-01-01

    of high-performance cement pastes in silicone moulds that exert minimal external restraint. Cast-in steel rods with varying diameter internally restrain the autogenous shrinkage and lead to crack formation. Dimensions of the steel rods are chosen so that the size of this restraining inclusion resembles......-ray tomography, do not allow sufficient resolution of microcracks. A new technique presented in this paper allows detection of microcracks in cement paste while avoiding artefacts induced by unwanted restraint, drying or temperature variations. The technique consists in casting small circular cylindrical samples...... aggregate size. Gallium intrusion of the cracks and subsequent examination by electron probe micro analysis, EPMA, are used to identify the cracks. The gallium intrusion technique allows controllable impregnation of cracks in the cement paste. A distinct contrast between gallium and the surrounding material...

  18. Aspects of Radar Polarimetry

    LÜNEBURG, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  19. Java Radar Analysis Tool

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  20. Material integrity verification radar

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  1. Micropower radar systems for law enforcement technology

    Azevedo, S.G.; Mast, J.; Brase, J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  2. Principles of modern radar radar applications

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  3. Natural and Unnatural Oil Layers on the Surface of the Gulf of Mexico Detected and Quantified in Synthetic Aperture RADAR Images with Texture Classifying Neural Network Algorithms

    MacDonald, I. R.; Garcia-Pineda, O. G.; Morey, S. L.; Huffer, F.

    2011-12-01

    Effervescent hydrocarbons rise naturally from hydrocarbon seeps in the Gulf of Mexico and reach the ocean surface. This oil forms thin (~0.1 μm) layers that enhance specular reflectivity and have been widely used to quantify the abundance and distribution of natural seeps using synthetic aperture radar (SAR). An analogous process occurred at a vastly greater scale for oil and gas discharged from BP's Macondo well blowout. SAR data allow direct comparison of the areas of the ocean surface covered by oil from natural sources and the discharge. We used a texture classifying neural network algorithm to quantify the areas of naturally occurring oil-covered water in 176 SAR image collections from the Gulf of Mexico obtained between May 1997 and November 2007, prior to the blowout. Separately we also analyzed 36 SAR images collections obtained between 26 April and 30 July, 2010 while the discharged oil was visible in the Gulf of Mexico. For the naturally occurring oil, we removed pollution events and transient oceanographic effects by including only the reflectance anomalies that that recurred in the same locality over multiple images. We measured the area of oil layers in a grid of 10x10 km cells covering the entire Gulf of Mexico. Floating oil layers were observed in only a fraction of the total Gulf area amounting to 1.22x10^5 km^2. In a bootstrap sample of 2000 replications, the combined average area of these layers was 7.80x10^2 km^2 (sd 86.03). For a regional comparison, we divided the Gulf of Mexico into four quadrates along 90° W longitude, and 25° N latitude. The NE quadrate, where the BP discharge occurred, received on average 7.0% of the total natural seepage in the Gulf of Mexico (5.24 x10^2 km^2, sd 21.99); the NW quadrate received on average 68.0% of this total (5.30 x10^2 km^2, sd 69.67). The BP blowout occurred in the NE quadrate of the Gulf of Mexico; discharged oil that reached the surface drifted over a large area north of 25° N. Performing a

  4. P-band radar ice sounding in Antarctica

    Dall, Jørgen; Kusk, Anders; Kristensen, Steen Savstrup

    2012-01-01

    In February 2011, the Polarimetric Airborne Radar Ice Sounder (POLARIS) was flown in Antarctica in order to assess the feasibility of a potential space-based radar ice sounding mission. The campaign has demonstrated that the basal return is detectable in areas with up to 3 km thick cold ice, in a...

  5. On Improving Face Detection Performance by Modelling Contextual Information

    Atanasoaei, Cosmin; McCool, Chris; Marcel, Sébastien

    2010-01-01

    In this paper we present a new method to enhance object detection by removing false alarms and merging multiple detections in a principled way with few parameters. The method models the output of an object classiï¬er which we consider as the context. A hierarchical model is built using the detection distribution around a target sub-window to discriminate between false alarms and true detections. Next the context is used to iteratively reï¬ne the detections. Finally the detections are clustere...

