WorldWideScience

Sample records for rabies virus-infected cells

  1. Interferon production and immune response induction in pathogenic rabies virus-infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Marcovistz, R; Leal, E C; De Souza Matos, D C [Departamento de Immunologia, Instituto Oswaldo Cruz, Caixa Postal 926, 21045 Rio de Janeiro (Brazil); Tsiang, H [Service Rage, Istitut Pasteur, Paris (France)

    1994-08-01

    Pathogenic parental rabies virus strain CVS (challenge virus standard) and its apathogenic variant RV194-2 were shown to differ in their ability to induce interferon (IFN) and immune response of the host. After intracerebral inoculation. IFN and antibody production was higher in the RV194-2 virus-infected mice than in the CVS infection. The enhancement of 2-5A synthetase activity, an IFN-mediated enzyme marker, showed biochemical evidence that IFN is active in both apathogenic and pathogenic infections. On the other hand, spontaneous proliferation in vitro of thymocytes and splenocytes from CVS virus-infected mice was strongly inhibited in contrast to the RV194-2 infection. In the CVS infection, the thymocyte proliferation However, in the RV194-2 infection, the thymocyte proliferation was higher than of the splenocytes. These results suggest a better performance of T-cell response to the RV194-2 infection. This fact can be critical for an enhancement of antibody production in the apathogenic infection and subsequent virus clearance from the brain of RV194-2 virus-infected mice. (author) 1 fig., 3 tabs., 32 refs.

  2. «I Am Legend»: comparison of the fictional virus infection and Rabies virus

    Directory of Open Access Journals (Sweden)

    José Francisco CAMACHO AGUILERA

    2016-04-01

    Full Text Available Using the movie I am legend (2007 by, the rabies virus infection is reviewed in this article, given its strong resemblance to the fictional disease created in this film caused by the virus Krippin. A review of history, virus characteristics, viral transmission, clinical manifestations, diagnostics, mortality, treatment and prevention, are presented and are contrasted with the film.

  3. Cells in Dengue Virus Infection In Vivo

    Directory of Open Access Journals (Sweden)

    Sansanee Noisakran

    2010-01-01

    Full Text Available Dengue has been recognized as one of the most important vector-borne emerging infectious diseases globally. Though dengue normally causes a self-limiting infection, some patients may develop a life-threatening illness, dengue hemorrhagic fever (DHF/dengue shock syndrome (DSS. The reason why DHF/DSS occurs in certain individuals is unclear. Studies in the endemic regions suggest that the preexisting antibodies are a risk factor for DHF/DSS. Viremia and thrombocytopenia are the key clinical features of dengue virus infection in patients. The amounts of virus circulating in patients are highly correlated with severe dengue disease, DHF/DSS. Also, the disturbance, mainly a transient depression, of hematological cells is a critical clinical finding in acute dengue patients. However, the cells responsible for the dengue viremia are unresolved in spite of the intensive efforts been made. Dengue virus appears to replicate and proliferate in many adapted cell lines, but these in vitro properties are extremely difficult to be reproduced in primary cells or in vivo. This paper summarizes reports on the permissive cells in vitro and in vivo and suggests a hematological cell lineage for dengue virus infection in vivo, with the hope that a new focus will shed light on further understanding of the complexities of dengue disease.

  4. Rabies virus infection in Eptesicus fuscus bats born in captivity (naïve bats.

    Directory of Open Access Journals (Sweden)

    April D Davis

    Full Text Available The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats, naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1. Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2.

  5. Hepatitis B Virus Infection In Patients With Homozygous Sickle Cell ...

    African Journals Online (AJOL)

    Nnebe-Agumadu U H, and Abiodun P O. Hepatitis B Virus Infection in Patients with Homozygous Sickle Cell Disease (HbSS): Need for Intervention. Annals Biomedical Sciences 2002; 1:79-87. This is a prospective study of 213 patients with sickle cell anaemia (SCA) (112 males and 101 females) aged 6 months to 18 years ...

  6. Dendritic cells during Epstein Barr virus infection

    Directory of Open Access Journals (Sweden)

    Christian eMunz

    2014-06-01

    Full Text Available Epstein Barr virus (EBV causes persistent infection in more than 90% of the human adult population and is associated with 2% of all tumors in humans. This -herpesvirus infects primarily human B and epithelial cells, but has been reported to be sensed by dendritic cells (DCs during primary infection. These activated DCs are thought to contribute to innate restriction of EBV infection and initiate EBV specific adaptive immune responses via cross-priming. The respective evidence and their potential importance for EBV specific vaccine development will be discussed in this review.

  7. Rabies Virus Infection Induces the Formation of Stress Granules Closely Connected to the Viral Factories.

    Directory of Open Access Journals (Sweden)

    Jovan Nikolic

    2016-10-01

    Full Text Available Stress granules (SGs are membrane-less dynamic structures consisting of mRNA and protein aggregates that form rapidly in response to a wide range of environmental cellular stresses and viral infections. They act as storage sites for translationally silenced mRNAs under stress conditions. During viral infection, SG formation results in the modulation of innate antiviral immune responses, and several viruses have the ability to either promote or prevent SG assembly. Here, we show that rabies virus (RABV induces SG formation in infected cells, as revealed by the detection of SG-marker proteins Ras GTPase-activating protein-binding protein 1 (G3BP1, T-cell intracellular antigen 1 (TIA-1 and poly(A-binding protein (PABP in the RNA granules formed during viral infection. As shown by live cell imaging, RABV-induced SGs are highly dynamic structures that increase in number, grow in size by fusion events, and undergo assembly/disassembly cycles. Some SGs localize in close proximity to cytoplasmic viral factories, known as Negri bodies (NBs. Three dimensional reconstructions reveal that both structures remain distinct even when they are in close contact. In addition, viral mRNAs synthesized in NBs accumulate in the SGs during viral infection, revealing material exchange between both compartments. Although RABV-induced SG formation is not affected in MEFs lacking TIA-1, TIA-1 depletion promotes viral translation which results in an increase of viral replication indicating that TIA-1 has an antiviral effect. Inhibition of PKR expression significantly prevents RABV-SG formation and favors viral replication by increasing viral translation. This is correlated with a drastic inhibition of IFN-B gene expression indicating that SGs likely mediate an antiviral response which is however not sufficient to fully counteract RABV infection.

  8. Zika virus infection of Hofbauer cells.

    Science.gov (United States)

    Simoni, Michael K; Jurado, Kellie Ann; Abrahams, Vikki M; Fikrig, Erol; Guller, Seth

    2017-02-01

    Recent studies have linked antenatal infection with Zika virus (ZIKV) with major adverse fetal and neonatal outcomes, including microcephaly. There is a growing consensus for the existence of a congenital Zika syndrome (CZS). Previous studies have indicated that non-placental macrophages play a key role in the replication of dengue virus (DENV), a closely related flavivirus. As the placenta provides the conduit for vertical transmission of certain viruses, and placental Hofbauer cells (HBCs) are fetal-placental macrophages located adjacent to fetal capillaries, it is not surprising that several recent studies have examined infection of HBCs by ZIKV. In this review, we describe congenital abnormalities associated with ZIKV infection, the role of HBCs in the placental response to infection, and evidence for the susceptibility of HBCs to ZIKV infection. We conclude that HBCs may contribute to the spread of ZIKV in placenta and promote vertical transmission of ZIKV, ultimately compromising fetal and neonatal development and function. Current evidence strongly suggests that further studies are warranted to dissect the specific molecular mechanism through which ZIKV infects HBCs and its potential impact on the development of CZS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Roles for Endothelial Cells in Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Nadine A. Dalrymple

    2012-01-01

    Full Text Available Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. The endothelium is the primary fluid barrier of the vasculature and ultimately the effects of dengue virus infection that cause capillary leakage impact endothelial cell (EC barrier functions. The ability of dengue virus to infect the endothelium provides a direct means for dengue to alter capillary permeability, permit virus replication, and induce responses that recruit immune cells to the endothelium. Recent studies focused on dengue virus infection of primary ECs have demonstrated that ECs are efficiently infected, rapidly produce viral progeny, and elicit immune enhancing cytokine responses that may contribute to pathogenesis. Furthermore, infected ECs have also been implicated in enhancing viremia and immunopathogenesis within murine dengue disease models. Thus dengue-infected ECs have the potential to directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These effects implicate responses of the infected endothelium in dengue pathogenesis and rationalize therapeutic targeting of the endothelium and EC responses as a means of reducing the severity of dengue virus disease.

  10. The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system.

    Directory of Open Access Journals (Sweden)

    D Craig Hooper

    2009-10-01

    Full Text Available The pathogenesis of rabies is associated with the inability to deliver immune effectors across the blood-brain barrier and to clear virulent rabies virus from CNS tissues. However, the mechanisms that facilitate immune effector entry into CNS tissues are induced by infection with attenuated rabies virus.Infection of normal mice with attenuated rabies virus but not immunization with killed virus can promote the clearance of pathogenic rabies virus from the CNS. T cell activity in B cell-deficient mice can control the replication of attenuated virus in the CNS, but viral mRNA persists. Low levels of passively administered rabies virus-neutralizing antibody reach infected cells in the cerebellum of B cell-deficient mice but are not sufficient to mediate virus clearance. Production of rabies virus-specific antibody by B cells invading CNS tissues is required for this process, and a substantial proportion of the B cells that accumulate in the CNS of mice infected with attenuated rabies virus produce virus-specific antibodies.The mechanisms required for immune effectors to enter rabies virus-infected tissues are induced by infection with attenuated rabies virus but not by infection with pathogenic rabies viruses or immunization with killed virus. T cell activities can inhibit rabies virus replication, but the production of rabies virus-specific antibodies by infiltrating B cells, as opposed to the leakage of circulating antibody across the BBB, is critical to elimination of the virus. These findings suggest that a pathogenic rabies virus infection may be treatable after the virus has reached the CNS tissues, providing that the appropriate immune effectors can be targeted to the infected tissues.

  11. The CD8 T Cell Response to Respiratory Virus Infections.

    Science.gov (United States)

    Schmidt, Megan E; Varga, Steven M

    2018-01-01

    Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.

  12. Human neuronal cell protein responses to Nipah virus infection

    Directory of Open Access Journals (Sweden)

    Hassan Sharifah

    2007-06-01

    Full Text Available Abstract Background Nipah virus (NiV, a recently discovered zoonotic virus infects and replicates in several human cell types. Its replication in human neuronal cells, however, is less efficient in comparison to other fully susceptible cells. In the present study, the SK-N-MC human neuronal cell protein response to NiV infection is examined using proteomic approaches. Results Method for separation of the NiV-infected human neuronal cell proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE was established. At least 800 protein spots were resolved of which seven were unique, six were significantly up-regulated and eight were significantly down-regulated. Six of these altered proteins were identified using mass spectrometry (MS and confirmed using MS/MS. The heterogenous nuclear ribonucleoprotein (hnRNP F, guanine nucleotide binding protein (G protein, voltage-dependent anion channel 2 (VDAC2 and cytochrome bc1 were present in abundance in the NiV-infected SK-N-MC cells in contrast to hnRNPs H and H2 that were significantly down-regulated. Conclusion Several human neuronal cell proteins that are differentially expressed following NiV infection are identified. The proteins are associated with various cellular functions and their abundance reflects their significance in the cytopathologic responses to the infection and the regulation of NiV replication. The potential importance of the ratio of hnRNP F, and hnRNPs H and H2 in regulation of NiV replication, the association of the mitochondrial protein with the cytopathologic responses to the infection and induction of apoptosis are highlighted.

  13. Role of natural killer cells in innate protection against lethal ebola virus infection.

    Science.gov (United States)

    Warfield, Kelly L; Perkins, Jeremy G; Swenson, Dana L; Deal, Emily M; Bosio, Catharine M; Aman, M Javad; Yokoyama, Wayne M; Young, Howard A; Bavari, Sina

    2004-07-19

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1-3 d before Ebola virus infection rapidly induced protective immunity. VLP injection enhanced the numbers of natural killer (NK) cells in lymphoid tissues. In contrast to live Ebola virus, VLP treatment of NK cells enhanced cytokine secretion and cytolytic activity against NK-sensitive targets. Unlike wild-type mice, treatment of NK-deficient or -depleted mice with VLPs had no protective effect against Ebola virus infection and NK cells treated with VLPs protected against Ebola virus infection when adoptively transferred to naive mice. The mechanism of NK cell-mediated protection clearly depended on perforin, but not interferon-gamma secretion. Particles containing only VP40 were sufficient to induce NK cell responses and provide protection from infection in the absence of the viral GP. These findings revealed a decisive role for NK cells during lethal Ebola virus infection. This work should open new doors for better understanding of Ebola virus pathogenesis and direct the development of immunotherapeutics, which target the innate immune system, for treatment of Ebola virus infection.

  14. MAIT cells are activated in acute Dengue virus infection and after in vitro Zika virus infection.

    Directory of Open Access Journals (Sweden)

    Dominic Paquin-Proulx

    2018-01-01

    Full Text Available Dengue virus (DENV and Zika virus (ZIKV are members of the Flaviviridae and are predominantly transmitted via mosquito bites. Both viruses are responsible for a growing number of infections in tropical and subtropical regions. DENV infection can cause lethargy with severe morbidity and dengue shock syndrome leading to death in some cases. ZIKV is now linked with Guillain-Barré syndrome and fetal malformations including microcephaly and developmental disorders (congenital Zika syndrome. The protective and pathogenic roles played by the immune response in these infections is unknown. Mucosal-associated invariant T (MAIT cells are a population of innate T cells with potent anti-bacterial activity. MAIT cells have also been postulated to play a role in the immune response to viral infections. In this study, we evaluated MAIT cell frequency, phenotype, and function in samples from subjects with acute and convalescent DENV infection. We found that in acute DENV infection, MAIT cells had elevated co-expression of the activation markers CD38 and HLA-DR and had a poor IFNγ response following bacterial stimulation. Furthermore, we found that MAIT cells can produce IFNγ in response to in vitro infection with ZIKV. This MAIT cell response was independent of MR1, but dependent on IL-12 and IL-18. Our results suggest that MAIT cells may play an important role in the immune response to Flavivirus infections.

  15. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  16. Analysis of nuclear accumulation of influenza NP antigen in von Magnus virus-infected cells.

    Science.gov (United States)

    Maeno, K; Aoki, H; Hamaguchi, M; Iinuma, M; Nagai, Y; Matsumoto, T; Takeura, S; Shibata, M

    1981-01-01

    When 1-5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cell NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble from and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells in not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.

  17. Analysis of Mouse Brain Transcriptome After Experimental Duvenhage Virus Infection Shows Activation of Innate Immune Response and Pyroptotic Cell Death Pathway

    Directory of Open Access Journals (Sweden)

    Penelope Koraka

    2018-03-01

    Full Text Available Rabies is an important neglected disease, characterized by invariably fatal encephalitis. Several studies focus on understanding the pathogenic mechanisms of the prototype lyssavirus rabies virus (RABV infection, and little is known about the pathogenesis of rabies caused by other lyssaviruses. We sought to characterize the host response to Duvenhage virus infection and compare it with responses observed during RABV infection by gene expression profiling of brains of mice with the respective infections. We found in both infections differentially expressed genes leading to increased expression of type I interferons (IFNs, chemokines, and proinflammatory cytokines. In addition several genes of the IFN signaling pathway are up-regulated, indicating a strong antiviral response and activation of the negative feedback mechanism to limit type I IFN responses. Furthermore we provide evidence that in the absence of significant neuronal apoptotic death, cell death of neurons is mediated via the pyroptotic pathway in both infections. Taken together, we have identified several genes and/or pathways for both infections that could be used to explore novel approaches for intervention strategies against rabies.

  18. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  19. Pathology of experimental Ebola virus infection in African green monkeys. Involvement of fibroblastic reticular cells.

    Science.gov (United States)

    Davis, K J; Anderson, A O; Geisbert, T W; Steele, K E; Geisbert, J B; Vogel, P; Connolly, B M; Huggins, J W; Jahrling, P B; Jaax, N K

    1997-08-01

    Ebola virus has been responsible for explosive lethal outbreaks of hemorrhagic fever in both humans and nonhuman primates. Previous studies showed a predilection of Ebola virus for cells of the mononuclear phagocyte system and endothelial cells. To examine the distribution of lesions and Ebola virus antigen in the tissues of six adult male African green monkeys (Cercopithecus aethiops) that died 6 to 7 days after intraperitoneal inoculation of Ebola-Zaire (Mayinga) virus. Tissues were examined histologically, immunohistochemically, and ultrastructurally. A major novel finding of this study was that fibroblastic reticular cells were immunohistochemically and ultrastructurally identified as targets of Ebola virus infection. The role of Ebola virus-infected fibroblastic reticular cells in the pathogenesis of Ebola hemorrhagic fever warrants further investigation. This is especially important because of recent observations indicating that fibroblastic reticular cells, along with the reticular fibers they produce, maximize the efficiency of the immune response.

  20. HumanViCe: Host ceRNA network in virus infected cells in human

    Directory of Open Access Journals (Sweden)

    Suman eGhosal

    2014-07-01

    Full Text Available Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA, is a widespread anti-viral defence strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signalling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signalling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g. APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe, a comprehensive database that provides the potential ceRNA networks in virus

  1. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  2. Alteration of cell cycle progression by Sindbis virus infection

    International Nuclear Information System (INIS)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-01-01

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G 1 phase preferred to proliferate during S/G 2 phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G 1 phase than in cells infected during S/G 2 phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases

  3. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    Science.gov (United States)

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  4. Effects of cell culture and laboratory conditions on type 2 dengue virus infectivity.

    Science.gov (United States)

    Manning, J S; Collins, J K

    1979-01-01

    The stability of type 2 dengue virus to exposure to a variety of laboratory conditions was determined. Suckling mouse brain passage virus was adapted for growth in BHK-21 cells, and plaque assays were performed using a tragacanth gum overlay. A three- to fourfold increase in plaque size could be obtained if monolayers were subconfluent at time of inoculation. Incubation of virus for 24 h at 37 degrees C, pH 6.5, or in buffer containing 1 mM ethylenediaminetetraacetate considerably reduced virus infectivity as compared with virus incubated for the same period at 4 degrees C, pH 8.0, or in buffer with or without 1 mM CaCl2 and 1 mM MgCl2. Multiple freezing and thawing of virus tissue culture medium containing 10% fetal calf serum did not reduce virus infectivity. Images PMID:41848

  5. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  6. Susceptibility of different leukocyte cell types to Vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Sánchez-Puig Juana M

    2004-11-01

    Full Text Available Abstract Background Vaccinia virus, the prototype member of the family Poxviridae, was used extensively in the past as the Smallpox vaccine, and is currently considered as a candidate vector for new recombinant vaccines. Vaccinia virus has a wide host range, and is known to infect cultures of a variety of cell lines of mammalian origin. However, little is known about the virus tropism in human leukocyte populations. We report here that various cell types within leukocyte populations have widely different susceptibility to infection with vaccinia virus. Results We have investigated the ability of vaccinia virus to infect human PBLs by using virus recombinants expressing green fluorescent protein (GFP, and monoclonal antibodies specific for PBL subpopulations. Flow cytometry allowed the identification of infected cells within the PBL mixture 1–5 hours after infection. Antibody labeling revealed that different cell populations had very different infection rates. Monocytes showed the highest percentage of infected cells, followed by B lymphocytes and NK cells. In contrast to those cell types, the rate of infection of T lymphocytes was low. Comparison of vaccinia virus strains WR and MVA showed that both strains infected efficiently the monocyte population, although producing different expression levels. Our results suggest that MVA was less efficient than WR in infecting NK cells and B lymphocytes. Overall, both WR and MVA consistently showed a strong preference for the infection of non-T cells. Conclusions When infecting fresh human PBL preparations, vaccinia virus showed a strong bias towards the infection of monocytes, followed by B lymphocytes and NK cells. In contrast, very poor infection of T lymphocytes was detected. These finding may have important implications both in our understanding of poxvirus pathogenesis and in the development of improved smallpox vaccines.

  7. Electron Microscopy of Ebola Virus-Infected Cells.

    Science.gov (United States)

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  8. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells.

    Science.gov (United States)

    Shuid, Ahmad Naqib; Safi, Nikoo; Haghani, Amin; Mehrbod, Parvaneh; Haron, Mohd Syamsul Reza; Tan, Sheau Wei; Omar, Abdul Rahman

    2015-11-01

    Apoptosis has been postulated to play an important role during feline infectious peritonitis virus (FIPV) infection; however, its mechanism is not well characterized. This study is focused on apoptosis and transcriptional profiling of FIPV-infected cells following in vitro infection of CRFK cells with FIPV 79-1146 WSU. Flow cytometry was used to determine mode of cell death in first 42 h post infection (hpi). FIPV infected cells underwent early apoptosis at 9 hpi (p apoptosis at 12 hpi (p apoptosis cluster (80 down-regulated and 51 up-regulated) along with increase of apoptosis, p53, p38 MAPK, VEGF and chemokines/cytokines signaling pathways were probably involved in apoptosis process. Six of the de-regulated genes expression (RASSF1, BATF2, MAGEB16, PDCD5, TNFα and TRAF2) and TNFα protein concentration were analyzed by RT-qPCR and ELISA, respectively, at different time-points. Up-regulations of both pro-apoptotic (i.e. PDCD5) and anti-apoptotic (i.e. TRAF2) were detected from first hpi and continuing to deregulate during apoptosis process in the infected cells.

  9. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells.

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-10-12

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24-36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection.

  10. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-01-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904

  11. Transfusion associated hepatitis B virus infection among sickle cell ...

    African Journals Online (AJOL)

    Background: Transfusion of blood products is a recognised way of transmitting infections particularly viruses. The extent to which blood transfusion contributes to hepatitis B virus (HBV) infections in transfused patients with sickle cell anaemia (SCA) has been found to be 20% in Lagos, Nigeria. Mamman in Zaria however ...

  12. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells

    Science.gov (United States)

    Walsh, Derek; Mathews, Michael B.; Mohr, Ian

    2013-01-01

    Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus. PMID:23209131

  13. Immunoregulation by airway epithelial cells (AECs against respiratory virus infection

    Directory of Open Access Journals (Sweden)

    Yan YAN

    2017-11-01

    Full Text Available The respiratory tract is primary contact site of the body and environment, and it is ventilated by 10-20 thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbes, which contain the disease-causing pathogens. Airway epithelial cells (AECs are known to have innate sensor functions, which are similar to the "professional" immune cells, such as alveolar macrophage and sub- or intra-epithelial dendritic cells (DCs. Thus AECs are able to detect invading microbial danger including different types of respiratory viruses, and mount a potent host response, for example, activating type Ⅰ interferon signaling pathway genes. To avoid chronic inflammation and maintain the immunological homeostasis, the pulmonary system has developed intrinsic mechanisms to control local immune responses. Most recently, the role of AECs in control of local immunity has gained much attention, as 1 AECs express the pattern recognition receptors (PRRs, such as Toll-like receptors, retinoic acid inducible gene Ⅰ (RIG-I-like receptor, and so on, thus AECs are equipped to participate in innate detection of microbial encounter; 2 To keep immunological homeostasis in the respiratory tract, AECs behave not only as innate immune sensors but also as immune modulators in parallel, through modulating the sensitivity of innate immune sensing of both AECs per se and sub- or intra-epithelial immune cells; 3 Loss of modularity capacity of AECs might be involved in the development of chronic airway diseases. In present review, how the AECs act will be intensively discussed in response to respiratory viruses and modulate the local immunity through cis- and trans-factors (direct and indirect factors, as well as the consequence of impairment of this control of local immunity, in the development and exacerbation of airway diseases, such as acute and chronic rhinosinusitis. DOI: 10.11855/j.issn.0577-7402.2017.10.02

  14. Selective receptor expression restricts Nipah virus infection of endothelial cells

    Directory of Open Access Journals (Sweden)

    Diederich Sandra

    2008-11-01

    Full Text Available Abstract Nipah virus (NiV is a highly pathogenic paramyxovirus that causes severe diseases in animals and humans. Endothelial cell (EC infection is an established hallmark of NiV infection in vivo. Despite systemic virus spread via the vascular system, EC in brain and lung are preferentially infected whereas EC in other organs are less affected. As in vivo, we found differences in the infection of EC in cell culture. Only brain-derived primary or immortalized EC were found to be permissive to NiV infection. Using a replication-independent fusion assay, we could show that the lack of infection in non-brain EC was due to a lack of receptor expression. The NiV entry receptors ephrinB2 (EB2 or ephrinB3 were only expressed in brain endothelia. The finding that EB2 expression in previously non-permissive aortic EC rendered the cells permissive to infection then demonstrated that EB2 is not only necessary but also sufficient to allow the establishment of a productive NiV infection. This strongly suggests that limitations in receptor expression restrict virus entry in certain EC subsets in vivo, and are thus responsible for the differences in EC tropism observed in human and animal NiV infections.

  15. Ebola virus infection induces irregular dendritic cell gene expression.

    Science.gov (United States)

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  16. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines

    International Nuclear Information System (INIS)

    Offerdahl, Danielle K.; Dorward, David W.; Hansen, Bryan T.; Bloom, Marshall E.

    2017-01-01

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.

  17. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Offerdahl, Danielle K. [Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States); Dorward, David W.; Hansen, Bryan T. [Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States); Bloom, Marshall E., E-mail: mbloom@nih.gov [Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States)

    2017-01-15

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.

  18. Differential proteome analysis of chikungunya virus infection on host cells.

    Directory of Open Access Journals (Sweden)

    Christina Li-Ping Thio

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach. METHODOLOGY AND PRINCIPAL FINDINGS: The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE. Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP and cell cycle regulation. CONCLUSION/SIGNIFICANCE: This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1 regulation (in favour of virus survival, replication and transmission. While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.

  19. Bovine aortic endothelial cells are susceptible to Hantaan virus infection

    International Nuclear Information System (INIS)

    Bahr, U.; Muranyi, W.; Mueller, S.; Kehm, R.; Handermann, M.; Darai, G.; Zeier, M.

    2004-01-01

    Hantavirus serotype Hantaan (HTN) is one of the causative agents of hemorrhagic fever with renal syndrome (HFRS, lethality up to 10%). The natural host of HTN is Apodemus agrarius. Recent studies have shown that domestic animals like cattle are sporadically seropositive for hantaviruses. In the present study, the susceptibility of bovine aortic endothelial cells (BAEC) expressing α V β 3 -integrin to a HTN infection was investigated. Viral nucleocapsid protein and genomic RNA segments were detected in infected BAEC by indirect immunofluorescence assay, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The results of this study strongly support our previous observation on Puumala virus (PUU) that has been propagated efficiently in BAEC. These findings open a new window to contemplate the ecology of hantavirus infection and transmission route from animal to man

  20. MALT1 Controls Attenuated Rabies Virus by Inducing Early Inflammation and T Cell Activation in the Brain.

    Science.gov (United States)

    Kip, E; Staal, J; Verstrepen, L; Tima, H G; Terryn, S; Romano, M; Lemeire, K; Suin, V; Hamouda, A; Kalai, M; Beyaert, R; Van Gucht, S

    2018-04-15

    MALT1 is involved in the activation of immune responses, as well as in the proliferation and survival of certain cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, further promoting the expression of immunoregulatory genes. Deregulated MALT1 activity has been associated with autoimmunity and cancer, implicating MALT1 as a new therapeutic target. Although MALT1 deficiency has been shown to protect against experimental autoimmune encephalomyelitis, nothing is known about the impact of MALT1 on virus infection in the central nervous system. Here, we studied infection with an attenuated rabies virus, Evelyn-Rotnycki-Abelseth (ERA) virus, and observed increased susceptibility with ERA virus in MALT1 -/- mice. Indeed, after intranasal infection with ERA virus, wild-type mice developed mild transient clinical signs with recovery at 35 days postinoculation (dpi). Interestingly, MALT1 -/- mice developed severe disease requiring euthanasia at around 17 dpi. A decreased induction of inflammatory gene expression and cell infiltration and activation was observed in MALT1 -/- mice at 10 dpi compared to MALT1 +/+ infected mice. At 17 dpi, however, the level of inflammatory cell activation was comparable to that observed in MALT1 +/+ mice. Moreover, MALT1 -/- mice failed to produce virus-neutralizing antibodies. Similar results were obtained with specific inactivation of MALT1 in T cells. Finally, treatment of wild-type mice with mepazine, a MALT1 protease inhibitor, also led to mortality upon ERA virus infection. These data emphasize the importance of early inflammation and activation of T cells through MALT1 for controlling the virulence of an attenuated rabies virus in the brain. IMPORTANCE Rabies virus is a neurotropic virus which can infect any mammal. Annually, 59,000 people die from rabies. Effective therapy is lacking and hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular

  1. Role of antibody in recovery from experimental rabies. I. Effect of depletion of B and T cells

    International Nuclear Information System (INIS)

    Miller, A.; Morse, H.C. III; Winkelstein, J.; Nathanson, N.

    1978-01-01

    The avirulent high egg passage (HEP) strain of rabies virus produces an inapparent infection limited to the central nervous system (CNS) in intracerebrally inoculated adult mice. Heavy chain isotype (anti-μ antiserum) immunosuppression potentiates the infection, with a mortality of about 60% and with elevated virus titers in the brain. Anti-μ-treated mice fail to raise antibody responses to rabies virus although their T cell function is normal when measured by the concanavalin A response of splenic lymphocytes. This indicates that the B cell response plays an important role in clearance of rabies virus from the neuroparenchyma. Treatment with cyclophosphamide or by adult thymectomy, x-irradiation, and bone marrow reconstitution potentiates HEP infection to a greater extent than does isotype supression. Since these suppressive techniques impair both T and B lymphocyte responses, the data suggest that cellular immune mechanisms may also contribute to host defenses against this central nervous system (CNS) virus infection

  2. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  3. A novel single virus infection system reveals that influenza virus preferentially infects cells in g1 phase.

    Directory of Open Access Journals (Sweden)

    Ryuta Ueda

    Full Text Available BACKGROUND: Influenza virus attaches to sialic acid residues on the surface of host cells via the hemagglutinin (HA, a glycoprotein expressed on the viral envelope, and enters into the cytoplasm by receptor-mediated endocytosis. The viral genome is released and transported in to the nucleus, where transcription and replication take place. However, cellular factors affecting the influenza virus infection such as the cell cycle remain uncharacterized. METHODS/RESULTS: To resolve the influence of cell cycle on influenza virus infection, we performed a single-virus infection analysis using optical tweezers. Using this newly developed single-virus infection system, the fluorescence-labeled influenza virus was trapped on a microchip using a laser (1064 nm at 0.6 W, transported, and released onto individual H292 human lung epithelial cells. Interestingly, the influenza virus attached selectively to cells in the G1-phase. To clarify the molecular differences between cells in G1- and S/G2/M-phase, we performed several physical and chemical assays. Results indicated that: 1 the membranes of cells in G1-phase contained greater amounts of sialic acids (glycoproteins than the membranes of cells in S/G2/M-phase; 2 the membrane stiffness of cells in S/G2/M-phase is more rigid than those in G1-phase by measurement using optical tweezers; and 3 S/G2/M-phase cells contained higher content of Gb3, Gb4 and GlcCer than G1-phase cells by an assay for lipid composition. CONCLUSIONS: A novel single-virus infection system was developed to characterize the difference in influenza virus susceptibility between G1- and S/G2/M-phase cells. Differences in virus binding specificity were associated with alterations in the lipid composition, sialic acid content, and membrane stiffness. This single-virus infection system will be useful for studying the infection mechanisms of other viruses.

  4. Rabies

    Science.gov (United States)

    E F G H I J K L M N O P Q R S T U V W X Y Z Rabies Raccoon People are exposed to rabies when they to the local health department. Rabies is almost always fatal once clinical symptoms appear. To confirm the victim's risk of being exposed to rabies, a decision must be made to either test or quarantine

  5. Rabies.

    Science.gov (United States)

    Burnett, Nark

    2013-01-01

    Rabies has been a scourge of mankind since antiquity. The name itself, ?rabies? is derived from the ancient Sanskrit rabhas meaning ?to do violence? and has been found described in medical writings several thousand years old. The rabies virus is an RNA virus of the family Rhabdoviridae (Greek for ?rod-shaped virus?), genus Lyssavirus (Lyssa being the Greek God of frenzy and rage). Rabies infections have a worldwide spread, with only a few, mostly island nations laying claim to being ?rabies free.? 2013.

  6. Acute Respiratory Distress Syndrome Caused by Influenza B Virus Infection in a Patient with Diffuse Large B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Silvio A. Ñamendys-Silva

    2011-01-01

    Full Text Available Influenza B virus infections are less common than infections caused by influenza A virus in critically ill patients, but similar mortality rates have been observed for both influenza types. Pneumonia caused by influenza B virus is uncommon and has been reported in pediatric patients and previously healthy adults. Critically ill patients with pneumonia caused by influenza virus may develop acute respiratory distress syndrome. We describe the clinical course of a critically ill patient with diffuse large B-cell lymphoma nongerminal center B-cell phenotype who developed acute respiratory distress syndrome caused by influenza B virus infection. This paper emphasizes the need to suspect influenza B virus infection in critically ill immunocompromised patients with progressive deterioration of cardiopulmonary function despite treatment with antibiotics. Early initiation of neuraminidase inhibitor and the implementation of guidelines for management of severe sepsis and septic shock should be considered.

  7. Elevated levels of cell-free circulating DNA in patients with acute dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Tran Thi Ngoc Ha

    Full Text Available BACKGROUND: Apoptosis is thought to play a role in the pathogenesis of severe dengue and the release of cell-free DNA into the circulatory system in several medical conditions. Therefore, we investigated circulating DNA as a potential biomarker for severe dengue. METHODS AND FINDINGS: A direct fluorometric degradation assay using PicoGreen was performed to quantify cell-free DNA from patient plasma. Circulating DNA levels were significantly higher in patients with dengue virus infection than with other febrile illnesses and healthy controls. Remarkably, the increase of DNA levels correlated with the severity of dengue. Additionally, multivariate logistic regression analysis showed that circulating DNA levels independently correlated with dengue shock syndrome. CONCLUSIONS: Circulating DNA levels were increased in dengue patients and correlated with dengue severity. Additional studies are required to show the benefits of this biomarker in early dengue diagnosis and for the prognosis of shock complication.

  8. Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

    Directory of Open Access Journals (Sweden)

    Shahir Prajakta

    2011-05-01

    Full Text Available Abstract Back ground Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice. Method In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied in vitro by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer. Results The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical compared to the normal lymphocytes. Greater percentage of

  9. Ethanol suppression of peripheral blood mononuclear cell trafficking across brain endothelial cells in immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Lola C Hudson

    2010-01-01

    Full Text Available Lola C Hudson1, Brenda A Colby1, Rick B Meeker21Department of Molecular Biosciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; 2Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAAbstract: Earlier studies suggested that the combination of alcohol use and immunodeficiency virus infection resulted in more severe neurologic disease than either condition individually. These deleterious interactions could be due to increased immune cell and virus trafficking or may result from interactions between ethanol and human immunodeficiency virus (HIV-associated toxicity within the brain. To determine the extent to which increased trafficking played a role, we examined the effect of ethanol on the migration of different peripheral blood mononuclear cell (PBMCs subsets across a brain endothelial cell monolayer. We utilized combinations of feline brain endothelial cells with astrocytes, and/or microglia with either acute exposure to 0.08 g/dL ethanol, a combination of ethanol and feline immunodeficiency virus (FIV, or FIV alone. Adherence of PBMCs to endothelium was increased in all combinations of cells with the addition of ethanol. Despite increased PBMC adhesion with ethanol treatment, transmigration of B cells, monocytes, CD4 T cells and CD8 T cells was not increased and was actually decreased in the presence of astrocytes. Expression of three common adhesion molecules, intercellular adhesion molecule-1 (ICAM1, ICAM2, and vascular cell adhesion molecule, was unchanged or slightly decreased by ethanol. This indicated that although adherence is increased by ethanol it is not due to an increased expression of adhesion molecules. RANTES, MIP1α, MIP1β, and MCP-1 mRNA expression was also studied in brain endothelial cells, astrocytes and microglia by reverse transcriptase-polymerase chain reaction. Ethanol treatment of astrocytes resulted in modest changes of

  10. Identification of a major non-structural protein in the nuclei of Rift Valley fever virus-infected cells.

    Science.gov (United States)

    Struthers, J K; Swanepoel, R

    1982-06-01

    A non-structural protein of mol. wt. 34 X 10(3) was demonstrated in the nuclei of Rift Valley fever virus-infected Vero cells by SDS-polyacrylamide gel electro-phoresis. The protein appears to correspond to the virus-induced antigen demonstrated by indirect immunofluorescence in intranuclear inclusions.

  11. Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Stacey Ann Gorski

    2013-09-01

    Full Text Available Respiratory virus infections, such as influenza, typically induce a robust type I (pro-inflammatory cytokine immune response, however, the production of type 2 cytokines has been observed. Type 2 cytokine production during respiratory virus infection is linked to asthma exacerbation; however, type 2 cytokines may also be tissue protective. Interleukin (IL-5 is a prototypical type 2 cytokine that is essential for eosinophil maturation and egress out of the bone marrow. However, little is known about the cellular source and underlying cellular and molecular basis for the regulation of IL-5 production during respiratory virus infection. Using a mouse model of influenza virus infection, we found a robust transient release of IL-5 into infected airways along with a significant and progressive accumulation of eosinophils into the lungs, particularly during the recovery phase of infection, i.e. following virus clearance. The cellular source of the IL-5 was group 2 innate lymphoid cells (ILC2 infiltrating the infected lungs. Interestingly, the progressive accumulation of eosinophils following virus clearance is reflected in the rapid expansion of c-kit⁺ IL-5 producing ILC2. We further demonstrate that the enhanced capacity for IL-5 production by ILC2 during recovery is concomitant with the enhanced expression of the IL-33 receptor subunit, ST2, by ILC2. Lastly, we show that NKT cells, as well as alveolar macrophages (AM, are endogenous sources of IL-33 that enhance IL-5 production from ILC2. Collectively, these results reveal that c-kit⁺ ILC2 interaction with IL-33 producing NKT and AM leads to abundant production of IL-5 by ILC2 and accounts for the accumulation of eosinophils observed during the recovery phase of influenza infection.

  12. A Fluorescent Cell-Based System for Imaging Zika Virus Infection in Real-Time

    Directory of Open Access Journals (Sweden)

    Michael J. McFadden

    2018-02-01

    Full Text Available Zika virus (ZIKV is a re-emerging flavivirus that is transmitted to humans through the bite of an infected mosquito or through sexual contact with an infected partner. ZIKV infection during pregnancy has been associated with numerous fetal abnormalities, including prenatal lethality and microcephaly. However, until recent outbreaks in the Americas, ZIKV has been relatively understudied, and therefore the biology and pathogenesis of ZIKV infection remain incompletely understood. Better methods to study ZIKV infection in live cells could enhance our understanding of the biology of ZIKV and the mechanisms by which ZIKV contributes to fetal abnormalities. To this end, we developed a fluorescent cell-based reporter system allowing for live imaging of ZIKV-infected cells. This system utilizes the protease activity of the ZIKV non-structural proteins 2B and 3 (NS2B-NS3 to specifically mark virus-infected cells. Here, we demonstrate the utility of this fluorescent reporter for identifying cells infected by ZIKV strains of two lineages. Further, we use this system to determine that apoptosis is induced in cells directly infected with ZIKV in a cell-autonomous manner. Ultimately, approaches that can directly track ZIKV-infected cells at the single cell-level have the potential to yield new insights into the host-pathogen interactions that regulate ZIKV infection and pathogenesis.

  13. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C

    2009-01-01

    effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype......, or function in any of the tissues examined. These findings demonstrate that CXCR3 controls virus-specific effector CD4(+) T cell migration in vivo, and suggest that blocking CXCR3-mediated recruitment may limit T cell-induced immunopathology during respiratory virus infections....

  14. Influenza A Virus Infection in Pigs Attracts Multifunctional and Cross-Reactive T Cells to the Lung.

    Science.gov (United States)

    Talker, Stephanie C; Stadler, Maria; Koinig, Hanna C; Mair, Kerstin H; Rodríguez-Gómez, Irene M; Graage, Robert; Zell, Roland; Dürrwald, Ralf; Starick, Elke; Harder, Timm; Weissenböck, Herbert; Lamp, Benjamin; Hammer, Sabine E; Ladinig, Andrea; Saalmüller, Armin; Gerner, Wilhelm

    2016-10-15

    Pigs are natural hosts for influenza A viruses and play a critical role in influenza epidemiology. However, little is known about their influenza-evoked T-cell response. We performed a thorough analysis of both the local and systemic T-cell response in influenza virus-infected pigs, addressing kinetics and phenotype as well as multifunctionality (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and cross-reactivity. A total of 31 pigs were intratracheally infected with an H1N2 swine influenza A virus (FLUAVsw) and consecutively euthanized. Lungs, tracheobronchial lymph nodes, and blood were sampled during the first 15 days postinfection (p.i.) and at 6 weeks p.i. Ex vivo flow cytometry of lung lymphocytes revealed an increase in proliferating (Ki-67(+)) CD8(+) T cells with an early effector phenotype (perforin(+) CD27(+)) at day 6 p.i. Low frequencies of influenza virus-specific IFN-γ-producing CD4(+) and CD8(+) T cells could be detected in the lung as early as 4 days p.i. On consecutive days, influenza virus-specific CD4(+) and CD8(+) T cells produced mainly IFN-γ and/or TNF-α, reaching peak frequencies around day 9 p.i., which were up to 30-fold higher in the lung than in tracheobronchial lymph nodes or blood. At 6 weeks p.i., CD4(+) and CD8(+) memory T cells had accumulated in lung tissue. These cells showed diverse cytokine profiles and in vitro reactivity against heterologous influenza virus strains, all of which supports their potential to combat heterologous influenza virus infections in pigs. Pigs not only are a suitable large-animal model for human influenza virus infection and vaccine development but also play a central role in the emergence of new pandemic strains. Although promising candidate universal vaccines are tested in pigs and local T cells are the major correlate of heterologous control, detailed and targeted analyses of T-cell responses at the site of infection are scarce. With the present study, we

  15. Virus-specific cytotoxic T cells in chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Shibayama, Haruna; Imadome, Ken-Ichi; Onozawa, Erika; Tsuzura, Akiho; Miura, Osamu; Koyama, Takatoshi; Arai, Ayako

    2017-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a disease characterized by clonally proliferating and activated EBV-infected T or NK cells accompanied by chronic inflammation and T- or NK-cell neoplasms. However, the mechanism for developing CAEBV has not been clarified to date. Because the decreased number or inactivation of EBV-specific cytotoxic T lymphocytes (CTLs) resulted in the development of EBV-positive B-cell neoplasms, we investigated the number of CTLs in CAEBV patients using the tetrameric complexes of HLA-restricted EBV-specific peptides. Among the seven patients examined, EBV-specific CTLs were detected in the peripheral blood mononuclear cells (PBMCs) of four cases but were not detected in three cases. The ratio of EBV-specific CTLs in PBMCs tended to be higher in the patients with active disease than in those with inactive disease. In two patients in whom EBV-specific CTLs had not been detected, CTLs appeared after the eradication of EBV-infected T cells by allogeneic bone marrow transplantation. These results suggested that the failure of CTLs had a role in developing CAEBV, although the induction number and function of EBV-specific CTLs might vary in each patient.

  16. The Influence of Virus Infection on the Extracellular pH of the Host Cell Detected on Cell Membrane.

    Science.gov (United States)

    Liu, Hengjun; Maruyama, Hisataka; Masuda, Taisuke; Honda, Ayae; Arai, Fumihito

    2016-01-01

    Influenza virus infection can result in changes in the cellular ion levels at 2-3 h post-infection. More H(+) is produced by glycolysis, and the viral M2 proton channel also plays a role in the capture and release of H(+) during both viral entry and egress. Then the cells might regulate the intracellular pH by increasing the export of H(+) from the intracellular compartment. Increased H(+) export could lead indirectly to increased extracellular acidity. To detect changes in extracellular pH of both virus-infected and uninfected cells, pH sensors were synthesized using polystyrene beads (ϕ1 μm) containing Rhodamine B and Fluorescein isothiocyanate (FITC). The fluorescence intensity of FITC can respond to both pH and temperature. So Rhodamine B was also introduced in the sensor for temperature compensation. Then the pH can be measured after temperature compensation. The sensor was adhered to cell membrane for extracellular pH measurement. The results showed that the multiplication of influenza virus in host cell decreased extracellular pH of the host cell by 0.5-0.6 in 4 h after the virus bound to the cell membrane, compared to that in uninfected cells. Immunostaining revealed the presence of viral PB1 protein in the nucleus of virus-bound cells that exhibited extracellular pH changes, but no PB1 protein are detected in virus-unbound cells where the extracellular pH remained constant.

  17. Rabies

    Science.gov (United States)

    ... procurement, and usage are expected from rabies biological suppliers in both India and Viet Nam. Once complete, ... as part of a Bill & Melinda Gates Foundation project led by WHO, recently showed that a reduction ...

  18. Secretion of Galectin-9 as a DAMP during Dengue Virus Infection in THP-1 Cells.

    Science.gov (United States)

    Dapat, Isolde C; Pascapurnama, Dyshelly Nurkartika; Iwasaki, Hiroko; Labayo, Hannah Karen; Chagan-Yasutan, Haorile; Egawa, Shinichi; Hattori, Toshio

    2017-07-28

    Damage-associated molecular patterns (DAMPs) are endogenous cellular molecules released to the extracellular environment in response to stress conditions such as virus infection. Galectins are β-galactoside-binding proteins that are widely expressed in cells and tissues of the immune system, are localized in the cell cytoplasm, and have roles in inflammatory responses and immune responses against infection. Elevated levels of galectin-9 (Gal-9) in natural human infections have been documented in numerous reports. To investigate the effect of dengue virus (DENV) infection on expression of endogenous Gal-9, monocytic THP-1 cells were infected with varying doses of DENV-3 (multiplicity of infection (MOI) 0.01, 0.03 and 0.1) and incubated at varying time points (Day 1, Day 2, Day 3). Results showed augmentation of Gal-9 levels in the supernatant, reduction of Gal-9 levels in the cells and decreased expression of LGALS9 mRNA, while DENV-3 mRNA copies for all three doses remained stable through time. Dengue virus induced the secretion of Gal-9 as a danger response; in turn, Gal-9 and other inflammatory factors, and stimulated effector responses may have limited further viral replication. The results in this pilot experiment add to the evidence of Gal-9 as a potential DAMP.

  19. Sequential activation of CD8+ T cells in the draining lymph nodes in response to pulmonary virus infection.

    Science.gov (United States)

    Yoon, Heesik; Legge, Kevin L; Sung, Sun-sang J; Braciale, Thomas J

    2007-07-01

    We have used a TCR-transgenic CD8+ T cell adoptive transfer model to examine the tempo of T cell activation and proliferation in the draining lymph nodes (DLN) in response to respiratory virus infection. The T cell response in the DLN differed for mice infected with different type A influenza strains with the onset of T cell activation/proliferation to the A/JAPAN virus infection preceding the A/PR8 response by 12-24 h. This difference in T cell activation/proliferation correlated with the tempo of accelerated respiratory DC (RDC) migration from the infected lungs to the DLN in response to influenza virus infection, with the migrant RDC responding to the A/JAPAN infection exhibiting a more rapid accumulation in the lymph nodes (i.e., peak migration for A/JAPAN at 18 h, A/PR8 at 24-36 h). Furthermore, in vivo administration of blocking anti-CD62L Ab at various time points before/after infection revealed that the virus-specific CD8+ T cells entered the DLN and activated in a sequential "conveyor belt"-like fashion. These results indicate that the tempo of CD8+ T cell activation/proliferation after viral infection is dependent on the tempo of RDC migration to the DLN and that T cell activation occurs in an ordered sequential fashion.

  20. Role of Natural Killer Cells in Innate Protection against Lethal Ebola Virus Infection

    OpenAIRE

    Warfield, Kelly L.; Perkins, Jeremy G.; Swenson, Dana L.; Deal, Emily M.; Bosio, Catharine M.; Aman, M. Javad; Yokoyama, Wayne M.; Young, Howard A.; Bavari, Sina

    2004-01-01

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1–3 d before Ebola virus infection rapidly induced protective immunity. VLP injectio...

  1. cGAMP Quantification in Virus-Infected Human Monocyte-Derived Cells by HPLC-Coupled Tandem Mass Spectrometry.

    Science.gov (United States)

    Paijo, Jennifer; Kaever, Volkhard; Kalinke, Ulrich

    2017-01-01

    Upon virus infection, cells of the innate immune system such as dendritic cells and macrophages can mount type I interferon (IFN-I) responses that restrict viral dissemination. To inform host cells of virus infection, detection of cytosolic DNA is one important mechanism. Inappropriate sensing of endogenous DNA and subsequent induction of IFN-I responses can also cause autoimmunity, highlighting the need to tightly regulate DNA sensing. The cyclic GMP-AMP synthase (cGAS) was recently identified to be the major sensor of cytosolic DNA that triggers IFN-I expression. Upon DNA binding, cGAS synthesizes the second messenger cyclic guanosine-adenosine monophosphate (cGAMP) that induces IFN-I expression by the activation of the stimulator of interferon genes (STING). Notably, cGAMP does not only act in infected cells, but can also be relocated to noninfected bystander cells to there trigger IFN-I expression. Thus, direct quantification of cGAMP in cells of the innate immune system is an important approach to study where, when, and how DNA is sensed and IFN-I responses are induced. Here, we describe a method that allows specific quantification of cGAMP from extracts of virus-infected human myeloid cells by HPLC-coupled tandem mass spectrometry.

  2. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells

    International Nuclear Information System (INIS)

    Sato, Yoshiko; Yoshioka, Kenichi; Suzuki, Chie; Awashima, Satoshi; Hosaka, Yasuhiro; Yewdell, Jonathan; Kuroda, Kazumichi

    2003-01-01

    We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses

  3. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection

    DEFF Research Database (Denmark)

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar

    2018-01-01

    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain...... stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF) which signals via TNFR1 and promote "enforced virus replication" in CD169(+) macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance....

  4. Flow cytometric monitoring of influenza A virus infection in MDCK cells during vaccine production

    Directory of Open Access Journals (Sweden)

    Reichl Udo

    2008-04-01

    Full Text Available Abstract Background In cell culture-based influenza vaccine production the monitoring of virus titres and cell physiology during infection is of great importance for process characterisation and optimisation. While conventional virus quantification methods give only virus titres in the culture broth, data obtained by fluorescence labelling of intracellular virus proteins provide additional information on infection dynamics. Flow cytometry represents a valuable tool to investigate the influences of cultivation conditions and process variations on virus replication and virus yields. Results In this study, fluorescein-labelled monoclonal antibodies against influenza A virus matrix protein 1 and nucleoprotein were used for monitoring the infection status of adherent Madin-Darby canine kidney cells from bioreactor samples. Monoclonal antibody binding was shown for influenza A virus strains of different subtypes (H1N1, H1N2, H3N8 and host specificity (human, equine, swine. At high multiplicity of infection in a bioreactor, the onset of viral protein accumulation in adherent cells on microcarriers was detected at about 2 to 4 h post infection by flow cytometry. In contrast, a significant increase in titre by hemagglutination assay was detected at the earliest 4 to 6 h post infection. Conclusion It is shown that flow cytometry is a sensitive and robust method for the monitoring of viral infection in fixed cells from bioreactor samples. Therefore, it is a valuable addition to other detection methods of influenza virus infection such as immunotitration and RNA hybridisation. Thousands of individual cells are measured per sample. Thus, the presented method is believed to be quite independent of the concentration of infected cells (multiplicity of infection and total cell concentration in bioreactors. This allows to perform detailed studies on factors relevant for optimization of virus yields in cell cultures. The method could also be used for process

  5. Ageratum enation virus Infection Induces Programmed Cell Death and Alters Metabolite Biosynthesis in Papaver somniferum

    Directory of Open Access Journals (Sweden)

    Ashish Srivastava

    2017-07-01

    Full Text Available A previously unknown disease which causes severe vein thickening and inward leaf curl was observed in a number of opium poppy (Papaver somniferum L. plants. The sequence analysis of full-length viral genome and associated betasatellite reveals the occurrence of Ageratum enation virus (AEV and Ageratum leaf curl betasatellite (ALCB, respectively. Co-infiltration of cloned agroinfectious DNAs of AEV and ALCB induces the leaf curl and vein thickening symptoms as were observed naturally. Infectivity assay confirmed this complex as the cause of disease and also satisfied the Koch’s postulates. Comprehensive microscopic analysis of infiltrated plants reveals severe structural anomalies in leaf and stem tissues represented by unorganized cell architecture and vascular bundles. Moreover, the characteristic blebs and membranous vesicles formed due to the virus-induced disintegration of the plasma membrane and intracellular organelles were also present. An accelerated nuclear DNA fragmentation was observed by Comet assay and confirmed by TUNEL and Hoechst dye staining assays suggesting virus-induced programmed cell death. Virus-infection altered the biosynthesis of several important metabolites. The biosynthesis potential of morphine, thebaine, codeine, and papaverine alkaloids reduced significantly in infected plants except for noscapine whose biosynthesis was comparatively enhanced. The expression analysis of corresponding alkaloid pathway genes by real time-PCR corroborated well with the results of HPLC analysis for alkaloid perturbations. The changes in the metabolite and alkaloid contents affect the commercial value of the poppy plants.

  6. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir.

    Science.gov (United States)

    Chen, Yen-Liang; Abdul Ghafar, Nahdiyah; Karuna, Ratna; Fu, Yilong; Lim, Siew Pheng; Schul, Wouter; Gu, Feng; Herve, Maxime; Yokohama, Fumiaki; Wang, Gang; Cerny, Daniela; Fink, Katja; Blasco, Francesca; Shi, Pei-Yong

    2014-02-01

    In a recent clinical trial, balapiravir, a prodrug of a cytidine analog (R1479), failed to achieve efficacy (reducing viremia after treatment) in dengue patients, although the plasma trough concentration of R1479 remained above the 50% effective concentration (EC(50)). Here, we report experimental evidence to explain the discrepancy between the in vitro and in vivo results and its implication for drug development. R1479 lost its potency by 125-fold when balapiravir was used to treat primary human peripheral blood mononuclear cells (PBMCs; one of the major cells targeted for viral replication) that were preinfected with dengue virus. The elevated EC(50) was greater than the plasma trough concentration of R1479 observed in dengue patients treated with balapiravir and could possibly explain the efficacy failure. Mechanistically, dengue virus infection triggered PBMCs to generate cytokines, which decreased their efficiency of conversion of R1479 to its triphosphate form (the active antiviral ingredient), resulting in decreased antiviral potency. In contrast to the cytidine-based compound R1479, the potency of an adenosine-based inhibitor of dengue virus (NITD008) was much less affected. Taken together, our results demonstrate that viral infection in patients before treatment could significantly affect the conversion of the prodrug to its active form; such an effect should be calculated when estimating the dose efficacious for humans.

