WorldWideScience

Sample records for rabbit cortical bone

  1. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    Science.gov (United States)

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits

    International Nuclear Information System (INIS)

    Castaneda, S; Largo, R.; Marcos, M.E.; Herrero-Beaumont, G.; Calvo, E.; Rodriguez-Salvanes, F.; Diaz-Curiel, M.

    2006-01-01

    Experimental models of osteoporosis in rabbits are useful to investigate anabolic agents because this animal has a fast bone turnover with predominant remodelling over the modelling processes. For that purpose, it is necessary to characterize the densitometric values of each type of bony tissue. To determine areal bone mass measurement in the spine and in trabecular, cortical and subchondral bone of the knee in healthy and osteoporotic rabbits. Bone mineral content and bone mineral density were measured in lumbar spine, global knee, and subchondral and cortical bone of the knee with dual energy X-ray absorptiometry using a Hologic QDR-1000/W densitometer in 29 skeletally mature female healthy New Zealand rabbits. Ten rabbits underwent triplicate scans for evaluation of the effect of repositioning. Osteoporosis was experimentally induced in 15 rabbits by bilateral ovariectomy and postoperative corticosteroid treatment for 4 weeks. Identical dual energy X-ray absorptiometry (DXA) studies were performed thereafter. Mean values of bone mineral content at the lumbar spine, global knee, subchondral bone and cortical tibial metaphysis were: 1934±217 mg, 878±83 mg, 149±14 mg and 29±7.0 mg, respectively. The mean values of bone mineral density at the same regions were: 298±24 mg/cm 2 , 455±32 mg/cm 2 , 617±60 mg/cm 2 and 678±163 mg/cm 2 , respectively. (orig.)

  3. Observation of the bone mineral density of newly formed bone using rabbits. Compared with newly formed bone around implants and cortical bone

    International Nuclear Information System (INIS)

    Nakada, Hiroshi; Numata, Yasuko; Sakae, Toshiro; Tamaki, Hiroyuki; Kato, Takao

    2009-01-01

    There have been many studies reporting that newly formed bone around implants is spongy bone. However, although the morphology is reported as being like spongy bone, it is difficult to discriminate whether the bone quality of newly formed bone appears similar to osteoid or cortical bone; therefore, evaluation of bone quality is required. The aims of this study were to measure the bone mineral density (BMD) values of newly formed bone around implants after 4, 8, 16, 24 and 48 weeks, to represent these values on three-dimensional color mapping (3Dmap), and to evaluate the change in bone quality associated with newly formed bone around implants. The animal experimental protocol of this study was approved by the Ethics Committee for Animal Experiments of our University. This experiment used 20 surface treatment implants (Ti-6Al-4V alloy: 3.1 mm in diameter and 30.0 mm in length) by grit-blasting. They were embedded into surgically created flaws in femurs of 20 New Zealand white rabbits (16 weeks old, male). The rabbits were sacrificed with an ear intravenous overdose of pentobarbital sodium under general anesthesia each period, and the femurs were resected. We measured BMD of newly formed bone around implants and cortical bone using Micro-CT, and the BMD distribution map of 3Dmap (TRI/3D Bon BMD, Ratoc System Engineering). The BMD of cortical bone was 1,026.3±44.3 mg/cm 3 at 4 weeks, 1,023.8±40.9 mg/cm 3 at 8 weeks, 1,048.2±45.6 mg/cm 3 at 16 weeks, 1,067.2±60.2 mg/cm 3 at 24 weeks, and 1,069.3±50.7 mg/cm 3 at 48 weeks after implantation, showing a non-significant increase each period. The BMD of newly formed bone around implants was 296.8±25.6 mg/cm 3 at 4 weeks, 525.0±72.4 mg/cm 3 at 8 weeks, 691.2±26.0 mg/cm 3 at 16 weeks, 776.9±27.7 mg/cm 3 at 24 weeks, and 845.2±23.1 mg/cm 3 at 48 weeks after implantation, showing a significant increase after each period. It was revealed that the color scale of newly formed bone was Low level at 4 weeks, and then it

  4. Computed tomography to evaluate the association of fragmented heterolog cortical bone and methylmethacrylate to repare segmental bone defect produced in tibia of rabbits

    International Nuclear Information System (INIS)

    Freitas, S.H.; Doria, R.G.S.; Mendonca, F.S.; Santos, M.D.; Moreira, R.; Simoes, R.S.; Camargo, L.M.; Simoes, M.J.; Marques, A.T.C.

    2012-01-01

    A 6mm segmental defect was performed on the metaphyseal region of the tibia of 12 rabbits and the autoclaved fragmented heterolog cortical bone conserved in glycerin (98%) and methylmethacrylate was used as a bone graft for the reconstruction. The graft was placed in the receptor bed and its integration was evaluated by computed tomography after 30, 60 and 90 days. There was gradual bone graft incorporation in the receptor bed during the time in 100% of the cases. Fragmented cortical bone heterograft and methylmethacrylate was biologically compatible and promotes bone defect reparation without signs of infection, migration and or rejection, featuring a new option of osseous substitute to fill in bone defects. (author)

  5. Histological analysis of the alterations on cortical bone channels network after radiotherapy: A rabbit study.

    Science.gov (United States)

    Rabelo, Gustavo Davi; Beletti, Marcelo Emílio; Dechichi, Paula

    2010-10-01

    The aim of this study was to evaluate the effects of radiotherapy in cortical bone channels network. Fourteen rabbits were divided in two groups and test group received single dose of 15 Gy cobalt-60 radiation in tibia, bilaterally. The animals were sacrificed and a segment of tibia was removed and histologically processed. Histological images were taken and had their bone channels segmented and called regions of interest (ROI). Images were analyzed through developed algorithms using the SCILAB mathematical environment, getting percentage of bone matrix, ROI areas, ROI perimeters, their standard deviations and Lacunarity. The osteocytes and empty lacunae were also counted. Data were evaluated using Kolmogorov-Smirnov, Mann Whitney, and Student's t test (P < 0.05). Significant differences in bone matrix percentage, area and perimeters of the channels, their respective standard deviations and lacunarity were found between groups. In conclusion, the radiotherapy causes reduction of bone matrix and modifies the morphology of bone channels network. © 2010 Wiley-Liss, Inc.

  6. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    Science.gov (United States)

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  7. Development of a Three-Dimensional (3D Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    Directory of Open Access Journals (Sweden)

    Ying-Chao Chou

    2016-04-01

    Full Text Available This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft.

  8. Histological analysis of femoral bones in rabbits administered by amygdalin

    Directory of Open Access Journals (Sweden)

    Veronika Kováčová

    2016-07-01

    Full Text Available Cyanogenic glycosides are present in several economically important plant foods. Amygdalin, one of the most common cyanoglucoside, can be found abundantly in the seeds of apples, bitter almonds, apricots, peaches, various beans, cereals, cassava and sorghum. Amygdalin has been used for the treatment of cancer, it shows killing effects on cancer cells by release of cyanide. However, its effect on bone structure has not been investigated to date. Therefore, the objective of this study was to determine a possible effect of amygdalin application on femoral bone microstructure in adult rabbits. Four month old rabbits were randomly divided into two groups of three animals each. Rabbits from E group received amygdalin intramuscularly at a dose 0.6 mg.kg-1 body weight (bw (group E, n = 3 one time per day during 28 days. The second group of rabbits without amygdalin supplementation served as a control (group C, n = 3. After 28 days, histological structure of femoral bones in both groups of rabbits was analysed and compared. Rabbits from E group displayed different microstructure in middle part of the compact bone and near endosteal bone surface. For endosteal border, an absence of the primary vascular longitudinal bone tissue was typical. This part of the bone was formed by irregular Haversian and/or by dense Haversian bone tissues. In the middle part of substantia compacta, primary vascular longitudinal bone tissue was observed. Cortical bone thickness did not change between rabbits from E and C groups. However, rabbits from E group had a significantly lower values of primary osteons' vascular canals and secondary osteons as compared to the C group. On the other hand, all measured parameters of Haversian canals did not differ between rabbits from both groups. Our results demonstrate that intramuscular application of amygdalin at the dose used in our study affects femoral bone microstructure in rabbits.

  9. Effect of Hydroxyapatite on Bone Integration in a Rabbit Tibial Defect Model

    Science.gov (United States)

    Sohn, Sung-Keun; Kim, Kyung-Taek; Kim, Chul-Hong; Ahn, Hee-Bae; Rho, Mee-Sook; Jeong, Min-Ho; Sun, Sang-Kyu

    2010-01-01

    Background The aim of the present study was to prepare hydroxyapatite (HA) and then characterize its effect on bone integration in a rabbit tibial defect model. The bone formation with different designs of HA was compared and the bony integration of several graft materials was investigated qualitatively by radiologic and histologic study. Methods Ten rabbits were included in this study; two holes were drilled bilaterally across the near cortex and the four holes in each rabbit were divided into four treatment groups (HAP, hydroxyapatite powder; HAC, hydroxyapatite cylinder; HA/TCP, hydroxyapatite/tri-calcium phosphate cylinder, and titanium cylinder). The volume of bone ingrowth and the change of bone mineral density were statistically calculated by computed tomography five times for each treatment group at 0, 2, 4, 6, and 8 weeks after grafting. Histologic analysis was performed at 8 weeks after grafting. Results The HAP group showed the most pronounced effect on the bone ingrowth surface area, which seen at 4, 6, and 8 weeks after graft (p 0.05). On histological examination, the HAP group revealed well-recovered cortical bone, but the bone was irregularly thickened and haphazardly admixed with powder. The HAC group showed similar histological features to those of the HA/TCP group; the cortical surface of the newly developed bone was smooth and the bone matrix on the surface of the cylinder was regularly arranged. Conclusions We concluded that both the hydroxyapatite powder and cylinder models investigated in our study may be suitable as a bone substitute in the rabbit tibial defect model, but their characteristic properties are quite different. In contrast to hydroxyapatite powder, which showed better results for the bone ingrowth surface, the hydroxyapatite cylinder showed better results for the sustained morphology. PMID:20514266

  10. Quercetin-induced changes in femoral bone microstructure of adult male rabbits

    Directory of Open Access Journals (Sweden)

    Ramona Babosová

    2016-06-01

    Full Text Available Flavonoids are a group of plant metabolites with antioxidant effects. One of the most abundant flavonoids in the human diet is quercetin. It is found widely in fruits, vegetables and has a lot of beneficial effects on human health. Quercetin has a positive pharmacological effect on bone metabolism and it prevents the organism against bone loss. However, its impact on the size of basic structural units of the compact bone is still unknown. Therefore, the aim of present study was to investigate the impact of the quercetin on femoral bone microstructure in 5-month-old male rabbits. Five rabbits of Californian broiler line were randomly divided into two groups. In the experimental group (E group; n=3, animals were intramuscularly injected with quercetin at dose 1000 μg.kg-1 body weight (bw for 90 days, 3 times per week. Two rabbits without quercetin administration served as a control group (C group. According to our results, intramuscular application of quercetin had an insignificant effect on cortical bone thickness in male rabbits. In these rabbits, changes in qualitative histological characteristics were present in the middle part of the compacta, where primary vascular longitudinal bone tissue was present and expanded there from the periosteum. Also, a lower number of secondary osteons was found in these animals. From the histomorphometrical point of view, significantly decreased sizes of primary osteons' vascular canals and secondary osteons (p <0.05 were found in rabbits administered by quercetin. Our findings indicate that subchronic administration of quercetin at the dose used in our study had considerable impact on both qualitative and quantitative histological characteristics of the compact bone in adult male rabbits.

  11. Repair of microdamage in osteonal cortical bone adjacent to bone screw.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Up to date, little is known about the repair mode of microdamage in osteonal cortical bone resulting from bone screw implantation. In this study, self-tapping titanium cortical bone screws were inserted into the tibial diaphyses of 24 adult male rabbits. The animals were sacrificed at 1 day, 2 weeks, 1 month and 2 months after surgery. Histomorphometric measurement and confocal microscopy were performed on basic fuchsin stained bone sections to examine the morphological characteristics of microdamage, bone resorption activity and spatial relationship between microdamage and bone resorption. Diffuse and linear cracks were coexisted in peri-screw bone. Intracortical bone resorption was significantly increased 2 weeks after screw installation and reach to the maximum at 1 month. There was no significant difference in bone resorption between 1-month and 2-months groups. Microdamage was significantly decreased within 1 month after surgery. Bone resorption was predisposed to occur in the region of <100 µm from the bone-screw interface, where had extensive diffuse damage mixed with linear cracks. Different patterns of resorption cavities appeared in peri-screw bone. These data suggest that 1 the complex microdamage composed of diffuse damage and linear cracks is a strong stimulator for initiating targeted bone remodeling; 2 bone resorption activities taking place on the surfaces of differently oriented Haversian and Volkmann canals work in a team for the repair of extensive microdamage; 3 targeted bone remodeling is a short-term reaction to microdamage and thereby it may not be able to remove all microdamage resulting from bone screw insertion.

  12. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  13. Computed tomography to evaluate the association of fragmented heterolog cortical bone and methylmethacrylate to repare segmental bone defect produced in tibia of rabbits; Tomografia computadorizada da matriz ossea mineralizada heterologa fragmentada e metilmetacrilato na reparacao de falhas osseas segmentares produzidas em tibia de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, S.H. [Universidade Federal de Sao Paulo (USP), SP (Brazil); Doria, R.G.S. [Universidade Federal de Sao Paulo (USP), SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos; Mendonca, F.S.; Santos, M.D.; Moreira, R. [Universidade de Cuiaba, MT (Brazil). Faculdade de Medicina Veterinaria; Simoes, R.S. [Universidade Federal de Sao Paulo (USP), SP (Brazil). Hospital Universitario; Camargo, L.M.; Simoes, M.J. [Universidade Federal de Sao Paulo (USP), SP (Brazil). Escola Paulista de Medicina; Marques, A.T.C. [Universidade de Cuiaba, MT (Brazil). Faculdade de Odontologia

    2012-11-15

    A 6mm segmental defect was performed on the metaphyseal region of the tibia of 12 rabbits and the autoclaved fragmented heterolog cortical bone conserved in glycerin (98%) and methylmethacrylate was used as a bone graft for the reconstruction. The graft was placed in the receptor bed and its integration was evaluated by computed tomography after 30, 60 and 90 days. There was gradual bone graft incorporation in the receptor bed during the time in 100% of the cases. Fragmented cortical bone heterograft and methylmethacrylate was biologically compatible and promotes bone defect reparation without signs of infection, migration and or rejection, featuring a new option of osseous substitute to fill in bone defects. (author)

  14. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  15. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.

    Science.gov (United States)

    Turunen, Mikael J; Saarakkala, Simo; Rieppo, Lassi; Helminen, Heikki J; Jurvelin, Jukka S; Isaksson, Hanna

    2011-06-01

    The molecular composition of the organic and inorganic matrices of bone undergoes alterations during maturation. The aim of this study was to compare Fourier transform infrared (FT-IR) and near-infrared (NIR) Raman microspectroscopy techniques for characterization of the composition of growing and developing bone from young to skeletally mature rabbits. Moreover, the specificity and differences of the techniques for determining bone composition were clarified. The humeri of female New Zealand White rabbits, with age range from young to skeletally mature animals (four age groups, n = 7 per group), were studied. Spectral peak areas, intensities, and ratios related to organic and inorganic matrices of bone were analyzed and compared between the age groups and between FT-IR and Raman microspectroscopic techniques. Specifically, the degree of mineralization, type-B carbonate substitution, crystallinity of hydroxyapatite (HA), mineral content, and collagen maturity were examined. Significant changes during maturation were observed in various compositional parameters with one or both techniques. Overall, the compositional parameters calculated from the Raman spectra correlated with analogous parameters calculated from the IR spectra. Collagen cross-linking (XLR), as determined through peak fitting and directly from the IR spectra, were highly correlated. The mineral/matrix ratio in the Raman spectra was evaluated with multiple different peaks representing the organic matrix. The results showed high correlation with each other. After comparison with the bone mineral density (BMD) values from micro-computed tomography (micro-CT) imaging measurements and crystal size from XRD measurements, it is suggested that Raman microspectroscopy is more sensitive than FT-IR microspectroscopy for the inorganic matrix of the bone. In the literature, similar spectroscopic parameters obtained with FT-IR and NIR Raman microspectroscopic techniques are often compared. According to the present

  16. Radiographic healing and remodelling of cortical and cancellous bone grafts after rigid plate fixation

    International Nuclear Information System (INIS)

    Waris, P.; Karaharju, E.; Slaetis, P.; Paavolainen, P.

    1980-01-01

    Cortical and cancellous interposition grafts, with rigid plate fixation, in the tibiofibular bones of 130 rabbits were followed radiographically for one year. The cancellous grafts healed earlier, but by 12 weeks both graft types had been incorporated, the distal host-graft interface being the last to heal. Progressive cancellous transformation in both the graft and host bone led to an increased over-all bone diameter, a widened medullary canal and a thinned porotic wall. (Auth.)

  17. Acute development of cortical porosity and endosteal naïve bone formation from the daily but not weekly short-term administration of PTH in rabbit.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamane

    Full Text Available Teriparatide [human parathyroid hormone (1-34], which exerts an anabolic effect on bone, is used for the treatment of osteoporosis in patients who are at a high risk for fracture. That the once-daily administration of teriparatide causes an increase in cortical porosity in animal models and clinical studies has been a matter of concern. However, it is not well documented that the frequency of administration and/or the total dose of teriparatide affect the cortical porosity. The present study developed 4 teriparatide regimens [20 μg/kg/day (D20, 40 μg/kg/day (D40, 140 μg/kg/week (W140 and 280 μg/kg/week (W280] in the rabbit as a model animal with a well-developed Haversian system and osteons. The total weekly doses were equivalent in the low-dose groups (D20 and W140 and in the high-dose groups (D40 and W280. After the short-term (1 month administration of TPDT, micro-CT, histomorphometry and three-dimensional second harmonic generation (3D-SHG imaging to visualize the bone collagen demonstrated that daily regimens but not weekly regimens were associated with the significant development of cortical porosity and endosteal naïve bone formation by marrow fibrosis. We concomitantly monitored the pharmacokinetics of the plasma teriparatide levels as well as the temporal changes in markers of bone formation and resorption. The analyses in the present study suggested that the daily repeated administration of teriparatide causes more deleterious changes in the cortical microarchitecture than the less frequent administration of higher doses. The findings of the present study may have some implications for use of teriparatide in clinical treatment.

  18. Evaluation of the Cortical Bone Reaction Around of Implants Using a Single-Use Final Drill: A Histologic Study.

    Science.gov (United States)

    Gehrke, Sergio Alexandre

    2015-07-01

    This study was designed to compare the cortical bone reaction following traditional osteotomy or the use of a single-use final drill in the osseointegration of implants in the tibia of rabbits. For this study, 48 conical implants, of standard surface type and design and manufactured by the same company, were inserted into the tibiae of 12 rabbits and removed after 30 or 60 days for histologic analysis. Two test groups were prepared according to the drill sequence used for the osteotomy at the preparation sites: in the control group was used a conventional drill sequence with several uses, whereas the test group (tesG) used a single-use final drill. The bone-to-implant contact and qualitative factors of the resulting cortical bone were assessed. Both techniques produced good implant integration. Differences in the linear bone-to-implant contact were observed between the drilling procedures as time elapsed in vivo, with the tesG appearing to have clinical advantages. Both groups exhibited new bone in quantity and in quality; however, the tesG exhibited a higher level of new bone deposition than the control group. Within the limitations of this study, the findings suggest that the use of a single-use final drill leads to better and faster organization of the cortical bone area during the evaluated period and may avoid the possible problems that can be caused by worn drills.

  19. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  20. Paradiaphyseal calcific tendinitis with cortical bone erosion.

    Science.gov (United States)

    Fritz, P; Bardin, T; Laredo, J D; Ziza, J M; D'Anglejan, G; Lansaman, J; Bucki, B; Forest, M; Kuntz, D

    1994-05-01

    To determine the clinical, radiologic, and histologic features of calcific tendinitis with cortical bone erosion. The records of 6 patients with paradiaphyseal calcific tendinitis and adjacent bone cortex erosion were reviewed. Calcific tendinitis involved the linea aspera in 4 patients, the bicipital groove in 1 patient, and the deltoid insertion in another. Calcium deposits were associated with cortical bone erosions, revealed on plain radiographs in 4 patients and computed tomography scans in 2. Bone scans were performed in 2 patients and showed local hyperfixation of the isotope. In 4 patients, suspicion of a neoplasm led to a biopsy. Calcium deposits appeared to be surrounded by a foreign body reaction with numerous giant cells. Apatite crystals were identified by transmission electron microscopy and elemental analysis in 1 surgical sample. Paradiaphyseal calcific tendinitis with cortical bone erosion is an uncommon presentation of apatite deposition disease.

  1. Alternatives to Autograft Evaluated in a Rabbit Segmental Bone Defect

    Science.gov (United States)

    2015-07-09

    mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials 33(9):2656–2672. doi:10.1016/j.biomaterials.2011.12.025 14...segmental bone defects in the rabbit with vascularized tissue engineered bone . Biomaterials 31(6):1171– 1179. doi:10.1016/j.biomaterials.2009.10.043 International Orthopaedics (SICOT) ...ORIGINAL PAPER Alternatives to autograft evaluated in a rabbit segmental bone defect Jennifer S. McDaniel1 & Marcello Pilia1 & Vivek Raut2 & Jeffrey

  2. Using radionuclide imaging for monitoring repairment of bone defect with tissue-engineered bone graft in rabbits

    International Nuclear Information System (INIS)

    Xia Changsuo; Ye Fagang; Zou Yunwen; Ji Shixiang; Wang Dengchun

    2004-01-01

    Objective: To observe the effect of tissue-engineered bone grafts in repairing bone defect in rabbits, and assess the value of radionuclide for monitoring the therapeutic effect of this approach. Methods: Bilateral radial defects of 15 mm in length in 24 rabbits were made. The tissue-engineered bone grafts (composite graft) contained bone marrow stromal cells (BMSCs) of rabbits and calcium phosphate cement (CPC) were grafted in left side defects, CPC only grafts (artificial bone graft) in right defects. After the operation, radionuclide was used to monitor the therapeutic effects at 4, 8 and 12 weeks. Results: 99 Tc m -methylene diphosphonic acid (MDP) radionuclide bone imaging indicated that there was more radionuclide accumulation in grafting region of composite than that of CPC. There was significant difference between 99 Tc m -MDP uptake of the region of interest (ROI) and scintillant counts of composite bone and the artificial bone (P<0.01). Conclusion: Tissue-engineered bone grafts is eligible for repairing radial bone defects, and radionuclide imaging may accurately monitor the revascularization and bone regeneration after the bone graft implantation. (authors)

  3. Response of cortical bone to antiresorptive treatment

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Jørgensen, J T; Sørensen, T K

    2001-01-01

    of the spine, hip, and forearm. Longitudinal changes in bone densitometry were compared with changes captured by DXR: BMD evaluated by DXR (BMDDXR), cortical thickness of the second metacarpal (CTMC2), and porosity of cortical bone. The expected annual postmenopausal reduction in BMD in the control group...... treatment regimens used in the prevention of osteoporosis....

  4. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    Science.gov (United States)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  5. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  6. Gastric Perforation by Ingested Rabbit Bone Fragment

    Directory of Open Access Journals (Sweden)

    Giulio Gambaracci

    2016-04-01

    Full Text Available The majority of accidentally ingested foreign bodies is excreted from the gastrointestinal (GI tract without any complications. Sometimes sharp foreign bodies – like chicken and fish bones – can lead to intestinal perforation and may present insidiously with a wide range of symptoms and, consequently, different diagnoses. We report the case of a 59-year-old woman presenting with fever and a 1-month history of vague abdominal pain. Computed tomography (CT showed the presence of a hyperdense linear image close to the gastric antrum surrounded by a fluid collection and free peritoneal air. At laparotomy, a 4-cm rabbit bone fragment covered in inflamed tissue was detected next to a gastric wall perforation. Rabbit bone fragment ingestion, even if rarely reported, should not be underestimated as a possible cause of GI tract perforation.

  7. Radiographic evaluation of using Persian Gulf coral powder effect on bone healing defects in rabbits

    Directory of Open Access Journals (Sweden)

    Mehdi Marjani

    2011-11-01

    Full Text Available Background: ‍Considering the fact that research on the marine products and creatures, in particular coral, has started just in the past decade and more attentions are focused on the benefits of this material, it has been decided to utilize the coral native to Persian Gulf as oral powder to heal tibia bone defect in rabbit. Methods: In this experimental study 18 New Zealander rabbits weighing 2.5-3 kg were categorized randomly in 3 groups (control, oral calcium powder and oral coral powder group of 6 rabbits. For inducing the defect, the first 3rd part of tibial bone was blunt dissected. A whole with the depth of 0.6-0.8 mm and diameter of 4 mm was produced in all 3 groups in the same style. The Calcium group was treated daily with 1150 mg calcium powder, coral group received 1220 mg of coral powder and control group were kept under standard condition. Course of treatment was 2 months and on days 0,10,20,30,40,50,63 the animals were evaluated for healing criteria such as filling the defects, density, external callus formation and intercortical callus. Results: Radiologic parameters indicates that filling defect, density, external and inter cortical callus and absorption for animals receiving coral is better than that of control and calcium group (P<0/05. Conclusion: In conclusion, by oral administration of Persian Gulf coral powder results increasing the rate of bone formation. Finally for human use, these results must be evaluated more in clinical studies.

  8. Ultrasonically-induced electrical potentials in demineralized bovine cortical bone

    Science.gov (United States)

    Mori, Shunki; Makino, Taiki; Koyama, Daisuke; Takayanagi, Shinji; Yanagitani, Takahiko; Matsukawa, Mami

    2018-04-01

    While the low-intensity pulsed ultrasound technique has proved useful for healing of bone fractures, the ultrasound healing mechanism is not yet understood. To understand the initial physical effects of the ultrasound irradiation process on bone, we have studied the anisotropic piezoelectric properties of bone in the MHz range. Bone is known to be composed of collagen and hydroxyapatite (HAp) and shows strong elastic anisotropy. In this study, the effects of HAp on the piezoelectricity were investigated experimentally. To remove the HAp crystallites from the bovine cortical bone, demineralization was performed using ethylene diamine tetra-acetic acid (EDTA) solutions. To investigate the piezoelectricity, we have fabricated ultrasound transducers using the cortical bone or demineralized cortical bone. The induced electrical potentials due to the piezoelectricity were observed as the output of these transducers under pulsed ultrasound irradiation in the MHz range. The cortical bone transducer (before mineralization) showed anisotropic piezoelectric behavior. When the ultrasound irradiation was applied normal to the transducer surface, the observed induced electrical potentials had minimum values. The potential increased under off-axis ultrasound irradiation with changes in polarization. In the demineralized bone transducer case, however, the anisotropic behavior was not observed in the induced electrical potentials. These results therefore indicate that the HAp crystallites affect the piezoelectric characteristics of bone.

  9. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    Science.gov (United States)

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial

  10. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.

    Science.gov (United States)

    Croker, Sarah L; Reed, Warren; Donlon, Denise

    2016-03-01

    The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone

  11. Autogenous bone particle/titanium fiber composites for bone regeneration in a rabbit radius critical-size defect model.

    Science.gov (United States)

    Xie, Huanxin; Ji, Ye; Tian, Qi; Wang, Xintao; Zhang, Nan; Zhang, Yicai; Xu, Jun; Wang, Nanxiang; Yan, Jinglong

    2017-11-01

    To explore the effects of autogenous bone particle/titanium fiber composites on repairing segmental bone defects in rabbits. A model of bilateral radial bone defect was established in 36 New Zealand white rabbits which were randomly divided into 3 groups according to filling materials used for bilaterally defect treatment: in group C, 9 animal bone defect areas were prepared into simple bilateral radius bone defect (empty sham) as the control group; 27 rabbits were used in groups ABP and ABP-Ti. In group ABP, left defects were simply implanted with autogenous bone particles; meanwhile, group ABP-Ti animals had right defects implanted with autogenous bone particle/titanium fiber composites. Animals were sacrificed at 4, 8, and 12 weeks, respectively, after operation. Micro-CT showed that group C could not complete bone regeneration. Bone volume to tissue volume values in group ABP-Ti were better than group ABP. From histology and histomorphometry Groups ABP and ABP-Ti achieved bone repair, the bone formation of group ABP-Ti was better. The mechanical strength of group ABP-Ti was superior to that of other groups. These results confirmed the effectiveness of autologous bone particle/titanium fiber composites for promoting bone regeneration and mechanical strength.

  12. Influence of cortical endplates on ultrasonic properties of trabecular bone

    International Nuclear Information System (INIS)

    Kim, Yoon Mi; Lee, Kang Il

    2015-01-01

    The present study investigated the influence of thick cortical endplates on the ultrasonic properties of trabecular bone in a femur with a high fracture risk. Twelve trabecular bone samples were prepared from bovine femurs, and acrylic plates with thicknesses of 1.25, 1.80, and 2.75 mm were manufactured to simulate the cortical endplates using acrylic with a density and a sound speed similar to cortical bone. Although the thickness of the acrylic plates attached to the two sides of the trabecular bone increased, high correlations were observed between the speed of sound and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.80-0.86. High correlations were also observed between the attenuation coefficient at 0.5 mm and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.84-0.91. These results suggest that the speed of sound and attenuation coefficient at a specific frequency measured in a femur with relatively thick cortical endplates compared to the calcaneus could be used as indices for predicting the bone mineral density of the femur.

  13. Influence of Screw Length and Bone Thickness on the Stability of Temporary Implants

    Directory of Open Access Journals (Sweden)

    Daniel Jogaib Fernandes

    2015-09-01

    Full Text Available The purpose of this work was to study the influence of screw length and bone thickness on the stability of temporary implants. A total of 96 self-drilling temporary screws with two different lengths were inserted into polyurethane blocks (n = 66, bovine femurs (n = 18 and rabbit tibia (n = 12 with different cortical thicknesses (1 to 8 mm. Screws insertion in polyurethane blocks was assisted by a universal testing machine, torque peaks were collected by a digital torquemeter and bone thickness was monitored by micro-CT. The results showed that the insertion torque was significantly increased with the thickness of cortical bone from polyurethane (p < 0.0001, bovine (p = 0.0035 and rabbit (p < 0.05 sources. Cancellous bone improved significantly the mechanical implant stability. Insertion torque and insertion strength was successfully moduled by equations, based on the cortical/cancellous bone behavior. Based on the results, insertion torque and bone strength can be estimate in order to prevent failure of the cortical layer during temporary screw placement. The stability provided by a cortical thickness of 2 or 1 mm coupled to cancellous bone was deemed sufficient for temporary implants stability.

  14. Rabbit Calvarial Defect Model for Customized 3D-Printed Bone Grafts.

    Science.gov (United States)

    Lee, Kang-Gon; Lee, Kang-Sik; Kang, Yu-Jeoung; Hwang, Jong-Hyun; Lee, Se-Hwan; Park, Sang-Hyug; Park, Yongdoo; Cho, Young-Sam; Lee, Bu-Kyu

    2018-05-01

    Bone graft materials are commonly used to regenerate various bone defects, but their application is often limited because of the complex defect shape in various clinical conditions. Hence, customized bone grafts using three-dimensional (3D) printing techniques have been developed. However, conventional simple bone defect models are limited for evaluating the benefits and manufacturing accuracy of 3D-printed customized bone grafts. Thus, the aim of the present study was to develop a complex-shaped bone defect model. We designed an 8-shaped bony defect that consists of two simple circles attached to the rabbit calvarium. To determine the critical-sized defect (CSD) of the 8-shaped defects, 5.6- and 7-mm-diameter trephine burs were tested, and the 7-mm-diameter bur could successfully create a CSD, which was easily reproducible on the rabbit calvarium. The rate of new bone formation was 28.65% ± 8.63% at 16 weeks following creation of the defect. To confirm its efficacy for clinical use, the 8-shaped defect was created on a rabbit calvarium and 3D computed tomography (CT) was performed. A stereolithography file was produced using the CT data, and a 3D-printed polycaprolactone graft was fabricated. Using our 8-shaped defect model, we were able to modify the tolerances of the bone graft and calvarial defect to fabricate a more precise bone graft. Customized characteristics of the bone graft were then used to improve the accuracy of the bone graft. In addition, we confirmed the fitting ability of the 3D-printed graft during implantation of the graft. Our 8-shaped defect model on the rabbit calvarium using a 7.0-mm trephine bur may be a useful CSD model for evaluating 3D-printed graft materials.

  15. INAA of cortical and trabecular bone samples from animals

    International Nuclear Information System (INIS)

    Takata, M.K.; Saiki, M.

    2004-01-01

    Instrumental neutron activation analysis (INAA) was applied to determine Ba, Br, Ca, Cl, Fe, K, Mg, Mn, Na, P, Sr and Zn in bovine and porcine rib bones. Precise results were obtained in analyses of freeze-dried cortical and trabecular bones separately, and also of whole bone ashes. Cortical tissues presented higher concentrations of Ba, Ca, Mg, Mn, Na, P, Sr and Zn than those obtained in trabecular ones. Comparisons were also made between the results obtained for bovine and porcine rib bones. (author)

  16. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Science.gov (United States)

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  17. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Directory of Open Access Journals (Sweden)

    Claes Ohlsson

    Full Text Available The gut microbiota (GM modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L strain, L. paracasei DSM13434 (L. para or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  18. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  19. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  20. Cortical bone mineral content in primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Mautalen, C.; Reyes, H.R.; Ghiringhelli, G.; Fromm, G.

    1986-01-01

    The bone mineral content (BMC) of 35 patients with primary hyperparathyroidism (PHPT) was measured at the mid radius (95% cortical bone) by photon absorptiometry of a 241 Am source. The majority of the patients had an overt disease of moderate to severe degree. Average serum calcium of the group was 12.3 mg/100 ml (range 10.6 to 18.0 mg/100 ml). The percentage of normality of the BMC was (Av +- 1 SD) 75.1 +- 13.0% for the whole group. The average increment of BMC in 14 patients 9 to 26 months after parathyroidectomy was 9.9%, with a wide dispersion. However, a highly significant negative correlation (r: 0.83; P < 0.01) was found between the initial bone mass and the percentage increment per month after surgery. No furhter gain was observed 2 years after parathyroidectomy except in one patient with an extremely severe bone loss. In spite of the gain obtained after surgery the bone mass remained markedly diminished in most patients showing that the cortical bone loss caused by PHPT is mainly irreversible. (author)

  1. Which is the best method of sterilization for recycled bone autograft in limb salvage surgery: a radiological, biomechanical and histopathological study in rabbit.

    Science.gov (United States)

    Yasin, Nor Faissal; Ajit Singh, Vivek; Saad, Marniza; Omar, Effat

    2015-04-15

    Limb salvage surgery is a treatment of choice for sarcomas of the extremities. One of the options in skeletal reconstruction after tumour resection is by using a recycled bone autograft. The present accepted methods of recycling bone autografts include autoclaving, pasteurization and irradiation. At the moment there is lack of studies that compare the effectiveness of various sterilization methods used for recycling bone autografts and their effects in terms of bone incorporation. This study was performed to determine the effects of different methods of sterilization on bone autografts in rabbit by radiological, biomechanical and histopathological evaluations. Fresh rabbit cortical bone is harvested from the tibial diaphysis and sterilized extracorporeally by pasteurization (n = 6), autoclaving (n = 6), irradiation (n = 6) and normal saline as control group (n = 6). The cortical bones were immediately reimplanted after the sterilization process. The subsequent process of graft incorporation was examined over a period of 12 weeks by serial radiographs, biomechanical and histopathological evaluations. Statistical analysis (ANOVA) was performed on these results. Significance level (α) and power (β) were set to 0.05 and 0.90, respectively. Radiographic analysis showed that irradiation group has higher score in bony union compared to other sterilization groups (p = 0.041). ANOVA analysis of 'failure stress', 'modulus' and 'strain to failure' demonstrated no significant differences (p = 0.389) between treated and untreated specimens under mechanical loading. In macroscopic histopathological analysis, the irradiated group has the highest percentage of bony union (91.7 percent). However in microscopic analysis of union, the pasteurization group has significantly higher score (p = 0.041) in callus formation, osteocytes percentage and bone marrow cellularity at the end of the study indicating good union potential. This experimental study shown that both irradiation and

  2. Histomorphometric evaluation of bone regeneration using autogenous bone and beta-tricalcium phosphate in diabetic rabbits

    Directory of Open Access Journals (Sweden)

    Živadinović Milka

    2016-01-01

    Full Text Available Background/Aim. The mechanism of impaired bone healing in diabetes mellitus includes different tissue and cellular level activities due to micro- and macrovascular changes. As a chronic metabolic disease with vascular complications, diabetes affects a process of bone regeneration as well. The therapeutic approach in bone regeneration is based on the use of osteoinductive autogenous grafts as well as osteoconductive synthetic material, like a β-tricalcium phosphate. The aim of the study was to determine the quality and quantity of new bone formation after the use of autogenous bone and β-tricalcium phosphate in the model of calvarial critical-sized defect in rabbits with induced diabetes mellitus type I. Methods. The study included eight 4-month-old Chincilla rabbits with alloxan-induced diabetes mellitus type I. In all animals, there were surgically created two calvarial bilateral defects (diameter 12 mm, which were grafted with autogenous bone and β-tricalcium phosphate (n = 4 or served as unfilled controls (n = 4. After 4 weeks of healing, animals were sacrificed and calvarial bone blocks were taken for histologic and histomorphometric analysis. Beside descriptive histologic evaluation, the percentage of new bone formation, connective tissue and residual graft were calculated. All parameters were statistically evaluated by Friedman Test and post hock Wilcoxon Singed Ranks Test with a significance of p < 0.05. Results. Histology revealed active new bone formation peripherally with centrally located connective tissue, newly formed woven bone and well incorporated residual grafts in all treated defects. Control samples showed no bone bridging of defects. There was a significantly more new bone in autogeonous graft (53% compared with β-tricalcium phosphate (30%, (p < 0.030 and control (7%, (p < 0.000 groups. A significant difference was also recorded between β-tricalcium phosphate and control groups (p < 0.008. Conclusion. In the present

  3. Incomplete bone regeneration of rabbit calvarial defects using different membranes

    DEFF Research Database (Denmark)

    Aaboe, M; Pinholt, E M; Schou, S

    1998-01-01

    The present study describes the use of a degradable and a non-degradable material for guided bone regeneration. Forty rabbits were divided into 5 groups. Bicortical defects 15 mm in diameter were prepared in rabbit calvaria. A titanium microplate was placed over the defect to prevent collapse...

  4. Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseointegration by promoting bone anabolism in type 1 diabetic rabbits.

    Science.gov (United States)

    Cai, J; Li, W; Sun, T; Li, X; Luo, E; Jing, D

    2018-05-01

    The effects of exogenous pulsed electromagnetic field (PEMF) stimulation on T1DM-associated osteopathy were investigated in alloxan-treated rabbits. We found that PEMF improved bone architecture, mechanical properties, and porous titanium (pTi) osseointegration by promoting bone anabolism through a canonical Wnt/β-catenin signaling-associated mechanism, and revealed the clinical potential of PEMF stimulation for the treatment of T1DM-associated bone complications. Type 1 diabetes mellitus (T1DM) is associated with deteriorated bone architecture and impaired osseous healing potential; nonetheless, effective methods for resisting T1DM-associated osteopenia/osteoporosis and promoting bone defect/fracture healing are still lacking. PEMF, as a safe and noninvasive method, have proven to be effective for promoting osteogenesis, whereas the potential effects of PEMF on T1DM osteopathy remain poorly understood. We herein investigated the effects of PEMF stimulation on bone architecture, mechanical properties, bone turnover, and its potential molecular mechanisms in alloxan-treated diabetic rabbits. We also developed novel nontoxic Ti2448 pTi implants with closer elastic modulus with natural bone and investigated the impacts of PEMF on pTi osseointegration for T1DM bone-defect repair. The deteriorations of cancellous and cortical bone architecture and tissue-level mechanical strength were attenuated by 8-week PEMF stimulation. PEMF also promoted osseointegration and stimulated more adequate bone ingrowths into the pore spaces of pTi in T1DM long-bone defects. Moreover, T1DM-associated reduction of bone formation was significantly attenuated by PEMF, whereas PEMF exerted no impacts on bone resorption. We also found PEMF-induced activation of osteoblastogenesis-related Wnt/β-catenin signaling in T1DM skeletons, but PEMF did not alter osteoclastogenesis-associated RANKL/RANK signaling gene expression. We reveal that PEMF improved bone architecture, mechanical properties, and

  5. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    Science.gov (United States)

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; pbone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; pbone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male

  6. Experimental study on skin irritation of bone spur powder on rabbit

    Science.gov (United States)

    Ma, Zhenzhen; Zhang, Xuhui; Hao, Shaojun; Shen, Huiling; Wang, Huamin; Ji, Xianghui; Zhang, Zhengchen; Huang, Youling

    2018-04-01

    To observe the effect of bone powder of rabbit skin, provide the basis for the safety of clinical use of bone powder, 24 rabbits were randomly divided into 6 groups, complete skin test and damaged skin test each divided into 3 groups (n=4), high, low, 3 doses tested daily administered 1 times, continuous administration for 7 days, in 24 hours after the last administration of drug residues, wash with warm water, the removal of L hours after drug for 24 hours, 48 hours, 72 hours and seventh days, observed and recorded to apply position before administration and administration during the skin no erythema and edema, and observe the smear Parts of any pigmentation, bleeding, rough skin or thin skin etc., record the occurrence time and duration time. Through comparative observation, intact skin group before administration and dosing period, there were no erythema and edema, pigmentation, bleeding, rough skin or thin skin etc., there is no difference with the control group; the damaged skin group after administration of 1 to 5 days, each rabbit skin there are different degrees of erythema and edema, especially to skin injury after 24-48 hours is obvious, 2 days (48 hours) after 4 days gradually reduced, significantly subsided after 6 days, erythema and edema phenomenon subsided completely, not out of blood, pigmentation, rough skin or thin skin and so on. The bone spur powder has no irritation on the intact skin of rabbits. The bone spur powder has moderate irritation on the damaged skin of rabbits, but after 48 hours, the stimulation reaction subsided spontaneously, which is caused by the inflammatory reaction caused by skin injury, rather than the medication. The bone spur powder is safe for clinical use.

  7. Effect of microstructure on micromechanical performance of dry cortical bone tissues

    International Nuclear Information System (INIS)

    Yin Ling; Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua

    2009-01-01

    The mechanical properties of bone depend on composition and structure. Previous studies have focused on macroscopic fracture behavior of bone. In the present study, we performed microindentation studies to understand the deformation properties and microcrack-microstructure interactions of dry cortical bone. Dry cortical bone tissues from lamb femurs were tested using Vickers indentation with loads of 0.245-9.8 N. We examined the effect of bone microstructure on deformation and crack propagation using scanning electron microscopy (SEM). The results showed the significant effect of cortical bone microstructure on indentation deformation and microcrack propagation. The indentation deformation of the dry cortical bone was basically plastic at any applied load with a pronounced viscoelastic recovery, in particular at lower loads. More microcracks up to a length of approximately 20 μm occurred when the applied load was increased. At loads of 4.9 N and higher, most microcracks were found to develop from the boundaries of haversian canals, osteocyte lacunae and canaliculi. Some microcracks propagated from the parallel direction of the longitudinal interstitial lamellae. At loads 0.45 N and lower, no visible microcracks were observed.

  8. In vivo bone engineering in a rabbit femur.

    Science.gov (United States)

    Fialkov, Jeffrey A; Holy, Chantal E; Shoichet, Molly S; Davies, John E

    2003-05-01

    The repair of bone defects in reconstructive surgery has significant limitations. Donor site morbidity, limited supply of autograft, and risks and complications associated with allografting and synthetic bone substitutes are among the most significant. In an effort to address these problems, the search for an ideal bone replacement has led to the development of a new method of poly(lactide-co-glycolide) (PLGA) foam processing, enabling the production of a biodegradable scaffold with similar porosity to human trabecular bone. In this study, these scaffolds were evaluated for bone repair in vivo in a femoral critical-sized segmental defect in New Zealand White (NZW) rabbits. Three groups of nine animals were investigated. In the first group, the critical-sized defects were empty. Scaffolds alone were implanted in the second group, whereas autologous bone marrow cell-loaded scaffolds were implanted in the third group. Animals ambulated freely for 8 weeks after surgery, and bone formation throughout the defects was serially assessed radiographically and quantified using a bone formation index (BFI) measure. Postmortem radiography and histology were also undertaken to examine bone formation. There was a significant effect of applying this technology to the amount of bone formed in the defects as determined by the BFI (F = 3.41, P < 0.05). The mean BFI for the cell-loaded scaffolds was greater than for the control group at all measured time points (2-, 4-, 6-, and 8-week radiographs). This difference was significant for the 2- and 8-week radiographs (P < 0.05). Qualitative histological assessment confirmed these findings. We concluded from these findings that these PLGA scaffolds loaded with marrow-derived progenitor cells yield significant bone formation in a critical-sized rabbit femoral defect. This technology comprising a novel scaffold design and autologous cells may provide an alternative to current strategies for reconstruction of bony defects.

  9. Dynamic Mechanical Testing Techniques for Cortical and Cancellous Bone

    Science.gov (United States)

    Cloete, Trevor

    2017-06-01

    Bone fracture typically occurs as an impact loading event (sporting accidents, vehicle collisions), the simulation of which requires in-depth understanding of dynamic bone behavior. Bone is a natural composite material with a complex multi length-scale hierarchical microstructure. At a macroscopic level, it is classified into hard/compact cortical bone and soft/spongy cancellous (trabecular) bone, though both are low-impedance materials relative to steels. Cortical bone is predominant in long bones, while in complex bone geometries (joints, flat bones) a cancellous bone core supports a thin cortical shell. Bone has primarily been studied at quasi-static strain rates (ɛ˙ failure, with interrupted quasi-static tests revealing a strong microstructure dependence. However, bone specimens are typically destroyed during dynamic tests, leading to a lack of dynamic microstructural damage investigations. In this paper, a short overview of dynamic bone testing is presented to give context to the challenges of testing low impedance, strain-rate dependent, non-linear, visco-elastic-brittle materials. Recent state-of-the-art experimental developments in dynamic bone testing are reviewed, with emphasis on pulse shaping, momentum trapping and ISR testing. These techniques allow for dynamic bone testing at small strains and near-constant strain rates with intact specimen recovery. The results are compared to those obtained with varying strain rate tests. Interrupted dynamic test results with microstructural analysis of the recovered specimens are presented and discussed. The paper concludes with a discussion of the experimental and modeling challenges that lie ahead in the field of dynamic bone behavior. The financial assistance of the National Research Foundation and the University of Cape Town towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author alone.