  6. Microcystin Detection Characteristics of Fluorescence Immunochromatography and High Performance Liquid Chromatography

    Pyo, Dong Jin; Park, Geun Young; Choi, Jong Chon; Oh, Chang Suk

    2005-01-01

    Different detection characteristics of fluorescence immunochromatography method and high performance liquid chromatography (HPLC) method for the analysis of cyanobacterial toxins were studied. In particular, low and high limits of detection, detection time and reproducibility and detectable microcystin species were compared when fluorescence immunochromatography method and high performance liquid chromatography method were applied for the detection of microcystin (MC), a cyclic peptide toxin of the freshwater cyanobacterium Microcystis aeruginosa. A Fluorescence immunochromatography assay system has the unique advantages of short detection time and low detection limit, and high performance liquid chromatography detection method has the strong advantage of individual quantifications of several species of microcystins

  7. Non-Cooperative Air Target Identification Using Radar (l’Identification radar des cibles aeriennes non cooperatives)

    1998-11-01

    des techniques tr~s prometteuse pour la detection longue port~e. Les progr~s escompt ~s dans le domaine des techniques radar devraient amener des...cibles fixes, des cibles mobiles ou du fouillis de sol. Sa vocation Le moyen de mesures comprend un radar premiere est d’enrichir les banques de donn6es

  8. A New 50 MHz Phased-Array Radar on Pohnpei: A Fresh Perspective on Equatorial Plasma Bubbles

    Tsunoda, R. T.

    2014-12-01

    A new, phased-array antenna-steering capability has recently been added to an existing 50-MHz radar on Pohnpei, Federated States of Micronesia, in the central Pacific region. This radar, which we refer to as PAR-50, is capable of scanning in the vertical east-west plane, ±60° about the zenith. The alignment in the magnetic east-west direction allows detection of radar backscatter from small-scale irregularities that develop in the equatorial ionosphere, including those associated with equatorial plasma bubbles (EPBs). The coverage, about ±800 km in zonal distance, at an altitude of 500 km, is essentially identical to that provided by ALTAIR, a fully-steerable incoherent-scatter radar, which has been used in a number of studies of EPBs. Unlike ALTAIR, which has only been operated for several hours on a handful of selected nights, the PAR-50 has already been operated continuously, while performing repeated scans, since April 2014. In this presentation, we describe the PAR-50, then, compare it to ALTAIR and the Equatorial Atmospheric Radar (EAR); the latter is the only other phased-array system in use for equatorial studies. We then assess what we have learned about EPBs from backscatter radar measurements, and discuss how the PAR-50 can provide a fresh perspective to our understanding. Clearly, the ability to sort out the space-time ambiguities in EPB development from sequences of spatial maps of EPBs is crucial to our understanding of how EPBs develop.

  9. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  10. Infrasonic detection performance in presence of nuisance signal

    Charbit, Maurice; Arrowsmith, Stephen; Che, Il-young; Le Pichon, Alexis; Nouvellet, Adrien; Park, Junghyun; Roueff, Francois

    2014-05-01

    The infrasound network of the International Monitoring System (IMS) consists of sixty stations deployed all over the World by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The IMS has been designed to reliably detect, at least by two stations, an explosion greater than 1 kiloton located anywhere on the Earth [1]. Each station is an array of at least four microbarometers with an aperture of 1 to 3 km. The first important issue is to detect the presence of the signal of interest (SOI) embedded in noise. The detector is commonly based on the property that the SOI provides coherent observations on the sensors but not the noise. The statistic of test, called F-stat [2], [5], [6] , calculated in a time cell a few seconds, is commonly used for this purpose. In this paper, we assume that a coherent source is permanently present arriving from an unknown direction of arrivals (DOA). The typical case is the presence of microbaroms or the presence of wind. This source is seen as a nuisance signal (NS). In [4], [3] authors assume that a time cell without the SOI (CH0) is available, whereas a following time cell is considered as the cell under test (CUT). Therefore the DOA and the SNR of the NS can be estimated. If the signal-to-noise ration SNR of the NS is large enough, the distribution of the F-stat under the absence of SOI is known to be a non central Fisher. It follows that the threshold can be performed from a given value of the FAR. The major drawback to keep the NS is that the NS could hide the SOI, this phenomena is similar to the leakage which is a well-known phenomena in the Fourier analysis. An other approach consists to use the DOA estimate of the NS to mitigate the NS by spatial notch filter in the frequency domain. On this approach a new algorithm is provided. To illustrate, numerical results on synthetical and real data are presented, in term of Receiver Operating Characteristic ROC curves. REFERENCES [1] Christie D.R. and Campus P., The IMS

  11. Radar remote sensing in biology

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  12. Novel radar techniques and applications

    Klemm, Richard; Koch, Wolfgang

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Waveform diversity and cognitive radar and Target tracking and data fusion.