  7. Aryl Hydrocarbon Receptor Activation Reduces Dendritic Cell Function during Influenza Virus Infection

    Science.gov (United States)

    Jin, Guang-Bi; Moore, Amanda J.; Head, Jennifer L.; Neumiller, Joshua J.; Lawrence, B. Paige

    2010-01-01

    It has long been known that activation of the aryl hydrocarbon receptor (AhR) by ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses T cell–dependent immune responses; however, the underlying cellular targets and mechanism remain unclear. We have previously shown that AhR activation by TCDD reduces the proliferation and differentiation of influenza virus–specific CD8+ T cells through an indirect mechanism; suggesting that accessory cells are critical AhR targets during infection. Respiratory dendritic cells (DCs) capture antigen, migrate to lymph nodes, and play a key role in activating naive CD8+ T cells during respiratory virus infection. Herein, we report an examination of how AhR activation alters DCs in the lung and affects their trafficking to and function in the mediastinal lymph nodes (MLN) during infection with influenza virus. We show that AhR activation impairs lung DC migration and reduces the ability of DCs isolated from the MLN to activate naive CD8+ T cells. Using novel AhR mutant mice, in which the AhR protein lacks its DNA-binding domain, we show that the suppressive effects of TCDD require that the activated AhR complex binds to DNA. These new findings suggest that AhR activation by chemicals from our environment impacts DC function to stimulate naive CD8+ T cells and that immunoregulatory genes within DCs are critical targets of AhR. Moreover, our results reinforce the idea that environmental signals and AhR ligands may contribute to differential susceptibilities and responses to respiratory infection. PMID:20498003

  8. Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis

    International Nuclear Information System (INIS)

    McDonald, Terence P.; Pitt, Andrew R.; Brown, Gaie; Rixon, Helen W. McL.; Sugrue, Richard J.

    2004-01-01

    The interaction between the respiratory syncytial virus (RSV) polymerase complex and lipid rafts was examined in HEp2 cells. Lipid-raft membranes were prepared from virus-infected cells and their protein content was analysed by Western blotting and mass spectrometry. This analysis revealed the presence of the N, P, L, M2-1 and M proteins. However, these proteins appeared to differ from one another in their association with these structures, with the M2-1 protein showing a greater partitioning into raft membranes compared to that of the N, P or M proteins. Determination of the polymerase activity profile of the gradient fractions revealed that 95% of the detectable viral enzyme activity was associated with lipid-raft membranes. Furthermore, analysis of virus-infected cells by confocal microscopy suggested an association between these proteins and the raft-lipid, GM1. Together, these results provide evidence that the RSV polymerase complex is able to associate with lipid rafts in virus-infected cells

  9. DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells

    Directory of Open Access Journals (Sweden)

    Suresh V. Kuchipudi

    2015-06-01

    Full Text Available The data described in this article pertain to the article by Kuchipudi et al. (2014 titled “Highly Pathogenic Avian Influenza Virus Infection in Chickens But Not Ducks Is Associated with Elevated Host Immune and Pro-inflammatory Responses” [1]. While infection of chickens with highly pathogenic avian influenza (HPAI H5N1 virus subtypes often leads to 100% mortality within 1 to 2 days, infection of ducks in contrast causes mild or no clinical signs. The rapid onset of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggests underlying differences in their innate immune mechanisms. We used Chicken Genechip microarrays (Affymetrix to analyse the gene expression profiles of primary chicken and duck lung cells infected with a low pathogenic avian influenza (LPAI H2N3 virus and two HPAI H5N1 virus subtypes to understand the molecular basis of host susceptibility and resistance in chickens and ducks. Here, we described the experimental design, quality control and analysis that were performed on the data set. The data are publicly available through the Gene Expression Omnibus (GEOdatabase with accession number GSE33389, and the analysis and interpretation of these data are included in Kuchipudi et al. (2014 [1].

  10. Evolving role of 2B4/CD244 in T and NK cell responses during virus infection

    Directory of Open Access Journals (Sweden)

    Stephen Noel Waggoner

    2012-12-01

    Full Text Available The signaling lymphocyte activation molecule (SLAM family receptor, 2B4/CD244, was first implicated in anti-viral immunity by the discovery that mutations of the SLAM-associated protein, SAP/SH2D1A, impaired 2B4-dependent stimulation of T and natural killer (NK cell anti-viral functions in X-linked lymphoproliferative (XLP syndrome patients with uncontrolled Epstein-Barr virus (EBV infections. Engagement of 2B4 has been variably shown to either activate or inhibit lymphocytes which express this receptor. While SAP expression is required for stimulatory functions of 2B4 on lymphocytes, it remains unclear whether inhibitory signals derived from 2B4 can predominate even in the presence of SAP. Regardless, mounting evidence suggests that 2B4 expression by NK and CD8 T cells is altered by virus infection in mice as well as in humans, and 2B4-mediated signaling may be an important determinant of effective immune control of chronic virus infections. In this review, recent findings regarding the expression and function of 2B4 as well as SAP on T and NK cells during virus infection is discussed, with a focus on the role of 2B4-CD48 interactions in crosstalk between innate and adaptive immunity.

  11. Rabies

    Science.gov (United States)

    ... news-room/fact-sheets/detail/rabies","@context":"http://schema.org","@type":"Article"}; العربية 中文 français русский español ... prevention and control in communities includes education and information on responsible pet ownership, how to prevent dog ...

  12. Transcriptional profiling of the host cell response to feline immunodeficiency virus infection.

    Science.gov (United States)

    Ertl, Reinhard; Klein, Dieter

    2014-03-19

    Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection. After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes. Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis.

  13. The influence of virus infection on the extracellular pH of the host cell detected on cell membrane

    Directory of Open Access Journals (Sweden)

    Hengjun Liu

    2016-08-01

    Full Text Available Influenza virus infection can result in changes in the cellular ion levels at 2–3 hours post-infection. More H+ is produced by glycolysis, and the viral M2 proton channel also plays a role in the capture and release of H+ during both viral entry and egress. Then the cells might regulate the intracellular pH by increasing the export of H+ from the intracellular compartment. Increased H+ export could lead indirectly to increased extracellular acidity. To detect changes in extracellular pH of both virus-infected and uninfected cells, pH sensors were synthesized using polystyrene beads (1μm containing Rhodamine B and Fluorescein isothiocyanate (FITC. The fluorescence intensity of FITC can respond to both pH and temperature. So Rhodamine B was also introduced in the sensor for temperature compensation. Then the pH can be measured after temperature compensation. The sensor was adhered to cell membrane for extracellular pH measurement. The results showed that the multiplication of influenza virus in host cell decreased extracellular pH of the host cell by 0.5–0.6 in 4 hours after the virus bound to the cell membrane, compared to that in uninfected cells. Immunostaining revealed the presence of viral PB1 subunits in the nucleus of virus-bound cells that exhibited extracellular pH changes, but no PB1 subunits are detected in virus-unbound cells where the extracellular pH remained constant.

  14. Viral infection, proliferation, and hyperplasia of Hofbauer cells and absence of inflammation characterize the placental pathology of fetuses with congenital Zika virus infection.

    Science.gov (United States)

    Schwartz, David A

    2017-06-01

    Attention is increasingly focused on the potential mechanism(s) for Zika virus infection to be transmitted from an infected mother to her fetus. This communication addresses current evidence for the role of the placenta in vertical transmission of the Zika virus. Placentas from second and third trimester fetuses with confirmed intrauterine Zika virus infection were examined with routine staining to determine the spectrum of pathologic changes. In addition, immunohistochemical staining for macrophages and nuclear proliferation antigens was performed. Viral localization was identified using RNA hybridization. These observations were combined with the recent published results of placental pathology to increase the strength of the pathology data. Results were correlated with published data from experimental studies of Zika virus infection in placental cells and chorionic villous explants. Placentas from fetuses with congenital Zika virus infection are concordant in not having viral-induced placental inflammation. Special stains reveal proliferation and prominent hyperplasia of placental stromal macrophages, termed Hofbauer cells, in the chorionic villi of infected placentas. Zika virus infection is present in Hofbauer cells from second and third trimester placentas. Experimental studies and placentae from infected fetuses reveal that the spectrum of placental cell types infected with the Zika virus is broader during the first trimester than later in gestation. Inflammatory abnormalities of the placenta are not a component of vertical transmission of the Zika virus. The major placental response in second and third trimester transplacental Zika virus infection is proliferation and hyperplasia of Hofbauer cells, which also demonstrate viral infection.

  15. A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections.

    Directory of Open Access Journals (Sweden)

    Gennady Bocharov

    Full Text Available Plasmacytoid dendritic cell (pDC-mediated protection against cytopathic virus infection involves various molecular, cellular, tissue-scale, and organism-scale events. In order to better understand such multiscale interactions, we have implemented a systems immunology approach focusing on the analysis of the structure, dynamics and operating principles of virus-host interactions which constrain the initial spread of the pathogen. Using high-resolution experimental data sets coming from the well-described mouse hepatitis virus (MHV model, we first calibrated basic modules including MHV infection of its primary target cells, i.e. pDCs and macrophages (Mphis. These basic building blocks were used to generate and validate an integrative mathematical model for in vivo infection dynamics. Parameter estimation for the system indicated that on a per capita basis, one infected pDC secretes sufficient type I IFN to protect 10(3 to 10(4 Mphis from cytopathic viral infection. This extremely high protective capacity of pDCs secures the spleen's capability to function as a 'sink' for the virus produced in peripheral organs such as the liver. Furthermore, our results suggest that the pDC population in spleen ensures a robust protection against virus variants which substantially down-modulate IFN secretion. However, the ability of pDCs to protect against severe disease caused by virus variants exhibiting an enhanced liver tropism and higher replication rates appears to be rather limited. Taken together, this systems immunology analysis suggests that antiviral therapy against cytopathic viruses should primarily limit viral replication within peripheral target organs.

  16. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Directory of Open Access Journals (Sweden)

    Kuchipudi Suresh V

    2012-10-01

    Full Text Available Abstract Background One requisite of quantitative reverse transcription PCR (qRT-PCR is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA, ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9 (ATP5G1] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs, pig tracheal epithelial cells (PTECs, and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH were highly affected by influenza virus infection and

  17. Application of speckle image correlation for real-time assessment of metabolic activity in herpes virus-infected cells

    Science.gov (United States)

    Vladimirov, A. P.; Malygin, A. S.; Mikhailova, J. A.; Borodin, E. M.; Bakharev, A. A.; Poryvayeva, A. P.

    2014-09-01

    Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.

  18. Application of speckle image correlation for real-time assessment of metabolic activity in herpes virus-infected cells

    International Nuclear Information System (INIS)

    Vladimirov, A P; Malygin, A S; Mikhailova, J A; Borodin, E M; Bakharev, A A; Poryvayeva, A P

    2014-01-01

    Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.

  19. Role of neutralizing antibodies and T-cells in pathogenesis of herpes simplex virus infection in congenitally athymic mice.

    Science.gov (United States)

    Kapoor, A K; Buckmaster, A; Nash, A A; Field, H J; Wildy, P

    1982-11-01

    Congenitally athymic nude mice were infected with 10(4) p.f.u. herpes simplex type 1 (strain SC16). Following the passive transfer of neutralizing monoclonal antibodies (AP7, AP8 and AP12) it was observed that AP7 alone reduced the virus infectivity in the nervous system; AP8 and AP12 failed to protect mice probably due to poor in vivo binding to the neutralization site on the virus. Latent ganglionic infection could be established in nude mice following adoptive transfer of optimum number (2 x 10(7) cells/mouse) of immune lymph node cells from day 7 herpes virus-infected hairy immunocompetent donor mice. Moreover, in some of the immune lymph node cell protected nudes, latency could be maintained even in complete absence of neutralizing antibodies. Results of ear-ablation experiments revealed that removal of primary source of infection after day 5 of infection reduced the amount of virus in the ganglia and spinal cord. Acute neurological infection was not detected following transfer of protective anti-gp-D neutralizing antibody (LP2) in combination with removal of infected pinna. These data suggest that continuous seeding of virus occurs in related ganglia via the axonal route from infected ear pinna. It appears that local T-cell-mediated immune mechanisms are involved in maintenance of latency.

  20. Diversity of trends of viremia and T-cell markers in experimental acute feline immunodeficiency virus infection.

    Science.gov (United States)

    Roche, Sylvain; El Garch, Hanane; Brunet, Sylvie; Poulet, Hervé; Iwaz, Jean; Ecochard, René; Vanhems, Philippe

    2013-01-01

    The early events of human immunodeficiency virus infection seem critical for progression toward disease and antiretroviral therapy initiation. We wanted to clarify some still unknown prognostic relationships between inoculum size and changes in various immunological and virological markers. Feline immunodeficiency virus infection could be a helpful model. Viremia and T-cell markers (number of CD4, CD8, CD8β(low)CD62L(neg) T-cells, CD4/CD8 ratio, and percentage of CD8β(low)CD62L(neg) cells among CD8 T-cells) were measured over 12 weeks in 102 cats infected with different feline immunodeficiency virus strains and doses. Viremia and T-cell markers trajectory groups were determined and the dose-response relationships between inoculum titres and trajectory groups investigated. Cats given the same inoculum showed different patterns of changes in viremia and T-cell markers. A statistically significant positive dose-response relationship was observed between inoculum titre and i) viremia trajectory-groups (r = 0.80, p<0.01), ii) CD8β(low)CD62L(neg) cell-fraction trajectory-groups (r = 0.56, p<0.01). Significant correlations were also found between viremia and the CD4/CD8 ratio and between seven out of ten T-cell markers. In cats, the infectious dose determines early kinetics of viremia and initial CD8+ T-cell activation. An expansion of the CD8β(low)CD62L(neg) T-cells might be an early predictor of progression toward disease. The same might be expected in humans but needs confirmation.

  1. Persepsi Masyarakat Terhadap Penyakit Rabies

    OpenAIRE

    Retna Siwi Padmawati, I Made Kerta Duana Nida Ul Hasanat

    2011-01-01

    Background: Rabies is a viral disease that causes acute encephalitis (inflammation of the brain) in warm-blooded animals, and human. The rabies virus infects the central nervous system, ultimately causing disease in the brain and death. Rabies in Bali was firstly discovered in Badung District. Rabies was transferred by dog bite. Bali has enourmous dog population, the number reach approximately 540.000 animals or about 96 animals per square kilometer. Meanwhile, domesticated dog population onl...

  2. Live vaccinia-rabies virus recombinants, but not an inactivated rabies virus cell culture vaccine, protect B-lymphocyte-deficient A/WySnJ mice against rabies: considerations of recombinant defective poxviruses for rabies immunization of immunocompromised individuals.

    Science.gov (United States)

    Lodmell, Donald L; Esposito, Joseph J; Ewalt, Larry C

    2004-09-03

    Presently, commercially available cell culture rabies vaccines for humans and animals consist of the five inactivated rabies virus proteins. The vaccines elicit a CD4+ helper T-cell response and a humoral B-cell response against the viral glycoprotein (G) resulting in the production of virus neutralizing antibody. Antibody against the viral nucleoprotein (N) is also present, but the mechanism(s) of its protection is unclear. HIV-infected individuals with low CD4+ T-lymphocyte counts and individuals undergoing treatment with immunosuppressive drugs have an impaired neutralizing antibody response after pre- and post-exposure immunization with rabies cell culture vaccines. Here we show the efficacy of live vaccinia-rabies virus recombinants, but not a cell culture vaccine consisting of inactivated rabies virus, to elicit elevated levels of neutralizing antibody in B-lymphocyte deficient A/WySnJ mice. The cell culture vaccine also failed to protect the mice, whereas a single immunization of a vaccinia recombinant expressing the rabies virus G or co-expressing G and N equally protected the mice up to 18 months after vaccination. The data suggest that recombinant poxviruses expressing the rabies virus G, in particular replication defective poxviruses such as canarypox or MVA vaccinia virus that undergo abortive replication in non-avian cells, or the attenuated vaccinia virus NYVAC, should be evaluated as rabies vaccines in immunocompromised individuals.

  3. DNA repair and DNA synthesis in leukemic and virus infected cells

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Stacher, A.; Fanta, D.

    1978-09-01

    Autoradiographic determinations of unscheduled DNA synthesis in peripheral lymphocytes of leukemic patients showed strongly different results according to various types of disease of different forms of therapy, respectively. Similar investigations performed with lymphocytes of Herpes simplex infected persons during symptom-free intervals revealed imbalances of the repair system caused by virus infection. BND cellulose chromatography and measurement of 3 H-thymidine incorporation into single- and double stranded DNA fractions showed an increase in velocity of the rejoining process, but a decrease in total incorporation. Because of these results and the demonstration of the supercoiled structure of DNA it is suggested that virusinfections cause a faster rejoining of gaps, but at the same time leave a number of failures within DNA unrecognized. (author)

  4. Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling

    Science.gov (United States)

    Wang, Wei; Ma, Wanbiao

    2018-06-01

    The nuclear protein high-mobility group box 1 (HMGB1) can have an active role in deoxyribonucleic acid (DNA) organization and the regulation of transcription. Based on the new findings from a recent experimental study, the blocking effect on HCV infection by HMGB1 released from virus-infected cells is investigated using a diffusive model for viral infection dynamics. In the model, the diffusion of the virus depends not only on its concentration gradient, but also on the concentration of HMGB1. The basic reproduction number, threshold dynamics, stability properties of the steady states, travelling wave solutions, and spreading speed for the proposed model are studied. We show that the HMGB1-induced blocking of HCV infection slows the spread of virus compared with random diffusion only. Numerically, it is shown that a high concentration of HMGB1 can block the spread of virus and this confirms, not only qualitatively but also quantitatively, the experimental result.

  5. 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection

    Directory of Open Access Journals (Sweden)

    Romain eGrangeon

    2013-12-01

    Full Text Available To successfully infect plants, viruses replicate in an initially infected cell and then move to neighboring cells through plasmodesmata (PDs. However, the nature of the viral entity that crosses over the cell barrier into non-infected ones is not clear. The membrane-associated 6K2 protein of turnip mosaic virus (TuMV induces the formation of vesicles involved in the replication and intracellular movement of viral RNA. This study shows that 6K2-induced vesicles trafficked towards the plasma membrane and were associated with plasmodesmata (PD. We demonstrated also that 6K2 moved cell-to-cell into adjoining cells when plants were infected with TuMV. 6K2 was then fused to photo-activable GFP (6K2:PAGFP to visualize how 6K2 move intercellularly during TuMV infection. After activation, 6K2:PAGFP-tagged vesicles moved to the cell periphery and across the cell wall into adjacent cells. These vesicles were shown to contain the viral RNA-dependent RNA polymerase and viral RNA. Symplasmic movement of TuMV may thus be achieved in the form of a membrane-associated viral RNA complex induced by 6K2.

  6. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  7. Changes in cell adhesion molecule expression on T cells associated with systemic virus infection

    DEFF Research Database (Denmark)

    Andersson, E C; Christensen, Jan Pravsgaard; Marker, O

    1994-01-01

    -4, LFA-1, and ICAM-1, are up-regulated on CD8+ cells, whereas the lymph node homing receptor MEL-14 is down-regulated during the infection; only marginal changes were observed for CD4+ cells. Basically similar but less marked results were obtained in mice infected with Pichinde virus. Further...

  8. T Cells that Recognize HPV Protein Can Target Virus-Infected Cells | Center for Cancer Research

    Science.gov (United States)

    Adoptive T-cell transfer (ACT) is a promising form of cancer immunotherapy. Treating patients with T cells isolated from a tumor and subsequently expanded in the lab can cause the complete regression of some melanomas and cervical cancers, but the treatment is currently restricted to a few cancer types. An approach that may be applied to a wider array of cancers involves modifying peripheral blood T cells with chimeric antigen receptors or T-cell receptors (TCR) that target specific tumor antigens. Unfortunately, epithelial cancers, which are the vast majority of cancers diagnosed, have proven difficult to treat this way because most identified antigens are shared with healthy tissues and targeting them leads to toxic side effects. However, cancers caused by persistent human papillomavirus (HPV) infection, including cervical, head and neck, anal, vaginal, vulvar, and penile cancers, may be particularly amenable to the latter form of ACT since the E6 and E7 viral proteins are essential for cancer formation but are not produced in normal tissues. To test this idea, Christian Hinrichs, M.D., and his colleagues examined tumor infiltrating lymphocytes (TILs) from a patient who experienced a prolonged disease-free period after her second surgical removal of metastatic anal cancer in the hopes of identifying a TCR against one of the HPV oncoproteins.

  9. Antifibrotic Therapy in Simian Immunodeficiency Virus Infection Preserves CD4+ T-Cell Populations and Improves Immune Reconstitution With Antiretroviral Therapy

    Science.gov (United States)

    Estes, Jacob D.; Reilly, Cavan; Trubey, Charles M.; Fletcher, Courtney V.; Cory, Theodore J.; Piatak, Michael; Russ, Samuel; Anderson, Jodi; Reimann, Thomas G.; Star, Robert; Smith, Anthony; Tracy, Russell P.; Berglund, Anna; Schmidt, Thomas; Coalter, Vicky; Chertova, Elena; Smedley, Jeremy; Haase, Ashley T.; Lifson, Jeffrey D.; Schacker, Timothy W.

    2015-01-01

    Even with prolonged antiretroviral therapy (ART), many human immunodeficiency virus-infected individuals have <500 CD4+ T cells/µL, and CD4+ T cells in lymphoid tissues remain severely depleted, due in part to fibrosis of the paracortical T-cell zone (TZ) that impairs homeostatic mechanisms required for T-cell survival. We therefore used antifibrotic therapy in simian immunodeficiency virus-infected rhesus macaques to determine whether decreased TZ fibrosis would improve reconstitution of peripheral and lymphoid CD4+ T cells. Treatment with the antifibrotic drug pirfenidone preserved TZ architecture and was associated with significantly larger populations of CD4+ T cells in peripheral blood and lymphoid tissues. Combining pirfenidone with an ART regimen was associated with greater preservation of CD4+ T cells than ART alone and was also associated with higher pirfenidone concentrations. These data support a potential role for antifibrotic drug treatment as adjunctive therapy with ART to improve immune reconstitution. PMID:25246534

  10. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells

    Science.gov (United States)

    Carrette, Florent; Henriquez, Monique L.; Fujita, Yu

    2018-01-01

    T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus–specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7−/− effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7−/− CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells. PMID:29491007

  11. Vaccinia Virus Infections in a Martial Arts Gym

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses an outbreak of vaccinia virus in Maryland in 2008. Christine Hughes, a health scientist with the Poxvirus and Rabies Branch at CDC, and co-author of a paper in the April 2011 issue of CDC's journal, discusses vaccinia virus infections in a martial arts gym.

  12. Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems

    Directory of Open Access Journals (Sweden)

    McDermott Jason E

    2011-11-01

    Full Text Available Abstract Background Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. Results In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. Conclusions This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.

  13. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  14. A thermostable messenger RNA based vaccine against rabies.

    Science.gov (United States)

    Stitz, Lothar; Vogel, Annette; Schnee, Margit; Voss, Daniel; Rauch, Susanne; Mutzke, Thorsten; Ketterer, Thomas; Kramps, Thomas; Petsch, Benjamin

    2017-12-01

    Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.

  15. Visualization and quantitation of abundant macroautophagy in virus-infected cells by confocal three-dimensional fluorescence imaging.

    Science.gov (United States)

    Jackson, Wallen; Yamada, Masaki; Moninger, Thomas; Grose, Charles

    2013-10-01

    Varicella-zoster virus (VZV) is a human herpesvirus. Primary infection causes varicella (chickenpox), a viremic illness typified by an exanthem consisting of several hundred vesicles. When VZV reactivates from latency in the spinal ganglia during late adulthood, the emerging virus causes a vesicular dermatomal rash (herpes zoster or shingles). To expand investigations of autophagy during varicella and zoster, newer 3D imaging technology was combined with laser scanning confocal microscopy to provide animations of autophagosomes in the vesicular rash. First, the cells were immunolabeled with antibodies against VZV proteins and the LC3 protein, an integral autophagosomal protein. Antibody reagents lacking activity against the human blood group A1 antigen were selected. After laser excitation of the samples, optimized emission detection bandwidths were configured by Zeiss Zen control software. Confocal Z-stacks comprising up to 40 optical slices were reconstructed into 3D animations with the aid of Imaris software. With this imaging technology, individual autophagosomes were clearly detectable as spheres within each vesicular cell. To enumerate the number of autophagosomes, data sets from 50 cells were reconstructed as 3D fluorescence images and analyzed with MeasurementPro software. The mean number of autophagosomes per infected vesicular cell was >100, although over 200 autophagosomes were seen in a few cells. In summary, macroautophagy was easily quantitated within VZV-infected cells after immunolabeling and imaging by 3D confocal animation technology. These same 3D imaging techniques will be applicable for investigations of autophagy in other virus-infected cells. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules.

    Science.gov (United States)

    Costa, Vivian Vasconcelos; Ye, Weijian; Chen, Qingfeng; Teixeira, Mauro Martins; Preiser, Peter; Ooi, Eng Eong; Chen, Jianzhu

    2017-08-01

    Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo , identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control

  17. Longitudinal Analysis of Natural Killer Cells in Dengue Virus-Infected Patients in Comparison to Chikungunya and Chikungunya/Dengue Virus-Infected Patients.

    Directory of Open Access Journals (Sweden)

    Caroline Petitdemange

    2016-03-01

    Full Text Available Dengue virus (DENV is the most prominent arbovirus worldwide, causing major epidemics in South-East Asia, South America and Africa. In 2010, a major DENV-2 outbreak occurred in Gabon with cases of patients co-infected with chikungunya virus (CHIKV. Although the innate immune response is thought to be of primordial importance in the development and outcome of arbovirus-associated pathologies, our knowledge of the role of natural killer (NK cells during DENV-2 infection is in its infancy.We performed the first extensive comparative longitudinal characterization of NK cells in patients infected by DENV-2, CHIKV or both viruses. Hierarchical clustering and principal component analyses were performed to discriminate between CHIKV and DENV-2 infected patients.We observed that both activation and differentiation of NK cells are induced during the acute phase of infection by DENV-2 and CHIKV. Combinatorial analysis however, revealed that both arboviruses induced two different signatures of NK-cell responses, with CHIKV more associated with terminal differentiation, and DENV-2 with inhibitory KIRs. We show also that intracellular production of interferon-γ (IFN-γ by NK cells is strongly stimulated in acute DENV-2 infection, compared to CHIKV.Although specific differences were observed between CHIKV and DENV-2 infections, the significant remodeling of NK cell populations observed here suggests their potential roles in the control of both infections.

  18. Ebola virus infection inversely correlates with the overall expression levels of promyelocytic leukaemia (PML protein in cultured cells

    Directory of Open Access Journals (Sweden)

    Szekely Laszlo

    2003-04-01

    Full Text Available Abstract Background Ebola virus causes severe, often fatal hemorrhagic fever in humans. The mechanism of escape from cellular anti-viral mechanisms is not yet fully understood. The promyelocytic leukaemia (PML associated nuclear body is part of the interferon inducible cellular defense system. Several RNA viruses have been found to interfere with the anti-viral function of the PML body. The possible interaction between Ebola virus and the PML bodies has not yet been explored. Results We found that two cell lines, Vero E6 and MCF7, support virus production at high and low levels respectively. The expression of viral proteins was visualized and quantified using high resolution immunofluorescence microscopy. Ebola encoded NP and VP35 accumulated in cytoplasmic inclusion bodies whereas VP40 was mainly membrane associated but it was also present diffusely in the cytoplasm as well as in the euchromatic areas of the nucleus. The anti-VP40 antibody also allowed the detection of extracellular virions. Interferon-alpha treatment decreased the production of all three viral proteins and delayed the development of cytopathic effects in both cell lines. Virus infection and interferon-alpha treatment induced high levels of PML protein expression in MCF7 but much less in Vero E6 cells. No disruption of PML bodies, a common phenomenon induced by a variety of different viruses, was observed. Conclusion We have established a simple fixation and immunofluorescence staining procedure that allows specific co-detection and precise sub-cellular localization of the PML nuclear bodies and the Ebola virus encoded proteins NP, VP35 and VP40 in formaldehyde treated cells. Interferon-alpha treatment delays virus production in vitro. Intact PML bodies may play an anti-viral role in Ebola infected cells.

  19. Small RNA profiling of influenza A virus-infected cells identifies miR-449b as a regulator of histone deacetylase 1 and interferon beta.

    Directory of Open Access Journals (Sweden)

    William A Buggele

    Full Text Available The mammalian antiviral response relies on the alteration of cellular gene expression, to induce the production of antiviral effectors and regulate their activities. Recent research has indicated that virus infections can induce the accumulation of cellular microRNA (miRNA species that influence the stability of host mRNAs and their protein products. To determine the potential for miRNA regulation of cellular responses to influenza A virus infection, small RNA profiling was carried out using next generation sequencing. Comparison of miRNA expression profiles in uninfected human A549 cells to cells infected with influenza A virus strains A/Udorn/72 and A/WSN/33, revealed virus-induced changes in miRNA abundance. Gene expression analysis identified mRNA targets for a cohort of highly inducible miRNAs linked to diverse cellular functions. Experiments demonstrate that the histone deacetylase, HDAC1, can be regulated by influenza-inducible miR-449b, resulting in altered mRNA and protein levels. Expression of miR-449b enhances virus and poly(I:C activation of the IFNβ promoter, a process known to be negatively regulated by HDAC1. These findings demonstrate miRNA induction by influenza A virus infection and elucidate an example of miRNA control of antiviral gene expression in human cells, defining a role for miR-449b in regulation of HDAC1 and antiviral cytokine signaling.

  20. High content image based analysis identifies cell cycle inhibitors as regulators of Ebola virus infection.

    Science.gov (United States)

    Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G

    2012-09-25

    Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  1. High Content Image Based Analysis Identifies Cell Cycle Inhibitors as Regulators of Ebola Virus Infection

    Directory of Open Access Journals (Sweden)

    Sina Bavari

    2012-09-01

    Full Text Available Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  2. Viruses infecting marine molluscs.

    Science.gov (United States)

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-07-01

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation

    International Nuclear Information System (INIS)

    Wong, G.H.; McHugh, T.; Weber, R.; Goeddel, D.V.

    1991-01-01

    We report here that infection of the human T-cell line HUT-78 with human immunodeficiency virus (HIV) increases its sensitivity to heat and radiation toxicity. A possible explanation for this result may be the reduced expression of manganous superoxide dismutase (MnSOD) in HIV-infected cells compared to uninfected cells. Tumor necrosis factor alpha (TNF-alpha) further sensitizes HIV-infected cells but not uninfected cells to heat and radiation. This is consistent with the ability of TNF-alpha to induce the expression of MnSOD in uninfected but not in HIV-infected cells. HIV-infected HUT-78 cell lines engineered to overexpress MnSOD are more resistant to heat and radiation than HIV-infected cells that do not overexpress MnSOD. However, treatment with TNF-alpha still sensitizes these cells to heat and radiation

  4. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection.

    Science.gov (United States)

    Tian, Yuan; Sette, Alessandro; Weiskopf, Daniela

    2016-01-01

    Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease.

  5. The water proton spin-lattice relaxation times in virus-infected cells

    International Nuclear Information System (INIS)

    Valensin, G.; Gaggelli, E.; Tiezzi, E.; Valensin, P.E.; Bianchi Bandinelli, M.L.

    1979-01-01

    The water proton spin-lattice relaxation times in HEp-2 cell cultures were determined immediately after 1 h of polio-virus adsorption. The shortening of the water T 1 was closely related to the multiplicity of infection, allowing direct inspections of the virus-cell interaction since the first steps of the infectious cycle. Virus-induced structural and conformational changes of cell constituents were suggested to be detectable by NMR investigation of cell water. (Auth.)

  6. A surface plasmon resonance biosensor for direct detection of the rabies virus

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2012-01-01

    Full Text Available A surface plasmon resonance biosensor chip was constructed for detection of rabies virus. For the construction of the biosensor chip, N protein specific antibody and N protein specific antibody combined with G protein specific antibody of rabies virus were linked on two different flow cells on one CM5 chip, respectively. The chip was tested for the detection of rabies virus antigens using the crude extract of rabies virus from infected BHK cell strain culture. Tenfold serial dilutions of SRV9 strain virus-infected cell cultures were tested by the biosensor chip to establish the detection limit. The limit detection was approximately 70 pg/ml of nucleoprotein and glycoprotein. The biosensor chip developed in this study was employed for the detection of rabies virus in five suspect infectious specimens of brain tissue from guinea pigs; the results were compared by fluorescent antibody test. Surface plasmon resonance biosensor chip could be a useful automatic tool for prompt detection of rabies virus infection.

  7. Innate-like behavior of human invariant natural killer T cells during herpes simplex virus infection.

    Science.gov (United States)

    Novakova, Lucie; Nevoralova, Zuzana; Novak, Jan

    2012-01-01

    Invariant natural killer T (iNKT) cells, CD1d restricted T cells, are involved in the immune responses against various infection agents. Here we describe their behavior during reactivation of human herpes simplex virus (HSV). iNKT cells exhibit only discrete changes, which however, reached statistically significant level due to the relatively large patient group. Higher percentage of iNKT cells express NKG2D. iNKT cells down-regulate NKG2A in a subset of patients. Finally, iNKT cells enhance their capacity to produce TNF-α. Our data suggests that iNKT cells are involved in the immune response against HSV and contribute mainly to its early, innate phase. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers.

    Science.gov (United States)

    Fukazawa, Yoshinori; Lum, Richard; Okoye, Afam A; Park, Haesun; Matsuda, Kenta; Bae, Jin Young; Hagen, Shoko I; Shoemaker, Rebecca; Deleage, Claire; Lucero, Carissa; Morcock, David; Swanson, Tonya; Legasse, Alfred W; Axthelm, Michael K; Hesselgesser, Joseph; Geleziunas, Romas; Hirsch, Vanessa M; Edlefsen, Paul T; Piatak, Michael; Estes, Jacob D; Lifson, Jeffrey D; Picker, Louis J

    2015-02-01

    Chronic-phase HIV and simian immunodeficiency virus (SIV) replication is reduced by as much as 10,000-fold in elite controllers (ECs) compared with typical progressors (TPs), but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here we show that productive SIV infection in rhesus monkey ECs, but not TPs, is markedly restricted to CD4(+) follicular helper T (TFH) cells, suggesting that these EC monkeys' highly effective SIV-specific CD8(+) T cells can effectively clear productive SIV infection from extrafollicular sites, but their relative exclusion from B cell follicles prevents their elimination of productively infected TFH cells. CD8(+) lymphocyte depletion in EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH cells, with restriction of productive infection to TFH cells resuming upon CD8(+) T cell recovery. Thus, B cell follicles constitute 'sanctuaries' for persistent SIV replication in the presence of potent anti-viral CD8(+) T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy.

  9. Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells

    Science.gov (United States)

    Rac, Jürgen; Haas, Florian; Schumacher, Andrina; Middeldorp, Jaap M.; Delecluse, Henri-Jacques; Speck, Roberto F.

    2015-01-01

    The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva. PMID:25856387

  10. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Dhananjay M Nawandar

    2015-10-01

    Full Text Available Epstein-Barr virus (EBV is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL in immunosuppressed patients. However, the cellular mechanism(s that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1 promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.

  11. Association of Human Papilloma Virus Infection and Oral Squamous Cell Carcinoma in Bangladesh

    OpenAIRE

    Akhter, Mahmuda; Ali, Liaquat; Hassan, Zahid; Khan, Imran

    2013-01-01

    Oral squamous cell carcinoma is the sixth most common malignancy worldwide. In Bangladesh, it comprises 20% of the whole body malignancies. Several studies found that 15% to 25% of oropharyngeal cancer cases are associated with human papilloma virus (HPV). This study is done to find the association of human papilloma virus subtypes, particularly HPV type 16 and HPV type 18, with the oral squamous cell carcinoma in Bangladeshi patients. In total, 34 diagnosed patients of oral squamous cell car...

  12. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    Science.gov (United States)

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  13. Tracking virus-specific CD4+ T cells during and after acute hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Michaela Lucas

    2007-07-01

    Full Text Available CD4+ T cell help is critical in maintaining antiviral immune responses and such help has been shown to be sustained in acute resolving hepatitis C. In contrast, in evolving chronic hepatitis C CD4+ T cell helper responses appear to be absent or short-lived, using functional assays.Here we used a novel HLA-DR1 tetramer containing a highly targeted CD4+ T cell epitope from the hepatitis C virus non-structural protein 4 to track number and phenotype of hepatitis C virus specific CD4+ T cells in a cohort of seven HLA-DR1 positive patients with acute hepatitis C in comparison to patients with chronic or resolved hepatitis C. We observed peptide-specific T cells in all seven patients with acute hepatitis C regardless of outcome at frequencies up to 0.65% of CD4+ T cells. Among patients who transiently controlled virus replication we observed loss of function, and/or physical deletion of tetramer+ CD4+ T cells before viral recrudescence. In some patients with chronic hepatitis C very low numbers of tetramer+ cells were detectable in peripheral blood, compared to robust responses detected in spontaneous resolvers. Importantly we did not observe escape mutations in this key CD4+ T cell epitope in patients with evolving chronic hepatitis C.During acute hepatitis C a CD4+ T cell response against this epitope is readily induced in most, if not all, HLA-DR1+ patients. This antiviral T cell population becomes functionally impaired or is deleted early in the course of disease in those where viremia persists.

  14. Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Annie Elong Ngono

    2016-11-01

    Full Text Available Infection with one of the four dengue virus serotypes (DENV1-4 presumably leads to lifelong immunity against the infecting serotype but not against heterotypic reinfection, resulting in a greater risk of developing Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS during secondary infection. Both antibodies and T cell responses have been implicated in DHF/DSS pathogenesis. According to the T cell-based hypothesis termed “original antigenic sin,” secondary DENV infection is dominated by non-protective, cross-reactive T cells that elicit an aberrant immune response. The goal of our study was to compare the roles of serotype-specific and cross-reactive T cells in protection vs. pathogenesis during DENV infection in vivo. Specifically, we utilized IFN-α/βR−/− HLA*B0702 transgenic mice in the context of peptide vaccination with relevant human CD8 T cell epitopes. IFN-α/βR−/− HLA*B0702 transgenic mice were immunized with DENV serotype 2 (DENV2-specific epitopes or variants found in any of the other three serotypes (DENV1, DENV3 or DENV4, followed by challenge with DENV. Although cross-reactive T cell responses were lower than responses elicited by serotype-specific T cells, immunization with either serotype-specific or variant peptide epitopes enhanced viral clearance, demonstrating that both serotype-specific and cross-reactive T cells can contribute to protection in vivo against DENV infection.

  15. [ZIKA--VIRUS INFECTION].

    Science.gov (United States)

    Velev, V

    2016-01-01

    This review summarizes the knowledge of the scientific community for Zika-virus infection. It became popular because of severe congenital damage causes of CNS in newborns whose mothers are infected during pregnancy, as well as the risk of pandemic distribution. Discusses the peculiarities of the biology and ecology of vectors--blood-sucking mosquitoes Aedes; stages in the spread of infection and practical problems which caused during pregnancy. Attention is paid to the recommendations that allow leading national and international medical organizations to deal with the threat Zika-virus infection.

  16. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

    Directory of Open Access Journals (Sweden)

    Rodrigo Delvecchio

    2016-11-01

    Full Text Available Zika virus (ZIKV infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  17. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models.

    Science.gov (United States)

    Delvecchio, Rodrigo; Higa, Luiza M; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P; Monteiro, Fábio L; Loiola, Erick C; Dias, André A; Silva, Fábio J M; Aliota, Matthew T; Caine, Elizabeth A; Osorio, Jorge E; Bellio, Maria; O'Connor, David H; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar

    2016-11-29

    Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  18. Targeted sorting of single virus-infected cells of the coccolithophore Emiliania huxleyi.

    Directory of Open Access Journals (Sweden)

    Joaquín Martínez Martínez

    Full Text Available Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing gave the most unequivocal and earliest separation of cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification. This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to other virus-host systems.

  19. Targeted sorting of single virus-infected cells of the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Martínez Martínez, Joaquín; Poulton, Nicole J; Stepanauskas, Ramunas; Sieracki, Michael E; Wilson, William H

    2011-01-01

    Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing) gave the most unequivocal and earliest separation of cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification. This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to other virus-host systems.

  20. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread.

    Science.gov (United States)

    Troupin, Andrea; Shirley, Devon; Londono-Renteria, Berlin; Watson, Alan M; McHale, Cody; Hall, Alex; Hartstone-Rose, Adam; Klimstra, William B; Gomez, Gregorio; Colpitts, Tonya M

    2016-12-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

    Science.gov (United States)

    Delvecchio, Rodrigo; Higa, Luiza M.; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P.; Monteiro, Fábio L.; Loiola, Erick C.; Dias, André A.; Silva, Fábio J. M.; Aliota, Matthew T.; Caine, Elizabeth A.; Osorio, Jorge E.; Bellio, Maria; O’Connor, David H.; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar

    2016-01-01

    Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres. PMID:27916837

  2. Systemic Virus Infections Differentially Modulate Cell Cycle State and Functionality of Long-Term Hematopoietic Stem Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Christoph Hirche

    2017-06-01

    Full Text Available Quiescent long-term hematopoietic stem cells (LT-HSCs are efficiently activated by type I interferon (IFN-I. However, this effect remains poorly investigated in the context of IFN-I-inducing virus infections. Here we report that both vesicular stomatitis virus (VSV and murine cytomegalovirus (MCMV infection induce LT-HSC activation that substantially differs from the effects triggered upon injection of synthetic IFN-I-inducing agents. In both infections, inflammatory responses had to exceed local thresholds within the bone marrow to confer LT-HSC cell cycle entry, and IFN-I receptor triggering was not critical for this activation. After resolution of acute MCMV infection, LT-HSCs returned to phenotypic quiescence. However, non-acute MCMV infection induced a sustained inflammatory milieu within the bone marrow that was associated with long-lasting impairment of LT-HSC function. In conclusion, our results show that systemic virus infections fundamentally affect LT-HSCs and that also non-acute inflammatory stimuli in bone marrow donors can affect the reconstitution potential of bone marrow transplants.

  3. Systemic Virus Infections Differentially Modulate Cell Cycle State and Functionality of Long-Term Hematopoietic Stem Cells In Vivo.

    Science.gov (United States)

    Hirche, Christoph; Frenz, Theresa; Haas, Simon F; Döring, Marius; Borst, Katharina; Tegtmeyer, Pia-K; Brizic, Ilija; Jordan, Stefan; Keyser, Kirsten; Chhatbar, Chintan; Pronk, Eline; Lin, Shuiping; Messerle, Martin; Jonjic, Stipan; Falk, Christine S; Trumpp, Andreas; Essers, Marieke A G; Kalinke, Ulrich

    2017-06-13

    Quiescent long-term hematopoietic stem cells (LT-HSCs) are efficiently activated by type I interferon (IFN-I). However, this effect remains poorly investigated in the context of IFN-I-inducing virus infections. Here we report that both vesicular stomatitis virus (VSV) and murine cytomegalovirus (MCMV) infection induce LT-HSC activation that substantially differs from the effects triggered upon injection of synthetic IFN-I-inducing agents. In both infections, inflammatory responses had to exceed local thresholds within the bone marrow to confer LT-HSC cell cycle entry, and IFN-I receptor triggering was not critical for this activation. After resolution of acute MCMV infection, LT-HSCs returned to phenotypic quiescence. However, non-acute MCMV infection induced a sustained inflammatory milieu within the bone marrow that was associated with long-lasting impairment of LT-HSC function. In conclusion, our results show that systemic virus infections fundamentally affect LT-HSCs and that also non-acute inflammatory stimuli in bone marrow donors can affect the reconstitution potential of bone marrow transplants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Response to Dengue virus infections altered by cytokine-like substances from mosquito cell cultures

    Directory of Open Access Journals (Sweden)

    Laosutthipong Chaowanee

    2010-11-01

    Full Text Available Abstract Background With both shrimp and commercial insects such as honey bees, it is known that stable, persistent viral infections characterized by absence of disease can sometimes shift to overt disease states as a result of various stress triggers and that this can result in serious economic losses. The main research interest of our group is to understand the dynamics of stable viral infections in shrimp and how they can be destabilized by stress. Since there are no continuous cell lines for crustaceans, we have used a C6/36 mosquito cell line infected with Dengue virus to test hypotheses regarding these interactions. As a result, we accidentally discovered two new cytokine-like substances in 5 kDa extracts from supernatant solutions of acutely and persistently infected mosquito cells. Results Naïve C6/36 cells were exposed for 48 h to 5 kDa membrane filtrates prepared from the supernatant medium of stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Subsequent challenge of naïve cells with a virulent stock of Dengue virus 2 (DEN-2 and analysis by confocal immunofluorescence microscopy using anti-DEN-2 antibody revealed a dramatic reduction in the percentage of DEN-2 infected cells when compared to control cells. Similar filtrates prepared from C6/36 cells with acute DEN-2 infections were used to treat stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Confocal immunofluorescence microscopy revealed destabilization in the form of an apoptosis-like response. Proteinase K treatment removed the cell-altering activities indicating that they were caused by small polypeptides similar to those previously reported from insects. Conclusions This is the first report of cytokine-like substances that can alter the responses of mosquito cells to Dengue virus. This simple model system allows detailed molecular studies on insect cytokine production and on cytokine activity in a standard insect cell line.

  5. Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection.

    Directory of Open Access Journals (Sweden)

    Megan E Schmidt

    2018-01-01

    Full Text Available Memory CD8 T cells can provide protection from re-infection by respiratory viruses such as influenza and SARS. However, the relative contribution of memory CD8 T cells in providing protection against respiratory syncytial virus (RSV infection is currently unclear. To address this knowledge gap, we utilized a prime-boost immunization approach to induce robust memory CD8 T cell responses in the absence of RSV-specific CD4 T cells and antibodies. Unexpectedly, RSV infection of mice with pre-existing CD8 T cell memory led to exacerbated weight loss, pulmonary disease, and lethal immunopathology. The exacerbated disease in immunized mice was not epitope-dependent and occurred despite a significant reduction in RSV viral titers. In addition, the lethal immunopathology was unique to the context of an RSV infection as mice were protected from a normally lethal challenge with a recombinant influenza virus expressing an RSV epitope. Memory CD8 T cells rapidly produced IFN-γ following RSV infection resulting in elevated protein levels in the lung and periphery. Neutralization of IFN-γ in the respiratory tract reduced morbidity and prevented mortality. These results demonstrate that in contrast to other respiratory viruses, RSV-specific memory CD8 T cells can induce lethal immunopathology despite mediating enhanced viral clearance.

  6. Natural Killer Cell Function and Dysfunction in Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Kayla A. Holder

    2014-01-01

    Full Text Available Viruses must continually adapt against dynamic innate and adaptive responses of the host immune system to establish chronic infection. Only a small minority (~20% of those exposed to hepatitis C virus (HCV spontaneously clear infection, leaving approximately 200 million people worldwide chronically infected with HCV. A number of recent research studies suggest that establishment and maintenance of chronic HCV infection involve natural killer (NK cell dysfunction. This relationship is illustrated in vitro by disruption of typical NK cell responses including both cell-mediated cytotoxicity and cytokine production. Expression of a number of activating NK cell receptors in vivo is also affected in chronic HCV infection. Thus, direct in vivo and in vitro evidence of compromised NK function in chronic HCV infection in conjunction with significant epidemiological associations between the outcome of HCV infection and certain combinations of NK cell regulatory receptor and class I human histocompatibility linked antigen (HLA genotypes indicate that NK cells are important in the immune response against HCV infection. In this review, we highlight evidence suggesting that selective impairment of NK cell activity is related to establishment of chronic HCV infection.

  7. Transcriptional Changes during Naturally Acquired Zika Virus Infection Render Dendritic Cells Highly Conducive to Viral Replication.

    Science.gov (United States)

    Sun, Xiaoming; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Einkauf, Kevin; Tse, Samantha; Ard, Kevin; Ciaranello, Andrea; Yawetz, Sigal; Sax, Paul; Rosenberg, Eric S; Lichterfeld, Mathias; Yu, Xu G

    2017-12-19

    Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection. Published by Elsevier Inc.

  8. Dendritic cells as Achilles' heel and Trojan horse during varicella zoster virus infection

    Directory of Open Access Journals (Sweden)

    Günther eSchönrich

    2015-05-01

    Full Text Available Varicella zoster virus (VZV, a human alphaherpesvirus, causes varicella and subsequently estab-lishes latency within sensory nerve ganglia. Later in life VZV can reactivate to cause herpes zoster. A reduced frequency of VZV-specific T cells is strongly associated with herpes zoster illustrating that these immune cells are central to control latency. Dendritic cells (DCs are required for the generation of VZV-specific T cells. However, DCs can also be infected in vitro and in vivo allowing VZV to evade the antiviral immune response. Thus, DCs represent the immune systems’ Achilles heel. Uniquely among the human herpesviruses, VZV infects both DCs and T cells, and exploits both as Trojan horses. During primary infection VZV-infected DCs traffic to the draining lymph nodes and tonsils, where the virus is transferred to T cells. VZV-infected T cells subsequently spread infection throughout the body to give the typical varicella skin rash. The delicate interplay between VZV and DCs and its consequences for viral immune evasion and viral dissemination will be discussed in this article.

  9. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines.

    Science.gov (United States)

    Offerdahl, Danielle K; Dorward, David W; Hansen, Bryan T; Bloom, Marshall E

    2017-01-15

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60-100nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20-30nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. Published by Elsevier Inc.

  10. Nipah virus infects specific subsets of porcine peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Beata Stachowiak

    Full Text Available Nipah virus (NiV, a zoonotic paramyxovirus, is highly contagious in swine, and can cause fatal infections in humans following transmission from the swine host. The main viral targets in both species are the respiratory and central nervous systems, with viremia implicated as a mode of dissemination of NiV throughout the host. The presented work focused on the role of peripheral blood mononuclear cells (PBMC in the viremic spread of the virus in the swine host. B lymphocytes, CD4-CD8-, as well as CD4+CD8- T lymphocytes were not permissive to NiV, and expansion of the CD4+CD8- cells early post infection was consistent with functional humoral response to NiV infection observed in swine. In contrast, significant drop in the CD4+CD8- T cell frequency was observed in piglets which succumbed to the experimental infection, supporting the hypothesis that antibody development is the critical component of the protective immune response. Productive viral replication was detected in monocytes, CD6+CD8+ T lymphocytes and NK cells by recovery of infectious virus in the cell supernatants. Virus replication was supported by detection of the structural N and the non-structural C proteins or by detection of genomic RNA increase in the infected cells. Infection of T cells carrying CD6 marker, a strong ligand for the activated leukocyte cell adhesion molecule ALCAM (CD166 highly expressed on the microvascular endothelial cell of the blood-air and the blood-brain barrier may explain NiV preferential tropism for small blood vessels of the lung and brain.

  11. Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection

    Directory of Open Access Journals (Sweden)

    Uprichard Susan L

    2009-07-01

    Full Text Available Abstract Background In order to elucidate how Hepatitis C Virus (HCV interacts with polarized hepatocytes in vivo and how HCV-induced alterations in cellular function contribute to HCV-associated liver disease, a more physiologically relevant hepatocyte culture model is needed. As such, NASA-engineered three-dimensional (3-D rotating wall vessel (RWV bioreactors were used in effort to promote differentiation of HCV-permissive Huh7 hepatoma cells. Results When cultured in the RWV, Huh7 cells became morphologically and transcriptionally distinct from more standard Huh7 two-dimensional (2-D monolayers. Specifically, RWV-cultured Huh7 cells formed complex, multilayered 3-D aggregates in which Phase I and Phase II xenobiotic drug metabolism genes, as well as hepatocyte-specific transcripts (HNF4α, Albumin, TTR and α1AT, were upregulated compared to 2-D cultured Huh7 cells. Immunofluorescence analysis revealed that these HCV-permissive 3-D cultured Huh7 cells were more polarized than their 2D counterparts with the expression of HCV receptors, cell adhesion and tight junction markers (CD81, scavenger receptor class B member 1, claudin-1, occludin, ZO-1, β-Catenin and E-Cadherin significantly increased and exhibiting apical, lateral and/or basolateral localization. Conclusion These findings show that when cultured in 3-D, Huh7 cells acquire a more differentiated hepatocyte-like phenotype. Importantly, we show that these 3D cultures are highly permissive for HCV infection, thus providing an opportunity to study HCV entry and the effects of HCV infection on host cell function in a more physiologically relevant cell culture system.

  12. Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells

    DEFF Research Database (Denmark)

    Hölzer, Martin; Krähling, Verena; Amman, Fabian

    2016-01-01

    The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result...... expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine...

  13. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    International Nuclear Information System (INIS)

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-01-01

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism

  14. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  15. Role of Natural Killer and Gamma-Delta T cells in West Nile Virus Infection

    Directory of Open Access Journals (Sweden)

    Thomas Welte

    2013-09-01

    Full Text Available Natural Killer (NK cells and Gamma-delta T cells are both innate lymphocytes that respond rapidly and non-specifically to viral infection and other pathogens. They are also known to form a unique link between innate and adaptive immunity. Although they have similar immune features and effector functions, accumulating evidence in mice and humans suggest these two cell types have distinct roles in the control of infection by West Nile virus (WNV, a re-emerging pathogen that has caused fatal encephalitis in North America over the past decade. This review will discuss recent studies on these two cell types in protective immunity and viral pathogenesis during WNV infection.

  16. Association of human papilloma virus infection and oral squamous cell carcinoma in Bangladesh.

    Science.gov (United States)

    Akhter, Mahmuda; Ali, Liaquat; Hassan, Zahid; Khan, Imran

    2013-03-01

    Oral squamous cell carcinoma is the sixth most common malignancy worldwide. In Bangladesh, it comprises 20% of the whole body malignancies. Several studies found that 15% to 25% of oropharyngeal cancer cases are associated with human papilloma virus (HPV). This study is done to find the association of human papilloma virus subtypes, particularly HPV type 16 and HPV type 18, with the oral squamous cell carcinoma in Bangladeshi patients. In total, 34 diagnosed patients of oral squamous cell carcinoma were included in the study. Extracted DNA from the cancerous tissues was checked for PCR reaction to detect the subtypes of human papilloma virus. Data of the present study suggest that oral squamous cell carcinoma are almost absent in Bangladeshi patients with human papilloma virus, particularly HPV 16 and 18.