  10. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    Science.gov (United States)

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  11. Effect of platelet-rich plasma combined with demineralised bone matrix on bone healing in rabbit ulnar defects.

    Science.gov (United States)

    Galanis, Vasilios; Fiska, Alice; Kapetanakis, Stylianos; Kazakos, Konstantinos; Demetriou, Thespis

    2017-09-01

    This study evaluates the effect of autologous platelet-rich plasma (PRP) combined with xenogeneic demineralised bone matrix (DBM) on bone healing of critical-size ulnar defects (2-2.5 times the ulnar diameter) in New Zealand White rabbits. Critical-size defects were created unilaterally in the ulna of 36 rabbits, while keeping the contralateral limb intact. They were divided into three groups. In Group A, the defect was filled with autologous PRP and in Group B, with autologous PRP combined with DBM; in Group C, the defect remained empty. The rabbits were euthanised 12 weeks postoperatively. Radiological, biomechanical and histological assessments were carried out and statistical analysis of the results was performed. Group B had significantly higher radiological and histological scores than Groups A and C. Defects in Group B showed significant new bone formation, whereas there was minimal or no new bone formation in Groups A and C. Only specimens in Group B showed macroscopic bone union. Biomechanical evaluation of the treated and intact contralateral limbs in Group B showed significant differences. In this study, statistically significant enhancement of bone healing was found in critical-size defects treated with PRP and DBM, as shown by radiological findings, gross assessment, and biomechanical and histopathological results. Defects in the two other groups remained unbridged. Therefore, PRP was effective only when it was used in combination with a bone graft. Copyright: © Singapore Medical Association

  12. The cortical representation of sensory inputs arising from bone.

    Science.gov (United States)

    Ivanusic, Jason J; Sahai, Vineet; Mahns, David A

    2009-05-07

    In the present study, we show that sensory information from bone reaches the discriminative areas of the somatosensory cortices by electrically stimulating the nerve to the cat humerus and recording evoked potentials on the surface of the primary (SI) and secondary (SII) somatosensory cortex. The SI focus was located over the rostral part of the postcruciate cortex, caudal to the lateral aspect of the cruciate sulcus. The SII focus was identified on the anterior ectosylvian gyrus, lateral to the suprasylvian sulcus. These foci were located adjacent to, or within areas that responded to stimulation of the median, ulnar and/or musculocutaneous nerves. The latency (6-11 ms) to onset of cortical responses in SI and SII were indistinguishable (unpaired t-test; P>0.05), and were consistent with activation of A delta fibers in the peripheral nerve. The amplitudes of the cortical responses were graded as a function of stimulus intensity, and may reflect a mechanism for intensity coding. We did not observe long latency cortical responses (50-300 ms) that would be consistent with C fiber activation in the peripheral nerve, and provide evidence that this may be attributable to inhibition of cortical responsiveness following the initial A delta response. Our finding of discrete, short latency evoked potentials (presumably of A delta origin) in the primary and secondary somatosensory cortices, following stimulation of a nerve innervating bone, may reflect a mechanism for the discriminative component of bone pain.

  13. Pharmacokinetics of Cefuroxime in Cortical and Cancellous Bone Obtained by Microdialysis - a Porcine Study

    DEFF Research Database (Denmark)

    Tøttrup, Mikkel; Forsingdal Hardlei, Tore; Bendtsen, Michael

    2014-01-01

    . As reference, free and total plasma concentrations were also measured. The animals received a bolus of 1500 mg cefuroxime over 30 min. No significant differences between key pharmacokinetic parameters for sealed and unsealed drill holes in cortical bone were found. The mean area under the concentration...... (MD) technique for measurement of cefuroxime in bone, and to obtain pharmacokinetic profiles for the same drug in porcine cortical and cancellous bone. Measurements were conducted in bone-wax sealed and unsealed drill holes in cortical bone, in drill holes in cancellous bone and in subcutaneous tissue...

  14. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    Directory of Open Access Journals (Sweden)

    Daniel Blashki

    2016-08-01

    Full Text Available In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies.

  15. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model.

    Science.gov (United States)

    Atiya, Basim K; Shanmuhasuntharam, Palasuntharam; Huat, Siar; Abdulrazzak, Shurooq; Oon, Ha

    2014-01-01

    Different forms of dentin, including untreated, undemineralized, demineralized, boiled, or mixed with other materials, have been evaluated for efficacy as bone substitutes. However, the effects of application of liquid nitrogen-treated dentin for bone grafting remain unknown. The objective of this study was to chronologically evaluate bone healing following grafting with liquid nitrogen-treated dentin in a rabbit model. Autogenous dentin treated with liquid nitrogen at -196°C for 20 minutes was used. In 16 New Zealand White rabbits, a bone defect (5 mm in diameter) was created in each femur and randomly grafted with either autogenous dentin (experimental group) or autogenous bone grafts (positive control). In another four rabbits (negative control), a similar defect in each femur was left empty. The rabbits were sacrificed at 2, 4, 8, and 12 weeks. Explants of grafted sites were harvested for histologic and histomorphometric analysis. At 2 and 4 weeks in both the experimental and positive control groups, accelerated formation of new bone was observed, which was undergoing remodeling at 8 and 12 weeks. The mean new bone score was higher in the experimental than in the negative control groups, but this was not statistically significant. The present results demonstrated that liquid nitrogen-treated autogenous dentin has both osteoconductive and osteoinductive properties and therefore has potential as a bone substitute.

  16. Thickened cortical bones in congenital neutropenia

    International Nuclear Information System (INIS)

    Boechat, M.I.; Gormley, L.S.; O'Laughlin, B.J.

    1987-01-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described. (orig.)

  17. Thickened cortical bones in congenital neutropenia

    Energy Technology Data Exchange (ETDEWEB)

    Boechat, M.I.; Gormley, L.S.; O' Laughlin, B.J.

    1987-02-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described.

  18. Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone.

    Science.gov (United States)

    Wang, Xiao-Yan; Zuo, Yi; Huang, Di; Hou, Xian-Deng; Li, Yu-Bao

    2010-12-01

    To comparatively investigate the inorganic composition and crystallographic properties of cortical and cancellous bone via thermal treatment under 700 °C. Thermogravimetric measurement, infrared spectrometer, X-ray diffraction, chemical analysis and X-ray photo-electron spectrometer were used to test the physical and chemical properties of cortical and cancellous bone at room temperature 250 °C, 450 °C, and 650 °C, respectively. The process of heat treatment induced an extension in the a-lattice parameter and changes of the c-lattice parameter, and an increase in the crystallinity reflecting lattice rearrangement after release of lattice carbonate and possible lattice water. The mineral content in cortical and cancellous bone was 73.2wt% and 71.5wt%, respectively. For cortical bone, the weight loss was 6.7% at the temperature from 60 °C to 250 °C, 17.4% from 250 °C to 450 °C, and 2.7% from 450 °C to 700 °C. While the weight loss for the cancellous bone was 5.8%, 19.9%, and 2.8 % at each temperature range, the Ca/P ratio of cortical bone was 1.69 which is higher than the 1.67 of stoichiometric HA due to the B-type CO₃²⁻ substitution in apatite lattice. The Ca/P ratio of cancellous bone was lower than 1.67, suggesting the presence of more calcium deficient apatite. The collagen fibers of cortical bone were arrayed more orderly than those of cancellous bone, while their mineralized fibers ollkded similar. The minerals in both cortical and cancellous bone are composed of poorly crystallized nano-size apatite crystals with lattice carbonate and possible lattice water. The process of heat treatment induces a change of the lattice parameter, resulting in lattice rearrangement after the release of lattice carbonate and lattice water and causing an increase in crystal size and crystallinity. This finding is helpful for future biomaterial design, preparation and application. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences

  19. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann

    2015-01-01

    Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected......-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...... radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values...

  20. Low cortical bone density measured by computed tomography in children and adolescents with untreated hyperthyroidism.

    Science.gov (United States)

    Numbenjapon, Nawaporn; Costin, Gertrude; Gilsanz, Vicente; Pitukcheewanont, Pisit

    2007-05-01

    To determine whether increased thyroid hormones levels have an effect on various bone components (cortical vs cancellous bone). The anthropometric and 3-dimensional quantitative computed tomography (CT) bone measurements, including bone density (BD), cross-sectional area (CSA) of the lumbar spine and femur, and cortical bone area (CBA) of the femur, of 18 children and adolescents with untreated hyperthyroidism were reviewed and compared with those of age-, sex-, and ethnicity-matched historical controls. No significant differences in height, weight, body mass index (BMI), or pubertal staging between patients and controls were found. Cortical BD was significantly lower (P hyperthyroidism compared with historical controls. After adjusting for weight and height, no difference in femur CSA between hyperthyroid children and historical controls was evident. No significant correlations among thyroid hormone levels, antithyroid antibody levels, and cortical BD values were found. As determined by CT, cortical bone is the preferential site of bone loss in children and adolescents with untreated hyperthyroidism.

  1. The effect of infection and lag screw fixation on revascularization and new bone deposition in membranous bone grafts in a rabbit model.

    Science.gov (United States)

    Fialkov, J A; Phillips, J H; Walmsley, S L; Morava-Protzner, I

    1996-08-01

    We have suggested that rigid fixation of membranous bone grafts in the presence of infection may improve graft-recipient bone union by facilitating graft revascularzation. To test this hypothesis, we grafted autogenous membranous bone grafts to the mandibles of 94 New Zealand White rabbits. Lag screw fixation was applied in half the animals. The wounds were inoculated with a range of Staphylococcus aureus doses. Infected and noninfected rabbits were injected weekly over a 5-week course with fluorescein bone markers and with a marker of vascular endothelium (procion red) just prior to sacrifice. Revascularization and new bone deposition in the grafts were then quantified histologically for the 75 rabbits available for data collection. Infection decreased the amount of graft revascularized and the amount of new bone deposited for both rigidly fixated and nonfixated grafts. Grafts fixated with a lag screw showed a greater amount of revascularization and new bone deposition in the presence and absence of infection when compared with nonfixated grafts, supporting the hypothesis that rigid fixation of membranous bone grafts in the presence of infection may promote graft survival and union by improving revascularization and osteogenesis within the graft.

  2. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    Science.gov (United States)

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  3. Demineralized Freeze-Dried Bovine Cortical Bone: Its Potential for Guided Bone Regeneration Membrane

    Directory of Open Access Journals (Sweden)

    David B. Kamadjaja

    2017-01-01

    Full Text Available Background. Bovine pericardium collagen membrane (BPCM had been widely used in guided bone regeneration (GBR whose manufacturing process usually required chemical cross-linking to prolong its biodegradation. However, cross-linking of collagen fibrils was associated with poorer tissue integration and delayed vascular invasion. Objective. This study evaluated the potential of bovine cortical bone collagen membrane for GBR by evaluating its antigenicity potential, cytotoxicity, immune and tissue response, and biodegradation behaviors. Material and Methods. Antigenicity potential of demineralized freeze-dried bovine cortical bone membrane (DFDBCBM was done with histology-based anticellularity evaluation, while cytotoxicity was analyzed using MTT Assay. Evaluation of immune response, tissue response, and biodegradation was done by randomly implanting DFDBCBM and BPCM in rat’s subcutaneous dorsum. Samples were collected at 2, 5, and 7 days and 7, 14, 21, and 28 days for biocompatibility and tissue response-biodegradation study, respectively. Result. DFDBCBM, histologically, showed no retained cells; however, it showed some level of in vitro cytotoxicity. In vivo study exhibited increased immune response to DFDBCBM in early healing phase; however, normal tissue response and degradation rate were observed up to 4 weeks after DFDBCBM implantation. Conclusion. Demineralized freeze-dried bovine cortical bone membrane showed potential for clinical application; however, it needs to be optimized in its biocompatibility to fulfill all requirements for GBR membrane.

  4. In Vivo Assessment of Elasticity of Child Rib Cortical Bone Using Quantitative Computed Tomography

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2017-01-01

    Full Text Available Elasticity of the child rib cortical bone is poorly known due to the difficulties in obtaining specimens to perform conventional tests. It was shown on the femoral cortical bone that elasticity is strongly correlated with density for both children and adults through a unique relationship. Thus, it is assumed that the relationships between the elasticity and density of adult rib cortical bones could be expanded to include that of children. This study estimated in vivo the elasticity of the child rib cortical bone using quantitative computed tomography (QCT. Twenty-eight children (from 1 to 18 y.o. were considered. Calibrated QCT images were prescribed for various thoracic pathologies. The Hounsfield units were converted to bone mineral density (BMD. A relationship between the BMD and the elasticity of the rib cortical bone was applied to estimate the elasticity of children’s ribs in vivo. The estimated elasticity increases with growth (7.1 ± 2.5 GPa at 1 y.o. up to 11.6 ± 1.9 GPa at 18 y.o.. This data is in agreement with the few previous values obtained using direct measurements. This methodology paves the way for in vivo assessment of the elasticity of the child cortical bone based on calibrated QCT images.

  5. Effect of beta-tricalcium phosphate/poly-l-lactide composites on radial bone defects of rabbit

    Institute of Scientific and Technical Information of China (English)

    Zhao-Jin Zhu; Hao Shen; Yong-Ping Wang; Yao Jiang; Xian-Long Zhang; Guang-Yin Yuan

    2013-01-01

    Objective:To explore the effect ofβ-TCP/PLLA scaffold in repairing rabbit radial bone defects. Methods: Thirty New Zealand rabbits were divided intoβ-TCP/PLLA group (group A), pure PLLA group (group B) and contrast group (group C) randomly. The rabbits were sacrificed respectively after 4, 8, 12, 24 weeks and the X-ray film was performed at the same time to evaluate the repair effect in different groups. Results:X-ray film showed there was uneven low density bone callus development in defect region after 4 weeks in group A. The defect region was filled with neonate osseous tissue completely during 12-24 weeks. X-ray score revealed that repair of bone defect results significantly better than group B and group C. Conclusions: Theβ-TCP/PLLA composite is capable of repairing radial bone bone defects.β-TCP/PLLA scaffold is significant because of rapid degradation ability, good histocompatibility and osteogenic action.

  6. Comparison of xenogenic bone bioimplant and calcium phosphate granules on experimental femoral bone defect healing in rabbits

    Directory of Open Access Journals (Sweden)

    GH Mousavi

    2012-05-01

    Full Text Available Rebuilding and renovation of lost bone whether because of physiologic or pathologic factors was one of the surgeons’ motivations from the past. Osteogenesis of decalcified bone induced by growth factors contained in it. This study is to assay probability effect of decalcified bone and calcium phosphate granules on osteogenesis which is made in experimental flaw and it is as a laboratory pattern in rabbit femur.This experimental study is made on 15 male rabbits. Animals were divided randomly into 3 groups (control and treatments.After induction of general anesthesia, 2 holes in size of 2 mm in diameter was made using a dental bit in femur width to medullary channel. After surgery, the control group left untreated and decalcified bones was placed in group 2 and calcium phosphate granules were placed in group 3. Histopathological and histomorphometrical studies for evaluation of bone healing were carried out in experimental rats, which were euthanized after 45 days of the experiment using hematoxylin-eosin (H&E staining method.In control group, defect seemed to be filled with woven bone and bone marrow spaces and in spite of a poor osteogenic activity. In calcium phosphate group, young bone trabeculas increased in number and bone trabeculas more organized. Histomorphometric results, observed that calcium phosphate granules has significant effect on bone healing than decalcified and control groups.

  7. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit

    Directory of Open Access Journals (Sweden)

    Maiti SK

    2016-11-01

    Full Text Available Bone marrow derived mesenchymal stem cells (BMSC represent an attractive cell population for tissue engineering purpose. The objective of this study was to determine whether the addition of recombinant human bone morphogenetic protein (rhBMP-2 and insulin-like growth factor (IGF-1 to a silica-coated calcium hydroxyapatite (HASi - rabbit bone marrow derived mesenchymal stem cell (rBMSC construct promoted bone healing in a large segmental bone defect beyond standard critical -size radial defects (15mm in rabbits. An extensively large 30mm long radial ostectomy was performed unilaterally in thirty rabbits divided equally in five groups. Defects were filled with a HASi scaffold only (group B; HASi scaffold seeded with rBMSC (group C; HASi scaffold seeded with rBMSC along with rhBMP-2 and IGF-1 in groups D and E respectively. The same number of rBMSC (five million cells and concentration of growth factors rhBMP-2 (50µg and IGF-1 (50µg was again injected at the site of bone defect after 15 days of surgery in their respective groups. An empty defect served as the control group (group A. Radiographically, bone healing was evaluated at 7, 15, 30, 45, 60 and 90 days post implantation. Histological qualitative analysis with microCT (µ-CT, haematoxylin and eosin (H & E and Masson’s trichrome staining were performed 90 days after implantation. All rhBMP-2-added constructs induced the formation of well-differentiated mineralized woven bone surrounding the HASi scaffolds and bridging bone/implant interfaces as early as eight weeks after surgery. Bone regeneration appeared to develop earlier with the rhBMP-2 constructs than with the IGF-1 added construct. Constructs without any rhBMP-2 or IGF-1 showed osteoconductive properties limited to the bone junctions without bone ingrowths within the implantation site. In conclusion, the addition of rhBMP-2 to a HASi scaffold could promote bone generation in a large critical-size-defect.

  8. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit

    International Nuclear Information System (INIS)

    Merolli, Antonio; Nicolais, Luigi; Ambrosio, Luigi; Santin, Matteo

    2010-01-01

    The 'gold standard' for bone filling is currently the bone autograft, but its use is limited by material availability and by the possible risks of infection or other donor site morbidity. Materials proposed so far as bone fillers do not show all the characteristics which are desirable. These are (a) osteoconductivity, (b) controlled biodegradation and (c) ease of adaptation to the implantation site. Recently, a new class of biodegradable material based on soybeans has been presented which shows good mechanical properties and an intrinsic bioactivity on inflammatory and tissue cells in vitro. The authors investigated the morphology in vivo of bone response in repairing a surgical lesion in the presence of granules of a novel soybean-based biomaterial (SB), comparing it with a sham-operated contralateral lesion of critical size (non-healing model); 26 operations were performed in New Zealand White rabbits, with back scattered electron microscopy as the analysis technique of choice. Implantation of SB granules over 8 weeks produced bone repair with features distinct from those obtained by healing in a non-treated defect. New and progressively maturing trabeculae appeared in the animal group where SB granules were implanted, while sham operation produced only a rim of pseudo-cortical bone still featuring a large defect. The trabeculae forming in the presence of SB granules had features typical of reticular bone. These findings suggest that the bone regeneration potential of SB granules and their intrinsic bioactivity, combined with their relatively easy and cost-effective preparation procedures, make them suitable candidates as a bone filler in clinical applications.

  9. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Merolli, Antonio [Department of Orthopaedic Surgery, The Catholic University in Rome, Complesso Columbus, via Moscati 31, 00168 Rome (Italy); Nicolais, Luigi; Ambrosio, Luigi [Institute of Composite and Biomedical Materials, Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80130 Napoli (Italy); Santin, Matteo [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4 GJ (United Kingdom)

    2010-02-15

    The 'gold standard' for bone filling is currently the bone autograft, but its use is limited by material availability and by the possible risks of infection or other donor site morbidity. Materials proposed so far as bone fillers do not show all the characteristics which are desirable. These are (a) osteoconductivity, (b) controlled biodegradation and (c) ease of adaptation to the implantation site. Recently, a new class of biodegradable material based on soybeans has been presented which shows good mechanical properties and an intrinsic bioactivity on inflammatory and tissue cells in vitro. The authors investigated the morphology in vivo of bone response in repairing a surgical lesion in the presence of granules of a novel soybean-based biomaterial (SB), comparing it with a sham-operated contralateral lesion of critical size (non-healing model); 26 operations were performed in New Zealand White rabbits, with back scattered electron microscopy as the analysis technique of choice. Implantation of SB granules over 8 weeks produced bone repair with features distinct from those obtained by healing in a non-treated defect. New and progressively maturing trabeculae appeared in the animal group where SB granules were implanted, while sham operation produced only a rim of pseudo-cortical bone still featuring a large defect. The trabeculae forming in the presence of SB granules had features typical of reticular bone. These findings suggest that the bone regeneration potential of SB granules and their intrinsic bioactivity, combined with their relatively easy and cost-effective preparation procedures, make them suitable candidates as a bone filler in clinical applications.

  10. Enhancement of bone formation in rabbits by recombinant human growth hormone

    International Nuclear Information System (INIS)

    Ehrnberg, A.; Brosjoe, O.; Laaftman, P.; Nilsson, O.; Stroemberg, L.

    1993-01-01

    We studied the effect of human recombinant growth hormone on diaphyseal bone in 40 adult rabbits. The diaphyseal periosteum of one femur in each animal was mechanically stimulated by a nylon cerclage band. The bands induced an increase in bone formation, bone mineral content, and maximum torque capacity of the diaphyseal bone at 1 and 2 months. Growth hormone enhanced the anabolic effect of the cerclage bands on bone metabolism, evidenced by a further increase in torsional strength of the femurs. (au) (32 refs.)

  11. Computed tomography evaluation of human mandibles with regard to layer thickness and bone density of the cortical bone

    International Nuclear Information System (INIS)

    Markwardt, Jutta; Meissner, H.; Weber, A.; Reitemeier, B.; Laniado, M.

    2013-01-01

    Application of function-restoring individual implants for the bridging of defects in mandibles with continuity separation requires a stable fixation with special use of the cortical bone stumps. Five section planes each of 100 computed tomographies of poly-traumatized patients' jaws were used for measuring the thickness of the cortical layer and the bone density of the mandible. The CT scans of 28 female and 72 male candidates aged between 12 and 86 years with different dentition of the mandible were available. The computed tomographic evaluations of human mandibles regarding the layer thickness of the cortical bone showed that the edge of the mandible in the area of the horizontal branch possesses the biggest layer thickness of the whole of the lower jaws. The highest medians of the cortical bone layer thickness were found in the area of the molars and premolars at the lower edge of the lower jaws in 6-o'clock position, in the area of the molars in the vestibular cranial 10-o'clock position and in the chin region lingual-caudal in the 4-o'clock position. The measurement of the bone density showed the highest values in the 8-o'clock position (vestibular-caudal) in the molar region in both males and females. The average values available of the bone density and the layer thickness of the cortical bone in the various regions of the lower jaw, taking into consideration age, gender and dentition, are an important aid in practice for determining a safe fixation point for implants in the area of the surface layer of the mandible by means of screws or similar fixation elements. (orig.)

  12. Increased resistance during jump exercise does not enhance cortical bone formation.

    Science.gov (United States)

    Boudreaux, Ramon D; Swift, Joshua M; Gasier, Heath G; Wiggs, Michael P; Hogan, Harry A; Fluckey, James D; Bloomfield, Susan A

    2014-01-01

    This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.

  13. Effect of calcium citrate on bone integration in a rabbit femur defect model.

    Science.gov (United States)

    Zhang, Wei; Wang, Wei; Chen, Qing-Yu; Lin, Zhong-Qin; Cheng, Shao-Wen; Kou, Dong-Quan; Ying, Xiao-Zhou; Shen, Yue; Cheng, Xiao-Jie; Nie, Peng-Fei; Li, Xiu-Cui; Rompis, Ferdinand An; Huang, Hang; Zhang, Hua; Mu, Zhong-Lin; Peng, Lei

    2012-04-01

    To explore effect of calcium citrate on bone integration in a rabbit femur defect model, and to compare the bone formation with different sizes by radiological and histological study. Twenty-four male Japanese white rabbits were randomly divided into three groups (Group A, B, C) in this study. Under anesthesia, defects of four sizes (1.2, 1.5, 2.0 and 2.5 mm) were created in each of the rabbits. Commercially pure calcium citrate powder was placed inside the medullary compartment of the femur (Experimental), while in the contralateral femur (Control) nothing was implanted. The defects were analyzed using radiography and histological analysis by using Imagepro-Plus 6.0 software after animal was sacrificed at 4th(Group A), 6th(Group B) and 8th(Group C) weeks postoperatively. Four samples were analyzed for each size of defect and each healing period. The histological and the radiologic evaluation were performed after sacrification of all rabbits on postoperative 4th and 6th weeks, It showed significant difference between the experimental group and the control group when these defects were less than or equal to 2.0 mm. No statistical difference was observed when these defects were larger than 2.0 mm at all healing periods except at the 4th week. Calcium citrate affects the early periods of bone defects healing mechanism in Japanese white rabbits positively, especially when the defect is not too large. We suggest further studies on calcium citrate to determine the effects of various dosages, administration ways and the experimental time on the bone defects. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  14. Bone Formation with Deproteinized Bovine Bone Mineral or Biphasic Calcium Phosphate in the Presence of Autologous Platelet Lysate: Comparative Investigation in Rabbit

    Directory of Open Access Journals (Sweden)

    Carole Chakar

    2014-01-01

    Full Text Available Bone substitutes alone or supplemented with platelet-derived concentrates are widely used to promote bone regeneration but their potency remains controversial. The aim of this study was, therefore, to compare the regenerative potential of preparations containing autologous platelet lysate (APL and particles of either deproteinized bovine bone mineral (DBBM or biphasic calcium phosphate (BCP, two bone substitutes with different resorption patterns. Rabbit APL was prepared by freeze-thawing a platelet suspension. Critical-size defects in rabbit femoral condyle were filled with DBBM or DBBM+APL and BCP or BCP+APL. Rabbits were sacrificed after six weeks and newly formed bone and residual implanted material were evaluated using nondemineralized histology and histomorphometry. New bone was observed around particles of all fillers tested. In the defects filled with BCP, the newly formed bone area was greater (70%; P<0.001 while the residual material area was lower (60%; P<0.001 than that observed in those filled with DBBM. New bone and residual material area of defects filled with either APL+DBBM or APL+BCP were similar to those observed in those filled with the material alone. In summary, osteoconductivity and resorption of BCP were greater than those of DBBM, while APL associated with either DBBM or BCP did not have an additional benefit.

  15. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    Science.gov (United States)

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  16. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  17. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    International Nuclear Information System (INIS)

    Eneh, C. T. M.; Töyräs, J.; Jurvelin, J. S.; Malo, M. K. H.; Liukkonen, J.; Karjalainen, J. P.

    2016-01-01

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R"2 ≥ 0.493, p < 0.01 and R"2 ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated in vivo

  18. Automatic Detection of Cortical Bones Haversian Osteonal Boundaries

    Directory of Open Access Journals (Sweden)

    Ilige Hage

    2015-10-01

    Full Text Available This work aims to automatically detect cement lines in decalcified cortical bone sections stained with H&E. Employed is a methodology developed previously by the authors and proven to successfully count and disambiguate the micro-architectural features (namely Haversian canals, canaliculi, and osteocyte lacunae present in the secondary osteons/Haversian system (osteon of cortical bone. This methodology combines methods typically considered separately, namely pulse coupled neural networks (PCNN, particle swarm optimization (PSO, and adaptive threshold (AT. In lieu of human bone, slides (at 20× magnification from bovid cortical bone are used in this study as proxy of human bone. Having been characterized, features with same orientation are used to detect the cement line viewed as the next coaxial layer adjacent to the outermost lamella of the osteon. Employed for this purpose are three attributes for each and every micro-sized feature identified in the osteon lamellar system: (1 orientation, (2 size (ellipse perimeter and (3 Euler number (a topological measure. From a training image, automated parameters for the PCNN network are obtained by forming fitness functions extracted from these attributes. It is found that a 3-way combination of these features attributes yields good representations of the overall osteon boundary (cement line. Near-unity values of classical metrics of quality (precision, sensitivity, specificity, accuracy, and dice suggest that the segments obtained automatically by the optimized artificial intelligent methodology are of high fidelity as compared with manual tracing. For bench marking, cement lines segmented by k-means did not fare as well. An analysis based on the modified Hausdorff distance (MHD of the segmented cement lines also testified to the quality of the detected cement lines vis-a-vis the k-means method.

  19. The Hounsfield value for cortical bone geometry in the proximal humerus - an in vitro study

    International Nuclear Information System (INIS)

    Lim Fat, Daren; Kennedy, Jim; Galvin, Rose; O'Brien, Fergal; Mc Grath, Frank; Mullett, Hannan

    2012-01-01

    Fractures of the proximal humerus represent a major osteoporotic burden. Recent developments in CT imaging have emphasized the importance of cortical bone thickness distribution in the prevention and management of fragility fractures. We aimed to experimentally define the CT density of cortical bone in the proximal humerus for building cortical geometry maps. With ethical approval, we used ten fresh-frozen human proximal humeri. These were stripped of all soft tissue and high-resolution CT images were then taken. The humeral heads were then subsequently resected to allow access to the metaphyseal area. Using curettes, cancellous bone was removed down to hard cortical bone. Another set of CT images of the reamed specimen was then taken. Using CT imaging software and a CAD interface, we then compared cortical contours at different CT density thresholds to the reference inner cortical contour of our reamed specimens. Working with 3D model representations of these cortical maps, we were able to accurately make distance comparison analyses based on different CT thresholds. We could compute a single closest value at 700 HU. No difference was found in the HU-based contours generated along the 500-900 HU pixels (p = 1.000). The contours were significantly different from those generated at 300, 400, 1,000, and 1,100 HU. A Hounsfield range of 500-900 HU can accurately depict cortical bone geometry in the proximal humerus. Thresholding outside this range leads to statistically significant inaccuracies. Our results concur with a similar range reported in the literature for the proximal femur. Knowledge of regional variations in cortical bone thickness has direct implications for basic science studies on osteoporosis and its treatment, but is also important for the orthopedic surgeon since our decision for treatment options is often guided by local bone quality. (orig.)

  20. Cortical modulation of the nucleus of the optic tract in the rabbit.

    Science.gov (United States)

    Pettorossi, V E; Troiani, D

    1983-09-01

    We analyzed in rabbits the relationships between the temporooccipital nystagmogenic cortex (NGC)--the region sited at the border between cortical areas 17, 21, and 22--and the nucleus of the optic tract (NOT). Two experimental approaches were used: (a) eye movement analysis before and after electrolytic lesion of the NOT region provided an indication of the importance of the NOT for the interaction between the ocular nystagmus elicited by natural optokinetic stimulation (OKN) and the nystagmus evoked by electrical stimulation of the nystagmogenic area; (b) NOT direction-selective and velocity-sensitive units were tested with single shock or repetitive electrical stimulation of the nystagmogenic region. Single-shock stimulation evoked single or multiple spikes in 50% of NOT units analyzed and repetitive stimuli induced prolonged facilitation and inhibitory rebounds in 70% of the units tested. Comparison of orthodromic activation latencies of the NOT cells (3.2 and 6.1 ms) after cortical stimulation and of antidromic activation latencies of cortical nystagmogenic units (2.6 ms) after NOT shocks, suggested monosynaptic as well as polysynaptic connections between the temporooccipital cortex and the NOT. The existence of such cortical-NOT linkage indicates that the NOT is intercalated between the cortex and the oculomotor centers and represents the most probable site of interaction of the cortical nystagmus pathway with the optokinetic reflex arc.

  1. Postnatal Changes in Humerus Cortical Bone Thickness Reflect the Development of Metabolic Bone Disease in Preterm Infants

    Directory of Open Access Journals (Sweden)

    Shuko Tokuriki

    2016-01-01

    Full Text Available Objective. To use cortical bone thickness (CBT of the humerus to identify risk factors for the development of metabolic bone disease in preterm infants. Methods. Twenty-seven infants born at <32 weeks of gestational age, with a birth weight of <1,500 g, were enrolled. Humeral CBT was measured from chest radiographs at birth and at 27-28, 31-32, and 36–44 weeks of postmenstrual age (PMA. The risk factors for the development of osteomalacia were statistically analyzed. Results. The humeral CBT at 36–44 weeks of PMA was positively correlated with gestational age and birth weight and negatively correlated with the duration of mechanical ventilation. CBT increased with PMA, except in six very early preterm infants in whom it decreased. Based on logistic regression analysis, gestational age and duration of mechanical ventilation were identified as risk factors for cortical bone thinning. Conclusions. Humeral CBT may serve as a radiologic marker of metabolic bone disease at 36–44 weeks of PMA in preterm infants. Cortical bones of extremely preterm infants are fragile, even when age is corrected for term, and require extreme care to lower the risk of fractures.

  2. Growth hormone effects on cortical bone dimensions in young adults with childhood-onset growth hormone deficiency

    DEFF Research Database (Denmark)

    Hyldstrup, L; Conway, G S; Racz, K

    2012-01-01

    Growth hormone (GH) treatment in young adults with childhood-onset GH deficiency has beneficial effects on bone mass. The present study shows that cortical bone dimensions also benefit from GH treatment, with endosteal expansion and increased cortical thickness leading to improved bone strength....... INTRODUCTION: In young adults with childhood-onset growth hormone deficiency (CO GHD), GH treatment after final height is reached has been shown to have beneficial effects on spine and hip bone mineral density. The objective of the study was to evaluate the influence of GH on cortical bone dimensions. METHODS...

  3. Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading

    International Nuclear Information System (INIS)

    Gao, X; Li, S; Adel-Wahab, A; Silberschmidt, V

    2013-01-01

    A fracture process in a cortical bone tissue depends on various factors, such as bone loss, heterogeneous microstructure, variation of its material properties and accumulation of microcracks. Therefore, it is crucial to comprehend and describe the effect of microstructure and material properties of the components of cortical bone on crack propagation in a dynamic loading regime. At the microscale level, osteonal bone demonstrates a random distribution of osteons imbedded in an interstitial matrix and surrounded by a thin layer known as cement line. Such a distribution of osteons can lead to localization of deformation processes. The global mechanical behavior of bone and the crack-propagation process are affected by such localization under external loads. Hence, the random distribution of microstructural features plays a key role in the fracture process of cortical bone. The purpose of this study is two-fold: firstly, to develop two-dimensional microstructured numerical models of cortical bone tissue in order to examine the interaction between the propagating crack and bone microstructure using an extended finite-element method under both quasi-static and dynamic loading conditions; secondly, to investigate the effect of randomly distributed microstructural constituents on the crack propagation processes and crack paths. The obtained results of numerical simulations showed the influence of random microstructure on the global response of bone tissue at macroscale and on the crack-propagation process for quasi-static and dynamic loading conditions

  4. Histomorphological evaluation of Compound bone of Granulated Ricinus in bone regeneration in rabbits

    International Nuclear Information System (INIS)

    Mateus, Christiano Pavan; Chierice, Gilberto Orivaldo; Okamoto, Tetuo

    2011-01-01

    Histological evaluation is an effective method in the behavioral description of the qualitative and quantitative implanted materials. The research validated the performance of Compound bone of Granulated Ricinus on bone regeneration with the histomorphological analysis results. Were selected 30 rabbits, females, divided into 3 groups of 10 animals (G1, G2, G3) with a postoperative time of 45, 70 and 120 days respectively. Each animal is undergone 2 bone lesions in the ilium, one implemented in the material: Compound bone of Granulated Ricinus and the other for control. After the euthanasia, the iliac bone was removed, identified and subjected to histological procedure. The evaluation histological, histomorphological results were interpreted and described by quantitative and qualitative analysis based facts verified in the three experimental groups evaluating the rate of absorption of the material in the tissue regeneration, based on the neo-bone formation. The histomorphologic results classified as a material biocompatible and biologically active. Action in regeneration by bone resorption occurs slowly and gradually. Knowing the time and rate of absorption and neo-formation bone biomaterial, which can be determined in the bone segment applicable in the clinical surgical area.

  5. Effect of platelet-derived growth factor-BB on bone formation in calvarial defects: an experimental study in rabbits

    DEFF Research Database (Denmark)

    Vikjaer, D; Blom, S; Hjørting-Hansen, E

    1997-01-01

    The effect of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) on bone healing was examined in calvarial defects in rabbits. Bicortical circular (critical size) defects were prepared in the calvarial bone of 16 rabbits. The defects were closed on the dural side and covered externally...

  6. Effects of Ischemic Preconditioning of Different Intraoperative Ischemic Times of Vascularized Bone Graft Rabbit Models

    Directory of Open Access Journals (Sweden)

    Ahmad Sukari Halim

    2013-11-01

    Full Text Available BackgroundIschemic preconditioning has been shown to improve the outcomes of hypoxic tolerance of the heart, brain, lung, liver, jejunum, skin, and muscle tissues. However, to date, no report of ischemic preconditioning on vascularized bone grafts has been published.MethodsSixteen rabbits were divided into four groups with ischemic times of 2, 6, 14, and 18 hours. Half of the rabbits in each group underwent ischemic preconditioning. The osteomyocutaneous flaps consisted of the tibia bone, from which the overlying muscle and skin were raised. The technique of ischemic preconditioning involved applying a vascular clamp to the pedicle for 3 cycles of 10 minutes each. The rabbits then underwent serial plain radiography and computed tomography imaging on the first, second, fourth, and sixth postoperative weeks. Following this, all of the rabbits were sacrificed and histological examinations were performed.ResultsThe results showed that for clinical analysis of the skin flaps and bone grafts, the preconditioned groups showed better survivability. In the plain radiographs, except for two non-preconditioned rabbits with intraoperative ischemic times of 6 hours, all began to show early callus formation at the fourth week. The computed tomography findings showed more callus formation in the preconditioned groups for all of the ischemic times except for the 18-hour group. The histological findings correlated with the radiological findings. There was no statistical significance in the difference between the two groups.ConclusionsIn conclusion, ischemic preconditioning improved the survivability of skin flaps and increased callus formation during the healing process of vascularized bone grafts.

  7. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling.

    Science.gov (United States)

    Carrieroa, A; Pereirab, A F; Wilson, A J; Castagno, S; Javaheri, B; Pitsillides, A A; Marenzana, M; Shefelbine, S J

    2018-06-01

    Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing 'slice and view' 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies.

  9. The effect of platelet rich plasma from bone marrow aspirate with added bone morphogenetic protein-2 on the Achilles tendon-bone junction in rabbits.

    Science.gov (United States)

    Kim, Hak Jun; Nam, Hyok-Woo; Hur, Chang-Yong; Park, Misu; Yang, Hee Seok; Kim, Byung-Soo; Park, Jung-Ho

    2011-12-01

    To determine if exogenously injected bone marrow derived platelet-rich plasma (PRP) plus bone morphogenetic protein (BMP)-2 could accelerate the healing of bone-tendon junction injuries and increase the junction holding strength during the early regeneration period. A direct injury model of the bone-tendon junction was made using an Achilles tendon-calcaneus bone junction in a rabbit. In the PRP/BMP-2/fibrin group, 0.05 mL of bone marrow derived PRP and 100 ng/mL of BMP-2 both incorporated into 0.1 mL of fibrin glue were injected into Achilles tendon-calcaneus bone junctions. The effect of the intervention was tested by comparing the results of an intervention group to a control group. The results of biomechanical testing, and histological and gross analyses were compared between the 2 groups at the following time points after surgery: 2 weeks, 4 weeks, and 8 weeks. Histologic examinations showed that woven bone developed in tendon-bone junctions at 2 weeks after surgery in the PRP/BMP-2/fibrin group. Mechanical test results showed no significant difference between the PRP/BMP-2/fibrin and control groups at 2 and 4 weeks after surgery, but the mean maximal load in the PRP/BMP-2/fibrin group was significantly higher than in the control group (p rabbit model of tendon-bone junction injury.

  10. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Leszek, E-mail: leszek.borkowski@umlub.pl [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Pawłowska, Marta; Radzki, Radosław P.; Bieńko, Marek [Department of Animal Physiology, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin (Poland); Polkowska, Izabela [Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin (Poland); Belcarz, Anna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Karpiński, Mirosław [Department of Companion and Wildlife Animals, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin (Poland); Słowik, Tymoteusz [Independent Radiology Unit at Lublin Small Animals Medical Centre, Stefczyka 11, 20-151 Lublin (Poland); Matuszewski, Łukasz [Children' s Orthopaedic Clinic and Rehabilitation Department, Medical University of Lublin, Chodzki 2, 20-093 Lublin (Poland); Ślósarczyk, Anna [Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Ginalska, Grażyna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland)

    2015-08-01

    A novel elastic hydroxyapatite-based composite of high surgical handiness has been developed. Its potential application in orthopedics as a filler of bone defects has been studied. The biomaterial was composed of carbonated hydroxyapatite (CHAP) granules and polysaccharide polymer (β-1,3-glucan). Cylinders of 4 mm in diameter and 6 mm in length were implanted into bone cavities created in the proximal metaphysis of tibiae of 24 New Zealand white rabbits. 18 sham-operated animals were used as controls. After 1, 3 or 6 months, the rabbits were euthanized, the bones were harvested and subjected to analysis. Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. Peripheral quantitative computed tomography (pQCT) indicated the stimulating effect of the biomaterial on bone formation and mineralization. Densitometry (DXA) analysis suggested that biomineralization of bones was preceded by bioresorption and gradual disappearance of porous ceramic granules. The findings suggest that the CHAP–glucan composite material enables regeneration of bone tissue and could serve as a bone defect filler. - Highlights: • Highly porous carbonate HAP granules and β-1,3-glucan were used to fill bone voids. • Critical size defects of rabbit tibiae were filled with the composite scaffolds. • Biocompatibility, mineralization and osseointegration of implants were examined. • Histological analysis indicated a high biocompatibility of composite grafts. • We report penetration of bony tissue into implants and advanced osseointegration.

  11. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits

    International Nuclear Information System (INIS)

    Borkowski, Leszek; Pawłowska, Marta; Radzki, Radosław P.; Bieńko, Marek; Polkowska, Izabela; Belcarz, Anna; Karpiński, Mirosław; Słowik, Tymoteusz; Matuszewski, Łukasz; Ślósarczyk, Anna; Ginalska, Grażyna

    2015-01-01

    A novel elastic hydroxyapatite-based composite of high surgical handiness has been developed. Its potential application in orthopedics as a filler of bone defects has been studied. The biomaterial was composed of carbonated hydroxyapatite (CHAP) granules and polysaccharide polymer (β-1,3-glucan). Cylinders of 4 mm in diameter and 6 mm in length were implanted into bone cavities created in the proximal metaphysis of tibiae of 24 New Zealand white rabbits. 18 sham-operated animals were used as controls. After 1, 3 or 6 months, the rabbits were euthanized, the bones were harvested and subjected to analysis. Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. Peripheral quantitative computed tomography (pQCT) indicated the stimulating effect of the biomaterial on bone formation and mineralization. Densitometry (DXA) analysis suggested that biomineralization of bones was preceded by bioresorption and gradual disappearance of porous ceramic granules. The findings suggest that the CHAP–glucan composite material enables regeneration of bone tissue and could serve as a bone defect filler. - Highlights: • Highly porous carbonate HAP granules and β-1,3-glucan were used to fill bone voids. • Critical size defects of rabbit tibiae were filled with the composite scaffolds. • Biocompatibility, mineralization and osseointegration of implants were examined. • Histological analysis indicated a high biocompatibility of composite grafts. • We report penetration of bony tissue into implants and advanced osseointegration

  12. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    Science.gov (United States)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  13. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Directory of Open Access Journals (Sweden)

    Vanessa R. Yingling

    2016-01-01

    Full Text Available Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV at maturity.Methods. Female rats (25 days old were assigned to a control (C group (n = 45 that received saline injections (.2 cc or an experimental group (GnRH-a (n = 45 that received gonadotropin releasing hormone antagonist injections (.24 mg per dose for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a. The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R (n = 15 and (G-R (n = 15. The remaining animals had an ovariectomy surgery (OVX at 185 days of age and were sacrificed 40 days later (C-OVX (n = 15 and (G-OVX (n = 15. After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX and insulin-like growth factor 1 (IGF-1 were measured. Two-way ANOVA (2 groups (GnRH-a and Control X 3 time points (Injection Protocol, Recovery, post-OVX was computed.Results. GnRH-a injections suppressed uterine weights (72% and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19% following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  14. Age-related changes in cortical and trabecular bone mineral status: A quantitative CT study in lumbar vertebrae

    International Nuclear Information System (INIS)

    Tanno, M.; Horiuchi, T.; Nakajima, I.; Maeda, S.; Igarashi, M.; Yamada, H.

    2000-01-01

    To investigate the age and sex dependence of the bone mineral status of human lumbar vertebrae with special regard to differences between cortical and trabecular bone. The study group comprised 125 normal Japanese healthy volunteers (54 males and 71 females), and was subdivided into adult male and female groups (subjects younger than 40 years), intermediate male and female groups (ages ranging between 41 and 64 years) and old male and female groups (subjects older than 65 years). The cortical bone mineral status was estimated using a single-energy quantitative CT (SE-QCT) technique, whereas trabecular bone mineral density (BMD) was estimated using a dual-energy (DE-QCT) technique. A considerable gender difference in the age-related cortical bone status was found. There was a significant reduction of the mean values of the cortical volume and BMD in the old female group compared with those obtained in the old male group. The results suggest that in men, cortical and trabecular bone volume decrease very little with age. In women, cortical volume and BMD and trabecular BMD decrease with age while trabecular bone volume does not. The study showed that all variables had higher values in men than in women and that the difference increased with age

  15. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    Science.gov (United States)

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    Science.gov (United States)

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. [Experiment of porous calcium phosphate/bone matrix gelatin composite cement for repairing lumbar vertebral bone defect in rabbit].

    Science.gov (United States)

    Wang, Song; Yang, Han; Yang, Jian; Kang, Jianping; Wang, Qing; Song, Yueming

    2017-12-01

    To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the "porous composite cement") for repairing lumbar vertebral bone defect in a rabbit model. BMG was extracted from adult New Zealand rabbits according to the Urist's method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L 3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n =15) or CPC (control group, n =15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements ( t =4.254, P =0.006; t =2.476, P =0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between

  18. Influence of basis images and skull position on evaluation of cortical bone thickness in cone beam computed tomography.