  13. Sensor management in RADAR/IRST track fusion

    Hu, Shi-qiang; Jing, Zhong-liang

    2004-07-01

    In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.

  14. Radar and electronic navigation

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  15. Radar observations of Mercury

    Harmon, J.K.; Campbell, D.B.

    1988-01-01

    Some of the radar altimetry profiles of Mercury obtained on the basis of data from the Arecibo Observatory are presented. In these measurements, the delay-Doppler method was used to measure altitudes along the Doppler equator, rather than to map radar reflectivity. The profiles, derived from observations made over a 6-yr period, provide extensive coverage over a restricted equatorial band and permit the identification of radar signatures for features as small as 50-km diameter craters and 1-km-high arcuate scarps. The data allowed identification of large-scale topographic features such as smooth plains subsidence zones and major highland regions

  16. Radar cross section

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  17. Radar Remote Sensing

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  18. Multi-Input Multi-Output (MIMO) Radar - Diversity Means Superiority

    Li, Jian

    2008-01-01

    .... It also uses multiple antennas to receive the reflected signals. It has been shown that by exploiting this waveform diversity, MIMO radar can overcome performance degradations caused by radar cross section (RCS...

  19. Radar Location Equipment Development Program: Phase I

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  20. Radar Location Equipment Development Program: Phase I

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2 0 , respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1 0 in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs

  1. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the

  2. Robust nonhomogeneous training samples detection method for space-time adaptive processing radar using sparse-recovery with knowledge-aided

    Li, Zhihui; Liu, Hanwei; Zhang, Yongshun; Guo, Yiduo

    2017-10-01

    The performance of space-time adaptive processing (STAP) may degrade significantly when some of the training samples are contaminated by the signal-like components (outliers) in nonhomogeneous clutter environments. To remove the training samples contaminated by outliers in nonhomogeneous clutter environments, a robust nonhomogeneous training samples detection method using the sparse-recovery (SR) with knowledge-aided (KA) is proposed. First, the reduced-dimension (RD) overcomplete spatial-temporal steering dictionary is designed with the prior knowledge of system parameters and the possible target region. Then, the clutter covariance matrix (CCM) of cell under test is efficiently estimated using a modified focal underdetermined system solver (FOCUSS) algorithm, where a RD overcomplete spatial-temporal steering dictionary is applied. Third, the proposed statistics are formed by combining the estimated CCM with the generalized inner products (GIP) method, and the contaminated training samples can be detected and removed. Finally, several simulation results validate the effectiveness of the proposed KA-SR-GIP method.

  3. The SUMO Ship Detector Algorithm for Satellite Radar Images

    Harm Greidanus

    2017-03-01

    Full Text Available Search for Unidentified Maritime Objects (SUMO is an algorithm for ship detection in satellite Synthetic Aperture Radar (SAR images. It has been developed over the course of more than 15 years, using a large amount of SAR images from almost all available SAR satellites operating in L-, C- and X-band. As validated by benchmark tests, it performs very well on a wide range of SAR image modes (from Spotlight to ScanSAR and resolutions (from 1–100 m and for all types and sizes of ships, within the physical limits imposed by the radar imaging. This paper describes, in detail, the algorithmic approach in all of the steps of the ship detection: land masking, clutter estimation, detection thresholding, target clustering, ship attribute estimation and false alarm suppression. SUMO is a pixel-based CFAR (Constant False Alarm Rate detector for multi-look radar images. It assumes a K distribution for the sea clutter, corrected however for deviations of the actual sea clutter from this distribution, implementing a fast and robust method for the clutter background estimation. The clustering of detected pixels into targets (ships uses several thresholds to deal with the typically irregular distribution of the radar backscatter over a ship. In a multi-polarization image, the different channels are fused. Azimuth ambiguities, a common source of false alarms in ship detection, are removed. A reliability indicator is computed for each target. In post-processing, using the results of a series of images, additional false alarms from recurrent (fixed targets including range ambiguities are also removed. SUMO can run in semi-automatic mode, where an operator can verify each detected target. It can also run in fully automatic mode, where batches of over 10,000 images have successfully been processed in less than two hours. The number of satellite SAR systems keeps increasing, as does their application to maritime surveillance. The open data policy of the EU

  4. Wind Profiling Radar

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  5. Improved Laser Vibration Radar

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  6. Minefield overwatch using moving target indicator radar

    Donadio, Anthony; Ewing, Robert; Kenneally, William J.; Santapietro, John J.