  17. Plasma Cell Cerebrospinal Fluid Pleocytosis Does Not Predict West Nile Virus Infection

    Directory of Open Access Journals (Sweden)

    Michael Jordan

    2012-01-01

    Full Text Available Purpose. Diagnosis of WNV (WNV relies upon serologic testing which may take several days after the onset of clinical symptoms to turn positive. Anecdotal reports suggest the presence of plasma cells or plasmacytoid lymphocytes in the cerebrospinal fluid (CSF may be an early indicator of WNV infection. Methods. The CSFs of 89 patients (12 with WNV, 12 with other viral illness {OVI}, and 65 with nonviral illness{NVI} were compared for the presence of either plasma cells or plasmacytoid lymphocytes. Results. Plasma cells were rarely seen in any of the patients. Plasmacytoid lymphocytes were more commonly seen in WNV (58% and OVI (50% than NVI (11%. The differences were significant for WNV versus NVI, but not WNV versus OVI (P<0.001 and P=0.58, resp.. Conclusions. A CSF pleocytosis with plasma cells or plasmacytoid lymphocytes was neither sensitive nor specific for the diagnosis of WNV infection.

  18. The synthesis of polyadenylated messenger RNA in herpes simplex type I virus infected BHK cells.

    Science.gov (United States)

    Harris, T J; Wildy, P

    1975-09-01

    The pattern of polyadenylated messenger RNA (mRNA) synthesis in BHK cell monolayers, infected under defined conditions with herpes simplex type I virus has been investigated by polyacrylamide gel electrophoresis or pulse-labelled RNA isolated by oligo dT-cellulose chromatography. Two classes of mRNA molecules were synthesized in infected cells; these were not detected in uninfected cells. The rate of synthesis of the larger, 18 to 30S RNA class reached a maximum soon after injection and then declined, whereas the rate of synthesis of the 7 to 11 S RNA class did not reach a maximum until much later and did not decline. In the presence of cytosine arabinoside, the rate of mRNA synthesis in infected cells was reduced but the electrophoretic pattern remained the same.

  19. Association of Human Papilloma Virus Infection and Oral Squamous Cell Carcinoma in Bangladesh

    Science.gov (United States)

    Ali, Liaquat; Hassan, Zahid; Khan, Imran

    2013-01-01

    Oral squamous cell carcinoma is the sixth most common malignancy worldwide. In Bangladesh, it comprises 20% of the whole body malignancies. Several studies found that 15% to 25% of oropharyngeal cancer cases are associated with human papilloma virus (HPV). This study is done to find the association of human papilloma virus subtypes, particularly HPV type 16 and HPV type 18, with the oral squamous cell carcinoma in Bangladeshi patients. In total, 34 diagnosed patients of oral squamous cell carcinoma were included in the study. Extracted DNA from the cancerous tissues was checked for PCR reaction to detect the subtypes of human papilloma virus. Data of the present study suggest that oral squamous cell carcinoma are almost absent in Bangladeshi patients with human papilloma virus, particularly HPV 16 and 18. PMID:23617206

  20. Early events associated with infection of Epstein-Barr virus infection of primary B-cells.

    Directory of Open Access Journals (Sweden)

    Sabyasachi Halder

    2009-09-01

    Full Text Available Epstein Barr virus (EBV is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology was used to introduce an expression cassette of green fluorescent protein (GFP by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6-7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6-12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection.

  1. Different types of nsP3-containing protein complexes in Sindbis virus-infected cells.

    Science.gov (United States)

    Gorchakov, Rodion; Garmashova, Natalia; Frolova, Elena; Frolov, Ilya

    2008-10-01

    Alphaviruses represent a serious public health threat and cause a wide variety of diseases, ranging from severe encephalitis, which can result in death or neurological sequelae, to mild infection, characterized by fever, skin rashes, and arthritis. In the infected cells, alphaviruses express only four nonstructural proteins, which function in the synthesis of virus-specific RNAs and in modification of the intracellular environment. The results of our study suggest that Sindbis virus (SINV) infection in BHK-21 cells leads to the formation of at least two types of nsP3-containing complexes, one of which was found in association with the plasma membrane and endosome-like vesicles, while the second was coisolated with cell nuclei. The latter complexes could be solubilized only with the cytoskeleton-destabilizing detergent. Besides viral nsPs, in the mammalian cells, both complexes contained G3BP1 and G3BP2 (which were found in different ratios), YBX1, and HSC70. Rasputin, an insect cell-specific homolog of G3BP1, was found in the nsP3-containing complexes isolated from mosquito cells, which was suggestive of a high conservation of the complexes in the cells of both vertebrate and invertebrate origin. The endosome- and plasma membrane-associated complexes contained a high concentration of double-stranded RNAs (dsRNAs), which is indicative of their function in viral-RNA synthesis. The dsRNA synthesis is likely to efficiently proceed on the plasma membrane, and at least some of the protein-RNA complexes would then be transported into the cytosol in association with the endosome-like vesicular organelles. These findings provide new insight into the mechanism of SINV replication and virus-host cell interactions.

  2. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  3. Effect of ultrasound on herpes simplex virus infection in cell culture

    Directory of Open Access Journals (Sweden)

    Iwai Soichi

    2011-09-01

    Full Text Available Abstract Background Ultrasound has been shown to increase the efficiency of gene expression from retroviruses, adenoviruses and adeno-associated viruses. The effect of ultrasound to stimulate cell membrane permeabilization on infection with an oncolytic herpes simplex virus type 1 (HSV-1 was examined. Results Vero monkey kidney cells were infected with HSV-1 and exposed to 1 MHz ultrasound after an adsorption period. The number of plaques was significantly greater than that of the untreated control. A combination of ultrasound and microbubbles further increased the plaque number. Similar results were obtained using a different type of HSV-1 and oral squamous cell carcinoma (SCC cells. The appropriate intensity, duty cycle and time of ultrasound to increase the plaque number were 0.5 W/cm2, 20% duty cycle and 10 sec, respectively. Ultrasound with microbubbles at an intensity of 2.0 W/cm2, at 50% duty cycle, or for 40 sec reduced cell viability. Conclusion These results indicate that ultrasound promotes the entry of oncolytic HSV-1 into cells. It may be useful to enhance the efficiency of HSV-1 infection in oncolytic virotherapy.

  4. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    Directory of Open Access Journals (Sweden)

    Dana Austin

    Full Text Available Rift Valley fever virus (RVFV is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  5. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    International Nuclear Information System (INIS)

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang

    2014-01-01

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  6. Immunodominant CD4+ T-cell epitope within nonstructural protein 3 in acute hepatitis C virus infection

    NARCIS (Netherlands)

    Diepolder, H. M.; Gerlach, J. T.; Zachoval, R.; Hoffmann, R. M.; Jung, M. C.; Wierenga, E. A.; Scholz, S.; Santantonio, T.; Houghton, M.; Southwood, S.; Sette, A.; Pape, G. R.

    1997-01-01

    In acute hepatitis C virus infection, 50 to 70% of patients develop chronic disease. Considering the low rate of spontaneous viral clearance during chronic hepatitis C infection, the first few months of interaction between the patient's immune system and the viral population seem to be crucial in

  7. Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin.

    Directory of Open Access Journals (Sweden)

    Assaf Shapira

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named "zymoxins". These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the "first generation zymoxins" by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that

  8. Removal of Hepatitis C Virus-Infected Cells by a Zymogenized Bacterial Toxin

    Science.gov (United States)

    Shapira, Assaf; Shapira, Shiran; Gal-Tanamy, Meital; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai

    2012-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named “zymoxins”. These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the “first generation zymoxins” by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express

  9. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity.

    Science.gov (United States)

    Hamilton, Jennifer R; Sachs, David; Lim, Jean K; Langlois, Ryan A; Palese, Peter; Heaton, Nicholas S

    2016-04-05

    A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.

  10. Early depletion of proliferating B cells of germinal center in rapidly progressive simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Casimiro, Danilo R.; Schleif, William A.; Chen, Minchun; Citron, Michael; Davies, Mary-Ellen; Burns, Janine; Liang, Xiaoping; Fu, Tong-Ming; Handt, Larry; Emini, Emilio A.; Shiver, John W.

    2007-01-01

    Lack of virus specific antibody response is commonly observed in both HIV-1-infected humans and SIV-infected monkeys with rapid disease progression. However, the mechanisms underlying this important observation still remain unclear. In a titration study of a SIVmac239 viral stock, three out of six animals with viral inoculation rapidly progressed to AIDS within 5 months. Unexpectedly, there was no obvious depletion of CD4 + T cells in both peripheral and lymph node (LN) compartments in these animals. Instead, progressive depletion of proliferating B cells and disruption of the follicular dendritic cell (FDC) network in germinal centers (GC) was evident in the samples collected at as early as 20 days after viral challenge. This coincided with undetectable, or weak and transient, virus-specific antibody responses over the course of infection. In situ hybridization of SIV RNA in the LN samples revealed a high frequency of SIV productively infected cells and large amounts of accumulated viral RNA in the GCs in these animals. Early severe depletion of GC proliferating B cells and disruption of the FDC network may thus result in an inability to mount a virus-specific antibody response in rapid progressors, which has been shown to contribute to accelerated disease progression of SIV infection

  11. Annulate lamellae in phloem cells of virus-infected Sonchus plants.

    Science.gov (United States)

    Steinkamp, M P; Hoefert, L L

    1977-07-01

    The occurrence of annulate lamellae (AL) in differentiating phloem of Sonchus oleraceus (Compositae) singly infected with sowthistle yellow vein virus (SYVV) and doubly infected with a combination of SYVV and beet yellow stunt virus is documented by electron microscopy. Cell types in which AL were found were immature sieve elements and phloem parenchyma cells. AL were found only in cells that also contained SYVV particles although a direct association between the virus and AL was not apparent. The substructure of the AL and the relationships between the AL and the nuclear envelope and endoplasmic reticulum are similar to those reported in other descriptions of this organelle in the literature. This report appears to be the first one concerning the association of AL with a plant virus disease.

  12. Zika Virus Infection of the Human Glomerular Cells: Implications for Viral Reservoirs and Renal Pathogenesis.

    Science.gov (United States)

    Alcendor, Donald J

    2017-07-15

    Zika virus (ZIKV) infection in the human renal compartment has not been reported. Several clinical reports have describe high-level persistent viral shedding in the urine of infected patients, but the associated mechanisms have not been explored until now. The current study examined cellular components of the glomerulus of the human kidney for ZIKV infectivity. I infected primary human podocytes, renal glomerular endothelial cells (GECs), and mesangial cells with ZIKV. Viral infectivity was analyzed by means of microscopy, immunofluorescence, real-time reverse-transcription polymerase chain reaction (RT-PCR), and quantitative RT-PCR (qRT-PCR), and the proinflammatory cytokines interleukin 1β, interferon β, and RANTES (regulated on activation of normal T cells expressed and secreted) were assessed using qRT-PCR. I show that glomerular podocytes, renal GECs, and mesangial cells are permissive for ZIKV infection. ZIKV infectivity was confirmed in all 3 cell types by means of immunofluorescence staining, RT-PCR, and qRT-PCR, and qRT-PCR analysis revealed increased transcriptional induction of interleukin 1β, interferon β, and RANTES in ZIKV-infected podocytes at 72 hours, compared with renal GECs and mesangial cells. The findings of this study support the notion that the glomerulus may serve as an amplification reservoir for ZIKV in the renal compartment. The impact of ZIKV infection in the human renal compartment is unknown and will require further study. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability

    International Nuclear Information System (INIS)

    Rivera, Julie A.; McGuire, Travis C.

    2005-01-01

    To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV WSU5 infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with 51 Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection

  14. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity

    Directory of Open Access Journals (Sweden)

    Michael A. Schmid

    2014-12-01

    Full Text Available Dendritic cells (DCs are sentinels of the immune system and detect pathogens at sites of entry, such as the skin. In addition to the ability of DCs to control infections directly via their innate immune functions, DCs help to prime adaptive B and T cell responses via antigen presentation in lymphoid tissues. Infected Aedes aegypti or Ae. albopictus mosquitoes transmit the four dengue virus (DENV serotypes to humans while probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-borne viral disease in humans, yet no vaccine or specific therapeutic is currently approved. Although primary DENV infection confers life-long protective immunity against re-infection with the same DENV serotype, secondary infection with a different DENV serotype can lead to increased disease severity via cross-reactive T cells or enhancing antibodies. This review summarizes recent findings in humans and animal models about DENV infection of DCs, monocytes and macrophages. We discuss the dual role of DCs as both targets of DENV replication and mediators of innate and adaptive immunity, and summarize immune evasion strategies whereby DENV impairs the function of infected DCs. We suggest that DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory B and T cell responses, and that future DC-directed therapies may help induce protective memory responses and reduce dengue pathogenesis.

  15. Ixodes ricinus tick saliva modulates tick-borne encephalitis virus infection of dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Fialová, Anna; Cimburek, Zdeněk; Iezzi, G.; Kopecký, Jan

    2010-01-01

    Roč. 12, č. 7 (2010), s. 580-585 ISSN 1286-4579 R&D Projects: GA AV ČR IAA600960811 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50200510 Keywords : Tick-borne encephalitis virus * Dendritic cell * Tick saliva * Ixodes ricinus Subject RIV: EC - Immunology Impact factor: 2.726, year: 2010

  16. Polymer based biosensor for rapid electrochemical detection of virus infection of human cells

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine; Poulsen, Claus R.; Jain, Titoo

    2011-01-01

    The demand in the field of medical diagnostics for simple, cost efficient and disposable devices is growing. Here, we present a label free, all-polymer electrochemical biosensor for detection of acute viral disease. The dynamics of a viral infection in human cell culture was investigated in a mic...

  17. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection.

    Science.gov (United States)

    Chijioke, Obinna; Müller, Anne; Feederle, Regina; Barros, Mario Henrique M; Krieg, Carsten; Emmel, Vanessa; Marcenaro, Emanuela; Leung, Carol S; Antsiferova, Olga; Landtwing, Vanessa; Bossart, Walter; Moretta, Alessandro; Hassan, Rocio; Boyman, Onur; Niedobitek, Gerald; Delecluse, Henri-Jacques; Capaul, Riccarda; Münz, Christian

    2013-12-26

    Primary infection with the human oncogenic Epstein-Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Human Natural Killer Cells Prevent Infectious Mononucleosis Features by Targeting Lytic Epstein-Barr Virus Infection

    Directory of Open Access Journals (Sweden)

    Obinna Chijioke

    2013-12-01

    Full Text Available Primary infection with the human oncogenic Epstein-Barr virus (EBV can result in infectious mononucleosis (IM, a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies.

  19. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  20. Quantitative multi-target RNA profiling in Epstein-Barr virus infected tumor cells.

    Science.gov (United States)

    Greijer, A E; Ramayanti, O; Verkuijlen, S A W M; Novalić, Z; Juwana, H; Middeldorp, J M

    2017-03-01

    Epstein-Barr virus (EBV) is etiologically linked to multiple acute, chronic and malignant diseases. Detection of EBV-RNA transcripts in tissues or biofluids besides EBV-DNA can help in diagnosing EBV related syndromes. Sensitive EBV transcription profiling yields new insights on its pathogenic role and may be useful for monitoring virus targeted therapy. Here we describe a multi-gene quantitative RT-PCR profiling method that simultaneously detects a broad spectrum (n=16) of crucial latent and lytic EBV transcripts. These transcripts include (but are not restricted to), EBNA1, EBNA2, LMP1, LMP2, BARTs, EBER1, BARF1 and ZEBRA, Rta, BGLF4 (PK), BXLF1 (TK) and BFRF3 (VCAp18) all of which have been implicated in EBV-driven oncogenesis and viral replication. With this method we determine the amount of RNA copies per infected (tumor) cell in bulk populations of various origin. While we confirm the expected RNA profiles within classic EBV latency programs, this sensitive quantitative approach revealed the presence of rare cells undergoing lytic replication. Inducing lytic replication in EBV tumor cells supports apoptosis and is considered as therapeutic approach to treat EBV-driven malignancies. This sensitive multi-primed quantitative RT-PCR approach can provide broader understanding of transcriptional activity in latent and lytic EBV infection and is suitable for monitoring virus-specific therapy responses in patients with EBV associated cancers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. A20 (Tnfaip3 deficiency in myeloid cells protects against influenza A virus infection.

    Directory of Open Access Journals (Sweden)

    Jonathan Maelfait

    Full Text Available The innate immune response provides the first line of defense against viruses and other pathogens by responding to specific microbial molecules. Influenza A virus (IAV produces double-stranded RNA as an intermediate during the replication life cycle, which activates the intracellular pathogen recognition receptor RIG-I and induces the production of proinflammatory cytokines and antiviral interferon. Understanding the mechanisms that regulate innate immune responses to IAV and other viruses is of key importance to develop novel therapeutic strategies. Here we used myeloid cell specific A20 knockout mice to examine the role of the ubiquitin-editing protein A20 in the response of myeloid cells to IAV infection. A20 deficient macrophages were hyperresponsive to double stranded RNA and IAV infection, as illustrated by enhanced NF-κB and IRF3 activation, concomitant with increased production of proinflammatory cytokines, chemokines and type I interferon. In vivo this was associated with an increased number of alveolar macrophages and neutrophils in the lungs of IAV infected mice. Surprisingly, myeloid cell specific A20 knockout mice are protected against lethal IAV infection. These results challenge the general belief that an excessive host proinflammatory response is associated with IAV-induced lethality, and suggest that under certain conditions inhibition of A20 might be of interest in the management of IAV infections.

  2. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    Science.gov (United States)

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding.

    Science.gov (United States)

    Mounce, Bryan C; Cesaro, Teresa; Carrau, Lucia; Vallet, Thomas; Vignuzzi, Marco

    2017-06-01

    Several compounds extracted from spices and herbs exhibit antiviral effects in vitro, suggesting potential pharmacological uses. Curcumin, a component of turmeric, has been used as a food additive and herbal supplement due to its potential medicinal properties. Previously, curcumin exhibited antiviral properties against several viruses, including dengue virus and hepatitis C virus, among others. Here, we describe the antiviral effect of curcumin on Zika and chikungunya viruses, two mosquito-borne outbreak viruses. Both viruses responded to treatment of cells with up to 5 μM curumin without impacting cellular viability. We observed that direct treatment of virus with curcumin reduced infectivity of virus in a dose- and time-dependent manner for these enveloped viruses, as well as vesicular stomatitis virus. In contrast, we found no change in infectivity for Coxsackievirus B3, a non-enveloped virus. Derivatives of curcumin also exhibited antiviral activity against enveloped viruses. Further examination revealed that curcumin interfered with the binding of the enveloped viruses to cells in a dose-dependent manner, though the integrity of the viral RNA was maintained. Together, these results expand the family of viruses sensitive to curcumin and provide a mechanism of action for curcumin's effect on these enveloped viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  5. Edible bird's nest modulate intracellular molecular pathways of influenza A virus infected cells.

    Science.gov (United States)

    Haghani, Amin; Mehrbod, Parvaneh; Safi, Nikoo; Kadir, Fadzilah A'ini Abd; Omar, Abdul Rahman; Ideris, Aini

    2017-01-05

    Edible Bird's Nest (EBN) as a popular traditional Chinese medicine is believed to have health enhancing and antiviral activities against influenza A virus (IAV); however, the molecular mechanism behind therapeutic effects of EBN is not well characterized. In this study, EBNs that underwent different enzymatic preparation were tested against IAV infected cells. 50% cytotoxic concentration (CC 50 ) and 50% inhibitory concentration (IC 50 ) of the EBNs against IAV strain A/Puerto Rico/8/1934(H1N1) were determined by HA and MTT assays. Subsequently, the sialic acid content of the used EBNs were analyzed by fluorometric HPLC. Western Blotting and immunofluorescent staining were used to investigate the effects of EBNs on early endosomal trafficking and autophagy process of influenza virus. This study showed that post inoculations of EBNs after enzymatic preparations have the highest efficacy to inhibit IAV. While CC50 of the tested EBNs ranged from 27.5-32 mg/ml, the IC50 of these compounds ranged between 2.5-4.9 mg/ml. EBNs could inhibit IAV as efficient as commercial antiviral agents, such as amantadine and oseltamivir with different mechanisms of action against IAV. The antiviral activity of these EBNs correlated with the content of N-acetyl neuraminic acid. EBNs could affect early endosomal trafficking of the virus by reducing Rab5 and RhoA GTPase proteins and also reoriented actin cytoskeleton of IAV infected cells. In addition, for the first time this study showed that EBNs can inhibit intracellular autophagy process of IAV life cycle as evidenced by reduction of LC3-II and increasing of lysosomal degradation. The results procured in this study support the potential of EBNs as supplementary medication or alternative to antiviral agents to inhibit influenza infections. Evidently, EBNs can be a promising antiviral agent; however, these natural compounds should be screened for their metabolites prior to usage as therapeutic approach.

  6. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Science.gov (United States)

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  7. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qun Wu

    Full Text Available The use of electronic cigarettes (e-cigarettes is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV infection.We examined the effects of e-cigarette liquid (e-liquid on pro-inflammatory cytokine (e.g., IL-6 production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1 in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  8. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection.

    Science.gov (United States)

    DiPiazza, Anthony; Laniewski, Nathan; Rattan, Ajitanuj; Topham, David J; Miller, Jim; Sant, Andrea J

    2018-07-01

    Pulmonary CD4 T cells are critical in respiratory virus control, both by delivering direct effector function and through coordinating responses of other immune cells. Recent studies have shown that following influenza virus infection, virus-specific CD4 T cells are partitioned between pulmonary vasculature and lung tissue. However, very little is known about the peptide specificity or functional differences of CD4 T cells within these two compartments. Using a mouse model of influenza virus infection in conjunction with intravascular labeling in vivo , the cell surface phenotype, epitope specificity, and functional potential of the endogenous polyclonal CD4 T cell response was examined by tracking nine independent CD4 T cell epitope specificities. These studies revealed that tissue-localized CD4 cells were globally distinct from vascular cells in expression of markers associated with transendothelial migration, residency, and micropositioning. Despite these differences, there was little evidence for remodeling of the viral epitope specificity or cytokine potential as cells transition from vasculature to the highly inflamed lung tissue. Our studies also distinguished cells in the pulmonary vasculature from peripheral circulating CD4 T cells, providing support for the concept that the pulmonary vasculature does not simply reflect circulating cells that are trapped within the narrow confines of capillary vessels but rather is enriched in transitional cells primed in the draining lymph node that have specialized potential to enter the lung tissue. IMPORTANCE CD4 T cells convey a multitude of functions in immunity to influenza, including those delivered in the lymph node and others conveyed by CD4 T cells that leave the lymph node, enter the blood, and extravasate into the lung tissue. Here, we show that the transition of recently primed CD4 cells detected in the lung vasculature undergo profound changes in expression of markers associated with tissue localization as

  9. Presence of virus neutralizing antibodies in cerebral spinal fluid correlates with non-lethal rabies in dogs.

    Directory of Open Access Journals (Sweden)

    Clement W Gnanadurai

    Full Text Available Rabies is traditionally considered a uniformly fatal disease after onset of clinical manifestations. However, increasing evidence indicates that non-lethal infection as well as recovery from flaccid paralysis and encephalitis occurs in laboratory animals as well as humans.Non-lethal rabies infection in dogs experimentally infected with wild type dog rabies virus (RABV, wt DRV-Mexico correlates with the presence of high level of virus neutralizing antibodies (VNA in the cerebral spinal fluid (CSF and mild immune cell accumulation in the central nervous system (CNS. By contrast, dogs that succumbed to rabies showed only little or no VNA in the serum or in the CSF and severe inflammation in the CNS. Dogs vaccinated with a rabies vaccine showed no clinical signs of rabies and survived challenge with a lethal dose of wild-type DRV. VNA was detected in the serum, but not in the CSF of immunized dogs. Thus the presence of VNA is critical for inhibiting virus spread within the CNS and eventually clearing the virus from the CNS.Non-lethal infection with wt RABV correlates with the presence of VNA in the CNS. Therefore production of VNA within the CNS or invasion of VNA from the periphery into the CNS via compromised blood-brain barrier is important for clearing the virus infection from CNS, thereby preventing an otherwise lethal rabies virus infection.

  10. No Evidence of Human Papilloma Virus Infection in Basal Cell Carcinoma

    Science.gov (United States)

    Nahidi, Yalda; Meibodi, Naser Tayyebi; Meshkat, Zahra; Esmaili, Habibollah; Jahanfakhr, Samaneh

    2015-01-01

    Background: Basal cell carcinoma (BCC) is the most common skin cancer among whites, and several risk factors have been discussed in itsdevelopment and progress. Detection of human papilloma virus (HPV) deoxyribonucleic acid (DNA) BCCs in some studies suggests that the virus may play a role in the pathogenesis of this disease. Several molecular studies showed conflicting reports. Aims: The purpose of this study was to investigate the association between HPV and BCC using polymerase chain reaction (PCR). Materials and Methods: HPV DNA detection was done for 42 paraffin-embedded tissue specimens of BCC and 42 normal skin samples around the lesions by PCR using GP5+/GP6+ primers. Results: HPV DNA was not found in any of the 42 samples of BCC, and only one normal skin sample around the lesions was positive for HPV DNA by PCR. Conclusion: In this study, no statistically significant difference was seen between the presence of HPV DNA in BCC and normal skin around the lesion, and HPV is not likely to have an important role in pathogenesis of BCC. PMID:26288402

  11. Multiple human papilloma virus infections predominant in squamous cell cervical carcinoma in Bandung

    Directory of Open Access Journals (Sweden)

    Edhyana Sahiratmadja

    2014-04-01

    Full Text Available Background Persistent infection of high risk genotypes of human papilloma virus (hrHPV has been established as the etiological cause for cervical cancer, and the most prevalent genotypes that infect the cervical tissue are HPV-16 and HPV-18. However, HPV genotype profile has been shown to differ according to geographical distribution across the globe. The present study aimed to determine the HPV genotype distribution in cervical cancer patients from Bandung, Indonesia. Methods During the period of July – November 2010 viral DNA was extracted from randomly chosen cervical cancer biopsies and subjected to genotype determination using the diagnostic linear array genotyping test (Roche. The distribution of HPV genotypes was explored and the prevalence of HPV genotypes was mapped. Results Of 96 cervical cancer tissue samples, 76 (79.2% were histopathologically classified as squamous cell cervical carcinoma. Due to the high cost of HPV genotyping tests, only twenty-five samples were randomly genotyped. Almost 90% of the cervical cancer patients were multiply infected with HPV-16 in combination with HPV-18, HPV-45, or HPV-52. The HPV-16 genotype had the highest prevalence, all samples being infected with HPV-16. Conclusion The cervical cancer cases were predominantly infected by multiple hrHPVs with HPV-16 as the major genotype among other hrHPVs, supporting the carcinogenic role of this hrHPV. Therefore, screening for hrHPVs in the general population is urgently needed as a means of early detection of cervical cancer.

  12. Multiple human papilloma virus infections predominant in squamous cell cervical carcinoma in Bandung

    Directory of Open Access Journals (Sweden)

    Edhyana Sahiratmadja

    2015-12-01

    Full Text Available BACKGROUND Persistent infection of high risk genotypes of human papilloma virus (hrHPV has been established as the etiological cause for cervical cancer, and the most prevalent genotypes that infect the cervical tissue are HPV-16 and HPV-18. However, HPV genotype profile has been shown to differ according to geographical distribution across the globe. The present study aimed to determine the HPV genotype distribution in cervical cancer patients from Bandung, Indonesia. METHODS During the period of July – November 2010 viral DNA was extracted from randomly chosen cervical cancer biopsies and subjected to genotype determination using the diagnostic linear array genotyping test (Roche. The distribution of HPV genotypes was explored and the prevalence of HPV genotypes was mapped. RESULTS Of 96 cervical cancer tissue samples, 76 (79.2% were histopathologically classified as squamous cell cervical carcinoma. Due to the high cost of HPV genotyping tests, only twenty-five samples were randomly genotyped. Almost 90% of the cervical cancer patients were multiply infected with HPV-16 in combination with HPV-18, HPV-45, or HPV-52. The HPV-16 genotype had the highest prevalence, all samples being infected with HPV-16. CONCLUSION The cervical cancer cases were predominantly infected by multiple hrHPVs with HPV-16 as the major genotype among other hrHPVs, supporting the carcinogenic role of this hrHPV. Therefore, screening for hrHPVs in the general population is urgently needed as a means of early detection of cervical cancer.

  13. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    Science.gov (United States)

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  14. Vaccinia Virus Infections in a Martial Arts Gym

    Centers for Disease Control (CDC) Podcasts

    2011-04-04

    This podcast discusses an outbreak of vaccinia virus in Maryland in 2008. Christine Hughes, a health scientist with the Poxvirus and Rabies Branch at CDC, and co-author of a paper in the April 2011 issue of CDC's journal, discusses vaccinia virus infections in a martial arts gym.  Created: 4/4/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 4/5/2011.

  15. Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques

    NARCIS (Netherlands)

    Boer, R.J. de; Mohri, H.; Ho, D.D.; Perelson, A.S.

    2003-01-01

    We determined average cellular turnover rates by fitting mathematical models to 5-bromo-2'-deoxyuridine measurements in SIV-infected and uninfected rhesus macaques. The daily turnover rates of CD4(+) T cells, CD4(-) T cells, CD20(+) B cells, and CD16(+) NK cells in normal uninfected rhesus macaques

  16. Immunomodulatory Activity of Red Ginseng against Influenza A Virus Infection

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2014-01-01

    Full Text Available Ginseng herbal medicine has been known to have beneficial effects on improving human health. We investigated whether red ginseng extract (RGE has preventive effects on influenza A virus infection in vivo and in vitro. RGE was found to improve survival of human lung epithelial cells upon influenza virus infection. Also, RGE treatment reduced the expression of pro-inflammatory genes (IL-6, IL-8 probably in part through interference with the formation of reactive oxygen species by influenza A virus infection. Long-term oral administration of mice with RGE showed multiple immunomodulatory effects such as stimulating antiviral cytokine IFN-γ production after influenza A virus infection. In addition, RGE administration in mice inhibited the infiltration of inflammatory cells into the bronchial lumens. Therefore, RGE might have the potential beneficial effects on preventing influenza A virus infections via its multiple immunomodulatory functions.

  17. Spontaneous pneumomediastinum due to paralytic rabies

    Directory of Open Access Journals (Sweden)

    Wuping Wang

    2013-02-01

    Full Text Available Rabies is a fatal disease resulting from rabies virus infection, causing severe neurological symptoms and ultimately death by destroying the nervous system. In general, a patient tends to see a neurologist or an infectious diseases physician, with very common and typical discipline-related signs and symptoms, such as hydrophobia, aerophobia, and mental disorders. However, we reported a rabies patient who was first admitted to see a thoracic surgeon with spontaneous pneumomediastinum.

  18. Spontaneous pneumomediastinum due to paralytic rabies

    Directory of Open Access Journals (Sweden)

    Wuping Wang

    Full Text Available Rabies is a fatal disease resulting from rabies virus infection, causing severe neurological symptoms and ultimately death by destroying the nervous system. In general, a patient tends to see a neurologist or an infectious diseases physician, with very common and typical discipline-related signs and symptoms, such as hydrophobia, aerophobia, and mental disorders. However, we reported a rabies patient who was first admitted to see a thoracic surgeon with spontaneous pneumomediastinum.

  19. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    Science.gov (United States)

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-08

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection*

    Science.gov (United States)

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-01-01

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. PMID:27226547

  1. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection

    Science.gov (United States)

    Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.

    2018-01-01

    ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection

  2. The Secretion of IL-22 from Mucosal NKp44+ NK Cells Is Associated with Microbial Translocation and Virus Infection in SIV/SHIV-Infected Chinese Macaques

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Microbial translocation (MT causes systemic immune activation in chronic human immunodeficiency virus (HIV infection. The role of a novel subtype of innate lymphoid cells, the NKp44+ NK cells, in HIV/simian immunodeficiency virus- (SIV- induced MT remains unknown. In this study, 12 simian-human immunodeficiency virus- (SHIV- infected macaques were chosen and split into two groups based on the MT level. Blood and Peripheral lymphoid tissue were sampled for flow cytometric analysis, viral load detection, and interleukin testing. Then, six naive Chinese macaques were used to determine the dynamics of cytokine secretion from mucosal NKp44+ NK cells in different phases of SIV infection. As a result, the degranulation capacity and IL-22 production of mucosal NKp44+ NK cells were associated with the MT level in the SHIV-infected macaques. And the number of mucosal NKp44+ NK cells and IL-22 secretion by these cells were lower in the chronic phase than in the early acute phase of SIV infection. The number of mucosal NKp44+ NK cells and interleukin-22 (IL-22 secretion by these cells increased before MT occurred. Therefore, we conclude that a decline in IL-22 production from mucosal NKp44+ NK cells induced by virus infection may be one of the causes of microbial translocation in HIV/SIV infection.

  3. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination.

    Directory of Open Access Journals (Sweden)

    Jill M Brooks

    2016-04-01

    Full Text Available Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501, as well as subdominant responses through common class I alleles (e.g. B7 and C*0304. Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design.

  4. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy.

    Directory of Open Access Journals (Sweden)

    José A Del Campo

    Full Text Available Hepatitis C virus (HCV infection has been related to increased risk of development of hepatocellular carcinoma (HCC while metformin (M and statins treatment seemed to protect against HCC development. In this work, we aim to identify the mechanisms by which metformin and simvastatin (S could protect from liver cancer. Huh7.5 cells were infected with HCV particles and treated with M+S. Human primary hepatocytes were treated with M+S. Treatment with both drugs inhibited Huh7.5 cell growth and HCV infection. In non-infected cells S increased translational controlled tumor protein (TCTP and phosphatase and tensin homolog (PTEN proteins while M inhibited mammalian target of rapamycin (mTOR and TCTP. Simvastatin and metformin co-administered down-regulated mTOR and TCTP, while PTEN was increased. In cells infected by HCV, mTOR, TCTP, p62 and light chain 3B II (LC3BII were increased and PTEN was decreased. S+M treatment increased PTEN, p62 and LC3BII in Huh7.5 cells. In human primary hepatocytes, metformin treatment inhibited mTOR and PTEN, but up-regulated p62, LC3BII and Caspase 3. In conclusion, simvastatin and metformin inhibited cell growth and HCV infection in vitro. In human hepatocytes, metformin increased cell-death markers. These findings suggest that M+S treatment could be useful in therapeutic prevention of HCV-related hepatocellular carcinoma.

  5. Analysis of mouse brain transcriptome after experimental Duvenhage virus infection shows activation of innate immune response and pyroptotic cell death pathway

    NARCIS (Netherlands)

    P. Koraka (Penelope); B.E.E. Martina (Byron); H.J. van den Ham; F. Zaaraoui-Boutahar (Fatiha); W.F.J. van IJcken (Wilfred); J.M. Roose (Jouke M.); G. van Amerongen (Geert); A.C. Andeweg (Arno); A.D.M.E. Osterhaus (Albert)

    2018-01-01

    textabstractRabies is an important neglected disease, characterized by invariably fatal encephalitis. Several studies focus on understanding the pathogenic mechanisms of the prototype lyssavirus rabies virus (RABV) infection, and little is known about the pathogenesis of rabies caused by other

  6. DAMPs and influenza virus infection in ageing.

    Science.gov (United States)

    Samy, Ramar Perumal; Lim, Lina H K

    2015-11-01

    Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Inhibition of Neurogenesis by Zika virus Infection.

    Science.gov (United States)

    Ahmad, Fahim; Siddiqui, Amna; Kamal, Mohammad A; Sohrab, Sayed S

    2018-02-01

    The association between Zika virus infection and neurological disorder has raised urgent global alarm. The ongoing epidemic has triggered quick responses in the scientific community. The first case of Zika virus was reported in 2015 from Brazil and now has spread over 30 countries. Nearly four hundred cases of travel-associated Zika virus infection have also been reported in the United States. Zika virus is primarily transmitted by mosquito belongs to the genus Aedes that are widely distributed throughout the world including the Southern United States. Additionally, the virus can also be transmitted from males to females by sexual contact. The epidemiological investigations during the current outbreak found a causal link between infection in pregnant women and development of microcephaly in their unborn babies. This finding is a cause for grave concern since microcephaly is a serious neural developmental disorder that can lead to significant post-natal developmental abnormalities and disabilities. Recently, published data indicate that Zika virus infection affects the growth of fetal neural progenitor cells and cerebral neurons that results in malformation of cerebral cortex leading to microcephaly. Recently, it has been reported that Zika virus infection deregulates the signaling pathway of neuronal cell and inhibit the neurogenesis resulting into dementia. In this review we have discussed about the information about cellular and molecular mechanisms in neurodegeneration of human neuronal cells and inhibit the neurogenesis. Additionally, this information will be very helpful further not only in neuro-scientific research but also designing and development of management strategies for microcephaly and other mosquito borne disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Yu Cong

    2016-05-01

    Full Text Available Humans infected with yellow fever virus (YFV, a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM and dendritic cells (MoDC from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease.

  9. Antigen detection, rabies virus isolation, and Q-PCR in the quantification of viral load in a natural infection of the North American beaver (Castor canadensis).

    Science.gov (United States)

    Morgan, Shannon M D; Pouliott, Craig E; Rudd, Robert J; Davis, April D

    2015-01-01

    All mammals are believed susceptible to rabies virus infection, yet transmission from nonreservoir hosts to humans is uncommon. However, interactions between nonreservoir hosts and humans occur frequently and risk of exposure increases where rabies is enzootic. We describe rabies and apparent pantropism of rabies virus in a beaver (Castor canadensis).

  10. Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera

    International Nuclear Information System (INIS)

    Hernaez, Bruno; Escribano, Jose M.; Alonso, Covadonga

    2006-01-01

    Many stages of African swine fever virus infection have not yet been studied in detail. To track the behavior of African swine fever virus (ASFV) in the infected cells in real time, we produced an infectious recombinant ASFV (B54GFP-2) that expresses and incorporates into the virus particle a chimera of the p54 envelope protein fused to the enhanced green fluorescent protein (EGFP). The incorporation of the fusion protein into the virus particle was confirmed immunologically and it was determined that p54-EGFP was fully functional by confirmation that the recombinant virus made normal-sized plaques and presented similar growth curves to the wild-type virus. The tagged virus was visualized as individual fluorescent particles during the first stages of infection and allowed to visualize the infection progression in living cells through the viral life cycle by confocal microscopy. In this work, diverse potential applications of B54GFP-2 to study different aspects of ASFV infection are shown. By using this recombinant virus it was possible to determine the trajectory and speed of intracellular virus movement. Additionally, we have been able to visualize for first time the ASFV factory formation dynamics and the cytophatic effect of the virus in live infected cells. Finally, we have analyzed virus progression along the infection cycle and infected cell death as time-lapse animations

  11. CD14+CD16+ monocytes are the main target of Zika virus infection in peripheral blood mononuclear cells in a paediatric study in Nicaragua.

    Science.gov (United States)

    Michlmayr, Daniela; Andrade, Paulina; Gonzalez, Karla; Balmaseda, Angel; Harris, Eva

    2017-11-01

    The recent Zika pandemic in the Americas is linked to congenital birth defects and Guillain-Barré syndrome. White blood cells (WBCs) play an important role in host immune responses early in arboviral infection. Infected WBCs can also function as 'Trojan horses' and carry viruses into immune-sheltered spaces, including the placenta, testes and brain. Therefore, defining which WBCs are permissive to Zika virus (ZIKV) is critical. Here, we analyse ZIKV infectivity of peripheral blood mononuclear cells (PBMCs) in vitro and from Nicaraguan Zika patients and show CD14 + CD16 + monocytes are the main target of infection, with ZIKV replication detected in some dendritic cells. The frequency of CD14 + monocytes was significantly decreased, while the CD14 + CD16 + monocyte population was significantly expanded during ZIKV infection compared to uninfected controls. Viral RNA was detected in PBMCs from all patients, but in serum from only a subset, suggesting PBMCs may be a reservoir for ZIKV. In Zika patients, the frequency of infected cells was lower but the percentage of infected CD14 + CD16 + monocytes was significantly higher compared to dengue cases. The gene expression profile in monocytes isolated from ZIKV- and dengue virus-infected patients was comparable, except for significant differences in interferon-γ, CXCL12, XCL1, interleukin-6 and interleukin-10 levels. Thus, our study provides a detailed picture of the innate immune profile of ZIKV infection and highlights the important role of monocytes, and CD14 + CD16 + monocytes in particular.

  12. Infection of neuroblastoma cells by rabies virus is modulated by the virus titer.

    Science.gov (United States)

    Fuoco, Natalia Langenfeld; Dos Ramos Silva, Sandriana; Fernandes, Elaine Raniero; Luiz, Fernanda Guedes; Ribeiro, Orlando Garcia; Katz, Iana Suly Santos

    2018-01-01

    Rabies is a lethal viral infection that can affect almost all mammals, including humans. To better understand the replication of Rabies lyssavirus, we investigated if the viral load in brains naturally infected with rabies influences viral internalization and viral growth kinetics in neuroblastoma cells, and if the viral load affects mortality in mice after intradermal infection. We noted that high initial viral loads in brains (group II) were unfavourable for increasing viral titers during serial passages in neuroblastoma cells when compared to low initial viral loads in brains (group I). In addition, group I strains showed higher viral growth and enhanced internalization efficiency in neuroblastoma cells than group II strains. However, we observed that the dominant virus subpopulation in group II promoted efficient viral infection in the central nervous system in the new host, providing a selective advantage to the virus. Our data indicate that rabies infection in animal models depends on not only the virus strain but also the amount of virus. This study may serve as a basis for understanding the biologic proprieties of Rabies lyssavirus strains with respect to the effects on viral replication and the impact on pathogenesis, improving virus yields for use in vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. In Vitro Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells.

    Science.gov (United States)

    Laksono, Brigitta M; Grosserichter-Wagener, Christina; de Vries, Rory D; Langeveld, Simone A G; Brem, Maarten D; van Dongen, Jacques J M; Katsikis, Peter D; Koopmans, Marion P G; van Zelm, Menno C; de Swart, Rik L

    2018-04-15

    Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (T H ) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that T H 1T H 17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the

  14. Oral vaccination of wildlife against rabies: Differences among host species in vaccine uptake efficiency.

    Science.gov (United States)

    Vos, Ad; Freuling, Conrad M; Hundt, Boris; Kaiser, Christiane; Nemitz, Sabine; Neubert, Andreas; Nolden, Tobias; Teifke, Jens P; Te Kamp, Verena; Ulrich, Reiner; Finke, Stefan; Müller, Thomas

    2017-07-13

    Oral vaccination using attenuated and recombinant rabies vaccines has been proven a powerful tool to combat rabies in wildlife. However, clear differences have been observed in vaccine titers needed to induce a protective immune response against rabies after oral vaccination in different reservoir species. The mechanisms contributing to the observed resistance against oral rabies vaccination in some species are not completely understood. Hence, the immunogenicity of the vaccine virus strain, SPBN GASGAS, was investigated in a species considered to be susceptible to oral rabies vaccination (red fox) and a species refractory to this route of administration (striped skunk). Additionally, the dissemination of the vaccine virus in the oral cavity was analyzed for these two species. It was shown that the palatine tonsils play a critical role in vaccine virus uptake. Main differences could be observed in palatine tonsil infection between both species, revealing a locally restricted dissemination of infected cells in foxes. The absence of virus infected cells in palatine tonsils of skunks suggests a less efficient uptake of or infection by vaccine virus which may lead to a reduced response to oral vaccination. Understanding the mechanisms of oral resistance to rabies virus vaccine absorption and primary replication may lead to the development of novel strategies to enhance vaccine efficacy in problematic species like the striped skunk. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  16. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  17. Distinct T and NK cell populations may serve as immune correlates of protection against symptomatic pandemic influenza A(H1N1 virus infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Miloje Savic

    Full Text Available Maternal influenza infection during pregnancy is associated with increased risk of morbidity and mortality. However, the link between the anti-influenza immune responses and health-related risks during infection is not well understood. We have analyzed memory T and NK cell mediated immunity (CMI responses in pandemic influenza A(H1N1pdm09 (pdm09 virus infected non-vaccinated pregnant women participating in the Norwegian Influenza Pregnancy Cohort (NorFlu. The cohort includes information on immunization, self-reported health and disease status, and biological samples (plasma and PBMC. Infected cases (N = 75 were defined by having a serum hemagglutination inhibition (HI titer > = 20 to influenza pdm09 virus at the time of delivery, while controls (N = 75 were randomly selected among non-infected pregnant women (HI titer <10. In ELISpot assays cases had higher frequencies of IFNγ+ CD8+ T cells responding to pdm09 virus or conserved CD8 T cell-restricted influenza A virus epitopes, compared to controls. Within this T cell population, frequencies of CD95+ late effector (CD45RA+CCR7- and naive (CD45RA+CCR7+ CD8+ memory T cells correlated inversely with self-reported influenza illness (ILI symptoms. ILI symptoms in infected women were also associated with lower numbers of poly-functional (IFNγ+TNFα+, IL2+IFNγ+, IL2+IFNγ+TNFα+ CD4+ T cells and increased frequencies of IFNγ+CD3-CD7+ NK cells compared to asymptomatic cases, or controls, after stimulation with the pdm09 virus. Taken together, virus specific and functionally distinct T and NK cell populations may serve as cellular immune correlates of clinical outcomes of pandemic influenza disease in pregnant women. Our results may provide information important for future universal influenza vaccine design.

  18. Distinct T and NK cell populations may serve as immune correlates of protection against symptomatic pandemic influenza A(H1N1) virus infection during pregnancy.

    Science.gov (United States)

    Savic, Miloje; Dembinski, Jennifer L; Laake, Ida; Hungnes, Olav; Cox, Rebecca; Oftung, Fredrik; Trogstad, Lill; Mjaaland, Siri

    2017-01-01

    Maternal influenza infection during pregnancy is associated with increased risk of morbidity and mortality. However, the link between the anti-influenza immune responses and health-related risks during infection is not well understood. We have analyzed memory T and NK cell mediated immunity (CMI) responses in pandemic influenza A(H1N1)pdm09 (pdm09) virus infected non-vaccinated pregnant women participating in the Norwegian Influenza Pregnancy Cohort (NorFlu). The cohort includes information on immunization, self-reported health and disease status, and biological samples (plasma and PBMC). Infected cases (N = 75) were defined by having a serum hemagglutination inhibition (HI) titer > = 20 to influenza pdm09 virus at the time of delivery, while controls (N = 75) were randomly selected among non-infected pregnant women (HI titer <10). In ELISpot assays cases had higher frequencies of IFNγ+ CD8+ T cells responding to pdm09 virus or conserved CD8 T cell-restricted influenza A virus epitopes, compared to controls. Within this T cell population, frequencies of CD95+ late effector (CD45RA+CCR7-) and naive (CD45RA+CCR7+) CD8+ memory T cells correlated inversely with self-reported influenza illness (ILI) symptoms. ILI symptoms in infected women were also associated with lower numbers of poly-functional (IFNγ+TNFα+, IL2+IFNγ+, IL2+IFNγ+TNFα+) CD4+ T cells and increased frequencies of IFNγ+CD3-CD7+ NK cells compared to asymptomatic cases, or controls, after stimulation with the pdm09 virus. Taken together, virus specific and functionally distinct T and NK cell populations may serve as cellular immune correlates of clinical outcomes of pandemic influenza disease in pregnant women. Our results may provide information important for future universal influenza vaccine design.

  19. Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist

    International Nuclear Information System (INIS)

    Chen, Z.; Lawson, S.; Sun, Z.; Zhou, X.; Guan, X.; Christopher-Hennings, J.; Nelson, E.A.; Fang, Y.

    2010-01-01

    The porcine reproductive and respiratory syndrome virus nsp1 is predicted to be auto-cleaved from the replicase polyprotein into nsp1α and nsp1β subunits. In infected cells, we detected the actual existence of nsp1α and nsp1β. Cleavage sites between nsp1α/nsp1β and nsp1β/nsp2 were identified by protein microsequencing analysis. Time course study showed that nsp1α and nsp1β mainly localize into the cell nucleus after 10 h post infection. Further analysis revealed that both proteins dramatically inhibited IFN-β expression. The nsp1β was observed to significantly inhibit expression from an interferon-stimulated response element promoter after Sendai virus infection or interferon treatment. It was further determined to inhibit nuclear translocation of STAT1 in the JAK-STAT signaling pathway. These results demonstrated that nsp1β has ability to inhibit both interferon synthesis and signaling, while nsp1α alone strongly inhibits interferon synthesis. These findings provide important insights into mechanisms of nsp1 in PRRSV pathogenesis and its impact in vaccine development.

  20. Rabies virus cross-reactive murine T cell clones: analysis of helper and delayed-type hypersensitivity function.

    NARCIS (Netherlands)

    H. Bunschoten; B. Dietzschold; I.J.Th.M. Claassen (Ivo); R. Klapmuts; F. UytdeHaag; A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractThree T cell clones derived from rabies virus-immunized BALB/c mice were analysed for specificity and function. The clones proved to be broadly cross-reactive by responding to different rabies virus isolates (PM, ERA, CVS, HEP) and other representatives of the genus Lyssavirus, like the

  1. Contribution to rabies prevention.

    Science.gov (United States)

    Sureau, P

    1992-01-01

    After the end of the Second World War, an outbreak of fox rabies invaded Europe. For the immunization of human populations and domestic animals against the risk of rabies transmitted by infected wild animals, it appeared necessary to replace the first generation of rabies vaccines (nerve tissue vaccines) by more potent and safer vaccines. The European vaccine manufacturers, in close collaboration with the research institutes engaged in rabies research, soon and quickly developed a second generation of rabies vaccines, produced in cell cultures including continuous cell lines grown in bioreactors of industrial scale. The third generation of rabies vaccines is already available: the vaccinia-rabies glycoprotein recombinant vaccine is presently applied on a large scale in some European countries for immunization of wildlife. The canarypox recombinant vaccine has already been considered and successfully tested for human immunization.

  2. Photodynamic treatment of Herpes simplex virus infection in vitro

    International Nuclear Information System (INIS)

    Lytle, C.D.; Hester, L.D.

    1976-01-01

    The effects of photodynamic action on in vitro herpes simplex virus infections of CV-1 monkey kidney fibroblasts or human skin fibroblasts were determined using proflavine sulfate and white fluorescent lamps. Photodynamic treatment of confluent cell monolayers prior to virus infection inactivated cell capacity, i.e. the capacity of the treated cells to support subsequent virus growth as measured by plaque formation. The capacity of human cells was more sensitive to inactivation than the capacity of monkey cells when 6 μM proflavine was used. Treated cell monolayers recovered the capacity to support virus plaque formation when virus infection was delayed four days after the treatment. Experiments in which the photodynamically treated monolayers were infected with UV-irradiated virus demonstrated that this treatment induced Weigle reactivation in both types of cells. This reactivation occurred for virus infection just after treatment or 4 days later. A Luria-Latarjet-type experiment was also performed in which cultures infected with unirradiated virus were photodynamically treated at different times after the start of infection. The results showed that for the first several hours of the virus infection the infected cultures were more sensitive to inactivation by photodynamic treatment than cell capacity. By the end of the eclipse period the infected cultures were less sensitive to inactivation than cell capacity. Results from extracellular inactivation of virus growth in monkey cells at 6 μM proflavine indicated that at physiological pH the virus has a sensitivity to photodynamic inactivation similar to that for inactivation of cell capacity. The combined data indicated that photodynamic treatment of the cell before or after virus infection could prevent virus growth. Thus, photodynamic inactivation of infected and uninfected cells may be as important as inactivation of virus particles when considering possible mechanisms in clinical photodynamic therapy for herpes

  3. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells.

    Science.gov (United States)

    Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei

    2017-06-01

    Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.

  4. Chikungunya VIrUS infection

    African Journals Online (AJOL)

    A retrospective study of 107 cases of serologically proven chikungunya (CHIK) virus infection was undertaken. All respondents 'had contracted the. 'disease at least 3 years previously; 87,9% had fully .recovered, 3,7% experienced only occasional stiff- ness or mild discomfort, 2,8% had persistent resi- dual joint stiffness but ...

  5. Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus.

    Science.gov (United States)

    Zandi, Fatemeh; Eslami, Naser; Soheili, Masoomeh; Fayaz, Ahmad; Gholami, Alireza; Vaziri, Behrouz

    2009-05-01

    Rabies is a neurotropic virus that causes a life threatening acute viral encephalitis. The complex relationship of rabies virus (RV) with the host leads to its replication and spreading toward the neural network, where viral pathogenic effects appeared as neuronal dysfunction. In order to better understand the molecular basis of this relationship, a proteomics study on baby hamster kidney cells infected with challenge virus standard strain of RV was performed. This cell line is an in vitro model for rabies infection and is commonly used for viral seed preparation. The direct effect of the virus on cellular protein machinery was investigated by 2-DE proteome mapping of infected versus control cells followed by LC-MS/MS identification. This analysis revealed significant changes in expression of 14 proteins, seven of these proteins were viral and the remaining were host proteins with different known functions: cytoskeletal (capping protein, vimentin), anti-oxidative stress (superoxide dismutase), regulatory (Stathmin), and protein synthesis (P0). Despite of limited changes appeared upon rabies infection, they present a set of interesting biochemical pathways for further investigation on viral-host interaction.

  6. Lymphocytic choriomeningitis virus infection is associated with long-standing perturbation of LFA-1 expression on CD8+ T cells

    DEFF Research Database (Denmark)

    Andersson, E C; Christensen, Jan Pravsgaard; Scheynius, A

    1995-01-01

    activation and expansion which was demonstrated not to depend on CD4+ T cells or their products. Cell sorting experiments defined virus-specific CTL to be included in this population (LFA-1hiMEL-14lo), but since about 80% of splenic CD8+ T cells have a changed phenotype, extensive bystander activation must...

  7. Analysis of FOXP3+ regulatory T cells that display apparent viral antigen specificity during chronic hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Shuo Li

    2009-12-01

    Full Text Available We reported previously that a proportion of natural CD25(+ cells isolated from the PBMC of HCV patients can further upregulate CD25 expression in response to HCV peptide stimulation in vitro, and proposed that virus-specific regulatory T cells (Treg were primed and expanded during the disease. Here we describe epigenetic analysis of the FOXP3 locus in HCV-responsive natural CD25(+ cells and show that these cells are not activated conventional T cells expressing FOXP3, but hard-wired Treg with a stable FOXP3 phenotype and function. Of approximately 46,000 genes analyzed in genome wide transcription profiling, about 1% were differentially expressed between HCV-responsive Treg, HCV-non-responsive natural CD25(+ cells and conventional T cells. Expression profiles, including cell death, activation, proliferation and transcriptional regulation, suggest a survival advantage of HCV-responsive Treg over the other cell populations. Since no Treg-specific activation marker is known, we tested 97 NS3-derived peptides for their ability to elicit CD25 response (assuming it is a surrogate marker, accompanied by high resolution HLA typing of the patients. Some reactive peptides overlapped with previously described effector T cell epitopes. Our data offers new insights into HCV immune evasion and tolerance, and highlights the non-self specific nature of Treg during infection.