    Science.gov (United States)

    Nascimento, Monikelly do Carmo Chagas; Boscolo, Solange Maria de Almeida; Haiter-Neto, Francisco; Santos, Emanuela Carla Dos; Lambrichts, Ivo; Pauwels, Ruben; Jacobs, Reinhilde

    2017-06-01

    The aim of this study was to assess the influence of the number of basis images and the orientation of the skull on the evaluation of cortical alveolar bone in cone beam computed tomography (CBCT). Eleven skulls with a total of 59 anterior teeth were selected. CBCT images were acquired by using 4 protocols, by varying the rotation of the tube-detector arm and the orientation of the skull (protocol 1: 360°/0°; protocol 2: 180°/0°; protocol 3: 180°/90°; protocol 4: 180°/180°). Observers evaluated cortical bone as absent, thin, or thick. Direct observation of the skulls was used as the gold standard. Intra- and interobserver agreement, as well as agreement of scoring between the 3 bone thickness classifications, were calculated by using the κ statistic. The Wilcoxon signed-rank test was used to compare the 4 protocols. For lingual cortical bone, protocol 1 showed no statistical difference from the gold standard. Higher reliability was found in protocol 3 for absent (κ = 0.80) and thin (κ = 0.47) cortices, whereas for thick cortical bone, protocol 2 was more consistent (κ = 0.60). In buccal cortical bone, protocol 1 obtained the highest agreement for absent cortices (κ = 0.61), whereas protocol 4 was better for thin cortical plates (κ = 0.38) and protocol 2 for thick cortical plates (κ = 0.40). No consistent effect of the number of basis images or head orientation for visual detection of alveolar bone was detected, except for lingual cortical bone, for which full rotation scanning showed improved visualization. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Weibull analysis of fracture test data on bovine cortical bone: influence of orientation.

    Science.gov (United States)

    Khandaker, Morshed; Ekwaro-Osire, Stephen

    2013-01-01

    The fracture toughness, K IC, of a cortical bone has been experimentally determined by several researchers. The variation of K IC values occurs from the variation of specimen orientation, shape, and size during the experiment. The fracture toughness of a cortical bone is governed by the severest flaw and, hence, may be analyzed using Weibull statistics. To the best of the authors' knowledge, however, no studies of this aspect have been published. The motivation of the study is the evaluation of Weibull parameters at the circumferential-longitudinal (CL) and longitudinal-circumferential (LC) directions. We hypothesized that Weibull parameters vary depending on the bone microstructure. In the present work, a two-parameter Weibull statistical model was applied to calculate the plane-strain fracture toughness of bovine femoral cortical bone obtained using specimens extracted from CL and LC directions of the bone. It was found that the Weibull modulus of fracture toughness was larger for CL specimens compared to LC specimens, but the opposite trend was seen for the characteristic fracture toughness. The reason for these trends is the microstructural and extrinsic toughening mechanism differences between CL and LC directions bone. The Weibull parameters found in this study can be applied to develop a damage-mechanics model for bone.

  20. Does cortical bone thickness in the last sacral vertebra differ among tail types in primates?

    Science.gov (United States)

    Nishimura, Abigail C; Russo, Gabrielle A

    2017-04-01

    The external morphology of the sacrum is demonstrably informative regarding tail type (i.e., tail presence/absence, length, and prehensility) in living and extinct primates. However, little research has focused on the relationship between tail type and internal sacral morphology, a potentially important source of functional information when fossil sacra are incomplete. Here, we determine if cortical bone cross-sectional thickness of the last sacral vertebral body differs among tail types in extant primates and can be used to reconstruct tail types in extinct primates. Cortical bone cross-sectional thickness in the last sacral vertebral body was measured from high-resolution CT scans belonging to 20 extant primate species (N = 72) assigned to tail type categories ("tailless," "nonprehensile short-tailed," "nonprehensile long-tailed," and "prehensile-tailed"). The extant dataset was then used to reconstruct the tail types for four extinct primate species. Tailless primates had significantly thinner cortical bone than tail-bearing primates. Nonprehensile short-tailed primates had significantly thinner cortical bone than nonprehensile long-tailed primates. Cortical bone cross-sectional thickness did not distinguish between prehensile-tailed and nonprehensile long-tailed taxa. Results are strongly influenced by phylogeny. Corroborating previous studies, Epipliopithecus vindobonensis was reconstructed as tailless, Archaeolemur edwardsi as long-tailed, Megaladapis grandidieri as nonprehensile short-tailed, and Palaeopropithecus kelyus as nonprehensile short-tailed or tailless. Results indicate that, in the context of phylogenetic clade, measures of cortical bone cross-sectional thickness can be used to allocate extinct primate species to tail type categories. © 2017 Wiley Periodicals, Inc.

  1. Bone mass determination from microradiographs by computer-assisted videodensitometry. Pt. 2

    International Nuclear Information System (INIS)

    Kaelebo, P.; Strid, K.G.

    1988-01-01

    Aluminium was evaluated as a reference substance in the assessment of rabbit cortical bone by microradiography followed by videodensitometry. Ten dense, cortical-bone specimens from the same tibia diaphysis were microradiographed using prefiltered 27 kV roentgen radiation together with aluminium step wedges and bone simulating phantoms for calibration. Optimally exposed and processed plates were analysed by previously described computer-assisted videodensitometry. For comparison, the specimens were analysed by physico-chemical methods. A strict proportionality was found between the 'aluminium equivalent mass' and the ash weight of the specimens. The total random error was low with a coefficient of variation within 1.5 per cent. It was concluded that aluminium is an appropriate reference material in the determination of cortical bone, which it resembles in effective atomic number and thus X-ray attenuation characteristics. The 'aluminium equivalent mass' is suitably established as the standard of expressing the results of bone assessment by microradiography. (orig.)

  2. Enhanced Tendon-to-Bone Healing of Chronic Rotator Cuff Tears by Bone Marrow Aspirate Concentrate in a Rabbit Model

    Science.gov (United States)

    Liu, Xiao Ning; Yang, Cheol-Jung; Kim, Ji Eui; Du, Zhen Wu; Ren, Ming; Zhang, Wei; Zhao, Hong Yu; Kim, Kyung Ok

    2018-01-01

    Background To evaluate the influence of bone marrow aspirate concentrate (BMAC) on tendon-to-bone healing in a rabbit rotator cuff model and to characterize the composition of growth factors in BMAC. Methods In this in vivo study, 40 rabbits were allocated into five groups: control (C), repair + saline (RS), repair + platelet-rich plasma (PRP; RP), repair + BMAC (RB) and repair + PRP + BMAC (RPB). A tear model was created by supraspinatus tendon transection at the footprint. Six weeks after transection, the torn tendon was repaired along with BMAC or PRP administration. Six weeks after repair, shoulder samples were harvested for biomechanical and histological testing. Ten rabbits were used for processing PRP and BMAC, followed by analysis of blood cell composition and the levels of growth factors in vitro. Results The ultimate load-to-failure was significantly higher in RPB group compared to RS group (p = 0.025). BMAC-treated groups showed higher values of biomechanical properties than RS group. The histology of BMAC-treated samples showed better collagen fiber continuity and orientation than RS group. BMAC contained significantly higher levels of the several growth factors than PRP. Conclusions Locally administered BMAC enhanced tendon-to-bone healing and has potential for clinical applications. PMID:29564054

  3. A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model.

    Science.gov (United States)

    Trbakovic, Amela; Hedenqvist, Patricia; Mellgren, Torbjörn; Ley, Cecilia; Hilborn, Jöns; Ossipov, Dmitri; Ekman, Stina; Johansson, Carina B; Jensen-Waern, Marianne; Thor, Andreas

    2018-03-01

    The aim of this study was to investigate if a synthetic granular calcium phosphate compound (CPC) and a composite bisphosphonate-linked hyaluronic acid-calcium phosphate hydrogel (HABP·CaP) induced similar or more amount of bone as bovine mineral in a modified sinus lift rabbit model. Eighteen adult male New Zeeland White rabbits, received randomly one of the two test materials on a random side of the face, and bovine mineral as control on the contralateral side. In a sinus lift, the sinus mucosa was elevated and a titanium mini-implant was placed in the alveolar bone. Augmentation material (CPC, HABP·CaP or bovine bone) was applied in the space around the implant. The rabbits were euthanized three months after surgery and qualitative and histomorphometric evaluation were conducted. Histomorphometric evaluation included three different regions of interest (ROIs) and the bone to implant contact on each installed implant. Qualitative assessment (p = <.05), histomorphometric evaluations (p = < .01), and implant incorporation (p = <.05) showed that CPC and bovine mineral induced similar amount of bone and more than the HABP·CaP hydrogel. CPC induced similar amount of bone as bovine mineral and both materials induced more bone than HABP·CaP hydrogel. The CPC is suggested as a synthetic alternative for augmentations in the maxillofacial area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluation of the effects of platelet-rich fibrin on bone regeneration in diabetic rabbits.

    Science.gov (United States)

    Durmuşlar, M Cenk; Ballı, Umut; Öngöz Dede, Figen; Bozkurt Doğan, Şeyma; Mısır, A Ferhat; Barış, Emre; Yılmaz, Zehra; Çelik, H Hamdi; Vatansever, Alper

    2016-02-01

    This study aimed to investigate the effect of platelet-rich fibrin on bone regeneration in critical size defects in the calvaria of diabetic rabbits. In total, 40 male New Zealand rabbits, were divided into two groups a non-diabetic control group (Group A) and a diabetic experimental group (Group B). Two bicortical circular defects 15 mm in diameter were created in the parietal bone of each animal. Each group was further divided into four groups: subgroup E, the defect was left empty; subgroup PRF, the defects were filled only with PRF; subgroup AB, the defects were filled with autogenous bone; subgroup AB + PRF, the defects were filled with autogenous bone combined with PRF. The animals sacrificed at 4 weeks and 8 weeks. Bone formation was assessed by micro-computed tomography (micro-CT) scanning, histological and histomorphometric analysis. The total percent of new bone was the lowest in group A-E (6.77 ± 0.21 at 4 weeks, 11.01 ± 0.37 at 8 weeks) and highest in group A-AB + PRF (21.66 ± 0.91 at 4 weeks, 37.46 ± 1.25 at 8 weeks; p < 0.05). The mean percent of new bone was greatest in group B-AB + PRF at 4 and 8 weeks (16.87 ± 0.92, 29.59 ± 1.09, respectively) and lowest in group B-E (5.83 ± 0.09 at 4 weeks, 7.36 ± 1.02 at 8 weeks). This study, despite its limitations, showed that PRF can be used safely and that PRF induced bone healing in diabetic rabbits. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. All rights reserved.

  5. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy.

    Science.gov (United States)

    Whitney, Daniel G; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F; Slade, Jill M; Pohlig, Ryan T; Modlesky, Christopher M

    2017-01-01

    Nonambulatory children with severe cerebral palsy (CP) have underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Ambulatory children with mild spastic CP and typically developing children (4 to 11years; 12/group) were compared. Magnetic resonance imaging was used to estimate cortical bone, bone marrow and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Accelerometer-based activity monitors worn on the ankle were used to assess physical activity. There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44%) than controls (both pChildren with CP also had lower cortical bone volume (30%), cortical bone width in the posterior (16%) and medial (32%) portions of the shaft, total bone width in the medial-lateral direction (15%), Z in the medial-lateral direction (34%), J (39%) and muscle volume (39%), and higher bone marrow fat concentration (82.1±1.8% vs. 80.5±1.9%), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0±8.0% vs. 16.1±3.3%) than controls (all pfat infiltration estimates, except posterior cortical bone width, were still present (all pchildren with CP compared to controls emerged (pchildren with mild spastic CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically

  6. Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9 to 13 Years.

    Science.gov (United States)

    Kindler, Joseph M; Pollock, Norman K; Laing, Emma M; Oshri, Assaf; Jenkins, Nathan T; Isales, Carlos M; Hamrick, Mark W; Ding, Ke-Hong; Hausman, Dorothy B; McCabe, George P; Martin, Berdine R; Hill Gallant, Kathleen M; Warden, Stuart J; Weaver, Connie M; Peacock, Munro; Lewis, Richard D

    2017-07-01

    IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  7. Histologic and histomorphometric evaluation of bone regeneration using nanocrystalline hydroxyapatite and human freeze-dried bone graft : An experimental study in rabbit.

    Science.gov (United States)

    Sadeghi, Rokhsareh; Najafi, Mohammad; Semyari, Hassan; Mashhadiabbas, Fatemeh

    2017-03-01

    Bone regeneration is an important concern in periodontal treatment and implant dentistry. Different biomaterials and surgical techniques have been used for this purpose. The aim of the present study was to compare the effect of nanocrystalline hydroxyapatite and human freeze-dried bone graft (FDBG) in regeneration of rabbit calvarium bony defects by histologic and histomorphometric evaluation. In this experimental study, three similar defects, measuring 8 mm in diameter, were created in the calvaria of 16 white New Zealand rabbits. Two defects were filled with FDBG and nanocrystalline hydroxyapatite silica gel, while the other one remained unfilled to be considered as control. All the defects were covered with collagen membranes. During the healing period, two animals perished; so 14 rabbits were divided into two groups: half of them were euthanized after 6 weeks of healing and the other half after 12 weeks. The specimens were subjected to histologic and histomorphometric examinations for assessment of the following variables: percentage of bone formation and residual graft material, inflammation scores, patterns of bone formation and type of newly formed bone. The percentages of new bone formation after 6 weeks were 14.22 ± 7.85, 21.57 ± 6.91, and 20.54 ± 10.07% in FDBG, NanoBone, and control defects. These values were 27.54 ± 20.19, 23.86 ± 6.27, and 26.48 ± 14.18% in 12-week specimens, respectively. No significant differences were found in the amount of bone formation between the groups. With regard to inflammation, the control and NanoBone groups showed significantly less inflammation compared to FDBG at the 6-week healing phase (P = 0.04); this difference was not significant in the 12-week specimens. Based on the results of this experimental study, both NanoBone and FDBG exhibited a similar effect on bone formation.

  8. Bone regeneration in cranioplasty and clinical complications in rabbits with alloxan-induced diabetes

    Directory of Open Access Journals (Sweden)

    Evanice Menezes Marçal Vieira

    2008-06-01

    Full Text Available This research evaluated the bone repair process in surgical defects created on the parietal bones of diabetic rabbits using the guided bone regeneration technique to observe the effects of alloxan in the induction of diabetes mellitus. Twenty-four adult rabbits were divided into three study groups: control (C, diabetic (D and diabetic associated to polytetrafluoroethylene (PTFE membrane (D-PTFE. For diabetes induction the animals received one dose of monohydrated alloxan (90 mg/kg by intravenous administration in the auricular or femoral vein. In group D-PTFE the membrane covered both the floor and the surface of the bone defect. In groups D and C, the bone defect was filled up with blood clot. The specimens were fixed in 10% formol and prepared for histomorphometric analysis. The results showed that the 90 mg/kg dose of monohydrate alloxan was sufficient to promote diabetes mellitus when administered in the auricular vein. Bone regeneration was slower in the diabetic group when compared with the control and diabetic-PTFE groups, but there was no significant statistical difference between the two experimental groups (D and D-PTFE. The oral and general clinical complications among the diabetics were weight loss, polyuria, polyphagia and severe chronic gingivitis.

  9. Tyrosine-derived polycarbonate scaffolds for bone regeneration in a rabbit radius critical-size defect model

    International Nuclear Information System (INIS)

    Kim, Jinku; McBride, Sean; Donovan, Amy; Hollinger, Jeffrey O; Darr, Aniq; Magno, Maria Hanshella R

    2015-01-01

    The aim of the study was to determine bone regeneration in a rabbit radius critical-size defect (CSD) model using a specific polymer composition (E1001(1k)) from a library of tyrosine-derived polycarbonate scaffolds coated with a calcium phosphate (CP) formulation (E1001(1k) + CP) supplemented with recombinant human bone morphogenetic protein-2 (rhBMP-2). Specific doses of rhBMP-2 (0, 17, and 35 μg/scaffold) were used. E1001(1k) + CP scaffolds were implanted in unilateral segmental defects (15 mm length) in the radial diaphyses of New Zealand White rabbits. At 4 and 8 weeks post-implantation, bone regeneration was determined using micro-computed tomography (µCT), histology, and histomorphometry. The quantitative outcome data suggest that E1001(1k) + CP scaffolds with rhBMP-2 were biocompatible and promoted bone regeneration in segmental bone defects. Histological examination of the implant sites showed that scaffolds made of E1001(1k) + CP did not elicit adverse cellular or tissue responses throughout test periods up to 8 weeks. Noteworthy is that the incorporation of a very small amount of rhBMP-2 into the scaffolds (as low as 17 μg/defect site) promoted significant bone regeneration compared to scaffolds consisting of E1001(1k) + CP alone. This finding indicates that E1001(1k) + CP may be an effective platform for bone regeneration in a critical size rabbit radius segmental defect model, requiring only a minimal dose of rhBMP-2. (paper)

  10. Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement.

    Science.gov (United States)

    Rossi, Margherita; Bruno, Giovanni; De Stefani, Alberto; Perri, Alessandro; Gracco, Antonio

    2017-12-01

    To assess whether cortical bone thickness and density vary in relation to age, sex and skeletal pattern at the maxillary and mandibular areas suitable for miniplates placement for orthodontic purposes. CBCT of 92 subjects (42 males and 50 females) with skeletal class I, II or III malocclusion, divided between adolescents and adults, were examined. InVivoDental ® software (Anatomage Inc, USA) was used to measure 34 maxillary areas and 40 mandibular areas per side. Values obtained were then compared between the groups of subjects. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney rank-sum test for independent samples. No significant differences were found in the cortical bone thickness values between the three skeletal patterns, and according to sex and age. Both maxilla and mandible showed an increase in cortical bone thickness from the anterior towards the posterior regions, and from the alveolar boneto the basal bone. Cortical bone density significantly varied in relation to the subject's age, with adults always showing higher values. Slight clinically significant differences were found between the three skeletal patterns and sex. In terms of cortical bone thickness, age, sex and skeletal pattern do not represent valid decision criteria for the evaluation of the best insertion areas for miniplates, while in terms of cortical bone density, only age is useful as a decision criterion. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  11. The relationship between age and the mandibular cortical bone thickness by using panoramic radiograph

    International Nuclear Information System (INIS)

    Kim, Yun Suk; Kim, Kyoung A; Koh, Kwang Joon

    2010-01-01

    This study was to determine the relationship between age and the mandibular cortical bone thickness on panoramic radiograph. Panoramic radiographs of 360 patients (180 men and 180 women) over 20 years old, who visited the Chonbuk National University Hospital from January to December in 2007, were assessed. The subjects were divided into 5 age groups. Five indices such as cortical bone thickness at the gonion (GI), antegonion (AI), and below the mental foramen (MI), the panoramic mandibular index (PMI), the mandibular cortical index (MCI) were measured on panoramic radiographs. All five indices including GI, AI, MI, PMI, and MCI showed significant differences between third decade and over 8 decade groups (p,0.05). PMI, MI and GI showed significant differences with gender statistically (p<0.05). The mandibular cortical bone thickness showed negative correlation with age, and the value of the thickness (PMI, MI, and GI) was greater in men than in women.

  12. Noncontact ultrasound imaging applied to cortical bone phantoms.

    Science.gov (United States)

    Bulman, J B; Ganezer, K S; Halcrow, P W; Neeson, Ian

    2012-06-01

    The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statistical and systematic errors associated with the variability in the pressure applied by the clinician to the transmitting transducer that NCU might provide. The authors also undertook this study in order to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. A noncontact ultrasound imaging system using a pair of specially designed broadband, 1.5 MHz noncontact piezoelectric transducers and cortical bone phantoms, were used to determine bone mineral density (BMD), speed of sound (SOS), integrated response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were also used in the collection of data from phantoms of nominal mass densities that varied from 1.17 to 2.25 g/cm(3) and in bone mineral density from 0 to 1.7 g/cm(3). Good correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 17 phantoms, and methods for quantifying and minimizing sources of systematic errors were outlined. The BMD of the phantom sets extended through most of the in vivo range found in cortical bone. A total of 16-20 repeated measurements of the SOS, thickness, and IR for the phantom set that were conducted over a period of several months showed a small variation in the range of measurements of ±1%-2%. These NCU data were shown to be in agreement with similar results using contact ultrasound to be within 1%-2%. Transmittance

  13. How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, Robert O; Koester, K. J.; Ager III, J. W.; Ritchie, R.O.

    2008-05-10

    Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses generally quoted for bone.

  14. Repairing rabbit radial defects by combining bone marrow stroma stem cells with bone scaffold material comprising a core-cladding structure.

    Science.gov (United States)

    Wu, H; Liu, G H; Wu, Q; Yu, B

    2015-10-05

    We prepared a bone scaffold material comprising a PLGA/β-TCP core and a Type I collagen cladding, and recombined it with bone marrow stroma stem cells (BMSCs) to evaluate its potential for use in bone tissue engineering by in vivo and in vitro experiments. PLGA/β-TCP without a cladding was used for comparison. The adherence rate of the BMSCs to the scaffold was determined by cell counting. Cell proliferation rate was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The osteogenic capability was evaluated by alkaline phosphatase activity. The scaffold materials were recombined with the BMSCs and implanted into a large segmental rabbit radial defect model to evaluate defect repair. Osteogenesis was assessed in the scaffold materials by histological and double immunofluorescence labeling, etc. The adherence number, proliferation number, and alkaline phosphatase expression of the cells on the bone scaffold material with core-cladding structure were significantly higher than the corresponding values in the PLGA/β-TCP composite scaffold material (P structure completely degraded at the bone defect site and bone formation was completed. The rabbit large sentimental radial defect was successfully repaired. The degradation and osteogenesis rates matched well. The bone scaffold with core-cladding structure exhibited better osteogenic activity and capacity to repair a large segmental bone defect compared to the PLGA/β-TCP composite scaffold. The bone scaffold with core-cladding structure has excellent physical properties and biocompatibility. It is an ideal scaffold material for bone tissue engineering.

  15. Plasma rich in growth factors and bone formation: a radiological and histomorphometric study in New Zealand rabbits

    Directory of Open Access Journals (Sweden)

    Francisco Molina-Miñano

    2009-09-01

    Full Text Available A radiographic and histomorphometric study was conducted on the influence of autologous plasma rich in growth factors (PRGF upon bone healing in surgically created defects in rabbits. Radiographically, bone regeneration was significantly greater with the use of PRGF after one month (p = 0.005, though no differences were recorded after the second month. In the histomorphometric analysis one month after surgery, the defects filled with autologous bone plus PRGF showed a greater percentage of neoformed bone (35.01 ± 5.31 than the control defects (22.90 ± 12.23, though the differences were not significant. Two months after surgery, the defects filled with autologous bone showed greater regeneration (46.04 ± 10.36% than the control defects (30.59 ± 5.69%, though the differences were not significant. The application of PRGF in the bone defects produced in New Zealand rabbits exerted a limited effect on local bone formation.

  16. Correlation between the thickness of the crestal and buccolingual cortical bone at varying depths and implant stability quotients.

    Directory of Open Access Journals (Sweden)

    Kanthanat Chatvaratthana

    Full Text Available Resonance frequency analysis (RFA is clinically used in dentistry to access the stiffness of dental implants in surrounding bone. However, the clear advantages and disadvantages of this method are still inconclusive. The aim of this study was to investigate and compare implant stability quotient (ISQ values obtained from RFA with parameters obtained from a cone beam computed tomography (CBCT scan of the same region.Nineteen implants (Conelog were inserted in the posterior maxillary and mandibular partially edentulous regions of 16 patients. At the time of implant placement, the ISQ values were obtained using RFA (Osstell. CBCT was used to measure the thickness of the crestal, cortical, buccolingual cortical, and cancellous bone at 3, 6, and 9 mm below the crestal bone level, as indicated by radiographic markers. The ratio of the thickness of the cortical to cancellous bone at varying depths was also calculated and classified into 4 groups (Group 1-4.There was a strong correlation between the crestal cortical bone thickness and ISQ values (P<0.001. The thickness of the buccolingual cortical bone and ratio of the cortical to cancellous bone thickness at 3 mm were significantly related to the ISQ (P = 0.018 and P = 0.034, respectively. Furthermore, the ISQs in Group 1 were the highest compared with those in Group 2 and Group 3, whereas the CBCT parameters at 6 and 9 mm did not have any specific correlation with the ISQ values.This study showed that the ISQ values obtained from RFA highly correlated with the quantity and quality of bone 3 mm below the crestal bone level. The correlation between the ISQ and bone surrounding the implant site was dependent on the depth of measurement. Therefore, RFA can help to predict the marginal bone level, as confirmed in this study.

  17. EFFECT OF USE OF BONE-MARROW CENTRIFUGATE ON MUSCLE INJURY TREATMENT: EXPERIMENTAL STUDY ON RABBITS

    Science.gov (United States)

    Vieira, Daniel Ferreira Fernandes; Guarniero, Roberto; Vaz, Carlos Eduardo Sanches; de Santana, Paulo José

    2015-01-01

    Objective: The objective of this study was to evaluate the effect of bone-marrow centrifugate on the healing of muscle injuries in rabbits. Methods: This experimental study involved use of fifteen adult male New Zealand White rabbits. Each animal received a transverse lesion in the middle of the right tibialis anterior muscle, to which an absorbable collagen sponge, soaked in a centrifugate of bone marrow aspirate from the ipsilateral iliac bone, was added. The left hind limb was used as a control and underwent the same injury, but in this case only the absorbable collagen sponge. Thirty days later, the animals were sacrificed to study the muscle healing. These muscle areas were subjected to histological analysis with histomorphometry, with the aim of measuring the number of muscle cells per square micrometer undergoing regeneration and the proportion of resultant fibrosis. Results: The centrifugation method used in this study resulted in an average concentration of nucleated cells greater than the number of these cells in original aspirates, without causing significant cell destruction. Addition of the bone marrow centrifugate did not result in any significant increase in the number of muscle cells undergoing regeneration, in relation to the control group. There was also no significant difference in the proportion of resultant fibrosis, compared with the control group. Conclusion: Administration of the bone marrow centrifugate used in this study did not favor healing of muscle injuries in rabbits. PMID:27047832

  18. Femoral Cortical Bone Mineral Density and Biomechanical Properties in Sheep Consuming an Acidifying Diet

    Directory of Open Access Journals (Sweden)

    Eileen S. Hackett

    2009-01-01

    Full Text Available Dietary acidity is a likely contributor to the development of osteoporosis. Dietary acidosis in an ovine model has effects on trabecular bone that have been previously shown to mimic human osteoporosis. Effects on cortical bone using this model have not been investigated. The objective of this study was to examine the effects of dietary acidosis on cortical bone mineral density and material properties. Skeletally mature ovariectomized (OVX sheep consumed either a normal diet (ND or a metabolic acidosis diet (MA for 6 or 12 months. Whole femoral and cortical bone beam BMD was determined using dual energy x-ray absorptiometry (DEXA. Beams were then subjected to three point flexure monotonically to failure to determine strength and modulus and then ashed to determine percent mineralization. Femoral BMD in adult OVX ND 6 mo sheep was significantly greater than those in the non-OVX ND group. The BMD in the MA groups was lower than the control non-OVX ND group. Cortical beams had significantly decreased modulus in all MA and OVX groups when compared with the non-OVX ND group and a tendency towards decreased strength in all groups with significance only in the OVX ND 6 mo sheep. Percent mineralization increased in MA and OVX groups when compared to the non-OVX ND group and was significantly increased in the OVX ND 6 mo and OVX MA 12 mo groups. A significant correlation was seen between BMD of the beam and breaking strength and modulus. Dietary acidity impacts cortical bone and results in reduced material properties that may contribute to failure.

  19. Movement of 125I albumin and 125I polyvinylpyrrolidone through bone tissue fluid

    International Nuclear Information System (INIS)

    Owen, M.; Howlett, C.R.; Triffitt, J.T.

    1977-01-01

    The passage of tissue fluid through cortical bone has been investigated using radioactively labelled macromolocules as markers. The results suggest that in the cortex of young rabbit femur the movement of tissue fluid is in the same net direction as blood, mainly from the endosteal to the periosteal surface. Some albumin is incorporated from extravascular tissue fluid into calcified matrix at sites of bone formation. Polyvinylpyrrolidone, average molecular weight 35,000, is able to pass through extravascular tissue fluid in bone but is not incorporated into calcified matrix. In rabbits made vitamin D deficient, much less albumin is retained in regions of bone formation than is the case with controls. Albumin adsorbs to the surface of calcium phosphate precipitates, and it is suggested that this mechanism may be mainly responsible for its incorporation into bone. (orig.) 891 AJ [de

  20. Safe Harvesting of Outer Table Parietal Bone Grafts Using an Oscillating Saw and a Bone Scraper : A Refinement of Technique for Harvesting Cortical and "Cancellous"-Like Calvarial Bone

    NARCIS (Netherlands)

    Schortinghuis, Jurjen; Putters, Thomas F.; Raghoebar, Gerry M.

    Calvarial bone is a readily available source of bone for preimplantation augmentation procedures of the alveolar process. However, the calvaria consist mostly of cortical bone, and cancellous bone of the diploic space is scarce. A bone scraper (Safescraper Twist; META, Reggio Emilia, Italy) was used

  1. Parathyroid Hormone (1-34 Might Not Improve Early Bone Healing after Sinus Augmentation in Healthy Rabbits

    Directory of Open Access Journals (Sweden)

    Jisun Huh

    2017-01-01

    Full Text Available Purpose. This study evaluated the effect of administering intermittent parathyroid hormone [PTH (1-34, henceforth PTH] on the early-stage bone healing of maxillary sinus augmentation in healthy rabbits. Materials and Methods. Bovine bone mineral was grafted on the sinuses of 20 female New Zealand white rabbits. The animals were randomly divided into two groups, PTH (n=10 or saline (n=10, in which either PTH or saline was injected subcutaneously 5 days a week for 2 weeks. Half of the animals in each group were killed at 2 weeks postoperatively and the other half were killed at 4 weeks postoperatively. The dosage of PTH was 10 μg/kg/day. Radiographic and histomorphometric analyses were performed. Result. The new bone area (NBA did not differ significantly between the PTH and saline groups. The NBA in the PTH group in the total augmented area and in the demarcated window, center, and Schneiderian membrane regions increased significantly from 2 to 4 weeks. The number of osteoclasts decreased significantly from 2 to 4 weeks in both groups, with no difference between the two groups. Conclusion. Intermittent PTH might not stimulate new bone formation in healthy rabbits during the first 4 weeks of healing.

  2. Osseointegration Of Implants In Rabbit Bone With A Low Calcium Diet And Irradiation

    International Nuclear Information System (INIS)

    Kim, So Jung; Hwang, Eui Hwan; Lee, Sang Rae

    2000-01-01

    To investigate osseointergration of titanium implants into the tibia of rabbits, which were fed a low calcium diet and irradiated. To prepare the experimental model, control group was fed a normal diet and experimental group was fed a low calcium diet for 4 weeks. And then, titanium implants were inserted into the tibia of each rabbit. Experimental group was subdivided into two groups; low calcium diet/non-irradiation group and low calcium diet/irradiation group. The low calcium diet/irradiation group was irradiated with a single absorbed dose of 15 Gy at the 5th postoperative days. On the 12th, 19th, 33rd, 47th, and 61st days after implantation(1, 2, 4, 6, and 8 weeks after irradiation), the bone formation in the bone-implant interface area was examined by light microscopy and fluorescent microscopy. 1. In the control group, there began to form woven bone in the bone-implant interface area on the 12th days after implantation. As the experimental time was going on, the amount of bone which was in contact with the implant was increased. 2. In the low calcium diet/non-irradiation group, there began to form woven bone in the bone-implant interface area on the 19th days after implantation. Although the amount of bone which was in contact with the implant was increased as the experimental time was going on, the extent of increased bone was slightly weak as compared with control group. 3. In the low calcium diet/irradiation group, there began to form woven bone incompletely in the bone-implant interface area on the 19th days after implantation, but there were vascular connective tissues in the bone- implant interface area over the entire experimental period. 4. In the control group and low calcium diet/non-irradiation group, bone labeling bands were observed on the 33rd days after implantation, which suggests that the bone formation and remodeling was in process, but interstitial bone remodeling was not observed in the low calcium diet/irradiation group.

  3. Propagation of a dorsal cortical fracture of the third metacarpal bone in two horses

    International Nuclear Information System (INIS)

    Spurlock, G.H.

    1988-01-01

    Seemingly, propagation of a dorsal cortical fracture in the third metacarpal bone developed after continued race performance in 2 horses. Historically, both horses had intermittent lameness that had responded to nonsteroidal anti-inflammatory drugs and brief rest periods. However, lameness in both horses had increased in severity. Radiography revealed a dorsal cortical fracture of the third metacarpal bone, with propagation of the fracture plane proximally. Fractures were incomplete and healed with stall rest in both horses

  4. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  5. Effects of treadmill exercise on cortical bone in the third metacarpus of young horses

    International Nuclear Information System (INIS)

    McCarthy, R.N.; Jeffcott, L.B.

    1992-01-01

    The effects of exercise and relative inactivity on cortical bone were compared in young horses. Two groups were used; one was given a 14-week programme of exercise (n = 6) and the other kept as unexercised controls (n = 6). The first nine weeks of exercise involved trotting and cantering (2 to 4 km d-1 at speeds up to 12 m s-1) on a treadmill set at an incline of 3 degrees. Over the next five weeks the horses were trained at near maximal speeds (that is, up to 14.5 m s-1) with no incline of the treadmill. At the end of the programme marked differences in cortical porosity and distribution of subperiosteal osteogenesis at the mid-shaft of the third metacarpal bone were found between the groups. Histomorphometrical examination of the dorsal cortex showed minimal bone remodelling in the exercised horses, but extensive modelling as evidenced by the large amount of subperiosteal bone formation. In contrast, the unexercised horses had significantly more bone remodelling and less formation of subperiosteal bone. The histomorphometric and microradiographic findings provided an explanation for changes in the non-invasive bone measurements that occurred during training. Bone mineral content of the mid-metacarpus was found to increase more in the exercised than the unexercised horses despite a lower overall growth in bodyweight. In those horses that completed the full training programme, ultrasound speed increased significantly by the end of the training programme. It remained unchanged in the horse that did not complete the full exercise programme and decreased slightly in the unexercised horses. The difference in ultrasound speed between the groups was considered to reflect differences in intracortical bone porosity, endosteal bone formation and alterations in skin thickness. The stiffness of cortical bone increased significantly in the exercised horses but remained unaltered in the unexercised horses

  6. The influence of platelet-rich fibrin on angiogenesis in guided bone regeneration using xenogenic bone substitutes: a study of rabbit cranial defects.

    Science.gov (United States)

    Yoon, Jong-Suk; Lee, Sang-Hwa; Yoon, Hyun-Joong

    2014-10-01

    The purpose of this study was to investigate the influence of platelet-rich fibrin (PRF) on angiogenesis and osteogenesis in guided bone regeneration (GBR) using xenogenic bone in rabbit cranial defects. In each rabbit, 2 circular bone defects, one on either side of the midline, were prepared using a reamer drill. Each of the experimental sites received bovine bone with PRF, and each of the control sites received bovine bone alone. The animals were sacrificed at 1 week (n = 4), 2 weeks (n = 3) and 4 weeks (n = 3). Biopsy samples were examined histomorphometrically by light microscopy, and expression of vascular endothelial growth factor (VEGF) was determined by immunohistochemical staining. At all experimental time points, immunostaining intensity for VEGF was consistently higher in the experimental group than in the control group. However, the differences between the control group and the experimental group were not statistically significant in the histomorphometrical and immunohistochemical examinations. The results of this study suggest that PRF may increase the number of marrow cells. However, PRF along with xenogenic bone substitutes does not show a significant effect on bony regeneration. Further large-scale studies are needed to confirm our results. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Neutron activation analysis of medullar and cortical bone tissues from animals

    International Nuclear Information System (INIS)

    Takata, Marcelo Kazuo; Saiki, Mitiko

    2000-01-01

    In this work, neutron activation analysis was applied in the determination of the elements Ba, Br, Ca, Cl, Cr, Fe, K, Mg, Mn, Na, P, Rb, Sb, Sc, Sr and Zn present in animal bone tissues. The obtained results indicated a significant difference between the elemental concentrations present in medullar and cortical tissues. The results obtained for bone tissues from distinct animal species were also different. (author)

  8. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate.

    Science.gov (United States)

    Bajaj, Devendra; Geissler, Joseph R; Allen, Matthew R; Burr, David B; Fritton, J C

    2014-07-01

    Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0mg/kg/day; alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (pbone remodeling, such as the size of osteons (-14%; ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×10(3) μm2; pbone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2012-06-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  10. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    International Nuclear Information System (INIS)

    Shagina, N.B.; Tolstykh, E.I.; Degteva, M.O.; Anspaugh, L.R.; Napier, Bruce A.

    2012-01-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  11. A case of monostotic fibrous dysplasia of proximal femur managed with curettage and cortical bone grafting

    Directory of Open Access Journals (Sweden)

    A D Sud

    2013-01-01

    Full Text Available We present a case report of a young military personnel with monostotic fibrous dysplasia of proximal femur with painful, dysplasticlesion of the femoral neck and fatigue fracture who underwent cortical bone grafting using autogenous fibular strut graft and iliac crest bone graft. The fibular cortical grafts was used to bridge the lesion in the femoral neck and were securely anchored to the normal bone of the lateral femoral cortex and a head of the femur. No supplemental internal fixation was required.

  12. Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Cordula Netzer

    2018-03-01

    Full Text Available Facet joint osteoarthritis is a prominent feature of degenerative spine disorders, highly prevalent in ageing populations, and considered a major cause for chronic lower back pain. Since there is no targeted pharmacological therapy, clinical management of disease includes analgesic or surgical treatment. The specific cellular, molecular, and structural changes underpinning facet joint osteoarthritis remain largely elusive. The aim of this study was to determine osteoarthritis-related structural alterations in cortical and trabecular subchondral bone compartments. To this end, we conducted comparative micro computed tomography analysis in healthy (n = 15 and osteoarthritic (n = 22 lumbar facet joints. In osteoarthritic joints, subchondral cortical plate thickness and porosity were significantly reduced. The trabecular compartment displayed a 42 percent increase in bone volume fraction due to an increase in trabecular number, but not trabecular thickness. Bone structural alterations were associated with radiological osteoarthritis severity, mildly age-dependent but not gender-dependent. There was a lack of association between structural parameters of cortical and trabecular compartments in healthy and osteoarthritic specimens. The specific structural alterations suggest elevated subchondral bone resorption and turnover as a potential treatment target in facet joint osteoarthritis.

  13. Age-related changes in trabecular and cortical bone microstructure.

    Science.gov (United States)

    Chen, Huayue; Zhou, Xiangrong; Fujita, Hiroshi; Onozuka, Minoru; Kubo, Kin-Ya

    2013-01-01

    The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT), micro-CT, and high resolution peripheral quantitative CT (HR-pQCT), imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  14. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  15. [The periosteum: the "umbilical cord" of bone. Quantification of the blood supply of cortical bone of periosteal origin].

    Science.gov (United States)

    Chanavaz, M

    1995-01-01

    The Periosteum or periosteal membrane is a continuous composite fibroelastic covering membrane of the bone to which it is intimately linked. It consists of multipotent mesodermal cells (11, 15). Although the bone cortex is the main beneficiary of the principal anatomical and physiological functions of the periosteal membrane, the behaviour of the entire bone remains closely influenced by the periosteal activity. These principal functions are related to the cortical blood supply, osteogenesis, muscle and ligament attachments. Through its elastic and contractile nature, it participates in the maintenance of bone shape, and plays an important role in metabolic ionic exchange and physiological distribution of electro-chemical potential difference across its membranous structure. It has also been suggested that the periosteum may have its own specific proprioceptive property. This presentation will study the histo-anatomy and physiology of the periosteum and will discuss in detail its main functions of cortical blood supply and osteogenesis (fig. 1 and 2). It will also present the third intermediary report on a current study of the quantification of cortical vascularisation of femoral bone via the periosteum, using an isotonic salt solution of 85Strontium. The afferent-efferent (arterio-venous) flows of this solution in the thigh vascular system of guinea pigs were measured by gamma spectrometry after a series of selective macro and micro injections of radioactive salt into the femoral arterial system were carried out. Each vascular territory was meticulously selected and the injections were made according to size, starting with the larger vessels, with or without ligatures of neighbouring vessels, going progressively to smaller and smaller vessels not exceeding 100m in diameter.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Preliminary determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone of Chinstrap penguin using synchrotron X-ray fluorescence analysis

    Institute of Scientific and Technical Information of China (English)

    Xie Zhouqing; Cheng Bangbo; Sun Liguang; Huang Yuying; He Wei; Zhao Sanping

    2006-01-01

    Synchrotron radiation X-ray fluorescence (SR-XRF) approach was applied to analyzing of Chinstrap penguin (Pygoscelis Antarctica) cortical bone. The method enabled the in situ determination of Ca and P concentrations and the Ca/P ratio in cortical bone. The preliminary results show that: (1) there is the bone site-related difference for Ca and P concentrations. The mean values for the investigated parameters ( on a dry-weight basis) are: 30.7% (Ca) and 14.9% (P) for the femoral cortical bone, 21.4% (Ca) and 11.5% (P) for wing cortical bone. (2) The variation for the Ca/P ratio in cortical bone is lower than those for Ca and P separately.This is in agreement with the previous report that the specificity of the Ca/P ratio is better than that of Ca and P concentrations and is more reliable for the diagnosis of bone disorders. The authors suggest that further studies be conducted to establish normal values of Ca, P and Ca/P ratio for polar animals and provide a basis for the diagnosis of bone disorders.

  17. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    International Nuclear Information System (INIS)

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-01-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process

  18. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    Science.gov (United States)

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc

  19. A Retrospective Study on Indian Population to evaluate Cortical Bone Thickness in Maxilla and Mandible using Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    Jeegar Ketan Vakil

    2014-01-01

    Conclusion: Mini-implants have gained considerable popularity due to their low cost, effectiveness, clinical management and stability. Among the factors related to microimplant stability, bone density and cortical bone thickness appear to be critical for successful placement. This study will provide knowledge of cortical bone thickness in various areas which can guide the clinicians in selecting the placement site.

  20. Restoration of Thickness, Density, and Volume for Highly Blurred Thin Cortical Bones in Clinical CT Images.

    Science.gov (United States)

    Pakdel, Amirreza; Hardisty, Michael; Fialkov, Jeffrey; Whyne, Cari

    2016-11-01

    In clinical CT images containing thin osseous structures, accurate definition of the geometry and density is limited by the scanner's resolution and radiation dose. This study presents and validates a practical methodology for restoring information about thin bone structure by volumetric deblurring of images. The methodology involves 2 steps: a phantom-free, post-reconstruction estimation of the 3D point spread function (PSF) from CT data sets, followed by iterative deconvolution using the PSF estimate. Performance of 5 iterative deconvolution algorithms, blind, Richardson-Lucy (standard, plus Total Variation versions), modified residual norm steepest descent (MRNSD), and Conjugate Gradient Least-Squares were evaluated using CT scans of synthetic cortical bone phantoms. The MRNSD algorithm resulted in the highest relative deblurring performance as assessed by a cortical bone thickness error (0.18 mm) and intensity error (150 HU), and was subsequently applied on a CT image of a cadaveric skull. Performance was compared against micro-CT images of the excised thin cortical bone samples from the skull (average thickness 1.08 ± 0.77 mm). Error in quantitative measurements made from the deblurred images was reduced 82% (p < 0.01) for cortical thickness and 55% (p < 0.01) for bone mineral mass. These results demonstrate a significant restoration of geometrical and radiological density information derived for thin osseous features.

  1. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    International Nuclear Information System (INIS)

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-01-01

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm 3 , which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm 3 , requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm 3 ) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm 3 and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0.05, Tukey's HSD

  2. Bone Regeneration Using N-Methyl-2-pyrrolidone as an Enhancer for Recombinant Human Bone Morphogenetic Protein-2 in a Rabbit Sinus Augmentation Model.

    Science.gov (United States)

    Lim, Hyun-Chang; Thoma, Daniel S; Yoon, So-Ra; Cha, Jae-Kook; Lee, Jung-Seok; Jung, Ui-Won

    2017-01-01

    The aim of this study was to determine whether N-methyl-2-pyrrolidone (NMP) can decrease the dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) in sinus augmentation of rabbits. In each of 15 rabbits, 2 sinuses were randomly grafted using 1 of 3 treatment modalities: (i) biphasic calcium phosphate (BCP; control), (ii) rhBMP-2-coated BCP (BMP), or (iii) rhBMP-2-coated BCP soaked in NMP solution (BMP/NMP). The rabbits were sacrificed 2 weeks postoperatively. Histologic and histomorphometric analyses were performed. Bone formation in all groups was predominantly located close to the access window and the lateral walls. Newly formed bone within the total augmented area (NB TA ) was greatest in BMP/NMP (1.94 ± 0.69 mm 2 ), followed by BMP (1.50 ± 0.72 mm 2 ) and BCP (1.28 ± 0.52 mm 2 ) ( P > 0.05). In the center of the augmentation (NB ROI_C ) and the area close to the sinus membrane (NB ROI_M ), BMP/NMP produced the largest area of NB (NB ROI_C : 0.10 ± 0.11 mm 2 ; NB ROI_M : 0.17 ± 0.08 mm 2 ); the corresponding NB values for BCP were 0.05 ± 0.05 mm 2 and 0.08 ± 0.09 mm 2 , respectively ( P > 0.05 for all comparisons). The effect of NMP on bone regeneration was inconsistent between the specimens. Adding NMP as an adjunct to rhBMP-2-coated BCP produced inconsistent effects on bone regeneration, resulting in no significant benefit compared to controls.

  3. Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs.

    Directory of Open Access Journals (Sweden)

    Liao Wang

    Full Text Available Calcium phosphate ceramics with specific physicochemical properties have been shown to induce de novo bone formation upon ectopic implantation in a number of animal models. In this study we explored the influence of physicochemical properties as well as the animal species on material-induced ectopic bone formation. Three bioceramics were used for the study: phase-pure hydroxyapatite (HA sintered at 1200°C and two biphasic calcium phosphate (BCP ceramics, consisting of 60 wt.% HA and 40 wt.% TCP (β-Tricalcium phosphate, sintered at either 1100°C or 1200°C. 108 samples of each ceramic were intramuscularly implanted in dogs, rabbits, and rats for 6, 12, and 24 weeks respectively. Histological and histomorphometrical analyses illustrated that ectopic bone and/or osteoid tissue formation was most pronounced in BCP sintered at 1100°C and most limited in HA, independent of the animal model. Concerning the effect of animal species, ectopic bone formation reproducibly occurred in dogs, while in rabbits and rats, new tissue formation was mainly limited to osteoid. The results of this study confirmed that the incidence and the extent of material-induced bone formation are related to both the physicochemical properties of calcium phosphate ceramics and the animal model.

  4. Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits.