    1999-07-01

    Traditional antipersonnel land mines are an effective military tool, but they are unable to distinguish friend from foe, or civilian from military personnel. The concept described here uses an advanced moving target indicator (MTI) radar to scan the minefield in order to detect movement towards or within the minefield, coupled with visual identification by a human operator and a communication link for command and control. Selected mines in the minefield can then be activated by means of the command link. In order to demonstrate this concept, a 3D, interactive simulation has been developed. This simulation builds on previous work by integrating a detailed analytical model of an MTI radar. This model has been tailored to the specific application of detection of slowly moving dismounted entities immersed in ground clutter. The model incorporates the effects of internal scatterer motion and antenna scanning modulation in order to provide a realistic representation of the detection problem in this environment. The angle information on the MTI target detection is then passed to a virtual 3D sight which cues a human operator to the target location. In addition, radar propagation effects and an experimental design in which the radar itself is used as a command link are explored.

  7. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar

    P Kollias; MA Miller; KB Widener; RT Marchand; TP Ackerman

    2005-12-30

    The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digital Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.

  8. Analysis of a Pareto Mixture Distribution for Maritime Surveillance Radar

    Graham V. Weinberg

    2012-01-01

    Full Text Available The Pareto distribution has been shown to be an excellent model for X-band high-resolution maritime surveillance radar clutter returns. Given the success of mixture distributions in radar, it is thus of interest to consider the effect of Pareto mixture models. This paper introduces a formulation of a Pareto intensity mixture distribution and investigates coherent multilook radar detector performance using this new clutter model. Clutter parameter estimates are derived from data sets produced by the Defence Science and Technology Organisation's Ingara maritime surveillance radar.

  9. Phased-array radars

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  10. Downhole pulse radar

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  11. Mars Express radar collects first surface data

    2005-08-01

    This radar started its science operations on 4 July, the same day as its first commissioning phase ended. Due to the late deployment of Marsis, it was decided to split the commissioning, originally planned to last four weeks, into two phases; the second will take place in December. It has thus been possible to begin scientific observations with the instrument earlier than initially planned, while it is still Martian night-time. This is the best environmental condition for subsurface sounding, as in daytime the ionosphere is more ‘energised’ and disturbs the radio signals used for subsurface observations. As from the start of commissioning, the two 20m-long antenna booms have been sending radio signals towards the Martian surface and receiving echoes back. “The commissioning procedure confirmed that the radar is working very well and that it can be operated at full power without interfering with any of the spacecraft systems,” says Roberto Seu, Instrument Manager for Marsis, of University of Rome ‘La Sapienza’, Italy. Marsis is a very complex instrument, capable of operating at different frequency bands. Lower frequencies are best suited to probing the subsurface, the highest frequencies are used to probe shallow subsurface depths, while all frequencies are suited to studying the surface and the upper atmospheric layer of Mars. “During commissioning we worked to test all transmission modes and optimise the radar's performance around Mars,” says Professor Giovanni Picardi, Principal Investigator for Marsis, of University of Rome ‘LaSapienza’. “The result is that since we started the scientific observations in early July, we have been receiving very clean surface echoes back, and first indications about the ionosphere.” The Marsis radar is designed to operate around the orbit ‘pericentre’, when the spacecraft is closer to the planet’s surface. In each orbit, the radar is switched on for 36minutes around this point, spending the middle 26