  8. PROFILAKSIS RABIES

    Directory of Open Access Journals (Sweden)

    Susilawathi NM

    2014-09-01

    Full Text Available Rabies merupakan penyakit ensefalitis akut yang disebabkan oleh virus RNA, famili Rhabdoviridae, genus lyssavirus. Anjing adalah reservoir utama penularan rabies, puluhan ribu kematian per tahun disebabkan oleh gigitan anjing rabies. Bila seseorang menunjukkan gejala rabies, biasanya selalu fatal.  Profilaksis terhadap rabies merupakan tindakan efektif dan aman. Mencuci luka dan vaksinasi segera setelah kontak dengan hewan tersangka rabies dapat mencegah timbulnya rabies hampir 100%. Strategi yang paling efektif untuk mencegah rabies adalah mengurangi penularan rabies pada anjing melalui vaksinasi.[MEDICINA 2009;40:55-9].

  9. Immunotherapy with internally inactivated virus loaded dendritic cells boosts cellular immunity but does not affect feline immunodeficiency virus infection course

    Directory of Open Access Journals (Sweden)

    Pistello Mauro

    2008-04-01

    Full Text Available Abstract Immunotherapy of feline immunodeficiency virus (FIV-infected cats with monocyte-derived dendritic cells (MDCs loaded with aldrithiol-2 (AT2-inactivated homologous FIV was performed. Although FIV-specific lymphoproliferative responses were markedly increased, viral loads and CD4+ T cell depletion were unaffected, thus indicating that boosting antiviral cell-mediated immunity may not suffice to modify infection course appreciably.

  10. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus-infected macaques.

    Science.gov (United States)

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2015-12-01

    Innate lymphoid cells (ILCs) type 3, also known as lymphoid tissue inducer cells, plays a major role in both the development and remodeling of organized lymphoid tissues and the maintenance of adaptive immune responses. HIV/simian immunodeficiency virus (SIV) infection causes breakdown of intestinal barriers resulting in microbial translocation, leading to systemic immune activation and disease progression. However, the effects of HIV/SIV infection on ILC3 are unknown. Here, we analyzed ILC3 from mucosal and systemic lymphoid tissues in chronically SIV-infected macaques and uninfected controls. ILC3 cells were defined and identified in macaque lymphoid tissues as non-T, non-B (lineage-negative), c-Kit(+)IL-7Rα(+) (CD117(+)CD127(+)) cells. These ILC3 cells highly expressed CD90 (∼ 63%) and aryl hydrocarbon receptor and produced IL-17 (∼ 63%), IL-22 (∼ 36%), and TNF-α (∼ 72%) but did not coexpress CD4 or NK cell markers. The intestinal ILC3 cell loss correlated with the reduction of total CD4(+) T cells and T helper (Th)17 and Th22 cells in the gut during SIV infection (P lymphoid tissues in SIV-infected macaques, further contributing to the HIV-induced impairment of gut-associated lymphoid tissue structure and function, especially in mucosal tissues. © FASEB.

  11. Highly active antiretroviral therapy normalizes the function of progenitor cells in human immunodeficiency virus-infected patients

    DEFF Research Database (Denmark)

    Dam Nielsen, S.; Ersbøll, A. K.; Mathiesen, L.

    1998-01-01

    -infected patients were determined prior to HAART and after 2, 4, 8, and 12 weeks of therapy. The mean number of colony-forming units (cells) per milliliter (cfu/mL) was 15.0 prior to HAART vs. 109.8 in healthy controls (P.../mL eliminated the differences between HIV-infected patients and controls. Significant increases in numbers of CD34 cells were not detected. Of importance, the cloning efficiency of CD34 cells increased from 1.7% prior to therapy to a peak at 18.7% (P=.003). In conclusion, HAART normalized CD34 cell function...

  12. CD11b⁺, Ly6G⁺ cells produce type I interferon and exhibit tissue protective properties following peripheral virus infection.

    Directory of Open Access Journals (Sweden)

    Matthew A Fischer

    2011-11-01

    Full Text Available The goal of the innate immune system is containment of a pathogen at the site of infection prior to the initiation of an effective adaptive immune response. However, effector mechanisms must be kept in check to combat the pathogen while simultaneously limiting undesirable destruction of tissue resulting from these actions. Here we demonstrate that innate immune effector cells contain a peripheral poxvirus infection, preventing systemic spread of the virus. These innate immune effector cells are comprised primarily of CD11b⁺Ly6C⁺Ly6G⁻ monocytes that accumulate initially at the site of infection, and are then supplemented and eventually replaced by CD11b⁺Ly6C⁺Ly6G⁺ cells. The phenotype of the CD11b⁺Ly6C⁺Ly6G⁺ cells resembles neutrophils, but the infiltration of neutrophils typically occurs prior to, rather than following, accumulation of monocytes. Indeed, it appears that the CD11b⁺Ly6C⁺Ly6G⁺ cells that infiltrated the site of VACV infection in the ear are phenotypically distinct from the classical description of both neutrophils and monocyte/macrophages. We found that CD11b⁺Ly6C⁺Ly6G⁺ cells produce Type I interferons and large quantities of reactive oxygen species. We also observed that depletion of Ly6G⁺ cells results in a dramatic increase in tissue damage at the site of infection. Tissue damage is also increased in the absence of reactive oxygen species, although reactive oxygen species are typically thought to be damaging to tissue rather than protective. These data indicate the existence of a specialized population of CD11b⁺Ly6C⁺Ly6G⁺ cells that infiltrates a site of virus infection late and protects the infected tissue from immune-mediated damage via production of reactive oxygen species. Regulation of the action of this population of cells may provide an intervention to prevent innate immune-mediated tissue destruction.

  13. Partial regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter disease pathogenesis.

    Directory of Open Access Journals (Sweden)

    S Rochelle Mikkelsen

    2011-02-01

    Full Text Available Feline immunodeficiency virus (FIV infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+CD25(hiFoxP3(+ immunosuppressive regulatory T (Treg cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+ T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.

  14. Partial regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter disease pathogenesis.

    Science.gov (United States)

    Mikkelsen, S Rochelle; Long, Julie M; Zhang, Lin; Galemore, Erin R; VandeWoude, Sue; Dean, Gregg A

    2011-02-25

    Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+)CD25(hi)FoxP3(+) immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+) T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.

  15. Poultry Allele-Specific Expression (ASE) of CD4+ T Cells in Response to Marek’s Disease Virus Infection

    Science.gov (United States)

    Marek’s disease (MD) is a T cell lymphoma disease of poultry induced by Marek’s disease virus (MDV), a highly oncogenic alphaherpesvirus. To identify high-confidence candidate genes of MD genetic resistance, transcriptomic data in CD4+ T cells were obtained from MDV infected and non-infected groups ...

  16. Glucosamine metabolism of herpes simplex virus infected cells. Inhibition of glycosylation by tunicamycin and 2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    Olofsson, S.; Lycke, E.

    1980-01-01

    The formation of glucosamine-containing cell surface glycoproteins of herpes simplex virus (HSV) infected BMK cells was studied. Tunicamycin (TM) and 2-deoxy-D-glucose (DG) were used as inhibitors. With both inhibitors the multiplication of HSV was inhibited. DG markedly reduced cellular uptake of radioactively labelled glucosamine while TM interfered with the processing of glucosamine into TCA-insoluble material. Gel filtration chromatography on Sephadex G50 gel of cell surface material released by trypsin and further prepared by digestion with pronase indicated that TM and DG reduced the apparent high molecular weights of virus induced surface glycoproteins. In presence of DG the accumulation of a class of glucosamine-containing heterosaccharides (MW less than 3000) not present on DG-free HSV infected cells was observed. IN TM treated cells virtually all surface heterosaccharides with molecular weights exceeding 3000 and containing glucosamine disappeared. Moreover, a component compatible with a lipid-linked oligosaccharide present in DG treated cells was not observed in HSV infected TM treated cells. The results exemplifies some different steps in glucosamine metabolism of virus-induced cell surface glycoproteins differently affected by tunicamycin and 2-deoxy-D-glucose. (author)

  17. Cytomegalovirus-Driven Adaptive-Like Natural Killer Cell Expansions Are Unaffected by Concurrent Chronic Hepatitis Virus Infections

    Directory of Open Access Journals (Sweden)

    David F. G. Malone

    2017-05-01

    Full Text Available Adaptive-like expansions of natural killer (NK cell subsets are known to occur in response to human cytomegalovirus (CMV infection. These expansions are typically made up of NKG2C+ NK cells with particular killer-cell immunoglobulin-like receptor (KIR expression patterns. Such NK cell expansion patterns are also seen in patients with viral hepatitis infection. Yet, it is not known if the viral hepatitis infection promotes the appearance of such expansions or if effects are solely attributed to underlying CMV infection. In sizeable cohorts of CMV seropositive hepatitis B virus (HBV, hepatitis C virus (HCV, and hepatitis delta virus (HDV infected patients, we analyzed NK cells for expression of NKG2A, NKG2C, CD57, and inhibitory KIRs to assess the appearance of NK cell expansions characteristic of what has been seen in CMV seropositive healthy individuals. Adaptive-like NK cell expansions observed in viral hepatitis patients were strongly associated with CMV seropositivity. The number of subjects with these expansions did not differ between CMV seropositive viral hepatitis patients and corresponding healthy controls. Hence, we conclude that adaptive-like NK cell expansions observed in HBV, HCV, and/or HDV infected individuals are not caused by the chronic hepatitis infections per se, but rather are a consequence of underlying CMV infection.

  18. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  19. Incorporation of uridine-H3 into healthy and tobacco necrosis virus-infected mesophyll cells of Chenopodium amaranticolor

    International Nuclear Information System (INIS)

    Faccioli, G.; Rubies-Autonel, C.

    1975-01-01

    Tritiated uridine was selectively incorporated into the nucleus, nucleolus and cytoplasm of actinomycin D-treated Chenopodium amaranticolor cells locally infected with a strain of tobacco necrosis virus (TNV), 3 days after inoculation. Healthy cells did not show such an incorporation. Chloroplasts, in both types of cells, were free of label. Treatment with pancreatic ribonuclease removed the label completely in the majority of nuclei and nucleoli of infected cells. Since infectivity tests showed that AMD treatment increased virus multiplication by 10-12%, it is conceivable to think that the incorporation observed was due to virus synthesis. Preliminary infectivity experiments also showed that treatment of the cells with cycloheximide inhibited virus multiplication up to 80%, while chloramphenicol increased such multiplication. Our results lead to the conclusion that nucleus, nucleolus and cytoplasm but not chloroplasts are the sites involved in the synthesis of TNV. (orig.) [de

  20. Radiological features of pulmonary tuberculosis in human immunodeficiency virus-infected patients: correlation with the blood CD4 cell count

    International Nuclear Information System (INIS)

    Isusi, M.; Eguidazu, J.; Oleaga, L.; Grande, D.

    2000-01-01

    To describe the radiological features of pulmonary tuberculosis (TB) in patients infected with human immunodeficiency virus (HIV) and its correlation with the blood CD4 cell count. We present 44 HIV+patients, 24 with CD4 cell counts of less than 200 cells/mm''3 (group A) and 20 in whom the CD4 counts surpassed this level (group B). We also assessed the chest x-ray images to determine whether or not there was any correlation with the blood CD4 cell counts. Fisher's exact test was used for the statistical study of the differences in the radiological findings in the two groups. The incidence of atypical features was significantly greater in the patients with CD4 cell counts of less than 200 cells/mm''3 (group A) than in those with CD4 counts of over 200 cells/mm''3 (group B). Among HIV+patients, those with a more intact immune status were more likely to present lung x-ray images typical of post-primary TB, with cavitary lesions in upper lobes. The group of patients in whom the immune deficiency was more marked showed a greater incidence of atypical pulmonary findings, more characteristics of primary TB. (Author)

  1. Changes of Treg and Th17 cells balance in the development of acute and chronic hepatitis B virus infection

    Directory of Open Access Journals (Sweden)

    Xue-Song Liang

    2012-05-01

    Full Text Available Abstract Background Many studies suggest that in chronic hepatitis B virus (HBV infection regulate T (Treg cells and interlukin-17-producing T help cells (Th17 are mutually antagonistic in the immune response. This study is aimed to reveal the cell differentiation environment and the significance of Treg and Th17 balance in the development of acute and chronic HBV infection. Methods Ten patients with acute HBV infection (AHB and forty-eight patients with chronic HBV infection, including 12 asymptomatic HBV carriers (HBV carriers, 18 chronic hepatitis B patients (CHB and 18 acute-on-chronic HBV-related liver failure (ACHBLF were enrolled. Treg and Th17 cells differentiation related cytokine levels were detected by using ELISA. Flow cytometry was employed to count the Treg and Th17 frequency in peripheral blood. Results Compared to health controls both AHB and ACHBLF patients favoured Th17 cell differentiation, accompanied by a higher proportion of peripheral Th17 cells (P  Conclusions Th17 cells are involved in acute and chronic HBV infection, especially in AHB and ACHBLF. CHB and ACHBLF patients manifested obvious Treg/Th17 ratio imbalance, which might be linked to disease progression and the continuous HBV infection.

  2. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Pei, Hao [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Huang, Biao; Yang, Run-Lin [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Wu, Hang-Yuan [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Zhu, Xue; Zhu, Lan [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China)

    2012-08-17

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.

  3. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection.

    Science.gov (United States)

    Suzuki, Saori; Konnai, Satoru; Okagawa, Tomohiro; Ikebuchi, Ryoyo; Nishimori, Asami; Kohara, Junko; Mingala, Claro N; Murata, Shiro; Ohashi, Kazuhiko

    2015-02-15

    Regulatory T cells (Tregs) play a critical role in the maintenance of the host's immune system. Tregs, particularly CD4(+)CD25(+)Foxp3(+) T cells, have been reported to be involved in the immune evasion mechanism of tumors and several pathogens that cause chronic infections. Recent studies showed that a Treg-associated marker, cytotoxic T-lymphocyte antigen 4 (CTLA-4), is closely associated with the progression of several diseases. We recently reported that the proportion of Foxp3(+)CD4(+) cells was positively correlated with the number of lymphocytes, virus titer, and virus load but inversely correlated with IFN-γ expression in cattle infected with bovine leukemia virus (BLV), which causes chronic infection and lymphoma in its host. Here the kinetics of CTLA-4(+) cells were analyzed in BLV-infected cattle. CTLA-4 mRNA was predominantly expressed in CD4(+) T cells in BLV-infected cattle, and the expression was positively correlated with Foxp3 mRNA expression. To test for differences in the protein expression level of CTLA-4, we measured the proportion of CTLA-4-expressing cells by flow cytometry. In cattle with persistent lymphocytosis (PL), mean fluorescence intensities (MFIs) of CTLA-4 on CD4(+) and CD25(+) T cells were significantly increased compared with that in control and aleukemic (AL) cattle. The percentage of CTLA-4(+) cells in the CD4(+) T cell subpopulation was positively correlated with TGF-β mRNA expression, suggesting that CD4(+)CTLA-4(+) T cells have a potentially immunosuppressive function in BLV infection. In the limited number of cattle that were tested, the anti-CTLA-4 antibody enhanced the expression of CD69, IL-2, and IFN-γ mRNA in anti-programmed death ligand 1 (PD-L1) antibody-treated peripheral blood mononuclear cells from BLV-infected cattle. Together with previous findings, the present results indicate that Tregs may be involved in the inhibition of T cell function during BLV infection. Copyright © 2014 Elsevier B.V. All rights

  4. High level of surface CD4 prevents stable human immunodeficiency virus infection of T-cell transfectants.

    OpenAIRE

    Marshall, W L; Diamond, D C; Kowalski, M M; Finberg, R W

    1992-01-01

    CD4 is the principal receptor for the human immunodeficiency virus (HIV). We have isolated and studied CD4-expressing tumor cell clones made by expressing CD4 in the T-cell tumor line HSB. Two clones, one designated HSBCD4, a clone expressing low levels of CD4, and the other, HSB10xCD4, a high-expresser CD4+ clone, were studied for their ability to bind and replicate HIV. In contrast to many other CD4+ cells that down-modulate CD4 following HIV infection, the HSB10xCD4 clones continued to exp...

  5. The Role of the MHV Receptor and Related Glycoproteins in Murine Hepatitis Virus Infection of Murine Cell Lines

    Science.gov (United States)

    1995-04-13

    vaccinia virus-T7 RNA polymerase s y stem for e xpression of target genes . Mol . Cell . BioI . 7 : 2538-2544 . Gagneten , S ., Gout , 0 ., Dubois-Dalcq...glycoprotein. These results showed f or the first time that two murine CEA- related genes can be co-expressed in some cell lines from inbred mice...49 Southern Hybridization ................ . ............ 50 Subcloning of PCR Products and Gene Cloning ........ 51 Growth

  6. Standardization and assessment of cell culture media quantities in roller poly ethylene terephthalate bottles employed in the industrial rabies viral vaccine production.

    Science.gov (United States)

    Jagannathan, S; Chaansha, S; Rajesh, K; Santhiya, T; Charles, C; Venkataramana, K N

    2009-09-15

    Vero cells are utilized for production of rabies vaccine. This study deals with the optimize quantity media require for the rabies vaccine production in the smooth roller surface. The rabies virus (Pasteur vaccine strain) is infected to monolayer of the various experimented bottles. To analyze the optimal quantity of media for the production of rabies viral harvest during the process of Vero cell derived rabies vaccine. The trials are started from 200 to 400 mL (PTARV-1, PTARV-2, PTARV-3, PTARV-4 and PTARV-5). The samples are taken in an appropriate time intervals for analysis of In Process Quality Control (IPQC) tests. The collected viral harvests are further processed to rabies vaccine in a pilot level and in addition to scale up an industrial level. Based on the evaluation the PTARV-2 (250 mL) show highly encouraging results for the Vero cell derived rabies vaccine production.

  7. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection.

    Science.gov (United States)

    Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-Bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke

    2017-06-15

    Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effective restrictions of ZIKV replication in mosquitoes will be vital in controlling the spread of virus. In this study, an iTRAQ-based quantitative proteomic analysis of ZIKV-infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in the ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated, among which CHCHD2 can be upregulated by ZIKV infection in both mosquito C6/36 and human HeLa cells. Our further study indicated that CHCHD2 can promote ZIKV replication and inhibit beta interferon (IFN-β) production in HeLa cells, suggesting that ZIKV infection may upregulate CHCHD2 to inhibit IFN-I production and thus promote virus replication. Bioinformatics analysis of regulated host proteins highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the 20S proteasome, bortezomib, can inhibit ZIKV infection in vivo Our study illustrated how host cells respond to ZIKV infection and also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. IMPORTANCE ZIKV infection poses great threats to human health, and there is no FDA-approved drug available for the treatment of ZIKV infection. During replication, ZIKV manipulates host cell systems to facilitate its replication, while host cells activate

  8. Transcriptional profiling of feline infectious peritonitis virus infection in CRFK cells and in PBMCs from FIP diagnosed cats.

    Science.gov (United States)

    Harun, Mohammad Syamsul Reza; Kuan, Choong Oi; Selvarajah, Gayathri Thevi; Wei, Tan Sheau; Arshad, Siti Suri; Hair Bejo, Mohd; Omar, Abdul Rahman

    2013-11-09

    Feline Infectious Peritonitis (FIP) is a lethal systemic disease, caused by the FIP Virus (FIPV); a virulent mutant of Feline Enteric Coronavirus (FECV). Currently, the viruses virulence determinants and host gene expressions during FIPV infection are not fully understood. RNA sequencing of Crandell Rees Feline Kidney (CRFK) cells, infected with FIPV strain 79-1146 at 3 hours post infection (h.p.i), were sequenced using the Illumina next generation sequencing approach. Bioinformatic's analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench mapped both control and infected cell reads to 18899 genes out of 19046 annotated genes. Kal's Z test statistical analysis was used to analyse the differentially expressed genes from the infected CRFK cells. Real time RT-qPCR was developed for further transcriptional profiling of three genes (PD-1, PD-L1 and A3H) in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diseased cats. Based on Kal's Z-test, with False Discovery Rate (FDR) 1.99 fold change on gene expressions, a total of 61 genes were differentially expressed by both samples, where 44 genes were up-regulated and the remainder were down-regulated. Most genes were closely clustered together, suggesting a homogeneous expression. The majority of the genes that were significantly regulated, were those associated with monocytes-macrophage and Th1 cell functions, and the regulation of apoptosis. Real time RT-qPCR developed focusing on 2 up-regulated genes (PD-L1 and A3H) together with an apoptosis associated gene PD-1 expressions in FIPV infected CRFK cells and in PBMCs from healthy and FIP diagnosed cats produced concordant results with transcriptome data. The possible roles of these genes, and their importance in feline coronaviruses infection, are discussed.

  9. A cell culture-derived whole virus influenza A vaccine based on magnetic sulfated cellulose particles confers protection in mice against lethal influenza A virus infection.

    Science.gov (United States)

    Pieler, Michael M; Frentzel, Sarah; Bruder, Dunja; Wolff, Michael W; Reichl, Udo

    2016-12-07

    Downstream processing and formulation of viral vaccines employs a large number of different unit operations to achieve the desired product qualities. The complexity of individual process steps involved, the need for time consuming studies towards the optimization of virus yields, and very high requirements regarding potency and safety of vaccines results typically in long lead times for the establishment of new processes. To overcome such obstacles, to enable fast screening of potential vaccine candidates, and to explore options for production of low cost veterinary vaccines a new platform for whole virus particle purification and formulation based on magnetic particles has been established. Proof of concept was carried out with influenza A virus particles produced in suspension Madin Darby canine kidney (MDCK) cells. The clarified, inactivated, concentrated, and diafiltered virus particles were bound to magnetic sulfated cellulose particles (MSCP), and directly injected into mice for immunization including positive and negative controls. We show here, that in contrast to the mock-immunized group, vaccination of mice with antigen-loaded MSCP (aMSCP) resulted in high anti-influenza A antibody responses and full protection against a lethal challenge with replication competent influenza A virus. Antiviral protection correlated with a 400-fold reduced number of influenza nucleoprotein gene copies in the lungs of aMSCP immunized mice compared to mock-treated animals, indicating the efficient induction of antiviral immunity by this novel approach. Thus, our data proved the use of MSCP for purification and formulation of the influenza vaccine to be fast and efficient, and to confer protection of mice against influenza A virus infection. Furthermore, the method proposed has the potential for fast purification of virus particles directly from bioreactor harvests with a minimum number of process steps towards formulation of low-cost veterinary vaccines, and for screening

  10. Effect of Vaccinia virus infection on poly(ADP-ribose)synthesis and DNA metabolism in different cells

    Energy Technology Data Exchange (ETDEWEB)

    Topaloglou, A.; Ott, E.; Altmann, H. (Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie); Zashukhina, G.D.; Sinelschikova, T.A. (AN SSSR, Moscow. Inst. Obshchej Genetiki)

    1983-07-14

    In Chang liver cells and rat spleen cells infected with Vaccinia virus, DNA synthesis, repair replication after UV irradiation and poly(ADP-ribose)(PAR) synthesis were determined. In the time post infection semiconservative DNA synthesis showed only a slight reduction. DNA repair replication was not very different from controls 4 hours p.i. but was enhanced 24 hours after infection compared to noninfected cells. PAR synthesis was also not changed very much 4 hours p.i. but was decreased significantly after 24 hours. The determination of radioactivity resulting from /sup 3/H-NAD, showed a marked reduction of PAR in the spacer region of chromatin 24 hours p.i., but in addition, PAR located in the core region, was reduced, too.

  11. CXCL10 is the key ligand for CXCR3 on CD8+ effector T cells involved in immune surveillance of the lymphocytic choriomeningitis virus-infected central nervous system

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; de Lemos, Carina; Moos, Torben

    2006-01-01

    /ligand pair is thought to play a central role in regulating T cell-mediated inflammation in this organ site. In this report, we investigated the role of CXCL10 in regulating CD8(+) T cell-mediated inflammation in the virus-infected brain. This was done through analysis of CXCL10-deficient mice infected...... indicate a central role for CXCL10 in regulating the accumulation of effector T cells at sites of CNS inflammation, with no apparent compensatory effect of other CXCR3 ligands....

  12. A double labeling technique for performing immunocytochemistry and in situ hybridization in virus infected cell cultures and tissues

    International Nuclear Information System (INIS)

    Gendelman, H.E.; Moench, T.R.; Narayan, O.; Griffin, D.E.; Clements, J.E.

    1985-01-01

    This report describes a combined immunocytochemical and in situ hybridization procedure which allows visualization of cellular or viral antigens and viral RNA in the same cell. Cultures infected with visna or measles virus were fixed in periodate-lysine-paraformaldehyde-glutaraldehyde, stained by the avidin-biotin-peroxidase technique using antibodies to viral or cellular proteins and then incubated with radiolabeled specific DNA probes (in situ hybridization). This technique provides a new approach to the study of viral pathogenesis by: (1) identifying the types of cells which are infected in the host and (2) identifying points of blockade in the virus life cycle during persistent infections. (Auth.)

  13. Functional and phenotypic evidence for a selective loss of memory T cells in asymptomatic human immunodeficiency virus-infected men

    NARCIS (Netherlands)

    van Noesel, C. J.; Gruters, R. A.; Terpstra, F. G.; Schellekens, P. T.; van Lier, R. A.; Miedema, F.

    1990-01-01

    In addition to a well-documented depletion of CD4+ T helper cells in later stages of human immunodeficiency virus (HIV) infection, evidence has been provided for a specific unresponsiveness to triggering either by specific antigen in the context of autologous major histocompatibility molecules (self

  14. Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice

    International Nuclear Information System (INIS)

    Shresta, Sujan; Kyle, Jennifer L.; Robert Beatty, P.; Harris, Eva

    2004-01-01

    Dengue virus (DEN) causes the most prevalent arthropod-borne viral illness in humans worldwide. Immune mechanisms that are involved in protection and pathogenesis of DEN infection have not been fully elucidated due largely to the lack of an adequate animal model. Therefore, as a first step, we characterized the primary immune response in immunocompetent inbred A/J mice that were infected intravenously with a non-mouse-adapted DEN type 2 (DEN2) strain. A subset (55%) of infected mice developed paralysis by 14 days post-infection (p.i.), harbored infectious DEN in the central nervous system (CNS), and had an elevated hematocrit and a decreased white blood cell (WBC) count. Immunologic studies detected (i) increased numbers of CD69 + splenic natural killer (NK) and B cells at day 3 p.i., (ii) DEN-specific IgM and IgG responses by days 3 and 7 p.i., respectively, and (iii) splenocyte production of IFNγ at day 14 p.i. We conclude that the early activities of NK cells, B cells and IgM, and later actions of IFNγ and IgG likely play a role in the defense against DEN infection

  15. Zika Virus Infects Human Sertoli Cells and Modulates the Integrity of the In Vitro Blood-Testis Barrier Model.

    Science.gov (United States)

    Siemann, David N; Strange, Daniel P; Maharaj, Payal N; Shi, Pei-Yong; Verma, Saguna

    2017-11-15

    Confirmed reports of Zika virus (ZIKV) in human seminal fluid for months after the clearance of viremia suggest the ability of ZIKV to establish persistent infection in the seminiferous tubules, an immune-privileged site in the testis protected by the blood-testis barrier, also called the Sertoli cell (SC) barrier (SCB). However, cellular targets of ZIKV in human testis and mechanisms by which the virus enters seminiferous tubules remain unclear. We demonstrate that primary human SCs were highly susceptible to ZIKV compared to the closely related dengue virus and induced the expression of alpha interferon (IFN-α), key cytokines, and cell adhesion molecules (vascular cell adhesion molecule 1 [VCAM-1] and intracellular adhesion molecule 1 [ICAM-1]). Furthermore, using an in vitro SCB model, we show that ZIKV was released on the adluminal side of the SCB model with a higher efficiency than in the blood-brain barrier model. ZIKV-infected SCs exhibited enhanced adhesion of leukocytes that correlated with decreases in SCB integrity. ZIKV infection did not affect the expression of tight and adherens junction proteins such as ZO-1, claudin, and JAM-A; however, exposure of SCs to inflammatory mediators derived from ZIKV-infected macrophages led to the degradation of the ZO-1 protein, which correlated with increased SCB permeability. Taken together, our data suggest that infection of SCs may be one of the crucial steps by which ZIKV gains access to the site of spermatozoon development and identify SCs as a therapeutic target to clear testicular infections. The SCB model opens up opportunities to assess interactions of SCs with other testicular cells and to test the ability of anti-ZIKV drugs to cross the barrier. IMPORTANCE Recent outbreaks of ZIKV, a neglected mosquito-borne flavivirus, have identified sexual transmission as a new route of disease spread, which has not been reported for other flaviviruses. To be able to sexually transmit for months after the clearance of

  16. Respiratory Syncytial Virus-Infected Mesenchymal Stem Cells Regulate Immunity via Interferon Beta and Indoleamine-2,3-Dioxygenase.

    Directory of Open Access Journals (Sweden)

    Michael B Cheung

    Full Text Available Respiratory syncytial virus (RSV has been reported to infect human mesenchymal stem cells (MSCs but the consequences are poorly understood. MSCs are present in nearly every organ including the nasal mucosa and the lung and play a role in regulating immune responses and mediating tissue repair. We sought to determine whether RSV infection of MSCs enhances their immune regulatory functions and contributes to RSV-associated lung disease. RSV was shown to replicate in human MSCs by fluorescence microscopy, plaque assay, and expression of RSV transcripts. RSV-infected MSCs showed differentially altered expression of cytokines and chemokines such as IL-1β, IL6, IL-8 and SDF-1 compared to epithelial cells. Notably, RSV-infected MSCs exhibited significantly increased expression of IFN-β (~100-fold and indoleamine-2,3-dioxygenase (IDO (~70-fold than in mock-infected MSCs. IDO was identified in cytosolic protein of infected cells by Western blots and enzymatic activity was detected by tryptophan catabolism assay. Treatment of PBMCs with culture supernatants from RSV-infected MSCs reduced their proliferation in a dose dependent manner. This effect on PBMC activation was reversed by treatment of MSCs with the IDO inhibitors 1-methyltryptophan and vitamin K3 during RSV infection, a result we confirmed by CRISPR/Cas9-mediated knockout of IDO in MSCs. Neutralizing IFN-β prevented IDO expression and activity. Treatment of MSCs with an endosomal TLR inhibitor, as well as a specific inhibitor of the TLR3/dsRNA complex, prevented IFN-β and IDO expression. Together, these results suggest that RSV infection of MSCs alters their immune regulatory function by upregulating IFN-β and IDO, affecting immune cell proliferation, which may account for the lack of protective RSV immunity and for chronicity of RSV-associated lung diseases such as asthma and COPD.

  17. Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, Shanghai 200063 (China); Liu, Siwen [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Bode, Liv [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Liu, Chengyu [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Zhang, Liang [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wang, Xiao [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Li, Dan [Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016 (China); Lei, Yang [Department of Internal Medicine, University-Town Hospital of Chongqing Medical University, Chongqing 400016 (China); Peng, Xiaojun [Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou 310018 (China); Cheng, Zhongyi [Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092 (China); and others

    2015-11-15

    Background: Borna disease virus (BDV) is a neurotropic RNA virus persistently infecting mammalian hosts including humans. Lysine acetylation (Kac) is a key protein post-translational modification (PTM). The unexpectedly broad regulatory scope of Kac let us to profile the entire acetylome upon BDV infection. Methods: The acetylome was profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Results: We identified and quantified 791 Kac sites in 473 Kac proteins in human BDV Hu-H1-infected and non-infected oligodendroglial (OL) cells. Bioinformatic analysis revealed that BDV infection alters the acetylation of metabolic proteins, membrane-associated proteins and transmembrane transporter activity, and affects the acetylation of several lysine acetyltransferases (KAT). Conclusions: Upon BDV persistence the OL acetylome is manipulated towards higher energy and transporter levels necessary for shuttling BDV proteins to and from nuclear replication sites. - Highlights: • We used SILAC-based proteomics to analyze the acetylome of BDV infected OL cells. • We quantified 791Kac sites in 473 proteins. • Bioinformatic analysis revealed altered acetylation of metabolic proteins et al. • BDV manipulates the OL acetylome towards higher energy and transporter levels. • BDV infection is associated with enriched phosphate-associated metabolic processes.

  18. Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels

    International Nuclear Information System (INIS)

    Liu, Xia; Liu, Siwen; Bode, Liv; Liu, Chengyu; Zhang, Liang; Wang, Xiao; Li, Dan; Lei, Yang; Peng, Xiaojun; Cheng, Zhongyi

    2015-01-01

    Background: Borna disease virus (BDV) is a neurotropic RNA virus persistently infecting mammalian hosts including humans. Lysine acetylation (Kac) is a key protein post-translational modification (PTM). The unexpectedly broad regulatory scope of Kac let us to profile the entire acetylome upon BDV infection. Methods: The acetylome was profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Results: We identified and quantified 791 Kac sites in 473 Kac proteins in human BDV Hu-H1-infected and non-infected oligodendroglial (OL) cells. Bioinformatic analysis revealed that BDV infection alters the acetylation of metabolic proteins, membrane-associated proteins and transmembrane transporter activity, and affects the acetylation of several lysine acetyltransferases (KAT). Conclusions: Upon BDV persistence the OL acetylome is manipulated towards higher energy and transporter levels necessary for shuttling BDV proteins to and from nuclear replication sites. - Highlights: • We used SILAC-based proteomics to analyze the acetylome of BDV infected OL cells. • We quantified 791Kac sites in 473 proteins. • Bioinformatic analysis revealed altered acetylation of metabolic proteins et al. • BDV manipulates the OL acetylome towards higher energy and transporter levels. • BDV infection is associated with enriched phosphate-associated metabolic processes.

  19. Identification and analysis of differential miRNAs in PK-15 cells after foot-and-mouth disease virus infection.

    Directory of Open Access Journals (Sweden)

    Ke-Shan Zhang

    Full Text Available The alterations of MicroRNAs(miRNAs in host cell after foot-and-mouth disease virus (FMDV infection is still obscure. To increase our understanding of the pathogenesis of FMDV at the post-transcriptional regulation level, Solexa high-throu MicroRNAs (miRNAs play an important role both in the post-transcriptional regulation of gene expression and host-virus interactions. Despite investigations of miRNA expression ghput sequencing and bioinformatic tools were used to identify differentially expressed miRNAs and analyze their functions during FMDV infection of PK-15 cells. Results indicated that 9,165,674 and 9,230,378 clean reads were obtained, with 172 known and 72 novel miRNAs differently expressed in infected and uninfected groups respectively. Some of differently expressed miRNAs were validated using stem-loop real-time quantitative RT-PCR. The GO annotation and KEGG pathway analysis for target genes revealed that differently expressed miRNAs were involved in immune response and cell death pathways.

  20. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection.

    Science.gov (United States)

    Bull, Rowena A; Leung, Preston; Gaudieri, Silvana; Deshpande, Pooja; Cameron, Barbara; Walker, Melanie; Chopra, Abha; Lloyd, Andrew R; Luciani, Fabio

    2015-05-01

    The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish

  1. Suppression of Zika Virus Infection and Replication in Endothelial Cells and Astrocytes by PKA Inhibitor PKI 14-22.

    Science.gov (United States)

    Cheng, Fan; Ramos da Silva, Suzane; Huang, I-Chueh; Jung, Jae U; Gao, Shou-Jiang

    2018-02-15

    The recent outbreak of Zika virus (ZIKV), a reemerging flavivirus, and its associated neurological disorders, such as Guillain-Barré (GB) syndrome and microcephaly, have generated an urgent need to develop effective ZIKV vaccines and therapeutic agents. Here, we used human endothelial cells and astrocytes, both of which represent key cell types for ZIKV infection, to identify potential inhibitors of ZIKV replication. Because several pathways, including the AMP-activated protein kinase (AMPK), protein kinase A (PKA), and mitogen-activated protein kinase (MAPK) signaling pathways, have been reported to play important roles in flavivirus replication, we tested inhibitors and agonists of these pathways for their effects on ZIKV replication. We identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. PKI effectively suppressed the replication of ZIKV from both the African and Asian/American lineages with a high efficiency and minimal cytotoxicity. While ZIKV infection does not induce PKA activation, endogenous PKA activity is essential for supporting ZIKV replication. Interestingly, in addition to PKA, PKI also inhibited another unknown target(s) to block ZIKV replication. PKI inhibited ZIKV replication at the postentry stage by preferentially affecting negative-sense RNA synthesis as well as viral protein translation. Together, these results have identified a potential inhibitor of ZIKV replication which could be further explored for future therapeutic application. IMPORTANCE There is an urgent need to develop effective vaccines and therapeutic agents against Zika virus (ZIKV) infection, a reemerging flavivirus associated with neurological disorders, including Guillain-Barré (GB) syndrome and microcephaly. By screening for inhibitors of several cellular pathways, we have identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. We show that PKI effectively suppresses the replication of all ZIKV

  2. Healthy rabbits are susceptible to Epstein-Barr virus infection and infected cells proliferate in immunosuppressed animals.

    Science.gov (United States)

    Khan, Gulfaraz; Ahmed, Waqar; Philip, Pretty S; Ali, Mahmoud H; Adem, Abdu

    2015-02-18

    Epstein-Barr virus (EBV) is an oncogenic virus implicated in the pathogenesis of several human malignancies. However, due to the lack of a suitable animal model, a number of fundamental questions pertaining to the biology of EBV remain poorly understood. Here, we explore the potential of rabbits as a model for EBV infection and investigate the impact of immunosuppression on viral proliferation and gene expression. Six healthy New Zealand white rabbits were inoculated intravenously with EBV and blood samples collected prior to infection and for 7 weeks post-infection. Three weeks after the last blood collection, animals were immunosuppressed with daily intramuscular injections of cyclosporin A at doses of 20 mg/kg for 15 days and blood collected twice a week from each rabbit. The animals were subsequently sacrificed and tissues from all major organs were collected for subsequent analysis. Following intravenous inoculation, all 6 rabbits seroconverted with raised IgG and IgM titres to EBV, but viral DNA in peripheral blood mononuclear cells (PBMCs) could only be detected intermittently. Following immunosuppression however, EBV DNA could be readily detected in PBMCs from all 4 rabbits that survived the treatment. Quantitative PCR indicated an increase in EBV viral load in PBMCs as the duration of immunosuppression increased. At autopsy, splenomegaly was seen in 3/4 rabbits, but spleens from all 4 rabbit were EBV PCR positive. EBER-in situ hybridization and immunoshistochemistry revealed the presence of a large number of EBER-positive and LMP-1 positive lymphoblasts in the spleens of 3/4 rabbits. To a lesser extent, EBER-positive cells were also seen in the portal tract regions of the liver of these rabbits. Western blotting indicated that EBNA-1 and EBNA-2 were also expressed in the liver and spleen of infected animals. EBV can infect healthy rabbits and the infected cells proliferate when the animals are immunocompromised. The infected cells expressed several EBV

  3. Genital herpes simplex virus infections.

    Science.gov (United States)

    Rosenthal, M S

    1979-09-01

    In recent years, a great increase in interest in genital herpes has been stimulated partly by the rising prevalence of this disease and partly by observations suggesting that genital herpes is a cause of cervical cancer. The clinical pictures produced by genital herpes simplex virus infections are similar in men and women. In contrast to recurrent attacks, initial episodes of infection are generally more extensive, last longer, and are more often associated with regional lymphadenopathy and systemic symptoms. Genital herpes in pregnancy may pose a serious threat to the newborn infant. Although the data suggesting genital herpes simplex virus infection is a cause of cervical cancer are quite extensive, the evidence is largely circumstantial. In spite of these more serious aspects of genital herpes simplex virus infection, episodes of genital herpes are almost always self-limited and benign. Frequent recurrences pose the major therapeutic and management problem. At present, there is no satisfactory treatment for recurrent genital herpes simplex virus in fection. Many of the suggested therapies, although some sound very promising, are potentially dangerous and should be used only under carefully controlled conditions.

  4. Increase of CTGF mRNA expression by respiratory syncytial virus infection is abrogated by caffeine in lung epithelial cells.

    Science.gov (United States)

    Kunzmann, Steffen; Krempl, Christine; Seidenspinner, Silvia; Glaser, Kirsten; Speer, Christian P; Fehrholz, Markus

    2018-04-16

    Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infection in early childhood. Underlying pathomechanisms of elevated pulmonary morbidity in later infancy are largely unknown. We found that RSV-infected H441 cells showed increased mRNA expression of connective tissue growth factor (CTGF), a key factor in airway remodeling. Additional dexamethasone treatment led to further elevated mRNA levels, indicating additive effects. Caffeine treatment prevented RSV-mediated increase of CTGF mRNA. RSV may be involved in airway remodeling processes by increasing CTGF mRNA expression. Caffeine might abrogate these negative effects and thereby help to restore lung homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Prolonged viremia in dengue virus infection in hematopoietic stem cell transplant recipients and patients with hematological malignancies.

    Science.gov (United States)

    de Souza Pereira, Bárbara Brito; Darrigo Junior, Luiz Guilherme; de Mello Costa, Thalita Cristina; Felix, Alvina Clara; Simoes, Belinda P; Stracieri, Ana Beatriz; da Silva, Paula Moreira; Mauad, Marcos; Machado, Clarisse M

    2017-08-01

    Fever, skin rash, headache, and thrombocytopenia are considered hallmarks of dengue infection. However, these symptoms are frequently observed in infectious and non-infectious complications of hematopoietic stem cell transplant recipients and oncohematological patients. Thus, laboratory confirmation of dengue is relevant for prompt intervention and proper management of dengue in endemic and non-endemic regions. Because no prospective study of dengue has been conducted in these populations, the actual morbidity and mortality of dengue is unknown. In the present series, we describe five cases of dengue in patients living in endemic areas, emphasizing the prolonged course of the disease and the occurrence of prolonged viremia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Generation and characterization of P gene-deficient rabies virus

    International Nuclear Information System (INIS)

    Shoji, Youko; Inoue, Satoshi; Nakamichi, Kazuo; Kurane, Ichiro; Sakai, Takeo; Morimoto, Kinjiro

    2004-01-01

    Rabies virus (RV) deficient in the P gene was generated by reverse genetics from cDNA of HEP-Flury strain lacking the entire P gene. The defective virus was propagated and amplified by rescue of virus, using a cell line that complemented the functions of the deficient gene. The P gene-deficient (def-P) virus replicated its genome and produced progeny viruses in the cell lines that constitutively expressed the P protein, although it grew at a slightly retarded rate compared to the parental strain. In contrast, no progeny virus was produced in the infected host when the def-P virus-infected cells that did not express the P protein. However, we found that the def-P virus had the ability to perform primary transcription (by the virion-associated polymerase) in the infected host without de novo P protein synthesis. The def-P virus was apathogenic in adult and suckling mice, even when inoculated intracranially. Inoculation of def-P virus in mice induced high levels of virus-neutralizing antibody (VNA) and conferred protective immunity against a lethal rabies infection. These results demonstrate the potential utility of gene-deficient virus as a novel live attenuated rabies vaccine

  7. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity

    Directory of Open Access Journals (Sweden)

    Jang-Gi Choi

    2017-11-01

    Full Text Available Influenza is an acute respiratory illness caused by the influenza A virus, which causes economic losses and social disruption mainly by increasing hospitalization and mortality rates among the elderly and people with chronic diseases. Influenza vaccines are the most effective means of preventing seasonal influenza, but can be completely ineffective if there is an antigenic mismatch between the seasonal vaccine virus and the virus circulating in the community. In addition, influenza viruses resistant to antiviral drugs are emerging worldwide. Thus, there is an urgent need to develop new vaccines and antiviral drugs against these viruses. In this study, we conducted in vitro and in vivo analyses of the antiviral effect of Panax notoginseng root (PNR, which is used as an herbal medicine and nutritional supplement in Korea and China. We confirmed that PNR significantly prevented influenza virus infection in a concentration-dependent manner in mouse macrophages. In addition, PNR pretreatment inhibited viral protein (PB1, PB2, HA, NA, M1, PA, M2, and NP and viral mRNA (NS1, HA, PB2, PA, NP, M1, and M2 expression. PNR pretreatment also increased the secretion of pro-inflammatory cytokines [tumor necrosis factor alpha and interleukin 6] and interferon (IFN-beta and the phosphorylation of type-I IFN-related proteins (TANK-binding kinase 1, STAT1, and IRF3 in vitro. In mice exposed to the influenza A H1N1 virus, PNR treatment decreased mortality by 90% and prevented weight loss (by approximately 10% compared with the findings in untreated animals. In addition, splenocytes from PNR-administered mice displayed significantly enhanced natural killer (NK cell activity against YAC-1 cells. Taking these findings together, PNR stimulates an antiviral response in murine macrophages and mice that protects against viral infection, which may be attributable to its ability to stimulate NK cell activity. Further investigations are needed to reveal the molecular

  8. Dynamic changes of Foxp3(+) regulatory T cells in spleen and brain of canine distemper virus-infected dogs.

    Science.gov (United States)

    Qeska, V; Barthel, Y; Iseringhausen, M; Tipold, A; Stein, V M; Khan, M A; Baumgärtner, W; Beineke, A

    2013-12-15

    Canine distemper virus (CDV) infection causes immunosuppression and demyelinating leukoencephalitis in dogs. In viral diseases, an ambiguous function of regulatory T cells (Treg), with both beneficial effects by reducing immunopathology and detrimental effects by inhibiting antiviral immunity, has been described. However, the role of Treg in the pathogenesis of canine distemper remains unknown. In order to determine the effect of CDV upon immune homeostasis, the amount of Foxp3(+) Treg in spleen and brain of naturally infected dogs has been determined by immunohistochemistry. In addition, splenic cytokine expression has been quantified by reverse transcriptase polymerase chain reaction. Splenic depletion of Foxp3(+) Treg was associated with an increased mRNA-expression of tumor necrosis factor and decreased transcription of interleukin-2 in the acute disease phase, indicative of disturbed immunological counter regulation in peripheral lymphoid organs. In the brain, a lack of Foxp3(+) Treg in predemyelinating and early demyelinating lesions and significantly increased infiltrations of Foxp3(+) Treg in chronic demyelinating lesions were observed. In conclusion, disturbed peripheral and CNS immune regulation associated with a reduction of Treg represents a potential prerequisite for excessive neuroinflammation and early lesion development in canine distemper leukoencephalitis. © 2013 Elsevier B.V. All rights reserved.

  9. Direct immunofluorescence assay compared to cell culture for the diagnosis of mucocutaneous herpes simplex virus infections in children.

    Science.gov (United States)

    Caviness, A Chantal; Oelze, Lindsay L; Saz, Ulas E; Greer, Jewel M; Demmler-Harrison, Gail J

    2010-09-01

    Direct immunofluorescence assay (DFA) is commonly used for the rapid identification of herpes simplex virus (HSV) infection in mucocutaneous lesions, yet little is known about its diagnostic accuracy. To determine the diagnostic yield and accuracy of HSV DFA for the diagnosis of mucocutaneous HSV infection in pediatric patients. Retrospective cross-sectional study of all patients who underwent HSV DFA testing by the Texas Children's Hospital Diagnostic Virology between January 1, 1995 and December 31, 2005. HSV DFA sensitivity, specificity, positive likelihood ratio (LRs), and negative LRs were estimated using viral culture as the reference standard. 659 specimens were submitted for HSV DFA with concurrent viral cultures. Viral cultures were positive for HSV type 1 in 158 (24%) and HSV type 2 in 2 (0.3%). There were 433 different patients with a median age of 8.6 years. Types of lesions were as follows: 50% ulcerative, 26% vesicular, 8% erythema or purpura, 5% pustular, and 11% missing. Of the 659 specimens submitted for HSV DFA, 160 (24%) were inconclusive due to inadequate cells. Of the 499 adequate specimens, overall HSV DFA test accuracy was: sensitivity 61%, specificity 99%, LR positive 40, and LR negative 0.39. A quarter of specimens submitted for HSV DFA testing are not adequate for DFA testing. When HSV DFA can be performed, it is specific, but not sensitive, for the identification of mucocutaneous HSV infection in children. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. [Human papilloma virus infection in basal cell carcinoma of the skin: a systematic review and meta-analysis study].

    Science.gov (United States)

    Ramezani, Mazaher; Sadeghi, Masoud

    Human papillomaviruses (HPVs) are a large and ubiquitous group of viruses that some of them have been suggested as a co-factor in the development of non-melanoma skin cancers. The aim of this meta-analysis study was to evaluate HPVs' prevalence in basal cell carcinoma (BCC) of the skin and the risk of them in the BCC patients compared with the healthy controls. Five databases were searched from January 1980 to February 2017. A random-effects meta-analysis was done with the event rate (ER) for the prevalence of HPVs and odds ratio (OR) for estimation of the incidence of HPVs. Out of 1087 studies, 45 studies were included in the review. The pooled analysis demonstrated that the incidence of γ-HPV was effective in the BCC patients compared with the healthy controls [OR = 1.97; 95% CI: 1.52-2.55; p 0.05). The pooled ER of incidence of β1-HPV in the BCC patients was z3.3% and for β2-HPV in BCC patients was 44.2%. In conclusion, this meta-analysis showed that probably the risk of γ-HPV was more on BCC patients and also the rate of γ-HPV was higher than α-, β- and EV-HPVs in the BCC patients.

  11. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics.

    Science.gov (United States)

    Roux, Simon; Hawley, Alyse K; Torres Beltran, Monica; Scofield, Melanie; Schwientek, Patrick; Stepanauskas, Ramunas; Woyke, Tanja; Hallam, Steven J; Sullivan, Matthew B

    2014-08-29

    Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks, specific virus-host interaction dynamics remain cryptic. In this study, we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186 microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together, these results demonstrate closely coupled SUP05 virus-host co-evolutionary dynamics with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.

  12. Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score.

    Science.gov (United States)

    Yang, Y; Fan, W; Mao, Y; Yang, Z; Lu, G; Zhang, R; Zhang, H; Szeto, C; Wang, C

    2016-05-01

    The main objective of this study was to investigate the individual cow effect of bovine leukemia virus (BLV) infection on milk production and somatic cell score (SCS). The fluorescence resonance energy transfer (FRET) quantitative PCR established in this study and a commercial ELISA kit revealed that 49.1% of dairy cattle (964/1,963) from 6 provinces of China and 1.6% of beef cattle (22/1,390) from 15 provinces were BLV positive. In a detailed study of 105 cows, BLV was found most commonly in buffy coat samples that also had highest copy numbers (10(4.75±1.56) per mL); all cows negative for BLV in buffy coat samples were also negative in vaginal swab, milk, and fecal samples. Copy numbers of BLV were 10(2.90±0.42)/gram of feces, 10(0.83±0.62)/mL of milk, and 10(2.18±0.81) per vaginal swab. The BLV-positive cows had significantly lower milk production in the early (26.8 vs. 30.9kg) and middle stages of lactation (22.2 vs. 26.1kg) in animals with ≥4 parities than the BLV-negative cows; they also had significantly higher SCS in early and middle lactation stages (early=5.2 vs. 4.3; middle=4.9 vs. 3.9) in animals with ≥4 parities. Milk production and SCS did not significantly differ between the BLV-infected and -uninfected cows when they were in the late lactation stage or in animals with ≤3 parities. Taken together, our results indicate that BLV infections are widespread in the dairy farms of China. Vaginal secretions and feces may be involved in BLV transmission. A BLV infection may result in reduced milk yield and increased SCS in a parity and lactation stage-restricted manner. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. The effect of interferon on the receptor sites to rabies virus on mouse neuroblastoma cells

    International Nuclear Information System (INIS)

    Briggs, D.J.

    1989-01-01

    The binding of rabies virus to mouse neuroblastoma cells (MNA) primed with alpha interferon (IFN-α), beta interferon (IFN-β), or alpha bungarotoxin (BTX) was examined. A saturable number of receptor sites to rabies virus was calculated by increasing the amount of 3 H-CVS added to a constant number of untreated MNA cells. MNA cells were then exposed to 20 I.U. of IFN-α, IFN-β, or 1 μg of BTX and assayed to determine if these treatments had an effect on the number of receptor sites to rabies virus. Total amount of 3 H-CVS bound to MNA cells was determined during a three hour incubation period. Cold competition assays using 1,000 fold excess unlabeled CVS were used to determine non-specific binding for each treatment. Specific binding was then calculated by subtracting non-specific binding from the total amount of CVS bound to MNA cells. A similar amount of total viral protein bound to untreated and IFN-β, and BTX treated cells after 180 minutes of incubation. The bound protein varied by only 0.07 μg. However, the amount of specific and non-specific binding varied a great deal between treatments. BTX caused an increase in non-specific and a decrease in specific binding of rabies virus. IFN-β produced variable results in non-specific and specific binding while IFN-α caused mainly specific binding to occur. The most significant change brought about by IFN-α was an increase in the rate of viral attachment. At 30 minutes post-infection, IFN-α treated cells had bound 90% of the total amount of virus bound to untreated cells after 180 minutes. The increased binding rate did not cause a productive infection of rabies virus. No viral production was evident after an incubation period of 48 hours in either IFN-α or IFN-β treated cells

  14. Feasibility of real time PCR over cell culture in diagnosis of influenza virus infection: an experience of rade I viral diagnostic laboratory of developing country

    OpenAIRE

    Bhawana Jain; Ajay Kr Singh; Tanushree Dangi; Anil Kr Verma; Mukesh Dwivedi; Madan Mohan; K P Singh; Amita Jain

    2014-01-01

    Introduction: In spite of the discovery of viral culture technology about a century ago, its application in diagnostic labs is being used since 1970s. It served as the "gold standard" for virus detection for long. In recent years, rapid, technically less challenging, sensitive and highly specific viral identification is possible by molecular tools. Hence, the purpose of this study was to analyze the importance of real time PCR over virus culture in diagnosis of Influenza virus infections, the...

  15. Viral protein synthesis in cowpea mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Rottier, P.

    1980-01-01

    In contrast to the situation concerning bacterial and, to a lesser extent, animal RNA viruses, little is known about the biochemical processes occurring in plant cells due to plant RNA virus infection. Such processes are difficult to study using intact plants or leaves. Great effort has

  16. GHz Rabi Flopping to Rydberg States in Hot Atomic Vapor Cells

    International Nuclear Information System (INIS)

    Huber, B.; Baluktsian, T.; Schlagmueller, M.; Koelle, A.; Kuebler, H.; Loew, R.; Pfau, T.

    2011-01-01

    We report on the observation of Rabi oscillations to a Rydberg state on a time scale below 1 ns in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ∼4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor, thus suggesting small vapor cells as a platform for room-temperature quantum devices. Furthermore, the result implies that previous coherent dynamics in single-atom Rydberg gates can be accelerated by 3 orders of magnitude.