    Science.gov (United States)

    Eftekhari, Hadi; Jahandideh, Alireza; Asghari, Ahmad; Akbarzadeh, Abolfazl; Hesaraki, Saeed

    2017-08-01

    Segmental bone loss due to trauma, infection, and tumor resection and even non-union results in the vast demand for replacement and restoration of the function of the lost bone. The objective of this study is to utilize novel inorganic-organic nanocomposites for biomedical applications. Biodegradable implants have shown great promise for the repair of bone defects and have been commonly used as bone substitutes, which traditionally would be treated using metallic implants. In this study, 45 mature male New Zealand white rabbits 6-8 months and weighting 3-3.5 kg were examined. Rabbits were divided into three groups. Surgical procedures were done after an intramuscular injection of Ketamine 10% (ketamine hydrochloride, 50 mg/kg), Rompun 5% (xylazine, 5 mg/kg). Then an approximately 6 mm diameter - 5 mm cylinder bone defect was created in the femur of one of the hind limbs. After inducing the surgical wound, all rabbits were colored and randomly divided into three experimental groups of nine animals each: Group 1 received medical pure nanocomposite polycaprolactone (PCL) granules, Group 2 received hydroxyapatite and Group 3 was a control group with no treatment. Histopathological evaluation was performed on days 15, 30 and 45 after surgery. On day 45 after surgery, the quantity of newly formed lamellar bone in the healing site in PCL group was better than onward compared with HA and control groups. Finally, nanocomposite PCL granules exhibited a reproducible bone-healing potential.

  5. Modalities for visualization of cortical bone remodeling: the past, present and near future

    Directory of Open Access Journals (Sweden)

    Kimberly Dawn Harrison

    2015-08-01

    Full Text Available Bone’s ability to respond to load-related phenomena and repair microdamage is achieved through the remodeling process which renews bone by activating groups of cells known as Basic Multicellular Units (BMUs. The products of BMUs, secondary osteons, have been extensively studied via classic two-dimensional (2D techniques which have provided a wealth of information on how histomorphology relates to skeletal structure and function. Remodeling is critical in maintaining healthy bone tissue; however, in osteoporotic bone imbalanced resorption results in increased bone fragility and fracture. With increasing life expectancy, such degenerative bone diseases are a growing concern. The three-dimensional (3D morphology of BMUs and their correlation to function, however, are not well characterized and little is known about the specific mechanisms that initiate and regulate their activity within cortical bone. We believe a key limitation has been the lack 3D information about BMU morphology and activity. Thus, this paper reviews methodologies for 3D investigation of cortical bone remodeling and, specifically, structures associated with BMU activity (resorption spaces and the structures they create (secondary osteons, spanning from histology to modern ex vivo imaging modalities, culminating with the growing potential of in vivo imaging. This collection of papers focuses on the theme of putting the why back into bone archytecture. Remodeling is one of two mechanisms how bone structure is dynamically modified and thus an improved 3D understanding of this fundamental process is crucial to ultimately understanding the why.

  6. Insulin Resistance Is Associated With Smaller Cortical Bone Size in Nondiabetic Men at the Age of Peak Bone Mass.

    Science.gov (United States)

    Verroken, Charlotte; Zmierczak, Hans-Georg; Goemaere, Stefan; Kaufman, Jean-Marc; Lapauw, Bruno

    2017-06-01

    In type 2 diabetes mellitus, fracture risk is increased despite preserved areal bone mineral density. Although this apparent paradox may in part be explained by insulin resistance affecting bone structure and/or material properties, few studies have investigated the association between insulin resistance and bone geometry. We aimed to explore this association in a cohort of nondiabetic men at the age of peak bone mass. Nine hundred ninety-six nondiabetic men aged 25 to 45 years were recruited in a cross-sectional, population-based sibling pair study at a university research center. Insulin resistance was evaluated using the homeostasis model assessment of insulin resistance (HOMA-IR), with insulin and glucose measured from fasting serum samples. Bone geometry was assessed using peripheral quantitative computed tomography at the distal radius and the radial and tibial shafts. In age-, height-, and weight-adjusted analyses, HOMA-IR was inversely associated with trabecular area at the distal radius and with cortical area, periosteal and endosteal circumference, and polar strength strain index at the radial and tibial shafts (β ≤ -0.13, P insulin-like growth factor 1, or sex steroid levels. In this cohort of nondiabetic men at the age of peak bone mass, insulin resistance is inversely associated with trabecular and cortical bone size. These associations persist after adjustment for body composition, muscle size or function, or sex steroid levels, suggesting an independent effect of insulin resistance on bone geometry. Copyright © 2017 Endocrine Society

  7. Age-Related Changes in Trabecular and Cortical Bone Microstructure

    Directory of Open Access Journals (Sweden)

    Huayue Chen

    2013-01-01

    Full Text Available The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT, micro-CT, and high resolution peripheral quantitative CT (HR-pQCT, imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  8. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats

    Directory of Open Access Journals (Sweden)

    Hsin-Shih Lin, Ho-Seng Wang, Hung-Ta Chiu, Kuang-You B. Cheng, Ar-Tyan Hsu, Tsang-Hai Huang

    2018-06-01

    Full Text Available The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old were randomly assigned to four landing (L groups and four age-matched control (C groups (n = 12 per group: L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC than those in the C8 group (p < 0.05. Except for the higher bone mineralization over bone surface ratio (MS/BS, % shown in the tibiae of the L1 group (p < 0.05, dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar and cortical thickness (Ct.Th (p < 0.05; however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05. In the tibiae, the moment of inertia about the antero-posterior axis (Iap, Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05. In biomechanical testing, fracture load (FL of femora was lower in the L1 group than in the C1 group (p < 0.05. Conversely, yield load (YL, FL and yield load energy (YE of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05. Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  9. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats.

    Science.gov (United States)

    Lin, Hsin-Shih; Wang, Ho-Seng; Chiu, Hung-Ta; Cheng, Kuang-You B; Hsu, Ar-Tyan; Huang, Tsang-Hai

    2018-06-01

    The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old) were randomly assigned to four landing (L) groups and four age-matched control (C) groups (n = 12 per group): L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week) while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC) than those in the C8 group (p < 0.05). Except for the higher bone mineralization over bone surface ratio (MS/BS, %) shown in the tibiae of the L1 group (p < 0.05), dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar) and cortical thickness (Ct.Th) (p < 0.05); however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05). In the tibiae, the moment of inertia about the antero-posterior axis ( I ap ), Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05). In biomechanical testing, fracture load (FL) of femora was lower in the L1 group than in the C1 group (p < 0.05). Conversely, yield load (YL), FL and yield load energy (YE) of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05). Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  10. Noncontact ultrasound imaging applied to cortical bone phantoms

    OpenAIRE

    Bulman, J. B.; Ganezer, K. S.; Halcrow, P. W.; Neeson, Ian

    2012-01-01

    Purpose: The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statisti...

  11. Study of irradiated bone: Part III. /sup 99m/Tc pyrophosphate autoradiographic changes

    International Nuclear Information System (INIS)

    King, M.A.; Corriveau, O.; Casarett, G.W.; Weber, D.A.

    1978-01-01

    The macroautoradiographic and microautoradiographic localization of /sup 99m/Tc-pyrophosphate (/sup 99m/TcPPi) was studied in x-irradiated bone of rabbits up to one year post-irradiation. In cortical bone, /sup 99m/TcPPi was concentrated on bone surfaces near vasculature. Both forming and resorbing bone surfaces were comparably labeled at 2 hrs post-injection. Uptake on the surface of sites of haversian bone remodeling was observed to be at least part of the increased /sup 99m/TcPPi observed in irradiated bone in camera images. In irradiated trabecular bone 12 months following irradiation, a patchy decrease in /sup 99m/TcPPi uptake was correlated with localized decreases in vasculature

  12. Mechanotransduction in cortical bone and the role of piezoelectricity: a numerical approach.

    Science.gov (United States)

    Stroe, M C; Crolet, J M; Racila, M

    2013-01-01

    This paper is a contribution to a plausible explanation of the mechanotransduction phenomenon in cortical bone during its remodelling. Our contribution deals only with the mechanical processes and the biological aspects have not been taken into account. It is well known that osteoblasts are able to generate bone in a suitable bony substitute only under fluid action. But the bone created in this manner is not organised to resist specific mechanical stress. Our aim was to suggest the nature of the physical information that can be transmitted - directly or via a biological or biochemical process - to the cell to initiate a cellular activity inducing the reconstruction of the osteon that is best adapted to local mechanical stresses. For this, the cell must have, from our point of view, a good knowledge of its structural environment. But this knowledge exists at the cellular scale while the bone is loaded at the macroscopic scale. This study is based on the SiNuPrOs model that allows exchange of information between the different structural scales of cortical bone. It shows that more than the fluid, the collagen - via its piezoelectric properties - plays an essential role in the transmission of information between the macroscopic and nanoscopic scales. Moreover, this process allows us to explain various dysfunctions and even some diseases.

  13. Bony defect repair in rabbit using hybrid rapid prototyping polylactic co glycolic acid/β tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Long Pang

    2013-01-01

    Full Text Available Background: In bone tissue engineering, extracellular matrix exerts critical influence on cellular interaction with porous biomaterial and the apatite playing an important role in the bonding process of biomaterial to bone tissue. The aim of this study was to observe the therapeutic effects of hybrid rapid prototyping (RP scaffolds comprising polylactic-co-glycolic acid (PLGA, β-tricalciumphosphate (β-TCP, collagen I and apatite (PLGA/β-TCP-collagen I/apatite on segmental bone defects in conjunction with combination with bone marrow mesenchymal stem cells (BMSCs. Materials and Methods: BMSCs were seeded into the hybrid RP scaffolds to repair 15 mm defect in the radius of rabbits. Radiograph, microcomputed tomography and histology were used to evaluate new bone formation. Results: Radiographic analysis done from 12 to 36 weeks postoperative period demonstrated that new bone formed at the radial defect site and continues to increase until the medullary cavity is recanalized and remodelling is complete. The bone defect remained unconnected in the original RP scaffolds (PLGA/β-TCP during the whole study. Histological observations conformed to the radiographic images. In hybrid RP scaffold group, woven bone united the radial defect at 12 weeks and consecutively remodeled into lamellar bone 24 weeks postoperation and finally matured into cortical bone with normal marrow cavity after another 12 weeks. No bone formation but connective tissue has been detected in RP scaffold at the same time. Conclusion: Collagen I/apatite sponge composite coating could improve new bone formation in vivo. The hybrid RP scaffold of PLGA/β-TCP skeleton with collagen I/apatite sponge composite coating is a promising candidate for bone tissue engineering.

  14. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  15. A high concentration of recombinant human bone morphogenetic protein-2 induces low-efficacy bone regeneration in sinus augmentation: a histomorphometric analysis in rabbits.

    Science.gov (United States)

    Hong, Ji-Youn; Kim, Min-Soo; Lim, Hyun-Chang; Lee, Jung-Seok; Choi, Seong-Ho; Jung, Ui-Won

    2016-12-01

    The aim of the study was to elucidate the efficacy of bone regeneration at the early stage of healing in rabbit sinuses grafted with a biphasic calcium phosphate (BCP) carrier soaked in a high concentration of recombinant human bone morphogenetic protein-2 (rhBMP-2). Both maxillary sinuses of eight male rabbits were used. The sinus on one side (assigned randomly) was grafted with BCP loaded with rhBMP-2 (1.5 mg/ml; test group) using a soaking method, while the other was grafted with saline-soaked BCP (control group). After a 2-week healing period, the sinuses were analyzed by micro-computed tomography and histomorphometry. The total augmented area and soft tissue space were significantly larger in the test group than in the control group, whereas the opposite was true for the area of residual material and newly formed bone. Most of the new bone in the test group was localized to the Schneiderian membrane (SM), while very little bone formation was observed in the window and center regions of the sinus. New bone was distributed evenly in the control group sinuses. Within the limitations of this study, it appeared that application of a high concentration of rhBMP-2 soaked onto a BCP carrier inhibited bone regeneration from the pristine bone and increased soft tissue swelling and inflammatory response at the early healing stage of sinus augmentation, although osteoinductive potential was found along the SM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats

    Science.gov (United States)

    de Bakker, Chantal M. J.; Altman-Singles, Allison R.; Li, Yihan; Tseng, Wei-Ju; Li, Connie; Liu, X. Sherry

    2017-01-01

    Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on post-menopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, while other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that while rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. PMID:28109138

  17. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    Directory of Open Access Journals (Sweden)

    Grażyna E Sroga

    Full Text Available To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation or ribose (ribosylation. Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women. More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples. Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar

  18. Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone.

    Science.gov (United States)

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D; Weinstein, Robert S; Manolagas, Stavros C; O'Brien, Charles A

    2015-06-01

    Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. Published by Elsevier Inc.

  19. Physical and chemical characteristics of the demineralized lyophylized bovine cortical bone sterilized by gamma irradiation

    International Nuclear Information System (INIS)

    Basril, A.; Febrida, A.; Hilmy, N.; Surtipanti, S.; Petrus, Z.

    1999-01-01

    The purpose of the studies were: 1) to ascertain the relationship between immersion time of bone in the Hydrochloride acid (HCl) solution and Calcium and Phosphor content in the bone and 2) to study the effects of irradiation on bone hardness. The methods used in these studies were according to American Association of Tissue Bank. The samples of bovine cortical bone in shape of I cm x I cm were demineralised in 0.6 N of HCl at room temperature until 72 hours. At 12, 24, 48, and 72 hours after demineralisation, 10 grams of demineralised samples were removed and labelled to reflect the demineralisation time. The pH values were monitored at 15 minutes intervals until the end of the process. Subsequently the wet samples were freeze-dried and Calcium and phosphor content were determined by X-ray diffraction. To observe the effects of radiation on bone hardness, the lyophilised cortical bovine bone was irradiated with gamma rays at the doses of 0, 10, 20, and 30 kGy and then were stored until 6 months. Results indicate that the beginning pH of the solution is 1. 1 and it increase sharply up to 2.3 after 12 hours of demineralisation and that pH become constant at 2.5 until the end of process. Calcium and phosphor content in the bone reduce in correlation with increasing of the pH. The beginning of Calcium and phosphor content in the bone are 36.4% and 25.3%, respectively and they reduce to 10.8% and 8.4% at the end of the process. The hardness of non irradiated and non demineralised, demineralised, irradiated, and demineralised irradiated of the cortical bone are 77.67; 65.21; 63.67; and 55.15 Vickers, respectively. The effects of irradiation up to 30 kGy on the hardness of the bone are not significant, but the storage time until 6 months give a significant of reduction. It can be concluded using this method the minimum residual of Calcium concentration in the bone is 10.8%

  20. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study.

    Directory of Open Access Journals (Sweden)

    Hongbin Lu

    Full Text Available This study was designed to evaluate the effects of low-intensity pulsed ultrasound on bone regeneration during the bone-tendon junction healing process and to explore the application of synchrotron radiation micro computed tomography in three dimensional visualization of the bone-tendon junction to evaluate the microarchitecture of new trabecular bone. Twenty four mature New Zealand rabbits underwent partial patellectomy to establish a bone-tendon junction injury model at the patella-patellar tendon complex. Animals were then divided into low-intensity pulsed ultrasound treatment (20 min/day, 7 times/week and placebo control groups, and were euthanized at week 8 and 16 postoperatively (n = 6 for each group and time point. The patella-patellar tendon specimens were harvested for radiographic, histological and synchrotron radiation micro computed tomography detection. The area of the newly formed bone in the ultrasound group was significantly greater than that of control group at postoperative week 8 and 16. The high resolution three dimensional visualization images of the bone-tendon junction were acquired by synchrotron radiation micro computed tomography. Low-intensity pulsed ultrasound treatment promoted dense and irregular woven bone formation at week 8 with greater bone volume fraction, number and thickness of new trabecular bone but with lower separation. At week 16, ultrasound group specimens contained mature lamellar bone with higher bone volume fraction and thicker trabeculae than that of control group; however, there was no significant difference in separation and number of the new trabecular bone. This study confirms that low-intensity pulsed ultrasound treatment is able to promote bone formation and remodeling of new trabecular bone during the bone-tendon junction healing process in a rabbit model, and the synchrotron radiation micro computed tomography could be applied for three dimensional visualization to quantitatively evaluate

  1. Influence of olive oil on alveolar bone response during orthodontic retention period: rabbit model study.

    Science.gov (United States)

    Al-Hamdany, Afrah K; Al-Khatib, Ali R; Al-Sadi, Hafidh I

    2017-08-01

    This study attempted to evaluate clinically and histologically the effects of olive oil (Ol) consumption on orthodontic relapse after the retention period. Thirty apparently healthy female albino rabbits, weight more than 1000 g each was used in this study. The animals were grouped randomly into six groups of five animals each: two control and four experimental groups. In control groups, the relapse was estimated either at zero day, or at the end of the fourth week after orthodontic retention period. In the experimental groups, the animals' groups received Ol, 7.7, or 15.4 ml/kg b.w. per day during the orthodontic retention period. The relapse was estimated either at zero day, or at the end of the fourth week after orthodontic retention period for each concentration. Modified fixed orthodontic appliances were attached to the rabbits' lower central incisors. Each rabbit received orthodontic intervention for one week, followed by six weeks retention period. At the end of the experiments, the clinical and histological investigations were conducted. Data analyses were performed at the level of p orthodontic retention period, especially at 15.4 ml/kg b.w. per day concentration, clinically reduced orthodontic relapse on rabbit model. Histologically, Ol increased osteoblasts and osteocytes counts and the relative amount of bone mineralization of connective tissue layer forming alveolar bone (AB) at the end of four weeks after the orthodontic retention period.

  2. Development and design of a bone-equivalent cortical shell phantom to determine accuracy measures on DXA and PQCT scanners

    International Nuclear Information System (INIS)

    Khoo, B.C.C.; Beck, T.J. Johns; Turk, B.; Price, R.I.

    2004-01-01

    Full text: Hip Structural Analysis (HSA), is an algorithm that computes bone-structural geometry from dual energy X-ray absorptiometry (DXA) derived hip images and may be used in a complementary manner to DXA areal bone mineral density (BMD) for bone strength interpretation. DXA is normally used to facilitate the diagnosis and management of bone metabolic diseases such as osteoporosis. HSA provides a biomechanical interpretation of BMD, using its mass profiles to compute cross-sectional structural geometry. In essence, HSA provides insight into bone structural and biomechanical properties, particularly of long bones, which BMD alone cannot. While conventional (vendor-provided) phantoms calibrate DXA machines for densitometric precision, analogous phantoms for calibrating structural geometry are lacking. This paper describes the design and preliminary testing of a densitometric bone-equivalent cylindrical phantom with 'cortical' shells and 'cancellous' core, and the use of this phantom to do a performance test of structural geometry variables such as cortical thickness, bone width and section modulus derived, from pQCT and DXA scan data. Powdered calcium-sulphate (CSC) was water-mixed in vacuum and cured. This mixture exhibited hydroxyapatite-like DXA photon-attenuation properties with density monotonically related to added water-mass. Its mass and BMD maintained temporal stability (CV%=0.03%, n=4 specimens over 321 d). Using CSC designed for a BMD=1.04g/cm, (for plate-thickness 10mm), a cylindrical phantom with cortical shell thicknesses of 0.5, 1.0, 2.0, 4.0mm, an acrylic-based internal core diameter of 26mm, and an acrylic surrounding 'soft-tissue' were constructed. The phantom was scanned using a DXA scanner (Hologic QDRl000W) and pQCT (Stratec XCT2000, pixel resolution 0.15mm). Selected cortical structural-geometric variables, derived from calculated geometry; pQCT mass-projections, and DXA HSA. In conclusion, dimensions of this novel cortical-shell phantom

  3. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent.

    Science.gov (United States)

    Leng, Huijie; Wang, Xiang; Ross, Ryan D; Niebur, Glen L; Roeder, Ryan K

    2008-01-01

    Accumulation of microdamage during fatigue can lead to increased fracture susceptibility in bone. Current techniques for imaging microdamage in bone are inherently destructive and two-dimensional. Therefore, the objective of this study was to image the accumulation of fatigue microdamage in cortical bone using micro-computed tomography (micro-CT) with a barium sulfate (BaSO(4)) contrast agent. Two symmetric notches were machined on the tensile surface of bovine cortical bone beams in order to generate damage ahead of the stress concentrations during four-point bending fatigue. Specimens were loaded to a specified number of cycles or until one notch fractured, such that the other notch exhibited the accumulation of microdamage prior to fracture. Microdamage ahead of the notch was stained in vitro by precipitation of BaSO(4) and imaged using micro-CT. Reconstructed images showed a distinct region of bright voxels around the notch tip or along propagating cracks due to the presence of BaSO(4), which was verified by backscattered electron imaging and energy dispersive spectroscopy. The shape of the stained region ahead of the notch tip was consistent with principal strain contours calculated by finite element analysis. The relative volume of the stained region was correlated with the number of loading cycles by non-linear regression using a power-law. This study demonstrates new methods for the non-destructive and three-dimensional detection of fatigue microdamage accumulation in cortical bone in vitro, which may be useful to gain further understanding into the role of microdamage in bone fragility.

  4. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization

    Science.gov (United States)

    Parnell, William J; Grimal, Quentin

    2008-01-01

    Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. PMID:18628200

  5. Adaptations in tibial cortical thickness and total volumetric bone density in postmenopausal South Asian women with small bone size.

    Science.gov (United States)

    Darling, Andrea L; Hakim, Ohood A; Horton, Khim; Gibbs, Michelle A; Cui, Liang; Berry, Jacqueline L; Lanham-New, Susan A; Hart, Kathryn H

    2013-07-01

    There is some evidence that South Asian women may have an increased risk of osteoporosis compared with Caucasian women, although whether South Asians are at increased risk of fracture is not clear. It is unknown whether older South Asian women differ from Caucasian women in bone geometry. This is the first study, to the authors' knowledge, to use peripheral Quantitative Computed Tomography (pQCT) to measure radial and tibial bone geometry in postmenopausal South Asian women. In comparison to Caucasian women, Asian women had smaller bone size at the 4% (-18% pAsians had increased cortical thickness (-17% p=0.04) at the 38% tibia, (in proportion to bone size (-30% p=0.003)). Furthermore, at the 4% and 14% tibia there were increased total densities (+12% to +29% pAsians. These differences at the 14% and 38% (but not 4%) remained statistically significant after adjustment for Body Mass Index (BMI). These adaptations are similar to those seen previously in Chinese women. Asian women had reduced strength at the radius and tibia, evidenced by the 20-40% reduction in both polar Strength Strain Index (SSIp) and fracture load (under bending). Overall, the smaller bone size in South Asians is likely to be detrimental to bone strength, despite some adaptations in tibial cortical thickness and tibial and radial density which may partially compensate for this. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    International Nuclear Information System (INIS)

    Yin, Dagang; Chen, Bin; Ye, Wei; Gou, Jihua; Fan, Jinghong

    2015-01-01

    Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in

  7. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Dagang [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Chen, Bin, E-mail: bchen@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Ye, Wei [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Gou, Jihua [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Fan, Jinghong [Division of Mechanical Engineering, Alfred University, Alfred, NY 14802 (United States)

    2015-12-01

    Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in

  8. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    Science.gov (United States)

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Determination of a tissue-level failure evaluation standard for rat femoral cortical bone utilizing a hybrid computational-experimental method.

    Science.gov (United States)

    Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun

    2018-01-01

    Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.

  10. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  11. An optimized process flow for rapid segmentation of cortical bones of the craniofacial skeleton using the level-set method.

    Science.gov (United States)

    Szwedowski, T D; Fialkov, J; Pakdel, A; Whyne, C M

    2013-01-01

    Accurate representation of skeletal structures is essential for quantifying structural integrity, for developing accurate models, for improving patient-specific implant design and in image-guided surgery applications. The complex morphology of thin cortical structures of the craniofacial skeleton (CFS) represents a significant challenge with respect to accurate bony segmentation. This technical study presents optimized processing steps to segment the three-dimensional (3D) geometry of thin cortical bone structures from CT images. In this procedure, anoisotropic filtering and a connected components scheme were utilized to isolate and enhance the internal boundaries between craniofacial cortical and trabecular bone. Subsequently, the shell-like nature of cortical bone was exploited using boundary-tracking level-set methods with optimized parameters determined from large-scale sensitivity analysis. The process was applied to clinical CT images acquired from two cadaveric CFSs. The accuracy of the automated segmentations was determined based on their volumetric concurrencies with visually optimized manual segmentations, without statistical appraisal. The full CFSs demonstrated volumetric concurrencies of 0.904 and 0.719; accuracy increased to concurrencies of 0.936 and 0.846 when considering only the maxillary region. The highly automated approach presented here is able to segment the cortical shell and trabecular boundaries of the CFS in clinical CT images. The results indicate that initial scan resolution and cortical-trabecular bone contrast may impact performance. Future application of these steps to larger data sets will enable the determination of the method's sensitivity to differences in image quality and CFS morphology.

  12. Sex-specific patterns in cortical and trabecular bone microstructure in the Kirsten Skeletal Collection, South Africa.

    Science.gov (United States)

    Beresheim, Amy C; Pfeiffer, Susan K; Grynpas, Marc D; Alblas, Amanda

    2018-02-07

    The purpose of this study was to provide bone histomorphometric reference data for South Africans of the Western Cape who likely dealt with health issues under the apartheid regime. The 206 adult individuals ( n female = 75, n male = 131, mean = 47.9 ± 15.8 years) from the Kirsten Skeletal Collection, U. Stellenbosch, lived in the Cape Town metropole from the late 1960s to the mid-1990s. To study age-related changes in cortical and trabecular bone microstructure, photomontages of mid-thoracic rib cross-sections were quantitatively examined. Variables include relative cortical area (Rt.Ct.Ar), osteon population density (OPD), osteon area (On.Ar), bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp). All cortical variables demonstrated significant relationships with age in both sexes, with women showing stronger overall age associations. Peak bone mass was compromised in some men, possibly reflecting poor nutritional quality and/or substance abuse issues throughout adolescence and early adulthood. In women, greater predicted decrements in On.Ar and Rt.Ct.Ar suggest a structural disadvantage with age, consistent with postmenopausal bone loss. Age-related patterns in trabecular bone microarchitecture are variable and difficult to explain. Except for Tb.Th, there are no statistically significant relationships with age in women. Men demonstrate significant negative correlations between BV/TV, Tb.N, and age, and a significant positive correlation between Tb.Sp and age. This research highlights sex-specific differences in patterns of age-related bone loss, and provides context for discussion of contemporary South African bone health. While the study sample demonstrates indicators of poor bone quality, osteoporosis research continues to be under-prioritized in South Africa. © 2018 Wiley Periodicals, Inc.

  13. Cartilage and bone neoformation in rabbit carotid bifurcation aneurysms after endovascular coil embolization

    Directory of Open Access Journals (Sweden)

    H Plenk

    2008-11-01

    Full Text Available Occurrence and histomorphology of cartilage and bone neoformations was retrospectively evaluated in rabbit experimental aneurysms after endovascular coil embolization. During product development, 115 carotid bifurcation aneurysms were treated with hydrogel-containing devices (HydroCoil®, n=77; HydroSoft®, n=28; prototype Hydrogel-only, n=10; MicroVentionTerumo, Aliso Viejo, CA. Additional 29 aneurysms were treated with standard (n=22 or with degradable polymer-covered (n=7 platinum coils. After 4 to 52 weeks, the retrieved aneurysms were methylmethacrylate embedded, and ground sections were surface-stained with Rapid Bone Stain and Giemsa solution. Cartilage and/or bone tissue was assessed by light microscopy; respective tissue areas in the aneurysms were determined by computerized histomorphometry. Cartilage neoformation was observed from 26 to 52 weeks. Single chondrocytes to hyaline or fibrous cartilage areas, occupying up to 29% of the aneurysm cavity, were found in 6 aneurysms, treated with HydroCoil (n=4, Hydrogel-only (n=1, and resorbable polymer (n=1 devices. Chondral ossification associated cartilage neoformation in 2 of these 4 HydroCoil-treated aneurysms. Membranous woven and lamellar bone ossicles were observed from 13 to 52 weeks in 7 aneurysms, treated with HydroCoil (n=3 and platinum coil (n=4 devices. Altogether, cartilage and/or bone neoformation was observed in 13 (9% of 144 rabbit bifurcation aneurysms treated with various embolic devices. Incidence was low until 26 weeks, but increased at 52 weeks in both, HydroCoil and standard platinum coil treated aneurysms. As the neoformations were predominantly located in proximity to the aneurysm neck, they could be related to the long-term mechanobiology of cell differentiation during fibrovascular healing of blood flow-exposed embolized aneurysms.

  14. Carprofen neither reduces postoperative facial expression scores in rabbits treated with buprenorphine nor alters long term bone formation after maxillary sinus grafting.

    Science.gov (United States)

    Hedenqvist, Patricia; Trbakovic, Amela; Thor, Andreas; Ley, Cecilia; Ekman, Stina; Jensen-Waern, Marianne

    2016-08-01

    In connection with bilateral maxillary sinus augmentation, the acute effects of the nonsteroidal anti-inflammatory drug carprofen on facial expressions and long-term effects on bone formation were evaluated in 18 male New Zealand White rabbits. A 10×10mm bone window was drilled in the maxilla, the sinus membrane elevated and a titanium mini-implant inserted. One of two test materials was randomly inserted unilaterally and bovine bone chips (control) on the contralateral side in the created space. Rabbits were randomly allocated to receive buprenorphine plus carprofen (n=9) or buprenorphine plus saline (n=9) postoperatively. Buprenorphine was administered subcutaneously every 6h for 3days in a tapered dose (0.05-0.01mg/kg) and carprofen (5mg/kg) or saline administered subcutaneously 1h before, and daily for 4days postoperatively. To assess pain, clinical examination, body weight recording and scoring of facial expressions from photos taken before, and 6-13h after surgery were performed. Twelve weeks after surgery the rabbits were euthanized and sections of maxillary bones and sinuses were analysed with histomorphometry and by qualitative histology. Carprofen had no effect on mean facial expression scores, which increased from 0.0 to 3.6 (carprofen) and 4.3 (saline), of a maximum of 8.0. Neither did carprofen have an effect on bone formation or implant incorporation, whereas the test materials had. In conclusion, treatment with 5mg/kg carprofen once daily for 5days did not reduce facial expression scores after maxillary sinus augmentation in buprenorphine treated rabbits and did not affect long term bone formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    Science.gov (United States)

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  16. Interaction between LRP5 and periostin gene polymorphisms on serum periostin levels and cortical bone microstructure.

    Science.gov (United States)

    Pepe, J; Bonnet, N; Herrmann, F R; Biver, E; Rizzoli, R; Chevalley, T; Ferrari, S L

    2018-02-01

    We investigated the interaction between periostin SNPs and the SNPs of the genes assumed to modulate serum periostin levels and bone microstructure in a cohort of postmenopausal women. We identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels and on radial cortical porosity. The purpose of this study is to investigate the interaction between periostin gene polymorphisms (SNPs) and other genes potentially responsible for modulating serum periostin levels and bone microstructure in a cohort of postmenopausal women. In 648 postmenopausal women from the Geneva Retirees Cohort, we analyzed 6 periostin SNPs and another 149 SNPs in 14 genes, namely BMP2, CTNNB1, ESR1, ESR2, LRP5, LRP6, PTH, SPTBN1, SOST, TGFb1, TNFRSF11A, TNFSF11, TNFRSF11B and WNT16. Volumetric BMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography at the distal radius and tibia. Serum periostin levels were associated with radial cortical porosity, including after adjustment for age, BMI, and years since menopause (p = 0.036). Sixteen SNPs in the ESR1, LRP5, TNFRSF11A, SOST, SPTBN1, TNFRSF11B and TNFSF11 genes were associated with serum periostin levels (p range 0.03-0.001) whereas 26 SNPs in 9 genes were associated with cortical porosity at the radius and/or at the tibia. WNT 16 was the gene with the highest number of SNPs associated with both trabecular and cortical microstructure. The periostin SNP rs9547970 was also associated with cortical porosity (p = 0.04). In particular, SNPs in LRP5, ESR1 and near the TNFRSF11A gene were associated with both cortical porosity and serum periostin levels. Eventually, we identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels (interaction p = 0.01) and on radial cortical porosity (interaction p = 0.005). These results suggest that periostin expression is genetically modulated, particularly by polymorphisms

  17. Treatment of chronic hepatic cirrhosis with autologous bone marrow stem cells transplantation in rabbits

    International Nuclear Information System (INIS)

    Zhu Yinghe; Xu Ke; Zhang Xitong; Han Jinling; Ding Guomin; Gao Jue

    2008-01-01

    Objective: To evaluate the feasibility of treatment for rabbit model with hepatic cirrhosis by transplantation of autologous bone marrow-derived stem cells via the hepatic artery and evaluate the effect of hepatocyte growth-promoting factors (pHGF) in the treatment of stem cells transplantation to liver cirrhosis. To provide empirical study foundation for future clinical application. Methods: Chronic hepatic cirrhosis models of rabbits were developed by subcutaneous injection with 50% CCl 4 0.2 ml/kg. Twenty-five model rabbits were randomly divided into three experimental groups, stem cells transplant group (10), stem cells transplant + pHGF group (10) and control group (5). Autologous bone marrow was harvested from fibia of each rabbit, and stem cells were disassociated using density gradient centrifugation and transplanted into liver via the hepatic artery under fluoroscopic guidance. In the stem cells transplant + pHGF group, the hepatocyte growth-promoting factor was given via intravenous injection with 2 mg/kg every other day for 20 days. Liver function tests were monitored at 4, 8,12 weeks intervals and histopathologic examinations were performed at 12 weeks following transplantation. The data were analyzed using analysis of variance Results: Following transplantation of stern cells, the liver function of rabbits improved gradually. Twelve weeks after transplantation, the activity of ALT and AST decreased from (73.0±10.6) U/L and (152.4± 22.8) U/L to (48.0±1.0) U/L and (86.7±2.1) U/L respectively; and the level of ALB and PTA increased from (27.5±1.8) g/L and 28.3% to (33.2±0.5) g/L and 44.1% respectively. The changes did not have statistically significant difference when compared to the control group (P>0.05). However, in the stem cellstransplant + pHGF group, the activity of ALT and AST decreased to (43.3±0.6) U/L and (78.7±4.0) U/L respectively and the level of ALB and PTA increased to (35.7±0.4) g/L and 50.5% respectively. The difference was

  18. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Carolina Bergmann de; Henriques, Helene Nara [Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Fernandes, Gustavo Vieira Oliveira [Postgraduate Program in Medical Sciences, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lima, Inaya; Oliveira, Davi Ferreira de; Lopes, Ricardo Tadeu [Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), RJ (Brazil); Pantaleao, Jose Augusto Soares [Maternal and Child Department, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Granjeiro, Jose Mauro [Department of Cellular and Molecular Biology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Silva, Maria Angelica Guzman [Department of Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-03-15

    Purpose: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). Methods: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographs of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. Results: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. Conclusion: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head. (author)

  19. Regeneration of skull bones in adult rabbits after implantation of commercial osteoinductive materials and transplantation of a tissue-engineering construct.

    Science.gov (United States)

    Volkov, A V; Alekseeva, I S; Kulakov, A A; Gol'dshtein, D V; Shustrov, S A; Shuraev, A I; Arutyunyan, I V; Bukharova, T B; Rzhaninova, A A; Bol'shakova, G B; Grigor'yan, A S

    2010-10-01

    We performed a comparative study of reparative osteogenesis in rabbits with experimental critical defects of the parietal bones after implantation of commercial osteoinductive materials "Biomatrix", "Osteomatrix", "BioOss" in combination with platelet-rich plasma and transplantation of a tissue-engineering construct on the basis of autogenic multipotent stromal cells from the adipose tissue predifferentiated in osteogenic direction. It was found that experimental reparative osteogenesis is insufficiently stimulated by implantation materials and full-thickness trepanation holes were not completely closed. After transplantation of the studied tissue-engineering construct, the defect was filled with full-length bone regenerate (in the center of the regenerate and from the maternal bone) in contrast to control and reference groups, where the bone tissue was formed only on the side of the maternal bone. On day 120 after transplantation of the tissue-engineering construct, the percent of newly-formed bone tissue in the regenerate was 24% (the total percent of bone tissue in the regenerate was 39%), which attested to active incomplete regenerative process in contrast to control and reference groups. Thus, the study demonstrated effective regeneration of the critical defects of the parietal bones in rabbits 120 days after transplantation of the tissue-engineering construct in contrast to commercial osteoplastic materials for directed bone regeneration.

  20. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi; Hou, Juan; Yin, ManLi [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jing, E-mail: biomatwj@163.com [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, ChangSheng, E-mail: csliu@sh163.net [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2014-11-01

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration.

  1. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    Science.gov (United States)

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  2. Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution

    Science.gov (United States)

    Dechow, Paul C.; Wang, Qian; Peterson, Jill

    2011-01-01

    Skeletal adaptations to reduced function are an important source of skeletal variation and may be indicative of environmental pressures that lead to evolutionary changes. Humans serve as a model animal to investigate the effects of loss of craniofacial function through edentulation. In the human maxilla, it is known that edentulation leads to significant changes in skeletal structure such as residual ridge resorption and loss of cortical thickness. However, little is known about changes in bone tissue structure and material properties, which are also important for understanding skeletal mechanics but are often ignored. The aims of this study were to determine cortical material properties in edentulous crania and to evaluate differences with dentate crania and thus examine the effects of loss of function on craniofacial structure. Cortical bone samples from fifteen edentulous human skulls were measured for thickness and density. Elastic properties and directions of maximum stiffness were determined by using ultrasonic techniques. These data were compared to those from dentate crania reported in a previous investigation. Cortical bone from all regions of the facial skeleton of edentulous individuals is thinner than in dentate skulls. Elastic and shear moduli, and density are similar or greater in the zygoma and cranial vault of edentulous individuals, while these properties are less in the maxilla. Most cortical bone, especially in edentulous maxillae, has reduced directional orientation. The loss of significant occlusal loads following edentulation may contribute to the change in material properties and the loss of orientation over time during the normal process of bone remodeling. These results suggest that area-specific cortical microstructural changes accompany bone resorption following edentulation. They also suggest that functional forces are important for maintaining bone mass throughout the craniofacial skeleton, even in areas such as the browridges, which

  3. Contribution of the endosteal surface of cortical bone to the trabecular pattern seen on IOPA radiographs: an in vitro study

    Directory of Open Access Journals (Sweden)

    P T Ravikumar

    2012-01-01

    Full Text Available Objectives: A study was conducted to assess the contribution of the cancellous and endosteal surface of the cortical bone to the trabecular pattern seen in an IOPA radiograph. Materials and methods: An in vitro study analyzing the contribution of the endosteal surface of cortical bone and cancellous bone to the trabecular pattern was conducted, using 60 specimens of desiccated human mandibles. The mode of execution involved IOPA radiographic evaluation of premolarmolar segments in the specimens before and after removal of cancellous bone. The radiographs were numbered for identification and subjected to evaluation by 5 dentomaxillofacial radiologists who were doubleblinded to ensure an unbiased interpretation. Results: The trabecular pattern appreciation by the experts in the IOPA radiographs before and after removal of cancellous bone displayed immaculate correlation as per the Goodman-Kruskal Gamma Coefficient values which was 0.78 indicating a very large correlation. The relative density of trabecular pattern was significantly higher in radiograph before than after removal of cancellous bone with p-value less than 0.05. Conclusion: Based on these results it was adjudged that both the cancellous and endosteal surface of cortical bone contributed significantly to the trabecular pattern in an IOPA radiograph.

  4. The Bone Resorption Inhibitors Odanacatib and Alendronate Affect Post-Osteoclastic Events Differently in Ovariectomized Rabbits

    DEFF Research Database (Denmark)

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Pennypacker, Brenda L

    2014-01-01

    performed a histomorphometric study of trabecular remodeling in vertebrae of estrogen-deficient rabbits treated or not with ODN or ALN, a model where ODN, but not ALN, was previously shown to preserve bone formation. In line with our hypothesis, we found that ODN treatment compared to ALN results...

  5. In Vivo Performance of Bilayer Hydroxyapatite Scaffolds for Bone Tissue Regeneration in the Rabbit Radius

    Science.gov (United States)

    2011-02-02

    no treatments and the pres- ence of periosteal callus-like layer surrounding defects with scaffold implantation were observed after 8 weeks post...vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials. 2004; 25(20):5037–44. 20. Lu JX, Gallur A, Flautre

  6. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model.

    Science.gov (United States)

    Chong, Alphonsus K S; Ang, Abel D; Goh, James C H; Hui, James H P; Lim, Aymeric Y T; Lee, Eng Hin; Lim, Beng Hai

    2007-01-01

    A repaired tendon needs to be protected for weeks until it has accrued enough strength to handle physiological loads. Tissue-engineering techniques have shown promise in the treatment of tendon and ligament defects. The present study tested the hypothesis that bone marrow-derived mesenchymal stem cells can accelerate tendon-healing after primary repair of a tendon injury in a rabbit model. Fifty-seven New Zealand White rabbits were used as the experimental animals, and seven others were used as the source of bone marrow-derived mesenchymal stem cells. The injury model was a sharp complete transection through the midsubstance of the Achilles tendon. The transected tendon was immediately repaired with use of a modified Kessler suture and a running epitendinous suture. Both limbs were used, and each side was randomized to receive either bone marrow-derived mesenchymal stem cells in a fibrin carrier or fibrin carrier alone (control). Postoperatively, the rabbits were not immobilized. Specimens were harvested at one, three, six, and twelve weeks for analysis, which included evaluation of gross morphology (sixty-two specimens), cell tracing (twelve specimens), histological assessment (forty specimens), immunohistochemistry studies (thirty specimens), morphometric analysis (forty specimens), and mechanical testing (sixty-two specimens). There were no differences between the two groups with regard to the gross morphology of the tendons. The fibrin had degraded by three weeks. Cell tracing showed that labeled bone marrow-derived mesenchymal stem cells remained viable and present in the intratendinous region for at least six weeks, becoming more diffuse at later time-periods. At three weeks, collagen fibers appeared more organized and there were better morphometric nuclear parameters in the treatment group (p tendon repair can improve histological and biomechanical parameters in the early stages of tendon-healing.

  7. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits

    Directory of Open Access Journals (Sweden)

    Liu D

    2017-07-01

    Full Text Available Denghui Liu,1,* Chongru He,2,* Zhongtang Liu,2 Weidong Xu2 1Department of Orthopedics, the 113 Military Hospital, Ningbo, 2Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G through in vivo study in ­rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G, nanotubular anodized titanium uncoated with gentamicin (NTATi and titanium uncoated with gentamicin (Ti. The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05. Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01. The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti

  8. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2011-01-01

    of 3 months without treatment. Group 3 was left untreated and served as controls. All sheep received a restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of each sheep were harvested, micro-CT scanned and subjected to three-point bending...... and tensile strength testing. Bone collagen and mineral were determined. Cortical porosity was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Apparent density was significantly decreased in the glucocorticoid-2 compared with the glucocorticoid-1 group....... Collagen content was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Bone mineral content did not differ between the groups. Neither the three-point bending mechanical properties nor the tensile mechanical properties differed significantly between...

  9. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    2010-01-01

    The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory......, Department of Orthopaedics and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark 2Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark Osteopenia in sheep has been successfully induced...... by glucocorticoid treatment and the changes in properties of cancellous bone were comparable with those observed in humans after long-term glucocorticoid treatment. However, the influence on cortical bone has not been thoroughly elucidated. This study aimed to investigate the influence of glucocorticoid on sheep...

  10. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Launey, Maximilien E.; Ritchie, Robert O.

    2010-03-25

    The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I + II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and 'weakest' microstructural resistance.

  11. Does longstanding nicotine exposure impair bone healing and osseointegration? An experimental study in rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, Klaus; Lindh, Christian H; Berglundh, Tord

    2009-01-01

    OBJECTIVES: The aim of this study was to analyze the effect of longstanding nicotine exposure on bone healing and osseointegration of titanium implants. MATERIALS AND METHODS: 20 female rabbits received either nicotine (n = 10) or saline (n = 10) administered subcutaneously via mini-osmotic pumps...... for 32 weeks. The pump delivered 6 microg/kg/min of nicotine for the animals in the test group. Blood samples were collected and plasma cotinine levels were measured monthly. Six months after the commencement of nicotine or saline administration three osteotomy preparations, one in right, femoral condyle...... increase in RMT between 2 and 4 weeks within each group. The histomorphometric analysis of bone-to-implant contact and bone density in the bone defects revealed no differences between the test and the control group after 2 or 4 weeks of healing. CONCLUSION: Longstanding (6 months) nicotine exposure did...

  12. Effect of synthetic cell-binding peptide on the healing of cortical segmental bone defects

    International Nuclear Information System (INIS)

    Cakmak, G.; Bolukbasi, S.; Simsek, A.; Senkoylu, A.; Erdem, O.; Yilmaz, G.

    2006-01-01

    To determine the effect of inorganic bone matric/Pepgen P-15 (ABM/P-15) on the healing of a critical sized segmental defect in a rat radius using a radiological and histological grading system. We carried out this study at the Research Laboratories, Gazi University School of Medicine in 2004. Critical sized segmental defects were created in the radius of 36 Wistar rats. Thirteen defects were filled with ABM/P-15 Flow (gel form), 12 defects were filled with ABM/P-15, and 11 defects were used as a control group. The rats were sacrified at the tenth week, and healing of the defects was evaluated radiographically and histologically. The usage of ABM/P-15 and ABM/P-15 Flow were demonstrated to improve healing of segmental bone defects compared with the control group. Statistical evaluation showed that there were significant differences between control sites, and the sites treated with P-15 and P-15 Flow (p=0.011). The highest radiological and histological grades were achieved by P-15. Segmental cortical bone defects may be treated with ABM/P-15 instead of bone allografts, and autografts. According to the radiological and histological parameters measured in this study, the implantation of ABM/P-15 resulted in optimum healing of the segmental cortical bone defects. Pepgen P-15 has a positive effect on bone healing, without any immunogenic features and disease transmission risk. Therefore, ABM/P-15 can also be used for orthopedic surgery. (author)

  13. Bone response to collagenized xenografts of porcine origin (mp3(®) ) and a bovine bone mineral grafting (4BONE(™) XBM) grafts in tibia defects: experimental study in rabbits.