  12. Spontaneous Alpha Power Lateralization Predicts Detection Performance in an Un-Cued Signal Detection Task.

    Gonzalo Boncompte

    Full Text Available Focusing one's attention by external guiding stimuli towards a specific area of the visual field produces systematical neural signatures. One of the most robust is the change in topological distribution of oscillatory alpha band activity across parieto-occipital cortices. In particular, decreases in alpha activity over contralateral and/or increases over ipsilateral scalp sites, respect to the side of the visual field where attention was focused. This evidence comes mainly from experiments where an explicit cue informs subjects where to focus their attention, thus facilitating detection of an upcoming target stimulus. However, recent theoretical models of attention have highlighted a stochastic or non-deterministic component related to visuospatial attentional allocation. In an attempt to evidence this component, here we analyzed alpha activity in a signal detection paradigm in the lack of informative cues; in the absence of preceding information about the location (and time of appearance of target stimuli. We believe that the unpredictability of this situation could be beneficial for unveiling this component. Interestingly, although total alpha power did not differ between Seen and Unseen conditions, we found a significant lateralization of alpha activity over parieto-occipital electrodes, which predicted behavioral performance. This effect had a smaller magnitude compared to paradigms in which attention is externally guided (cued. However we believe that further characterization of this spontaneous component of attention is of great importance in the study of visuospatial attentional dynamics. These results support the presence of a spontaneous component of visuospatial attentional allocation and they advance pre-stimulus alpha-band lateralization as one of its neural signatures.

  13. HF Surface Wave Radar Operation in Adverse Conditions

    Ponsford, Anthony M; Dizaji, Reza M; McKerracher, Richard

    2005-01-01

    ...) system based on HF Surface Wave Radar (HFSWR). the primary objective behind the programme was to demonstrate the capability of HFSWR to continuously detect and track surface targets (ships and icebergs...

  14. Space-qualifiable Digital Radar Transceiver, Phase I

    National Aeronautics and Space Administration — Radar technology offers a very flexible, powerful tool for applications such as object detection, tracking, and characterization, as well as remote sensing, imaging,...

  15. Plasma-based radar cross section reduction

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...

  16. Performance of arthroscopic irrigation systems assessed with automatic blood detection

    Tuijthof, G. J. M.; de Vaal, M. M.; Sierevelt, I. N.; Blankevoort, L.; van der List, M. P. J.

    2011-01-01

    During arthroscopies, bleeding episodes occur as a result of tissue damage. Irrigation systems assist in minimizing these disturbances. The performance of three arthroscopic irrigation systems in clearing bleeding episodes was evaluated objectively. One surgeon performed 99 shoulder arthroscopies

  17. Radar observation of the equatorial counter-electrojet

    Hanuise, C.; Crochet, M.; Gouin, P.; Ogubazghi, Ghebrebrhan

    1979-01-01

    Electron drift velocity in the equatorial electrojet has been measured for a few years by coherent radar techniques in Africa. For the first time such measurements were performed during a strong reversal of the ionospheric current dubbed 'counter-electrojet'. These observations agree with the theories of the plasma instabilities at the origin of the electron density irregularities giving the radar echoes

  18. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  19. Performance of mitochondrial DNA mutations detecting early stage cancer

    Jakupciak, John P; Srivastava, Sudhir; Sidransky, David; O'Connell, Catherine D; Maragh, Samantha; Markowitz, Maura E; Greenberg, Alissa K; Hoque, Mohammad O; Maitra, Anirban; Barker, Peter E; Wagner, Paul D; Rom, William N

    2008-01-01

    Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites. We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip ® Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region. Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors. Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is

  20. Nonnegative Matrix Factorizations Performing Object Detection and Localization

    G. Casalino

    2012-01-01

    Full Text Available We study the problem of detecting and localizing objects in still, gray-scale images making use of the part-based representation provided by nonnegative matrix factorizations. Nonnegative matrix factorization represents an emerging example of subspace methods, which is able to extract interpretable parts from a set of template image objects and then to additively use them for describing individual objects. In this paper, we present a prototype system based on some nonnegative factorization algorithms, which differ in the additional properties added to the nonnegative representation of data, in order to investigate if any additional constraint produces better results in general object detection via nonnegative matrix factorizations.