  17. Neuraminidase treatment of respiratory syncytial virus-infected cells or virions, but not target cells, enhances cell-cell fusion and infection

    International Nuclear Information System (INIS)

    Barretto, Naina; Hallak, Louay K.; Peeples, Mark E.

    2003-01-01

    Respiratory syncytial virus (RSV) infection of HeLa cells induces fusion, but transient expression of the three viral glycoproteins induces fusion poorly, if at all. We found that neuraminidase treatment of RSV-infected cells to remove sialic acid (SA) increases fusion dramatically and that the same treatment of transiently transfected cells expressing the three viral glycoproteins, or even cells expressing the fusion (F) protein alone, results in easily detectable fusion. Neuraminidase treatment of the effector cells, expressing the viral glycoproteins, enhanced fusion while treatment of the target cells did not. Likewise, infectivity was increased by treating virions with neuraminidase, but not by treating target cells. Reduction of charge repulsion by removal of the negatively charged SA is unlikely to explain this effect, since removal of negative charges from either membrane would reduce charge repulsion. Infection with neuraminidase-treated virus remained heparan-sulfate-dependent, indicating that a novel attachment mechanism is not revealed by SA removal. Interestingly, neuraminidase enhancement of RSV infectivity was less pronounced in a virus expressing both the G and the F glycoproteins, compared to virus expressing only the F glycoprotein, possibly suggesting that the G protein sterically hinders access of the neuraminidase to its fusion-enhancing target

  18. [Zika virus infection during pregnancy].

    Science.gov (United States)

    Picone, O; Vauloup-Fellous, C; D'Ortenzio, E; Huissoud, C; Carles, G; Benachi, A; Faye, A; Luton, D; Paty, M-C; Ayoubi, J-M; Yazdanpanah, Y; Mandelbrot, L; Matheron, S

    2016-05-01

    A Zika virus epidemic is currently ongoing in the Americas. This virus is linked to congenital infections with potential severe neurodevelopmental dysfunction. However, incidence of fetal infection and whether this virus is responsible of other fetal complications are still unknown. National and international public health authorities recommend caution and several prevention measures. Declaration of Zika virus infection is now mandatory in France. Given the available knowledge on Zika virus, we suggest here a review of the current recommendations for management of pregnancy in case of suspicious or infection by Zika virus in a pregnant woman. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. [Diagnosis of rabies infection in animals using monoclonal antibodies].

    Science.gov (United States)

    Akacem, O; Taril, A; Benelmouffok, A; Bemansour, A; Couillin, P; Brahimi, M; Benhassine, M

    1989-01-01

    Two monoclonal antibodies (M.A.), specific for viral nucleocapsid, the M.A. D-20 and the M.A. D-43 raised against a fixed strain of rabies virus (C.V.S. 11), have been tested in parallel with a standard antirabies serum (S.A.R.) in diagnosis of animal rabies virus infection. 44 brain imprints from animals which died from rabies were tested by indirect immunofluorescent technique with monoclonal antibodies. Constant correlation has been found between the M.A. D-43 and the S.A.R. in the diagnosis of animal rabies virus infection in all cases studied. For M.A. D-20, concordance of results with S.A.R. was found only in limited number of cases.

  20. Hepatic disorder in Zika virus infection

    Institute of Scientific and Technical Information of China (English)

    Viroj Wiwanitkit

    2016-01-01

    Zika virus infection is the present global problem. This arbovirus infection can cause acute ilness and affect fetus in utero. However, there can be other additional clinical manifestation including to the hepatic disorder. In this short commentary article, the author brielfy discusses on the liver problem due to Zika virus infection.

  1. Induction of antigen-specific antibody response in human pheripheral blood lymphocytes in vitro by a dog kidney cell vaccine against rabies virus (DKCV).

    NARCIS (Netherlands)

    F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert); H.G. Loggen; R.H.J. Bakker (Roland); J.A.A.M. van Asten (Jack); J.G. Kreeftenberg; P. van der Marel; G. van Steenis (Bert)

    1983-01-01

    textabstractIn the present report an in vitro method for obtaining a secondary human antibody response to a dog kidney cell vaccine against rabies virus (DKCV) is described. Cultures of peripheral blood mononuclear cells from normal rabies-immune and nonimmune donors were stimulated in vitro by

  2. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  3. EPIDEMIOLOGY OF THE HERPES SIMPLEX VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Ljiljana Kostadinović

    2002-07-01

    Full Text Available Over 150 sorts of viruses are capable of causing diseases of the respiratory ways. The virus infections have become the cost to be paid for urbanization and industrialization. The acute virus infections jeopardize mankind by their complications with numerous consequences. They open up the way to super infections, they provoke endogenous infections and lead to insufficiency of the vital organs. The viruses penetrate the organism mainly through the respiratory ways, digestive and urinary-sexual organs and skin. Some viruses immediately at the place of their entrance into the organism find receptive cells in which they can multiply (herpes virus and etc.. Some viruses must get through the blood, through the lymph or the nerve fibers to the target organs that they have affinity for.The changes that primarily occur in the mouth with manifest lymphadenopathy of the surrounding area emerge with respect to the type of the acute infection dis-ease.The human herpes viruses are responsible for a great number of diseases in people; that is why it can be said that the infections they induce are a very frequent cause of people's diseases in the world. Man is natural and the only host for the types I and II of the herpes simplex virus (HSV; that is why the infected person is regarded as the source of infection. The infection transmission can be by direct contact or over the contaminated secretions during the sexual intercourse. The age and the socioeconomic status (living conditions, level of medical culture, habits, etc. affect to agreat extent epidemiology of the HSV infection. The HSV distribution in the region of Niš in the five-year period (from 1987 to 1992 was the highest in the early and late summer (June and September.

  4. Effect of granulocyte colony-stimulating factor (G-CSF) in human immunodeficiency virus-infected patients: increase in numbers of naive CD4 cells and CD34 cells makes G-CSF a candidate for use in gene therapy or to support antiretroviral therapy

    DEFF Research Database (Denmark)

    Nielsen, S D; Afzelius, P; Dam-Larsen, S

    1998-01-01

    The potential of granulocyte colony-stimulating factor (G-CSF) to mobilize CD4 cells and/or CD34 cells for use in gene therapy or to support antiretroviral therapy was examined. Ten human immunodeficiency virus-infected patients were treated with G-CSF (300 microg/day) for 5 days. Numbers of CD4.......01/microL (P CSF induced increases in numbers of CD34 cells and CD4 cells in HIV-infected patients...

  5. Rabies (image)

    Science.gov (United States)

    ... messages between the brain and the body. The rabies virus spreads through the nerves, first causing flu- ... to hallucinations, delirium, and insomnia. If left untreated, rabies is nearly always fatal.

  6. [Clinical analysis of two cases of imported children Zika virus infection in China].

    Science.gov (United States)

    Zheng, C G; Xu, Y; Jiang, H Q; Yin, Y X; Zhang, J H; Zhu, W J; Liang, X J; Chen, M X; Ye, J W; Tan, L M; Luo, D; Gong, S T

    2016-05-01

    To analyze the clinical characteristics, outcome and diagnosis of two cases of imported children Zika virus infection in China. A retrospective analysis was performed on clinical characteristics, treatment and outcome of two cases of imported children with Zika virus infection in February 2016 in Enping People's Hospital of Guangdong. Two cases of children with imported Zika virus infection resided in an affected area of Venezuela, 8-year-old girl and her 6 year-old brother. The main findings on physical examination included the following manifestations: fever, rash, and conjunctivitis. The rash was first limited to the abdomen, but extended to the torso, neck and face, and faded after 3-4 d. The total number of white blood cells was not high and liver function was normal. The diagnosis of two cases of Zika virus infection was confirmed by the expert group of Guangdong Provincial Center for Disease Control and Prevention, according to the epidemiological history, clinical manifestations and Zika virus nucleic acid detection results.Treatment of Zika virus infection involves supportive care. Two Zika virus infection children had a relatively benign outcome. At present, Zika virus infection in children is an imported disease in China. No specific therapy is available for this disease. Information on long-term outcomes among infants and children with Zika virus disease is limited, routine pediatric care is advised for these infants and children.

  7. Chikungunya virus infection in travellers to Australia.

    Science.gov (United States)

    Johnson, Douglas F; Druce, Julian D; Chapman, Scott; Swaminathan, Ashwin; Wolf, Josh; Richards, Jack S; Korman, Tony; Birch, Chris; Richards, Michael J

    2008-01-07

    We report eight recent cases of Chikungunya virus infection in travellers to Australia. Patients presented with fevers, rigors, headaches, arthralgia, and rash. The current Indian Ocean epidemic and Italian outbreak have featured prominently on Internet infectious disease bulletins, and Chikungunya virus infection had been anticipated in travellers from the outbreak areas. Diagnosis was by a generic alphavirus reverse transcriptase polymerase chain reaction with confirmatory sequencing. Prompt diagnosis of Chikungunya virus infections is of public health significance as the mosquito vectors for transmission exist in Australia. There is potential for this infection to spread in the largely naïve Australian population.

  8. Frequency of Virus Coinfection in Raccoons ( Procyon lotor) and Striped Skunks ( Mephitis mephitis) During a Concurrent Rabies and Canine Distemper Outbreak.

    Science.gov (United States)

    Jardine, Claire M; Buchanan, Tore; Ojkic, Davor; Campbell, G Douglas; Bowman, Jeff

    2018-03-08

    Rabies and canine distemper virus infections in wildlife share similar presenting signs. Canine distemper virus was detected using real-time PCR of conjunctival swabs in rabies positive raccoons (22/32) and skunks (7/34) during a concurrent rabies and canine distemper outbreak in Ontario, Canada in 2015-2016. Coinfections with both viruses should be considered, particularly in distemper endemic areas that are at risk of rabies incursion.

  9. Advances in Diagnosis of Rabies

    Directory of Open Access Journals (Sweden)

    Shankar B.P.

    2009-04-01

    Full Text Available Rabies is a major zoonosis for which diagnostic techniques have been standardised internationally. Laboratory techniques are preferably conducted on central nervous system (CNS tissue removed from the cranium. Agent identification is preferably done using the fluorescent antibody test. A drop of purified immunoglobulin previously conjugated with fluorescein isothiocyanate is added to an acetone-fixed brain tissue smear, preferably made from several parts of the brain, including the hippocampus, cerebellum and medulla oblongata. For a large number of samples, as in an epidemiological survey, the immunoenzyme technique can provide rapid results (the rapid rabies enzyme immunodiagnosis. FAT provides a reliable diagnosis in 98-100% of cases for all genotypes if a potent conjugate is used, while RREID detects only genotype 1 virus. Infected neuronal cells have been demonstrated by histological tests and these procedures will reveal aggregates of viral material (the Negri bodies in the cytoplasm of neurones. However, the sensitivity of histological techniques is much less than that of immunological methods, especially if there has been some autolysis of the specimen. Consequently, histological techniques can no longer be recommended. As a single negative test on fresh material does not rule out the possibility of infection, inoculation tests, or other tests, should be carried out simultaneously. Newborn or 3-4-week-old mice are inoculated intracerebrally with a pool of several CNS tissues, including the brain stem, and then kept under observation for 28 days. For any mouse that dies between 5 and 28 days, the cause of death should be confirmed by FAT. Alternatively, a monolayer culture of susceptible cells is inoculated with the same material as used for mice. FAT carried out after appropriate incubation will demonstrate the presence or absence of viral antigen. Wherever possible, virus isolation in cell culture should replace mouse inoculation tests

  10. [Calbindin and parvalbumin distribution in spinal cord of normal and rabies-infected mice].

    Science.gov (United States)

    Monroy-Gómez, Jeison; Torres-Fernández, Orlando

    2013-01-01

    Rabies is a fatal infectious disease of the nervous system; however, the knowledge about the pathogenic neural mechanisms in rabies is scarce. In addition, there are few studies of rabies pathology of the spinal cord. To study the distribution of calcium binding proteins calbindin and parvalbumin and assessing the effect of rabies virus infection on their expression in the spinal cord of mice. MATERIALES Y METHODS: Mice were inoculated with rabies virus, by intracerebral or intramuscular route. The spinal cord was extracted to perform some crosscuts which were treated by immunohistochemistry with monoclonal antibodies to reveal the presence of the two proteins in normal and rabies infected mice. We did qualitative and quantitative analyses of the immunoreactivity of the two proteins. Calbindin and parvalbumin showed differential distribution in Rexed laminae. Rabies infection produced a decrease in the expression of calbindin. On the contrary, the infection caused an increased expression of parvalbumin. The effect of rabies infection on the two proteins expression was similar when comparing both routes of inoculation. The differential effect of rabies virus infection on the expression of calbindin and parvalbumin in the spinal cord of mice was similar to that previously reported for brain areas. This result suggests uniformity in the response to rabies infection throughout the central nervous system. This is an important contribution to the understanding of the pathogenesis of rabies.

  11. Natural Rabies Infection in a Domestic Fowl (Gallus domesticus): A Report from India.

    Science.gov (United States)

    Baby, Julie; Mani, Reeta Subramaniam; Abraham, Swapna Susan; Thankappan, Asha T; Pillai, Prasad Madhavan; Anand, Ashwini Manoor; Madhusudana, Shampur Narayan; Ramachandran, Jayachandran; Sreekumar, Sachin

    2015-01-01

    Rabies is a fatal encephalitis caused by viruses belonging to the genus Lyssavirus of the family Rhabdoviridae. It is a viral disease primarily affecting mammals, though all warm blooded animals are susceptible. Experimental rabies virus infection in birds has been reported, but naturally occurring infection of birds has been documented very rarely. The carcass of a domestic fowl (Gallus domesticus), which had been bitten by a stray dog one month back, was brought to the rabies diagnostic laboratory. A necropsy was performed and the brain tissue obtained was subjected to laboratory tests for rabies. The brain tissue was positive for rabies viral antigens by fluorescent antibody test (FAT) confirming a diagnosis of rabies. Phylogenetic analysis based on nucleoprotein gene sequencing revealed that the rabies virus strain from the domestic fowl belonged to a distinct and relatively rare Indian subcontinent lineage. This case of naturally acquired rabies infection in a bird species, Gallus domesticus, being reported for the first time in India, was identified from an area which has a significant stray dog population and is highly endemic for canine rabies. It indicates that spill over of infection even to an unusual host is possible in highly endemic areas. Lack of any clinical signs, and fewer opportunities for diagnostic laboratory testing of suspected rabies in birds, may be the reason for disease in these species being undiagnosed and probably under-reported. Butchering and handling of rabies virus- infected poultry may pose a potential exposure risk.

  12. Natural Rabies Infection in a Domestic Fowl (Gallus domesticus: A Report from India.

    Directory of Open Access Journals (Sweden)

    Julie Baby

    Full Text Available Rabies is a fatal encephalitis caused by viruses belonging to the genus Lyssavirus of the family Rhabdoviridae. It is a viral disease primarily affecting mammals, though all warm blooded animals are susceptible. Experimental rabies virus infection in birds has been reported, but naturally occurring infection of birds has been documented very rarely.The carcass of a domestic fowl (Gallus domesticus, which had been bitten by a stray dog one month back, was brought to the rabies diagnostic laboratory. A necropsy was performed and the brain tissue obtained was subjected to laboratory tests for rabies. The brain tissue was positive for rabies viral antigens by fluorescent antibody test (FAT confirming a diagnosis of rabies. Phylogenetic analysis based on nucleoprotein gene sequencing revealed that the rabies virus strain from the domestic fowl belonged to a distinct and relatively rare Indian subcontinent lineage.This case of naturally acquired rabies infection in a bird species, Gallus domesticus, being reported for the first time in India, was identified from an area which has a significant stray dog population and is highly endemic for canine rabies. It indicates that spill over of infection even to an unusual host is possible in highly endemic areas. Lack of any clinical signs, and fewer opportunities for diagnostic laboratory testing of suspected rabies in birds, may be the reason for disease in these species being undiagnosed and probably under-reported. Butchering and handling of rabies virus- infected poultry may pose a potential exposure risk.

  13. Ebola Virus Infection Modelling and Identifiability Problems

    Directory of Open Access Journals (Sweden)

    Van-Kinh eNguyen

    2015-04-01

    Full Text Available The recent outbreaks of Ebola virus (EBOV infections have underlined the impact of the virus as a major threat for human health. Due to the high biosafety classification of EBOV (level 4, basic research is very limited. Therefore, the development of new avenues of thinking to advance quantitative comprehension of the virus and its interaction with the host cells is urgently neededto tackle this lethal disease. Mathematical modelling of the EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative grounds. To the best of our knowledge, a mathematical modelling approach to unravel the interaction between EBOV and the host cells isstill missing. In this paper, a mathematical model based on differential equations is used to represent the basic interactions between EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of pathogens are estimated for EBOV infection and compared with influenza virus infection kinetics. The average infecting time of wild-type Vero cells in EBOV is slower than in influenza infection. Simulation results suggest that the slow infecting time of EBOV could be compensated by its efficient replication. This study reveals several identifiability problems and what kind of experiments are necessary to advance the quantification of EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of standard parametersin viral infections kinetics is the key contribution of this work, paving the way for future modelling work on EBOV infection.

  14. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... people has ranged from mild to severe. Avian Influenza Transmission Avian Influenza Transmission Infographic [555 KB, 2 pages] Spanish [ ... important for public health. Signs and Symptoms of Avian Influenza A Virus Infections in Humans The reported signs ...

  15. Rabies: Questions and Answers

    Science.gov (United States)

    Rabies: Questions and Answers Information about the disease and vaccines What causes rabies? Rabies is caused by a virus. The virus invades ... nervous system and disrupts its functioning. How does rabies spread? The rabies virus is transmitted in the ...

  16. Tonsillar CD56brightNKG2A+ NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-γ.

    Science.gov (United States)

    Jud, Aurelia; Kotur, Monika; Berger, Christoph; Gysin, Claudine; Nadal, David; Lünemann, Anna

    2017-01-24

    Natural killer (NK) cells constitute the first line of defense against viruses and cancers cells. Epstein-Barr virus (EBV) was the first human virus to be directly implicated in carcinogenesis, and EBV infection is associated with a broad spectrum of B cell lymphomas. How NK cells restrict EBV-associated oncogenesis is not understood. Here, we investigated the efficacies and mechanisms of distinct NK cell subsets from tonsils, the portal of entry of EBV, in limiting EBV infection in naïve, germinal center-associated and memory B cells. We found that CD56bright and NKG2A expression sufficiently characterizes the potent anti-EBV capacity of tonsillar NK cells. We observed restriction of EBV infection in B cells as early as 18 hours after infection. The restriction was most efficient in naïve B cells and germinal center-associated B cells, the B cell subsets that exhibited highest susceptibility to EBV infection in vitro. IFN-γ release by and partially NKp44 engagement of CD56bright and NKG2A positive NK cells mediated the restriction that eventually inhibited B-cell transformation. Thus, harnessing CD56brightNKG2A+ NK cell function might be promising to improve treatment strategies that target EBV-associated B cell lymphomas.

  17. Identification of a new cell line permissive to porcine reproductive and respiratory syndrome virus infection and replication which is phenotypically distinct from MARC-145 cell line

    Directory of Open Access Journals (Sweden)

    Provost Chantale

    2012-11-01

    Full Text Available Abstract Background Airborne transmitted pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV, need to interact with host cells of the respiratory tract in order to be able to enter and disseminate in the host organism. Pulmonary alveolar macrophages (PAM and MA104 derived monkey kidney MARC-145 cells are known to be permissive to PRRSV infection and replication and are the most studied cells in the literature. More recently, new cell lines developed to study PRRSV have been genetically modified to make them permissive to the virus. The SJPL cell line origin was initially reported to be epithelial cells of the respiratory tract of swine. Thus, the goal of this study was to determine if SJPL cells could support PRRSV infection and replication in vitro. Results The SJPL cell growth was significantly slower than MARC-145 cell growth. The SJPL cells were found to express the CD151 protein but not the CD163 and neither the sialoadhesin PRRSV receptors. During the course of the present study, the SJPL cells have been reported to be of monkey origin. Nevertheless, SJPL cells were found to be permissive to PRRSV infection and replication even if the development of the cytopathic effect was delayed compared to PRRSV-infected MARC-145 cells. Following PRRSV replication, the amount of infectious viral particles produced in SJPL and MARC-145 infected cells was similar. The SJPL cells allowed the replication of several PRRSV North American strains and were almost efficient as MARC-145 cells for virus isolation. Interestingly, PRRSV is 8 to 16 times more sensitive to IFNα antiviral effect in SJPL cell in comparison to that in MARC-145 cells. PRRSV induced an increase in IFNβ mRNA and no up regulation of IFNα mRNA in both infected cell types. In addition, PRRSV induced an up regulation of IFNγ and TNF-α mRNAs only in infected MARC-145 cells. Conclusions In conclusion, the SJPL cells are permissive to PRRSV. In addition, they are

  18. Induction of Th1-Biased T Follicular Helper (Tfh) Cells in Lymphoid Tissues during Chronic Simian Immunodeficiency Virus Infection Defines Functionally Distinct Germinal Center Tfh Cells.

    Science.gov (United States)

    Velu, Vijayakumar; Mylvaganam, Geetha Hanna; Gangadhara, Sailaja; Hong, Jung Joo; Iyer, Smita S; Gumber, Sanjeev; Ibegbu, Chris C; Villinger, Francois; Amara, Rama Rao

    2016-09-01

    Chronic HIV infection is associated with accumulation of germinal center (GC) T follicular helper (Tfh) cells in the lymphoid tissue. The GC Tfh cells can be heterogeneous based on the expression of chemokine receptors associated with T helper lineages, such as CXCR3 (Th1), CCR4 (Th2), and CCR6 (Th17). However, the heterogeneous nature of GC Tfh cells in the lymphoid tissue and its association with viral persistence and Ab production during chronic SIV/HIV infection are not known. To address this, we characterized the expression of CXCR3, CCR4, and CCR6 on GC Tfh cells in lymph nodes following SIVmac251 infection in rhesus macaques. In SIV-naive rhesus macaques, only a small fraction of GC Tfh cells expressed CXCR3, CCR4, and CCR6. However, during chronic SIV infection, the majority of GC Tfh cells expressed CXCR3, whereas the proportion of CCR4(+) cells did not change, and CCR6(+) cells decreased. CXCR3(+), but not CXCR3(-), GC Tfh cells produced IFN-γ (Th1 cytokine) and IL-21 (Tfh cytokine), whereas both subsets expressed CD40L following stimulation. Immunohistochemistry analysis demonstrated an accumulation of CD4(+)IFN-γ(+) T cells within the hyperplastic follicles during chronic SIV infection. CXCR3(+) GC Tfh cells also expressed higher levels of ICOS, CCR5, and α4β7 and contained more copies of SIV DNA compared with CXCR3(-) GC Tfh cells. However, CXCR3(+) and CXCR3(-) GC Tfh cells delivered help to B cells in vitro for production of IgG. These data demonstrate that chronic SIV infection promotes expansion of Th1-biased GC Tfh cells, which are phenotypically and functionally distinct from conventional GC Tfh cells and contribute to hypergammaglobulinemia and viral reservoirs. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice

    International Nuclear Information System (INIS)

    Li Jianwei; Faber, Milosz; Papaneri, Amy; Faber, Marie-Luise; McGettigan, James P.; Schnell, Matthias J.; Dietzschold, Bernhard

    2006-01-01

    Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns have been raised for some of these vaccines. Because canine adenovirus 2 (CAV2) is licensed for use as a live vaccine for dogs and has an excellent efficacy and safety record, we used this virus as an expression vector for the RVG. The recombinant CAV2-RV G produces virus titers similar to those produced by wild-type CAV2, indicating that the RVG gene does not affect virus replication. Comparison of RVG expressed by CAV2-RV G with that of vaccinia-RV G recombinant virus (V-RG) revealed similar amounts of RV G on the cell surface. A single intramuscular or intranasal immunization of mice with CAV2-RVG induced protective immunity in a dose-dependent manner, with no clinical signs or discomfort from the virus infection regardless of the route of administration or the amount of virus

  20. Simian immunodeficiency virus infection induces severe loss of intestinal central memory T cells which impairs CD4+ T-cell restoration during antiretroviral therapy.

    Science.gov (United States)

    Verhoeven, D; Sankaran, S; Dandekar, S

    2007-08-01

    Simian immunodeficiency virus (SIV) infection leads to severe loss of intestinal CD4(+) T cells and, as compared to peripheral blood, restoration of these cells is slow during antiretroviral therapy (ART). Mechanisms for this delay have not been examined in context of which specific CD4(+) memory subsets or lost and fail to regenerate during ART. Fifteen rhesus macaques were infected with SIV, five of which received ART (FTC/PMPA) for 30 weeks. Viral loads were measured by real-time PCR. Flow cytometric analysis determined changes in T-cell subsets and their proliferative state. Changes in proliferative CD4(+) memory subsets during infection accelerated their depletion. This reduced the central memory CD4(+) T-cell pool and contributed to slow CD4(+) T-cell restoration during ART. There was a lack of restoration of the CD4(+) central memory and effector memory T-cell subsets in gut-associated lymphoid tissue during ART, which may contribute to the altered intestinal T-cell homeostasis in SIV infection.

  1. A novel rabies vaccine based-on toll-like receptor 3 (TLR3) agonist PIKA adjuvant exhibiting excellent safety and efficacy in animal studies

    International Nuclear Information System (INIS)

    Zhang, Yi; Zhang, Shoufeng; Li, Wei; Hu, Yuchi; Zhao, Jinyan; Liu, Fang; Lin, Haixiang; Liu, Yuan; Wang, Liliang; Xu, Shu; Hu, Rongliang; Shao, Hui; Li, Lietao

    2016-01-01

    Vaccination alone is not sufficiently effective to protect human from post-exposure rabies virus infection due to delayed generation of rabies virus neutralizing antibodies and weak cellular immunity. Therefore, it is vital to develop safer and more efficacious vaccine against rabies. PIKA, a stabilized chemical analog of double-stranded RNA that interacts with TLR3, was employed as adjuvant of rabies vaccine. The efficacy and safety of PIKA rabies vaccine were evaluated. The results showed that PIKA rabies vaccine enhanced both humoral and cellular immunity. After viral challenge, PIKA rabies vaccine protected 70–80% of animals, while the survival rate of non-adjuvant vaccine group (control) was 20–30%. According to the results of toxicity tests, PIKA and PIKA rabies vaccine are shown to be well tolerated in mice. Thus, this study indicates that PIKA rabies vaccine is an effective and safe vaccine which has the potential to develop next-generation rabies vaccine and encourage the start of clinical studies. - Highlights: • Vaccination alone is not effective to protect human from rabies virus infection due to delayed generation of rabies virus neutralizing antibodies (RVNA) and weak cellular immunity. • Therefore, it is vital to develop safer and more efficacious vaccine against rabies. PIKA, a stabilized chemical analog of double-stranded RNA that interacts with TLR3, was employed as an adjuvant of rabies vaccine. • The efficacy and safety of PIKA rabies vaccine was evaluated in mice. • The results showed that PIKA rabies vaccine enhanced both humoral and cellular immunity. • After viral challenge, PIKA rabies vaccine protected 70–80% of animals, while the survival rate of non-adjuvant vaccine group was only 20–30%. • According to the results of toxicity tests, PIKA and PIKA rabies vaccine are shown to be well tolerated in mice. • Thus, this study indicates that PIKA rabies vaccine is an effective and safe vaccine which has the potential to

  2. A novel rabies vaccine based-on toll-like receptor 3 (TLR3) agonist PIKA adjuvant exhibiting excellent safety and efficacy in animal studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi [Yisheng Biopharma. Co., Ltd., Beijing (China); Zhang, Shoufeng [Academy of Military Medical Sciences, Changchun (China); Li, Wei [National Center for Safety Evaluation of Drugs, Beijing (China); Hu, Yuchi; Zhao, Jinyan [Beijing Institute for Drug Control, Beijing (China); Liu, Fang; Lin, Haixiang; Liu, Yuan; Wang, Liliang; Xu, Shu [Yisheng Biopharma. Co., Ltd., Beijing (China); Hu, Rongliang, E-mail: ronglianghu@hotmail.com [Academy of Military Medical Sciences, Changchun (China); Shao, Hui, E-mail: hui.shao@yishengbio.com [Yisheng Biopharma. Co., Ltd., Beijing (China); Li, Lietao, E-mail: lietao.li@gmail.com [Yisheng Biopharma. Co., Ltd., Beijing (China)

    2016-02-15

    Vaccination alone is not sufficiently effective to protect human from post-exposure rabies virus infection due to delayed generation of rabies virus neutralizing antibodies and weak cellular immunity. Therefore, it is vital to develop safer and more efficacious vaccine against rabies. PIKA, a stabilized chemical analog of double-stranded RNA that interacts with TLR3, was employed as adjuvant of rabies vaccine. The efficacy and safety of PIKA rabies vaccine were evaluated. The results showed that PIKA rabies vaccine enhanced both humoral and cellular immunity. After viral challenge, PIKA rabies vaccine protected 70–80% of animals, while the survival rate of non-adjuvant vaccine group (control) was 20–30%. According to the results of toxicity tests, PIKA and PIKA rabies vaccine are shown to be well tolerated in mice. Thus, this study indicates that PIKA rabies vaccine is an effective and safe vaccine which has the potential to develop next-generation rabies vaccine and encourage the start of clinical studies. - Highlights: • Vaccination alone is not effective to protect human from rabies virus infection due to delayed generation of rabies virus neutralizing antibodies (RVNA) and weak cellular immunity. • Therefore, it is vital to develop safer and more efficacious vaccine against rabies. PIKA, a stabilized chemical analog of double-stranded RNA that interacts with TLR3, was employed as an adjuvant of rabies vaccine. • The efficacy and safety of PIKA rabies vaccine was evaluated in mice. • The results showed that PIKA rabies vaccine enhanced both humoral and cellular immunity. • After viral challenge, PIKA rabies vaccine protected 70–80% of animals, while the survival rate of non-adjuvant vaccine group was only 20–30%. • According to the results of toxicity tests, PIKA and PIKA rabies vaccine are shown to be well tolerated in mice. • Thus, this study indicates that PIKA rabies vaccine is an effective and safe vaccine which has the potential to

  3. Induction of multi-functional T cells in a phase I clinical trial of dendritic cell immunotherapy in hepatitis C virus infected individuals.

    Directory of Open Access Journals (Sweden)

    Shuo Li

    Full Text Available We have previously reported a world-first phase I clinical trial to treat HCV patients using monocyte-derived dendritic cells (Mo-DC loaded with HCV-specific lipopeptides. While the brief treatment proved to be safe, it failed to reduce the viral load and induced only transient cell-mediated immune responses, measured by IFNγ ELIspot. Here we reanalysed the PBMC samples from this trial to further elucidate the immunological events associated with the Mo-DC therapy. We found that HCV-specific single- and multi-cytokine secreting T cells were induced by the Mo-DC immunotherapy in some patients, although at irregular intervals and not consistently directed to the same HCV antigen. Despite the vaccination, the responses were generally poor in quality and comprised of primarily single-cytokine secreting cells. The frequency of FOXP3(+ regulatory T cells (Treg fluctuated following DC infusion and eventually dropped to below baseline by week 12, an interesting trend suggesting that the vaccination may have resulted in a more subtle outcome than was initially apparent. Our data suggested that Mo-DC therapy induced complex immune responses in vivo that may or may not lead to clinical benefit.

  4. Impaired Control of Epstein-Barr Virus Infection in B-Cell Expansion with NF-κB and T-Cell Anergy Disease.

    Science.gov (United States)

    Arjunaraja, Swadhinya; Angelus, Pamela; Su, Helen C; Snow, Andrew L

    2018-01-01

    B -cell e xpansion with N F-κB and T -cell a nergy (BENTA) disease is a B-cell-specific lymphoproliferative disorder caused by germline gain-of-function mutations in CARD11 . These mutations force the CARD11 scaffold into an open conformation capable of stimulating constitutive NF-κB activation in lymphocytes, without requiring antigen receptor engagement. Many BENTA patients also suffer from recurrent infections, with 7 out of 16 patients exhibiting chronic, low-grade Epstein-Barr virus (EBV) viremia. In this mini-review, we discuss EBV infection in the pathogenesis and clinical management of BENTA disease, and speculate on mechanisms that could explain inadequate control of viral infection in BENTA patients.

  5. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be prepared from virus-bearing cell cultures or nerve tissues obtained from animals that have developed rabies...

  6. Getah Virus Infection among Racehorses, Japan, 2014

    Science.gov (United States)

    Bannai, Hiroshi; Tsujimura, Koji; Kobayashi, Minoru; Kikuchi, Takuya; Yamanaka, Takashi; Kondo, Takashi

    2015-01-01

    An outbreak of Getah virus infection occurred among racehorses in Japan during September and October 2014. Of 49 febrile horses tested by reverse transcription PCR, 25 were positive for Getah virus. Viruses detected in 2014 were phylogenetically different from the virus isolated in Japan in 1978. PMID:25898181

  7. Life-Threatening Sochi Virus Infections, Russia

    Science.gov (United States)

    Tkachenko, Evgeniy A.; Morozov, Vyacheslav G.; Yunicheva, Yulia V.; Pilikova, Olga M.; Malkin, Gennadiy; Ishmukhametov, Aydar A.; Heinemann, Patrick; Witkowski, Peter T.; Klempa, Boris; Dzagurova, Tamara K.

    2015-01-01

    Sochi virus was recently identified as a new hantavirus genotype carried by the Black Sea field mouse, Apodemus ponticus. We evaluated 62 patients in Russia with Sochi virus infection. Most clinical cases were severe, and the case-fatality rate was as high as 14.5%. PMID:26584463

  8. Canine Distemper Virus Infection Leads to an Inhibitory Phenotype of Monocyte-Derived Dendritic Cells In Vitro with Reduced Expression of Co-Stimulatory Molecules and Increased Interleukin-10 Transcription

    Science.gov (United States)

    Herder, Vanessa; Stein, Veronika M.; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper. PMID:24769532

  9. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription.

    Directory of Open Access Journals (Sweden)

    Visar Qeska

    Full Text Available Canine distemper virus (CDV exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs, responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.

  10. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription.

    Science.gov (United States)

    Qeska, Visar; Barthel, Yvonne; Herder, Vanessa; Stein, Veronika M; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.

  11. Upregulation of endothelial cell adhesion molecules characterizes veins close to granulomatous infiltrates in the renal cortex of cats with feline infectious peritonitis and is indirectly triggered by feline infectious peritonitis virus-infected monocytes in vitro.

    Science.gov (United States)

    Acar, Delphine D; Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Roukaerts, Inge D M; Baetens, Wendy; Van Bockstael, Sebastiaan; De Gryse, Gaëtan M A; Desmarets, Lowiese M B; Nauwynck, Hans J

    2016-10-01

    One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.

  12. Circulating FoxP3+ Regulatory T and Interleukin17-Producing Th17 Cells Actively Influence HBV Clearance in De Novo Hepatitis B Virus Infected Patients after Orthotopic Liver Transplantation

    Science.gov (United States)

    Li, Jin; Yang, Mei; Liu, Yuan; Guo, Xiaodong; Li, Hanwei; Liu, Zhenwen; Zhao, Jingmin

    2015-01-01

    Objective To longitudinally investigate the role of FoxP3+ Regulatory T cells (Treg) and interleukin17-producing T helper 17 cells (Th17) in De Novo Hepatitis B Virus infection after orthotopic Liver Transplantation (DNHB-OLT), and analyze the possible correlation between these cells and HBV clearance of the disease. Methods We enrolled 12 control cases after orthotopic Liver Transplantation (OLT) and 24 patients, including 12 diagnosed with DNHB-OLT and 12 diagnosed with Acute Hepatitis B Virus infection (AHB), into the study from the liver transplantation and research center at Beijing 302 Hospital. Flow cytometry was used to detect the frequencies of Treg and Th17, and ELISA was applied to detect the concentration of IL6, IL22, TGF-β and IL2 in peripheral blood. We also measured the gene expression level by real time-quantitative PCR and protein expression using immunohistochemistry and western-blot. Furthermore, we divided DNHB-OLT patients into the clearance and non-clearance groups and examined longitudinally Th17, Treg cells at different times. Results The percentage of Treg cells, expression of FoxP3 mRNA and related anti-inflammatory cytokines such as IL2 and TGF-β1 in the DNHB-OLT group were significantly higher than that in the AHB and OLT groups. The percentage of Th17 cells, expression of RORγt mRNA and related pro-inflammatory cytokines such as IL17 and IL22 in the DNHB-OLT group were significantly lower than that in the AHB group, but the levels of these cytokines are very similar to the OLT group. The ratios of Treg to Th17 in the DNHB-OLT group were significantly higher than that in the OLT and AHB groups. Treg frequencies significantly correlated with HBV DNA, whereas IL17 frequencies didn’t significantly correlate with ALT. In DNHB-OLT patients, the clearance group was accompanied by a rapid increase in the Th17 cells during the first 4th week and afterwards continuously decrease to the control group, together with a continuously decrease in

  13. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    International Nuclear Information System (INIS)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-01-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of 125 I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound 125 I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients

  14. Immunization against Rabies with Plant-Derived Antigen

    Science.gov (United States)

    Modelska, Anna; Dietzschold, Bernard; Sleysh, N.; Fu, Zhen Fang; Steplewski, Klaudia; Hooper, D. Craig; Koprowski, Hilary; Yusibov, Vidadi

    1998-03-01

    We previously demonstrated that recombinant plant virus particles containing a chimeric peptide representing two rabies virus epitopes stimulate virus neutralizing antibody synthesis in immunized mice. We show here that mice immunized intraperitoneally or orally (by gastric intubation or by feeding on virus-infected spinach leaves) with engineered plant virus particles containing rabies antigen mount a local and systemic immune response. After the third dose of antigen, given intraperitoneally, 40% of the mice were protected against challenge infection with a lethal dose of rabies virus. Oral administration of the antigen stimulated serum IgG and IgA synthesis and ameliorated the clinical signs caused by intranasal infection with an attenuated rabies virus strain.

  15. Role of latent membrane protein 1 in chronic active Epstein–Barr virus infection-derived T/NK-cell proliferation

    International Nuclear Information System (INIS)

    Ito, Takuto; Kawazu, Hidetaka; Murata, Takayuki; Iwata, Seiko; Arakawa, Saki; Sato, Yoshitaka; Kuzushima, Kiyotaka; Goshima, Fumi; Kimura, Hiroshi

    2014-01-01

    Epstein–Barr virus (EBV) predominantly infects B cells and causes B-cell lymphomas, such as Burkitt lymphoma and Hodgkin lymphoma. However, it also infects other types of cells, including T and natural killer (NK) cells, and causes disorders, such as chronic active EBV infection (CAEBV) and T/NK-cell lymphoma. The CAEBV is a lymphoproliferative disease with poor prognosis, where EBV-positive T or NK cells grow rapidly, although the molecular mechanisms that cause the cell expansion still remain to be elucidated. EBV-encoded latent membrane protein 1 (LMP1) is an oncogene that can transform some cell types, such as B cells and mouse fibroblasts, and thus may stimulate cell proliferation in CAEBV. Here, we examined the effect of LMP1 on EBV-negative cells using the cells conditionally expressing LMP1, and on CAEBV-derived EBV-positive cells by inhibiting the function of LMP1 using a dominant negative form of LMP1. We demonstrated that LMP1 was responsible for the increased cell proliferation in the cell lines derived from CAEBV, while LMP1 did not give any proliferative advantage to the EBV-negative cell line

  16. Rabies virus-specific human T cell clones provide help for an in vitro antibody response against neutralizing antibody-inducing determinants of the viral glycoprotein.

    NARCIS (Netherlands)

    H. Bunschoten; R.J. Klapmuts; I.J.Th.M. Claassen (Ivo); S.D. Reijneveld; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractHuman T cell clones were prepared from peripheral blood mononuclear cells from a vaccinated human donor and kept in culture in the presence of rabies virus antigen and growth factors. Phenotypic analysis of the T cell clones revealed expression of the CD3 and CD4 cell surface markers,

  17. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline

    2005-01-01

    and therefore protect mice against the otherwise fatal CD8+ T cell-mediated immune attack. Contrary to expectations, the accumulation of mononuclear cells in cerebrospinal fluid was only slightly delayed compared with mice with normal expression of both receptors. Even more surprising, CXCR3/CCR5 double-deficient......T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice...... mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma...

  18. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Johansen, J; Marker, O

    1996-01-01

    To study the contribution of CD4+ T cells and B cells to antiviral immunity and long term virus control, MHC class II-deficient and B cell-deficient mice were infected with lymphocytic choriomeningitis virus. In class II-deficient mice, which lack CD4+ T cells, the primary CTL response is virtually...... this phenomenon could reflect participation of B cells and/or Abs in long term virus control, similar experiments were performed with mice that do not have mature B cells because of a disrupted membrane exon of the mu chain gene. In these mice, the cell-mediated immune response was slightly delayed, but transient...... and that in their absence, the virus-specific CTL potential becomes exhausted. Together our results indicate that while CD8+ cells play a dominant role in acute virus control, all three major components of the immune system are required for long term virus control....

  19. HTLV-1 modulates the frequency and phenotype of FoxP3+CD4+ T cells in virus-infected individuals

    Directory of Open Access Journals (Sweden)

    Satou Yorifumi

    2012-05-01

    Full Text Available Abstract Background HTLV-1 utilizes CD4 T cells as the main host cell and maintains the proviral load via clonal proliferation of infected CD4+ T cells. Infection of CD4+ T cells by HTLV-1 is therefore thought to play a pivotal role in HTLV-1-related pathogenicity, including leukemia/lymphoma of CD4+ T cells and chronic inflammatory diseases. Recently, it has been reported that a proportion of HTLV-1 infected CD4+ T cells express FoxP3, a master molecule of regulatory T cells. However, crucial questions remain unanswered on the relationship between HTLV-1 infection and FoxP3 expression. Results To investigate the effect of HTLV-1 infection on CD4+ T-cell subsets, we used flow cytometry to analyze the T-cell phenotype and HTLV-1 infection in peripheral mononuclear cells (PBMCs of four groups of subjects, including 23 HTLV-1-infected asymptomatic carriers (AC, 10 patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP, 10 patients with adult T-cell leukemia (ATL, and 10 healthy donors. The frequency of FoxP3+ cells in CD4+ T cells in AC with high proviral load and patients with HAM/TSP or ATL was higher than that in uninfected individuals. The proviral load was positively correlated with the percentage of CD4+ T cells that were FoxP3+. The CD4+FoxP3+ T cells, themselves, were frequently infected with HTLV-1. We conclude that FoxP3+ T- cells are disproportionately infected with HTLV-1 during chronic infection. We next focused on PBMCs of HAM/TSP patients. The expression levels of the Treg associated molecules CTLA-4 and GITR were decreased in CD4+FoxP3+ T cells. Further we characterized FoxP3+CD4+ T-cell subsets by staining CD45RA and FoxP3, which revealed an increase in CD45RA−FoxP3low non-suppressive T-cells. These findings can reconcile the inflammatory phenotype of HAM/TSP with the observed increase in frequency of FoxP3+ cells. Finally, we analyzed ATL cells and observed not only a high frequency of FoxP3 expression

  20. Production of Autoantibodies in Chronic Hepatitis B Virus Infection Is Associated with the Augmented Function of Blood CXCR5+CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Yu Lei

    Full Text Available T follicular helper cells (Tfh provide help to B cells to support their activation, expansion and differentiation. However, the role of Tfh cells in chronic HBV infection is poorly defined. The aim of this research was to examine the function of Tfh cells and whether they are involved in HBV related disease. Blood CXCR5+CD4+T cells and B cells in 85 patients with chronic HBV infection (HBV patients and health controls (HC were examined by flow cytometry. The molecule expression in blood CXCR5+CD4+ T cells was detected by real-time PCR. Blood CXCR5+CD4+ T cells and B cells were co-cultured and the production of Ig and cytokines was detected by ELISA. Autoantibodies were detected by indirect immunofluorescence and immunospot assay. We found that blood CXCR5+CD4+ T cells in patients with chronic HBV infection (HBV patients expressed higher level of activation related molecules and cytokines than that from health controls (HC.In HBV patients, the frequency of blood CXCR5+CD4+ T cells was significantly correlated with serum ALT and AST. We also found that blood CXCR5+CD4+ T cells from HBV patients could induce B cells to secret higher level of immunoglobulin than that from HC. Several autoantibodies, including ANA, ss-A, ss-B, Scl-70, Jo-1, ect, were indeed positive in 65% HBV patients. Among HBV patients, expression of function related molecules was significantly higher in blood CXCR5+CD4+ T cells from patients with autoantibodies than that without autoantibodies. Our research indicated that blood CXCR5+CD4+ T cells from HBV patients were over activated and show augmented capacity to help B cells for antibody secreting, which might correlated with liver inflammation and the production of autoantibodies in extrahepatic manifestations.

  1. Specific proteins synthesized during the viral lytic cycle in vaccinia virus-infected HeLa cells: analysis by high-resolution, two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    Carrasco, L.; Bravo, R.

    1986-01-01

    The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various time postinfection were also analyzed. At least 13 proteins labeled with [ 3 H]glucosamine were detected in vaccinia-infected HeLa cells

  2. Zika Virus Infection: Current Concerns and Perspectives.

    Science.gov (United States)

    Maharajan, Mari Kannan; Ranjan, Aruna; Chu, Jian Feng; Foo, Wei Lim; Chai, Zhi Xin; Lau, Eileen YinYien; Ye, Heuy Mien; Theam, Xi Jin; Lok, Yen Ling

    2016-12-01

    The Zika virus outbreaks highlight the growing importance need for a reliable, specific and rapid diagnostic device to detect Zika virus, as it is often recognized as a mild disease without being identified. Many Zika virus infection cases have been misdiagnosed or underreported because of the non-specific clinical presentation. The aim of this review was to provide a critical and comprehensive overview of the published peer-reviewed evidence related to clinical presentations, various diagnostic methods and modes of transmission of Zika virus infection, as well as potential therapeutic targets to combat microcephaly. Zika virus is mainly transmitted through bites from Aedes aegypti mosquito. It can also be transmitted through blood, perinatally and sexually. Pregnant women are advised to postpone or avoid travelling to areas where active Zika virus transmission is reported, as this infection is directly linked to foetal microcephaly. Due to the high prevalence of Guillain-Barre syndrome and microcephaly in the endemic area, it is vital to confirm the diagnosis of Zika virus. Zika virus infection had been declared as a public health emergency and of international concern by the World Health Organisation. Governments and agencies should play an important role in terms of investing time and resources to fundamentally understand this infection so that a vaccine can be developed besides raising awareness.

  3. Generalized Liver- and Blood-Derived CD8+ T-Cell Impairment in Response to Cytokines in Chronic Hepatitis C Virus Infection.

    Directory of Open Access Journals (Sweden)

    Stephanie C Burke Schinkel

    Full Text Available Generalized CD8+ T-cell impairment in chronic hepatitis C virus (HCV infection and the contribution of liver-infiltrating CD8+ T-cells to the immunopathogenesis of this infection remain poorly understood. It is hypothesized that this impairment is partially due to reduced CD8+ T-cell activity in response to cytokines such as IL-7, particularly within the liver. To investigate this, the phenotype and cytokine responsiveness of blood- and liver-derived CD8+ T-cells from healthy controls and individuals with HCV infection were compared. In blood, IL-7 receptor α (CD127 expression on bulk CD8+ T-cells in HCV infection was no different than controls yet was lower on central memory T-cells, and there were fewer naïve cells. IL-7-induced signalling through phosphorylated STAT5 was lower in HCV infection than in controls, and differed between CD8+ T-cell subsets. Production of Bcl-2 following IL-7 stimulation was also lower in HCV infection and inversely related to the degree of liver fibrosis. In liver-derived CD8+ T-cells, STAT5 activation could not be increased with cytokine stimulation and basal Bcl-2 levels of liver-derived CD8+ T-cells were lower than blood-derived counterparts in HCV infection. Therefore, generalized CD8+ T-cell impairment in HCV infection is characterized, in part, by impaired IL-7-mediated signalling and survival, independent of CD127 expression. This impairment is more pronounced in the liver and may be associated with an increased potential for apoptosis. This generalized CD8+ T-cell impairment represents an important immune dysfunction in chronic HCV infection that may alter patient health.

  4. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection.

    Science.gov (United States)

    Richards, Katherine A; DiPiazza, Anthony T; Rattan, Ajitanuj; Knowlden, Zackery A G; Yang, Hongmei; Sant, Andrea J

    2018-01-01

    One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.

  5. Changes in the composition of circulating CD8+ T cell subsets during acute epstein-barr and human immunodeficiency virus infections in humans

    NARCIS (Netherlands)

    Roos, M. T.; van Lier, R. A.; Hamann, D.; Knol, G. J.; Verhoofstad, I.; van Baarle, D.; Miedema, F.; Schellekens, P. T.

    2000-01-01

    In response to viral infection, unprimed naive CD8(+), major histocompatibility complex class I-restricted, virus-specific T cells clonally expand and differentiate into memory- and effector-type cells. Changes in CD8(+) subset distribution were studied in 17 subjects with acute human

  6. Human herpesvirus 8-associated lymphoma mimicking cutaneous anaplastic large T-cell lymphoma in a patient with human immunodeficiency virus infection.

    Science.gov (United States)

    Li, Meng-Fang; Hsiao, Cheng-Hsiang; Chen, Yi-Lin; Huang, Wen-Ya; Lee, Yi-Hsuan; Huang, Hsien-Neng; Lien, Huang-Chun

    2012-02-01

    Primary effusion lymphoma, a human herpesvirus 8 (HHV8)-associated lymphoma, is uncommon, and it is usually seen in human immunodeficiency virus (HIV)-infected patients. It presents as a body cavity-based lymphomatous effusion, but several cases of the so-called solid primary effusion lymphoma presenting as solid tumors without associated lymphomatous effusion have been reported. They have similar clinical, histopathological and immunophenotypical features. Most of them have a B-cell genotype. This suggests the solid variant may represent a clinicopathological spectrum of primary effusion lymphoma. We report a case of HHV8-associated lymphoma histopathologically and immunophenotypically mimicking cutaneous anaplastic large cell lymphoma. The patient was a 31-year-old HIV-seropositive man presenting with skin nodules over his right thigh. Biopsy of the nodules showed anaplastic large cells infiltrating the dermis. These malignant cells strongly expressed CD3, CD30 and CD43. Cutaneous anaplastic large T-cell lymphoma was initially diagnosed, but further tests, including immunoreactivity for HHV8 protein and clonal rearrangements of immunoglobulin genes, confirmed the diagnosis of HHV8-associated B-cell lymphoma with aberrant T-cell marker expression. This case provides an example of solid primary effusion lymphoma mimicking cutaneous anaplastic large T-cell lymphoma and highlights the importance of HHV8 immunohistochemistry and molecular tests in the diagnosis of HHV8-associated lymphoma with a cutaneous presentation. Copyright © 2011 John Wiley & Sons A/S.

  7. In vitro measles virus infection of human lymphocyte subsets demonstrates high susceptibility and permissiveness of both naive and memory B cells

    NARCIS (Netherlands)

    B.M. Laksono (Brigitta); C. Grosserichter-Wagener (Christina); R.D. de Vries (Rory); Langeveld, S.A.G. (Simone A.G.); M.D. Brem (Maarten); J.J.M. van Dongen (Jacques); Katsikis, P.D. (Peter D.); M.P.G. Koopmans D.V.M. (Marion); M.C. van Zelm (Menno); R.L. de Swart (Rik)

    2018-01-01

    textabstractMeasles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and

  8. Mokola virus infection : description of recent South African cases and a review of the virus epidemiology : case report

    Directory of Open Access Journals (Sweden)

    B.F. Von Teichman

    1998-07-01

    Full Text Available Five cases of Mokola virus, a lyssavirus related to rabies, are described. The cases occurred in cats from the East London, Pinetown and Pietermaritzburg areas of South Africa from February 1996 to February 1998. Each of the cats was suspected of being rabid and their brains were submitted for laboratory confirmation. Four of the cases were positive, but with atypical fluorescence, and 1 was negative. Mokola virus infection was identified by anti-lyssavirus nucleocapsid monoclonal antibody typing. As in rabies cases, the predominant clinical signs were of unusual behaviour. Aggression was present, but only during handling. Four of the 5 cats had been vaccinated for rabies, which is consistent with other studies that show that rabies vaccination does not appear to protect against Mokola virus. Since Mokola may be confused with rabies, the incidence of Mokola virus may be more common in Africa than is currently reported. As human infections may be fatal, the emergence of this virus is a potential threat to public health.

  9. Competitive inhibitor of cellular alpha-glucosidases protects mice from lethal dengue virus infection

    OpenAIRE

    Chang, Jinhong; Schul, Wouter; Yip, Andy; Xu, Xiaodong; Guo, Ju-Tao; Block, Timothy M.

    2011-01-01

    Dengue virus infection causes diseases in people, ranging from the acute febrile illness Dengue fever, to life-threatening Dengue Hemorrhagic Fever/Dengue Shock Syndrome. We previously reported that a host cellular α-glucosidases I and II inhibitor, imino sugar CM-10-18, potently inhibited dengue virus replication in cultured cells, and significantly reduced viremia in dengue virus infected AG129 mice. In this report we show that CM-10-18 also significantly protects mice from death and/or dis...

  10. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infections

    International Nuclear Information System (INIS)

    Straus, S.E.

    1989-01-01

    The major features that distinguish recurrent herpes simplex virus infections from zoster are illustrated in this article by two case histories. The clinical and epidemiologic features that characterize recurrent herpes simplex virus and varicella-zoster virus infections are reviewed. It is noted that herpesvirus infections are more common and severe in patients with cellular immune deficiency. Each virus evokes both humoral and cellular immune response in the course of primary infection. DNA hybridization studies with RNA probes labelled with sulfur-35 indicate that herpes simplex viruses persist within neurons, and that varicella-zoster virus is found in the satellite cells that encircle the neurons

  11. Abnormally high levels of virus-infected IFN-gamma+ CCR4+ CD4+ CD25+ T cells in a retrovirus-associated neuroinflammatory disorder.