    Science.gov (United States)

    Calvo-Guirado, José Luis; Aguilar-Salvatierra, Antonio; Ramírez-Fernández, Maria P; Maté Sánchez de Val, José E; Delgado-Ruiz, Rafael Arcesio; Gómez-Moreno, Gerardo

    2016-08-01

    This study aimed to carry out the evaluation of bone response of new bone formation to two different xenografts (bovine and porcine) biomaterials inserted in rabbit tibiae. The study used a total of 20 male New Zealand albino rabbits. They received a total of 40 grafts in the proximal metaphyseal areas of both tibiae. Two biomaterials were evaluated: 20 porcine xenografts, as a bone granulate (OsteoBiol(®) MP3(®) ; Tecnoss srl, Giaveno, Italy), were placed in the proximal metaphyseal area of the right tibia, 20 anorganic bovine bone mineral grafting (4BONE(™) XBM, MIS Implants Inc., BARLEV, Israel) were placed in the left tibia. Following graft insertion, the animals were sacrificed in two groups of 10 animals, after 1 and 4 months, respectively. For each group, biomaterials were analyzed: newly formed bone, residual graft materials and the connective tissue. Histomorphometric, EDX analysis and element mapping were performed at 1 and 4 months after graft insertion. At 4 months after treatment, the bone defects displayed radiological images that showed complete repair of osseous defects. Histomorphometric evaluation showed that for the porcine xenograft, the study averages for newly formed bone represented 84.23 ± 2.9%, while bovine matrix was 79.34 ± 2.1%. For residual graft material, the porcine biomaterial had 11.23 ± 1.7% and the bovine graft 31.56 ± 2.3%. Finally, the connective tissue for MP3 was 10.33 ± 1.8%, while for the 4BONE(™) XBM we obtained 14.34 ± 2.9%. Element analysis revealed higher percentages of Ca (54 ± 9%) and P (35 ± 6%) in the group B than group A and control group (P MP3 material; this supports new bone formation, creates a bridge between borders, and facilitates bone ingrowth in both biomaterials. Furthermore, this study observed partial dissolution of the mineral phase of four bone graft and complete resorption of porcine MP3 biomaterial and its incorporation into the surrounding bone. Depending on

  14. Does the presence of tumor-induced cortical bone destruction at CT have any prognostic value in newly diagnosed diffuse large B-cell lymphoma?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Hugo J.A.; Nievelstein, Rutger A.J.; Kwee, Thomas C. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); Klerk, John M.H. de [Meander Medical Center, Department of Nuclear Medicine, Amersfoort (Netherlands); Fijnheer, Rob [Meander Medical Center, Department of Hematology, Amersfoort (Netherlands); Heggelman, Ben G.F. [Meander Medical Center, Department of Radiology, Amersfoort (Netherlands); Dubois, Stefan V. [Meander Medical Center, Department of Pathology, Amersfoort (Netherlands)

    2015-05-01

    To determine the prognostic value of tumor-induced cortical bone destruction at computed tomography (CT) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). This retrospective study included 105 patients with newly diagnosed DLBCL who had undergone CT and bone marrow biopsy (BMB) before R-CHOP (rituximab, cyclophosphamide, hydroxydaunorubicin, Oncovin, and prednisolone) chemo-immunotherapy. Cox regression analyses were used to determine the associations of cortical bone status at CT (absence vs. presence of tumor-induced cortical bone destruction), BMB findings (negative vs. positive for lymphomatous involvement), and dichotomized National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) strata (low risk vs. high risk) with progression-free survival (PFS) and overall survival (OS). Univariate Cox regression analysis indicated that cortical bone status at CT was no significant predictor of either PFS or OS (p = 0.358 and p = 0.560, respectively), whereas BMB findings (p = 0.002 and p = 0.013, respectively) and dichotomized NCCN-IPI risk strata (p = 0.002 and p = 0.003, respectively) were significant predictors of both PFS and OS. In the multivariate Cox proportional hazards model, only the dichotomized NCCN-IPI score was an independent predictive factor of PFS and OS (p = 0.004 and p = 0.003, respectively). The presence of tumor-induced cortical bone destruction at CT was not found to have any prognostic implications in newly diagnosed DLBCL. (orig.)

  15. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  16. Age-related changes in cortical bone mass: data from a German female cohort

    International Nuclear Information System (INIS)

    Toledo, V.A. Molina; Jergas, M.

    2006-01-01

    To describe data from digital radiogrammetry (DXR) in an unselected German female cohort over a wide age range. Using a retrospective study design we analyzed radiographs of the hand from 540 German women (aged 5-96 years) using an automated assessment of cortical thickness, metacarpal index (MCI), and estimated cortical bone mineral density (DXR-BMD) on digitized radiographs. Both hands were radiographed in 97 women. In this group DXR-BMD and cortical thickness were significantly higher in the right metacarpals while there was no significant difference in MCI. To study the association with age we differentiated young ( 45 years). In young women all parameters increased significantly with age in a linear fashion (r=0.8 for DXR-BMD, r=0.7 for MCI). In those aged 25-45 years DXR-BMD and MCI were highest (peak bone mass). In women aged 45 or older all parameters decreased with age in an almost linear fashion with an annual change ranging from 0.7% to 0.9%. Our results for an unselected German female cohort indicate that DXR is a reliable, widely available osteodensitometric technique based on the refinement of conventional radiogrammetry. These findings are comparable to those from other studies and represent a valid resource for clinical application and for comparisons with other ethnic groups. (orig.)

  17. Tibial loading increases osteogenic gene expression and cortical bone volume in mature and middle-aged mice.

    Directory of Open Access Journals (Sweden)

    Matthew J Silva

    Full Text Available There are conflicting data on whether age reduces the response of the skeleton to mechanical stimuli. We examined this question in female BALB/c mice of different ages, ranging from young to middle-aged (2, 4, 7, 12 months. We first assessed markers of bone turnover in control (non-loaded mice. Serum osteocalcin and CTX declined significantly from 2 to 4 months (p<0.001. There were similar age-related declines in tibial mRNA expression of osteoblast- and osteoclast-related genes, most notably in late osteoblast/matrix genes. For example, Col1a1 expression declined 90% from 2 to 7 months (p<0.001. We then assessed tibial responses to mechanical loading using age-specific forces to produce similar peak strains (-1300 µε endocortical; -2350 µε periosteal. Axial tibial compression was applied to the right leg for 60 cycles/day on alternate days for 1 or 6 weeks. qPCR after 1 week revealed no effect of loading in young (2-month mice, but significant increases in osteoblast/matrix genes in older mice. For example, in 12-month old mice Col1a1 was increased 6-fold in loaded tibias vs. controls (p = 0.001. In vivo microCT after 6 weeks revealed that loaded tibias in each age group had greater cortical bone volume (BV than contralateral control tibias (p<0.05, due to relative periosteal expansion. The loading-induced increase in cortical BV was greatest in 4-month old mice (+13%; p<0.05 vs. other ages. In summary, non-loaded female BALB/c mice exhibit an age-related decline in measures related to bone formation. Yet when subjected to tibial compression, mice from 2-12 months have an increase in cortical bone volume. Older mice respond with an upregulation of osteoblast/matrix genes, which increase to levels comparable to young mice. We conclude that mechanical loading of the tibia is anabolic for cortical bone in young and middle-aged female BALB/c mice.

  18. Sheet of osteoblastic cells combined with platelet-rich fibrin improves the formation of bone in critical-size calvarial defects in rabbits.

    Science.gov (United States)

    Wang, Zhifa; Hu, Hanqing; Li, Zhijin; Weng, Yanming; Dai, Taiqiang; Zong, Chunlin; Liu, Yanpu; Liu, Bin

    2016-04-01

    Techniques that use sheets of cells have been successfully used in various types of tissue regeneration, and platelet-rich fibrin (PRF) can be used as a source of growth factors to promote angiogenesis. We have investigated the effects of the combination of PRF and sheets of mesenchymal stem cells (MSC) from bone marrow on the restoration of bone in critical-size calvarial defects in rabbits to find out whether the combination promotes bony healing. Sheets of MSC and PRF were prepared from the same donor. We then implanted the combined MSC and PRF in critical-size calvarial defects in rabbits and assessed bony restoration by microcomputed tomography (microCT) and histological analysis. The results showed that PRF significantly increased bony regeneration at 8 weeks after implantation of sheets of MSC and PRF compared with sheets of MSC alone (p=0.0048). Our results indicate that the combination of sheets of MSC and PRF increases bone regeneration in critical-size calvarial defects in rabbits, and provides a new way to improve skeletal healing. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Evaluation of the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material

    International Nuclear Information System (INIS)

    Araujo, P.M.; Lima, M.G.; Costa, A.C.; Pallone, E.M.

    2016-01-01

    This study aims to evaluate the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material. To this end, mass CAPs relative to the total weight of Al2O3 prepared Al_2O_3/CAPs using percentage of 0, 10, 20 and 30% composites. The composites characterized were by X-ray diffraction, scanning electron microscopy with scanning. After implanted in rabbit tibia randomly divided were into two groups, each with nine rabbits, according to the euthanasia period (30 days after surgery). After euthanasia was performed radiographic and histological evaluation of the grafted areas. The results confirm that the compounds Al_2O_3/CAPs presented major phase of alumina and the second phase calcium pyrophosphate. Increasing the concentration of CAPs on alumina promoted with a reduction in density and increase in porosity, as well as an increase in grain size and heterogeneity in the microstructure. Upon radiographic examination of the tibiae of the nine (9) rabbits score was observed with grade 3, or similar radiopacity presented by the remaining cortical bone. It shown was that the tibiae of rabbits with the implant showed the presence of foreign material (composite), well delimited with bone formation and bone proliferation around the implants. At the point where the composite in 30 days' time of sacrifice, there was no observable sign of infection was established, since there were observed no cellular infiltration, no rejection of the implant, concluding that the biocompatible composite was studied. (author)

  20. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.

    Science.gov (United States)

    Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko

    2015-07-01

    The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mitochondrial Point Mutation m.3243A>G Associates With Lower Bone Mineral Density, Thinner Cortices, and Reduced Bone Strength

    DEFF Research Database (Denmark)

    Langdahl, Jakob Høgild; Frederiksen, Anja Lisbeth; Hansen, Stinus Jørn

    2017-01-01

    Mitochondrial dysfunction is associated with several clinical manifestations including diabetes mellitus (DM), neurological disorders, renal and hepatic diseases, and myopathy. Although mitochondrial dysfunction is associated with increased bone resorption and decreased bone formation in mouse...... at the lumbar spine, total hip, and femoral neck in cases. Mean lumbar spine, total hip, and femoral neck T-scores were -1.5, -1.3, and -1.6 in cases, respectively, and -0.8, -0.3, and -0.7 in controls (all p G mutation was associated with lower BMD, cortical but not trabecular density...

  2. Micro-computed tomography and histomorphometric analysis of the effects of platelet-rich fibrin on bone regeneration in the rabbit calvarium.

    Science.gov (United States)

    Acar, Ahmet Hüseyin; Yolcu, Ümit; Gül, Mehmet; Keleş, Ali; Erdem, Necip Fazıl; Altundag Kahraman, Sevil

    2015-04-01

    The present study aimed to investigate the effectiveness of platelet-rich fibrin (PRF) on bone regeneration when used alone or in combination with hydroxyapatite (HA)/beta-tricalcium phosphate (βTCP). In this study, 20 New Zealand white rabbits were used and four calvarial defects were prepared in each animal. PRF, Straumann(®) Bone Ceramic (SBC), or PRF+SBC was applied to the defects; one defect was left untreated as a control. Ten rabbits were sacrificed at week 4 (T1) and 10 at week 8 (T2). After micro-computed tomography (micro-CT) scanning, the samples were sent for histological and histomorphometric analysis to evaluate and compare the volume and area of regenerated bone. Histomorphometric and micro-CT analysis showed that both PRF and SBC significantly increased bone regeneration at T1 and T2 (P<0.01). When PRF was used in combination with HA/βTCP, a further significant increase in new bone formation was observed at T1 and T2 compared with that when PRF or SBC was used alone (P<0.01). PRF has a positive effect on bone formation when used alone and in combination with HA/βTCP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Surface structural damage study in cortical bone due to medical drilling.

    Science.gov (United States)

    Tavera R, Cesar G; De la Torre-I, Manuel H; Flores-M, Jorge M; Hernandez M, Ma Del Socorro; Mendoza-Santoyo, Fernando; Briones-R, Manuel de J; Sanchez-P, Jorge

    2017-05-01

    A bone's fracture could be produced by an excessive, repetitive, or sudden load. A regular medical practice to heal it is to fix it in two possible ways: external immobilization, using a ferule, or an internal fixation, using a prosthetic device commonly attached to the bone by means of surgical screws. The bone's volume loss due to this drilling modifies its structure either in the presence or absence of a fracture. To observe the bone's surface behavior caused by the drilling effects, a digital holographic interferometer is used to analyze the displacement surface's variations in nonfractured post-mortem porcine femoral bones. Several nondrilled post-mortem bones are compressed and compared to a set of post-mortem bones with a different number of cortical drillings. During each compression test, a series of digital interferometric holograms were recorded using a high-speed CMOS camera. The results are presented as pseudo 3D mesh displacement maps for comparisons in the physiological range of load (30 and 50 lbs) and beyond (100, 200, and 400 lbs). The high resolution of the optical phase gives a better understanding about the bone's microstructural modifications. Finally, a relationship between compression load and bone volume loss due to the drilling was observed. The results prove that digital holographic interferometry is a viable technique to study the conditions that avoid the surgical screw from loosening in medical procedures of this kind.

  4. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study.

    Science.gov (United States)

    Rivadeneira, Fernando; Zillikens, M Carola; De Laet, Chris Edh; Hofman, Albert; Uitterlinden, André G; Beck, Thomas J; Pols, Huibert Ap

    2007-11-01

    We studied HSA measurements in relation to hip fracture risk in 4,806 individuals (2,740 women). Hip fractures (n = 147) occurred at the same absolute levels of bone instability in both sexes. Cortical instability (propensity of thinner cortices in wide diameters to buckle) explains why hip fracture risk at different BMD levels is the same across sexes. Despite the sexual dimorphism of bone, hip fracture risk is very similar in men and women at the same absolute BMD. We aimed to elucidate the main structural properties of bone that underlie the measured BMD and that ultimately determines the risk of hip fracture in elderly men and women. This study is part of the Rotterdam Study (a large prospective population-based cohort) and included 147 incident hip fracture cases in 4,806 participants with DXA-derived hip structural analysis (mean follow-up, 8.6 yr). Indices compared in relation to fracture included neck width, cortical thickness, section modulus (an index of bending strength), and buckling ratio (an index of cortical bone instability). We used a mathematical model to calculate the hip fracture distribution by femoral neck BMD, BMC, bone area, and hip structure analysis (HSA) parameters (cortical thickness, section modulus narrow neck width, and buckling ratio) and compared it with prospective data from the Rotterdam Study. In the prospective data, hip fracture cases in both sexes had lower BMD, thinner cortices, greater bone width, lower strength, and higher instability at baseline. In fractured individuals, men had an average BMD that was 0.09 g/cm(2) higher than women (p men and women. No significant differences were observed between the areas under the ROC curves of BMD (0.8146 in women and 0.8048 in men) and the buckling ratio (0.8161 in women and 0.7759 in men). The buckling ratio (an index of bone instability) portrays in both sexes the critical balance between cortical thickness and bone width. Our findings suggest that extreme thinning of cortices in

  5. Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model

    Directory of Open Access Journals (Sweden)

    Alexandre Kaempfen

    2015-06-01

    Full Text Available The gold standard treatment of large segmental bone defects is autologous bone transfer, which suffers from low availability and additional morbidity. Tissue engineered bone able to engraft orthotopically and a suitable animal model for pre-clinical testing are direly needed. This study aimed to evaluate engraftment of tissue-engineered bone with different prevascularization strategies in a novel segmental defect model in the rabbit humerus. Decellularized bone matrix (Tutobone seeded with bone marrow mesenchymal stromal cells was used directly orthotopically or combined with a vessel and inserted immediately (1-step or only after six weeks of subcutaneous “incubation” (2-step. After 12 weeks, histological and radiological assessment was performed. Variable callus formation was observed. No bone formation or remodeling of the graft through TRAP positive osteoclasts could be detected. Instead, a variable amount of necrotic tissue formed. Although necrotic area correlated significantly with amount of vessels and the 2-step strategy had significantly more vessels than the 1-step strategy, no significant reduction of necrotic area was found. In conclusion, the animal model developed here represents a highly challenging situation, for which a suitable engineered bone graft with better prevascularization, better resorbability and higher osteogenicity has yet to be developed.

  6. Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits.

    Science.gov (United States)

    Athanasiou, Vasilis T; Papachristou, Dionysios J; Panagopoulos, Andreas; Saridis, Alkis; Scopa, Chrisoula D; Megas, Panagiotis

    2010-01-01

    Different types of bone-graft substitutes have been developed and are on the market worldwide to eliminate the drawbacks of autogenous grafting. This experimental animal study was undertaken to evaluate the different histological properties of various bone graft substitutes utilized in this hospital. Ninety New Zealand white rabbits were divided into six groups of 15 animals. Under general anesthesia, a 4.5 mm-wide hole was drilled into both the lateral femoral condyles of each rabbit, for a total of 180 condyles for analysis. The bone defects were filled with various grafts, these being 1) autograft, 2) DBM crunch allograft (Grafton), 3) bovine cancellous bone xenograft (Lubboc), 4) calcium phosphate hydroxyapatite substitute (Ceraform), 5) calcium sulfate substitute (Osteoset), and 6) no filling (control). The animals were sacrificed at 1, 3, and 6 months after implantation and tissue samples from the implanted areas were processed for histological evaluation. A histological grading scale was designed to determine the different histological parameters of bone healing. The highest histological grades were achieved with the use of cancellous bone autograft. Bovine xenograft (Lubboc) was the second best in the histological scale grading. The other substitutes (Grafton, Ceraform, Osteoset) had similar scores but were inferior to both allograft and xenograft. Bovine xenograft showed better biological response than the other bone graft substitutes; however, more clinical studies are necessary to determine its overall effectiveness.

  7. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    DEFF Research Database (Denmark)

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm

    2016-01-01

    orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...... of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte...

  8. Bone Regeneration Is Promoted by Orally Administered Bovine Lactoferrin in a Rabbit Tibial Distraction Osteogenesis Model.

    Science.gov (United States)

    Li, Wenyang; Zhu, Songsong; Hu, Jing

    2015-07-01

    Lactoferrin, an iron-binding glycoprotein which belongs to the transferrin family, has been shown to promote bone growth. However, reports regarding effects of lactoferrin on bone regeneration during distraction osteogenesis are limited. Our study was designed to investigate the effect of bovine lactoferrin treatment on bone formation of the distracted callus. We asked whether bovine lactoferrin enhances bone formation of the distraction callus as determined by (1) radiographic and histologic appearances; (2) dual-energy x-ray absorptiometry (DXA) analysis of bone mineral composition and bone mineral density; (3) micro-CT measures of trabecular architecture; and (4) biomechanical strength of the healing bone. Additionally, serology, reverse transcription (RT)-PCR, and immunohistochemistry were used to explore the possible mechanisms of bovine lactoferrin use on bone formation during distraction osteogenesis. Unilateral tibial osteodistraction was performed on 80 New Zealand White rabbits with a distraction rate of 1 mm per day for 10 days. Animals then were divided randomly into two groups: (1) vehicle and (2) bovine lactoferrin. At 4 and 8 weeks after completion of distraction, the animals were sacrificed. Lengthened tibias and serum samples were obtained and subjected to radiologic, DXA, micro-CT, histologic, and biomechanical examinations, and serum, RT-PCR and immunohistochemical analyses. Radiologic, DXA, micro-CT, histologic, and biomechanical examinations indicated that bovine lactoferrin treatment not only accelerated bone formation at early stages of distraction osteogenesis but also promoted bone consolidation at late stages. The ultimate force of the distracted calluses was increased by 37% (118.8 ± 6.65 N in the lactoferrin group and 86.5 ± 5.47 N in the vehicle group; p bovine lactoferrin treatment significantly increased serum levels of bone alkaline phosphatase and decreased serum levels of tartrate resistant acid phosphatase 5b. In addition, RT

  9. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    OpenAIRE

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100?150?MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110?MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1?10?MPa compressive...

  10. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells

    International Nuclear Information System (INIS)

    Lindholm, T.S.; Nilsson, O.S.; Lindholm, T.C.

    1982-01-01

    Dilutions of fresh autogenous bone marrow cells in combination with allogeneic demineralized cortical bone matrix were tested extraskeletally in rats using roentgenographic, histologic, and 45 Ca techniques. Suspensions of bone marrow cells (especially diluted 1:2 with culture media) combined with demineralized cortical bone seemed to induce significantly more new bone than did demineralized bone, bone marrow, or composite grafts with whole bone marrow, respectively. In a short-term spinal fusion experiment, demineralized cortical bone combined with fresh bone marrow produced new bone and bridged the interspace between the spinous processes faster than other transplantation procedures. The induction of undifferentiated host cells by demineralized bone matrix is further complemented by addition of autogenous, especially slightly diluted, bone marrow cells

  11. Quantification of rabbit bone metabolism (BM) before (B) and after (A) sub-therapeutic doses of (89 Sr) -Initial results

    International Nuclear Information System (INIS)

    Braga, F.J.H.N.; Kinoshita, A.; Turco, F.P.; Moraes, F.A.; Iazigi, N.; Souza, J.F.; Trad, C.S.

    1997-01-01

    Full text. Some beta emitters, such as 89 Sr, 153 Sm and 186 Re are in current use worldwide for the palliation of bone pain caused by metastases, mainly in cases of disseminated bone metastases when conventional radiotherapy has already been used to maximum dose and when pain relief does not occur with the use of current drugs. In order to quantifying the reduction of RBM after such procedures, we have studied 10 young rabbits (2.5 months old, 1.5 kg), 2 h after the intravenous injection with 150 MBq of 99 m Tc - M D P. Rabbits were counted for 30 seconds in a scintillation camera. A region of interest (ROI) was drawn in the left knee joint. The knee joint was chosen because of its high BM in young animals. Each rabbit received 1.5 MBq per kilo of 89 Sr intravenously immediately after this initial evaluation (therapeutic doses for humans are 2.0 MBq per kg). One month after, rabbits were evaluated again with 99 M T C- MDP as described before and a second ROI was drawn in the same knee joint.The means of counts observed B and A 89 Sr injection were 11, 222 and 4, 399 respectively. These means are significantly different (p <0.05) and represent a reduction of over 60% in the knee joint BM after the 89 Sr dose

  12. Transplantation of autologous bone marrow stem cells via hepatic artery for the treatment of acute hepatic injury: an experimental study in rabbits

    International Nuclear Information System (INIS)

    Zhu Yinghe; Han Jinling; Liu Yanping; Gao Jue; Xu Ke; Zhang Xitong; Ding Guomin

    2009-01-01

    Objective: To evaluate the transplantation of autologous bone marrow stem cells via hepatic artery in treating acute hepatic injury in experimental rabbit models and to clarify the synergistic effect of hepatocyte growth-promoting factor (pHGF) in stem cell transplantation therapy for liver injury. Methods Acute hepatic injury models were established in 15 experimental rabbits by daily subcutaneous injection of CCl 4 olive oil solution with the dose of 0.8 ml/kg for 4 days in succession. The experimental rabbits were randomly and equally divided into three groups: study group A (stem cell transplant, n = 5), study group B (stem cell transplant + pFHG, n = 5), and control group (n = 5). Bone marrow of 5 ml was drawn from the tibia in all rabbits of both study groups, from which bone marrow stem cells were isolated by using density gradient centrifugation, and 5 ml cellular suspension was prepared. Under fluoroscopic guidance, catheterization through the femoral artery was performed and the cellular suspension was infused into the liver via the hepatic artery. Only injection of saline was carried out in the rabbits of control group. For the rabbits in group B, pFHG (2.0 mg/kg) was administered intravenously every other day for 20 days. At 2, 4 and 8 weeks after stem cell transplantation, hepatic function was determined. Eight weeks after the transplantation all the rabbits were sacrificed and the liver specimens were collected and sent for pathological examination. Results After stem cell transplantation, the hepatic function was gradually improved.Eight weeks after the transplantation, the activity of AST, ALT and the content of ALB, TBIL were significantly lower than that before the procedure, while the content of GOLB was markedly increased in all rabbits. In addition, the difference in the above parameters between three groups was statistically significant (P < 0.05). Pathologically, the hepatocyte degeneration and the fiberous hyperplasia in the study groups

  13. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.

    Science.gov (United States)

    Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D

    2014-02-01

    Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  15. Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits.

    Science.gov (United States)

    Jin, Jun; Wang, Jun; Huang, Jian; Huang, Fang; Fu, Jianhong; Yang, Xinjing; Miao, Zongning

    2014-11-01

    The main requirements for successful tissue engineering of the bone are non-immunogenic cells with osteogenic potential and a porous biodegradable scaffold. The purpose of this study is to evaluate the potential of a silk fibroin/hydroxyapatite (SF/HA) porous material as a delivery vehicle for human placenta-derived mesenchymal stem cells (PMSCs) in a rabbit radius defect model. In this study, we randomly assigned 16 healthy adult New Zealand rabbits into two groups, subjected to transplantation with either SF/HA and PMSCs (experimental group) or SF/HA alone (control group). To evaluate fracture healing, we assessed the extent of graft absorption, the quantity of newly formed bone, and re-canalization of the cavitas medullaris using radiographic and histological tools. We performed flow cytometric analysis to characterize PMSCs, and found that while they express CD90, CD105 and CD73, they stain negative for HLA-DR and the hematopoietic cell surface markers CD34 and CD45. When PMSCs were exposed to osteogenic induction medium, they secreted calcium crystals that were identified by von Kossa staining. Furthermore, when seeded on the surface of SF/HA scaffold, they actively secreted extracellular matrix components. Here, we show, through radiographic and histological analyses, that fracture healing in the experimental group is significantly improved over the control group. This strongly suggests that transplantation of human PMSCs grown in an SF/HA scaffold into injured radius segmental bone in rabbits, can markedly enhance tissue repair. Our finding provides evidence supporting the utility of human placenta as a potential source of stem cells for bone tissue engineering. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Bone microarchitecture and estimated bone strength in men with active acromegaly.

    Science.gov (United States)

    Silva, Paula P B; Amlashi, Fatemeh G; Yu, Elaine W; Pulaski-Liebert, Karen J; Gerweck, Anu V; Fazeli, Pouneh K; Lawson, Elizabeth; Nachtigall, Lisa B; Biller, Beverly M K; Miller, Karen K; Klibanski, Anne; Bouxsein, Mary; Tritos, Nicholas A

    2017-11-01

    Both acromegaly and adult growth hormone deficiency (GHD) are associated with increased fracture risk. Sufficient data are lacking regarding cortical bone microarchitecture and bone strength, as assessed by microfinite element analysis (µFEA). To elucidate both cortical and trabecular bone microarchitecture and estimated bone strength in men with active acromegaly or GHD compared to healthy controls. Cross-sectional study at a clinical research center, including 48 men (16 with acromegaly, 16 with GHD and 16 healthy controls). Areal bone mineral density (aBMD), cortical and trabecular bone microarchitecture and estimated bone strength (µFEA) at the radius and tibia. aBMD was not different between the 3 groups at any skeletal site. At the radius, patients with acromegaly had greater cortical area ( P  acromegaly had lower trabecular bone density ( P  = 0.0082), but no differences in cortical bone microstructure. Compressive strength and failure load did not significantly differ between groups. These findings persisted after excluding patients with hypogonadism. Bone microarchitecture was not deficient in patients with GHD. Both cortical and trabecular microarchitecture are altered in men with acromegaly. Our data indicate that GH excess is associated with distinct effects in cortical vs trabecular bone compartments. Our observations also affirm the limitations of aBMD testing in the evaluation of patients with acromegaly. © 2017 European Society of Endocrinology.

  17. Growth and Age-Related Abnormalities in Cortical Structure and Fracture Risk

    Directory of Open Access Journals (Sweden)

    Ego Seeman

    2015-12-01

    Full Text Available Vertebral fractures and trabecular bone loss have dominated thinking and research into the pathogenesis and the structural basis of bone fragility during the last 70 years. However, 80% of all fractures are non-vertebral and occur at regions assembled using large amounts of cortical bone; only 20% of fractures are vertebral. Moreover, ~80% of the skeleton is cortical and ~70% of all bone loss is cortical even though trabecular bone is lost more rapidly than cortical bone. Bone is lost because remodelling becomes unbalanced after midlife. Most cortical bone loss occurs by intracortical, not endocortical remodelling. Each remodelling event removes more bone than deposited enlarging existing canals which eventually coalesce eroding and thinning the cortex from 'within.' Thus, there is a need to study the decay of cortical as well as trabecular bone, and to develop drugs that restore the strength of both types of bone. It is now possible to accurately quantify cortical porosity and trabecular decay in vivo. The challenges still to be met are to determine whether measurement of porosity identifies persons at risk for fracture, whether this approach is compliments information obtained using bone densitometry, and whether changes in cortical porosity and other microstructural traits have the sensitivity to serve as surrogates of treatment success or failure.

  18. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    Science.gov (United States)

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical

  19. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference.

    Science.gov (United States)

    Karlo, Christoph A; Patcas, Raphael; Kau, Thomas; Watzal, Helmut; Signorelli, Luca; Müller, Lukas; Ullrich, Oliver; Luder, Hans-Ulrich; Kellenberger, Christian J

    2012-07-01

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. MRI may be used to assess the cortical bone of the TMJ. • Depiction of cortical bone is best on 3D FSPGR sequences. • MRI can assess treatment response in patients with TMJ abnormalities.

  20. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    Science.gov (United States)

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Evaluation of healing potential of autogenous, macroscopic fat deposited or fat free, omental graft in experimental radius bone defect in rabbit: Radiological study

    International Nuclear Information System (INIS)

    Masouleh, M.N.; Haghdoost, I.S.; Heydari, G.A.C.; Raissi, A.; Mohitmafi, S.

    2011-01-01

    This study was designed for evaluation of the difference between the ability of greater omentum graft with or without macroscopic fat deposition in acceleration of bone healing process. Adult female New Zealand white rabbits (n=15) were randomly divided into three equal groups. In groups A and B, the drilled hole on the left radius was filled by the omentum without and with macroscopic fat deposition, respectively while drilled hole on the right radius left intact for consideration as control. In group C, the drilled hole on the left and right radius was filled by the omentum sample with and without macroscopic fat deposition, respectively. Experimental bone defects on the radiuses were secured by the pieces of greater omentum, with or without macroscopic fat deposition, which obtained as an autogenous graft from each rabbit in accompany with control samples. Standardized serial radiography for evaluation of bone healing was performed and the difference in bone healing process in three groups of study was determined. According to the obtained data, the radius bones which filled by omentum without macroscopic fat deposition showed faster healing process than the radius bones which filled by omentum with macroscopic fat deposition (P<0.05). (author)

  2. In vivo performance of combinations of autograft, demineralized bone matrix, and tricalcium phosphate in a rabbit femoral defect model

    International Nuclear Information System (INIS)

    Kim, Jinku; McBride, Sean; Hollinger, Jeffrey O; Dean, David D; Sylvia, Victor L; Doll, Bruce A

    2014-01-01

    Large bone defects may be treated with autologous or allogeneic bone preparations. Each treatment has advantages and disadvantages; therefore, a clinically viable option for treating large (e.g., gap) bone defects may be a combination of the two. In the present study, bone repair was determined with combinations of autografts, allografts, and synthetic bone grafts using an established rabbit femoral defect model. Bilateral unicortical femoral defects were surgically prepared and treated with combinatorial bone grafts according to one of seven treatment groups. Recipient sites were retrieved at six weeks. Cellular/tissue responses and new bone formation were assessed by histology and histomorphometry. Histological analysis images indicated neither evidence of inflammatory, immune responses, tissue necrosis, nor osteolysis. Data suggested co-integration of implanted agents with host and newly formed bone. Finally, the histomorphometric data suggested that the tricalcium phosphate-based synthetic bone graft substitute allowed new bone formation that was similar to the allograft (i.e., demineralized bone matrix, DBM). (paper)

  3. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  4. Fatigue crack growth behavior in equine cortical bone

    Science.gov (United States)

    Shelton, Debbie Renee

    2001-07-01

    Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber

  5. The biochemical changes of bone collagen after high-dose irradiation

    International Nuclear Information System (INIS)

    Tajiri, Ken

    1980-01-01

    In our clinic, patients with malignant bone tumors have been treated by high-dose irradiation therapy, 10,000-20,000 rads, for primary lesions. In order to study the biochemical changes of normal bone around tumor tissue, especially bone collagen, after high-dose irradiation, the author performed the following experiments. The right knee joint of rabbits was irradiated with either 6,000, 10,000, or 15,000 rads by 60 Co-γ ray. The cortical bone of the right tibial metaphysis was used for analyses and compared with the left tibia of the same rabbit. These studies were followed for one year after the final irradiation. The calcium, phosphorous and collagen contents of irradiated bone were remarkably changed. These data indicate that collagen biosynthesis of irradiated bone was decreased and the calcification was disturbed. An increase in the amount of total soluble collagen and a decrease in the amount of hydroxylysine bound sugar were observed. The ratio of β to α chains of the collagen molecule was also changed by the irradiation. The amount of reducible cross-links per hydroxyproline residue was strikingly increased three months after the final irradiation. These changes were remarkable especially in the 10,000 and 15,000 rads irradiated group and found to be recovered approximately six months to one year after the final irradiation. These findings indicate that high-dose irradiation reduces the stability of bone collagen both with the destruction of sugar bonds of hydroxylysine residues and the replacement of matured collagen matrix to immatured one which contain mostly labile reducible cross-links. (author)

  6. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone.

    Science.gov (United States)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone-implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential.

  7. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.

    Science.gov (United States)

    Jain, R; Podworny, N; Hearn, T; Anderson, G I; Schemitsch, E H

    1997-10-01

    Comparison of the effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture. Randomized, prospective. Orthopaedic research laboratory. Ten large (greater than twenty-five kilogram) adult dogs. A short, midshaft spiral tibial fracture was created, followed by lag screw fixation and neutralization with an eight-hole, 3.5-millimeter, low-contact dynamic compression plate (LCDCP) made of either 316L stainless steel (n = five) or commercially pure titanium (n = five). After surgery, animals were kept with unrestricted weight-bearing in individual stalls for ten weeks. Cortical bone blood flow was assessed by laser Doppler flowmetry using a standard metalshafted probe (Periflux Pf303, Perimed, Jarfalla, Sweden) applied through holes in the custom-made LCDCPs at five sites. Bone blood flow was determined at four times: (a) prefracture, (b) postfracture, (c) postplating, and (d) ten weeks postplating. After the dogs were killed, the implant was removed and both the treated tibia and contralateral tibia were tested for bending stiffness and load to failure. Fracture creation decreased cortical perfusion in both groups at the fracture site (p = 0.02). The application of neither stainless steel nor titanium LCDCPs further decreased cortical bone blood flow after fracture creation. However, at ten weeks postplating, cortical perfusion significantly increased compared with acute postplating levels in the stainless steel (p = 0.003) and titanium (p = 0.001) groups. Cortical bone blood flow ten weeks postplating was not significantly different between the titanium group and the stainless steel group. Biomechanical tests performed on the tibiae with the plates removed did not reveal any differences in bending stiffness nor load required to cause failure between the two groups. Both titanium and stainless steel LCDCPs were equally effective in allowing revascularization, and

  8. Bone Augmentation in Rabbit Tibia Using Microfixed Cobalt-Chromium Membranes with Whole Blood and Platelet-Rich Plasma

    Directory of Open Access Journals (Sweden)

    Oscar A. Decco

    2015-07-01

    Full Text Available Background: Bone augmentation is a subject of intensive investigation in regenerative bone medicine and constitutes a clinical situation in which autogenous bone grafts or synthetic materials are used to aid new bone formation. Method: Based on a non-critical defect, Co-Cr barrier membranes were placed on six adult Fauve de Bourgogne rabbits, divided into two groups: whole blood and PRP. Three densitometric controls were performed during the experiment. The animals were euthanized at 30, 45, 60, and 110 days. The presence of newly formed bone was observed. Samples for histological studies were taken from the augmentation center. Results: External and internal bone tissue augmentation was observed in almost all cases. Significant differences between PRP- and whole blood–stimulated bone augmentation were not observed. At 60 days, bones with PRP presented higher angiogenesis, which may indicate more proliferation and cellular activity. Conclusion: PRP activates the bone regeneration process under optimized conditions by stimulation of osteoblast proliferation after six weeks, when a significant difference in cellular activity was observed. Membranes could stimulate bone augmentation at the site of placement and in the surrounding areas.

  9. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    Science.gov (United States)

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P girls, but active-fit girls had 6.1 % (P girls, which was likely due to their 6.7 % (P active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  10. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  11. Bone regeneration with a combination of nanocrystalline hydroxyapatite silica gel, platelet-rich growth factor, and mesenchymal stem cells: a histologic study in rabbit calvaria.

    Science.gov (United States)

    Behnia, Hossein; Khojasteh, Arash; Kiani, Mohammad Taghi; Khoshzaban, Ahad; Mashhadi Abbas, Fatemeh; Bashtar, Maryam; Dashti, Seyedeh Ghazaleh

    2013-02-01

    This study aimed to assess NanoBone as a carrier construct for mesenchymal stem cells (MSCs) and platelet-rich growth factor (PRGF). In the calvarial bone of 8 mature New Zealand White male rabbits, four 8-mm defects were created. Each defect received one of the following treatments: Group 1, 0.2 mg Nano-hydroxyapatite (HA) granule + 2 mL culture medium; Group 2, 0.2 mg Nano-HA + 1 mL autologous PRGF + 2 mL acellular culture medium; Group 3, 0.2 mg Nano-HA + 2 mL culture medium containing 100,000 autogenous MSCs; Group 4, 0.2 mg Nano-HA + 2 mL culture medium containing 100,000 autogenous MSCs + 1 mL autologous PRGF. Histomorphometric analysis at 6 and 12 weeks demonstrated significantly higher bone formation in group 4 (29.45% and 44.55%, respectively) (P NanoBone with MSCs and PRGF seems to be an effective combination for bone regeneration in a rabbit calvaria model. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Osseointegration of subperiosteal implants using bovine bone substitute and various membranes

    DEFF Research Database (Denmark)

    Aaboe, Merete; Schou, S.; Hjørting-Hansen, E.

    2000-01-01

    Osseointegration, subperiosteal implant, bone substitute, bovine bone, guided bone, regeneration, histology, rabbits......Osseointegration, subperiosteal implant, bone substitute, bovine bone, guided bone, regeneration, histology, rabbits...

  13. Effect of glucose on fatigue-induced changes in the microstructure and mechanical properties of demineralized bovine cortical bone.

    Science.gov (United States)

    Trębacz, Hanna; Zdunek, Artur; Wlizło-Dyś, Ewa; Cybulska, Justyna; Pieczywek, Piotr

    2015-10-16

    The aim of this study was to test a hypothesis that fatigue-induced weakening of cortical bone was intensified in bone incubated in glucose and that this weakening is revealed in the microstructure and mechanical competence of the bone matrix. Cubic specimens of bovine femoral shaft were incubated in glucose solution (G) or in buffer (NG). One half of G samples and one half of NG were axially loaded in 300 cycles (30 mm/min) at constant deformation (F); the other half was a control (C). Samples from each group (GF, NGF, GC, NGC) were completely demineralized. Slices from demineralized samples were used for microscopic image analysis. A combined effect of glycation and fatigue on demineralized bone was tested in compression (10 mm/min). Damage of samples during the test was examined in terms of acoustic emission analysis (AE). During the fatigue procedure, resistance to loading in glycated samples decreased by 14.5% but only by 8.1% in nonglycated samples. In glycated samples fatigue resulted in increased porosity with pores significantly larger than in the other groups. Under compression, strain at failure in demineralized bone was significantly affected by glucose and fatigue. AE from demineralized bone matrix was considerably related to the largest pores in the tissue. The results confirm the hypothesis that the effect of fatigue on cortical bone tissue was intensified after incubation in glucose, both in the terms of the mechanical competence of bone tissue and the structural changes in the collagenous matrix of bone.

  14. Bone heat generated using conventional implant drills versus piezosurgery unit during apical cortical plate perforation.

    Science.gov (United States)

    Lajolo, Carlo; Valente, Nicola Alberto; Romandini, William Giuseppe; Petruzzi, Massimo; Verdugo, Fernando; D'Addona, Antonio

    2018-03-09

    The apical portion of the implant osteotomy receives less irrigation and cooling during surgical preparation. High bone temperatures, above the critical 10°C threshold, may impair osseointegration, particularly, around dense cortical bone. The aim of this study is to evaluate the apical cortical plate temperature increase with two different devices and pressure loads in a porcine rib ex-vivo model. Twenty-four implant sites were prepared on porcine ribs divided into 4 groups of 6 samples each according to the device used (conventional drill system or piezosurgery) and pressure load applied (1000 g or 1500 g). A rubber dam was used to isolate the apical cortical plate from the cooling effect of irrigation. Temperature variation measurements were taken using an infrared thermometer. The piezosurgery unit was 2 times more likely to increase the osteotomy temperature by 10.0°C (OR = 2; 95% CI = 1.136-3.522; p piezosurgery-1000 g) and 8.17°C (SD = 6.12) for group 4 (piezosurgery-1,500 g). The piezosurgery site preparation caused significantly higher temperature increase than conventional drills (p piezosurgery unit is a potential risk during implant site preparation. The piezosurgical device reached significantly higher temperatures than conventional drilling at the apical cortical portion of the osteotomy. The temperature increase is often higher than the critical 10°C threshold. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. [ESTABLISHMENT OF A NEW RADIUS DEFECT MODEL BASED ON ULNA ANATOMICAL MEASUREMENT IN RABBITS].

    Science.gov (United States)

    Liu, Hanjiang; Guo, Ying; Mei, Wei

    2016-02-01

    To introduce a new bone defect model based on the anatomical measurement of radius and ulna in rabbits for offering a standard model for further tissue engineering research. Fifteen healthy 4-month-old New Zealand rabbits were selected for anatomic measurement and radiological measurement of the radius and ulna. Another 30 healthy 4-month-old New Zealand rabbits were randomly divided into groups A, B, and C (n=10). The radius bone defect was created bilaterally in 3 groups. In group A, the periosteum and interosseous membranes were fully removed with jig-saw by approach between extensor carpi radialis muscle and musculus extensor digitorum. The periosteum and interosseous membranes were fully removed in group B, and only periosteum was removed in group C with electric-saw by approach between extensor carpi radialis muscle and flexor digitorum profundus based on anatomical analysis results of ulnar and radial measurement. The gross observation, X-ray, micro-CT three-dimensional reconstruction, bone mineral density (BMD), and bone mineral content (BMC) were observed and recorded at immediate and 15 weeks after operation. HE staining and Masson staining were performed to observe bone formation in the defect areas. Blood vessel injury (1 rabbit), tendon injury (2 rabbits), postoperative hematoma (1 rabbit), and infection (1 rabbit) occurred in group A, postoperative infection (1 rabbit) in group C, and no postoperative complications in group B; the complication rate of group A (50%) was significantly higher than that of groups B (0%) and C (10%) (P0.05). HE staining and Masson staining results showed bone formation in group A, with structure disturbance and sclerosis. New bone formed in groups B and C, cartilage cells were observed in the center of bone cells. The radius bone defect model established by approach between extensor carpi radialis muscle and flexor digitorum profundus is an ideal model because of better exposures, less intra-operative blood loss, less

  16. Comparison of the effect of three autogenous bone harvesting methods on cell viability in rabbits

    Science.gov (United States)

    Moradi Haghgoo, Janet; Arabi, Seyed Reza; Hosseinipanah, Seyyed Mohammad; Solgi, Ghasem; Rastegarfard, Neda; Farhadian, Maryam

    2017-01-01

    Background. This study was designed to compare the viability of autogenous bone grafts, harvested using different methods, in order to determine the best harvesting technique with respect to more viable cells. Methods. In this animal experimental study, three harvesting methods, including manual instrument (chisel), rotary device and piezosurgery, were used for harvesting bone grafts from the lateral body of the mandible on the left and right sides of 10 rabbits. In each group, 20 bone samples were collected and their viability was assessed using MTS kit. Statistical analyses, including ANOVA and post hoc Tukey tests, were used for evaluating significant differences between the groups. Results. One-way ANOVA showed significant differences between all the groups (P=0.000). Data analysis using post hoc Tukey tests indicated that manual instrument and piezosurgery had no significant differences with regard to cell viability (P=0.749) and the cell viability in both groups was higher than that with the use of a rotary instrument (P=0.000). Conclusion. Autogenous bone grafts harvested with a manual instrument and piezosurgery had more viable cells in comparison to the bone chips harvested with a rotary device. PMID:28748046

  17. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xu [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Huang, Wenhai [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Zhang, Yadong, E-mail: zhangyadong6@126.com [Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120 (China); Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting [Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Pan, Haobo, E-mail: hb.pan@siat.ac.cn [Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Rahaman, Mohamed N., E-mail: rahaman@mst.edu [Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120 (China); Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States)

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8 ± 2 MPa to 31 ± 2 MPa) as the ratio of glass particles to chitosan solution increased (from 1.0 g ml{sup −1} to 2.5 g ml{sup −1}). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12 weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. - Highlights: • New class of injectable bone cement composed of bioactive borate glass particles and chitosan bonding phase was created. • The cement is biocompatible and bioactive, and has a much lower temperature increase during setting than PMMA cement. • The cement has a more controllable degradation rate and higher strength over a longer time than calcium sulfate cement. • The cement showed a better ability to heal bone defects than calcium sulfate over a twelve-week implantation period.

  18. Histologic Evaluation of Wound Healing After Ridge Preservation With Cortical, Cancellous, and Combined Cortico-Cancellous Freeze-Dried Bone Allograft: A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Demetter, Randy S; Calahan, Blaine G; Mealey, Brian L

    2017-09-01

    Cortical and cancellous mineralized freeze-dried bone allografts (FDBA) are available for use in alveolar ridge preservation after tooth extraction. There are currently no data regarding use of a combination 50%/50% cortico-cancellous FDBA compared with a 100% cortical or 100% cancellous FDBA in ridge preservation. The primary objective of this study is to dimensionally and histologically evaluate healing after ridge preservation in non-molar sites using 50%/50% cortico-cancellous FDBA versus 100% cortical and 100% cancellous FDBA. Sixty-six patients requiring extraction of a non-molar tooth were enrolled and randomized into three groups to receive ridge preservation with the following: 1) 100% cortical FDBA; 2) 100% cancellous FDBA; or 3) 50%/50% cortico-cancellous FDBA. After 18 to 20 weeks of healing, a biopsy was harvested, and an implant was placed. The alveolar ridge was measured pre- and postoperatively to evaluate change in ridge height and width. Percentages of vital bone, residual graft, and connective tissue (CT)/other were determined via histomorphometric analysis. Histomorphometric analysis revealed no significant differences among groups regarding percentage of vital bone or CT/other. The 100% cortical FDBA group had significantly greater residual graft material (P = 0.04). Dimensional analysis revealed no significant between-group differences in any parameter measured. To the best knowledge of the authors, this study offers the first histologic evidence demonstrating no significant difference in vital bone formation or dimensional changes among 50%/50% cortico-cancellous FDBA, 100% cortical FDBA, and 100% cancellous FDBA when used in ridge preservation of non-molar tooth sites.