  1. Radar investigations at the Saltsjoetunnel - predictions and validation

    Olsson, Olle; Palmqvist, Kai

    1989-01-01

    Borehole radar investigations have been performed in two boreholes drilled along the extent of the Saltsjoe tunnel in Stockholm, Sweden. The objective of the project was to test investigate the capabilities of the borehole radar technique to predict geological structures prior to tunnel excavation. Singlehole and crosshole radar measurements were made in the two boreholes which outlined and equilateral triangle. The crosshole data was used to produce tomograms showing the distribution of radar attenuation and slowness (inverse of velocity) in the plane between the boreholes. The radar model of the site contained one major feature which was identified as a fracture zone. The intersection of the fracture zone with the tunnel was extrapolated from the radar data and found to be in agreement with observations in the tunnel. At the intersection of the fracture zone with the tunnel grouting had to be applied. It has also been found that the radar identifies a number of smaller features which are of practically no significance with respect to tunnel construction. There is general agreement between the radar model of the site and the geologic-tectonic model of the site. This project has demonstrated the capability of the boreholes radar technique to predict the existence, location, and orientation of geologic features (e.g. fracture zones) which can be of significance to the cost and safety when excavating a tunnel. However, further development is needed to be able to use the technique cost effectively for continuous prediction ahead of the tunnel front. (authors) (17 figs., 1 tab.)

  2. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  3. CAMEX-4 TOGA RADAR V1

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  4. Low Complexity Receiver Design for MIMO-Radar

    Ahmed, Sajid; Alouini, Mohamed-Slim

    2012-01-01

    In this work, an algorithm for the multiple-input multiple-output (MIMO) radar is proposed. It has low computational complexity compared to the available schemes, and relatively low side-lobe-levels in the receive beampattern compared to the phased-array and MIMO-radar. In the proposed algorithm, the received signal vector of MIMO-radar is divided into sub-vectors, and each sub-vector is multiplied with the corresponding weight vector. The number of sub-vectors and weight vectors are optimally found to maximise the received signal power from the target of interest direction. The proposed scheme can be effectively applied in passive radars to minimise the side-lobe levels and place deep nulls for interferers in the receive beampattern. Simulation results show that the proposed scheme has relatively lower side lobe levels and better detection capabilities compared to MIMO-radar and phased-array.

  5. Low Complexity Receiver Design for MIMO-Radar

    Ahmed, Sajid

    2012-09-08

    In this work, an algorithm for the multiple-input multiple-output (MIMO) radar is proposed. It has low computational complexity compared to the available schemes, and relatively low side-lobe-levels in the receive beampattern compared to the phased-array and MIMO-radar. In the proposed algorithm, the received signal vector of MIMO-radar is divided into sub-vectors, and each sub-vector is multiplied with the corresponding weight vector. The number of sub-vectors and weight vectors are optimally found to maximise the received signal power from the target of interest direction. The proposed scheme can be effectively applied in passive radars to minimise the side-lobe levels and place deep nulls for interferers in the receive beampattern. Simulation results show that the proposed scheme has relatively lower side lobe levels and better detection capabilities compared to MIMO-radar and phased-array.

  6. Assessing collision risk for birds and bats : radar survey

    Brunet, R. [Genivar SEC, Sherbrooke, PQ (Canada)

    2010-07-01

    This PowerPoint presentation described some of the inventories and instrumentation available for monitoring winged fauna in and around wind farms. In addition to visual observations, bird calls and songs can be recorded to determine the amount and different types of birds located at wind farm sites. Radio-telemetry devices are also used to evaluate bird activities, and nest searches are conducted to determine the amount of eggs or young birds that will soon add to the bird population. Between 90 and 100 percent of birds and bats migrate at night. Acoustic radar, Doppler radar, and maritime surveillance radar instruments are used to monitor night-time activities in wind farm locations. Doppler radar is also used to detect bird and bat migration corridors. Screen-shots of various radar interfaces were presented. tabs., figs.

  7. Combining millimeter-wave radar and communication paradigms for automotive applications : a signal processing approach.

    2016-05-01

    As driving becomes more automated, vehicles are being equipped with more sensors generating even higher data rates. Radars (RAdio Detection and Ranging) are used for object detection, visual cameras as virtual mirrors, and LIDARs (LIght Detection and...

  8. Performance evaluation of spot detection algorithms in fluorescence microscopy images

    Mabaso, M

    2012-10-01

    Full Text Available triggered the development of a highly sophisticated imaging tool known as fluorescence microscopy. This is used to visualise and study intracellular processes. The use of fluorescence microscopy and a specific staining method make biological molecules... was first used in astronomical applications [2] to detect isotropic objects, and was then introduced to biological applications [3]. Olivio-Marin[3] approached the problem of feature extraction based on undecimated wavelet representation of the image...