    Directory of Open Access Journals (Sweden)

    Yoshihisa Yamano

    Full Text Available BACKGROUND: Human T-lymphotropic virus type 1 (HTLV-1 is a human retrovirus associated with both HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP, which is a chronic neuroinflammatory disease, and adult T-cell leukemia (ATL. The pathogenesis of HAM/TSP is known to be as follows: HTLV-1-infected T cells trigger a hyperimmune response leading to neuroinflammation. However, the HTLV-1-infected T cell subset that plays a major role in the accelerated immune response has not yet been identified. PRINCIPAL FINDINGS: Here, we demonstrate that CD4(+CD25(+CCR4(+ T cells are the predominant viral reservoir, and their levels are increased in HAM/TSP patients. While CCR4 is known to be selectively expressed on T helper type 2 (Th2, Th17, and regulatory T (Treg cells in healthy individuals, we demonstrate that IFN-gamma production is extraordinarily increased and IL-4, IL-10, IL-17, and Foxp3 expression is decreased in the CD4(+CD25(+CCR4(+ T cells of HAM/TSP patients as compared to those in healthy individuals, and the alteration in function is specific to this cell subtype. Notably, the frequency of IFN-gamma-producing CD4(+CD25(+CCR4(+Foxp3(- T cells is dramatically increased in HAM/TSP patients, and this was found to be correlated with disease activity and severity. CONCLUSIONS: We have defined a unique T cell subset--IFN-gamma(+CCR4(+CD4(+CD25(+ T cells--that is abnormally increased and functionally altered in this retrovirus-associated inflammatory disorder of the central nervous system.

  12. CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis

    Directory of Open Access Journals (Sweden)

    Michael P. Pender

    2012-01-01

    Full Text Available CD8+ T-cell deficiency is a feature of many chronic autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, dermatomyositis, primary biliary cirrhosis, primary sclerosing cholangitis, ulcerative colitis, Crohn's disease, psoriasis, vitiligo, bullous pemphigoid, alopecia areata, idiopathic dilated cardiomyopathy, type 1 diabetes mellitus, Graves' disease, Hashimoto's thyroiditis, myasthenia gravis, IgA nephropathy, membranous nephropathy, and pernicious anaemia. It also occurs in healthy blood relatives of patients with autoimmune diseases, suggesting it is genetically determined. Here it is proposed that this CD8+ T-cell deficiency underlies the development of chronic autoimmune diseases by impairing CD8+ T-cell control of Epstein-Barr virus (EBV infection, with the result that EBV-infected autoreactive B cells accumulate in the target organ where they produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells which would otherwise die in the target organ by activation-induced apoptosis. Autoimmunity is postulated to evolve in the following steps: (1 CD8+ T-cell deficiency, (2 primary EBV infection, (3 decreased CD8+ T-cell control of EBV, (4 increased EBV load and increased anti-EBV antibodies, (5 EBV infection in the target organ, (6 clonal expansion of EBV-infected autoreactive B cells in the target organ, (7 infiltration of autoreactive T cells into the target organ, and (8 development of ectopic lymphoid follicles in the target organ. It is also proposed that deprivation of sunlight and vitamin D at higher latitudes facilitates the development of autoimmune diseases by aggravating the CD8+ T-cell deficiency and thereby further impairing control of EBV. The hypothesis makes predictions which can be tested, including the prevention and successful treatment of chronic autoimmune diseases by controlling EBV infection.

  13. A naturally derived gastric cancer cell line shows latency I Epstein-Barr virus infection closely resembling EBV-associated gastric cancer

    International Nuclear Information System (INIS)

    Oh, Sang Taek; Seo, Jung Seon; Moon, Uk Yeol; Kang, Kyeong Hee; Shin, Dong-Jik; Yoon, Sungjoo Kim; Kim, Woo Ho; Park, Jae-Gahb; Lee, Suk Kyeong

    2004-01-01

    In a process seeking out a good model cell line for Epstein-Barr virus (EBV)-associated gastric cancer, we found that one previously established gastric adenocarcinoma cell line is infected with type 1 EBV. This SNU-719 cell line from a Korean patient expressed cytokeratin without CD19 or CD21 expression. In SNU-719, EBNA1 and LMP2A were expressed, while LMP1 and EBNA2 were not. None of the tested lytic EBV proteins were detected in this cell line unless stimulated with phorbol ester. EBV infection was also shown in the original carcinoma tissue of SNU-719 cell line. Our results support the possibility of a CD21-independent EBV infection of gastric epithelial cells in vivo. As the latent EBV gene expression pattern of SNU-719 closely resembles that of the EBV-associated gastric cancer, this naturally derived cell line may serve as a valuable model system to clarify the precise role of EBV in gastric carcinogenesis

  14. Reduced antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells of salivary polymorphonuclear leukocytes and inhibition of peripheral blood polymorphonuclear leukocyte cytotoxicity by saliva.

    Science.gov (United States)

    Ashkenazi, M; Kohl, S

    1990-06-15

    Blood polymorphonuclear leukocytes (BPMN) have been shown to mediate antibody-dependent cellular cytotoxicity (ADCC) against HSV-infected cells. Although HSV infections are frequently found in the oral cavity, the ADCC capacity of salivary PMN (SPMN) has not been studied, mainly because methods to isolate SPMN were not available. We have recently developed a method to isolate SPMN, and in this study have evaluated their ADCC activity against HSV-infected cells. SPMN were obtained by repeated washings of the oral cavity, and separated from epithelial cells by nylon mesh filtration. ADCC was quantitatively determined by 51Cr release from HSV-infected Chang liver cells. SPMN in the presence of antibody were able to destroy HSV-infected cells, but SPMN were much less effective in mediating ADCC than BPMN (3.4% vs 40.7%, p less than 0.0001). In the presence of antiviral antibody, SPMN were able to adhere to HSV-infected cells, but less so than BPMN (34% vs 67%), and specific antibody-induced adherence was significantly lower in SPMN (p less than 0.04). The spontaneous adherence to HSV-infected cells was higher for SPMN than BPMN. SPMN demonstrated up-regulation of the adhesion glycoprotein CD18, but down-regulation of the FcRIII receptor. Incubation with saliva decreased ADCC capacity of BPMN, up-regulated CD18 expression, and down-regulated FcRIII expression.

  15. Quantitative uptake studies of 131I-labeled (E)-5-(2-iodovinyl)-2'-deoxyuridine in herpes simplex virus-infected cells in vitro

    International Nuclear Information System (INIS)

    Gill, M.J.; Samuel, J.; Wiebe, L.I.; Knaus, E.E.; Tyrrell, D.L.

    1984-01-01

    We have synthesized a 131 I-radiolabeled antiviral compound (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVdU) and shown that this agent was selectively trapped within rabbit kidney cells, infected in vitro by thymidine kinase-positive (TK+) herpes simplex virus (HSV). The uptake of 131 I-labeled IVdU was specific, as it was not concentrated within either HSV (TK-) or mock-infected cells. In certain conditions, over 40% of the radiolabel was selectively trapped within HSV (TK+)-infected cells. This was a 20- to 30-fold increase over the uptake of 131 I-labeled IVdU by HSV (TK-) or mock-infected cells. The uptake of 131 I-labeled IVdU varied directly with (i) the dose of the virus used to infect the rabbit kidney cells; (ii) the concentration of radiolabeled IVdU added to the system; and (iii) the time of exposure of IVdU to infected cells. The ability of this agent to be trapped within HSV (TK+)-infected cells merits further evaluation in animal models as it has potential as a noninvasive, herpes-specific diagnostic test, in particular for HSV encephalitis

  16. Bone Marrow-Derived Mesenchymal Stem Cells Attenuate Immune-Mediated Liver Injury and Compromise Virus Control During Acute Hepatitis B Virus Infection in Mice.

    Science.gov (United States)

    Qu, Mengmeng; Yuan, Xu; Liu, Dan; Ma, Yuhong; Zhu, Jun; Cui, Jun; Yu, Mengxue; Li, Changyong; Guo, Deyin

    2017-06-01

    Mesenchymal stem cells (MSCs) have been used as therapeutic tools not only for their ability to differentiate toward different cells, but also for their unique immunomodulatory properties. However, it is still unknown how MSCs may affect immunity during hepatitis B virus (HBV) infection. This study was designed to explore the effect of bone marrow-derived MSCs (BM-MSCs) on hepatic natural killer (NK) cells in a mouse model of acute HBV infection. Mice were injected with 1 × 10 6 BM-MSCs, which stained with chloromethyl derivatives of fluorescein diacetate fluorescent probe, 24 h before hydrodynamic injection of viral DNA (pHBV1.3) through the tail vein. In vivo imaging system revealed that BM-MSCs were accumulated in the injured liver, and they attenuated immune-mediated liver injury during HBV infection, as shown by lower alanine aminotransferase levels, reduced proinflammatory cytokine production, and decreased inflammatory cell infiltration in the liver. Importantly, administration of BM-MSCs restrained the increased expression of natural-killer group 2, member D (NKG2D), an important receptor required for NK cell activation in the liver from HBV-infected mice. BM-MSCs also reduced NKG2D expression on NK cells and suppressed the cytotoxicity of NK cells in vitro. Furthermore, BM-MSC-derived transforming growth factor-β1 suppressed NKG2D expression on NK cells. As a consequence, BM-MSC treatment enhanced HBV gene expression and replication in vivo. These results demonstrate that adoptive transfer of BM-MSCs influences innate immunity and limits immune-mediated liver injury during acute HBV infection by suppressing NK cell activity. Meanwhile, the effect of BM-MSCs on prolonging virus clearance needs to be considered in the future.

  17. PERK Signal-Modulated Protein Translation Promotes the Survivability of Dengue 2 Virus-Infected Mosquito Cells and Extends Viral Replication.

    Science.gov (United States)

    Hou, Jiun-Nan; Chen, Tien-Huang; Chiang, Yi-Hsuan; Peng, Jing-Yun; Yang, Tsong-Han; Cheng, Chih-Chieh; Sofiyatun, Eny; Chiu, Cheng-Hsun; Chiang-Ni, Chuan; Chen, Wei-June

    2017-09-20

    Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut down after infection by DENV type 2 (DENV2). However, it returned to a normal level when infected cells were treated with an inhibitor of the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway. Based on a 7-Methylguanosine 5'-triphosphate (m7GTP) pull-down assay, the eukaryotic translation initiation factor 4F (eIF4F) complex was also identified in DENV2-infected cells. This suggests that most mosquito proteins are synthesized via canonical cap-dependent translation. When the PERK signal pathway was inhibited, both accumulation of reactive oxygen species and changes in the mitochondrial membrane potential increased. This suggested that ER stress response was alleviated through the PERK-mediated shutdown of global proteins in DENV2-infected C6/36 cells. In the meantime, the activities of caspases-9 and -3 and the apoptosis-related cell death rate increased in C6/36 cells with PERK inhibition. This reflected that the PERK-signaling pathway is involved in determining cell survival, presumably by reducing DENV2-induced ER stress. Looking at the PERK downstream target, α-subunit of eukaryotic initiation factor 2 (eIF2α), an increased phosphorylation status was only shown in infected C6/36 cells. This indicated that recruitment of ribosome binding to the mRNA 5'-cap structure could have been impaired in cap-dependent translation. It turned out that shutdown of cellular protein translation resulted in a pro-survival effect on mosquito cells in response to DENV2 infection. As synthesis of viral proteins was not affected by the PERK signal pathway, an alternate mode other than cap-dependent translation may be utilized. This finding provides insights into elucidating how the PERK signal

  18. Parapoxvirus orf virus infection induces an increase in interleukin-8, tumour necrosis factor-α, and decorin in goat skin fibroblast cells

    Directory of Open Access Journals (Sweden)

    Wang Lingling

    2016-09-01

    Full Text Available Introduction: Orf virus (ORFV is a prototype Parapoxvirus species in the Poxviridae family that causes serious zoonotic infectious disease. Goat skin fibroblast (GSF cells are the major host targets of ORFV. Interleukin 8 (IL-8 and tumour necrosis factor (TNF-α are known to play a vital role in immune response during viral infections. However, the manner of variation over time of their level of expression in GSF cells remains unclear.

  19. VSVΔG/EBOV GP-induced innate protection enhances natural killer cell activity to increase survival in a lethal mouse adapted Ebola virus infection.

    Science.gov (United States)

    Williams, Kinola J N; Qiu, Xiangguo; Fernando, Lisa; Jones, Steven M; Alimonti, Judie B

    2015-02-01

    Members of the species Zaire ebolavirus cause severe hemorrhagic fever with up to a 90% mortality rate in humans. The VSVΔG/EBOV GP vaccine has provided 100% protection in the mouse, guinea pig, and nonhuman primate (NHP) models, and has also been utilized as a post-exposure therapeutic to protect mice, guinea pigs, and NHPs from a lethal challenge of Ebola virus (EBOV). EBOV infection causes rapid mortality in human and animal models, with death occurring as early as 6 days after infection, suggesting a vital role for the innate immune system to control the infection before cells of the adaptive immune system can assume control. Natural killer (NK) cells are the predominant cell of the innate immune response, which has been shown to expand with VSVΔG/EBOV GP treatment. In the current study, an in vivo mouse model of the VSVΔG/EBOV GP post-exposure treatment was used for a mouse adapted (MA)-EBOV infection, to determine the putative VSVΔG/EBOV GP-induced protective mechanism of NK cells. NK depletion studies demonstrated that mice with NK cells survive longer in a MA-EBOV infection, which is further enhanced with VSVΔG/EBOV GP treatment. NK cell mediated cytotoxicity and IFN-γ secretion was significantly higher with VSVΔG/EBOV GP treatment. Cell mediated cytotoxicity assays and perforin knockout mice experiments suggest that there are perforin-dependent and -independent mechanisms involved. Together, these data suggest that NK cells play an important role in VSVΔG/EBOV GP-induced protection of EBOV by increasing NK cytotoxicity, and IFN-γ secretion.

  20. Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons.

    Science.gov (United States)

    Grigoryan, Sergei; Yee, Michael B; Glick, Yair; Gerber, Doron; Kepten, Eldad; Garini, Yuval; Yang, In Hong; Kinchington, Paul R; Goldstein, Ronald S

    2015-01-01

    Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.

  1. Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes.

    Science.gov (United States)

    Barathan, Muttiah; Gopal, Kaliappan; Mohamed, Rosmawati; Ellegård, Rada; Saeidi, Alireza; Vadivelu, Jamuna; Ansari, Abdul W; Rothan, Hussin A; Ravishankar Ram, M; Zandi, Keivan; Chang, Li Y; Vignesh, Ramachandran; Che, Karlhans F; Kamarulzaman, Adeeba; Velu, Vijayakumar; Larsson, Marie; Kamarul, Tunku; Shankar, Esaki M

    2015-04-01

    Persistent hepatitis C virus (HCV) infection appears to trigger the onset of immune exhaustion to potentially assist viral persistence in the host, eventually leading to hepatocellular carcinoma. The role of HCV on the spontaneous expression of markers suggestive of immune exhaustion and spontaneous apoptosis in immune cells of chronic HCV (CHC) disease largely remain elusive. We investigated the peripheral blood mononuclear cells of CHC patients to determine the spontaneous recruitment of cellular reactive oxygen species (cROS), immunoregulatory and exhaustion markers relative to healthy controls. Using a commercial QuantiGenePlex(®) 2.0 assay, we determined the spontaneous expression profile of 80 different pro- and anti-apoptotic genes in persistent HCV disease. Onset of spontaneous apoptosis significantly correlated with the up-regulation of cROS, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2/prostaglandin H synthase (COX-2/PGHS), Foxp3, Dtx1, Blimp1, Lag3 and Cd160. Besides, spontaneous differential surface protein expression suggestive of T cell inhibition viz., TRAIL, TIM-3, PD-1 and BTLA on CD4+ and CD8+ T cells, and CTLA-4 on CD4+ T cells was also evident. Increased up-regulation of Tnf, Tp73, Casp14, Tnfrsf11b, Bik and Birc8 was observed, whereas FasLG, Fas, Ripk2, Casp3, Dapk1, Tnfrsf21, and Cflar were moderately up-regulated in HCV-infected subjects. Our observation suggests the spontaneous onset of apoptosis signaling and T cell exhaustion in chronic HCV disease.

  2. Metabolism of the carbocyclic analogue of (E)-5-(2-iodovinyl)-2'-deoxyuridine in herpes simplex virus-infected cells. Incorporation of C-IVDU into DNA

    International Nuclear Information System (INIS)

    De Clercq, E.; Bernaerts, R.; Balzarini, J.; Herdewijn, P.; Verbruggen, A.

    1985-01-01

    The carbocyclic analogues of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU), in which the sugar moiety is replaced by a cyclopentane ring and which have been designated as C-BVDU and C-IVDU, respectively, are, like their parent compounds BVDU and IVDU, potent and selective inhibitors of herpes simplex virus type 1 (HSV-1) and, to a lesser extent, herpes simplex virus type 2 (HSV-2) replication. The authors have now synthesized the radiolabeled C-IVDU analogue, C-[ 125 I]IVDU, and determined its metabolism by HSV-infected and mock-infected Vero cells. C-[ 125 I]IVDU was effectively phosphorylated by HSV-1-infected cells and, to a lesser extent, HSV-2-infected cells. C-[ 125 I]IVDU was not phosphorylated to an appreciable extent by either mock-infected cells or cells that had been infected with a thymidine kinase-deficient mutant of HSV-1. Furthermore, C-[ 125 I]IVDU was incorporated into both viral and cellular DNA of HSV-1-infected Vero cells. This finding represents the first demonstration of the incorporation of a cyclopentylpyrimidine into DNA

  3. Human Ebola virus infection results in substantial immune activation.

    Science.gov (United States)

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  4. Vγ4+γδT Cells Aggravate Severe H1N1 Influenza Virus Infection-Induced Acute Pulmonary Immunopathological Injury via Secreting Interleukin-17A

    Directory of Open Access Journals (Sweden)

    Chunxue Xue

    2017-08-01

    Full Text Available The influenza A (H1N1 pdm09 virus remains a critical global health concern and causes high levels of morbidity and mortality. Severe acute lung injury (ALI and acute respiratory distress syndrome (ARDS are the major outcomes among severely infected patients. Our previous study found that interleukin (IL-17A production by humans or mice infected with influenza A (H1N1 pdm09 substantially contributes to ALI and subsequent morbidity and mortality. However, the cell types responsible for IL-17A production during the early stage of severe influenza A (H1N1 pdm09 infection remained unknown. In this study, a mouse model of severe influenza A (H1N1 pdm09 infection was established. Our results show that, in the lungs of infected mice, the percentage of γδT cells, but not the percentages of CD4+Th and CD8+Tc cells, gradually increased and peaked at 3 days post-infection (dpi. Further analysis revealed that the Vγ4+γδT subset, but not the Vγ1+γδT subset, was significantly increased among the γδT cells. At 3 dpi, the virus induced significant increases in IL-17A in the bronchoalveolar lavage fluid (BALF and serum. IL-17A was predominantly secreted by γδT cells (especially the Vγ4+γδT subset, but not CD4+Th and CD8+Tc cells at the early stage of infection, and IL-1β and/or IL-23 were sufficient to induce IL-17A production by γδT cells. In addition to secreting IL-17A, γδT cells secreted interferon (IFN-γ and expressed both an activation-associated molecule, natural killer group 2, member D (NKG2D, and an apoptosis-associated molecule, FasL. Depletion of γδT cells or the Vγ4+γδT subset significantly rescued the virus-induced weight loss and improved the survival rate by decreasing IL-17A secretion and reducing immunopathological injury. This study demonstrated that, by secreting IL-17A, lung Vγ4+γδT cells, at least, in part mediated influenza A (H1N1 pdm09-induced immunopathological injury. This mechanism might serve as a

  5. Persistent Transmissible Gastroenteritis Virus Infection Enhances Enterotoxigenic Escherichia coli K88 Adhesion by Promoting Epithelial-Mesenchymal Transition in Intestinal Epithelial Cells.

    Science.gov (United States)

    Xia, Lu; Dai, Lei; Yu, Qinghua; Yang, Qian

    2017-11-01

    Transmissible gastroenteritis virus (TGEV) is a coronavirus characterized by diarrhea and high morbidity rates, and the mortality rate is 100% in piglets less than 2 weeks old. Pigs infected with TGEV often suffer secondary infection by other pathogens, which aggravates the severity of diarrhea, but the mechanisms remain unknown. Here, we hypothesized that persistent TGEV infection stimulates the epithelial-mesenchymal transition (EMT), and thus enterotoxigenic Escherichia coli (ETEC) can more easily adhere to generating cells. Intestinal epithelial cells are the primary targets of TGEV and ETEC infections. We found that TGEV can persistently infect porcine intestinal columnar epithelial cells (IPEC-J2) and cause EMT, consistent with multiple changes in key cell characteristics. Infected cells display fibroblast-like shapes; exhibit increases in levels of mesenchymal markers with a corresponding loss of epithelial markers; have enhanced expression levels of interleukin-1β (IL-1β), IL-6, IL-8, transforming growth factor β (TGF-β), and tumor necrosis factor alpha (TNF-α) mRNAs; and demonstrate increases in migratory and invasive behaviors. Additional experiments showed that the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) signaling pathways via TGF-β is critical for the TGEV-mediated EMT process. Cellular uptake is also modified in cells that have undergone EMT. TGEV-infected cells have higher levels of integrin α5 and fibronectin and exhibit enhanced ETEC K88 adhesion. Reversal of EMT reduces ETEC K88 adhesion and inhibits the expression of integrin α5 and fibronectin. Overall, these results suggest that TGEV infection induces EMT in IPEC-J2 cells, increasing the adhesion of ETEC K88 in the intestine and facilitating dual infection. IMPORTANCE Transmissible gastroenteritis virus (TGEV) causes pig diarrhea and is often followed by secondary infection by other pathogens. In this study, we showed

  6. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    Energy Technology Data Exchange (ETDEWEB)

    George, Michael D; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C; Dandekar, Satya

    2003-07-20

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression.

  7. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    George, Michael D.; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C.; Dandekar, Satya

    2003-01-01

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression

  8. Differences in Env and Gag protein expression patterns and epitope availability in feline immunodeficiency virus infected PBMC compared to infected and transfected feline model cell lines.

    Science.gov (United States)

    Roukaerts, Inge D M; Grant, Chris K; Theuns, Sebastiaan; Christiaens, Isaura; Acar, Delphine D; Van Bockstael, Sebastiaan; Desmarets, Lowiese M B; Nauwynck, Hans J

    2017-01-02

    Env and Gag are key components of the FIV virion that are targeted to the plasma membrane for virion assembly. They are both important stimulators and targets of anti-FIV immunity. To investigate and compare the expression pattern and antigenic changes of Gag and Env in various research models, infected PBMC (the natural FIV host cells) and GFox, and transfected CrFK were stained over time with various Env and Gag specific MAbs. In FIV infected GFox and PBMC, Env showed changes in epitope availability for antibody binding during processing and trafficking, which was not seen in transfected CrFK. Interestingly, epitopes exposed on intracellular Env and Env present on the plasma membrane of CrFK and GFox seem to be hidden on plasma membrane expressed Env of FIV infected PBMC. A kinetic follow up of Gag and Env expression showed a polarization of both Gag and Env expression to specific sites at the plasma membrane of PBMC, but not in other cell lines. In conclusion, mature trimeric cell surface expressed Env might be antigenically distinct from intracellular monomeric Env in PBMC and might possibly be unrecognizable by feline humoral immunity. In addition, Env expression is restricted to a small area on the plasma membrane and co-localizes with a large moiety of Gag, which may represent a preferred FIV budding site, or initiation of virological synapses with direct cell-to-cell virus transmission. Copyright © 2016. Published by Elsevier B.V.

  9. Autophagy in Negative-Strand RNA Virus Infection

    Directory of Open Access Journals (Sweden)

    Yupeng Wang

    2018-02-01

    Full Text Available Autophagy is a homoeostatic process by which cytoplasmic material is targeted for degradation by the cell. Viruses have learned to manipulate the autophagic pathway to ensure their own replication and survival. Although much progress has been achieved in dissecting the interplay between viruses and cellular autophagic machinery, it is not well understood how the cellular autophagic pathway is utilized by viruses and manipulated to their own advantage. In this review, we briefly introduce autophagy, viral xenophagy and the interaction among autophagy, virus and immune response, then focus on the interplay between NS-RNA viruses and autophagy during virus infection. We have selected some exemplary NS-RNA viruses and will describe how these NS-RNA viruses regulate autophagy and the role of autophagy in NS-RNA viral replication and in immune responses to virus infection. We also review recent advances in understanding how NS-RNA viral proteins perturb autophagy and how autophagy-related proteins contribute to NS-RNA virus replication, pathogenesis and antiviral immunity.

  10. Defective glucose and lipid metabolism in human immunodeficiency virus-infected patients with lipodystrophy involve liver, muscle tissue and pancreatic beta-cells

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Dela, Flemming

    2005-01-01

    .01. Disposition index (i.e. first-phase insulin response to intravenous glucose multiplied by incremental glucose disposal) was reduced by 46% (P = 0.05) in LIPO compared with the combined groups of NONLIPO and NAIVE, indicating an impaired adaptation of beta-cell function to insulin resistance in LIPO...... of glucose metabolism, lipid metabolism and beta-cell function in lipodystrophic HIV-infected patients. METHODS: [3-3H]glucose was applied during euglycaemic hyperinsulinaemic clamps in association with indirect calorimetry in 43 normoglycaemic HIV-infected patients (18 lipodystrophic patients on HAART (LIPO......), 18 patients without lipodystrophy on HAART (NONLIPO) and seven patients who were naive to antiretroviral therapy (NAIVE) respectively). beta-cell function was evaluated by an intravenous glucose tolerance test. RESULTS: Compared with NONLIPO and NAIVE separately, LIPO displayed markedly reduced ratio...

  11. Autophagy in Measles Virus Infection

    Directory of Open Access Journals (Sweden)

    Aurore Rozières

    2017-11-01

    Full Text Available Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1 or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2, which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy–measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  12. Tetraspanin Assemblies in Virus Infection

    Directory of Open Access Journals (Sweden)

    Luise Florin

    2018-05-01

    Full Text Available Tetraspanins (Tspans are a family of four-span transmembrane proteins, known as plasma membrane “master organizers.” They form Tspan-enriched microdomains (TEMs or TERMs through lateral association with one another and other membrane proteins. If multiple microdomains associate with each other, larger platforms can form. For infection, viruses interact with multiple cell surface components, including receptors, activating proteases, and signaling molecules. It appears that Tspans, such as CD151, CD82, CD81, CD63, CD9, Tspan9, and Tspan7, coordinate these associations by concentrating the interacting partners into Tspan platforms. In addition to mediating viral attachment and entry, these platforms may also be involved in intracellular trafficking of internalized viruses and assist in defining virus assembly and exit sites. In conclusion, Tspans play a role in viral infection at different stages of the virus replication cycle. The present review highlights recently published data on this topic, with a focus on events at the plasma membrane. In light of these findings, we propose a model for how Tspan interactions may organize cofactors for viral infection into distinct molecular platforms.

  13. Epstein-Barr virus-infected cells in IgG4-related lymphadenopathy with comparison with extranodal IgG4-related disease.

    Science.gov (United States)

    Takeuchi, Mai; Sato, Yasuharu; Yasui, Hiroshi; Ozawa, Hiroaki; Ohno, Kyotaro; Takata, Katsuyoshi; Gion, Yuka; Orita, Yorihisa; Tachibana, Tomoyasu; Itoh, Tomoo; Asano, Naoko; Nakamura, Shigeo; Swerdlow, Steven H; Yoshino, Tadashi

    2014-07-01

    IgG4-related lymphadenopathy with increased numbers of Epstein-Barr virus (EBV)-infected cells has been reported but not fully described. We analyzed 31 cases of IgG4-related lymphadenopathy and 24 cases of extranodal IgG4-related diseases for their possible relationship with EBV. Other types of reactive lymph nodes (22) and angioimmunoblastic T-cell lymphoma (AITL) (10) were also studied for comparison. EBV-encoded RNA (EBER) in situ hybridization revealed EBER(+) cells in 18 of 31 cases (58%) of IgG4-related lymphadenopathy. Increased EBER(+) cells were found in only 4 of 22 (18.1%) non-IgG4-related reactive lymphoid hyperplasia in patients of a similar age (P=0.002) and in only 5 of 24 (21%) extranodal IgG4-related biopsies (P=0.006). Interestingly, all patients with EBER(+) progressively transformed germinal center-type IgG4-related lymphadenopathy had systemic lymphadenopathy and/or extranodal involvement. AITL also is associated with EBV, and IgG4-related lymphadenopathy sometimes mimics the morphology of AITL; however, the number of IgG4(+) cells in AITL was significantly less than that in IgG4-related lymphadenopathy (Pdisease; however, there was not a significant difference between the EBER(+) and EBER(-) cases. In conclusion, the presence of increased numbers of EBV-infected cells in IgG4-related lymphadenopathy, compared with other reactive lymphadenopathy or extranodal IgG4-related disease, suggests that there may be a relationship at least between nodal IgG4-related disease and EBV. It is important to avoid overdiagnosing these cases as malignant lymphomas or EBV-related lymphoproliferative disorders.

  14. Canine Distemper Virus Infects Canine Keratinocytes and Immune Cells by Using Overlapping and Distinct Regions Located on One Side of the Attachment Protein▿

    Science.gov (United States)

    Langedijk, Johannes P. M.; Janda, Jozef; Origgi, Francesco C.; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2011-01-01

    The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the β-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors. PMID:21849439

  15. Determination of Zidovudine Triphosphate Intracellular Concentrations in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus-Infected Individuals by Tandem Mass Spectrometry

    Science.gov (United States)

    Font, Eva; Rosario, Osvaldo; Santana, Jorge; García, Hermes; Sommadossi, Jean-Pierre; Rodriguez, Jose F.

    1999-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) used against the human immunodeficiency virus (HIV) need to be activated intracellularly to their triphosphate moiety to inhibit HIV replication. Intracellular concentrations of these NRTI triphosphates, especially zidovudine triphosphate (ZDV-TP), are relatively low (low numbers of femtomoles per 106 cells) in HIV-infected patient peripheral blood mononuclear cells. Recently, several methods have used either high-performance liquid chromatography (HPLC) or solid-phase extraction (SPE) coupled with radioimmunoassay to obtain in vivo measurements of ZDV-TP. The limit of detection (LOD) by these methods ranged from 20 to 200 fmol/106 cells. In this report, we describe the development of a method to determine intracellular ZDV-TP concentrations in HIV-infected patients using SPE and HPLC with tandem mass spectrometry for analysis. The LOD by this method is 4.0 fmol/106 cells with a linear concentration range of at least 4 orders of magnitude from 4.0 to 10,000 fmol/106 cells. In hispanic HIV-infected patients, ZDV-TP was detectable even when the sampling time after drug administration was 15 h. Intracellular ZDV-TP concentrations in these patients ranged from 41 to 193 fmol/106 cells. The low LOD obtained with this method will provide the opportunity for further in vivo pharmacokinetic studies of intracellular ZDV-TP in different HIV-infected populations. Furthermore, this methodology could be used to perform simultaneous detection of two or more NRTIs, such as ZDV-TP and lamivudine triphosphate. PMID:10582890

  16. Prevalence and clinical implications of epstein-barr virus infection in de novo diffuse large B-cell lymphoma in Western countries

    DEFF Research Database (Denmark)

    Ok, Chi Young; Li, Ling; Xu-Monette, Zijun Y

    2014-01-01

    PURPOSE: Epstein-Barr virus-positive (EBV(+)) diffuse large B-cell lymphoma (DLBCL) of the elderly is a variant of DLBCL with worse outcome that occurs most often in East-Asian countries and is uncommon in the Western hemisphere. We studied the largest cohort of EBV(+) DLBCL, independent of age...

  17. T(14;18) is Not Associated with Mixed Cryoglobulinemia or with Clonal B Cell Expansion in Egyptian Patients with Hepatitis C Virus Infection

    International Nuclear Information System (INIS)

    ABBAS, O.M.; OMAR, N.A.; HASSAN, Z.K.

    2008-01-01

    Background/Aim: The mechanisms of B-cell lymphoproliferative disorders in chronic hepatitis C virus (Hv) infection are unclear. An increased prevalence of circulating monoclonal B-cells and t(14;18) has been reported. Geographic heterogeneity of prevalence of t(14;18) has been shown to exist. We investigated the prevalence of t(14;18) and B-cell clonality as possible mechanisms of lymphoma genesis in chronic HCV patients, in whom cryoglobulinemia status was previously detected. Methods: A cohort of 111 patients was studied, including 87 patients with chronic HCV disease (18 cryoglobulinemic and 69 non- cryoglobulinemic); 24 HCV negative, cryoglobulin negative patients with other nonimmune chronic liver diseases were enrolled as controls. The t(14;18) and IgH rearrangement (as a marker of B cell clonality) were detected by the polymerase chain reaction. Results: t(14;18) was detected in 27.6% of HCV patients and in none of the controls. Detection rates were comparable in both cryoglobulin-positive and negative groups (22.2% and 29%, respectively), p=0.769. IgH rearrangement was detected in 39.1% of HCV patients and in none of the controls. The cryo globulin-positive group showed significantly higher prevalence of IgH rearrangement compared to the cryoglobulin-negative group (61.1% and 33.3%, respectively), p=0.03, OR=3.13 and 95% CI=1.07-9.17. t(14;18) and monoclonal IgH rearrangement detection rates were not associated with each other, p=0.467. Conclusion: t(14;18) is uncommon in HCV-mixed cryogoblulinemia Egyptian patients; it does not seem to play a role in HCV-associated MC and lymphoma genesis in our geographical area. HCV may play a role in mixed cryogoblulinemia and lymphoma genesis, probably by inducing clonal B-cell expansions.

  18. Learning about Bats and Rabies

    Science.gov (United States)

    ... Rabies and Kids! Rabies Learning about bats and rabies Recommend on Facebook Tweet Share Compartir Most bats ... might contact people and pets. Bats and human rabies in the United States Rabies in humans is ...

  19. An Integrative Analysis Reveals a Central Role of P53 Activation via MDM2 in Zika Virus Infection Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Yue Teng

    2017-07-01

    Full Text Available Zika virus (ZIKV infection is an emerging global threat that is suspected to be associated with fetal microcephaly. However, the molecular mechanisms underlying ZIKV disease pathogenesis in humans remain elusive. Here, we investigated the human protein interaction network associated with ZIKV infection using a systemic virology approach, and reconstructed the transcriptional regulatory network to analyze the mechanisms underlying ZIKV-elicited microcephaly pathogenesis. The bioinformatics findings in this study show that P53 is the hub of the genetic regulatory network for ZIKV-related and microcephaly-associated proteins. Importantly, these results imply that the ZIKV capsid protein interacts with mouse double-minute-2 homolog (MDM2, which is involved in the P53-mediated apoptosis pathway, activating the death of infected neural cells. We also found that synthetic mimics of the ZIKV capsid protein induced cell death in vitro and in vivo. This study provides important insight into the relationship between ZIKV infection and brain diseases.

  20. Defective glucose and lipid metabolism in human immunodeficiency virus-infected patients with lipodystrophy involve liver, muscle tissue and pancreatic beta-cells

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Dela, Flemming

    2005-01-01

    ), 18 patients without lipodystrophy on HAART (NONLIPO) and seven patients who were naive to antiretroviral therapy (NAIVE) respectively). beta-cell function was evaluated by an intravenous glucose tolerance test. RESULTS: Compared with NONLIPO and NAIVE separately, LIPO displayed markedly reduced ratio...... of limb to trunk fat (RLF; > 34%, P 40%, P disposal (>50%, P 50%, P ... acids (P disposal (r = 0.71) and incremental exogenous glucose storage (r = 0.40), all P

  1. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    Science.gov (United States)

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Association of Inducible T Cell Costimulator Polymorphisms with Susceptibility and Outcome of Hepatitis B Virus Infection in a Chinese Han Population.

    Science.gov (United States)

    Hu, J; Li, Q-L; Hou, S-H; Peng, H; Guo, J-J

    2015-09-01

    Inducible T cell costimulator (ICOS) functions to regulate cell-cell signalling, immune responses and cell proliferation. ICOS single nucleotide polymorphism (SNP) may affect protein expression and functions. This study investigated the association of ICOS SNPs with hepatitis B virus (HBV) infection and outcome in a Chinese population. A total of 1290 Chinese Han individuals were enrolled, including 63 asymptomatic HBV carriers, 220 chronic hepatitis B patients (CHB), 249 HBV-related liver cirrhosis patients (LC), 108 patients with HBV-related hepatocellular carcinoma (HCC), 338 patients with natural HBV clearance and 312 healthy subjects (as controls). DNA samples from these subjects were genotyped for four ICOS SNPs (rs11883722, rs10932029, rs1559931 and rs4675379) using TaqMan SNP Genotyping Assay and analysed. The data showed that genotype and allele frequencies of ICOS SNPs in cases and controls followed the Hardy-Weinberg distribution. The CC genotype of rs4675379 was higher in patients with HBV infection (including AC, CHB, LC and HCC) than in patients with HBV clearance (P = 0.006). Furthermore, the genotype 'GA' and the minor allele 'A' of rs1559931 were associated with a decreased HCC susceptibility (P a lower frequency in patients than in HBV-cleared subjects (P = 0.034), although its overall frequency was only 1.6%. Our study found that ICOS rs1559931 SNP was associated with decreased HBV-related HCC risk in the studied Chinese Han population, except for patients with natural clearance of HBV. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  3. Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus Extracts Effectively Inhibit BK Virus and JC Virus Infection of Host Cells

    Directory of Open Access Journals (Sweden)

    San-Yuan Chen

    2017-01-01

    Full Text Available The human polyomaviruses BK (BKPyV and JC (JCPyV are ubiquitous pathogens long associated with severe disease in immunocompromised individuals. BKPyV causes polyomavirus-associated nephropathy and hemorrhagic cystitis, whereas JCPyV is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy. No effective therapies targeting these viruses are currently available. The goal of this study was to identify Chinese medicinal herbs with antiviral activity against BKPyV and JCPyV. We screened extracts of Chinese medicinal herbs for the ability to inhibit hemagglutination by BKPyV and JCPyV virus-like particles (VLPs and the ability to inhibit BKPyV and JCPyV binding and infection of host cells. Two of the 40 herbal extracts screened, Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus, had hemagglutination inhibition activity on BKPyV and JCPyV VLPs and further inhibited infection of the cells by BKPyV and JCPyV, as evidenced by reduced expression of viral proteins in BKPyV-infected and JCPyV-infected cells after treatment with Rhodiolae Kirliowii Radix et Rhizoma or Crataegus pinnatifida Fructus extract. The results in this work show that both Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus may be sources of potential antiviral compounds for treating BKPyV and JCPyV infections.

  4. Burden of Rabies

    Science.gov (United States)

    ... this? Submit Button Past Emails The Burden of Rabies Recommend on Facebook Tweet Share Compartir Learn how ... bitten by an animal that has the disease. Rabies in the U.S. Rabies continues to be a ...

  5. Travelers' Health: Rabies

    Science.gov (United States)

    ... Fever Chapter 3 - Perspectives: Intradermal Rabies Preexposure Immunization Rabies Brett W. Petersen, Ryan M. Wallace, David R. ... animal. Box 3-04. World Health Organization, human rabies case definition Clinical case definition: a person presenting ...

  6. Icaritin inhibits the expression of alpha-fetoprotein in hepatitis B virus-infected hepatoma cell lines through post-transcriptional regulation.

    Science.gov (United States)

    Zhang, Chao; Li, Hui; Jiang, Wei; Zhang, Xiaowei; Li, Gang

    2016-12-13

    Although it has showed that icaritin can apparently suppress growth of HCC by reducing the level of AFP, the intrinsic mechanism remains unclear. In this study, we explored the possible mechanism of miRNAs on post-transcriptional regulation of AFP gene, as well as the effects of HBV infection and icaritin in hepatoma cells. The results showed that miR-620, miR-1236 and miR-1270 could bind target sites in the range of 9-18 nt and 131-151 nt downstream of the stop codon in the AFP mRNA 3'-UTR to suppress the expression of AFP. Mutation of these target sites could reverse the effects of these miRNAs. Icaritin (10 μM) might reduce the stability and translational activity of AFP mRNA by increasing the expression levels of these mentioned miRNAs. HBV infection resulted in apparent decreases of these miRNAs and, consequently, increased AFP expression. The results indicated that miR-620, miR-1236 and miR-1270 are critical factors in the post-transcriptional regulation of AFP. Icaritin can counteract the effect of HBV. These findings will contribute to full understanding of the regulatory mechanism of AFP expression in hepatoma cells. And also it revealed a synergistic mechanism of HBV infection and elevation of AFP in the pathogenesis of HCC, as well as the potential clinical significance of icaritin on the therapy of HCC induced by HBV.

  7. THE CYTOKINES SYNTHESIS IN VITRO IN THE TICK-BORNE ENCEPHALITIS VIRUS INFECTED CELLS AND IN THE PRESENCE OF INACTIVATED VACCINE

    Directory of Open Access Journals (Sweden)

    M. V. Mesentseva

    2014-01-01

    Full Text Available Abstract. Tick-borne encephalitis (TBE is severe neuroinfectious disease with involvement of immune mechanisms in pathogenesis. Comparative analysis of synthesis of key cytokines had been performed for the TBE virus (TBEV infected cells and in the presence of inactivated vaccine against TBE in vitro. Persistent TBEV infection of immortal tissue culture of human larynx cancer cells caused transcription activation of interferons IFNα, IFNγ, IFNλ1, interleukins IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12, tumour necrosis factor TNFα as well as one of apoptosis factors Fas. Comparison of transcription and production of cytokines revealed that the TBEV infection resulted in posttranscription Th1 shift of cytokine response. In the presence of inactivated vaccine against TBE based on the same strain Sofjin of the TBEV activation of transcription of cytokines IFNα, IFNλ1, IL-4, IL-10 was also observed as after the TBEV infection that together with an additional stimulation of GM-CSF production might serve as an evidence of Th2 response. Involvement of IFNIII type (IFNλ1 both during persistent infection and after addition of inactivated vaccines was found in the first time. Differences in dynamics of cytokines IL-2, IL-8, IL-10, IL-12, TNFα response during the TBEV infection and in the presence of inactivated vaccine are described.

  8. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice: analysis of the involvement of type 1 IFN.

    Science.gov (United States)

    Montoya, Maria; Edwards, Matthew J; Reid, Delyth M; Borrow, Persephone

    2005-02-15

    In this study, we report the dynamic changes in activation and functions that occur in spleen dendritic cell (sDC) subsets following infection of mice with a natural murine pathogen, lymphocytic choriomeningitis virus (LCMV). Within 24 h postinfection (pi), sDCs acquired the ability to stimulate naive LCMV-specific CD8+ T cells ex vivo. Conventional (CD11chigh CD8+ and CD4+) sDC subsets rapidly up-regulated expression of costimulatory molecules and began to produce proinflammatory cytokines. Their tendency to undergo apoptosis ex vivo simultaneously increased, and in vivo the number of conventional DCs in the spleen decreased markedly, dropping approximately 2-fold by day 3 pi. Conversely, the number of plasmacytoid (CD11clowB220+) DCs in the spleen increased, so that they constituted almost 40% of sDCs by day 3 pi. Type 1 IFN production was up-regulated in plasmacytoid DCs by 24 h pi. Analysis of DC activation and maturation in mice unable to respond to type 1 IFNs implicated these cytokines in driving infection-associated phenotypic activation of conventional DCs and their enhanced tendency to undergo apoptosis, but also indicated the existence of type 1 IFN-independent pathways for the functional maturation of DCs during LCMV infection.

  9. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    International Nuclear Information System (INIS)

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-01-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans

  10. Pneumothorax in human immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Sibes Kumar Das

    2015-01-01

    Full Text Available Pneumothorax occurs more frequently in people with Human immunodeficiency virus infection in comparison with the general population. In most cases it is secondary the underlying pulmonary disorder, especially pulmonary infections. Though Pneumocystis jiroveci pneumonia is most common pulmonary infection associated with pneumothorax, other infections, non-infective etiology and iatrogenic causes are also encountered. Pneumothorax in these patients are associated with persistent bronchopleural fistula, prolonged hospital stay, poor success with intercostal tube drain, frequent requirement of surgical intervention and increased mortality. Optimal therapeutic approach in these patients is still not well-defined.

  11. High level of Bcl-2 counteracts apoptosis mediated by a live rabies virus vaccine strain and induces long-term infection

    International Nuclear Information System (INIS)

    Thoulouze, Maria-Isabel; Lafage, Mireille; Yuste, Victor J.; Baloul, Leiela; Edelman, Lena; Kroemer, Guido; Israel, Nicole; Susin, Santos A.; Lafon, Monique

    2003-01-01

    We report here that rabies virus strains, currently used to immunize wildlife against rabies, induce not only caspase-dependent apoptosis in the human lymphoblastoid Jurkat T cell line (Jurkat-vect), but also a caspase-independent pathway involving the apoptosis-inducing factor (AIF). In contrast, a strain of neurotropic RV that does not induce apoptosis did not activate caspases or induce AIF translocation. Bcl-2 overproduction in Jurkat T cells (Jurkat-Bcl-2) abolished both pathways. ERA infection and production were similar in Jurkat-vect and Jurkat-Bcl-2 cells, indicating Bcl-2 has no direct antiviral effects. Bcl-2 production is naturally upregulated by day 3 in ERA-infected Jurkat-vect cultures. The increase in Bcl-2 levels seems to be controlled by the virus infection itself and results in the establishment of long-term, persistently infected cultures that continue to produce virus. Thus, in infections with live RV vaccine strains, infected cells may be productive reservoirs of virus in the long term. This may account for the high efficacy of live rabies vaccines

  12. No evidence of parvovirus B19, Chlamydia pneumoniae or human herpes virus infection in temporal artery biopsies in patients with giant cell arteritis

    DEFF Research Database (Denmark)

    Helweg-Larsen, J; Tarp, B; Obel, N

    2002-01-01

    conditions. DNA was extracted from frozen biopsies and PCR was used to amplify genes from Chlamydia pneumoniae, parvovirus B19 and each of the eight human herpes viruses: herpes simplex viruses HSV-1 and 2, Epstein-Barr virus, cytomegalovirus, varicella zoster virus and human herpes viruses HHV-6, -7 and -8......OBJECTIVES: Recent studies have suggested that infective agents may be involved in the pathogenesis of giant cell arteritis (GCA), in particular Chlamydia pneumoniae and parvovirus B19. We investigated temporal arteries from patients with GCA for these infections as well as human herpes viruses....... RESULTS: In all 30 biopsies, PCR was negative for DNAs of parvovirus B19, each of the eight human herpes viruses and C. pneumoniae. CONCLUSIONS: We found no evidence of DNA from parvovirus B19, human herpes virus or C. pneumoniae in any of the temporal arteries. These agents do not seem to play a unique...

  13. Whole-cell pertussis vaccine induces low antibody levels in human immunodeficiency virus-infected children living in sub-Saharan Africa.

    Science.gov (United States)

    Tejiokem, Mathurin C; Njamkepo, Elisabeth; Gouandjika, Ionela; Rousset, Dominique; Béniguel, Lydie; Bilong, Catherine; Tene, Gilbert; Penda, Ida; Ngongueu, Carine; Gody, Jean C; Guiso, Nicole; Baril, Laurence

    2009-04-01

    The WHO recommendations for the immunization of children infected with human immunodeficiency virus (HIV) differ slightly from the guidelines for uninfected children. The introduction of antiretroviral therapy for HIV-infected infants should considerably prolong their life expectancy. The question of the response to the whole-cell pertussis (wP) vaccine should now be addressed, particularly in countries in which pertussis remains endemic. To evaluate the persistence of antibodies to the wP vaccine in HIV-infected and uninfected children who had previously received this vaccine in routine clinical practice, we conducted a cross-sectional study of children aged 18 to 36 months, born to HIV-infected mothers and living in Cameroon or the Central African Republic. We tested blood samples for antibodies to the wP vaccine and for antibodies to diphtheria and tetanus toxoids (D and T, respectively) in the context of the use of a combined DTwP vaccine. We enrolled 50 HIV-infected children and 78 uninfected, HIV-exposed children in the study. A lower proportion of HIV-infected children than uninfected children had antibodies against the antigens tested for all valences of the DTwP vaccine. Agglutinin levels were substantially lower in HIV-infected than in HIV-exposed but uninfected children (30.0% versus 55.1%, respectively; P = 0.005). We also observed a high risk of low antibody levels in response to the DTwP vaccine in HIV-infected children with severe immunodeficiency (CD4 T-cell level, <25%). The concentrations of antibodies induced by the DTwP vaccine were lower in HIV-infected children than in uninfected children. This study supports the need for a booster dose of the DTwP vaccine in order to maintain high antibody levels in HIV-infected children.

  14. Interleukin-33 is expressed in the lesional epidermis in herpes virus infection but not in verruca vulgaris.

    Science.gov (United States)

    Jin, Meijuan; Komine, Mayumi; Tsuda, Hidetoshi; Oshio, Tomoyuki; Ohtsuki, Mamitaro

    2018-04-25

    Interleukin (IL)-33 is released on cell injury and activates the immune reaction. IL-33 is involved in antiviral reaction in herpes virus infection, but the source that secretes IL-33 has not been identified. We speculate that keratinocytes injured in herpes virus infection secrete IL-33. In order to detect IL-33 in the lesional epidermis of patients with herpes virus infection, we immunostained several cutaneous herpes virus infection samples with an anti-IL-33 antibody, and compared them with cutaneous human papilloma virus (HPV) infection samples. We observed strong nuclear and mild cytoplasmic staining in epidermal keratinocytes of the lesional skin samples with herpes simplex virus and varicella zoster virus infections. However, staining was not observed in the epidermis of verruca vulgaris (VV) samples. We assumed that the strong immune reaction to herpes virus infection may depend on strong IL-33 expression in the epidermis, while very weak immune reaction in samples from patients with VV may be due to low or no expression of IL-33 in the lesional epidermis. © 2018 Japanese Dermatological Association.

  15. Coupled adaptations affecting cleavage of the VP1/2A junction by 3C protease in foot-and-mouth disease virus infected cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham

    The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the 3C protease to produce VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210) within the VP1 protein, close to the VP1/2A cleavage site, inhibited cleavage......, introduction of the 2A L2P substitution alone, or with the VP1 K210E change, into this virus resulted in the production of viable viruses. Cells infected with viruses containing the VP1 K210E and/or the 2A L2P substitutions contained the uncleaved VP1-2A protein; the 2A L2P substitution rendered the VP1/2A...... of this junction and resulted in the production of “self-tagged” virus particles containing the 2A peptide. A second site substitution (E83K) within VP1 was also observed within the rescued virus (Gullberg et al., 2013). It is now shown that introduction of this E83K change alone into a serotype O virus resulted...

  16. Sequence adaptations affecting cleavage of the VP1/2A junction by the 3C protease in foot-and-mouth disease virus-infected cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham

    2014-01-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the virus-encoded 3C protease to VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210E) within the VP1 protein and close to the VP1/2A cleavage site, inhibited...... cleavage of this junction and produced 'self-tagged' virus particles. A second site substitution (E83K) within VP1 was also observed within the rescued virus [Gullberg et al. (2013). J Virol 87: , 11591-11603]. It was shown here that introduction of this E83K change alone into a serotype O virus resulted...... in the rapid accumulation of a second site substitution within the 2A sequence (L2P), which also blocked VP1/2A cleavage. This suggests a linkage between the E83K change in VP1 and cleavage of the VP1/2A junction. Cells infected with viruses containing the VP1 K210E or the 2A L2P substitutions contained...

  17. Evaluation of the Prevalence Rate and the Prognostic Effect of Human Papilloma Virus Infection in a Group of Patients With Oral Cavity Squamous Cell Carcinoma.

    Science.gov (United States)

    Saghravanian, Nasrollah; Zamanzadeh, Maryam; Meshkat, Zahra; Afzal Aghaee, Monavar; Salek, Roham

    2016-06-01

    Squamous cell carcinoma (SCC) is the most common malignancy of the oral cavity. A relationship between the human papilloma virus (HPV) infection and the prognosis of oral cavity SCC (OCSCC) has been discussed before. We investigated the prevalence rate of HPV status in patients with OCSCC, and its effects on clinicopathological characteristics of tumors and patients' prognosis. Sections of formalin-fixed, paraffin-embedded tissue blocks from 114 histopathologically confirmed OCSCC cases were investigated in this study. Polymerase chain reaction (PCR) was applied to evaluate the HPV status in the samples. Fifteen (13.16%) cases were identified as HPV positive. The detected viral subtypes in this study were the subtypes 6 and 11. The stage and especially lymph node stage was significantly higher in the HPV positive group compared to the HPV negative group (P = 0.04). Disease free survival (DFS) was remarkably lower in the HPV positive group compared to the HPV negative group (13.9 vs. 49.9 months, P = 0.02). Overall survival (OS) was also significantly inferior in the HPV positive group (15.7 vs. 49.6 months, P = 0.01). In the current study, no significant differences were observed between two groups in relation to the variables of age, gender, tumors site, tumor size, tumor grading and also the recurrence rate. The observed higher mortality rate among the HPV positive group indicates the poorer prognosis of this group in comparison with the HPV negative patients. The incidence rate of HPV infection was low in the studied samples; however, interaction of subtypes 6 and 11 of HPV in poorer prognosis of the patients and a carcinogenic role of HPV in OCSCC cannot be ruled out.

  18. Immunogenicity, safety and antibody persistence of a purified vero cell cultured rabies vaccine (Speeda) administered by the Zagreb regimen or Essen regimen in post-exposure subjects.

    Science.gov (United States)

    Shi, Nianmin; Zhang, Yibin; Zheng, Huizhen; Zhu, Zhenggang; Wang, Dingming; Li, Sihai; Li, Yuhua; Yang, Liqing; Zhang, Junnan; Bai, Yunhua; Lu, Qiang; Zhang, Zheng; Luo, Fengji; Yu, Chun; Li, Li

    2017-06-03

    To compare the safety, immunogenicity and long-term effect of a purified vero cell cultured rabies vaccine in post-exposure subjects following 2 intramuscular regimens, Zagreb or Essen regimen. Serum samples were collected before vaccination and on days 7, 14, 42, 180 and 365 post vaccination. Solicited adverse events were recorded for 7 d following each vaccine dose, and unsolicited adverse events throughout the entire study period. This study was registered with ClinicalTrials.gov (NCT01821911 and NCT01827917). No serious adverse events were reported. Although Zagreb regimen had a higher incidence of adverse reactions than Essen regimen at the first and second injection, the incidence was similar at the third and fourth injection between these 2 groups as well. At day 42, 100% subjects developed adequate rabies virus neutralizing antibody concentrations (≥ 0.5IU/ml) for both regimens. At days 180 and 365, the antibody level decreased dramatically, however, the percentage of subjects with adequate antibody concentrations still remained high (above 75% and 50% respectively). None of confirmed rabies virus exposured subjects had rabies one year later, and percentage of subjects with adequate antibody concentrations reached 100% at days 14 and 42. Rabies post-exposure prophylaxis vaccination with PVRV following a Zagreb regimen had a similar safety, immunogenicity and long-term effect to the Essen regimen in China.