  19. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo.

    Science.gov (United States)

    He, Shengwei; Zhao, Wenzhi; Zhang, Lu; Mi, Lidong; Du, Guangyu; Sun, Chuanxiu; Sun, Xuegang

    2017-01-01

    To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo . Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz) were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligan, and pre-collagen type 1 α were measured. Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligand, and pre-collagen type 1 α were also markedly higher following 25 and 50 Hz treatment. Low frequency (25-50 Hz) vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.

  20. Bioactive glass-ceramic bone repair associated or not with autogenous bone: a study of organic bone matrix organization in a rabbit critical-sized calvarial model.

    Science.gov (United States)

    Biguetti, Claudia Cristina; Cavalla, Franco; Tim, Carla Roberta; Saraiva, Patrícia Pinto; Orcini, Wilson; De Andrade Holgado, Leandro; Rennó, Ana Claudia Muniz; Matsumoto, Mariza Akemi

    2018-04-26

    The aim of the study was to analyze bone matrix (BMX) organization after bone grafting and repair using a new bioactive glass-ceramic (Biosilicate ® ) associated or not with particulate autogenous bone graft. Thirty rabbits underwent surgical bilateral parietal defects and divided into groups according to the materials used: (C) control-blood clot, (BG) particulate autogenous bone, (BS) bioactive glass-ceramic, and BG + BS. After 7, 14, and 30 days post-surgery, a fragment of each specimen was fixed in - 80 °C liquid nitrogen for zymographic evaluation, while the remaining was fixed in 10% formalin for histological birefringence analysis. The results of this study demonstrated that matrix organization in experimental groups was significantly improved compared to C considering collagenous organization. Zymographic analysis revealed pro-MMP-2, pro-MMP-9, and active (a)-MMP-2 in all groups, showing gradual decrease of total gelatinolytic activity during the periods. At day 7, BG presented more prominent gelatinolytic activity for pro-MMP-2 and 9 and a-MMP-2, when compared to the other groups. In addition, at day 7, a 53% activation ratio (active form/[active form + latent form]) was evident in C group, 33% in BS group, and 31% in BG group. In general, BS allowed the production of a BMX similar to BG, with organized collagen deposition and MMP-2 and MMP-9 disponibility, permitting satisfactory bone remodeling at the late period. The evaluation of new bone substitute, with favorable biological properties, opens the possibility for its use as a viable and efficient alternative to autologous bone graft.

  1. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Techion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Zaretzky, Asaph [The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096 Israel (Israel); Psakhie, Sergey G. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  2. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites.

    Science.gov (United States)

    Lu, Steven; Lam, Johnny; Trachtenberg, Jordan E; Lee, Esther J; Seyednejad, Hajar; van den Beucken, Jeroen J J P; Tabata, Yasuhiko; Kasper, F Kurtis; Scott, David W; Wong, Mark E; Jansen, John A; Mikos, Antonios G

    2015-12-01

    The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.

  3. Instrumental neutron-activation analysis applications in the age dynamics assessment of Ca, Cl, K, Mg. Mn, Na, P, and Sr contents in the human cortical bone

    International Nuclear Information System (INIS)

    Zaichick, V.

    2003-01-01

    Full text: Senile osteoporosis and particularly osteoporosis among postmenopausal women represents an urgent problem of modern medicine. One of the main osteoporosis symptoms is a decrease in both bone mineral density and subsequent bone strength. The upper extremity of the femur in humans is a particularly vulnerable section of the skeleton, being subject to fracture and necrosis and to destruction of its cartilage. Iliac crest biopsies are commonly taken clinically on patients. It is known that the control of the mineral component providing bone strength is a good indicator to detect bone diseases like osteoporosis. Despite this, changes of chemical element contents occurring with age in the femoral head and the iliac crest of female and male separately have been little studied, but in iliac cortical bone have not been studied at all. The effect of age and sex on chemical element contents in intact cortical bone of femoral neck and iliac crest of 81 relatively healthy 15-55 years old women (n=36) and men (n=45) was investigated. All subjects had died suddenly and bone samples were obtained at necropsy from the right side of bodies within twenty-four hours after death. A tool made of titanium and plastic was used to clear samples from soft tissues and blood and to cut cortical part of bone. The IAEA and NIST reference materials (H-5 animal bone and SRM1486 bone meal) were used to estimate the precision and accuracy of results. Contents of Ca, Cl, K, Mg> Mn, Na, P, and Sr in intact bone samples were determined by instrumental neutron activation analysis using short-lived radionuclides. Our means data for each element of reference materials were within the certified 95 % confidence interval, and indicate an acceptable accuracy of the obtained results. No age- and sex-related differences in the cortical femoral neck composition were detected. Mean values (M±S.E.M.) of Ca, Cl, K, Mg, Mn, Na, P, and Sr mass fractions (on dry weight basis) for female and male all

  4. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen

    International Nuclear Information System (INIS)

    Li Jingfeng; Lin Zhenyu; Zheng Qixin; Guo Xiaodong; Lan Shenghui; Liu Sunan; Yang Shuhua

    2010-01-01

    An ideal bone graft material is the one characterized with good biocompatibility, biodegradation, osteoconductivity and osteoinductivity. In this study, a novel synthetic BMP-2-related peptide (designated P24) corresponding to residues of the knuckle epitope of BMP-2 was introduced into a biomimetic scaffold based on sintered bovine bone or true bone ceramics (TBC) and type I collagen (TBC/collagen I) using a simulated body fluid (SBF). Hydroxylapatite crystal mineralization with a Ca/P molar ratio of 1.63 was observed on the surface of P24/TBC/collagen I composite by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Cell adhesion rate evaluation of bone marrow stromal cells (BMSCs) seeded on materials in vitro showed that the percentage of cells attached to P24/TBC/collagen I composite was significantly higher than that of the TBC/collagen I composite. A 10 mm unilateral segmental bone defect was created in the radius of New Zealand white rabbits and randomly implanted with three groups of biomaterials (Group A: P24/TBC/collagen I composite; Group B: TBC/collagen I composite and Group C: TBC alone). Based on radiographic evaluation and histological examination, the implants of P24/TBC/collagen I composite significantly stimulated bone growth, thereby confirming the enhanced rate of bone healing compared with that of TBC/collagen I composite and TBC alone. It was concluded that BMP-2-related peptide P24 could induce nucleation of calcium phosphate crystals on the surface of TBC/collagen I composite. The TBC/collagen I composite loaded with the synthetic BMP-2-related peptide is a promising scaffold biomaterial for bone tissue engineering.

  5. Bone regeneration after different lengths of exposure to laser irradiation. [Rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Strigina, L P

    1976-01-01

    Rabbits in which a portion of the tibia was excised and replaced with preserved bone were locally irradiated by an LG-75 laser (25 mv) for 30 seconds, 1, 2, 5, and 10 minutes a day for a month. Histological examination of sections showed an acceleration of the inflammatory reaction and more rapid maturation of periosteal callus in experimental animals compared to controls. Cartilage appeared on day 9 instead of 15. The proliferation of histiogenic cells and their differentiation into fibroblasts and osteoblasts were more vigorous than in the control. The effects of irradiation on osteosynthesis were directly dependent on the duration of exposure. The development of the inflammatory reaction and resorption of the graft were most pronounced in the animals exposed for 10 minutes daily.

  6. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  7. Fate of bone marrow mesenchymal stromal cells following autologous transplantation in a rabbit model of osteonecrosis.

    Science.gov (United States)

    Sugaya, Hisashi; Mishima, Hajime; Gao, Ran; Kaul, Sunil C; Wadhwa, Renu; Aoto, Katsuya; Li, Meihua; Yoshioka, Tomokazu; Ogawa, Takeshi; Ochiai, Naoyuki; Yamazaki, Masashi

    2016-02-01

    Internalizing quantum dots (i-QDs) are a useful tool for tracking cells in vivo in models of tissue regeneration. We previously synthesized i-QDs by conjugating QDs with a unique internalizing antibody against a heat shock protein 70 family stress chaperone. In the present study, i-QDs were used to label rabbit mesenchymal stromal cells (MSCs) that were then transplanted into rabbits to assess differentiation potential in an osteonecrosis model. The i-QDs were taken up by bone marrow-derived MSCs collected from the iliac of 12-week-old Japanese white rabbits that were positive for cluster of differentiation (CD)81 and negative for CD34 and human leukocyte antigen DR. The average rate of i-QD internalization was 93.3%. At 4, 8, 12, and 24 weeks after transplantation, tissue repair was evaluated histologically and by epifluorescence and electron microscopy. The i-QDs were detected at the margins of the drill holes and in the necrotized bone trabecular. There was significant colocalization of the i-QD signal in transplanted cells and markers of osteoblast and mineralization at 4, 8, and 12 weeks post-transplantation, while i-QDs were detected in areas of mineralization at 12 and 24 weeks post-transplantation. Moreover, i-QDs were observed in osteoblasts in regenerated tissue by electron microscopy, demonstrating that the tissue was derived from transplanted cells. These results indicate that transplanted MSCs can differentiate into osteoblasts and induce tissue repair in an osteonecrosis model and can be tracked over the long term by i-QD labeling. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Establishment of a new model for culturing rabbit osteoblasts in vitro

    International Nuclear Information System (INIS)

    Cao Xianying; Yin Meizhen; Zhang Lina; Li Shipu; Cao Yang

    2006-01-01

    To establish an experimental model for culturing rabbit osteoblasts in vitro, the osteoblasts were isolated from the calvarial bone of a 15-day old rabbit using a method of culturing the bone pieces in a medium after they had been digested by an enzyme for 15 min. The acquired cells were assayed by cell morphology, alkaline phosphatase activity and production of a mineralized matrix. The results showed that the cells had the morphologic characteristics and some biological behaviours of osteoblasts. Based on the primary isolation of osteoblasts from bone and combining digestion with explants, a novel model for culturing rabbit osteoblasts in vitro was established, which is easy, efficient and effective. This model can be used in many studies of osteogenesis mechanisms and bone replacement materials. (communication)

  9. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone.

    Science.gov (United States)

    Acevedo, Claire; Bale, Hrishikesh; Gludovatz, Bernd; Wat, Amy; Tang, Simon Y; Wang, Mingyue; Busse, Björn; Zimmermann, Elizabeth A; Schaible, Eric; Allen, Matthew R; Burr, David B; Ritchie, Robert O

    2015-12-01

    Bisphosphonates are widely used to treat osteoporosis, but have been associated with atypical femoral fractures (AFFs) in the long term, which raises a critical health problem for the aging population. Several clinical studies have suggested that the occurrence of AFFs may be related to the bisphosphonate-induced changes of bone turnover, but large discrepancies in the results of these studies indicate that the salient mechanisms responsible for any loss in fracture resistance are still unclear. Here the role of bisphosphonates is examined in terms of the potential deterioration in fracture resistance resulting from both intrinsic (plasticity) and extrinsic (shielding) toughening mechanisms, which operate over a wide range of length-scales. Specifically, we compare the mechanical properties of two groups of humeri from healthy beagles, one control group comprising eight females (oral doses of saline vehicle, 1 mL/kg/day, 3 years) and one treated group comprising nine females (oral doses of alendronate used to treat osteoporosis, 0.2mg/kg/day, 3 years). Our data demonstrate treatment-specific reorganization of bone tissue identified at multiple length-scales mainly through advanced synchrotron x-ray experiments. We confirm that bisphosphonate treatments can increase non-enzymatic collagen cross-linking at molecular scales, which critically restricts plasticity associated with fibrillar sliding, and hence intrinsic toughening, at nanoscales. We also observe changes in the intracortical architecture of treated bone at microscales, with partial filling of the Haversian canals and reduction of osteon number. We hypothesize that the reduced plasticity associated with BP treatments may induce an increase in microcrack accumulation and growth under cyclic daily loadings, and potentially increase the susceptibility of cortical bone to atypical (fatigue-like) fractures. Published by Elsevier Inc.

  10. MicroCT analysis of calcium/phosphorus ratio maps at different bone sites

    International Nuclear Information System (INIS)

    Speller, R.; Pani, S.; Tzaphlidou, M.; Horrocks, J.

    2005-01-01

    The Ca/P ratio was measured in cortical bone samples from the femoral neck, front and rear tibia of rats, rabbits and lambs using synchrotron microCT. Use of a monoenergetic X-ray beam, as provided by the synchrotron facility, generates accurate 3-D maps of the linear attenuation coefficient within the sample and hence gives the ability to map different chemical components. Data were taken at 20keV for each bone sample and calibration phantoms. From the 3-D data sets, multiple 2-D slices were reconstructed with a slice thickness of ∼28μm and converted to Ca/P ratios using the calibration phantom results. Average values for each animal and bone site were estimated. Differences between the same bone sites from different animals are not significant (0.3 -3 ) demonstrating a dependence upon lifestyle and bone use. The spatial distribution of Ca/P was found to be non-uniform for some bones and some animals possibly indicating the structural mechanism for obtaining bone strength

  11. An investigation of the mineral in ductile and brittle cortical mouse bone.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  12. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference

    International Nuclear Information System (INIS)

    Karlo, Christoph A.; Patcas, Raphael; Signorelli, Luca; Mueller, Lukas; Kau, Thomas; Watzal, Helmut; Kellenberger, Christian J.; Ullrich, Oliver; Luder, Hans-Ulrich

    2012-01-01

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. (orig.)

  13. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference

    Energy Technology Data Exchange (ETDEWEB)

    Karlo, Christoph A. [University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Patcas, Raphael; Signorelli, Luca; Mueller, Lukas [University of Zurich, Clinic for Orthodontics and Pediatric Dentistry, Center of Dental Medicine, Zurich (Switzerland); Kau, Thomas; Watzal, Helmut; Kellenberger, Christian J. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Ullrich, Oliver [University of Zurich, Institute of Anatomy, Faculty of Medicine, Zurich (Switzerland); Luder, Hans-Ulrich [University of Zurich, Section of Orofacial Structures and Development, Center of Dental Medicine, Zurich (Switzerland)

    2012-07-15

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective ({kappa} = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. (orig.)

  14. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    International Nuclear Information System (INIS)

    Hu, Lingzhi; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr.

    2014-01-01

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2 ∗ = 1/T2 ∗ , was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2 ∗ of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2 ∗ of human skull was measured as 0.2–0.3 ms −1 depending on the specific region, which is more than ten times greater than the R2 ∗ of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone

  15. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

    Directory of Open Access Journals (Sweden)

    Shengwei He

    2017-01-01

    Full Text Available Objective(s:To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligan, and pre-collagen type 1 a were measured. Results:Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligand, and pre-collagen type 1 a were also markedly higher following 25 and 50 Hz treatment. Conclusion:Low frequency (25–50 Hz vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.

  16. In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J., E-mail: jianboc@gmail.com [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Bly, R.A. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Saad, M.M.; AlKhodary, M.A.; El-Backly, R.M. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Cohen, D.J.; Kattamis, N. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Fatta, M.M.; Moore, W.A. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Arnold, C.B. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Marei, M.K. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Soboyejo, W.O. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2011-07-20

    Titanium surfaces were designed, produced, and evaluated for levels of osseointegration into the femurs of rabbits. A total of 36 Ti-6Al-4V pins (15 mm length, 1.64 mm diameter) were prepared into three experimental groups. These were designed to test the effects of osseointegration on laser grooved, RGD coated, and polished control surfaces, as well as combined effects. Circumferential laser grooves were introduced onto pin surfaces (40 {mu}m spacing) using a UV laser ({lambda} = 355 nm). The tripeptide sequence, Arginine-Glycine-Aspartic acid (RGD), was functionalized onto laser grooved surfaces. Of the prepared samples, surface morphology and chemistry were analyzed using scanning electron microscopy (SEM) and Immunoflourescence (IF) spectroscopy, respectively. The experimental pin surfaces were surgically implanted into rabbit femurs. The samples were then harvested and evaluated histologically. Sections of the sample were preserved in a methylmethacralate mold, sliced via a hard microtome, and polished systematically. In the case of the RGD coated and laser grooved surfaces, histological results showed accelerated bone growth into the implant, pull-out tests were also used to compare the adhesion between bone and the titanium pins with/without laser textures and/or RGD coatings. - Research highlights: {yields} Circumferential laser grooves were introduced onto pin surfaces using a UV laser. {yields} The tripeptide sequence, RGD, was functionalized onto laser grooved surfaces. {yields} The experimental pin surfaces were surgically implanted into rabbit femurs. {yields} RGD coated laser groove surfaces accelerated bone growth into the implant. {yields} RGD coated laser grooved surfaces enhanced the adhesion between the bone and implant.

  17. In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs

    International Nuclear Information System (INIS)

    Chen, J.; Bly, R.A.; Saad, M.M.; AlKhodary, M.A.; El-Backly, R.M.; Cohen, D.J.; Kattamis, N.; Fatta, M.M.; Moore, W.A.; Arnold, C.B.; Marei, M.K.; Soboyejo, W.O.

    2011-01-01

    Titanium surfaces were designed, produced, and evaluated for levels of osseointegration into the femurs of rabbits. A total of 36 Ti-6Al-4V pins (15 mm length, 1.64 mm diameter) were prepared into three experimental groups. These were designed to test the effects of osseointegration on laser grooved, RGD coated, and polished control surfaces, as well as combined effects. Circumferential laser grooves were introduced onto pin surfaces (40 μm spacing) using a UV laser (λ = 355 nm). The tripeptide sequence, Arginine-Glycine-Aspartic acid (RGD), was functionalized onto laser grooved surfaces. Of the prepared samples, surface morphology and chemistry were analyzed using scanning electron microscopy (SEM) and Immunoflourescence (IF) spectroscopy, respectively. The experimental pin surfaces were surgically implanted into rabbit femurs. The samples were then harvested and evaluated histologically. Sections of the sample were preserved in a methylmethacralate mold, sliced via a hard microtome, and polished systematically. In the case of the RGD coated and laser grooved surfaces, histological results showed accelerated bone growth into the implant, pull-out tests were also used to compare the adhesion between bone and the titanium pins with/without laser textures and/or RGD coatings. - Research highlights: → Circumferential laser grooves were introduced onto pin surfaces using a UV laser. → The tripeptide sequence, RGD, was functionalized onto laser grooved surfaces. → The experimental pin surfaces were surgically implanted into rabbit femurs. → RGD coated laser groove surfaces accelerated bone growth into the implant. → RGD coated laser grooved surfaces enhanced the adhesion between the bone and implant.

  18. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-12-15

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  19. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    International Nuclear Information System (INIS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-01-01

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  20. Structural and ultrastructural analyses of bone regeneration in rabbit cranial osteotomy: Piezosurgery versus traditional osteotomes.

    Science.gov (United States)

    Anesi, Alexandre; Ferretti, Marzia; Cavani, Francesco; Salvatori, Roberta; Bianchi, Michele; Russo, Alessandro; Chiarini, Luigi; Palumbo, Carla

    2018-01-01

    Clinical advantages of piezosurgery have been already proved. However, few investigations have focused on the dynamics of bone healing. The aim of this study was to evaluate, in adult rabbits, bone regeneration after cranial linear osteotomies with two piezoelectrical devices (Piezosurgery ® Medical - PM and Piezosurgery ® Plus - PP), comparing them with conventional rotary osteotomes (RO). PP was characterized by an output power three times higher than PM. Fifteen days after surgery, histomorphometric analyses showed that the osteotomy gap produced with PM and PP was about half the size of that produced by RO, and in a more advanced stage of recovery. Values of regenerated bone area with respect to the total osteotomy area were about double in PM and PP samples compared with RO ones, while the number of TRAP-positive (tartrate-resistant acid phosphatase positive) osteoclasts per linear surface showed a significant increase, suggesting greater bone remodelling. Under scanning electron microscopy, regenerated bone displayed higher cell density and less mineralized matrix compared with pre-existent bone for all devices used. Nanoindentation tests showed no changes in elastic modulus. In conclusion, PM/PP osteotomies can be considered equivalent to each other, and result in more rapid healing compared with those using RO. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. The Role of Water Compartments in the Material Properties of Cortical Bone.

    Science.gov (United States)

    Granke, Mathilde; Does, Mark D; Nyman, Jeffry S

    2015-09-01

    Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water-residing in the vascular-lacunar-canalicular space-primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using (1)H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.

  2. Evaluation of Three Bone Substitute Materials in the Treatment of Experimentally Induced Defects in Rabbit Calvaria

    Directory of Open Access Journals (Sweden)

    M. Paknejad

    2007-12-01

    Full Text Available Objective: The aim of present study was to evaluate the quality, density and thickness of newly formed bone in experimental defects treated with Combi-Pack®, Bio-Oss® and Biostite®.Materials and Methods: Eight New Zealand white rabbits were included in this randomized,blinded study. Four equal 3×6 mm bone defects were created on the frontal and parietal bones of each animal and three were immediately grafted with Bio-Oss®, Combi-Pack® and Biostite® while one was left untreated, serving as negative control. Histologic and histomorphometric analysis was performed four weeks after surgery.Results: Histomorphometric bone area and trabecular maturity was significantly higher in the Bio-Oss® and Combi-Pack® samples as compared to the Biostite® and control cases.The amount of remaining biomaterial was almost equal in the three experimental groups at the end of the study period. Neither foreign body reaction nor severe inflammation was seen in any of the specimens except for the Biostite® samples.Conclusion: It may be suggested that implantation of Bio-Oss® particles and Combi-Pack® blocks can promote bone regeneration more effectively than Biostite®.

  3. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    Science.gov (United States)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  4. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun; Liu Guangpeng; Zhang Peng; Hou Hongliang; Tang Tingting

    2011-01-01

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  5. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation.

    Science.gov (United States)

    Oryan, A; Meimandi Parizi, A; Shafiei-Sarvestani, Z; Bigham, A S

    2012-12-01

    Hydroxyapatite is an osteoconductive material used as a bone graft extender and exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic hydroxyapatite has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. On the other hand, human platelet rich plasma (hPRP) has been used as a source of osteoinductive factor. A combination of hPRP and hydroxyapatite is expected to create a composite with both osteoconductive and osteoinductive properties. This study examined the effect of a combination of hydroxyapatite and hPRP on osteogenesis in vivo, using rabbit model bone healing. A critical size defect of 10 mm long was created in the radial diaphysis of 36 rabbit and either supplied with hydroxyapatite-human PRP or hydroxyapatite or was left empty (control group). Radiographs of each forelimb were taken postoperatively on 1st day and then at the 2nd, 4th, 6th and 8th weeks post injury to evaluate bone formation, union and remodeling of the defect. The operated radiuses of half of the animals in each group were removed on 56th postoperative day and were grossly and histopathologically evaluated. In addition, biomechanical test was conducted on the operated and normal forearms of the other half of the animals of each group. This study demonstrated that hydroxyapatite-humanPRP, could promote bone regeneration in critical size defects with a high regenerative capacity. The results of the present study demonstrated that hydroxyapatite-hPRP could be an attractive alternative for reconstruction of the major diaphyseal defects of the long bones in animal models.

  6. Evaluation of Qualitative Indices of Meat Production in Rabbits

    Directory of Open Access Journals (Sweden)

    Tatiana Dabija

    2011-10-01

    Full Text Available Meat, in most cases, is a basic production in rabbits. The influence on meat quality and quantity have such factors as breed, age, slaughter gain, sex, etc. By age, adult rabbits have a higher body weight compared with the young, but their meat is more expensive. The most convenient is intensive growth of youth as the age of 3 months to be 2.3 to 2.5 kg body weight, food and labor costs during this period was minimal. It is considered optimal as young rabbits are slaughtered when they reach 50-60% by weight of adult animals. The biological material which was used was represented in two groups of Chinchilla rabbit and Flanders breed, each one consisting of seven rabbits of various sex. Groups of rabbits had the same conditions of maintenance and nutrition. Carcass weight was determined at slaughter, carcass meat, bones, by-products, blood, head, skin of young rabbit. The largest share of the carcass of live weight was obtained at age 4 months - 59%, and meat in the carcass weight at 2 months of life - 71.2% at Chinchilla breed. On average 31.9% had bones, by-products - 6.23%, blood - 3.78% head - 8.21% and skin of young rabbit - 11.9%. Average of carcass weight from live weight was 52.76%, in Flanders breed the highest recorded at age 4 months and 66.78% of the carcass meat, the highest being at 2 months old. The average weight of bones was 33.21%, by-products - 6.25%, blood - 3.53%, the head - 7.86%, and the skin of young rabbit - 11.89%. Slaughter gain ranged from 47% to 59% at Chinchilla breed, and from 47% to 60% in Flanders breed. The highest index was recorded in both breeds at the age of four months.

  7. Histomorphometry and cortical robusticity of the adult human femur.

    Science.gov (United States)

    Miszkiewicz, Justyna Jolanta; Mahoney, Patrick

    2018-01-13

    Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.

  8. The micro-damage process zone during transverse cortical bone fracture: No ears at crack growth initiation.

    Science.gov (United States)

    Willett, Thomas; Josey, David; Lu, Rick Xing Ze; Minhas, Gagan; Montesano, John

    2017-10-01

    Apply high-resolution benchtop micro-computed tomography (micro-CT) to gain greater understanding and knowledge of the formation of the micro-damage process zone formed during traverse fracture of cortical bone. Bovine cortical bone was cut into single edge notch (bending) fracture testing specimens with the crack on the transverse plane and oriented to grow in the circumferential direction. We used a multi-specimen technique and deformed the specimens to various individual secant modulus loss levels (P-values) up to and including maximum load (Pmax). Next, the specimens were infiltrated with a BaSO 4 precipitation stain and scanned at 3.57-μm isotropic voxel size using a benchtop high resolution-micro-CT. Measurements of the micro-damage process zone volume, width and height were made. These were compared with the simple Irwin's process zone model and with finite element models. Electron and confocal microscopy confirmed the formation of BaSO 4 precipitate in micro-cracks and other porosity, and an interesting novel mechanism similar to tunneling. Measurable micro-damage was detected at low P values and the volume of the process zone increased according to a second order polynomial trend. Both width and height grew linearly up to Pmax, at which point the process zone cross-section (perpendicular to the plane of the crack) was almost circular on average with a radius of approximately 550µm (approximately one quarter of the unbroken ligament thickness) and corresponding to the shape expected for a biological composite under plane stress conditions. This study reports details of the micro-damage fracture process zone previously unreported for cortical bone. High-resolution micro-CT enables 3D visualization and measurement of the process zone and confirmation that the crack front edge and process zone are affected by microstructure. It is clear that the process zone for the specimens studied grows to be meaningfully large, confirming the need for the J

  9. Comparison of recombinant human bone morphogenetic protein-2-infused absorbable collagen sponge, recombinant human bone morphogenetic protein-2-coated tricalcium phosphate, and platelet-rich fibrin-mixed tricalcium phosphate for sinus augmentation in rabbits

    Directory of Open Access Journals (Sweden)

    Chul-Hun Kim

    2017-09-01

    Conclusion: Our histological evaluation demonstrates that Type I ACS can be used as a carrier of rhBMP-2, and rhBMP-2+ACS showed rapid bone formation, remodeling, and calcification at Week 2 in rabbit.

  10. Seaweed flour (“Lithothamnium calcareum”) as a mineral supplement in the bone healing of a cortical autograft in dogs Farinha de algas marinhas (“Lithothamnium calcareum”) como suplemento mineral na cicatrização óssea de autoenxerto cortical em cães

    OpenAIRE

    Emanoel Ferreira Martins Filho; Marcelo Weinstein Teixeira; Glauber Sergio Jacinto-Aragão; Alessandra Estrela Lima; Marcelo Jorge Cavalcanti de Sá; Raquel Graça Teixeira; João Moreira Costa Neto; Julia Morena de Miranda Leão Toríbio; Adílio Santos de Azevedo

    2010-01-01

    The influence of the seaweed flour (Lithothamnium calcareum) was evaluated as a mineral supplement in during healing of bone failure reconstructed with a cortical autograft. Ten adult male mongrel dogs, weighing between 10 and 15kg, were used. The graft made of a cilinder block of the cortical bone was obtained by the ulna proximal diaphysis by ostectomy with a trephine of eight millimeters. In the same way, it was created a bone failure located in the middle-skull region of the proximal diap...

  11. The influence of water removal on the strength and toughness of cortical bone

    OpenAIRE

    Nyman, Jeffry S.; Roy, Anuradha; Shen, Xinmei; Acuna, Rae L.; Tyler, Jerrod H.; Wang, Xiaodu

    2006-01-01

    Although the effects of dehydration on the mechanical behavior of cortical bone are known, the underlying mechanisms for such effects are not clear. We hypothesize that the interactions of water with the collagen and mineral phases each have a unique influence on mechanical behavior. To study this, strength, toughness, and stiffness were measured with three-point bend specimens made from the mid-diaphysis of human cadaveric femurs and divided into six test groups: control (hydrated), drying i...

  12. Benefits of mineralized bone cortical allograft for immediate implant placement in extraction sites: an in vivo study in dogs.

    Science.gov (United States)

    Orti, Valérie; Bousquet, Philippe; Tramini, Paul; Gaitan, Cesar; Mertens, Brenda; Cuisinier, Frédéric

    2016-10-01

    The aim of the present study was to evaluate the effectiveness of using a mineralized bone cortical allograft (MBCA), with or without a resorbable collagenous membrane derived from bovine pericardium, on alveolar bone remodeling after immediate implant placement in a dog model. Six mongrel dogs were included. The test and control sites were randomly selected. Four biradicular premolars were extracted from the mandible. In control sites, implants without an allograft or membrane were placed immediately in the fresh extraction sockets. In the test sites, an MBCA was placed to fill the gap between the bone socket wall and implant, with or without a resorbable collagenous membrane. Specimens were collected after 1 and 3 months. The amount of residual particles and new bone quality were evaluated by histomorphometry. Few residual graft particles were observed to be closely embedded in the new bone without any contact with the implant surface. The allograft combined with a resorbable collagen membrane limited the resorption of the buccal wall in height and width. The histological quality of the new bone was equivalent to that of the original bone. The MBCA improved the quality of new bone formation, with few residual particles observed at 3 months. The preliminary results of this animal study indicate a real benefit in obtaining new bone as well as in enhancing osseointegration due to the high resorbability of cortical allograft particles, in comparison to the results of xenografts or other biomaterials (mineralized or demineralized cancellous allografts) that have been presented in the literature. Furthermore, the use of an MBCA combined with a collagen membrane in extraction and immediate implant placement limited the extent of post-extraction resorption.

  13. Repair of bone defect by nano-modified white mineral trioxide aggregates in rabbit: A histopathological study.

    Science.gov (United States)

    Saghiri, Mohammad-Ali; Orangi, Jafar; Tanideh, Nader; Asatourian, Armen; Janghorban, Kamal; Garcia-Godoy, Franklin; Sheibani, Nader

    2015-09-01

    Many researchers have tried to enhance materials functions in different aspects of science using nano-modification method, and in many cases the results have been encouraging. To evaluate the histopathological responses of the micro-/nano-size cement-type biomaterials derived from calcium silicate-based composition with addition of nano tricalcium aluminate (3CaO.Al2O3) on bone healing response. Ninety mature male rabbits were anesthetized and a bone defect was created in the right mandible. The rabbits were divided into three groups, which were in turn subdivided into five subgroups with six animals each based on the defect filled by: white mineral trioxide aggregate (WMTA), Nano-WMTA, WMTA without 3CaO.Al2O3, Nano-WMTA with 2% Nano-3CaO.Al2O3, and empty as control. Twenty, forty and sixty days postoperatively the animals were sacrificed and the right mandibles were removed for histopathological evaluations. Kruskal-Wallis test with post-hoc comparisons based on the LSMeans procedure was used for data analysis. All the experimental materials provoked a moderate to severe inflammatory reaction, which significantly differed from the control group (pbone formation and bone regeneration data showed significant differences between groups at 40- and 60- day intervals in all groups. Absence of 3CaO.Al2O3 leads to more inflammation and foreign body reaction than other groups in all time intervals. Both powder nano-modification and addition of 2% Nano-3CaO.Al2O3 to calcium silicate-based cement enhanced the favorable tissue response and osteogenesis properties of WMTA based materials.

  14. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Reconstruction of irradiated bone segmental defects with a biomaterial associating MBCP+(R), microstructured collagen membrane and total bone marrow grafting: an experimental study in rabbits.

    Science.gov (United States)

    Jégoux, Franck; Goyenvalle, Eric; Cognet, Ronan; Malard, Olivier; Moreau, Francoise; Daculsi, Guy; Aguado, Eric

    2009-12-15

    The bone tissue engineering models used today are still a long way from any oncologic application as immediate postimplantation irradiation would decrease their osteoinductive potential. The aim of this study was to reconstruct a segmental critical size defect in a weight-bearing bone irradiated after implantation. Six white New Zealand rabbits were immediately implanted with a biomaterial associating resorbable collagen membrane EZ(R) filled and micro-macroporous biphasic calcium phosphate granules (MBCP+(R)). After a daily schedule of radiation delivery, and within 4 weeks, a total autologous bone marrow (BM) graft was injected percutaneously into the center of the implant. All the animals were sacrificed at 16 weeks. Successful osseous colonization was found to have bridged the entire length of the defects. Identical distribution of bone ingrowth and residual ceramics at the different levels of the implant suggests that the BM graft plays an osteoinductive role in the center of the defect. Periosteum-like formation was observed at the periphery, with the collagen membrane most likely playing a role. This model succeeded in bridging a large segmental defect in weight-bearing bone with immediate postimplantation fractionated radiation delivery. This has significant implications for the bone tissue engineering approach to patients with cancer-related bone defects.

  16. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    El Backly, Rania M. [DIMES, University of Genova, Genova (Italy); IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy); Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Chiapale, Danilo [IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy); Muraglia, Anita [Biorigen S.R.L., Genova (Italy); Tromba, Giuliana [Sincrotrone Trieste S.C.P.A., Trieste (Italy); Ottonello, Chiara [Biorigen S.R.L., Genova (Italy); Santolini, Federico [IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy); Cancedda, Ranieri; Mastrogiacomo, Maddalena, E-mail: maddalena.mastrogiacomo@unige.it [DIMES, University of Genova, Genova (Italy); IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy)

    2015-01-06

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX{sup ®}) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX{sup ®}) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.

  17. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    International Nuclear Information System (INIS)

    El Backly, Rania M.; Chiapale, Danilo; Muraglia, Anita; Tromba, Giuliana; Ottonello, Chiara; Santolini, Federico; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2015-01-01

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX ® ) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX ® ) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.

  18. MicroCT analysis of calcium/phosphorus ratio maps at different bone sites

    Energy Technology Data Exchange (ETDEWEB)

    Speller, R. [Medical Physics and Bioengineering Department, UCL, London, WC1E 6BT (United Kingdom)]. E-mail: rspeller@medphys.ucl.ac.uk; Pani, S. [Department of Physics, University of Trieste (Italy); Tzaphlidou, M. [Lab Medical Physics, Medical School, University of Ioannina, 45110 Ioannina (Greece); Horrocks, J. [Clinical Physics Group, St Bartholomew' s Hospital, London, EC1A 6BT (United Kingdom)

    2005-08-11

    The Ca/P ratio was measured in cortical bone samples from the femoral neck, front and rear tibia of rats, rabbits and lambs using synchrotron microCT. Use of a monoenergetic X-ray beam, as provided by the synchrotron facility, generates accurate 3-D maps of the linear attenuation coefficient within the sample and hence gives the ability to map different chemical components. Data were taken at 20keV for each bone sample and calibration phantoms. From the 3-D data sets, multiple 2-D slices were reconstructed with a slice thickness of {approx}28{mu}m and converted to Ca/P ratios using the calibration phantom results. Average values for each animal and bone site were estimated. Differences between the same bone sites from different animals are not significant (0.3bone sites and different animals are highly significant (p<10{sup -3}) demonstrating a dependence upon lifestyle and bone use. The spatial distribution of Ca/P was found to be non-uniform for some bones and some animals possibly indicating the structural mechanism for obtaining bone strength.

  19. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

    2010-01-10

    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  20. Experimental and finite element analysis of tibial stress fractures using a rabbit model.

    Science.gov (United States)

    Franklyn, Melanie; Field, Bruce

    2013-01-01

    To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture (TSF) development. Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element (FE) model was developed using cross-sectional computer tomography (CT) images scanned from one of the rabbit bones, and a static load of 6 kg (1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation. The experimental tests showed that under a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis. Up to 30 kg, the bone does not fail by elastic buckling; however, there are low levels of tensile stress which predominately occur at and adjacent to the anterior border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cyclic loading initially fails in tension. The FE model predictions were consistent with both mechanics theory and the strain gauge results. The model was highly sensitive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit's tibia. The modelling technique used in the current study could have applications in the development of

  1. Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects.

    Science.gov (United States)

    Woda, Craig B; Miyawaki, Nobuyuki; Ramalakshmi, Santhanam; Ramkumar, Mohan; Rojas, Raul; Zavilowitz, Beth; Kleyman, Thomas R; Satlin, Lisa M

    2003-10-01

    High urinary flow rates stimulate K secretion in the fully differentiated but not neonatal or weanling rabbit cortical collecting duct (CCD). Both small-conductance secretory K and high-conductance Ca2+/stretch-activated maxi-K channels have been identified in the apical membrane of the mature CCD by patch-clamp analysis. We reported that flow-stimulated net K secretion in the adult rabbit CCD is 1) blocked by TEA and charybdotoxin, inhibitors of intermediate- and high-conductance (maxi-K) Ca2+-activated K channels, and 2) associated with increases in net Na absorption and intracellular Ca2+ concentration ([Ca2+]i). The present study examined whether the absence of flow-stimulated K secretion early in life is due to a 1) limited flow-induced rise in net Na absorption and/or [Ca2+]i and/or 2) paucity of apical maxi-K channels. An approximately sixfold increase in tubular fluid flow rate in CCDs isolated from 4-wk-old rabbits and microperfused in vitro led to an increase in net Na absorption and [Ca2+]i, similar in magnitude to the response observed in 6-wk-old tubules, but it failed to generate an increase in net K secretion. By 5 wk of age, there was a small, but significant, flow-stimulated rise in net K secretion that increased further by 6 wk of life. Luminal perfusion with iberiotoxin blocked the flow stimulation of net K secretion in the adult CCD, confirming the identity of the maxi-K channel in this response. Maxi-K channel alpha-subunit message was consistently detected in single CCDs from animals >/=4 wk of age by RT-PCR. Indirect immunofluorescence microscopy using antibodies directed against the alpha-subunit revealed apical labeling of intercalated cells in cryosections from animals >/=5 wk of age; principal cell labeling was generally intracellular and punctate. We speculate that the postnatal appearance of flow-dependent K secretion is determined by the transcriptional/translational regulation of expression of maxi-K channels. Furthermore, our studies

  2. Cyclosporine-a and bone density around titanium implants: a histometric study in rabbits

    Directory of Open Access Journals (Sweden)

    Celso Eduardo Sakakura

    2011-06-01

    Full Text Available Aim: Cyclosporine A (CsA is an immunosuppressive agent commonly used to prevent organ transplantation rejection. It has been demonstrated that CsA may negatively affect osseointegration around dental implants. Therefore, the aim of this study was to evaluate the effect of CsA administration on bone density around titanium dental implants. Materials and Methods: Fourteen New Zealand rabbits were randomly divided into 2 groups with seven animals each. The test group (CsA received daily subcutaneous injection of CsA (10mg/kg body weight and the control group (CTL received saline solution by the same route of administration. Three days after the beginning of immunosuppressive therapy, one machined dental implant (7.00 mm in lenght and 3.75 mm in diameter was inserted bilaterally at the region of the tibial methaphysis. After 4 and 8 weeks the animals were sacrificed and the histometrical procedures were performed to analyse the bone density around the first four threads of the coronal part of the implant. Results: A significant increase in the bone density was observed from the 4- to the 8 week-period in the control group (37.41% + 14.85 versus 58.23% + 16.38 – p < 0.01. In contrast, bone density consistently decreased in the test group overtime (46.31% + 17.38 versus 16.28 + 5.08 – p <0.05. In the 8-week period, there was a significant difference in bone density between the control and the test groups (58.23 + 16.38 eand16.28 + 5.08 – p= 0.001. Conclusion: Within the limits of this study, long-term CsA administration may reduce bone density around titanium dental implants during the osseointegration process.

  3. Effects of age and loading rate on equine cortical bone failure.

    Science.gov (United States)

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Magnetic resonance imaging of trabecular and cortical bone in mice: comparison of high resolution in vivo and ex vivo MR images with corresponding histology

    International Nuclear Information System (INIS)

    Weber, Michael H.; Sharp, Jonathan C.; Latta, Peter; Sramek, Milos; Hassard, H. Thomas; Orr, F. William

    2005-01-01

    Measurements of bone morphometry and remodeling have been shown to reflect bone strength and can be used to diagnose degenerative bone disease. In this study, in vivo and ex vivo magnetic resonance imaging (MRI) techniques to assess trabecular and cortical bone properties have been compared to each other and to histology as a novel means for the quantification of bone. Femurs of C57Bl/6 mice were examined both in vivo and ex vivo on an 11.7 T MRI scanner, followed by histologic processing and morphometry. A thresholding analysis technique was applied to the MRI images to generate contour lines and to delineate the boundaries between bone and marrow. Using MRI, an optimal correlation with histology was obtained with an in vivo longitudinal sectioned short echo time gradient-echo versus an in vivo long echo time spin-echo sequence or an ex vivo pulse sequence. Gradient-echo images were acquired with a maximum in-plane resolution of 35 μm. Our results demonstrated that in both the in vivo and ex vivo data sets, the percent area of marrow increases and percent area of trabecular bone and cortical bone thickness decreases moving from the epiphyseal growth plate to the diaphysis. These changes, observed with MRI, correlate with the histological data. Investigations using in vivo MRI gradient-echo sequences consistently gave the best correlation with histology. Our quantitative evaluation using both ex vivo and in vivo MRI was found to be an effective means to visualize non-invasively the normal variation in trabecular and cortical bone as compared to a histological 'gold standard' The experiments validated in vivo MRI as a potential high resolution technique for investigating both soft tissue, such as marrow, and bone without radiation exposure

  5. A resorbable antibiotic-eluting polymer composite bone void filler for perioperative infection prevention in a rabbit radial defect model.

    Directory of Open Access Journals (Sweden)

    Benjamin D Brooks

    Full Text Available Nearly 1.3 million total joint replacement procedures are performed in the United States annually, with numbers projected to rise exponentially in the coming decades. Although finite infection rates for these procedures remain consistently low, device-related infections represent a significant cause of implant failure, requiring secondary or revision procedures. Revision procedures manifest several-fold higher infection recurrence rates. Importantly, many revision surgeries, infected or not, require bone void fillers to support the host bone and provide a sufficient tissue bed for new hardware placement. Antibiotic-eluting bone void fillers (ABVF, providing both osteoconductive and antimicrobial properties, represent one approach for reducing rates of orthopedic device-related infections. Using a solvent-free, molten-cast process, a polymer-controlled antibiotic-eluting calcium carbonate hydroxyapatite (HAP ceramic composite BVF (ABVF was fabricated, characterized, and evaluated in vivo using a bacterial challenge in a rabbit radial defect window model. ABVF loaded with tobramycin eliminated the infectious burden in rabbits challenged with a clinically relevant strain of Staphylococcus aureus (inoculum as high as 10⁷ CFU. Histological, microbiological, and radiographic methods were used to detail the effects of ABVF on microbial challenge to host bone after 8 weeks in vivo. In contrast to the HAP/BVF controls, which provided no antibiotic protection and required euthanasia 3 weeks post-operatively, tobramycin-releasing ABVF animals showed no signs of infection (clinical, microbiological, or radiographic when euthanized at the 8-week study endpoint. ABVF sites did exhibit fibrous encapsulation around the implant at 8 weeks. Local antibiotic release from ABVF to orthopedic sites requiring bone void fillers eliminated the periprosthetic bacterial challenge in this 8-week in vivo study, confirming previous in vitro results.

  6. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Naoya, E-mail: tani110@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Fujibayashi, Shunsuke, E-mail: shfuji@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Takemoto, Mitsuru, E-mail: m.take@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Sasaki, Kiyoyuki, E-mail: kiy-sasaki@spcom.co.jp [Sagawa Printing Co., Ltd., 5-3, Inui, Morimoto-Cho, Mukou-Shi, Kyoto 617-8588 (Japan); Otsuki, Bungo, E-mail: bungo@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Nakamura, Takashi, E-mail: ntaka@kuhp.kyoto-u.ac.jp [National Hospital Organization Kyoto Medical Center, 1-1, Mukaihatacho, Hukakusa, Hushimi, Kyoto 612-8555 (Japan); Matsushita, Tomiharu, E-mail: matsushi@isc.chubu.ac.jp [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Kokubo, Tadashi, E-mail: kokubo@isc.chubu.ac.jp [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Matsuda, Shuichi, E-mail: smat522@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan)

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900 μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone–implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8 weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956 μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2 weeks than the other implants. After 4 weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4 weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. - Highlights: • We studied the effect of pore size on bone tissue in-growth in a rabbit in vivo model. • Titanium samples with 300/600/900 μm pore size in three-dimensionally controlled shapes were fabricated by additive manufacturing. • Samples were

  7. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.

    Science.gov (United States)

    Taniguchi, Naoya; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Sasaki, Kiyoyuki; Otsuki, Bungo; Nakamura, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone-implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2weeks than the other implants. After 4weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells

    Directory of Open Access Journals (Sweden)

    Fanglong Song

    2017-02-01

    Full Text Available Background/Aims: This study investigated the effect of mechanical stress on tendon-bone healing in a rabbit anterior cruciate ligament (ACL reconstruction model as well as cell proliferation and matrix formation in co-culture of bone-marrow mesenchymal stem cells (BMSCs and tendon cells (TCs. Methods: The effect of continuous passive motion (CPM therapy on tendon-bone healing in a rabbit ACL reconstruction model was evaluated by histological analysis, biomechanical testing and gene expressions at the tendon-bone interface. Furthermore, the effect of mechanical stretch on cell proliferation and matrix synthesis in BMSC/TC co-culture was also examined. Results: Postoperative CPM therapy significantly enhanced tendon-bone healing, as evidenced by increased amount of fibrocartilage, elevated ultimate load to failure levels, and up-regulated gene expressions of Collagen I, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin at the tendon-bone junction. In addition, BMSC/TC co-culture treated with mechanical stretch showed a higher rate of cell proliferation and enhanced expressions of Collagen I, Collagen III, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin than that of controls. Conclusion: These results demonstrated that proliferation and differentiation of local precursor cells could be enhanced by mechanical stimulation, which results in enhanced regenerative potential of BMSCs and TCs in tendon-bone healing.