  9. Decision criterion dynamics in animals performing an auditory detection task.

    Robert W Mill

    Full Text Available Classical signal detection theory attributes bias in perceptual decisions to a threshold criterion, against which sensory excitation is compared. The optimal criterion setting depends on the signal level, which may vary over time, and about which the subject is naïve. Consequently, the subject must optimise its threshold by responding appropriately to feedback. Here a series of experiments was conducted, and a computational model applied, to determine how the decision bias of the ferret in an auditory signal detection task tracks changes in the stimulus level. The time scales of criterion dynamics were investigated by means of a yes-no signal-in-noise detection task, in which trials were grouped into blocks that alternately contained easy- and hard-to-detect signals. The responses of the ferrets implied both long- and short-term criterion dynamics. The animals exhibited a bias in favour of responding "yes" during blocks of harder trials, and vice versa. Moreover, the outcome of each single trial had a strong influence on the decision at the next trial. We demonstrate that the single-trial and block-level changes in bias are a manifestation of the same criterion update policy by fitting a model, in which the criterion is shifted by fixed amounts according to the outcome of the previous trial and decays strongly towards a resting value. The apparent block-level stabilisation of bias arises as the probabilities of outcomes and shifts on single trials mutually interact to establish equilibrium. To gain an intuition into how stable criterion distributions arise from specific parameter sets we develop a Markov model which accounts for the dynamic effects of criterion shifts. Our approach provides a framework for investigating the dynamics of decisions at different timescales in other species (e.g., humans and in other psychological domains (e.g., vision, memory.

  10. Robust flood area detection using a L-band synthetic aperture radar: Preliminary application for Florida, the U.S. affected by Hurricane Irma

    Nagai, H.; Ohki, M.; Abe, T.

    2017-12-01

    Urgent crisis response for a hurricane-induced flood needs urgent providing of a flood map covering a broad region. However, there is no standard threshold values for automatic flood identification from pre-and-post images obtained by satellite-based synthetic aperture radars (SARs). This problem could hamper prompt data providing for operational uses. Furthermore, one pre-flood SAR image does not always represent potential water surfaces and river flows especially in tropical flat lands which are greatly influenced by seasonal precipitation cycle. We are, therefore, developing a new method of flood mapping using PALSAR-2, an L-band SAR, which is less affected by temporal surface changes. Specifically, a mean-value image and a standard-deviation image are calculated from a series of pre-flood SAR images. It is combined with a post-flood SAR image to obtain normalized backscatter amplitude difference (NoBADi), with which a difference between a post-flood image and a mean-value image is divided by a standard-deviation image to emphasize anomalous water extents. Flooding areas are then automatically obtained from the NoBADi images as lower-value pixels avoiding potential water surfaces. We applied this method to PALSAR-2 images acquired on Sept. 8, 10, and 12, 2017, covering flooding areas in a central region of Dominican Republic and west Florida, the U.S. affected by Hurricane Irma. The output flooding outlines are validated with flooding areas manually delineated from high-resolution optical satellite images, resulting in higher consistency and less uncertainty than previous methods (i.e., a simple pre-and-post flood difference and pre-and-post coherence changes). The NoBADi method has a great potential to obtain a reliable flood map for future flood hazards, not hampered by cloud cover, seasonal surface changes, and "casual" thresholds in the flood identification process.

  11. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight.

    Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary

    2017-01-01

    Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.

  12. Ground penetrating radar

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  13. Systems and Methods for Radar Data Communication

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  14. A quantum inspired model of radar range and range-rate measurements with applications to weak value measurements

    Escalante, George

    2017-05-01

    Weak Value Measurements (WVMs) with pre- and post-selected quantum mechanical ensembles were proposed by Aharonov, Albert, and Vaidman in 1988 and have found numerous applications in both theoretical and applied physics. In the field of precision metrology, WVM techniques have been demonstrated and proven valuable as a means to shift, amplify, and detect signals and to make precise measurements of small effects in both quantum and classical systems, including: particle spin, the Spin-Hall effect of light, optical beam deflections, frequency shifts, field gradients, and many others. In principal, WVM amplification techniques are also possible in radar and could be a valuable tool for precision measurements. However, relatively limited research has been done in this area. This article presents a quantum-inspired model of radar range and range-rate measurements of arbitrary strength, including standard and pre- and post-selected measurements. The model is used to extend WVM amplification theory to radar, with the receive filter performing the post-selection role. It is shown that the description of range and range-rate measurements based on the quantum-mechanical measurement model and formalism produces the same results as the conventional approach used in radar based on signal processing and filtering of the reflected signal at the radar receiver. Numerical simulation results using simple point scatterrer configurations are presented, applying the quantum-inspired model of radar range and range-rate measurements that occur in the weak measurement regime. Potential applications and benefits of the quantum inspired approach to radar measurements are presented, including improved range and Doppler measurement resolution.