  19. Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing

    Directory of Open Access Journals (Sweden)

    Yanjun Sun

    2014-04-01

    Full Text Available We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC, the medial septum (MS, and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  20. Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential

    Science.gov (United States)

    Zhu, Shimao; Guo, Caiping

    2016-01-01

    Rabies is an acute, fatal, neurological disease that affects almost all kinds of mammals. Vaccination (using an inactivated rabies vaccine), combined with administration of rabies immune globulin, is the only approved, effective method for post-exposure prophylaxis against rabies in humans. In the search for novel rabies control and treatment strategies, live-attenuated viruses have recently emerged as a practical and promising approach for immunizing and controlling rabies. Unlike the conventional, inactivated rabies vaccine, live-attenuated viruses are genetically modified viruses that are able to replicate in an inoculated recipient without causing adverse effects, while still eliciting robust and effective immune responses against rabies virus infection. A number of viruses with an intrinsic capacity that could be used as putative candidates for live-attenuated rabies vaccine have been intensively evaluated for therapeutic purposes. Additional novel strategies, such as a monoclonal antibody-based approach, nucleic acid-based vaccines, or small interfering RNAs (siRNAs) interfering with virus replication, could further add to the arena of strategies to combat rabies. In this review, we highlight current advances in rabies therapy and discuss the role that they might have in the future of rabies treatment. Given the pronounced and complex impact of rabies on a patient, a combination of these novel modalities has the potential to achieve maximal anti-rabies efficacy, or may even have promising curative effects in the future. However, several hurdles regarding clinical safety considerations and public awareness should be overcome before these approaches can ultimately become clinically relevant therapies. PMID:27801824

  1. Zika virus infection acquired during brief travel to Indonesia.

    Science.gov (United States)

    Kwong, Jason C; Druce, Julian D; Leder, Karin

    2013-09-01

    Zika virus infection closely resembles dengue fever. It is possible that many cases are misdiagnosed or missed. We report a case of Zika virus infection in an Australian traveler who returned from Indonesia with fever and rash. Further case identification is required to determine the evolving epidemiology of this disease.

  2. Within-host spatiotemporal dynamics of plant virus infection at the cellular level.

    Directory of Open Access Journals (Sweden)

    Nicolas Tromas

    2014-02-01

    Full Text Available A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the host. We found a low overall frequency of cellular infection (<0.3, and few cells were coinfected by both virus variants (<0.1. We then estimated the cellular contagion rate (R, the number of secondary infections per infected cell per day. R ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular multiplicity of infection (MOI, the number of virions infecting a cell, were low (<1.5. Variance of virus-genotype frequencies increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the between-cell level is restricted, probably due to the host environment and virus infection itself.

  3. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  4. Host cell responses to dengue virus infection

    NARCIS (Netherlands)

    Diosa Toro, Mayra

    2017-01-01

    Dengue (ook wel knokkelkoorts) is de meest voorkomende virale infectieziekte dat wordt overgedragen door muggen in de wereld met naar schatting 390 miljoen infecties per jaar. Ondanks de grote klinische impact en economische schade van het dengue virus is er nog steeds geen behandeling beschikbaar.

  5. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    International Nuclear Information System (INIS)

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M.; Dhawan, Subhash

    2014-01-01

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection

  6. Rabies (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Rabies KidsHealth / For Parents / Rabies What's in this article? ... Treatment Prevention Print en español La rabia About Rabies Rabies infections in people are rare in the ...

  7. Localization of the rabies virus antigen in Merkel cells in the follicle-sinus complexes of muzzle skins of rabid dogs.

    Science.gov (United States)

    Shimatsu, Taichi; Shinozaki, Harumi; Kimitsuki, Kazunori; Shiwa, Nozomi; Manalo, Daria L; Perez, Rodolfo C; Dilig, Joselito E; Yamada, Kentaro; Boonsriroj, Hassadin; Inoue, Satoshi; Park, Chun-Ho

    2016-11-01

    The direct fluorescent antibody test (dFAT) on fresh brain tissues is the gold standard for rabies virus antigen detection in dogs. However, this method is laborious and holds a high risk of virus exposure for the experimenter. Skin biopsies are useful for the diagnosis of humans and animals. In mammals, the tactile hair, known as the follicle-sinus complex (FSC), is a specialized touch organ that is abundant in the muzzle skin. Each tactile hair is equipped with more than 2,000 sensory nerve endings. Therefore, this organ is expected to serve as an alternative postmortem diagnostic material. However, the target cells and localization of rabies virus antigen in the FSCs remain to be defined. In the present study, muzzle skins were obtained from 60 rabid dogs diagnosed with rabies by dFAT at the Research Institute of Tropical Medicine in the Philippines. In all dogs, virus antigen was clearly detected in a part of the outer root sheath at the level of the ring sinus of the FSCs, and the majority of cells were positive for the Merkel cell (MC) markers cytokeratin 20 and CAM5.2. Our results suggest that MCs in the FSCs of the muzzle skin are a target for virus replication and could serve as a useful alternative specimen source for diagnosis of rabies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Human papilloma virus infection and psoriasis: Did human papilloma virus infection trigger psoriasis?

    Science.gov (United States)

    Jain, Sonia P; Gulhane, Sachin; Pandey, Neha; Bisne, Esha

    2015-01-01

    Psoriasis is an autoimmune chronic inflammatory skin disease known to be triggered by streptococcal and HIV infections. However, human papilloma virus infection (HPV) as a triggering factor for the development of psoriasis has not been reported yet. We, hereby report a case of plaque type with inverse psoriasis which probably could have been triggered by genital warts (HPV infection) and discuss the possible pathomechanisms for their coexistence and its management.

  9. DIAGNOSTIC AND MEDICAL TREATMENT OF RABIES DISEASE IN HEALTH CENTER OF COMMUNITY

    Directory of Open Access Journals (Sweden)

    Raflizar Raflizar

    2012-11-01

    Full Text Available In Indonesia, Rabies is still considered as the most common zoonotic disease. It is not due to the number of death cases but to the number of human cases of human bitten by rabies virus infected animals or suspected ones. Most of human rabies cases caused by dog bites, besides cat and monkey bites. If rabies can be eliminated from dogs, rabies in cats and monkeys can also be eliminated as spontaneous rabies in these two animals are rare. Rabies is caused by an RNA virus from Rhabdowidae Family and it attacks the central nervous system. It is almost invariably fatal if post-exposure prophylaxis is not administered prior to the onset of severe symptoms in unvaccinated people Diagnose is based on the history of close contacts to infected saliva (via bites or scratches and development of signs and symptoms. The early stage symptoms are fever. malaise, followed by agitation, abnormal behaviours, anxiety, hallucination, progressing to delirium, hypersalivalion, hydrophobia, aerophobia, neurological symptoms such as pharynx spasm. paralysis, seizure, and finally death. Laboratory test to detect rabies virus in saliva can be done by a Reverse transcription followed by Polymerase Cham Reaction (RT/PCR and virus isolation in cultured tissues. Skin biopsies of hair follicles at nape of the neck are exammed for rabies antigen in cutaneous nerves at the base of hair follicles by immunofluoresence staining. The treatment after exposure are cleansing lesion, administering intradermal anti-rabies immunization to accelerate immune response. anti-rabies serum to stop infection process, intravenous and intraventricular ribavirin and alfa interferon, high concentration of ketamine infusion to inhibit rabies virus replication. At last, vaccination is the best prevention. Key words: rabies, RNA-virus, vaccination, diagnosis, treatment

  10. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    Directory of Open Access Journals (Sweden)

    Steven B Bradfute

    Full Text Available Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs, and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  11. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    Science.gov (United States)

    Bradfute, Steven B; Anthony, Scott M; Stuthman, Kelly S; Ayithan, Natarajan; Tailor, Prafullakumar; Shaia, Carl I; Bray, Mike; Ozato, Keiko; Bavari, Sina

    2015-01-01

    Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP) vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs), and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  12. Doubled dosage of sofosbuviris expected for inhibiting Zika virus infection

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    Sofosbuvir is a new antiviral drug that has been recommended for management of hepatitis C virus (HCV) for a few years. New researches support that sofosbuvir might be useful for the management of Zika virus infection. Based on the pharmacological activity, inhibiting the HCV RNA-dependent RNA polymerase (RdRp or NS5 protein), sofosbuvir is proposed for its effectiveness against Zika virus infection. Here, the authors used a mathematical modelling theoretical approach to predict the expected dosage of sofosbuvir for inhibiting Zika virus infection. Based on the modeling study, if sofosbuvir is assigned for management of Zika virus infection, doubled dosage of the present dosage for hepatitis C management is recommended.

  13. NNDSS - Table II. Cryptosporidiosis to Dengue virus infection

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Cryptosporidiosis to Dengue virus infection - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during...

  14. Respiratory Syncytial Virus Infection (RSV): Transmission and Prevention

    Science.gov (United States)

    ... of Search Controls Search Form Controls Cancel Submit Respiratory Syncytial Virus Infection (RSV) Note: Javascript is disabled ... 2018 Content source: National Center for Immunization and Respiratory Diseases (NCIRD) , Division of Viral Diseases Email Recommend ...

  15. Viral protein synthesis in cowpea mosaic virus infected protoplasts

    International Nuclear Information System (INIS)

    Rottier, P.

    1980-01-01

    Some aspects of cowpea mosaic virus (CPMV) multiplication in cowpea mesophyll protoplasts were studied. The detection and characterization of proteins whose synthesis is induced or is stimulated upon virus infection was performed with the aid of radioactive labelling. (Auth.)

  16. Nervous System Injury and Neuroimaging of Zika Virus Infection

    Science.gov (United States)

    Wu, Shanshan; Zeng, Yu; Lerner, Alexander; Gao, Bo; Law, Meng

    2018-01-01

    In 2016, World Health Organization announced Zika virus infection and its neurological sequalae are a public health emergency of global scope. Preliminary studies have confirmed a relationship between Zika virus infection and certain neurological disorders, including microcephaly and Guillain–Barre syndrome (GBS). The neuroimaging features of microcephaly secondary to Zika virus infection include calcifications at the junction of gray–white matter and subcortical white matter with associated cortical abnormalities, diminution of white matter, large ventricles with or without hydrocephalus, cortical malformations, hypoplasia of cerebellum and brainstem, and enlargement of cerebellomedullary cistern. Contrast enhancement of the cauda equine nerve roots is the typical neuroimaging finding of GBS associated with Zika virus. This review describes the nervous system disorders and associated imaging findings seen in Zika virus infection, with the aim to improve the understanding of this disease. Imaging plays a key role on accurate diagnosis and prognostic evaluation of this disease. PMID:29740383

  17. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  18. Inhibition of Enveloped Viruses Infectivity by Curcumin

    Science.gov (United States)

    Wen, Hsiao-Wei; Ou, Jun-Lin; Chiou, Shyan-Song; Chen, Jo-Mei; Wong, Min-Liang; Hsu, Wei-Li

    2013-01-01

    Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA) activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB)-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter) than for the pseudorabies virus (approximately 180 nm) and the vaccinia virus (roughly 335 × 200 × 200 nm). These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses. PMID:23658730

  19. Virus Infection Triggers MAVS Polymers of Distinct Molecular Weight

    Directory of Open Access Journals (Sweden)

    Natalia Zamorano Cuervo

    2018-01-01

    Full Text Available The mitochondrial antiviral signaling (MAVS adaptor protein is a central signaling hub required for cells to mount an antiviral response following virus sensing by retinoic acid-inducible gene I (RIG-I-like receptors. MAVS localizes in the membrane of mitochondria and peroxisomes and in mitochondrial-associated endoplasmic reticulum membranes. Structural and functional studies have revealed that MAVS activity relies on the formation of functional high molecular weight prion-like aggregates. The formation of protein aggregates typically relies on a dynamic transition between oligomerization and aggregation states. The existence of intermediate state(s of MAVS polymers, other than aggregates, has not yet been documented. Here, we used a combination of non-reducing SDS-PAGE and semi-denaturing detergent agarose gel electrophoresis (SDD-AGE to resolve whole cell extract preparations to distinguish MAVS polymerization states. While SDD-AGE analysis of whole cell extracts revealed the formation of previously described high molecular weight prion-like aggregates upon constitutively active RIG-I ectopic expression and virus infection, non-reducing SDS-PAGE allowed us to demonstrate the induction of lower molecular weight oligomers. Cleavage of MAVS using the NS3/4A protease revealed that anchoring to intracellular membranes is required for the appropriate polymerization into active high molecular weight aggregates. Altogether, our data suggest that RIG-I-dependent MAVS activation involves the coexistence of MAVS polymers with distinct molecular weights.

  20. Clinical features and prognosis of patients with primary biliary cholangitis complicated by hepatitis virus infection

    Directory of Open Access Journals (Sweden)

    ZHAO Dantong

    2017-08-01

    Full Text Available ObjectiveTo investigate the clinical features and prognosis of patients with primary biliary cholangitis(PBC complicated by hepatitis virus infection. MethodsA total of 16 patients who were admitted to Beijing YouAn Hospital from October 2004 to October 2012 and diagnosed with PBC complicated by hepatitis virus infection were enrolled, among whom 7 had chronic hepatitis B virus infection, 3 had hepatitis C, 4 had hepatitis E, 1 had hepatitis B and hepatitis C, and 1 had hepatitis A. A total of 76 hospitalized patients with PBC alone were enrolled as controls. The two groups were compared in terms of clinical features, laboratory markers, and autoantibodies, and follow-up visits were performed to investigate prognostic features. The independent samples t-test was used for comparison of normally distributed continuous data, and the Mann-Whitney U rank sum test was used for comparison of non-normally distributed continuous data; the chi-square test or Fisher′s exact test was used for comparison of categorical data. The Kaplan-Meier method was used to calculate survival rates and the log-rank test was used to compare survival rates between groups. ResultsCompared with the control group, the PBC-hepatitis virus infection group had significantly lower proportion of female patients (χ2=12.22, P=0.002, alkaline phosphatase (U=225.00, P<0.001, CHO (U=363.50, P=0.036, and IgG level (t=2.79, P=0.007, and no patients in the PBC-hepatitis virus infection group experienced abdominal wall varices, upper gastrointestinal bleeding, or hepatic encephalopathy. The PBC-hepatitis virus infection group had various autoantibodies including anti-nuclear antibody, smooth muscle antibody, anti-parietal cell antibody (APCA, anti-liver specific protein antibody, and anti-myocardial antibody, as well as a significantly higher APCA positive rate than the control group (25% vs 3.9%, χ2=5.608, P=0.016. The median follow-up time was 49.5 months (2-312 months. The PBC

  1. An immune stimulating complex (iscom) subunit rabies vaccine protects dogs and mice against street rabies challenge.

    NARCIS (Netherlands)

    M. Fekadu; J.H. Schaddock; J. Ekströ m; A.D.M.E. Osterhaus (Albert); D.W. Sanderlin; B. Sundquist; B. Morein (Bror)

    1992-01-01

    textabstractDogs and mice were immunized with either a rabies glycoprotein subunit vaccine incorporated into an immune stimulating complex (ISCOM) or a commercial human diploid cell vaccine (HDCV) prepared from a Pitman Moore (PM) rabies vaccine strain. Pre-exposure vaccination of mice with two

  2. Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate

    Directory of Open Access Journals (Sweden)

    Agostina Pietrantoni

    2015-01-01

    Full Text Available Toscana virus is an emerging sandfly-borne bunyavirus in Mediterranean Europe responsible for neurological diseases in humans. It accounts for about 80% of paediatric meningitis cases during the summer. Despite the important impact of Toscana virus infection-associated disease on human health, currently approved vaccines or effective antiviral treatments are not available. In this research, we have analyzed the effect of bovine lactoferrin, a bi-globular iron-binding glycoprotein with potent antimicrobial and immunomodulatory activities, on Toscana virus infection in vitro. Our results showed that lactoferrin was capable of inhibiting Toscana virus replication in a dose-dependent manner. Results obtained when lactoferrin was added to the cells during different phases of viral infection showed that lactoferrin was able to prevent viral replication when added during the viral adsorption step or during the entire cycle of virus infection, demonstrating that its action takes place in an early phase of viral infection. In particular, our results demonstrated that the anti-Toscana virus action of lactoferrin took place on virus attachment to the cell membrane, mainly through a competition for common glycosaminoglycan receptors. These findings provide further insights on the antiviral activity of bovine lactoferrin.

  3. Hepatitis A virus infection - shifting epidemiology

    International Nuclear Information System (INIS)

    Tariq, W.Z.; Hussain, A.B.; Hussain, T.; Anwar, M.; Ghani, E.; Asad-Ullah

    2006-01-01

    Objective of the Study: To determine the age distribution in HAV infection and seasonal variations in the prevalence of acute viral hepatitis caused by hepatitis A virus. Study Design: A descriptive study. Place and Duration: The study was carried out on the patients reporting at Virology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, for determination of hepatitis A virus (HAV) IgM antibody, from July 2003 to June 2004. Patients and Methods: Altogether 626 patients with clinical suspicion of hepatitis A virus infection were referred to AFIP Rawalpindi for this test. Blood samples were collected and sera were separated and transferred to plastic aliquots that were stored at -20 deg. C in a retrievable fashion until utilized in testing. The testing for ant-HAY IgM was carried out with the help of a commercial Enzyme Linked Immunosorbent Assay (ELISA) using reagent kits of Dias Orin (Germany) for HAV IgM antibodies. Results: The HAV IgM positive rate was 40.57% (252/626). Those tested included the sporadic cases as well as the patients from outbreak in two schools of Nowshera cantonment. The age of patients testing positive for HAV IgM, ranged from 03 to 27 years. There was a statistically significant seasonal difference in rate of positivity in different months of the calendar year. An outbreak of HAV infection was seen in the children of two neighboring schools of a cantonment, in which 44 children in different classes developed clinical jaundice. Conclusion: HAV infection occurs in a significant proportion of young people with a clinical suspicion of HAV infection. There is a changing trend of developing hepatitis a in the age beyond 18 years and in outbreaks, which was not there in our patients previously due to universal immunity found against HAV by the age of 18. It was because of chances of consumption of polluted food. (author)

  4. Laboratory Diagnosis of Zika Virus Infection.

    Science.gov (United States)

    Landry, Marie Louise; St George, Kirsten

    2017-01-01

    -The rapid and accurate diagnosis of Zika virus infection is an international priority. -To review current recommendations, methods, limitations, and priorities for Zika virus testing. -Sources include published literature, public health recommendations, laboratory procedures, and testing experience. -Until recently, the laboratory diagnosis of Zika infection was confined to public health or research laboratories that prepared their own reagents, and test capacity has been limited. Furthermore, Zika cross-reacts serologically with other flaviviruses, such as dengue, West Nile, and yellow fever. Current or past infection, or even vaccination with another flavivirus, will often cause false-positive or uninterpretable Zika serology results. Detection of viral RNA during acute infection using nucleic acid amplification tests provides more specific results, and a number of commercial nucleic acid amplification tests have received emergency use authorization. In addition to serum, testing of whole blood and urine is recommended because of the higher vial loads and longer duration of shedding. However, nucleic acid amplification testing has limited utility because many patients are asymptomatic or present for testing after the brief period of Zika shedding has passed. Thus, the greatest need and most difficult challenge is development of accurate antibody tests for the diagnosis of recent Zika infection. Research is urgently needed to identify Zika virus epitopes that do not cross-react with other flavivirus antigens. New information is emerging at a rapid pace and, with ongoing public-private and international collaborations and government support, it is hoped that rapid progress will be made in developing robust and widely applicable diagnostic tools.

  5. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes.

    Directory of Open Access Journals (Sweden)

    Cristian Cillóniz

    2009-10-01

    Full Text Available The enormous toll on human life during the 1918-1919 Spanish influenza pandemic is a constant reminder of the potential lethality of influenza viruses. With the declaration by the World Health Organization of a new H1N1 influenza virus pandemic, and with continued human cases of highly pathogenic H5N1 avian influenza virus infection, a better understanding of the host response to highly pathogenic influenza viruses is essential. To this end, we compared pathology and global gene expression profiles in bronchial tissue from macaques infected with either the reconstructed 1918 pandemic virus or the highly pathogenic avian H5N1 virus A/Vietnam/1203/04. Severe pathology was observed in respiratory tissues from 1918 virus-infected animals as early as 12 hours after infection, and pathology steadily increased at later time points. Although tissues from animals infected with A/Vietnam/1203/04 also showed clear signs of pathology early on, less pathology was observed at later time points, and there was evidence of tissue repair. Global transcriptional profiles revealed that specific groups of genes associated with inflammation and cell death were up-regulated in bronchial tissues from animals infected with the 1918 virus but down-regulated in animals infected with A/Vietnam/1203/04. Importantly, the 1918 virus up-regulated key components of the inflammasome, NLRP3 and IL-1beta, whereas these genes were down-regulated by A/Vietnam/1203/04 early after infection. TUNEL assays revealed that both viruses elicited an apoptotic response in lungs and bronchi, although the response occurred earlier during 1918 virus infection. Our findings suggest that the severity of disease in 1918 virus-infected macaques is a consequence of the early up-regulation of cell death and inflammatory related genes, in which additive or synergistic effects likely dictate the severity of tissue damage.

  6. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    Science.gov (United States)

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.

  7. Rabies in the Americas

    Science.gov (United States)

    Rabies in the Americas Search this site Welcome Previous Meetings Steering Committee Contact Sitemap Welcome The Rabies in the Americas (RITA) meeting is an annual event that has been held since 1990 managers of rabies programs, wildlife biologists, laboratory personnel and other people interested in

  8. Cell-mediated immunity in herpes simplex virus-infected mice: functional analysis of lymph node cells during periods of acute and latent infection, with reference to cytotoxic and memory cells.

    Science.gov (United States)

    Nash, A A; Quartey-Papafio, R; Wildy, P

    1980-08-01

    The functional characteristics of lymphoid cells were investigated during acute and latent infection of mice with herpes simplex virus (HSV). Cytotoxic T cells were found in the draining lymph node (DLN) 4 days p.i. and had reached maximum activity between 6 and 9 days. After the 12th day and during the period of latent infection (> 20 days) no cytotoxic cell activity was observed. Cytotoxic activity could only be detected when the lymphoid cells had been cultured for a period of 3 days. In general, the cell killing was specific for syngeneic infected target cells, although some killing of uninfected targets was observed. In contrast to the cytotoxic response, DLN cells responding to HSV in a proliferation assay were detected towards the end of the acute phase and at lease up to 9 months thereafter. The significance of these observations for the pathogenesis of HSV is discussed.

  9. Plant RNA Regulatory Network and RNA Granules in Virus Infection

    Directory of Open Access Journals (Sweden)

    Kristiina Mäkinen

    2017-12-01

    Full Text Available Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and

  10. Plant RNA Regulatory Network and RNA Granules in Virus Infection.

    Science.gov (United States)

    Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija

    2017-01-01

    Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual

  11. A case of IgG4-related lung disease complicated by asymptomatic chronic Epstein-Barr virus infection.

    Science.gov (United States)

    Kotetsu, Yasuaki; Ikegame, Satoshi; Takebe-Akazawa, Keiko; Koga, Takaomi; Okabayashi, Kan; Takata, Shohei

    2017-11-01

    IgG4-related disease is characterized by IgG4-positive plasmacyte infiltration into various organs, but its etiology is not unknown. To elucidate the etiology of IgG4-related disease. We experienced an interesting case of IgG4-related lung disease complicated by chronic EB virus infection. A 70-year-old male visited our hospital due to failure of pneumonia treatment. Chest computed tomography (CT) showed consolidation in the right middle field and slight mediastinal lymphadenopathy in the subcarinal region. Lung consolidation improved with antibiotics; subcarinal lymphadenopathy progressed after 4 months. Malignant lymphoma was suspected given elevated sIL2-R levels (1862 U/mL). Patchy ground glass opacities appeared in the bilateral lung field just before surgical biopsy. He was diagnosed with IgG4-related lung disease after inspection of a pathological specimen obtained from the right upper lung and right hilar lymph node. EB virus-infected cells were also detected in the lymph node. Blood examination revealed EB virus viremia, but the patient did not present with symptoms or organ involvement. This led to a diagnosis of asymptomatic chronic EB virus infection. Recent studies have suggested an association between EB virus infection and IgG4-related diseases in the pathological exploration of surgically resected lymph nodes. Our case is the first case of IgG4-related lung disease in which EB virus infection was both pathologically and clinically proved. The present case is of particular interest in view of this newly reported association, and may serve as a fundamental report for future studies connecting EB virus infection with IgG4-related diseases. © 2016 John Wiley & Sons Ltd.

  12. Morphologic Features of Extrahepatic Manifestations of Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Huaibin M. Ko

    2012-01-01

    Full Text Available Cirrhosis and hepatocellular carcinoma are the prototypic complications of chronic hepatitis C virus infection in the liver. However, hepatitis C virus also affects a variety of other organs that may lead to significant morbidity and mortality. Extrahepatic manifestations of hepatitis C infection include a multitude of disease processes affecting the small vessels, skin, kidneys, salivary gland, eyes, thyroid, and immunologic system. The majority of these conditions are thought to be immune mediated. The most documented of these entities is mixed cryoglobulinemia. Morphologically, immune complex depositions can be identified in small vessels and glomerular capillary walls, leading to leukoclastic vasculitis in the skin and membranoproliferative glomerulonephritis in the kidney. Other HCV-associated entities include porphyria cutanea tarda, lichen planus, necrolytic acral erythema, membranous glomerulonephritis, diabetic nephropathy, B-cell non-Hodgkin lymphomas, insulin resistance, sialadenitis, sicca syndrome, and autoimmune thyroiditis. This paper highlights the histomorphologic features of these processes, which are typically characterized by chronic inflammation, immune complex deposition, and immunoproliferative disease in the affected organ.

  13. Prenatal brain MRI of fetuses with Zika virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Guillemette-Artur, Prisca [Centre Hospitalier de Polynesie Francaise, Service de Radiologie, Pirae, Tahiti (Country Unknown); Besnard, Marianne [Centre Hospitalier de Polynesie Francaise, Service de Reanimation Neo-natale, Pirae, Tahiti (Country Unknown); Eyrolle-Guignot, Dominique [Centre Hospitalier de Polynesie Francaise, Service d' Obstetrique, Pirae, Tahiti (Country Unknown); Jouannic, Jean-Marie [Universite Pierre et Marie Curie, Service de Medecine Foetale, Hopital d' Enfants Armand-Trousseau, Paris (France); Garel, Catherine [Hopital d' Enfants Armand-Trousseau, Department of Radiology, Paris (France)

    2016-06-15

    An outbreak of Zika virus was observed in French Polynesia in 2013-2014. Maternal Zika virus infection has been associated with fetal microcephaly and severe cerebral damage. To analyze the MRI cerebral findings in fetuses with intrauterine Zika virus infection. We retrospectively analyzed prospectively collected data. Inclusion criteria comprised cases with (1) estimated conception date between June 2013 and May 2014, (2) available US and MRI scans revealing severe fetal brain lesions and (3) positive polymerase chain reaction for Zika virus in the amniotic fluid. We recorded pregnancy history of Zika virus infection and analyzed US and MRI scans. Three out of 12 cases of severe cerebral lesions fulfilled all inclusion criteria. History of maternal Zika virus infection had been documented in two cases. Calcifications and ventriculomegaly were present at US in all cases. MRI showed micrencephaly (n = 3), low cerebellar biometry (n = 2), occipital subependymal pseudocysts (n = 2), polymicrogyria with laminar necrosis and opercular dysplasia (n = 3), absent (n = 1) or hypoplastic (n = 1) corpus callosum and hypoplastic brainstem (n = 1). Severe cerebral damage was observed in our series, with indirect findings suggesting that the germinal matrix is the principal target for Zika virus. The lesions are very similar to severe forms of congenital cytomegalovirus and lymphocytic choriomeningitis virus infections. (orig.)

  14. Prenatal brain MRI of fetuses with Zika virus infection.

    Science.gov (United States)

    Guillemette-Artur, Prisca; Besnard, Marianne; Eyrolle-Guignot, Dominique; Jouannic, Jean-Marie; Garel, Catherine

    2016-06-01

    An outbreak of Zika virus was observed in French Polynesia in 2013-2014. Maternal Zika virus infection has been associated with fetal microcephaly and severe cerebral damage. To analyze the MRI cerebral findings in fetuses with intrauterine Zika virus infection. We retrospectively analyzed prospectively collected data. Inclusion criteria comprised cases with (1) estimated conception date between June 2013 and May 2014, (2) available US and MRI scans revealing severe fetal brain lesions and (3) positive polymerase chain reaction for Zika virus in the amniotic fluid. We recorded pregnancy history of Zika virus infection and analyzed US and MRI scans. Three out of 12 cases of severe cerebral lesions fulfilled all inclusion criteria. History of maternal Zika virus infection had been documented in two cases. Calcifications and ventriculomegaly were present at US in all cases. MRI showed micrencephaly (n = 3), low cerebellar biometry (n = 2), occipital subependymal pseudocysts (n = 2), polymicrogyria with laminar necrosis and opercular dysplasia (n = 3), absent (n = 1) or hypoplastic (n = 1) corpus callosum and hypoplastic brainstem (n = 1). Severe cerebral damage was observed in our series, with indirect findings suggesting that the germinal matrix is the principal target for Zika virus. The lesions are very similar to severe forms of congenital cytomegalovirus and lymphocytic choriomeningitis virus infections.

  15. Prenatal brain MRI of fetuses with Zika virus infection

    International Nuclear Information System (INIS)

    Guillemette-Artur, Prisca; Besnard, Marianne; Eyrolle-Guignot, Dominique; Jouannic, Jean-Marie; Garel, Catherine

    2016-01-01

    An outbreak of Zika virus was observed in French Polynesia in 2013-2014. Maternal Zika virus infection has been associated with fetal microcephaly and severe cerebral damage. To analyze the MRI cerebral findings in fetuses with intrauterine Zika virus infection. We retrospectively analyzed prospectively collected data. Inclusion criteria comprised cases with (1) estimated conception date between June 2013 and May 2014, (2) available US and MRI scans revealing severe fetal brain lesions and (3) positive polymerase chain reaction for Zika virus in the amniotic fluid. We recorded pregnancy history of Zika virus infection and analyzed US and MRI scans. Three out of 12 cases of severe cerebral lesions fulfilled all inclusion criteria. History of maternal Zika virus infection had been documented in two cases. Calcifications and ventriculomegaly were present at US in all cases. MRI showed micrencephaly (n = 3), low cerebellar biometry (n = 2), occipital subependymal pseudocysts (n = 2), polymicrogyria with laminar necrosis and opercular dysplasia (n = 3), absent (n = 1) or hypoplastic (n = 1) corpus callosum and hypoplastic brainstem (n = 1). Severe cerebral damage was observed in our series, with indirect findings suggesting that the germinal matrix is the principal target for Zika virus. The lesions are very similar to severe forms of congenital cytomegalovirus and lymphocytic choriomeningitis virus infections. (orig.)

  16. Comparison of association of diabetes mellitus in hepatitis C virus infection and hepatitis B virus infection

    International Nuclear Information System (INIS)

    Khan, I.A.; Bukhari, M.H.; Khokhar, M.S.

    2013-01-01

    Background: While patients with liver disease are known to have a higher prevalence of glucose intolerance, preliminary studies suggest that hepatitis C virus (HCV) infection may be an additional risk factor for the development of diabetes mellitus (DM). Objective: The presented study was aimed to study and determine a relationship between the relative proportions of Diabetes Mellitus in patients suffering from HCV infection. Study Design: This cross sectional study. Study Settings: Patients were registered from outdoor as well as indoor departments of different teaching hospitals (Services hospital Lahore and medical departments in Jinnah hospital, Mayo hospital, Sir Ganga Ram hospital) in Lahore, Pakistan. Methods: This cross sectional study was comprised of age and sex matched 258 patients of viral hepatitis B infection and viral hepatitis C infection, conducted at Hepatitis Clinic Services Hospital, affiliated with Post Graduate Medical Institute, Lahore. Diagnosis of HBV was made with evidence of hepatitis B surface antigen, HCV infection was diagnosed if patient was sero positive for anti HCV (ELISA methods) and HCV - RNA (By PCR). Diabetes Mellitus was diagnosed after fulfilling the American Diabetic Association Criteria, from November, 2000 to September, 2002. Results: A total of 318 patients were registered, out of which 258 cases fulfilled the inclusion criteria, 164 hepatitis C infected and 94 hepatitis B infected cases, 16.46% hepatitis C infected cases were diagnosed as diabetics while 4.25% hepatitis B infected cases were diagnosed as diabetics. Conclusion: This study concludes that there is high Association and relationship of Diabetes Mellitus with Hepatitis C virus infection as compared with Hepatitis B virus infection. (author)

  17. Update on rabies

    Directory of Open Access Journals (Sweden)

    Alan C Jackson

    2011-02-01

    Full Text Available Alan C JacksonDepartments of Internal Medicine (Neurology and Medical Microbiology, University of Manitoba, Winnipeg, MB, CanadaAbstract: Human rabies is almost invariably fatal, and globally it remains an important public health problem. Our knowledge of rabies pathogenesis has been learned mainly from studies performed in experimental animal models, and a number of unresolved issues remain. In contrast with the neural pathway of spread, there is still no credible evidence that hematogenous spread of rabies virus to the central nervous system plays a significant role in rabies pathogenesis. Although neuronal dysfunction has been thought to explain the neurological disease in rabies, recent evidence indicates that structural changes involving neuronal processes may explain the severe clinical disease and fatal outcome. Endemic dog rabies results in an ongoing risk to humans in many resource-limited and resource-poor countries, whereas rabies in wildlife is important in North America and Europe. In human cases in North America, transmission from bats is most common, but there is usually no history of a bat bite and there may be no history of contact with bats. Physicians may not recognize typical features of rabies in North America and Europe. Laboratory diagnostic evaluation for rabies includes rabies serology plus skin biopsy, cerebrospinal fluid, and saliva specimens for rabies virus antigen and/or RNA detection. Methods of postexposure rabies prophylaxis, including wound cleansing and administration of rabies vaccine and human rabies immune globulin, are highly effective after recognized exposure. Although there have been rare survivors of human rabies, no effective therapy is presently available. Therapeutic coma (midazolam and phenobarbital, ketamine, and antiviral therapies (known as the “Milwaukee protocol” were given to a rabies survivor, but this therapy was likely not directly responsible for the favorable outcome. New therapeutic

  18. A novel Cre recombinase imaging system for tracking lymphotropic virus infection in vivo.

    Directory of Open Access Journals (Sweden)

    Bernadette M Dutia

    2009-08-01

    Full Text Available Detection, isolation, and identification of individual virus infected cells during long term infection are critical to advance our understanding of mechanisms of pathogenesis for latent/persistent viruses. However, current approaches to study these viruses in vivo have been hampered by low sensitivity and effects of cell-type on expression of viral encoded reporter genes. We have designed a novel Cre recombinase (Cre-based murine system to overcome these problems, and thereby enable tracking and isolation of individual in vivo infected cells.Murine gammaherpesvirus 68 (MHV-68 was used as a prototypic persistent model virus. A Cre expressing recombinant virus was constructed and characterised. The virus is attenuated both in lytic virus replication, producing ten-fold lower lung virus titres than wild type virus, and in the establishment of latency. However, despite this limitation, when the sEGFP7 mouse line containing a Cre-activated enhanced green fluorescent protein (EGFP was infected with the Cre expressing virus, sites of latent and persistent virus infection could be identified within B cells and macrophages of the lymphoid system on the basis of EGFP expression. Importantly, the use of the sEGFP7 mouse line which expresses high levels of EGFP allowed individual virus positive cells to be purified by FACSorting. Virus gene expression could be detected in these cells. Low numbers of EGFP positive cells could also be detected in the bone marrow.The use of this novel Cre-based virus/mouse system allowed identification of individual latently infected cells in vivo and may be useful for the study and long-term monitoring of other latent/persistent virus infections.

  19. First Imported Case of Zika Virus Infection into Korea.

    Science.gov (United States)

    Jang, Hee-Chang; Park, Wan Beom; Kim, Uh Jin; Chun, June Young; Choi, Su-Jin; Choe, Pyoeng Gyun; Jung, Sook-In; Jee, Youngmee; Kim, Nam-Joong; Choi, Eun Hwa; Oh, Myoung-Don

    2016-07-01

    Since Zika virus has been spreading rapidly in the Americas from 2015, the outbreak of Zika virus infection becomes a global health emergency because it can cause neurological complications and adverse fetal outcome including microcephaly. Here, we report clinical manifestations and virus isolation findings from a case of Zika virus infection imported from Brazil. The patient, 43-year-old Korean man, developed fever, myalgia, eyeball pain, and maculopapular rash, but not neurological manifestations. Zika virus was isolated from his semen, and reverse-transcriptase PCR was positive for the virus in the blood, urine, and saliva on the 7th day of the illness but was negative on the 21st day. He recovered spontaneously without any neurological complications. He is the first case of Zika virus infection in Korea imported from Brazil.

  20. Stability of RNA silencing-based traits after virus infection

    DEFF Research Database (Denmark)

    Jørgensen, Bodil; Albrechtsen, Merete

    2007-01-01

    with constructs based on virus coat protein (CP) genes or other viral genes has been successfully used to engineer PTGS-mediated virus resistance into a large number of crop plants and some transgenic lines have been commercially exploited. However the discovery that plant viruses encode suppressors of gene...... silencing has raised concerns that virus infection of crop plants might reverse the new silencing-based traits. Most studies of virus suppression of silencing have used model systems based on silencing of reporter genes. A few studies have analysed the effects of virus infections on plants with genetically...... engineered virus resistance based on either a simple sense or an inverted repeat construct. We decided to use genetically engineered virus resistance in potato as a model system for further studies of the effect of virus infection on genetically engineered traits. We present for the first time a comparison...

  1. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.

    Science.gov (United States)

    Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F

    2018-05-01

    Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune

  2. Preparedness for ongoing Ebola virus infection: how to welcome it?

    Directory of Open Access Journals (Sweden)

    Sora Yasri

    2015-06-01

    Full Text Available The problem of Ebola virus infection is the big global concern. Preparedness for ongoing Ebola virus infection is the topic that should be discussed. In fact, it is necessary to set up a biosecurity system to protect against the present Ebola outbreak. The medical personnel have to prepare for fighting the problem. The management of the present outbreak requires international collaboration and control of cross-border disease transmission is also the big challenge. The good case study is the Hajj scenario.

  3. Identification and characterization of a virus-specific continuous B-cell epitope on the PrM/M protein of Japanese Encephalitis Virus: potential application in the detection of antibodies to distinguish Japanese Encephalitis Virus infection from West Nile Virus and Dengue Virus infections

    OpenAIRE

    Hua, Rong-Hong; Chen, Na-Sha; Qin, Cheng-Feng; Deng, Yong-Qiang; Ge, Jin-Ying; Wang, Xi-Jun; Qiao, Zu-Jian; Chen, Wei-Ye; Wen, Zhi-Yuan; Liu, Wen-Xin; Hu, Sen; Bu, Zhi-Gao

    2010-01-01

    Abstract Background Differential diagnose of Japanese encephalitis virus (JEV) infection from other flavivirus especially West Nile virus (WNV) and Dengue virus (DV) infection was greatly hindered for the serological cross-reactive. Virus specific epitopes could benefit for developing JEV specific antibodies detection methods. To identify the JEV specific epitopes, we fully mapped and characterized the continuous B-cell epitope of the PrM/M protein of JEV. Results To map the epitopes on the P...

  4. Identification and characterization of a virus-specific continuous B-cell epitope on the PrM/M protein of Japanese Encephalitis Virus: potential application in the detection of antibodies to distinguish Japanese Encephalitis Virus infection from West Nile Virus and Dengue Virus infections

    Directory of Open Access Journals (Sweden)

    Liu Wen-Xin

    2010-09-01

    Full Text Available Abstract Background Differential diagnose of Japanese encephalitis virus (JEV infection from other flavivirus especially West Nile virus (WNV and Dengue virus (DV infection was greatly hindered for the serological cross-reactive. Virus specific epitopes could benefit for developing JEV specific antibodies detection methods. To identify the JEV specific epitopes, we fully mapped and characterized the continuous B-cell epitope of the PrM/M protein of JEV. Results To map the epitopes on the PrM/M protein, we designed a set of 20 partially overlapping fragments spanning the whole PrM, fused them with GST, and expressed them in an expression vector. Linear epitope M14 (105VNKKEAWLDSTKATRY120 was detected by enzyme-linked immunosorbent assay (ELISA. By removing amino acid residues individually from the carboxy and amino terminal of peptide M14, we confirmed that the minimal unit of the linear epitope of PrM/M was M14-13 (108KEAWLDSTKAT118. This epitope was highly conserved across different JEV strains. Moreover, this epitope did not cross-react with WNV-positive and DENV-positive sera. Conclusion Epitope M14-13 was a JEV specific lineal B-cell epitpe. The results may provide a useful basis for the development of epitope-based virus specific diagnostic clinical techniques.

  5. Rabies in Kazakhstan

    OpenAIRE

    Sultanov, Akmetzhan A.; Abdrakhmanov, Sarsenbay K.; Abdybekova, Aida M.; Karatayev, Bolat S.; Torgerson, Paul R.

    2016-01-01

    Background Rabies is a neglected zoonotic disease. There is a sparsity of data on this disease with regard to the incidence of human and animal disease in many low and middle income countries. Furthermore, rabies results in a large economic impact and a high human burden of disease. Kazakhstan is a large landlocked middle income country that gained independence from the Soviet Union in 1991 and is endemic for rabies. Methodology/Principal Findings We used detailed public health and veterina...

  6. Rabies in Kazakhstan.

    Science.gov (United States)

    Sultanov, Akmetzhan A; Abdrakhmanov, Sarsenbay K; Abdybekova, Aida M; Karatayev, Bolat S; Torgerson, Paul R

    2016-08-01

    Rabies is a neglected zoonotic disease. There is a sparsity of data on this disease with regard to the incidence of human and animal disease in many low and middle income countries. Furthermore, rabies results in a large economic impact and a high human burden of disease. Kazakhstan is a large landlocked middle income country that gained independence from the Soviet Union in 1991 and is endemic for rabies. We used detailed public health and veterinary surveillance data from 2003 to 2015 to map where livestock rabies is occurring. We also estimate the economic impact and human burden of rabies. Livestock and canine rabies occurred over most of Kazakhstan, but there were regional variations in disease distribution. There were a mean of 7.1 officially recorded human fatalities due to rabies per year resulting in approximately 457 Disability Adjusted Life Years (DALYs). A mean of 64,289 individuals per annum underwent post exposure prophylaxis (PEP) which may have resulted in an additional 1140 DALYs annually. PEP is preventing at least 118 cases of human rabies each year or possibly as many as 1184 at an estimated cost of $1193 or $119 per DALY averted respectively. The estimated economic impact of rabies in Kazakhstan is $20.9 million per annum, with nearly half of this cost being attributed to the cost of PEP and the loss of income whilst being treated. A further $5.4 million per annum was estimated to be the life time loss of income for fatal cases. Animal vaccination programmes and animal control programmes also contributed substantially to the economic losses. The direct costs due to rabies fatalities of agricultural animals was relatively low. This study demonstrates that in Kazakhstan there is a substantial economic cost and health impact of rabies. These costs could be reduced by modifying the vaccination programme that is now practised. The study also fills some data gaps on the epidemiology and economic effects of rabies in respect to Kazakhstan.

  7. Haematology of infectious bursal disease virus infected chickens on ...

    African Journals Online (AJOL)

    Garlic (Allium sativum) is an herbal spice proven to posses antimicrobial and immunostimulating properties which could be useful in the control of endemic diseases of poultry such as infectious bursal disease (IBD). Its effect on IBD virus infection was therefore investigated via haematological assessment. One hundred and ...

  8. Human immunodeficiency virus infection presenting as a fatal case ...

    African Journals Online (AJOL)

    MJP

    2015-06-25

    Jun 25, 2015 ... original work is properly cited. Human immunodeficiency virus infection presenting as a fatal ... of neurological symptoms by an infection (upper respiratory tract infection or diarrhea), in a smaller proportion of .... cerebrospinal fluid findings of albumino-cytology dissociation.[6]. However, albumino-cytology.

  9. Hepatitis C Virus Infection in Nigerians | Ejiofor | Nigerian Medical ...

    African Journals Online (AJOL)

    Background: Hepatitis C virus is a chronic life long infection in the majority of patients who are infected with the virus. Not much is known and written/published about this virus in Nigeria. Objective: To asses the status of hepatitis C virus infection in Nigeria. Materials and method: Sources of information were mainly from ...

  10. Hepatitis B Virus infection in Nigeria – a review | Emechebe ...

    African Journals Online (AJOL)

    ... virus in the general population also play role in Nigeria. Conclusion: Reduction in the of hepatitis B virus infection could be achieved by public enlightenment campaign, mass immunization of the children and adults at risk while antiviral drugs and immunostimulatory therapy should be provided for those already infected.

  11. Transmission potential of Zika virus infection in the South Pacific

    Directory of Open Access Journals (Sweden)

    Hiroshi Nishiura

    2016-04-01

    Conclusions: The transmissibility of Zika virus infection appears to be comparable to those of dengue and chikungunya viruses. Considering that Aedes species are a shared vector, this finding indicates that Zika virus replication within the vector is perhaps comparable to dengue and chikungunya.

  12. Postmortem Findings for 7 Neonates with Congenital Zika Virus Infection.

    Science.gov (United States)

    Sousa, Anastácio Q; Cavalcante, Diane I M; Franco, Luciano M; Araújo, Fernanda M C; Sousa, Emília T; Valença-Junior, José Telmo; Rolim, Dionne B; Melo, Maria E L; Sindeaux, Pedro D T; Araújo, Marialva T F; Pearson, Richard D; Wilson, Mary E; Pompeu, Margarida M L

    2017-07-01

    Postmortem examination of 7 neonates with congenital Zika virus infection in Brazil revealed microcephaly, ventriculomegaly, dystrophic calcifications, and severe cortical neuronal depletion in all and arthrogryposis in 6. Other findings were leptomeningeal and brain parenchymal inflammation and pulmonary hypoplasia and lymphocytic infiltration in liver and lungs. Findings confirmed virus neurotropism and multiple organ infection.

  13. An autochthonous sexually transmitted Zika virus infection in Italy 2016.

    Science.gov (United States)

    Grossi, Paolo Antonio; Percivalle, Elena; Campanini, Giulia; Sarasini, Antonella; Premoli, Marta; Zavattoni, Maurizio; Girello, Alessia; Dalla Gasperina, Daniela; Balsamo, Maria Luisa; Baldanti, Fausto; Rovida, Francesca

    2018-01-01

    We describe two cases of Zika virus infection involving an Italian patient returning from the Dominican Republic and his wife, who remained in Italy and had not travelled to Zika virus endemic areas in the previous months. The infection was transmitted through unprotected sexual intercourse after the man's return to Italy.

  14. Outbreaks of Tilapia Lake Virus Infection, Thailand, 2015-2016.

    Science.gov (United States)

    Surachetpong, Win; Janetanakit, Taveesak; Nonthabenjawan, Nutthawan; Tattiyapong, Puntanat; Sirikanchana, Kwanrawee; Amonsin, Alongkorn

    2017-06-01

    During 2015-2016, several outbreaks of tilapia lake virus infection occurred among tilapia in Thailand. Phylogenetic analysis showed that the virus from Thailand grouped with a tilapia virus (family Orthomyxoviridae) from Israel. This emerging virus is a threat to tilapia aquaculture in Asia and worldwide.

  15. Outbreaks of Tilapia Lake Virus Infection, Thailand, 2015?2016

    OpenAIRE

    Surachetpong, Win; Janetanakit, Taveesak; Nonthabenjawan, Nutthawan; Tattiyapong, Puntanat; Sirikanchana, Kwanrawee; Amonsin, Alongkorn

    2017-01-01

    During 2015?2016, several outbreaks of tilapia lake virus infection occurred among tilapia in Thailand. Phylogenetic analysis showed that the virus from Thailand grouped with a tilapia virus (family Orthomyxoviridae) from Israel. This emerging virus is a threat to tilapia aquaculture in Asia and worldwide.

  16. The Prevalence of Human Immunodeficiency Virus Infection among ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    Agboghoroma et al. HIV Infection Diagnosed in Women in Labour. African Journal of Reproductive Health September 2015; 19 (3):137. ORIGINAL RESEARCH ARTICLE. The Prevalence of Human Immunodeficiency Virus Infection among. Pregnant Women in Labour with Unknown Status and those with. Negative status ...

  17. Human Immunodeficiency Virus Infection in a rural community of ...

    African Journals Online (AJOL)

    Human Immunodeficiency Virus Infection in a rural community of Plateau State: effective control measures still a nightmare? GTA Jombo, DZ Egah, EB Banwat. Abstract. No Abstract. Nigerian Journal of Medicine Vol. 15(1) 2006: 49-52. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  18. Clinical studies on hepatitis B, C, and E virus infection

    NARCIS (Netherlands)

    Willemse, S.B.

    2017-01-01

    Chronic viral hepatitis is a major cause of liver-related morbidity and mortality. This thesis describes clinical aspects of hepatitis B, C, and E virus infection. Part I focuses on hepatitis B virus (HBV) infection. This part describes immune responses of patients with acute HBV-infection,

  19. Antiviral therapy during primary simian immunodeficiency virus infection fails to prevent acute loss of CD4+ T cells in gut mucosa but enhances their rapid restoration through central memory T cells.

    Science.gov (United States)

    Verhoeven, David; Sankaran, Sumathi; Silvey, Melanie; Dandekar, Satya

    2008-04-01

    Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.

  20. Treatment Effectiveness of Amantadine Against Dengue Virus Infection.

    Science.gov (United States)

    Lin, Chieh-Cheng; Chen, Wen-Ching

    2016-12-05

    BACKGROUND About 400 million cases of dengue, a mosquito-borne disease, are reported annually, but no drug is yet available for treatment. In 1988, at Feng Lin Clinic, Taiwan, we encountered about 10,000 cases and tested various drugs before confirming an antiviral effect of amantadine against dengue virus in vitro. After we administered amantadine to patients for 1-2 days, most achieved full remission. None experienced potentially life-threatening dengue hemorrhagic fever or dengue shock syndrome. Herein, we present 34 cases from recent clinical experience that show amantadine's unusual effect against dengue virus infection. CASE REPORT We divided 34 patients with symptoms of dengue fever, confirmed by a screening test, into 3 groups: 6 Category 1 patients received amantadine at onset, 21 Category 2 patients received amantadine within 2-6 days, and 7 Contrast group patients received no amantadine because they visited other clinics or were admitted to a large hospital. When Category 1 patients were treated with amantadine 100 mg 3 times per day, all symptoms dramatically subsided within 1-2 days. In Category 2 patients, most symptoms diminished within 1-2 days after starting the same regimen. In the Contrast group, all symptoms persisted 7 days after onset. White blood cell and platelet counts in Category 1 and 2 patients recovered to normal range, but remained below low normal in the Contrast group. CONCLUSIONS Amantadine is effective and should be given as soon as possible to stop the disease course if dengue fever is confirmed through screening or clinical signs and symptoms. A well-designed larger sample study is warranted to test this effectiveness.

  1. Mitigating Prenatal Zika Virus Infection in the Americas.

    Science.gov (United States)

    Ndeffo-Mbah, Martial L; Parpia, Alyssa S; Galvani, Alison P

    2016-10-18

    Because of the risk for Zika virus infection in the Americas and the links between infection and microcephaly, other serious neurologic conditions, and fetal death, health ministries across the region have advised women to delay pregnancy. However, the effectiveness of this policy in reducing prenatal Zika virus infection has yet to be quantified. To evaluate the effectiveness of pregnancy-delay policies on the incidence and prevalence of prenatal Zika virus infection. Vector-borne Zika virus transmission model fitted to epidemiologic data from 2015 to 2016 on Zika virus infection in Colombia. Colombia, August 2015 to July 2017. Population of Colombia, stratified by sex, age, and pregnancy status. Recommendations to delay pregnancy by 3, 6, 9, 12, or 24 months, at different levels of adherence. Weekly and cumulative incidence of prenatal infections and microcephaly cases. With 50% adherence to recommendations to delay pregnancy by 9 to 24 months, the cumulative incidence of prenatal Zika virus infections is likely to decrease by 17% to 44%, whereas recommendations to delay pregnancy by 6 or fewer months are likely to increase prenatal infections by 2% to 7%. This paradoxical exacerbation of prenatal Zika virus exposure is due to an elevated risk for pregnancies to shift toward the peak of the outbreak. Sexual transmission was not explicitly accounted for in the model because of limited data but was implicitly subsumed within the overall transmission rate, which was calibrated to observed incidence. Pregnancy delays can have a substantial effect on reducing cases of microcephaly but risks exacerbating the Zika virus outbreak if the duration is not sufficient. Duration of the delay, population adherence, and the timing of initiation of the intervention must be carefully considered. National Institutes of Health.

  2. The "Knife-Cut Sign" Revisited: A Distinctive Presentation of Linear Erosive Herpes Simplex Virus Infection in Immunocompromised Patients.

    Science.gov (United States)

    Cohen, Philip R

    2015-10-01

    The "knife-cut sign" is a distinctive presentation of linear erosive herpes simplex virus infection in immunocompromised patients. To describe a man whose herpes simplex virus infection-related skin lesions demonstrated the "knife-cut sign" and to review the characteristics of reported immunosuppressed individuals with "knife-cut" cutaneous herpes simplex virus lesions. A man with multiple myeloma and post-stem cell transplant cutaneous graft-versus-host disease managed with systemic prednisone and sirolimus developed disseminated cutaneous herpes simplex virus infection with virus-associated linear ulcers of the inguinal folds and the area between his ear and scalp; the lesions at both sites had a distinctive "knife-cut" appearance. Using the PubMed database, an extensive literature search was performed on herpes simplex virus, immunocompromised patient, and "knife-cut sign". Herpes simplex virus infection-associated skin lesions that demonstrate the "knife-cut sign" present in patients who are immunosuppressed secondary to either an underlying medical condition or a systemic therapy or both. The distinctive virus-related cutaneous lesions appear as linear ulcers and fissures in intertriginous areas, such as the folds in the inguinal area, the vulva, and the abdomen; in addition, other sites include beneath the breast, within the gluteal cleft, and the area between the ear and the scalp. Not only herpes simplex virus-2, but also herpes simplex virus-1 has been observed as the causative viral serotype; indeed, herpes simplex virus-1 has been associated with genital and inframammary lesions in addition to those above the neck. Direct fluorescent antibody testing is a rapid method for confirming the clinically suspected viral infection; however, since false-negative direct fluorescent antibody testing occurred in some of the patients, it may be prudent to also perform viral cultures and possibly lesional skin biopsies to establish the diagnosis. The herpes simplex

  3. Significant Depletion of CD4+ T Cells Occurs in the Oral Mucosa during Simian Immunodeficiency Virus Infection with the Infected CD4+ T Cell Reservoir Continuing to Persist in the Oral Mucosa during Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Jeffy George

    2015-01-01

    Full Text Available Human and simian immunodeficiency virus (HIV and SIV infections are characterized by manifestation of numerous opportunistic infections and inflammatory conditions in the oral mucosa. The loss of CD4+ T cells that play a critical role in maintaining mucosal immunity likely contributes to this process. Here we show that CD4+ T cells constitute a minor population of T cells in the oral mucosa and display a predominantly central memory phenotype mirroring other mucosal sites such as the rectal mucosa. Chronic SIV infection was associated with a near total depletion of CD4+ T cells in the oral mucosa that appear to repopulate during antiretroviral therapy (ART. Repopulating CD4+ T cells harbored a large fraction of Th17 cells suggesting that ART potentially reconstitutes oral mucosal immunity. However, a minor fraction of repopulating CD4+ T cells harbored SIV DNA suggesting that the viral reservoir continues to persist in the oral mucosa during ART. Therapeutic approaches aimed at obtaining sustainable CD4+ T cell repopulation in combination with strategies that can eradicate the latent viral reservoir in the oral mucosa are essential for better oral health and long-term outcome in HIV infected patients.