  9. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone.

    Science.gov (United States)

    Wang, Yu; Cao, Meng; Zhao, Xiangrui; Zhu, Gang; McClean, Colin; Zhao, Yuanyuan; Fan, Yubo

    2014-11-01

    Heat generated during bone drilling could cause irreversible thermal damage, which can lead to bone necrosis or even osteomyelitis. In this study, vibrational drilling was applied to fresh bovine bones to investigate the cutting heat in comparison with conventional drilling through experimental investigation and finite element analysis (FEA). The influence of vibrational frequency and amplitude on cutting heat generation and conduction were studied. The experimental results showed that, compared with the conventional drilling, vibrational drilling could significantly reduce the cutting temperature in drilling of cortical bone (P<0.05): the cutting temperature tended to decrease with increasing vibrational frequency and amplitude. The FEA results also showed that the vibrational amplitude holds a significant effect on the cutting heat conduction. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Bone fragility induced by X-ray irradiation in relation to cortical bone-mineral content

    International Nuclear Information System (INIS)

    Nyaruba, M.M.; Yamamoto, I.; Morita, R.; Kimura, H.

    1998-01-01

    The purpose of this study was to investigate the effects of fractional irradiation on the biomechanical properties of bone in the rat in relation to the cortical bone-mineral content (BMC), and to compare these effects with those brought about by single-dose irradiation. Seventy-five veteran female Wistar rats were divided into 4 groups. Group 1 was the control group. The left tibiae of the remaining rats were exposed to irradiation. Group 2 received one single dose of X-rays at 10-60 Gy. Groups 3 and 4 received fractional irradiation up to different cumulative doses (10-60 Gy): group 3 received 2.5 Gy once a day; group 4 received 1.25 Gy twice a day. Twenty-four weeks after irradiation, the rats were killed and the BMC in each tibial diaphysis was determined by dual-energy X-ray absorptiometry (DXA). The bones were then loaded to failure in a three-point bending test. The control group showed no difference (p>0.05) between left and right tibiae, neither in BMC nor in the maximum load at fracture. Single-dose irradiation caused a 16% (p=0.0366) decrease in the maximum load at 40 Gy, and a 19% (p=0.008) decrease at 60 Gy. The once-daily fractional dose of irradiation caused a 10% (p=0.0022) decrease in the maximum load of the irradiated tibiae at 60 Gy when compared to the intact contralateral tibiae. The twice-daily fractional dose of irradiation had no observable effect on the maximum load of the irradiated tibiae. Neither fractional irradiation modality had an effect on BMC. (orig./MG)

  11. Outcome of limb fracture repair in rabbits: 139 cases (2007-2015).

    Science.gov (United States)

    Sasai, Hiroshi; Fujita, Daisuke; Seto, Eiko; Denda, Yuki; Imai, Yutaro; Okamoto, Kanako; Okamura, Kensaku; Furuya, Masaru; Tani, Hiroyuki; Sasai, Kazumi

    2018-02-15

    OBJECTIVE To evaluate outcome of limb fracture repair in rabbits. DESIGN Retrospective case series. ANIMALS 139 client-owned rabbits with limb fractures treated between 2007 and 2015. PROCEDURES Medical records were reviewed for information on fracture location, fracture treatment, and time to fracture healing. RESULTS 25 rabbits had fractures involving the distal aspects of the limbs (ie, metacarpal or metatarsal bones, phalanges, and calcaneus or talus). Fractures were treated in 23 of these 25 rabbits (external coaptation, n = 17; external skeletal fixation, 4; and intramedullary pinning, 2) and healed in all 23, with a median healing time of 28 days (range, 20 to 45 days). One hundred ten rabbits had long bone fractures, and fractures were treated in 100 of the 110 (external skeletal fixation, n = 89; bone plating, 1; intramedullary pinning, 3; and external coaptation, 7). The percentage of fractures that healed was significantly lower for open (14/18) than for closed (26/26) tibial fractures and was significantly lower for femoral (19/26) and treated humeral (4/6) fractures than for radial (23/24) or closed tibial (26/26) fractures. Micro-CT was used to assess fracture realignment during external skeletal fixator application and to evaluate fracture healing. CONCLUSIONS AND CLINICAL RELEVANCE The prognosis for rabbits with limb fractures was good, with fractures healing in most rabbits following fracture repair (109/123). Micro-CT was useful in assessing fracture realignment and evaluating fracture healing.

  12. Comparative study of bridge plate associated to the intramedullary pin and the dynamic compression plate on the experimental osteotomy fixation of femoral in rabbits (Oryctolagus cuniculus). Clinical, radiographic, histological and scintigraphy analyses

    International Nuclear Information System (INIS)

    Borges, Natalie Ferreira

    2011-01-01

    The objectives were to benchmark and monitor the fracture healing of femoral osteotomy in rabbits after fixation with dynamic compression plate and bridge plate associated with intramedullary pin. Were used 14 New Zealand rabbits, four months old with mean weight of 3.5 pounds, from the Experimental Farm Professor Helio Barbosa of the Veterinary School of Minas Gerais Federal Univ. (UFMG). The animals were randomly divided into two groups (I and II). All rabbits underwent osteotomy across the middle third of right femur. In the group I was made to fix the osteotomy with the bridge plate (BP) associated with intramedullary pin, introduced the technique of minimal invasion. In group II, we used dynamic compression plate (DCP) via the conventional approach. Both groups were evaluated clinical, radiographic, histologic and scintigraphic findings. Clinical assessments were performed weekly until the 12 th postoperative week and radiographic examinations were performed before, immediately after, at 15, 30, 45, 60 and 90 days. The bone scintigraphy were performed before and at 20, 50 and 90 days after surgery to monitor the bone metabolism qualitatively and quantitatively. Observed perfusion and bone healing process. After 90 days of study, there was histopathologic evaluation of the osteotomized area and the insertion of screws. In the region of the osteotomy was observed predominance of trabecular bone in group I and group II, the predominance of bone osteons, compatible with the original bone. On insertion of the screws did not differ between groups and there was cortical discontinuity, little necrosis and local hemorrhage. The two types of fixation have led to consolidation within the scheduled period, maturing in early fixation with DCP fixation compared with BP. Scintigraphy demonstrated by the indices of activity and image characteristics, the process of bone healing was significantly greater in animals undergoing early fixation with DCP. (author)

  13. Evaluation of the Surface Treatment on Bone Healing in a Transmucosal 1-mm Area of Implant Abutment: An Experimental Study in the Rabbit Tibia.

    Science.gov (United States)

    Gehrke, Sergio Alexandre; da Silva Neto, Ulisses Tavares

    2016-06-01

    The objective of the present study was to investigate the effect on bone tissue healing patterns in 1-mm area treated in the transmucosal surface of the abutment in the tibia of rabbits. Forty-six abutments were divided into two groups: control group (CG) with 14 abutments with smooth surface and experimental group (EG) with 32 abutments presenting a 1-mm area of the transmucosal surface treated through sandblasting with microparticles of titanium oxide followed by acid etching. Five samples of each group were analyzed using an optical laser profilometer for surface roughness characterization. Thirty-six Morse taper implants (3.5 mm in diameter and 7 mm in length) were inserted 1.5 mm subcrestal into the tibiae of nine rabbits. The implants were removed after 8, 10, and 12 weeks for histological analysis. The histological slides were prepared and analyzed qualitatively in relation to the new bone at the interface bone-abutment and quantitatively, in relation to bone height from the base of the implant. These data were computed and statistically compared inside the groups using analysis of variance and the U-test between groups for same time. Both groups exhibited bone growth in the direction and over the surface of the abutments, with good healing. However, the EG group showed an increased height of bone formation in the crestal direction, and highly significant differences were observed (p abutment with treatment of the surface facilitated the maintenance of bone height around the abutment compared with the same abutment with the totally smooth surface. © 2015 Wiley Periodicals, Inc.

  14. Thymus morphometry of New Zealand White Rabbits treated with gentamicin

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Magalhães Silva

    2010-09-01

    Full Text Available The aim of this study was to evaluate the morphometry of cortical and medullary thymic lobes individualized by determination of area (μm2, perimeter (μm, maximum and minimum diameter (μm and shape factor in New Zealand White rabbits. The spleens of ten rabbits treated with gentamicin and ten control rabbits (males and females were histologically processed. The gentamicin dosage and the time of administration of this aminoglicoside were according to therapeutic recommendation. This antibiotic did not cause any alteration in the morphometry of the spleen, and it seemed not to be an immunosuppressive drug.

  15. Thymus morphometry of New Zealand White Rabbits treated with gentamicin

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Magalhães Silva

    2010-01-01

    Full Text Available The aim of this study was to evaluate the morphometry of cortical and medullary thymic lobes individualized by determination of area (µm2, perimeter (µm, maximum and minimum diameter (µm and shape factor in New Zealand White rabbits. The spleens of ten rabbits treated with gentamicin and ten control rabbits (males and females were histologically processed. The gentamicin dosage and the time of administration of this aminoglicoside were according to therapeutic recommendation. This antibiotic did not cause any alteration in the morphometry of the spleen, and it seemed not to be an immunosuppressive drug.

  16. Determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation analysis

    International Nuclear Information System (INIS)

    Zaichick, Vladimir; Tzaphlidou, Margaret

    2002-01-01

    Concentrations of Ca and P as well as the Ca/P ratio were estimated in intact cortical bone samples from the femoral neck of healthy humans, 33 women and 45 men, aged from 15 to 55 yr using instrumental neutron activation analysis. Mean values (M±SD) for the investigated parameters (on dry weight basis) were: 23.0±3.9%, 10.7±2.4% and 2.17±0.31, respectively. No statistically significant differences of the above parameters were observed related either to age or sex. The mean values for Ca, P and Ca/P ratio were within a very wide range of published data and close to their median. The individual variation for the Ca/P ratio in cortical bone from the healthy human femoral neck was lower than those for Ca and P separately. This means that specificity of Ca/P ratio is better than those of Ca and P concentrations are and may be more reliable for diagnosis of bone disorders

  17. Relationships between bone strength and bone quality. Three-dimensional imaging analysis in ovariectomized mice

    International Nuclear Information System (INIS)

    Wakabayashi, Suguru; Sakurai, Takashi; Kashima, Isamu

    2004-01-01

    Low-energy trauma resulting in fractures of the distal femur is often observed in elderly patients with osteoporosis; such fractures are often associated with treatment difficulties and poor prognosis. The purpose of this study was to clarify the factors that affect the bone strength of the distal femur. We used ovariectomized mice to demonstrate bone quality factors associated with deterioration of the strength of the distal femur. Ten-week old ICR-strain mice were ovariectomized or sham-ovariectomized. Total bone mineral density (BMD), total bone area, cortical BMD, cortical thickness, and trabecular BMD were measured by peripheral quantitative computed tomography in the distal metaphyseal region of the femora. As three-dimensional architectural parameters, the trabecular number, trabecular thickness (Tb.Th), trabecular separation, and connectivity density were measured in the same region by micro-computed tomography. The maximum load measured by compression testing of the distal metaphyseal region was regarded as the bone strength of each sample. No significant differences in total bone area or in cortical BMD were found between the groups. Bone strength showed the closest relationship with total BMD (r=0.834). Multiple regression analysis demonstrated that total BMD greatly depended on cortical thickness. The addition of Tb.Th to trabecular BMD markedly reflected bone strength (R=0.857), suggesting that Tb.Th affected bone strength more significantly than trabecular BMD. These findings suggested that deterioration of bone strength of the distal femur (metaphysis) was not caused by a reduction in cortical BMD, but was related to reduced cortical thickness, which reduced total BMD, and to trabecular BMD and architecture, in particular to reduced Tb.Th. (author)

  18. Accounting for beta-particle energy loss to cortical bone via paired-image radiation transport (PIRT)

    International Nuclear Information System (INIS)

    Shah, Amish P.; Rajon, Didier A.; Patton, Phillip W.; Jokisch, Derek W.; Bolch, Wesley E.

    2005-01-01

    Current methods of skeletal dose assessment in both medical physics (radionuclide therapy) and health physics (dose reconstruction and risk assessment) rely heavily on a single set of bone and marrow cavity chord-length distributions in which particle energy deposition is tracked within an infinite extent of trabecular spongiosa, with no allowance for particle escape to cortical bone. In the present study, we introduce a paired-image radiation transport (PIRT) model which provides a more realistic three-dimensional (3D) geometry for particle transport in the skeletal site at both microscopic and macroscopic levels of its histology. Ex vivo CT scans were acquired of the pelvis, cranial cap, and individual ribs excised from a 66-year male cadaver (BMI of 22.7 kg m -2 ). For the three skeletal sites, regions of trabecular spongiosa and cortical bone were identified and segmented. Physical sections of interior spongiosa were taken and subjected to microCT imaging. Voxels within the resulting microCT images were then segmented and labeled as regions of bone trabeculae, endosteum, active marrow, and inactive marrow through application of image processing algorithms. The PIRT methodology was then implemented within the EGSNRC radiation transport code whereby electrons of various initial energies are simultaneously tracked within both the ex vivo CT macroimage and the CT microimage of the skeletal site. At initial electron energies greater than 50-200 keV, a divergence in absorbed fractions to active marrow are noted between PIRT model simulations and those estimated under existing techniques of infinite spongiosa transport. Calculations of radionuclide S values under both methodologies imply that current chord-based models may overestimate the absorbed dose to active bone marrow in these skeletal sites by 0% to 27% for low-energy beta emitters ( 33 P, 169 Er, and 177 Lu), by ∼4% to 49% for intermediate-energy beta emitters ( 153 Sm, 186 Re, and 89 Sr), and by ∼14% to

  19. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  20. Intraskeletal variation in human cortical osteocyte lacunar density: Implications for bone quality assessment

    Directory of Open Access Journals (Sweden)

    Randee L. Hunter

    2016-12-01

    Full Text Available Osteocytes and their lacunocanalicular network have been identified as the regulator of bone quality and function by exerting extensive influence over metabolic processes, mechanical adaptation, and mineral homeostasis. Recent research has shown that osteocyte apoptosis leads to a decrease in bone quality and increase in bone fragility mediated through its effects on remodeling. The purpose of this study is to investigate variation in cortical bone osteocyte lacunar density with respect to major factors including sex, age, and intracortical porosity to establish both regional and systemic trends. Samples from the midshaft femur, midshaft rib and distal one-third diaphysis of the radius were recovered from 30 modern cadaveric individuals (15 males and 15 females ranging from 49 to 100 years old. Thick ground undecalcified histological (80 μm cross-sections were made and imaged under bright field microscopy. Osteocyte lacunar density (Ot.Lc.N/B.Ar and intracortical porosity (%Po.Ar were quantified. No significant sex differences in Ot.Lc.N/B.Ar or %Po.Ar were found in any element. Linear regressions demonstrated a significant decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar and increase in intracortical porosity (%Po.Ar with age for the sex-pooled sample in the femur (R2 = 0.208, 0.297 respectively and radius (R2 = 0.108, 0.545 respectively. Age was unable to significantly predict osteocyte lacunar density or intracortical porosity in the rib (R2 = 0.058, 0.114 respectively. Comparisons of regression coefficients demonstrated a systemic trend in the decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar and increase in intracortical porosity (%Po.Ar with age. In each element, intracortical porosity was significantly negatively correlated with lacunar density for which the radius demonstrated the strongest relationship (r = −0.746. Using pore number (Po.N as a proxy for available vascularity to support the osteocyte population, Po

  1. Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study.

    Science.gov (United States)

    Treece, Graham M; Gee, Andrew H; Tonkin, Carol; Ewing, Susan K; Cawthon, Peggy M; Black, Dennis M; Poole, Kenneth E S

    2015-11-01

    Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual-energy X-ray (DXA)-based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case-cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT-based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA-based BMD leads to a small but significant (p fracture, with AUC increasing from 0.78 to 0.79, assessed using leave-one-out cross-validation. For specific fracture types, the improvement is more significant (p trochanteric fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA-based BMD to a CBM-based predictive model does not result in any significant improvement. © 2015 The Authors. Journal of Bone and Mineral Research

  2. Induction of bone ingrowth with a micropore bioabsorbable suture anchor in rotator cuff tear: an experimental study in a rabbit model.

    Science.gov (United States)

    Kang, Yun Gyeong; Kim, Jung-Han; Shin, Jung-Woog; Baik, Jong-Min; Choo, Hye-Jung

    2013-11-01

    The bioabsorbable suture anchor is probably one of the most commonly used tools in arthroscopic shoulder operations. However, there is controversy about whether the bioabsorbable anchor is replaced by bone. The object of this study is to evaluate bone ingrowth into the micropore bioabsorbable suture anchor and the differences in the biomechanical properties of a micropore anchor and a nonpore anchor. A total of 16 microsized holes (diameter, 250 ± 50 μm; depth, 0.2 mm) were made on the bioabsorbable anchors with a microdrill. Twelve adult New Zealand White rabbits were randomly divided into two groups: group A (n = 6), the nonpore bioabsorbable suture anchor group, and group pA (n = 6), the micropore bioabsorbable suture anchor group. Microcomputed tomography was used at 4 and 8 weeks postoperatively to evaluate ingrowth by bone volume fraction (BVF), which was measured by calculating the ratio of the total volume of bone ingrowth to that of the region of interest. For pullout strength testing, 3 additional rabbits (6 limbs) were used for mechanical testing. The mean BVF was higher in group pA (0.288 ± 0.054) than in group A (0.097 ± 0.006). The micropore anchor had a higher pullout strength (0.520 ± 0.294 N) than the nonpore anchor (0.275 ± 0.064 N). Micropore bioabsorbable suture anchors induced bone ingrowth and showed higher pullout strength, despite processing. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  3. Comparison of interradicular distances and cortical bone thickness in Thai patients with class I and class II skeletal patterns using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Khumsarn, Nattida [Dental Division of Lamphun Hospital, Lamphun (Thailand); Patanaporn, Virush; Janhom, Apirum; Jotikasthira, Dhirawat [Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand)

    2016-06-15

    This study evaluated and compared interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns, using cone-beam computed tomography (CBCT). Pretreatment CBCT images of 24 Thai orthodontic patients with Class I and Class II skeletal patterns were included in the study. Three measurements were chosen for investigation: the mesiodistal distance between the roots, the width of the buccolingual alveolar process, and buccal cortical bone thickness. All distances were recorded at five different levels from the cementoenamel junction (CEJ). Descriptive statistical analysis and t-tests were performed, with the significance level for all tests set at p<0.05. Patients with a Class II skeletal pattern showed significantly greater maxillary mesiodistal distances (between the first and second premolars) and widths of the buccolingual alveolar process (between the first and second molars) than Class I skeletal pattern patients at 10 mm above the CEJ. The maxillary buccal cortical bone thicknesses between the second premolar and first molar at 8 mm above the CEJ in Class II patients were likewise significantly greater than in Class I patients. Patients with a Class I skeletal pattern showed significantly wider mandibular buccolingual alveolar processes than did Class II patients (between the first and second molars) at 4, 6, and 8 mm below the CEJ. In both the maxilla and mandible, the mesiodistal distances, the width of the buccolingual alveolar process, and buccal cortical bone thickness tended to increase from the CEJ to the apex in both Class I and Class II skeletal patterns.

  4. Comparison of interradicular distances and cortical bone thickness in Thai patients with class I and class II skeletal patterns using cone-beam computed tomography

    International Nuclear Information System (INIS)

    Khumsarn, Nattida; Patanaporn, Virush; Janhom, Apirum; Jotikasthira, Dhirawat

    2016-01-01

    This study evaluated and compared interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns, using cone-beam computed tomography (CBCT). Pretreatment CBCT images of 24 Thai orthodontic patients with Class I and Class II skeletal patterns were included in the study. Three measurements were chosen for investigation: the mesiodistal distance between the roots, the width of the buccolingual alveolar process, and buccal cortical bone thickness. All distances were recorded at five different levels from the cementoenamel junction (CEJ). Descriptive statistical analysis and t-tests were performed, with the significance level for all tests set at p<0.05. Patients with a Class II skeletal pattern showed significantly greater maxillary mesiodistal distances (between the first and second premolars) and widths of the buccolingual alveolar process (between the first and second molars) than Class I skeletal pattern patients at 10 mm above the CEJ. The maxillary buccal cortical bone thicknesses between the second premolar and first molar at 8 mm above the CEJ in Class II patients were likewise significantly greater than in Class I patients. Patients with a Class I skeletal pattern showed significantly wider mandibular buccolingual alveolar processes than did Class II patients (between the first and second molars) at 4, 6, and 8 mm below the CEJ. In both the maxilla and mandible, the mesiodistal distances, the width of the buccolingual alveolar process, and buccal cortical bone thickness tended to increase from the CEJ to the apex in both Class I and Class II skeletal patterns

  5. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    Science.gov (United States)

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  6. Permanence of diced cartilage, bone dust and diced cartilage/bone dust mixture in experimental design in twelve weeks.

    Science.gov (United States)

    Islamoglu, Kemal; Dikici, Mustafa Bahadir; Ozgentas, Halil Ege

    2006-09-01

    Bone dust and diced cartilage are used for contour restoration because their minimal donor site morbidity. The purpose of this study is to investigate permanence of bone dust, diced cartilage and bone dust/diced cartilage mixture in rabbits over 12 weeks. New Zealand white rabbits were used for this study. There were three groups in the study: Group I: 1 mL bone dust. Group II: 1 mL diced cartilage. Group III: 0.5 mL bone dust + 0.5 mL diced cartilage mixture. They were placed into subcutaneous tissue of rabbits and removed 12 weeks later. The mean volumes of groups were 0.23 +/- 0.08 mL in group I, 0.60 +/- 0.12 mL in group II and 0.36 +/- 0.10 mL in group III. The differences between groups were found statistically significant. In conclusion, diced cartilage was found more reliable than bone dust aspect of preserving its volume for a long period in this study.

  7. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.

    Science.gov (United States)

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.

  8. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT

    International Nuclear Information System (INIS)

    Raum, K; Leguerney, I; Chandelier, F; Talmant, M; Saied, A; Peyrin, F; Laugier, P

    2006-01-01

    200 MHz scanning acoustic microscopy (SAM) and synchrotron radiation μCT (SR-μCT) were used to assess microstructural parameters and tissue properties in site-matched regions of interest in cortical bone. Anterior and postero-lateral regions of ten cross sections from human cortical radius were explored. Structural parameters, including diameter and number of Haversian canals per cortical area (Ca.Dm, N.Ca/Ar) and porosity Po were assessed with both methods using a custom-developed image fusion and analysis software. Acoustic impedance Z and degree of mineralization of bone DMB were extracted separately for osteonal and interstitial tissues from the fused images. Structural parameter estimations obtained from radiographic and acoustic images were almost identical. DMB and impedance values were in the range between 0.77 and 1.28 g cm -3 and 5.13 and 12.1 Mrayl, respectively. Interindividual and regional variations were observed, whereas the strongest difference was found between osteonal and interstitial tissues (Z: 7.2 ± 1.1 Mrayl versus 9.3 ± 1.0 Mrayl, DMB: 1.06 ± 0.07 g cm -3 versus 1.16 ± 0.05 g cm -3 , paired t-test, p 2 = 0.174, p -4 ) and for the pooled (osteonal and interstitial) data. The regression of the pooled osteonal and interstitial tissue data follows a second-order polynomial (R 2 = 0.39, p -4 ). Both modalities fulfil the requirement for a simultaneous evaluation of cortical bone microstructure and material properties at the tissue level. While SAM inspection is limited to the evaluation of carefully prepared sample surfaces, SR-μCT provides volumetric information on the tissue without substantial preparation requirements. However, SAM provides a quantitative estimate of elastic properties at the tissue level that cannot be captured by SR-μCT

  9. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    International Nuclear Information System (INIS)

    Ascenzi, Maria-Grazia; Kawas, Neal P.; Lutz, Andre; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.

    2013-01-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing

  10. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  11. Evolution of bone biomechanical properties at the micrometer scale around titanium implant as a function of healing time

    International Nuclear Information System (INIS)

    Vayron, Romain; Mathieu, Vincent; Haiat, Guillaume; Matsukawa, Mami; Tsubota, Ryo; Barthel, Etienne

    2014-01-01

    The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of elastic properties of newly formed bone tissue as a function of healing time. To do so, nanoindentation and micro-Brillouin scattering techniques are coupled following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 µm from the cortical bone surface, leading to an initially empty cavity. Two rabbits were sacrificed after 7 and 13 weeks of healing time. The histological analyses allow us to distinguish mature and newly formed bone tissue. The bone mechanical properties were measured in mature and newly formed bone tissue. Analysis of variance and Tukey–Kramer tests reveals a significant effect of healing time on the indentation modulus and ultrasonic velocities of bone tissue. The results show that bone mass density increases by 12.2% (2.2% respectively) between newly formed bone at 7 weeks (13 weeks respectively) and mature bone. The dependence of bone properties on healing time may be explained by the evolution of bone microstructure and mineralization. (paper)

  12. Anatomic and histological study of the rabbit mandible as an experimental model for wound healing and surgical therapies.

    Science.gov (United States)

    Campillo, V-E; Langonnet, S; Pierrefeu, A; Chaux-Bodard, A-G

    2014-10-01

    The rabbit is one of the most widely used models for studying bone remodeling or dental implant osseointegration but very few data are available about the rabbit's mandible. The aim of this work was to describe the anatomy of the rabbit mandible and to estimate the available bone volume for experimental studies. First, with a dissection, the morphology of the mandible was described and the mental foramen, the position of the main salivary glands and muscular insertions were located. Then, by X-ray imaging, the position of the inferior alveolar canal, the dental root courses and volume and bone density were described. Finally, with frontal sections of the mandible body, the rabbit's dental and alveolar bone histological structure were assessed. Thus, the relevance of the rabbit mandible as an experimental model for wound healing or surgical therapies was discussed. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Use of a strontium-enriched calcium phosphate cement in accelerating the healing of soft-tissue tendon graft within the bone tunnel in a rabbit model of anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Kuang, G M; Yau, W P; Lu, W W; Chiu, K Y

    2013-07-01

    We investigated whether strontium-enriched calcium phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results in accelerated healing within the bone tunnel in reconstruction of the anterior cruciate ligament (ACL). A total of 30 single-bundle ACL reconstructions using tendo Achillis allograft were performed in 15 rabbits. The graft on the tested limb was treated with Sr-CPC, whereas that on the contralateral limb was untreated and served as a control. At timepoints three, six, nine, 12 and 24 weeks after surgery, three animals were killed for histological examination. At six weeks, the graft-bone interface in the control group was filled in with fibrovascular tissue. However, the gap in the Sr-CPC group had already been completely filled in with new bone, and there was evidence of the early formation of Sharpey fibres. At 24 weeks, remodelling into a normal ACL-bone-like insertion was found in the Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft leads to accelerated graft healing within the bone tunnel in a rabbit model of ACL reconstruction using Achilles tendon allograft.

  14. Sterilisation of allograft cortical bone using gamma irradiation: effect on strength and material ultrastructure

    International Nuclear Information System (INIS)

    Price, R.; Walters, M.

    1996-01-01

    Full text: The use of allograft bone in revision joint and limb salvage surgery is widespread and increasing (Buck B.E. et al, Clin Orthop 303: 8-17, 1994). To reduce the risk of disease transmission from donor graft contamination (particularly HIV and hepatitis) sterilisation is practiced worldwide. Gamma (γ)-irradiation using a dose of 1.5 - 2.5 Mrads is common. However, γ-irradiation is known to reduce bone strength, though the extent and mechanisms are controversial (eg Bright RW et al, Trans Orthop Res Soc 3: 210, 1978). We measured the effect of γ-irradiation on bone strength and properties reflecting bone material ultrastructure. Diaphyseal bone was obtained from the femur of a 47 year-old male would-be donor with suspicious hepatitis serology. Beams of cortical bone (long axes parallel to the femur) were cut using a low speed diamond saw bathed in Ringer's solution. Four groups were irradiated with γ-rays (0, 1.5, 2.5 and 5.0±0.5[SD] Mrads). Blinded investigations were performed: Ultimate stress (Ult Stress, N= 16 replicates in each dose group). Each beam was loaded at its midpoint at a rate of 25 mm/min until failure, while its ends were supported 40 mms apart. Ult stress was calculated from 3-point bending theory using the load vs displacement curve and the cross-sectional area of the break (Power RA et al, submitted to J Bone and Joint Surg). Differential scanning calorimetry (DSC) was performed over the range -15 to +5 deg C. Samples were demineralized and small (7-10 mg) blocks were cut and sealed in stainless steel calorimetry capsules. The enthalpy (reflecting the normalised free water content) was calculated from the sample mass plus area under the heat capacity curve. Pyridinoline collagen (acid-insoluble) crosslinks (Pyrid, N=10) (Randall D et al, JBone and Min Res, 1996, in press) were determined from 5-mm 3 demineralised, freeze dried samples. Small and medium angle X-ray diffraction (XRD, N=5). Demineralised bone was sliced into thin

  15. [Experimental study on vascular bundle implantation combined with cellular transplantation in treating rabbit femoral head necrosis].

    Science.gov (United States)

    Chen, Shuang-Tao; Zhang, Wei-Ping; Liu, Chang-An; Wang, Jun-Jiang; Song, Heng-Yi; Chai, Zhi-wen

    2013-03-01

    To discuss the feasibility of vascular bundle implantation combined with allogeneic bone marrow stromal cells (BMSCs) transplantation in treating rabbit femoral head osteonecrosis and bone defect, in order to explore a new method for the treatment of femoral head necrosis. Thirty-six New Zealand rabbits were randomly divided into three groups,with 12 rabbits in each group. Bilateral femoral heads of the rabbits were studied in the experiment. The models were made by liquid nitrogen frozen, and the femoral heads were drilled to cause bone defect. Group A was the control group,group B was stem cells transplantaion group of allograft marrow stromal,and group C was stem cells transplantation group of allograft marrow stromal combined with vascular bundle implantation. Three rabbits of each group were sacrificed respectively at 2, 4, 8, 12 weeks after operation. All specimens of the femoral heads were sliced for HE staining. Furthermore ,vascular density and the percentage of new bone trabecula of femoral head coronary section in defect area were measured and analyzed statistically. In group C,new bone trabecula and original micrangium formed at the 2nd week after operation; new bone trabecula was lamellar and interlaced with abundant micrangium at the 8th week;at the 12th week,the broadened,coarsened bone trabecula lined up regularly,and the mature bone trabecula and new marrow were visible. At the 2nd week after operation,there was no statistical significance in the percentage of new bone trabecula of femoral head coronary section in defect area between group B and C. While at 4, 8, 12 week after operation, vascular density and the percentage of new bone trabecula of femoral head coronary section in defect area of group C was higher than that of group B. Allogeneic bone marrow stromal cells cultured in vivo can form new bone trabecula, and can be applied to allotransplant. Vascular bundle implanted into the bone defect area of femoral head necrosis could improve blood

  16. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Science.gov (United States)

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. [Effect of vascular endothelial growth factor and tumor necrosis factor receptor for treatment of avascular necrosis of the femoral head in rabbits].

    Science.gov (United States)

    Hu, Zhi-ming; Zhou, Ming-qian; Gao, Ji-min

    2008-12-01

    To evaluate the therapeutic effect of vascular endothelial growth factor (VEGF) and tumor necrosis factor receptor (TNFR) on avascular necrosis of the femoral head in rabbits. Avascular necrosis of the femoral head was induced in 26 New Zealand white rabbits by injections of horse serum and prednisolone. The rabbits were then divided into VEGF/TNFR treatment group, VEGF treatment group, and untreated model group, with another 4 normal rabbits as the normal control group. In the two treatment groups, the therapeutic agents were injected percutaneously into the femoral head. Enzyme-linked immunosorbent assay was performed to determine the concentration of TNF-alpha in rabbit serum followed by pathological examination of the changes in the bone tissues, bone marrow hematopoietic tissue and the blood vessels in the femoral head. Compared with the model group, the rabbits with both VEGF and TNFR treatment showed decreased serum concentration of TNF-alpha with obvious new vessel formation, decreased empty bone lacunae in the femoral head and hematopoietic tissue proliferation in the bone marrow cavity. Percutaneous injection of VEGF and TNFR into the femoral head can significantly enhance bone tissue angiogenesis and ameliorate osteonecrosis in rabbits with experimental femoral head necrosis.

  18. Effect of bone marrow and low power lasers on fracture healing with destruction of both periosteum and endosteum in rabbits

    Directory of Open Access Journals (Sweden)

    M. G. Thanoon

    2010-01-01

    Full Text Available Ten mature rabbits of local breed were used in this study; weighing between 1.5 to 1.75 kg and aged about 1–2 years. These animals were divided into two equal groups; in group A destruction of both periosteum and endosteum was done one centimeter from each side of mid-shaft femoral bone fracture, then sufficient amount of autogenously bone marrow was injected directly at the fracture site after immobilization by intramedullary pin. In group B a similar procedure was achieved as in group A, but in additional to that He-Ne infrared laser therapy was used for several sessions. The result of radiological findings indicated that, the fracture healing occurred within group B at fifteen weeks, whereas in group A the healing occurred at eighteen weeks after operation. The implantation of autologous bone marrow enhanced the fracture healing, whereas using of combinations of autologous bone marrow and He-Ne infrared laser therapy hastened the healing.

  19. Experimental study on bone tissue reaction around HA implants radiated after implantation

    International Nuclear Information System (INIS)

    Kudo, Masato; Matsui, Yoshiro; Tamura, Sayaka; Chen, Xuan; Uchida, Haruo; Mori, Kimie; Ohno, Kohsuke; Michi, Ken-ichi

    1998-01-01

    This study was conducted to investigate histologically and histomorphometrically the tissue reaction around hydroxylapatite (HA) implants that underwent irradiation in 3 different periods in the course of bone healing after implantation. The cylindrical high-density HA implants were implanted in 48 Japanese white rabbit mandibles. A single 15 Gy dose was applied to the mandible 5, 14, or 28 days after implantation. The rabbits were sacrificed 7, 14, 28, and 90 days after irradiation. Nonirradiated rabbits were used as controls. CMR, labeling with tetracycline and calcein, and non-decalcified specimens stained with toluidine blue were used for histological analyses and histomorphometric measurements. The results were as follows: In the rabbits irradiated 5 days after implantation, the HA-bone contact was observed later than that in the controls and the bone-implant contact surface ratio was lower than that in the controls at examination because necrosis of the newly-formed bone occurred just after irradiation. HA-bone contact of the rabbits irradiated 14 and 28 days after implantation was similar to that of the controls. And, bone remodeling was suppressed in rabbits of each group sacrificed at 90 days after irradiation. The results suggested that a short interval between implantation and irradiation causes direct contact between HA implant and bone and a long lapse of time before irradiation hardly affects the bone-implant contact, but delays bone remodeling. Therefore, it is necessary to prevent overloading the HA implants irradiated after implantation and pay utmost attention to conditions around the bone-implant contact. (author)

  20. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow–Derived Cells for Large Osteochondral Defects in Rabbit Knees

    Science.gov (United States)

    Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-01-01

    Objective: The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells. Methods: Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow–derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O’Driscoll score). Results: The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O’Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. Conclusions: This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated. PMID:26069678

  1. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow-Derived Cells for Large Osteochondral Defects in Rabbit Knees.

    Science.gov (United States)

    Yoshioka, Tomokazu; Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-10-01

    The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells. Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow-derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O'Driscoll score). The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O'Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.

  2. The effect of surface demineralization of cortical bone allograft on the properties of recombinant adeno-associated virus coatings.

    Science.gov (United States)

    Yazici, Cemal; Yanoso, Laura; Xie, Chao; Reynolds, David G; Samulski, R Jude; Samulski, Jade; Yannariello-Brown, Judith; Gertzman, Arthur A; Zhang, Xinping; Awad, Hani A; Schwarz, Edward M

    2008-10-01

    Freeze-dried recombinant adeno-associated virus (rAAV) coated structural allografts have emerged as an approach to engender necrotic cortical bone with host factors that will persist for weeks following surgery to facilitate revascularization, osteointegration, and remodeling. However, one major limitation is the nonporous cortical surface that prohibits uniform distribution of the rAAV coating prior to freeze-drying. To overcome this we have developed a demineralization method to increase surface absorbance while retaining the structural integrity of the allograft. Demineralized bone wafers (DBW) made from human femoral allograft rings demonstrated a significant 21.1% (73.6+/-3.9% versus 52.5+/-2.6%; pcoating versus mineralized controls. Co-incubation of rAAV-luciferase (rAAV-Luc) coated DBW with a monolayer of C3H10T1/2 cells in culture led to peak luciferase levels that were not significantly different from soluble rAAV-Luc controls (p>0.05), although the peaks occurred at 60h and 12h, respectively. To assess the transduction efficiency of rAAV-Luc coated DBW in vivo, we first performed a dose response with allografts containing 10(7), 10(9) or 10(10) particles that were surgically implanted into the quadriceps of mice, and assayed by in vivo bioluminescence imaging (BLI) on days 1, 3, 5, 7, 10, 14, and 21. The results demonstrated a dose response in which the DBW coated with 10(10) rAAV-Luc particles achieved peak gene expression levels on day 3, which persisted until day 21, and was significantly greater than the 10(7) dose throughout this time period (pcoated with 10(10) rAAV-Luc particles failed to demonstrate any significant differences in transduction kinetics or efficiency in vivo. Thus, surface demineralization of human cortical bone allograft increases its absorbance for uniform rAAV coating, without affecting vector transduction efficiency.

  3. Effects of increasing doses of samarium-153-ethylenediaminetetramethylene phosphonate on axial and appendicular skeletal growth in juvenile rabbits

    International Nuclear Information System (INIS)

    Essman, Stephanie C.; Lewis, Michael R.; Fox, Derek B.

    2008-01-01

    Introduction: Targeted radiotherapy using samarium-153-ethylenediaminetetramethylene phosphonate ( 153 Sm-EDTMP) is currently under investigation for treatment of osteosarcoma. Osteosarcoma often occurs in children, and previous studies on a juvenile rabbit model demonstrated that clinically significant damage to developing physeal cartilage may occur as a result of systemic 153 Sm-EDTMP therapy. The aim of this study was to evaluate the late effects of 153 Sm-EDTMP on skeletal structures during growth to maturity and to determine if there is a dose response of 153 Sm-EDTMP on growth of long bones. Methods: Female 8-week-old New Zealand white rabbits were divided into three treatment groups plus controls. Each rabbit was intravenously administered a predetermined dose of 153 Sm-EDTMP. Multiple bones of each rabbit were radiographed every 2 months until physeal closure, with subsequent measurements made to assess for abbreviated bone growth. Statistical analyses were performed to determine the differences in bone length between groups, with significance set at P 153 Sm-EDTMP. Further investigation regarding the effects of bone-seeking radiopharmaceuticals on bone growth and physeal cartilage is warranted

  4. Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Naili, Salah

    2013-01-01

    This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality. We present a numerical procedure adapted for this purpose which is based on the spectral finite element method (FEM). By using a combined Laplace-Fourier transform, the vibroacoustic problem may be transformed into the frequency-wavenumber domain in which, as radiation conditions may be exactly introduced in the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analysed using FEM. Several numerical tests are presented showing very good performance of the proposed approach. We present some results to study the influence of the frequency on the first arriving signal velocity in (visco)elastic bone plate.

  5. A homogenization approach for the effective drained viscoelastic properties of 2D porous media and an application for cortical bone.

    Science.gov (United States)

    Nguyen, Sy-Tuan; Vu, Mai-Ba; Vu, Minh-Ngoc; To, Quy-Dong

    2018-02-01

    Closed-form solutions for the effective rheological properties of a 2D viscoelastic drained porous medium made of a Generalized Maxwell viscoelastic matrix and pore inclusions are developed and applied for cortical bone. The in-plane (transverse) effective viscoelastic bulk and shear moduli of the Generalized Maxwell rheology of the homogenized medium are expressed as functions of the porosity and the viscoelastic properties of the solid phase. When deriving these functions, the classical inverse Laplace-Carson transformation technique is avoided, due to its complexity, by considering the short and long term approximations. The approximated results are validated against exact solutions obtained from the inverse Laplace-Carson transform for a simple configuration when the later is available. An application for cortical bone with assumption of circular pore in the transverse plane shows that the proposed approximation fit very well with experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    Directory of Open Access Journals (Sweden)

    Johansson P

    2016-04-01

    Full Text Available Pär Johansson,1 Ryo Jimbo,1 Yoshihito Naito,2 Per Kjellin,3 Fredrik Currie,3 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Oral Implant Center, Tokushima University Hospital, Tokushima, Japan; 3Promimic AB, Stena Center, Göteborg, Sweden Abstract: Polyether ether ketone (PEEK possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test, and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05. The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01. With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. Keywords: HA, PEEK, osseointegration, histology, orthopedics, in vivo

  7. Effects of Titanium Mesh Surfaces-Coated with Hydroxyapatite/β-Tricalcium Phosphate Nanotubes on Acetabular Bone Defects in Rabbits

    Directory of Open Access Journals (Sweden)

    Thuy-Duong Thi Nguyen

    2017-07-01

    Full Text Available The management of severe acetabular bone defects in revision reconstructive orthopedic surgery is challenging. In this study, cyclic precalcification (CP treatment was used on both nanotube-surface Ti-mesh and a bone graft substitute for the acetabular defect model, and its effects were assessed in vitro and in vivo. Nanotube-Ti mesh coated with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP was manufactured by an anodizing and a sintering method, respectively. An 8 mm diameter defect was created on each acetabulum of eight rabbits, then treated by grafting materials and covered by Ti meshes. At four and eight weeks, postoperatively, biopsies were performed for histomorphometric analyses. The newly-formed bone layers under cyclic precalcified anodized Ti (CP-AT meshes were superior with regard to the mineralized area at both four and eight weeks, as compared with that under untreated Ti meshes. Active bone regeneration at 2–4 weeks was stronger than at 6–8 weeks, particularly with treated biphasic ceramic (p < 0.05. CP improved the bioactivity of Ti meshes and biphasic grafting materials. Moreover, the precalcified nanotubular Ti meshes could enhance early contact bone formation on the mesh and, therefore, may reduce the collapse of Ti meshes into the defect, increasing the sufficiency of acetabular reconstruction. Finally, cyclic precalcification did not affect bone regeneration by biphasic grafting materials in vivo.

  8. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Ge Zigang; Tian Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo Jinfei; Cao Tong, E-mail: omscaot@nus.edu.s [Stem Cell Laboratory, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074 (Singapore)

    2009-04-15

    Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models. (communication)

  9. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model

    International Nuclear Information System (INIS)

    Ge Zigang; Tian Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo Jinfei; Cao Tong

    2009-01-01

    Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models. (communication)

  10. Mechanical alterations of rabbit Achilles' tendon after immobilization correlate with bone mineral density but not with magnetic resonance or ultrasound imaging.

    Science.gov (United States)

    Trudel, Guy; Koike, Yoichi; Ramachandran, Nanthan; Doherty, Geoff; Dinh, Laurent; Lecompte, Martin; Uhthoff, Hans K

    2007-12-01

    To assess the usefulness of magnetic resonance imaging (MRI), ultrasound (US) imaging, or bone mineral density (BMD) in predicting the mechanical properties of immobilized rabbit Achilles' tendons. Experimental study. Basic university laboratory. Twenty-eight rabbits. Twelve rabbits had 1 hindlimb casted for 4 weeks and 10 rabbits were casted for 8 weeks. Contralateral legs and 12 normal hindlimbs served as controls. Achilles' tendon dimensions on MRI and US, T1- and T2-signal intensities on MRI, classification of abnormalities on MRI and US; BMD of the calcaneus with dual-energy x-ray absorptiometry. Biomechanic measures consisted of peak load, stiffness, and stress. Imaging variables were correlated with biomechanic alterations. Immobilized Achilles' tendons were weaker and showed decreased mechanical stress compared with their contralateral legs and controls (all PAchilles' tendons after immobilization. However, neither increased MRI nor US signal abnormality was found. BMD was lower in immobilized calcanei and larger in contralateral legs than controls. Only BMD correlated with both the decreased peak load (R2=.42, PAchilles' tendon. This study established weakened mechanical properties of immobilized Achilles' tendons. BMD of the calcaneus, but not MRI and US, was predictive of the mechanical alterations in immobilized Achilles' tendons. BMD may be a useful biomarker to monitor disease and recovery in Achilles' tendons.

  11. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti6Al4V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth.

    Science.gov (United States)

    Liu, Hao; Li, Wei; Liu, Can; Tan, Jie; Wang, Hong; Hai, Bao; Cai, Hong; Leng, Hui-Jie; Liu, Zhong-Jun; Song, Chun-Li

    2016-10-27

    Three-dimensional porous titanium alloys printed via electron beam melting have low stiffness similar to that of cortical bone and are promising scaffolds for orthopedic applications. However, the bio-inert nature of titanium alloy is poorly compatible with bone ingrowth. We previously observed that simvastatin/poloxamer 407 thermosensitive hydrogel induces endogenous angiogenic/osteogenic growth factors and promotes angiogenesis and osteogenesis, but the mechanical properties of this hydrogel are poor. The purpose of this study was to construct 3D-printed porous titanium scaffolds (pTi scaffolds) filled with simvastatin/hydrogel and evaluate the effects of this composite on osseointegration, bone ingrowth and neovascularization using a tibial defect rabbit model. Four and eight weeks after implantation, the bone volume, bone mineral density, mineral apposition rate, and push-in maximum force of the pTi scaffolds filled with simvastatin/hydrogel were significantly higher than those without simvastatin (p bone and neovascularization (p bone ingrowth.