  15. Human walking estimation with radar

    Dorp, Ph. van; Groen, F.C.A.

    2003-01-01

    Radar can be used to observe humans that are obscured by objects such as walls. These humans cannot be visually observed. The radar measurements are used to animate an obscured human in virtual reality. This requires detailed information about the motion. The radar measurements give detailed

  16. Noise and LPI radar as part of counter-drone mitigation system measures

    Zhang, Yan (Rockee); Huang, Yih-Ru; Thumann, Charles

    2017-05-01

    With the rapid proliferation of small unmanned aerial systems (UAS) in the national airspace, small operational drones are being sometimes considered as a security threat for critical infrastructures, such as sports stadiums, military facilities, and airports. There have been many civilian counter-drone solutions and products reported, including radar and electromagnetic counter measures. For the current electromagnetic solutions, they are usually limited to particular type of detection and counter-measure scheme, which is usually effective for the specific type of drones. Also, control and communication link technologies used in even RC drones nowadays are more sophisticated, making them more difficult to detect, decode and counter. Facing these challenges, our team proposes a "software-defined" solution based on noise and LPI radar. For the detection, wideband-noise radar has the resolution performance to discriminate possible micro-Doppler features of the drone versus biological scatterers. It also has the benefit of more adaptive to different types of drones, and covertly detecting for security application. For counter-measures, random noise can be combined with "random sweeping" jamming scheme, to achieve the optimal balance between peak power allowed and the effective jamming probabilities. Some theoretical analysis of the proposed solution is provided in this study, a design case study is developed, and initial laboratory experiments, as well as outdoor tests are conducted to validate the basic concepts and theories. The study demonstrates the basic feasibilities of the Drone Detection and Mitigation Radar (DDMR) concept, while there are still much work needs to be done for a complete and field-worthy technology development.

  17. Development and Application of integrated monitoring platform for the Doppler Weather SA-BAND Radar

    Zhang, Q.; Sun, J.; Zhao, C. C.; Chen, H. Y.

    2017-10-01

    The doppler weather SA-band radar is an important part of modern meteorological observation methods, monitoring the running status of radar and the data transmission is important.This paper introduced the composition of radar system and classification of radar data,analysed the characteristics and laws of the radar when is normal or abnormal. Using Macromedia Dreamweaver and PHP, developed the integrated monitoring platform for the doppler weather SA-band radar which could monitor the real-time radar system running status and important performance indicators such as radar power,status parameters and others on Web page,and when the status is abnormal it will trigger the audio alarm.

  18. Radar-acoustic interaction for IFF applications

    Saffold, James A.; Williamson, Frank R.; Ahuja, Krishan; Stein, Lawrence R.; Muller, Marjorie

    1998-08-01

    This paper describes the results of an internal development program (IDP) No. 97-1 conducted from August 1-October 1 1996 at the Georgia Tech Research Institute. The IDP program was implemented to establish theoretical relationships and verify the interaction between X-band radar waves and ultrasonic acoustics. Low cost, off-the-shelf components were used for the verification in order to illustrate the cost savings potential of developing and utilizing these systems. The measured data was used to calibrate the developed models of the phenomenology and to support extrapolation for radar systems which can exploit these interactions. One such exploitation is for soldier identification IFF and radar taggant concepts. The described IDP program provided the phenomenological data which is being used to extrapolate concept system performances based on technological limitations and battlefield conditions for low cost IFF and taggant configurations.

  19. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  20. Ground-Based Radar Detection of the Inner Boundary of the Ion Plasma Sheet and its Response to the Changes in the Interplanetary Magnetic Field

    Jayachandran, P. T; MacDougall, J. W; Moorcroft, D. R; Donovan, E. F

    2006-01-01

    ...-I). Wide area coverage made it possible to detect some of the proxies for the magnetospheric land marks and boundaries on a global scale and shed some light on the on the some of the fundamental problems...