  4. Chandipura Virus infection in mice: the role of toll like receptor 4 in pathogenesis

    Directory of Open Access Journals (Sweden)

    Anukumar Balakrishnan

    2012-05-01

    Full Text Available Abstract Background The susceptibility of mice and humans to Chandipura virus infection is age-dependent. Upon experimental infection, mice secrete significant amounts of proinflammatory cytokines. Similarly, children who recover from natural infection with the virus show significant amounts of TNF-α production, suggesting that innate immunity plays a major role in the response to Chandipura virus. Toll-like receptors (TLR are key host molecules involved in innate immune responses in infections. Therefore, the aim of this study was to examine the role of TLR in the response to Chandipura virus infection. Methods The mouse monocyte-macrophage cell line, RAW 264.7, and C3H/HeJ mice were used as models. Micro array techniques were used to identify the type of TLR involved in the response to infection. The results were validated by examining TLR expression using flow cytometry and by measuring the levels of proinflammatory cytokines and nitric oxide (NO in the culture supernatants using bead assays and the Griess method, respectively. The pathogenic role of Toll-like receptor 4 (TLR4 was studied in a TLR4 mutant strain of mice -C3H/HeJ and the results compared with those from wild-type mice- C3H/CaJ. The pathogenic effects of NO were studied by treating experimentally infected mice with the NO inhibitor, aminoguanidine (AG. Results The micro array results showed that TLR4 was regulated after Chandipura virus infection. At high multiplicities of infection (10 MOI, RAW cells up- regulated cell surface expression of TLR4 and secreted significant amounts of TNF-α, MCP-1, IL-10 and IL-12 and NO. The survival rate of C3H/HeJ mice was higher than those of wild-type C3H/CaJ mice. The survived C3H/HeJ mice secreted significant quantity of MCP-1 and IFN-γ cytokines and cleared virus from brain. Similarly, the survival rate of AG-treated mice was higher than those of the untreated controls. Conclusions Chandipura virus regulates TLR4, which leads to the

  5. Antibody titers in animal bite victims after post exposure vaccination with intradermally administered purified vero cell rabies vaccine using modified thai red cross regimen

    International Nuclear Information System (INIS)

    Hafeez, S.; Tahir, Z.

    2014-01-01

    To determine the seroconversion following rabies vaccination by intradermal route in cases of animal bite attending Anti rabies center, Lahore for post exposure prophylaxis. Study Design: Cross sectional descriptive study. Place and Duration: Antirabies center, Birdwood road Lahore, Microbiology laboratory, office of Bacteriologist, Government of Punjab, Lahore. Patients and Methods: Victims of all ages and both sexes having exposure with suspected rabid animal within 24 - 72 hours were included, fulfilling inclusion and exclusion criteria, over 3 months period from February to April 20. Patients of Category II and III wounds were included. Purified vero cell vaccine (PVR V) with antigenic content> 2.5 ml was used for intradermal vaccination according to modified Thai Red Cross regimen (2-2-2-0-2). Each victim received 0.1 ml intradermal dose on each deltoid on day 0, 3, 7 and 28th day of bite. Blood samples from victims were taken on day 0, 14 and 35. Antibody titers were estimated by ELISA kit. Results: Fifty cases were studied including 20 children. Male female ratio was 4:1. Optimum serocon version (> 0.5 IU/ml) was achieved in all cases by day 14. Antibody levels increased further (> 4 IV/ml) in 92% cases on day 35. Geometric mean titers were 3.2 IU/ml and 6.2 IU/ml on day 14 and 35 respectively. Conclusion: Intradermal route for cell culture rabies vaccine for postexposure prophylaxis in animal bite victims was efficacious and safe. The smaller dosage of vaccine was economically affordable by patients in referral centers. (author)

  6. T-cell effector function and unresponsiveness in the murine lymphocytic choriomeningitis virus infection. II. Delayed-type hypersensitivity unresponsiveness reflects a defective differentiation from TD precursor to effector cell

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Marker, O

    1986-01-01

    is markedly depressed in high-dose mice, suggesting an association between DTH and virus clearance. When virus-primed memory cells are transferred, DTH reactivity as well as virus-clearing capacity is restored in high-dose mice, indicating that the virus is not present in a changed or concealed form. The role...... transfer a DTH response emerged, indicating that TD priming had taken place in high-dose animals. Pre-irradiation of high-dose primed cells markedly inhibited the antiviral activity as well as DTH, suggesting that upon transfer to naive recipients TD precursors from high-dose mice would proliferate...... precursor into effector cells which is reversible upon transfer to a less antigen loaded environment. Furthermore, it is suggested that TD function is crucial to the process of virus clearance....

  7. Autopsy and Postmortem Studies Are Concordant: Pathology of Zika Virus Infection Is Neurotropic in Fetuses and Infants With Microcephaly Following Transplacental Transmission.

    Science.gov (United States)

    Schwartz, David A

    2017-01-01

    -Pathology studies have been important in concluding that Zika virus infection occurring in pregnant women can result in vertical transmission of the agent from mother to fetus. Fetal and infant autopsies have provided crucial direct evidence that Zika virus can infect an unborn child, resulting in microcephaly, other malformations, and, in some cases, death. -To better understand the etiologic role and mechanism(s) of Zika virus in causing birth defects such as microcephaly, this communication analyzes the spectrum of clinical and autopsy studies reported from fetuses and infants who developed intrauterine Zika virus infection, and compares these findings with experimental data related to Zika virus infection. -Retrospective analysis of reported clinical, autopsy, pathology, and related postmortem studies from 9 fetuses and infants with intrauterine Zika virus infection and microcephaly. -All fetuses and infants examined demonstrated an overlapping spectrum of gross and microscopic neuropathologic abnormalities. Direct cytopathic effects of infection by the Zika virus were confined to the brain; in cases where other organs were evaluated, no direct viral effects were identified. -There is concordance of the spectrum of brain damage, reinforcing previous data indicating that the Zika virus has a strong predilection for cells of the fetal central nervous system following vertical transmission. The occurrence of additional congenital abnormalities suggests that intrauterine brain damage from Zika virus interferes with normal fetal development, resulting in fetal akinesia. Experimental in vitro and in vivo studies of Zika virus infection corroborate the human autopsy findings of neural specificity.

  8. Secondary Hemophagocytic Syndrome Associated with Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    S. R. Rodionovskaya

    2015-01-01

    Full Text Available Hemophagocytic syndrome is one of the complications of herpes virus infections. Here, we describe the case of a 8—year-old male with secondary hemophagocytic syndrome. The disease was diagnosed in the early stages. The patient received treatment with dexamethasone, intravenous immunoglobulin, which has led to a weakening of the ignition and the suppression of the disease with rapid treatment.

  9. A Novel Type of Polyhedral Viruses Infecting Hyperthermophilic Archaea.

    Science.gov (United States)

    Liu, Ying; Ishino, Sonoko; Ishino, Yoshizumi; Pehau-Arnaudet, Gérard; Krupovic, Mart; Prangishvili, David

    2017-07-01

    Encapsidation of genetic material into polyhedral particles is one of the most common structural solutions employed by viruses infecting hosts in all three domains of life. Here, we describe a new virus of hyperthermophilic archaea, Sulfolobus polyhedral virus 1 (SPV1), which condenses its circular double-stranded DNA genome in a manner not previously observed for other known viruses. The genome complexed with virion proteins is wound up sinusoidally into a spherical coil which is surrounded by an envelope and further encased by an outer polyhedral capsid apparently composed of the 20-kDa virion protein. Lipids selectively acquired from the pool of host lipids are integral constituents of the virion. None of the major virion proteins of SPV1 show similarity to structural proteins of known viruses. However, minor structural proteins, which are predicted to mediate host recognition, are shared with other hyperthermophilic archaeal viruses infecting members of the order Sulfolobales The SPV1 genome consists of 20,222 bp and contains 45 open reading frames, only one-fifth of which could be functionally annotated. IMPORTANCE Viruses infecting hyperthermophilic archaea display a remarkable morphological diversity, often presenting architectural solutions not employed by known viruses of bacteria and eukaryotes. Here we present the isolation and characterization of Sulfolobus polyhedral virus 1, which condenses its genome into a unique spherical coil. Due to the original genomic and architectural features of SPV1, the virus should be considered a representative of a new viral family, "Portogloboviridae." Copyright © 2017 American Society for Microbiology.

  10. The Aedes aegypti toll pathway controls dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Zhiyong Xi

    2008-07-01

    Full Text Available Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.

  11. Virus Infections on Prion Diseased Mice Exacerbate Inflammatory Microglial Response

    Science.gov (United States)

    Lins, Nara; Mourão, Luiz; Trévia, Nonata; Passos, Aline; Farias, José Augusto; Assunção, Jarila; Bento-Torres, João; Consentino Kronka Sosthenes, Marcia; Diniz, José Antonio Picanço; Vasconcelos, Pedro Fernando da Costa

    2016-01-01

    We investigated possible interaction between an arbovirus infection and the ME7 induced mice prion disease. C57BL/6, females, 6-week-old, were submitted to a bilateral intrahippocampal injection of ME7 prion strain (ME7) or normal brain homogenate (NBH). After injections, animals were organized into two groups: NBH (n = 26) and ME7 (n = 29). At 15th week after injections (wpi), animals were challenged intranasally with a suspension of Piry arbovirus 0.001% or with NBH. Behavioral changes in ME7 animals appeared in burrowing activity at 14 wpi. Hyperactivity on open field test, errors on rod bridge, and time reduction in inverted screen were detected at 15th, 19th, and 20th wpi respectively. Burrowing was more sensitive to earlier hippocampus dysfunction. However, Piry-infection did not significantly affect the already ongoing burrowing decline in the ME7-treated mice. After behavioral tests, brains were processed for IBA1, protease-resistant form of PrP, and Piry virus antigens. Although virus infection in isolation did not change the number of microglia in CA1, virus infection in prion diseased mice (at 17th wpi) induced changes in number and morphology of microglia in a laminar-dependent way. We suggest that virus infection exacerbates microglial inflammatory response to a greater degree in prion-infected mice, and this is not necessarily correlated with hippocampal-dependent behavioral deficits. PMID:28003864

  12. Transmission potential of Zika virus infection in the South Pacific.

    Science.gov (United States)

    Nishiura, Hiroshi; Kinoshita, Ryo; Mizumoto, Kenji; Yasuda, Yohei; Nah, Kyeongah

    2016-04-01

    Zika virus has spread internationally through countries in the South Pacific and Americas. The present study aimed to estimate the basic reproduction number, R0, of Zika virus infection as a measurement of the transmission potential, reanalyzing past epidemic data from the South Pacific. Incidence data from two epidemics, one on Yap Island, Federal State of Micronesia in 2007 and the other in French Polynesia in 2013-2014, were reanalyzed. R0 of Zika virus infection was estimated from the early exponential growth rate of these two epidemics. The maximum likelihood estimate (MLE) of R0 for the Yap Island epidemic was in the order of 4.3-5.8 with broad uncertainty bounds due to the small sample size of confirmed and probable cases. The MLE of R0 for French Polynesia based on syndromic data ranged from 1.8 to 2.0 with narrow uncertainty bounds. The transmissibility of Zika virus infection appears to be comparable to those of dengue and chikungunya viruses. Considering that Aedes species are a shared vector, this finding indicates that Zika virus replication within the vector is perhaps comparable to dengue and chikungunya. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Effects of acute respiratory virus infection upon tracheal mucous transport

    International Nuclear Information System (INIS)

    Gerrard, C.S.; Levandowski, R.A.; Gerrity, T.R.; Yeates, D.B.; Klein, E.

    1985-01-01

    Tracheal mucous velocity was measured in 13 healthy non-smokers using an aerosol labelled with /sup 99m/Tc and a multidetector probe during respiratory virus infections. The movement of boluses of tracheal mucous were either absent or reduced in number in five subjects with myxovirus infection (four influenza and one respiratory syncytial virus) within 48 hr of the onset of symptoms and in four subjects 1 wk later. One subject with influenza still had reduced bolus formation 12-16 wk after infection. Frequent coughing was a feature of those subjects with absent tracheal boluses. In contrast, four subjects with rhinovirus infection had normal tracheal mucous velocity at 48 hr after the onset of symptoms (4.1 +/- 1.3 mm/min). Tracheal mucous velocity was also normal (4.6 +/- 1.1 mm/min) in four subjects in whom no specific viral agent could be defined but had typical symptomatology of respiratory viral infection. During health tracheal mucous velocity was normal (4.8 +/- 1.6 mm/min) in the eleven subjects who had measurements made. Disturbances in tracheal mucous transport during virus infection appear to depend upon the type of virus and are most severe in influenza A and respiratory syncytial virus infection

  14. Protective Effect of Dietary Xylitol on Influenza A Virus Infection

    Science.gov (United States)

    Yin, Sun Young; Kim, Hyoung Jin; Kim, Hong-Jin

    2014-01-01

    Xylitol has been used as a substitute for sugar to prevent cavity-causing bacteria, and most studies have focused on its benefits in dental care. Meanwhile, the constituents of red ginseng (RG) are known to be effective in ameliorating the symptoms of influenza virus infection when they are administered orally for 14 days. In this study, we investigated the effect of dietary xylitol on influenza A virus infection (H1N1). We designed regimens containing various fractions of RG (RGs: whole extract, water soluble fraction, saponin and polysaccharide) and xylitol, and combination of xylitol with the RG fractions. Mice received the various combinations orally for 5 days prior to lethal influenza A virus infection. Almost all the mice died post challenge when xylitol or RGs were administered separately. Survival was markedly enhanced when xylitol was administered along with RGs, pointing to a synergistic effect. The effect of xylitol plus RG fractions increased with increasing dose of xylitol. Moreover, dietary xylitol along with the RG water soluble fraction significantly reduced lung virus titers after infection. Therefore, we suggest that dietary xylitol is effective in ameliorating influenza-induced symptoms when it is administered with RG fractions, and this protective effect of xylitol should be considered in relation to other diseases. PMID:24392148

  15. Protective effect of dietary xylitol on influenza A virus infection.

    Directory of Open Access Journals (Sweden)

    Sun Young Yin

    Full Text Available Xylitol has been used as a substitute for sugar to prevent cavity-causing bacteria, and most studies have focused on its benefits in dental care. Meanwhile, the constituents of red ginseng (RG are known to be effective in ameliorating the symptoms of influenza virus infection when they are administered orally for 14 days. In this study, we investigated the effect of dietary xylitol on influenza A virus infection (H1N1. We designed regimens containing various fractions of RG (RGs: whole extract, water soluble fraction, saponin and polysaccharide and xylitol, and combination of xylitol with the RG fractions. Mice received the various combinations orally for 5 days prior to lethal influenza A virus infection. Almost all the mice died post challenge when xylitol or RGs were administered separately. Survival was markedly enhanced when xylitol was administered along with RGs, pointing to a synergistic effect. The effect of xylitol plus RG fractions increased with increasing dose of xylitol. Moreover, dietary xylitol along with the RG water soluble fraction significantly reduced lung virus titers after infection. Therefore, we suggest that dietary xylitol is effective in ameliorating influenza-induced symptoms when it is administered with RG fractions, and this protective effect of xylitol should be considered in relation to other diseases.

  16. Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.

    Science.gov (United States)

    Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L

    2014-01-01

    Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.

  17. Neopterin and human immunodeficiency virus infection

    DEFF Research Database (Denmark)

    Hofmann, B

    1993-01-01

    Neopterin concentrations increase in serum and urine within the first week of infection with HIV and remain increased throughout the infection. In particular, changes in neopterin concentration precede decreases in CD4 T cell numbers and the development of clinical disease, and they can be used t...

  18. Rabies: An overview

    Directory of Open Access Journals (Sweden)

    Tarun Kumar Dutta

    2014-01-01

    Full Text Available Rabies is a fatal disease caused by rabies virus, a neurotropic virus and a prototype of Lyssavirus of Rhabdoviridae family. It is transmitted to human beings through infected saliva of dogs and cats during bite. Dog is the cause of more than 90% of human rabies in India. The incubation period is 4-8 weeks (but it may vary from 5 days to 7 years. There are two clinical types of rabies - encephalitic (furious and paralytic (dumb types. In the encephalitic (furious form, the principal malfunction is in the brain stem and limbic system. Patient has hydrophobia in the full-blown form, but the mind remains clear till the end. Death occurs within a week after the onset of symptoms. Paralytic rabies resembles Guillain-Barre syndrome. Diagnosis is mostly clinical. However, direct fluorescent antibody test is used to identify the antigen in skin biopsy from the nape of neck. In the postmortem specimen, demonstration of Negri bodies in the brain confirms the diagnosis. Anti-rabies vaccine is used for pre- and post-exposure prophylaxis. The commonly used intramuscular (IM regimen is being superseded by intradermal (ID vaccine because it makes the treatment economical. Whereas touching of animal or lick on intact skin does not require vaccination, any transdermal bite with bleeding requires immediate administration of rabies immunoglobulin (RIG and simultaneous vaccination with a tissue culture vaccine (TCV. Minor abrasion without bleeding may require only vaccination and no RIG. Rabies human monoclonal antibody (RMAb is the newest entry in the prophylaxis of rabies which may ultimately replace RIG. Prognosis is grave since there are just six reports of survivors. Treatment is mainly palliative with heavy sedation and/or therapeutic coma (Milwaukee protocol.

  19. Immunodomination during peripheral vaccinia virus infection.

    Directory of Open Access Journals (Sweden)

    Leon C W Lin

    Full Text Available Immunodominance is a fundamental property of CD8(+ T cell responses to viruses and vaccines. It had been observed that route of administration alters immunodominance after vaccinia virus (VACV infection, but only a few epitopes were examined and no mechanism was provided. We re-visited this issue, examining a panel of 15 VACV epitopes and four routes, namely intradermal (i.d., subcutaneous (s.c., intraperitoneal (i.p. and intravenous (i.v. injection. We found that immunodominance is sharpened following peripheral routes of infection (i.d. and s.c. compared with those that allow systemic virus dissemination (i.p. and i.v.. This increased immunodominance was demonstrated with native epitopes of VACV and with herpes simplex virus glycoprotein B when expressed from VACV. Responses to some subdominant epitopes were altered by as much as fourfold. Tracking of virus, examination of priming sites, and experiments restricting virus spread showed that priming of CD8(+ T cells in the spleen was necessary, but not sufficient to broaden responses. Further, we directly demonstrated that immunodomination occurs more readily when priming is mainly in lymph nodes. Finally, we were able to reduce immunodominance after i.d., but not i.p. infection, using a VACV expressing the costimulators CD80 (B7-1 and CD86 (B7-2, which is notable because VACV-based vaccines incorporating these molecules are in clinical trials. Taken together, our data indicate that resources for CD8(+ T cell priming are limiting in local draining lymph nodes, leading to greater immunodomination. Further, we provide evidence that costimulation can be a limiting factor that contributes to immunodomination. These results shed light on a possible mechanism of immunodomination and highlight the need to consider multiple epitopes across the spectrum of immunogenicities in studies aimed at understanding CD8(+ T cell immunity to viruses.

  20. Immunology and Pathology of Arena Virus Infections.

    Science.gov (United States)

    1992-04-15

    the 15 guinea pigs infected with the attenuated strain (PIC3739) had measurable TNF at any time during the course. Mean serum TNF levels for adPIC...inherent replication advantage in adPIC or increased efficiency of natural immunity against the attenuated strain PIC3739. Significant changes in...Direct infection of T cells may cause frank cytolysis with induction of lymphopenia, as in parvovirus or HIV-l infections; alternatively, in non

  1. Screening Criteria for Ophthalmic Manifestations of Congenital Zika Virus Infection.

    Science.gov (United States)

    Zin, Andrea A; Tsui, Irena; Rossetto, Julia; Vasconcelos, Zilton; Adachi, Kristina; Valderramos, Stephanie; Halai, Umme-Aiman; Pone, Marcos Vinicius da Silva; Pone, Sheila Moura; Silveira Filho, Joel Carlos Barros; Aibe, Mitsue S; da Costa, Ana Carolina C; Zin, Olivia A; Belfort, Rubens; Brasil, Patricia; Nielsen-Saines, Karin; Moreira, Maria Elisabeth Lopes

    2017-09-01

    Current guidelines recommend screening eye examinations for infants with microcephaly or laboratory-confirmed Zika virus infection but not for all infants potentially exposed to Zika virus in utero. To evaluate eye findings in a cohort of infants whose mothers had polymerase chain reaction-confirmed Zika virus infection during pregnancy. In this descriptive case series performed from January 2 through October 30, 2016, infants were examined from birth to 1 year of age by a multidisciplinary medical team, including a pediatric ophthalmologist, from Fernandes Figueira Institute, a Ministry of Health referral center for high-risk pregnancies and infectious diseases in children in Rio de Janeiro, Brazil. Mother-infant pairs from Rio de Janeiro, Brazil, who presented with suspected Zika virus infection during pregnancy were referred to our institution and had serum, urine, amniotic fluid, or placenta samples tested by real-time polymerase chain reaction for Zika virus. Description of eye findings, presence of microcephaly or other central nervous system abnormalities, and timing of infection in infants with confirmed Zika virus during pregnancy. Eye abnormalities were correlated with central nervous system findings, microcephaly, and the timing of maternal infection. Of the 112 with polymerase chain reaction-confirmed Zika virus infection in maternal specimens, 24 infants (21.4%) examined had eye abnormalities (median age at first eye examination, 31 days; range, 0-305 days). Ten infants (41.7%) with eye abnormalities did not have microcephaly, and 8 (33.3%) did not have any central nervous system findings. Fourteen infants with eye abnormalities (58.3%) were born to women infected in the first trimester, 8 (33.3%) in the second trimester, and 2 (8.3%) in the third trimester. Optic nerve and retinal abnormalities were the most frequent findings. Eye abnormalities were statistically associated with microcephaly (odds ratio [OR], 19.1; 95% CI, 6.0-61.0), other central

  2. Comparative costs of the Mouse Inoculation Test (MIT) and Virus Isolation in Cell Culture (VICC) for use in rabies diagnosis in Brazil.

    Science.gov (United States)

    Bones, Vanessa C; Gameiro, Augusto H; Castilho, Juliana G; Molento, Carla F M

    2015-05-01

    The decision to use laboratory animals rather than in vitro methods is frequently based on the financial costs involved, so the objective of our study was to compare the costs of performing the Mouse Inoculation Test (MIT) and Virus Isolation in Cell Culture (VICC) for use in rabies diagnosis in Brazil. Based on observations of laboratory routines at the Pasteur Institute, São Paulo, we listed the fixed cost (FC) and variable cost (VC) items necessary to perform both tests. Considering that 200 MITs are equivalent to 350 VICC assays, in terms of facilities and staff-hours needed per month, we calculated, for both tests, the average total cost per sample, the costs of the implementation of the laboratory structure, and the costs of routine use. With regard to absolute values, the total cost was mainly influenced by FC items, as they represented 60% of the cost for the MIT and 86% of the cost for VICC. A sample analysed by the MIT costs around 205% more than one analysed by using VICC. The MIT costs 74% and 406% more than VICC, when implementation costs and routine use per month, respectively, are taken into account. Our results can assist in the resolution of costing disputes that could hinder the replacement of animals for rabies diagnosis in Brazil. The method demonstrated here might also be useful for cost comparisons in other situations where animal use still continues when validated alternatives exist. 2015 FRAME.

  3. Neurological complications of Zika virus infection.

    Science.gov (United States)

    Carod-Artal, Francisco Javier

    2018-04-26

    Zika virus (ZIKV) disease is a vector-borne infectious disease transmitted by Aedes mosquitoes. Recently, ZIKV has caused outbreaks in most American countries. Areas covered: Publications about neurological complications of ZIKV infection retrieved from pubmed searchers were reviewed, and reference lists and relevant articles from review articles were also examined. Vertical/intrauterine transmission leads to congenital infection and causes microcephaly and congenital ZIKV syndrome. ZIKV preferentially infects human neural progenitor cells and triggers cell apoptosis. ZIKV RNA has been identified in foetal brain tissue and brains of microcephalic infants who died; amniotic fluid and placentas of pregnant mothers; and umbilical cord, cerebro-spinal fluid and meninges of newborns. The increase in the number of Guillain-Barre syndrome (GBS) cases during the ZIKV outbreak in the Americas provides epidemiological evidence for the link between ZIKV infection and GBS. Less frequently reported ZIKV neurological complications include encephalitis/meningoencephalitis, acute disseminated encephalomyelitis, myelitis, cerebrovascular complications (ischemic infarction; vasculopathy), seizures and encephalopathy, sensory polyneuropathy and sensory neuronopathy. Analysis of GBS incidence could serve as an epidemiological 'marker' or sentinel for ZIKV disease and other neurological complications associated to ZIKV. Expert commentary: An expanding spectrum of neurological complications associated with ZIKV infection is being recognised.

  4. Oral manifestations of hepatitis C virus infection

    Science.gov (United States)

    Carrozzo, Marco; Scally, Kara

    2014-01-01

    Extrahepatic manifestations (EHMs) of hepatitis C virus (HCV) infection can affect a variety of organ systems with significant morbidity and mortality. Some of the most frequently reported EHM of HCV infection, involve the oral region predominantly or exclusively. Oral lichen planus (OLP) is a chronic inflammatory condition that is potentially malignant and represents cell-mediated reaction to a variety of extrinsic antigens, altered self-antigens, or super antigens. Robust epidemiological evidence support the link between OLP and HCV. As the virus may replicate in the oral mucosa and attract HCV-specific T lymphocytes, HCV may be implicated in OLP pathogenesis. Sjögren syndrome (SjS) is an autoimmune exocrinopathy, characterized by dryness of the mouth and eyes and a multitude of other systemic signs and symptoms. SjS patients have also an increased risk of non-Hodgkin lymphoma. Patients with chronic hepatitis C do frequently have histological signs of Sjögren-like sialadenitis with mild or even absent clinical symptoms. However, it is still unclear if HCV may cause a disease mimicking SjS or it is directly responsible for the development of SjS in a specific subset of patients. Oral squamous cell carcinoma is the most common oral malignant tumour and at least in some part of the world could be linked to HCV. PMID:24976694

  5. Losartan and enalapril decrease viral absorption and interleukin 1 beta production by macrophages in an experimental dengue virus infection.

    Science.gov (United States)

    Hernández-Fonseca, Juan Pablo; Durán, Anyelo; Valero, Nereida; Mosquera, Jesús

    2015-11-01

    The role of angiotensin II (Ang II) in dengue virus infection remains unknown. The aim of this study was to determine the effect of losartan, an antagonist of the angiotensin II type 1 receptor (AT1 receptor), and enalapril, an inhibitor of angiotensin I-converting enzyme (ACE), on viral antigen expression and IL-1β production in peritoneal macrophages infected with dengue virus type 2. Mice treated with losartan or enalapril and untreated controls were infected intraperitoneally with the virus, and macrophages were analyzed. Infection resulted in increased IL-1β production and a high percentage of cells expressing viral antigen, and this was decreased by treatment with anti-Ang II drugs, suggesting a role for Ang II in dengue virus infection.

  6. Activity of andrographolide against chikungunya virus infection.

    Science.gov (United States)

    Wintachai, Phitchayapak; Kaur, Parveen; Lee, Regina Ching Hua; Ramphan, Suwipa; Kuadkitkan, Atichat; Wikan, Nitwara; Ubol, Sukathida; Roytrakul, Sittiruk; Chu, Justin Jang Hann; Smith, Duncan R

    2015-09-18

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that has recently engendered large epidemics around the world. There is no specific antiviral for treatment of patients infected with CHIKV, and development of compounds with significant anti-CHIKV activity that can be further developed to a practical therapy is urgently required. Andrographolide is derived from Andrographis paniculata, a herb traditionally used to treat a number of conditions including infections. This study sought to determine the potential of andrographolide as an inhibitor of CHIKV infection. Andrographolide showed good inhibition of CHIKV infection and reduced virus production by approximately 3log10 with a 50% effective concentration (EC50) of 77 μM without cytotoxicity. Time-of-addition and RNA transfection studies showed that andrographolide affected CHIKV replication and the activity of andrographolide was shown to be cell type independent. This study suggests that andrographolide has the potential to be developed further as an anti-CHIKV therapeutic agent.

  7. Changing clinical scenario in Chandipura virus infection

    Directory of Open Access Journals (Sweden)

    A B Sudeep

    2016-01-01

    Phlebotomine sandflies are implicated as vectors due to their predominance in endemic areas, repeated virus isolations and their ability to transmit the virus by transovarial and venereal routes. Significant contributions have been made in the development of diagnostics and prophylactics, vaccines and antivirals. Two candidate vaccines, viz. a recombinant vaccine and a killed vaccine and siRNAs targeting P and M proteins have been developed and are awaiting clinical trials. Rhabdomyosarcoma and Phlebotomus papatasi cell lines as well as embryonated chicken eggs have been found useful in virus isolation and propagation. Despite these advancements, CHPV has been a major concern in Central India and warrants immediate attention from virologists, neurologists, paediatricians and the government for containing the virus.

  8. Human immunodeficiency virus infection and the liver.

    Science.gov (United States)

    Crane, Megan; Iser, David; Lewin, Sharon R

    2012-03-27

    Liver disease in human immunodeficiency virus (HIV)-infected individuals encompasses the spectrum from abnormal liver function tests, liver decompensation, with and without evidence of cirrhosis on biopsy, to non-alcoholic liver disease and its more severe form, non-alcoholic steatohepatitis and hepatocellular cancer. HIV can infect multiple cells in the liver, leading to enhanced intrahepatic apoptosis, activation and fibrosis. HIV can also alter gastro-intestinal tract permeability, leading to increased levels of circulating lipopolysaccharide that may have an impact on liver function. This review focuses on recent changes in the epidemiology, pathogenesis and clinical presentation of liver disease in HIV-infected patients, in the absence of co-infection with hepatitis B virus or hepatitis C virus, with a specific focus on issues relevant to low and middle income countries.

  9. Immune barriers of Ebola virus infection.

    Science.gov (United States)

    McElroy, Anita K; Mühlberger, Elke; Muñoz-Fontela, César

    2018-02-01

    Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Polysulfonate suramin inhibits Zika virus infection.

    Science.gov (United States)

    Tan, Chee Wah; Sam, I-Ching; Chong, Wei Lim; Lee, Vannajan Sanghiran; Chan, Yoke Fun

    2017-07-01

    Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log 10  PFU viral reduction with IC 50 value of ∼2.5-5 μg/ml (1.93 μM-3.85 μM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection.

    Science.gov (United States)

    Zhang, Kun; Xu, Wei Wei; Zhang, Zhaowei; Liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-05-02

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.

  12. Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency.

    Directory of Open Access Journals (Sweden)

    Max Schelker

    2016-10-01

    Full Text Available After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. There, the viral glycoprotein hemagglutinin (HA triggers fusion between endosomal and viral membrane, a critical step that leads to release of the viral segmented genome destined to reach the cell nucleus. Endosomal maturation is a complex process involving acidification of the endosomal lumen as well as endosome motility along microtubules. While the pH drop is clearly critical for the conformational change and membrane fusion activity of HA, the effect of intracellular transport dynamics on the progress of infection remains largely unclear. In this study, we developed a comprehensive mathematical model accounting for the first steps of influenza virus infection. We calibrated our model with experimental data and challenged its predictions using recombinant viruses with altered pH sensitivity of HA. We identified the time point of virus-endosome fusion and thereby the diffusion distance of the released viral genome to the nucleus as a critical bottleneck for efficient virus infection. Further, we concluded and supported experimentally that the viral RNA is subjected to cytosolic degradation strongly limiting the probability of a successful genome import into the nucleus.

  13. Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks.

    Science.gov (United States)

    Haque, Azizul; Hober, Didier; Blondiaux, Joel

    2015-10-01

    Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Pretreatment of Mice with Oligonucleotide prop5 Protects Them from Influenza Virus Infections

    Directory of Open Access Journals (Sweden)

    Kang Li

    2014-02-01

    Full Text Available Influenza A virus is a successful parasite and requires host factors to complete its life cycle. Prop5 is an antisense oligonucleotide, targeting programmed cell death protein 5 (PDCD5. In this study, we tested the antiviral activity of prop5 against mouse-adapted A/FM/1/47 strain of influenza A virus in a mouse model. Prop5 intranasally administered the mice at dosages of 10 and 20 mg/kg/d at 24 h and 30 min before infection, provided 80% and 100% survival rates and prolonged mean survival days in comparison with influenza virus-infected mice (both p < 0.01. Moreover, viral titres in mice pretreated with prop5, at dose of 10 and 20 mg/kg/d, had declined significantly on day two, four, and six post-infection compared with the yields in infected mice (p < 0.05 or p < 0.01; lung index in mice pretreated with prop5 (20 mg/kg/d had been inhibited on day six post-infection (p < 0.05. Western blotting and immunohistochemistry showed that prop5 could down-regulate the PDCD5 protein expression levels in lung tissues of infected mice. These data indicate that antisense oligonucleotide prop5 is a promising drug for prophylaxis and control influenza virus infections and provides an insight into the host-pathogen interaction.

  15. Rabies in Captive Deer

    Centers for Disease Control (CDC) Podcasts

    2012-04-30

    Dr. Brett Petersen, a medical officer at CDC, discusses rabies in captive deer.  Created: 4/30/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/30/2012.

  16. Rabies in Transplant Recipients

    Centers for Disease Control (CDC) Podcasts

    2016-09-19

    Dr. Richard Franka, a CDC scientist, discusses rabies in organ transplant recipients.  Created: 9/19/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 9/19/2016.

  17. Anisotropic Rabi model

    OpenAIRE

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-01-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of th...

  18. Neuromuscular Manifestations of West Nile Virus Infection

    Directory of Open Access Journals (Sweden)

    A. Arturo eLeis

    2012-03-01

    Full Text Available The most common neuromuscular manifestation of West Nile virus (WNV infection is a poliomyelitis syndrome with asymmetric paralysis variably involving one (monoparesis to four limbs (quadriparesis, with or without brainstem involvement and respiratory failure. This syndrome of acute flaccid paralysis may occur without overt fever or meningoencephalitis. Although involvement of anterior horn cells in the spinal cord and motor neurons in the brainstem are the major sites of pathology responsible for neuromuscular signs, inflammation also may involve skeletal or cardiac muscle (myositis, myocarditis, motor axons (polyradiculitis, peripheral nerve (Guillain-Barré syndrome, brachial plexopathy. In addition, involvement of spinal sympathetic neurons and ganglia provides a plausible explanation for autonomic instability seen in some patients. Many patients also experience prolonged subjective generalized weakness and disabling fatigue. Despite recent evidence that WNV may persist long term in the central nervous system or periphery in animals, the evidence in humans is controversial. WNV persistence would be of great concern in immunosuppressed patients or in those with prolonged or recurrent symptoms. Support for the contention that WNV can lead to autoimmune disease arises from reports of patients presenting with various neuromuscular diseases that presumably involve autoimmune mechanisms (GBS, other demyelinating neu¬ropathies, myasthenia gravis, brachial plexopathies, stiff-person syndrome, and delayed or recurrent symptoms. Although there is no specific treatment or vaccine currently approved in humans, and the standard remains supportive care, drugs that can alter the cascade of immunobiochemical events leading to neuronal death may be potentially useful (high-dose corticosteroids, interferon preparations, and intravenous immune globulin containing WNV-specific antibodies. Human experience with these agents seems promising based on anecdotal

  19. Baicalin is an inhibitor of subgroup J avian leukosis virus infection.

    Science.gov (United States)

    Qian, Kun; Kong, Zheng-Ru; Zhang, Jie; Cheng, Xiao-Wei; Wu, Zong-Yi; Gu, Cheng-Xi; Shao, Hong-Xia; Qin, Ai-Jian

    2018-03-15

    Avian leukosis virus subgroup J (ALV-J) can cause great economic losses to the poultry industry worldwide. Baicalin, one of the flavonoids present in S.baicalensis Georgi, has been shown to have antiviral activities. To investigate whether baicalin has antiviral effects on the infection of ALV-J in DF-1 cells, the cells were treated with baicalin at different time points. We found that baicalin could inhibit viral mRNA, protein levels and overall virus infection in a dose- and time-dependent manner using a variety of assays. Baicalin specifically targeted virus internalization and reduced the infectivity of ALV-J particles, but had no effect on the levels of major ALV-J receptor and virus binding to DF-1 cells. Collectively, these results suggest that baicalin might have potential to be developed as a novel antiviral agent for ALV-J infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Genital condyloma virus infection following pelvic radiation therapy: report of seven cases

    International Nuclear Information System (INIS)

    Lowell, D.M.; Livolsi, V.A.; Ludwig, M.E.

    1983-01-01

    Six women who underwent radiation therapy for gynecologic malignancies demonstrated cytologic evidence of condyloma virus infection 2 or more years following radiation. Histologic confirmation was obtained in two of the cases. A seventh patient developed in situ and invasive squamous cell carcinoma in a vulvar condyloma acuminatum following radiation therapy for Hodgkin's disease. This venereal infection is found most frequently in sexually active younger women (average age, 27 years). It is felt that depressed cell-mediated immunity consequent to the radiation therapy allowed the development of this infection in the older patients described in this report. The evolution of invasive squamous cell carcinoma in the condyloma acuminatum may indicate a possible oncogenic or cocarcinogenic effect of the virus. The immunologic responses to infection caused by the human papillomavirus group are discussed, as well as its potential for malignant transformation

  1. Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Chanettee Chanthick

    2018-02-01

    Full Text Available The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.

  2. Production of proinflammatory cytokines without invocation of cytotoxic effects by an Epstein-Barr virus-infected natural killer cell line established from a patient with hypersensitivity to mosquito bites.

    Science.gov (United States)

    Suzuki, Daisuke; Tsuji, Kazuhide; Yamamoto, Takenobu; Fujii, Kazuyasu; Iwatsuki, Keiji

    2010-10-01

    Cumulative evidence supports that Epstein-Barr virus (EBV)-infected natural killer (NK) cells induce severe systemic and cutaneous inflammation in patients with hypersensitivity to mosquito bites (HMB). In order to understand the pathogenesis of HMB, we established an EBV-infected cell line and characterized the cytological profiles. A novel EBV-infected NK-cell line, designated NKED, was established from a patient with HMB and used for the present study along with two other NK-cell lines, KAI3 and KHYG-1. NKED expressed the latency II-related transcripts. NKED cells were positive for CD2 and CD161 antigens, and negative for CD3, CD16, CD34, CD56, and T-cell receptor α/β and γ/δ antigens. Although NKED cells contained several cytotoxic molecules, the cells had an extremely poor cytotoxic activity. The majority of NKED cells were negative for perforin, major histocompatibility complex class I-restricted NK-cell receptors, CD94 and KIR2D, and an activating receptor, NKG2D. NKED cells, however, secreted higher levels of tumor necrosis factor-α. Stimulation with phorbol 12-myristate 13-acetate or tumor necrosis factor-α induced expression of BZLF1 messenger RNA in the NKED and KAI3 cells, indicating the transition from the latent- to the lytic-cycle infection. These data suggested that NKED cells revealed a very low cytotoxic effect probably because of the low expression levels of perforin, but had the ability to release proinflammatory cytokines. NKED cells did not reflect the characteristics of HMB, as they were different from pathogenic NK cells proliferating in the HMB patient, but the difference indicated that pathogenic NK cells could change their character in the presence of interleukin-2. Copyright © 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  3. Hyper-Expression of PD-1 Is Associated with the Levels of Exhausted and Dysfunctional Phenotypes of Circulating CD161++TCR iVα7.2+ Mucosal-Associated Invariant T Cells in Chronic Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Yean K. Yong

    2018-03-01

    Full Text Available Mucosal-associated invariant T (MAIT cells, defined as CD161++TCR iVα7.2+ T cells, play an important role in the innate defense against bacterial infections, and their functionality is impaired in chronic viral infections. Here, we investigated the frequency and functional role of MAIT cells in chronic hepatitis B virus (HBV infection. The peripheral CD3+CD161++TCR iVα7.2+ MAIT cells in chronic HBV-infected patients and healthy controls were phenotypically characterized based on CD57, PD-1, TIM-3, and CTLA-4, as well as HLA-DR and CD38 expression. The frequency of MAIT cells was significantly decreased among chronic HBV-infected individuals as compared to controls. Expression of CD57, PD-1, CTLA-4, as well as HLA-DR and CD38 on MAIT cells was significantly elevated in chronic HBV-infected individuals relative to controls. The percentage of T cell receptor (TCR iVα7.2+ CD161+ MAIT cells did not correlate with HBV viral load but inversely with HLA-DR on CD4+ T cells and MAIT cells and with CD57 on CD8+ T cells suggesting that decrease of MAIT cells may not be attributed to direct infection by HBV but driven by HBV-induced chronic immune activation. The percentage and expression levels of PD-1 as well as CTLA-4 on MAIT cells inversely correlated with plasma HBV-DNA levels, which may suggest either a role for MAIT cells in the control of HBV infection or the effect of HBV replication in the liver on MAIT cell phenotype. We report that decrease of TCR iVα7.2+ MAIT cells in the peripheral blood and their functions were seemingly impaired in chronic HBV-infected patients likely because of the increased expression of PD-1.

  4. Development and characterization of novel chimeric monoclonal antibodies for broad spectrum neutralization of rabies virus.

    Directory of Open Access Journals (Sweden)

    Pan Kyeom Kim

    Full Text Available Current post-exposure prophylaxis for rabies virus infection has several limitations in terms of supply, cost, safety, and efficacy. Attempts to replace human or equine rabies immune globulins (HRIG or ERIG have been made by several companies and institutes. We developed potent monoclonal antibodies to neutralize a broad spectrum of rabies viruses by screening hybridomas received from the U.S. Centers for Disease Control and Prevention (CDC. Two kinds of chimeric human antibodies (chimeric #7 and #17 were constructed by cloning the variable regions from selected hybridomas and the constant region of a human antibody. Two antibodies were bound to antigenic site III and I/IV, respectively, and were able to neutralize 51 field isolates of rabies virus that were isolated at different times and places such as Asia, Africa, North America, South America, and Australia. These two antibodies neutralize rabies viruses with high efficacy in an in vivo test using Syrian hamster and mouse models and show low risk for adverse immunogenicity.

  5. Development and characterization of novel chimeric monoclonal antibodies for broad spectrum neutralization of rabies virus.

    Science.gov (United States)

    Kim, Pan Kyeom; Keum, Sun Ju; Osinubi, Modupe O V; Franka, Richard; Shin, Ji Young; Park, Sang Tae; Kim, Man Su; Park, Mi Jung; Lee, Soo Young; Carson, William; Greenberg, Lauren; Yu, Pengcheng; Tao, Xiaoyan; Lihua, Wang; Tang, Qing; Liang, Guodong; Shampur, Madhusdana; Rupprecht, Charles E; Chang, Shin Jae

    2017-01-01

    Current post-exposure prophylaxis for rabies virus infection has several limitations in terms of supply, cost, safety, and efficacy. Attempts to replace human or equine rabies immune globulins (HRIG or ERIG) have been made by several companies and institutes. We developed potent monoclonal antibodies to neutralize a broad spectrum of rabies viruses by screening hybridomas received from the U.S. Centers for Disease Control and Prevention (CDC). Two kinds of chimeric human antibodies (chimeric #7 and #17) were constructed by cloning the variable regions from selected hybridomas and the constant region of a human antibody. Two antibodies were bound to antigenic site III and I/IV, respectively, and were able to neutralize 51 field isolates of rabies virus that were isolated at different times and places such as Asia, Africa, North America, South America, and Australia. These two antibodies neutralize rabies viruses with high efficacy in an in vivo test using Syrian hamster and mouse models and show low risk for adverse immunogenicity.

  6. Increased concordance of severe respiratory syncytial virus infection in identical twins

    DEFF Research Database (Denmark)

    Thomsen, Simon Francis; Stensballe, Lone Graff; Skytthe, Axel

    2008-01-01

    (concordance rate: 0.66 vs 0.53), which suggests genetic influences on disease severity. Genetic factors accounted for 16%, family environment for 73%, and nonshared environment for 11% of the individual susceptibility to develop severe respiratory syncytial virus infection. CONCLUSIONS: The severity...... of respiratory syncytial virus infection is determined partly by genetic factors. This result should stimulate the search for genetic markers of disease severity.......OBJECTIVE: We estimated differences in the severity of respiratory syncytial virus infection attributable to genetic and environmental factors. METHODS: Record linkage data on hospitalizations attributable to respiratory syncytial virus infection were gathered on all twins (12,346 pairs) born...

  7. Transcriptional mapping of rabies virus in vivo

    International Nuclear Information System (INIS)

    Flamand, A.; Delagneau, J.F.

    1978-01-01

    Synthesis of the proteins of rabies virus was studied in hamster cell infected with uv-irradiated virus. The uv target size of genes L, N, M 1 , and M 2 was measured during primary transcription. Except for N, the target size of the remaining genes was considerably larger than that of their physical sizes. The data fit the hypothesis that four genes occupy a single transcriptional unit and that transcription of rabies virus proceeds in the order N, M 1 , M 2 , and L

  8. Case report: microcephaly associated with Zika virus infection, Colombia.

    Science.gov (United States)

    Mattar, Salim; Ojeda, Carolina; Arboleda, Janna; Arrieta, German; Bosch, Irene; Botia, Ingrid; Alvis-Guzman, Nelson; Perez-Yepes, Carlos; Gerhke, Lee; Montero, German

    2017-06-13

    Recently there has been a large outbreak of Zika virus infections in Colombia, South America. The epidemic began in September 2015 and continued to April 2017, for the total number of Zika cases reported of 107,870. For those confirmed Zika cases, there were nearly 20,000 (18.5%) suspected to be pregnant women, resulting in 157 confirmed cases of microcephaly in newborns reported by their health government agency. There is a clear under-estimation of the total number of cases and in addition no prior publications have been published to demonstrate the clinical aspects of the Zika infection in Colombia. We characterized one Zika presentation to be able to compare and contrast with other cases of Zika infection already reported in the literature. In this case report, we demonstrate congenital microcephaly at week 19 of gestation in a 34-year-old mother who showed symptoms compatible with Zika virus infection from Sincelejo, State of Sucre, in the Colombian Caribbean. Zika virus RNA was detected in the placenta using real-time reverse transcriptase polymerase chain reaction (RT-PCR). At week 25, the fetus weigh estimate was 770 g, had a cephalic perimeter of 20.2 cm (5th percentile), ventriculomegaly on the right side and dilatation of the fourth ventricle. At week 32, the microcephaly was confirmed with a cephalic perimeter of 22 cm, dilatation of the posterior atrium to 13 mm, an abnormally small cerebellum (29 mm), and an augmented cisterna magna. At birth (39 weeks by cesarean section), the head circumference was 27.5 cm, and computerized axial tomography (Siemens Corp, 32-slides) confirmed microcephaly with calcifications. We report a first case of maternal Zika virus infection associated with fetal microcephaly in Colombia and confirmed similar presentation to those observed previous in Brazil, 2015-2016.

  9. Emerging Zika virus infection:What should we know?

    Institute of Scientific and Technical Information of China (English)

    Viroj Wiwanitkit

    2016-01-01

    Zika virus infection is a new emerging viral disease that becomes the present public health threat. At present, this infection can be seen in several countries. The clinical presentation of this infection is a dengue-like illness. Nevertheless, the new information shows that the disease can be sexually transmitted and transplacentally transmitted. In addition, the recent evidence from the recent epidemic in South America shows that the infection in pregnancy can cause neonatal neurological defect. In this short review, the author summarizes and presents interesting data on clinical features of this new emerging infection.

  10. Emerging Zika virus infection: What should we know?

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2016-07-01

    Full Text Available Zika virus infection is a new emerging viral disease that becomes the present public health threat. At present, this infection can be seen in several countries. The clinical presentation of this infection is a dengue-like illness. Nevertheless, the new information shows that the disease can be sexually transmitted and transplacentally transmitted. In addition, the recent evidence from the recent epidemic in South America shows that the infection in pregnancy can cause neonatal neurological defect. In this short review, the author summarizes and presents interesting data on clinical features of this new emerging infection.

  11. Possible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015.

    Science.gov (United States)

    Schuler-Faccini, Lavinia; Ribeiro, Erlane M; Feitosa, Ian M L; Horovitz, Dafne D G; Cavalcanti, Denise P; Pessoa, André; Doriqui, Maria Juliana R; Neri, Joao Ivanildo; Neto, Joao Monteiro de Pina; Wanderley, Hector Y C; Cernach, Mirlene; El-Husny, Antonette S; Pone, Marcos V S; Serao, Cassio L C; Sanseverino, Maria Teresa V

    2016-01-29

    In early 2015, an outbreak of Zika virus, a flavivirus transmitted by Aedes mosquitoes, was identified in northeast Brazil, an area where dengue virus was also circulating. By September, reports of an increase in the number of infants born with microcephaly in Zika virus-affected areas began to emerge, and Zika virus RNA was identified in the amniotic fluid of two women whose fetuses had been found to have microcephaly by prenatal ultrasound. The Brazil Ministry of Health (MoH) established a task force to investigate the possible association of microcephaly with Zika virus infection during pregnancy and a registry for incident microcephaly cases (head circumference ≥2 standard deviations [SD] below the mean for sex and gestational age at birth) and pregnancy outcomes among women suspected to have had Zika virus infection during pregnancy. Among a cohort of 35 infants with microcephaly born during August-October 2015 in eight of Brazil's 26 states and reported to the registry, the mothers of all 35 had lived in or visited Zika virus-affected areas during pregnancy, 25 (71%) infants had severe microcephaly (head circumference >3 SD below the mean for sex and gestational age), 17 (49%) had at least one neurologic abnormality, and among 27 infants who had neuroimaging studies, all had abnormalities. Tests for other congenital infections were negative. All infants had a lumbar puncture as part of the evaluation and cerebrospinal fluid (CSF) samples were sent to a reference laboratory in Brazil for Zika virus testing; results are not yet available. Further studies are needed to confirm the association of microcephaly with Zika virus infection during pregnancy and to understand any other adverse pregnancy outcomes associated with Zika virus infection. Pregnant women in Zika virus-affected areas should protect themselves from mosquito bites by using air conditioning, screens, or nets when indoors, wearing long sleeves and pants, using permethrin-treated clothing and gear

  12. Symptomatic Epstein-Barr virus infection and multiple sclerosis.

    OpenAIRE

    Martyn, C N; Cruddas, M; Compston, D A

    1993-01-01

    In a case-control study of 214 patients with multiple sclerosis, recall of infectious mononucleosis in subjects seropositive for Epstein-Barr viral capsid antigen was associated with a relative risk of 2.9 (95% CI 1.1 to 7.2). Those who reported having infectious mononucleosis before the age of 18 years had a relative risk of multiple sclerosis of 7.9 (95% CI 1.7 to 37.9). The pathogenesis of multiple sclerosis may involve an age-dependent host response to Epstein-Barr virus infection.

  13. Case report: microcephaly associated with Zika virus infection, Colombia

    OpenAIRE

    Mattar, Salim; Ojeda, Carolina; Arboleda, Janna; Arrieta, German; Bosch, Irene; Botia, Ingrid; Alvis-Guzman, Nelson; Perez-Yepes, Carlos; Gerhke, Lee; Montero, German

    2017-01-01

    Background Recently there has been a large outbreak of Zika virus infections in Colombia, South America. The epidemic began in September 2015 and continued to April 2017, for the total number of Zika cases reported of 107,870. For those confirmed Zika cases, there were nearly 20,000 (18.5%) suspected to be pregnant women, resulting in 157 confirmed cases of microcephaly in newborns reported by their health government agency. There is a clear under-estimation of the total nu...

  14. Side effects of antiviral therapy in hepatitis C virus infection-sarcoidosis - case report.

    Science.gov (United States)

    Teodor, D; Teodor, Andra; Grigore, Lucia; Jugănariu, Gabriela; Dorobăţ, Carmen Mihaela; Miftode, Egidia; Azoicăi, Doina

    2012-01-01

    Standard therapy in chronic hepatitis C virus infection is still a combination of peginterferon alfa2a/2b and ribavirin for 48 weeks. As of side effects, there are organic side effects, such as hematologic disorders, and functional side effects, reflected in the quality of life of hepatitis C patients. Up to 30% of the patients develop specific side effects such as headache, fever, fatigue. Sarcoidosis, known as a granulomatous disease of uncertain cause, is an uncommon finding in this category of patients. This cause-effect relation is accounted for by the convergent action of peginterferon and ribavirin of stimulating type 1 T helper cells and reducing type 2 helper T cells activation. We present the case of male patient known with chronic hepatitis C who developed pulmonary sarcoidosis following antiviral therapy. The first manifestation of the disease was unexplained fever accompanied by pulmonary tract disease. The diagnosis was established by immunophenotyping in bronchial aspirate

  15. Eliminating Rabies in Estonia

    Science.gov (United States)

    Cliquet, Florence; Robardet, Emmanuelle; Must, Kylli; Laine, Marjana; Peik, Katrin; Picard-Meyer, Evelyne; Guiot, Anne-Laure; Niin, Enel

    2012-01-01

    The compulsory vaccination of pets, the recommended vaccination of farm animals in grazing areas and the extermination of stray animals did not succeed in eliminating rabies in Estonia because the virus was maintained in two main wildlife reservoirs, foxes and raccoon dogs. These two species became a priority target therefore in order to control rabies. Supported by the European Community, successive oral vaccination (OV) campaigns were conducted twice a year using Rabigen® SAG2 baits, beginning in autumn 2005 in North Estonia. They were then extended to the whole territory from spring 2006. Following the vaccination campaig