  12. Scintigraphic evaluation of the osteoblastic activity of rabbit tibial defects after HYAFF11 membrane application.

    Science.gov (United States)

    Mermerkaya, Musa Uğur; Doral, Mahmut Nedim; Karaaslan, Fatih; Huri, Gazi; Karacavuş, Seyhan; Kaymaz, Burak; Alkan, Erkan

    2016-05-03

    An unfavorable condition for bone healing is the presence of bone defects. Under such conditions, a material can play a role to cover fractured or defective bone. Technological advances now allow for the use of such material. Hyalonect(®) (Fidia Advanced Biopolymers SLR, Italy), a novel membrane comprising knitted fibers of esterified hyaluronan (HYAFF11) can be used to cover fractured or grafted bone and can also serve as a scaffold to keep osteoprogenitor cells in place. The aim of this study was to compare osteoblastic activity by the use of scintigraphic methods in defective rabbit tibias during early-phase bone healing with or without a hyaluronan-based mesh. Two groups (A and B) of New Zealand albino rabbits were used; each group included 10 animals. Operations on all rabbits were performed under general anesthesia. We also resected 10-mm bone segments from each animal's tibial diaphysis. After resection, tibias with defects were fixed using Kirschner wires. In group A, no hyaluronan-based mesh was used. In group B, tibial segmental defects were enclosed with a hyaluronan-based mesh. The rabbits were followed up for 4 weeks postoperatively, after which bone scintigraphic studies were performed on each animal to detect and compare osteoblastic activity. The mean count in the fracture side of the hyaluronan-based mesh group was significantly higher compared to that of the group A (p = 0.019). However, there was no significant difference between group B and control rabbits with respect to the mean count on the intact bone side (p = 0.437). The bone defect (fracture)/intact bone mean count ratio was significantly higher in group B compared to group A (p = 0.008). A hyaluronan-based mesh plays a role in promoting osteoblastic activity. Hyalonect(®) is suitable for restoring tissue continuity whenever the periosteal membrane is structurally impaired or inadequate. Our results demonstrated that, during early-phase bone healing, osteoblastic activity

  13. Does Periosteal Graft Combined With Platelet-Rich Plasma Enhance the Healing of Bone Defect?

    Science.gov (United States)

    Türkseven, Arzu; Özçelik, Derya; Çaliş, Mert; Celik, Hakan Hamdi; Yilmaz, Fahri; Önbaş, Ömer; Vatansever, Alper; Toplu, Gaye

    2018-02-12

    This study investigated the effect of periosteal graft + platelet-rich plasma (PRP) combination on facial bone defect healing. Five-millimeter critical sized defects in zygomatic arches of 12 adult New Zealand rabbits were created. Rabbits were randomly divided into 3 groups: First group (control group): bone defects of left zygomatic arches of 6 rabbits were wrapped with a silicone tube. Second group (periosteal graft group): bone defects of left zygomatic arches of 6 rabbits were wrapped with periosteal graft. Third group (experimental group): bone defects of right zygomatic arches of 12 rabbits were wrapped with periosteal graft-PRP combination. New bone formation was evaluated at 8th and 16th weeks. One rabbit was sacrificed at 8th week. Remaining 11 rabbits were imaged with 3-dimensional computed tomography (CT) at 16th week; then, zygomatic arches were removed for micro-CT and histologic examinations. Three-dimensional CT analysis at 16th week revealed no significant difference between groups regarding new bone formation (P = 0.232). Micro-CT analysis of new regenerated bone at 16th week displayed significant differences between groups 1 and 3 regarding mean bone volume (BV, mm) (P = 0.028) and mean bone mineral density (BMD, mm) (P = 0.001). There was no difference between groups 2 and 3 or between groups 1 and 2, regarding BV or BMD. Histological Bone Regeneration Scorings at 16th week displayed significant difference between groups (P = 0.015). Negative correlation between 3-dimensional CT and histologic results (r = 0.120); positive correlations between BV/BMD values in micro-CT and histologic results (r = 0.524 and r = 0.456) were found. By enhancing bone formation capacity of periosteal grafts, periosteal graft-PRP combination provided bone formation having more volume and density comparing with silicone tube application.

  14. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects

    Directory of Open Access Journals (Sweden)

    Dong J

    2013-03-01

    Full Text Available Jingjing Dong,1,* Geng Cui,2,* Long Bi,1,* Jie Li,3 Wei Lei11Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China; 2Institute of Orthopedics, General Hospital of PLA, Beijing, People’s Republic of China; 3Institute of Gynecology and Obstetrics, General Hospital of PLA, Beijing, People’s Republic of China*These authors contributed equally to this workAbstract: In order to improve the mechanical and biological properties of calcium phosphate cement (CPC, nanometer-biomaterial for bone reconstruction in the rabbit femoral defect model, fibrin glue (FG, the natural product, purified from the blood was introduced at three different ratios. The CPC powder and the FG solution were mixed, respectively, at the powder/liquid (P/L ratios (g/mL of 1:1, 3:1, and 5:1 (g/mL, and pure CPC was used as a control. After being implanted into the femoral defect in rabbit, the healing process was evaluated by micro-computed tomography scan, biomechanical testing, and histological examination. By micro-computed tomography analysis, the P/L ratio of 1:1 (g/mL group indicated the largest quantity of new bone formation at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. Bone volume per trabecular volume of the 1:1 group was highest in the four groups, which was 1.45% ± 0.42%, 7.35% ± 1.45%, and 29.10% ± 1.67% at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the biomechanical tests, the compressive strength and the elastic modulus of the three CPC–FG groups were much higher than those of the pure CPC group at the determined time point (P < 0.05. The histological evaluation also showed the best osseointegration in the 1:1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the 1:1 group, the bone grew into the pore of the cement in the laminar arrangement and connected with the cement tightly at the 12th week after the operation

  15. Vulnerary Factors to Improve Bone Healing

    National Research Council Canada - National Science Library

    Hollinger, Jeffrey O

    2007-01-01

    The objective for the work was to process rabbit bone specimens from the Institute of Surgical Research, foliwed by sectioning and staining of the samples No patents application were filed The rabbit...

  16. Prevention of Bone Bridge Formation Using Transplantation of the Autogenous Mesenchymal Stem Cells to Physeal Defects: An Experimental Study in Rabbits

    Directory of Open Access Journals (Sweden)

    L. Plánka

    2007-01-01

    Full Text Available Physeal cartilage is known to have poor self-repair capacity after injury. Evaluation of the ability of cultured mesenchymal stem cells to repair damaged physis is the topic of current research. In 10 immature New Zealand white rabbits autogenous mesenchymal stem cells were transplanted into a iatrogenic physeal defect in a lateral portion of the distal growth plate of the right femur. The same defect without stem cells transplantation in the left femoral distal physis served as a control. In our study, we used our own technique of implantation of MSCs with a newly modified gel scaffold (New Composite Hyaluronate/Collagen Type I/Fibrin Scaffold. The rabbits were euthanized 4 months after transplantation. Bone length discrepancy and valgus deformity were measured from femoral radiographs. Healing of the defect was investigated histologically. The ability of mesenchymal stem cells to survive and promote cartilage healing in the physeal defect was assessed by immunofluorescence. Average difference in femur length measured from surgery to euthanasia (4 months was 0.61 ± 0.19 cm after preventive transplantation of MSCs in the right femur, but only 0.11 ± 0.07 cm in the left femur. Average angular (valgus deformity of the right femur with MSCs preventively transplanted to iatrogenically damaged distal femoral physis was 1.2 ± 0.72 °. Valgus deformity in the left femur was 5.4 ± 2.5 °. Prophylactic transplantation of autogenous mesenchymal stem cells to iatrogenically damaged distal growth plate of the rabbit femur prevented a bone bridge formation and resulted in healing of the physeal defect with hyaline cartilage. Immunofluorescence examination showed that the chondrocytes newly formed in growth zone are the result of implanted MSCs differentiation. Femur growth in traumatized physis was maintained even after transplantation of autogenous MSCs. As compared with the opposite femur (with physeal defect but without transplanted MSCs, the bone

  17. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study

    NARCIS (Netherlands)

    Marcián, P.; Borák, L.; Valášek, J.; Kaiser, J.; Florian, Z.; Wolff, J.

    2014-01-01

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant

  18. Evaluation of the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material; Avaliacao in vivo do desempenho de compositos de alumina/fosfato de calcio (CaPs) como material de reconstrucao ossea

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, P.M.; Lima, M.G.; Costa, A.C. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Pallone, E.M. [Universidade de Sao Paulo (FZEA/USP), Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos; Kiminami, R.H. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    This study aims to evaluate the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material. To this end, mass CAPs relative to the total weight of Al2O3 prepared Al{sub 2}O{sub 3}/CAPs using percentage of 0, 10, 20 and 30% composites. The composites characterized were by X-ray diffraction, scanning electron microscopy with scanning. After implanted in rabbit tibia randomly divided were into two groups, each with nine rabbits, according to the euthanasia period (30 days after surgery). After euthanasia was performed radiographic and histological evaluation of the grafted areas. The results confirm that the compounds Al{sub 2}O{sub 3}/CAPs presented major phase of alumina and the second phase calcium pyrophosphate. Increasing the concentration of CAPs on alumina promoted with a reduction in density and increase in porosity, as well as an increase in grain size and heterogeneity in the microstructure. Upon radiographic examination of the tibiae of the nine (9) rabbits score was observed with grade 3, or similar radiopacity presented by the remaining cortical bone. It shown was that the tibiae of rabbits with the implant showed the presence of foreign material (composite), well delimited with bone formation and bone proliferation around the implants. At the point where the composite in 30 days' time of sacrifice, there was no observable sign of infection was established, since there were observed no cellular infiltration, no rejection of the implant, concluding that the biocompatible composite was studied. (author)

  19. Low serum vitamin D is associated with higher cortical porosity in elderly men.

    Science.gov (United States)

    Sundh, D; Mellström, D; Ljunggren, Ö; Karlsson, M K; Ohlsson, C; Nilsson, M; Nilsson, A G; Lorentzon, M

    2016-11-01

    Bone loss at peripheral sites in the elderly is mainly cortical and involves increased cortical porosity. However, an association between bone loss at these sites and 25-hydroxyvitamin D has not been reported. To investigate the association between serum levels of 25-hydroxyvitamin D, bone microstructure and areal bone mineral density (BMD) in elderly men. A population-based cohort of 444 elderly men (mean ± SD age 80.2 ± 3.5 years) was investigated. Bone microstructure was measured by high-resolution peripheral quantitative computed tomography, areal BMD by dual-energy X-ray absorptiometry and serum 25-hydroxyvitamin D and parathyroid hormone levels by immunoassay. Mean cortical porosity at the distal tibia was 14.7% higher (12.5 ± 4.3% vs. 10.9 ± 4.1%, P vitamin D levels compared to the highest. In men with vitamin D deficiency (6.8 pmol L -1 )], cortical porosity was 17.2% higher than in vitamin D-sufficient men (P vitamin D supplementation and parathyroid hormone showed that 25-hydroxyvitamin D independently predicted cortical porosity (standardized β = -0.110, R 2 = 1.1%, P = 0.024), area (β = 0.123, R 2 = 1.4%, P = 0.007) and cortical volumetric BMD (β = 0.125, R 2 = 1.4%, P = 0.007) of the tibia as well as areal BMD of the femoral neck (β = 0.102, R 2 = 0.9%, P = 0.04). Serum vitamin D is associated with cortical porosity, area and density, indicating that bone fragility as a result of low vitamin D could be due to changes in cortical bone microstructure and geometry. © 2016 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  20. The impact of nicotine on bone healing and osseointegration

    DEFF Research Database (Denmark)

    Balatsouka, Dimitra; Gotfredsen, Klaus; Lindh, Christian H

    2005-01-01

    OBJECTIVES: To examine the short-term effect of nicotine on bone healing and osseointegration. MATERIAL AND METHODS: Sixteen female rabbits were divided into two groups. The test group was exposed to nicotine tartrate for 8 weeks and the control group was exposed to placebo. Nicotine or placebo...... was administered via a miniosmotic pump and plasma cotinine levels were measured weekly. The pump delivered 15 mg of nicotine/day for the animals in the test group. All rabbits had three tibial bone preparations. In the proximal and distal bone bed, implants were placed after 4 weeks (right tibia) and after 6...... and the control group. CONCLUSION: Nicotine exposure in a short period of time did not have a significant impact on bone healing or implant osseointegration in rabbits....

  1. Negative effect of rapidly resorbing properties of bioactive glass-ceramics as bone graft substitute in a rabbit lumbar fusion model.

    Science.gov (United States)

    Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon; Lee, Choon-Ki

    2014-03-01

    Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass-ceramics are resorbed before bony fusion.

  2. EXPERIMENTAL ANALYSIS OF THE HEALING PROCESS IN THE AREA OF TIBIAL BONE FRACTURE

    Directory of Open Access Journals (Sweden)

    I. F. Аkhtyamov

    2016-01-01

    Full Text Available Purpose. To quantify the density of the cortical bone of the tibia in the area of reparative regeneration and the state of the vascular bed (hemodynamics of the operated limb under intramedullary osteosynthesis using pins coated with titanium and hafnium nitrides. Materials and methods. In the experiment, changes in the bone density and the characteristics of the local blood supply were studied on 40 outbred rabbits which underwent intramedullary osteosynthesis by the use of pins with a nanocoating based on superhard compounds which consist of titanium and hafnium nitrides and pins without a coating. Using color Doppler mode helped to evaluate the condition of the vascular bed proximally to the fracture site. Results. It is noted that the use of pins with the described coating above did not violate the osteoregeneration staging. The density of the cortical bone in the test group exceeded that of the comparison group by an average of 30%. Bone remodeling processes in the test group completed at an earlier date, as determined by the higher rates of its density. In the study of the vascular bed of the operated limb, it was found that on the 10th day of the experiment, an increase in the maximal velocity of the blood flow was recorded (TAMAX. In animals of the test group this index approached preoperative values on the 30th day, while in animals of the comparison group this index approached the initial values only by the 60th day. Conclusion. The use of implants coated with titanium and hafnium nitrides which are characterized by high strength, thermal and chemical stability is accompanied by the formation of a cortical bone in the area of osteotomy with higher density characteristics. The changes which are typical of the vasodilatation in the area of injury in the early postoperative period can be regarded as a positive factor in the formation of primary bone union. In the group where implants coated with titanium and hafnium nitrides were used

  3. Osseoconductivity of a Specific Streptavidin-Biotin-Fibronectin Surface Coating of Biotinylated Titanium Implants - A Rabbit Animal Study.

    Science.gov (United States)

    Kämmerer, Peer W; Lehnert, Michael; Al-Nawas, Bilal; Kumar, Vinay V; Hagmann, Sebastien; Alshihri, Abdulmonem; Frerich, Bernhard; Veith, Michael

    2015-10-01

    Biofunctionalized implant surfaces may accelerate bony integration and increase long-term stability. The aim of the study was to evaluate the osseous reaction toward biomimetic titanium implants surfaces coated with quasicovalent immobilized fibronectin in an in vivo animal model. A total of 84 implants (uncoated [control 1, n = 36], streptavidin-biotin coated [test 1, n = 24], streptavidin-biotin-fibronectin coated [test 2, n = 24]) were inserted 1 mm supracortically in the proximal tibia of 12 rabbits. The samples were examined after 3 and 6 weeks. Total bone-implant contact (tBIC; %), bone-implant contact in the cortical (cBIC; %) and in the spongious bone (sBIC; %) as well as the percentage of linear bone fill (PLF; %) were evaluated. After 3 weeks, streptavidin-biotin-fibronectin implants had a significant higher sBIC (p = .043) and PLF (p = .007) compared with the uncoated samples. After 6 weeks, this difference was significant for tBIC (p = .016) and cBIC (p biotin-coated implants showed less bone growth at both time points of all examined parameters when compared with their counterparts (all p biotin-fibronectin system on smooth surface titanium shows a beneficial faster osseous healing in vivo. Besides, an antifouling effect of the streptavidin-biotin coating was proven. © 2015 Wiley Periodicals, Inc.

  4. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  5. Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits.

    Science.gov (United States)

    Moura, Jonas M L; Ferreira, Juliana F; Marques, Leonardo; Holgado, Leandro; Graeff, Carlos F O; Kinoshita, Angela

    2014-09-01

    This work assessed the performance of membranes made of natural latex extracted from Hevea brasiliensis prepared with three different methods: polymerized immediately after collection without the use of ammonia (L1); polymerized after preservation in ammonia solution (L2); and polymerized after storage in ammonia, followed by Soxhlet technique for the extraction of substances (L3). Polytetrafluoroethylene (PTFE) membrane was used as control. Two 10-mm diameter bone defects were surgically made in the calvaria of thirty adult male New Zealand rabbits. Defects (total n = 60) were treated with guided bone regeneration (GBR) using L1, L2, L3 or PTFE membranes (n = 15 for each membrane). Ten animals were euthanized after 7, 20 and 60 days postoperatively so that five samples (n = 5) of each treatment were collected at each time, and bone regeneration was assessed microscopically. The microscopic analysis revealed defects filled with blood clot and new bone formation at the margins of the defect in all 7-day samples, while 20-day defects were mainly filled with fibrous connective tissue. After 60 days defects covered with L1 membranes showed a significantly larger bone formation area in comparison to the other groups (P PTFE membranes was also investigated in six additional rabbits. The animals were subjected to the same surgical procedure for the confection of one 10-mm diameter bone defect that was treated with L1 (n = 3) or PTFE (n = 3). Fifty-three days later, a second surgery was performed to make a second defect, which was treated with the same type of membrane used in the first surgery. Seven days later, the animals were euthanized and samples analyzed. No differences among L1 and PTFE samples collected from sensitized and non-sensitized animals were found (P > 0.05, Kruskal-Wallis). Therefore, the results demonstrated that latex membranes presented performance comparable to PTFE membranes, and that L1 membranes induced higher bone formation. L1 and

  6. Primary Stability of Self-Drilling and Self-Tapping Mini-Implant in Tibia of Diabetes-Induced Rabbits

    Directory of Open Access Journals (Sweden)

    Jea-Beom Park

    2014-01-01

    Full Text Available Objective. This study aimed to evaluate effects of type 1 diabetes mellitus and mini-implant placement method on the primary stability of mini-implants by comparing mechanical stability and microstructural/histological differences. Methods. After 4 weeks of diabetic induction, 48 mini-implants (24 self-tapping and 24 self-drilling implants were placed on the tibia of 6 diabetic and 6 normal rabbits. After 4 weeks, the rabbits were sacrificed. Insertion torque, removal torque, insertion energy, and removal energy were measured with a surgical engine on 8 rabbits. Remaining 4 rabbits were analyzed by microcomputed tomography (micro-CT and bone histomorphometry. Results. Total insertion energy was higher in self-drilling groups than self-tapping groups in both control and diabetic groups. Diabetic groups had more trabecular separation in bone marrow than the control groups in both SD and ST groups. Micro-CT analysis showed deterioration of bone quality in tibia especially in bone marrow of diabetic rabbits. However, there was no statistically significant correlation between self-drilling and self-tapping group for the remaining measurements in both control and diabetic groups. Conclusions. Type 1 diabetes mellitus and placement method of mini-implant did not affect primary stability of mini-implants.

  7. Effect of peripherally and cortically evoked swallows on jaw reflex responses in anesthetized rabbits.

    Science.gov (United States)

    Suzuki, Taku; Yoshihara, Midori; Sakai, Shogo; Tsuji, Kojun; Nagoya, Kouta; Magara, Jin; Tsujimura, Takanori; Inoue, Makoto

    2018-05-03

    This study aimed to investigate whether the jaw-opening (JOR) and jaw-closing reflexes (JCR) are modulated during not only peripherally, but also centrally, evoked swallowing. Experiments were carried out on 24 adult male Japanese white rabbits. JORs were evoked by trigeminal stimulation at 1 Hz for 30 sec. In the middle 10 sec, either the superior laryngeal nerve (SLN) or cortical swallowing area (Cx) was simultaneously stimulated to evoke swallowing. The peak-to-peak JOR amplitude was reduced during the middle and late 10-sec periods (i.e., during and after SLN or Cx stimulation), and the reduction was dependent on the current intensity of SLN/Cx stimulation: greater SLN/Cx stimulus current resulted in greater JOR inhibition. The reduction rate was significantly greater during Cx stimulation than during SLN stimulation. The amplitude returned to baseline 2 min after 10-sec SLN/Cx stimulation. The effect of co-stimulation of SLN and Cx was significantly greater than that of SLN stimulation alone. There were no significant differences in any parameters of the JCR between conditions. These results clearly showed that JOR responses were significantly suppressed, not only during peripherally evoked swallowing but also during centrally evoked swallowing, and that the inhibitory effect is likely to be larger during centrally compared with peripherally evoked swallowing. The functional implications of these results are discussed. Copyright © 2018. Published by Elsevier B.V.

  8. Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women

    Science.gov (United States)

    Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.

    2016-01-01

    Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but

  9. Improving Soldier Recovery from Catastrophic Bone Injuries: Developing an Animal Model for Standardizing the Bone Reparative Potential of Emerging Progenitor Cell Therapies

    Science.gov (United States)

    2011-08-01

    cell matrix will anchor the developing bone of the outer cortical shell to the surface of intact cortical bone. •Between day 4-7, the three...periosteum so that by day 21 an outer cortical shell, well anchored to the cortical bone at the base of the arch, provides the major structureal support of...tibia was dissected free of the femur, ankle , and overlying skin, and sufficient muscle was retained to not disrupt the fracture zone. The sample was

  10. Micro-CT analyses of historical bone samples presenting with osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, C.; Pietschmann, P. [Medical University Vienna (MUV), Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Vienna (Austria); Dockner, M.; Weber, G.W. [University of Vienna, Department of Anthropology, Vienna (Austria); University of Vienna, Core Facility for Micro-Computed Tomography, Vienna (Austria); Pospischek, B.; Winter, E.; Patzak, B. [Museum of Natural History (NHM), Collection of Anatomical Pathology in the Madhouse Tower, Vienna (Austria); Pretterklieber, M. [Medical University of Vienna (MUV), Department of Applied Anatomy, Vienna (Austria)

    2015-10-15

    Osteomyelitis is an inflammation of the bone marrow mainly caused by bacteria such as Staphylococcus aureus. It typically affects long bones, e.g. femora, tibiae and humeri. Recently micro-computed tomography (μCT) techniques offer the opportunity to investigate bone micro-architecture in great detail. Since there is no information on long bone microstructure in osteomyelitis, we studied historic bone samples with osteomyelitis by μCT. We investigated 23 femora of 22 individuals suffering from osteomyelitis provided by the Collection of Anatomical Pathology, Museum of Natural History, Vienna (average age 44 ±19 years); 9 femora from body donors made available by the Department of Applied Anatomy, Medical University of Vienna (age range, 56-102 years) were studied as controls. Bone microstructure was assessed by μCT VISCOM X 8060 II with a minimal resolution of 18 μm. In the osteomyelitic femora, most prominent alterations were seen in the cortical compartment. In 71.4 % of the individuals with osteomyelitis, cortical porosity occurred. 57.1 % of the individuals showed cortical thinning. In 42.9 % trabecularisation of cortical bone was observed. Osteomyelitis is associated with severe alterations of cortical bone structure otherwise typically observed at old age such as cortical porosity and cortical thinning. (orig.)

  11. Repair of sheep long bone cortical defects filled with COLLOSS, COLLOSS E, OSSAPLAST, and fresh iliac crest autograft.

    Science.gov (United States)

    Huffer, William E; Benedict, James J; Turner, A S; Briest, Arne; Rettenmaier, Robert; Springer, Marco; Walboomers, X F

    2007-08-01

    COLLOSS and COLLOSS E are osteoinductive bone void fillers consisting of bone collagen and noncollagenous proteins from bovine and equine bone, respectively. The aim of this study was to compare COLLOSS, COLLOSS E, iliac bone autograft, sintered beta tricalcium phosphate (beta-TCP; OSSAPLAST), and COLLOSS E plus OSSAPLAST. Materials were placed for 4, 8, or 24 weeks in 5-mm cortical bone defects in sheep long bones. Histological sections in a plane perpendicular to the long axis of the bone were used to measure the total repair area (original defect plus callus) and the area of bone within the total repair area. The incidence of defect union was also evaluated. At 4 and 8 weeks, defects treated with COLLOSS and COLLOSS E with or without OSSAPLAST had total repair and bone areas equivalent to autograft, and larger than OSSAPLAST-treated defects. At 8 weeks, the incidence of defect union was higher in defects treated with autograft or COLLOSS E plus OSSAPLAST than in untreated defects. At 24 weeks, the incidence of union was 100% in all treatment groups and 0% in untreated defects. The incidence of union was related to the degree of remodeling between 8 and 24 weeks. This was greater in all treated than nontreated defects. In conclusion, COLLOSS and COLLOSS E were equivalent to each other and to autograft, and superior to beta-TCP, in this study model.

  12. Analysis of plastic deformation in cortical bone after insertion of coated and non-coated self-tapping orthopaedic screws.

    Science.gov (United States)

    Koistinen, A P; Korhonen, H; Kiviranta, I; Kröger, H; Lappalainen, R

    2011-07-01

    Insertion of internal fracture fixation devices, such as screws, mechanically weakens the bone. Diamond-like carbon has outstanding tribology properties which may decrease the amount of damage in tissue. The purpose of this study was to investigate methods for quantification of cortical bone damage after orthopaedic bone screw insertion and to evaluate the effect of surface modification on tissue damage. In total, 48 stainless steel screws were inserted into cadaver bones. Half of the screws were coated with a smooth amorphous diamond coating. Geometrical data of the bones was determined by peripheral quantitative computed tomography. Thin sections of the bone samples were prepared after screw insertion, and histomorphometric evaluation of damage was performed on images obtained using light microscopy. Micro-computed tomography and scanning electron microscopy were also used to examine tissue damage. A positive correlation was found between tissue damage and the geometric properties of the bone. The age of the cadaver significantly affected the bone mineral density, as well as the damage perimeter and diameter of the screw hole. However, the expected positive effect of surface modification was probably obscured by large variations in the results and, thus, statistically significant differences were not found in this study. This can be explained by natural variability in bone tissue, which also made automated image analysis difficult.

  13. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  14. rhBMP-2 (ACS and CRM formulations) overcomes pseudarthrosis in a New Zealand white rabbit posterolateral fusion model.

    Science.gov (United States)

    Lawrence, James P; Waked, Walid; Gillon, Thomas J; White, Andrew P; Spock, Christopher R; Biswas, Debdut; Rosenberger, Patricia; Troiano, Nancy; Albert, Todd J; Grauer, Jonathan N

    2007-05-15

    The study design consisted of a New Zealand white rabbit model of pseudarthrosis repair. Study groups consisting of no graft, autograft, or recombinant human bone morphogenetic protein-2 (rhBMP-2) with absorbable collagen sponge (ACS) or compression resistant matrix (CRM) were evaluated. To evaluate the relative efficacy of bone graft materials (autograft, ACS, and CRM). rhBMP-2 has been shown to have a 100% fusion rate in a primary rabbit fusion model, even in the presence of nicotine, which is known to inhibit fusion. Seventy-two New Zealand white rabbits underwent posterolateral lumbar fusion with iliac crest autograft. To establish pseudarthroses, nicotine was administered to all animals. At 5 weeks, the spines were explored and all pseudarthroses were redecorticated and implanted with no graft, autograft, rhBMP-2/ACS, or rhBMP-2/CRM. At 10 weeks, fusions were assessed by manual palpation and histology. Eight rabbits (11%) were lost to complications. At 5 weeks, 66 (97%) had pseudarthroses. At 10 weeks, attempted pseudarthrosis repairs were fused in 1 of 16 of no graft rabbits (6%), 5 of 17 autograft rabbits (29%), and 31 of 31 rhBMP-2 rabbits (with ACS or CRM) (100%). Histologic analysis demonstrated more mature bone formation in the rhBMP-2 groups. The 2 rhBMP-2 formulations led to significantly higher fusion rates and histologic bone formation than no graft and autograft controls in this pseudarthrosis repair model.

  15. Changes in tissue morphology and collagen composition during the repair of cortical bone in the adult chicken.

    Science.gov (United States)

    Glimcher, M J; Shapiro, F; Ellis, R D; Eyre, D R

    1980-09-01

    An animal model was developed to study the histology and collagen chemistry of healing cortical bone. A hole was cut through the cortex of the mid-shaft of the humerus of the adult chicken, which allowed for repair at a mechanically stable site. After one to two weeks the collagen of the repair tissue, which consisted principally of woven bone, contained almost three times as much hydroxylysine as the collagen of normal adult bone and thus resembled the collagen of embryonic long bones. By eight weeks, when lamellar one predominated, the hydroxylysine content had fallen to normal levels. Type I was the major genetic type of collagen present throughout. No type-II collagen, characteristic of cartilage, was detected; this was consistent with the histological findings. The results established that hydroxylysine-rich type-I collagen can be made by osteoblasts of adult animals as well as by those of embryos and early postnates. In order to understand the biological characteristics of fracture healing, it is vital to study not only the macroscopic organization of the repair tissue but also the chemical properties of its molecular components. The strength of healing fractured bone, and indeed of normal bone, depends largely on the properties of the structural protein collagen. To date, it is not known whether the collagen in healing fractures is the same as that in normal bone, or whether it has distinct chemical features that may suit it for bone repair.

  16. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate Bone Cement on Mechanical Properties and Bioactivity.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA bone cement after addition of the nano-hydroxyapatite(HA coated bone collagen (mineralized collagen, MC.The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis.15.0%(wt impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA.MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.

  17. Peri- and intra-implant bone response to microporous Ti coatings with surface modification.

    Science.gov (United States)

    Braem, Annabel; Chaudhari, Amol; Vivan Cardoso, Marcio; Schrooten, Jan; Duyck, Joke; Vleugels, Jozef

    2014-02-01

    Bone growth on and into implants exhibiting substantial surface porosity is a promising strategy in order to improve the long-term stable fixation of bone implants. However, the reliability in clinical applications remains a point of discussion. Most attention has been dedicated to the role of macroporosity, leading to the general consensus of a minimal pore size of 50-100 μm in order to allow bone ingrowth. In this in vivo study, we assessed the feasibility of early bone ingrowth into a predominantly microporous Ti coating with an average thickness of 150 μm and the hypothesis of improving the bone response through surface modification of the porous coating. Implants were placed in the cortical bone of rabbit tibiae for periods of 2 and 4 weeks and evaluated histologically and histomorphometrically using light microscopy and scanning electron microscopy. Bone with osteocytes encased in the mineralized matrix was found throughout the porous Ti coating up to the coating/substrate interface, highlighting that osseointegration of microporosities (coating in the host bone in the long term is possible. When surface modifications inside the porous structure further reduced the interconnective pore size to the submicrometer level, bone ingrowth was impaired. On the other hand, application of a sol-gel-derived bioactive glass-ceramic coating without altering the pore characteristics was found to significantly improve bone regeneration around the coating, while still supporting bone ingrowth. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone – a feasibility study

    NARCIS (Netherlands)

    Marcian, P.; Borak, L.; Valasek, J.; Kaiser, J.; Florian, Z.; Wolff, J.E.H.

    2014-01-01

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant

  19. Periosteal PTHrP regulates cortical bone modeling during linear growth in mice.

    Science.gov (United States)

    Wang, Meina; VanHouten, Joshua N; Nasiri, Ali R; Tommasini, Steven M; Broadus, Arthur E

    2014-07-01

    The modeling of long bone surfaces during linear growth is a key developmental process, but its regulation is poorly understood. We report here that parathyroid hormone-related peptide (PTHrP) expressed in the fibrous layer of the periosteum (PO) drives the osteoclastic (OC) resorption that models the metaphyseal-diaphyseal junction (MDJ) in the proximal tibia and fibula during linear growth. PTHrP was conditionally deleted (cKO) in the PO via Scleraxis gene targeting (Scx-Cre). In the lateral tibia, cKO of PTHrP led to a failure of modeling, such that the normal concave MDJ was replaced by a mound-like deformity. This was accompanied by a failure to induce receptor activator of NF-kB ligand (RANKL) and a 75% reduction in OC number (P ≤ 0.001) on the cortical surface. The MDJ also displayed a curious threefold increase in endocortical osteoblast mineral apposition rate (P ≤ 0.001) and a thickened cortex, suggesting some form of coupling of endocortical bone formation to events on the PO surface. Because it fuses distally, the fibula is modeled only proximally and does so at an extraordinary rate, with an anteromedial cortex in CD-1 mice that was so moth-eaten that a clear PO surface could not be identified. The cKO fibula displayed a remarkable phenotype, with a misshapen club-like metaphysis and an enlargement in the 3D size of the entire bone, manifest as a 40-45% increase in the PO circumference at the MDJ (P ≤ 0.001) as well as the mid-diaphysis (P ≤ 0.001). These tibial and fibular phenotypes were reproduced in a Scx-Cre-driven RANKL cKO mouse. We conclude that PTHrP in the fibrous PO mediates the modeling of the MDJ of long bones during linear growth, and that in a highly susceptible system such as the fibula this surface modeling defines the size and shape of the entire bone. © 2014 Anatomical Society.

  20. Evaluation of early tissue reactions after lumbar intertransverse process fusion using CT in a rabbit

    International Nuclear Information System (INIS)

    Shinbo, Jun; Mainil-Varlet, Pierre; Watanabe, Atsuya; Pippig, Suzanne; Koener, Jens; Anderson, Suzanne E.

    2010-01-01

    The objective of the study was to evaluate tissue reactions such as bone genesis, cartilage genesis and graft materials in the early phase of lumbar intertransverse process fusion in a rabbit model using computed tomography (CT) imaging with CT intensity (Hounsfield units) measurement, and to compare these data with histological results. Lumbar intertransverse process fusion was performed on 18 rabbits. Four graft materials were used: autograft bone (n=3); collagen membrane soaked with recombinant human bone morphogenetic protein-2 (rhBMP-2) (n=5); granular calcium phosphate (n=5); and granular calcium phosphate coated with rhBMP-2 (n=5). All rabbits were euthanized 3 weeks post-operatively and lumbar spines were removed for CT imaging and histological examination. Computed tomography imaging demonstrated that each fusion mass component had the appropriate CT intensity range. CT also showed the different distributions and intensities of bone genesis in the fusion masses between the groups. Each component of tissue reactions was identified successfully on CT images using the CT intensity difference. Using CT color mapping, these observations could be easily visualized, and the results correlated well with histological findings. The use of CT intensity is an effective approach for observing and comparing early tissue reactions such as newly synthesized bone, newly synthesized cartilage, and graft materials after lumbar intertransverse process fusion in a rabbit model. (orig.)

  1. USO DO ENXERTO ÓSSEO CORTICAL BOVINO CONSERVADO EM GLICERINA A 98% NA OSTEOTOMIA FEMORAL EM GATOS USE BOVINE CORTICAL BONE, PRESERVED IN 98% GLICERIN IN FEMORAL OSTEOTOMY IN CATS.

    Directory of Open Access Journals (Sweden)

    Lucia Helena de Carvalho Penha

    2008-12-01

    . The objective of this study was to evaluate clinically and radiographically the efficacy of xenografts as a substitute for methalic implants. Animals were divided into two groups: five young cats and five adult cats. Clinically, the weight-bearing on the operated limb was observed the day after surgery in all animals, with complete remission of lameness at 15 days and bone union in 16.6 weeks. In five young animals, in two of them, the grafts were fractured carrying a serious bone bending without fracture of feline femur. In the last two young cats, remodeling was noted in mean time of 75 days or 10.7 weeks. In five adult cats, all of them suffered overriding of the fragments of osteotomized bone with various degrees, where two cases were considered severe cases dut to fracture of feline femur without bone bending. In the three remaining animals with slightly overriding, one was a case of delayed union, one suffered tow surgical procedures due to graft fracture and one did not show a radiographic exuberant bone callus, with remodeling at 110 days. The use of the bonive xenograft preserved in 98% glycerol in young and adult cats used as intramedularry nails was perfectly employed, offering mechanical support in time of bone consolidation in all of 10 animals.

    KEY WORDS: Cortical bovine graft, cats, femur, fracture, osteotomy.

  2. The Improvement of Bone-Tendon Fixation by Porous Titanium Interference Screw: A Rabbit Animal Model.

    Science.gov (United States)

    Tsai, Pei-I; Chen, Chih-Yu; Huang, Shu-Wei; Yang, Kuo-Yi; Lin, Tzu-Hung; Chen, San-Yuan; Sun, Jui-Sheng

    2018-05-04

    The interference screw is a widely used fixation device in the anterior cruciate ligament (ACL) reconstruction surgeries. Despite the generally satisfactory results, problems of using interference screws were reported. By using additive manufacturing (AM) technology, we developed an innovative titanium alloy (Ti 6 Al 4 V) interference screw with rough surface and inter-connected porous structure designs to improve the bone-tendon fixation. An innovative Ti 6 Al 4 V interference screws were manufactured by AM technology. In vitro mechanical tests were performed to validate its mechanical properties. Twenty-seven New Zealand white rabbits were randomly divided into control and AM screw groups for biomechanical analyses and histological analysis at 4, 8 and 12 weeks postoperatively; while micro-CT analysis was performed at 12 weeks postoperatively. The biomechanical tests showed that the ultimate failure load in the AM interference screw group was significantly higher than that in the control group at all tested periods. These results were also compatible with the findings of micro-CT and histological analyses. In micro-CT analysis, the bone-screw gap was larger in the control group; while for the additive manufactured screw, the screw and bone growth was in close contact. In histological study, the bone-screw gaps were wider in the control group and were almost invisible in the AM screw group. The innovative AM interference screws with surface roughness and inter-connected porous architectures demonstrated better bone-tendon-implant integration, and resulted in stronger biomechanical characteristics when compared to traditional screws. These advantages can be transferred to future interference screw designs to improve their clinical performance. The AM interference screw could improve graft fixation and eventually result in better biomechanical performance of the bone-tendon-screw construct. The innovative AM interference screws can be transferred to future

  3. Intrinsic connectivity of neural networks in the awake rabbit.

    Science.gov (United States)

    Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel; Disterhoft, John F; Wang, Lei

    2016-04-01

    The way in which the brain is functionally connected into different networks has emerged as an important research topic in order to understand normal neural processing and signaling. Since some experimental manipulations are difficult or unethical to perform in humans, animal models are better suited to investigate this topic. Rabbits are a species that can undergo MRI scanning in an awake and conscious state with minimal preparation and habituation. In this study, we characterized the intrinsic functional networks of the resting New Zealand White rabbit brain using BOLD fMRI data. Group independent component analysis revealed seven networks similar to those previously found in humans, non-human primates and/or rodents including the hippocampus, default mode, cerebellum, thalamus, and visual, somatosensory, and parietal cortices. For the first time, the intrinsic functional networks of the resting rabbit brain have been elucidated demonstrating the rabbit's applicability as a translational animal model. Without the confounding effects of anesthetics or sedatives, future experiments may employ rabbits to understand changes in neural connectivity and brain functioning as a result of experimental manipulation (e.g., temporary or permanent network disruption, learning-related changes, and drug administration). Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Experimental model of bone response to collagenized xenografts of porcine origin (OsteoBiol® mp3): a radiological and histomorphometric study.

    Science.gov (United States)

    Calvo Guirado, Jose Luis; Ramírez Fernández, Maria Piedad; Negri, Bruno; Delgado Ruiz, Rafael Arcesio; Maté Sánchez de-Val, José Eduardo; Gómez-Moreno, Gerardo

    2013-02-01

    Adequate alveolar ridges are fundamental to successful rehabilitation with implants. There are diverse techniques for reconstructing atrophied ridges, of which bone substitute grafts is one possibility. The aim of this study was to carry out radiological and histomorphometric evaluations of bone response to collagenized porcine bone xenografts over a 4-month period following their insertion in rabbits' tibiae. Twenty New Zealand rabbits were used. Twenty collagenized porcine bone xenografts (Osteobiol® mp3, Tecnoss Dental s.r.l., Torino, Italy), in granulated form of 600 to 1,000 µm, were inserted in the proximal metaphyseal area of the animals' tibiae and 20 control areas were created. Following implantation, the animals were sacrificed in four groups of five, after 1, 2, 3, and 4 months, respectively. Radiological and histomorphometric studies were made. After 4 months, radiological images revealed bone defects with a decrease in graft volume and the complete repair of the osseous defect. No healed or residual bone alterations attributable to the presence of the implants were observed. Histomorphometric analysis at 4 months found mean values for newly formed bone, residual graft material, and non-mineralized connective tissue of 25.4 ± 1.8%, 36.37 ± 3.0%, and 38.22 ± 2.5%, respectively. There were no statistical differences in the length of cortical formation with collagenized porcine xenograft (98.9 ± 1.1%) compared with the control samples (99.1 ± 0.7%) at the end of the study period. The biomaterial used proved to be biocompatible, bioabsorbable, and osteoconductive and as such, a possible bone substitute that did not interfere with the bone's normal reparative processes. © 2011 Wiley Periodicals, Inc.

  5. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.

    Directory of Open Access Journals (Sweden)

    Garry R Brock

    Full Text Available Microdamage occurs in bone through repeated and excessive loading. Accumulation of microdamage weakens bone, leading to a loss of strength, stiffness and energy dissipation in the tissue. Imaging techniques used to examine microdamage have typically been limited to the microscale. In the current study microdamage was examined at the nanoscale using transmission x-ray microscopy with an x-ray negative stain, lead-uranyl acetate. Microdamage was generated in notched and unnotched beams of sheep cortical bone (2×2×20 mm, with monotonic and fatigue loading. Bulk sections were removed from beams and stained with lead-uranyl acetate to identify microdamage. Samples were sectioned to 50 microns and imaged using transmission x-ray microscopy producing projection images of microdamage with nanoscale resolution. Staining indicated microdamage occurred in both the tensile and compressive regions. A comparison between monotonic and fatigue loading indicated a statistically significant greater amount of stain present in fatigue loaded sections. Microdamage occurred in three forms: staining to existing bone structures, cross hatch damage and a single crack extending from the notch tip. Comparison to microcomputed tomography demonstrated differences in damage morphology and total damage between the microscale and nanoscale. This method has future applications for understanding the underlying mechanisms for microdamage formation as well as three-dimensional nanoscale examination of microdamage.

  6. An in vitro biomechanical comparison of hydroxyapatite coated and uncoated ao cortical bone screws for a limited contact: dynamic compression plate fixation of osteotomized equine 3rd metacarpal bones.

    Science.gov (United States)

    Durham, Myra E; Sod, Gary A; Riggs, Laura M; Mitchell, Colin F

    2015-02-01

    To compare the monotonic biomechanical properties of a broad 4.5 mm limited contact-dynamic compression plate (LC-DCP) fixation secured with hydroxyapatite (HA) coated cortical bone screws (HA-LC-DCP) versus uncoated cortical bone screws (AO-LC-DCP) to repair osteotomized equine 3rd metacarpal (MC3) bones. Experimental. Adult equine cadaveric MC3 bones (n = 12 pair). Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for: (1) 4 point bending single cycle to failure testing; (2) 4 point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. For the HA-LC-DCP-MC3 construct, an 8-hole broad LC-DCP (Synthes Ltd, Paoli, PA) was secured on the dorsal surface of each randomly selected MC3 bone with a combination of four 5.5 mm and four 4.5 mm HA-coated cortical screws. For the AO-LC-DCP-MC3 construct, an 8-hole 4.5 mm broad LC-DCP was secured on the dorsal surface of the contralateral MC3 bone with a combination of four 5.5 mm and four 4.5 mm uncoated cortical screws. All MC3 bones had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P < .05. Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4 point bending, single cycle to failure, of the HA-LC-DCP fixation were significantly greater than those of the AO-LC-DCP fixation. Mean ± SD values for the HA-LC-DCP and the AO-LC-DCP fixation techniques, respectively, in single cycle to failure under 4 point bending were: yield load, 26.7 ± 2.15 and 16.3 ± 1.38 kN; yield bending moment, 527.4 ± 42.4 and 322.9 ± 27.2 N-m; composite rigidity, 5306 ± 399 and 3003 ± 300 N-m/rad; failure load, 40.6 ± 3.94 and 26.5 ± 2.52 kN; and failure bending moment, 801.9 ± 77.9 and 522.9 ± 52.2 N-m. Mean cycles to failure in 4 point bending of the HA

  7. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study.

    Science.gov (United States)

    Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H

    2016-05-01

    Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. In vitro evaluation of allogeneic bone screws for use in internal fixation of transverse fractures created in proximal sesamoid bones obtained from equine cadavers.

    Science.gov (United States)

    Sasaki, Naoki; Takakuwa, Jun; Yamada, Haruo; Mori, Ryuji

    2010-04-01

    To evaluate effectiveness of allogeneic bone screws and pins for internal fixation of midbody transverse fractures of equine proximal sesamoid bones (PSBs) in vitro. 14 forelimbs from cadavers of 3-year-old Thoroughbreds. Allogeneic cortical bone fragments were collected from the limbs of a male Thoroughbred, and cortical bone screws were prepared from the tissue by use of a precision desktop microlathe programmed with the dimensions of a metal cortical bone screw. A midbody transverse osteotomy of each PSB was performed by use of a bone-shaping oscillating saw and repaired via 1 of 3 internal fixation techniques: 1 allogeneic bone screw with 1 allogeneic bone pin (type I; n = 6 PSBs), 2 allogeneic bone screws (type II; 8), or 1 stainless steel cortical bone screw (control repair; 6). Mechanical tension measurements were obtained by use of a commercially available materials testing system. Mean +/- SD tensile strength (TS) was 668.3 +/- 216.6 N for type I repairs, 854.4 +/- 253.2 N for type II repairs, and 1,150.0 +/- 451.7 N for control repairs. Internal fixation of PSB fractures by the use of allogeneic bone screws and bone pins was successful. Although mean TS of control repairs with stainless steel cortical bone screws was greater than the mean TS of type I and type II repairs, the difference between type II and control repairs was not significant. Allogeneic screws may advance healing and result in fewer complications in a clinical setting.

  9. Defects in cortical microarchitecture among African-American women with type 2 diabetes.

    Science.gov (United States)

    Yu, E W; Putman, M S; Derrico, N; Abrishamanian-Garcia, G; Finkelstein, J S; Bouxsein, M L

    2015-02-01

    Patients with type 2 diabetes mellitus (DM2) have increased fracture risk. We found that African-American women with DM2 have increased cortical porosity and lower cortical bone density at the radius than non-diabetic controls. These cortical deficits are associated with hyperglycemia and may contribute to skeletal fragility associated with DM2. Fracture risk is increased in patients with type 2 diabetes mellitus (DM2) despite normal areal bone mineral density (aBMD). DM2 is more common in African-Americans than in Caucasians. It is not known whether African-American women with DM2 have deficits in bone microstructure. We measured aBMD at the spine and hip by DXA, and volumetric BMD (vBMD) and microarchitecture at the distal radius and tibia by HR-pQCT in 22 DM2 and 78 non-diabetic African-American women participating in the Study of Women Across the Nation (SWAN). We also measured fasting glucose and HOMA-IR. Age, weight, and aBMD at all sites were similar in both groups. At the radius, cortical porosity was 26% greater, while cortical vBMD and tissue mineral density were lower in women with DM2 than in controls. There were no differences in radius total vBMD or trabecular vBMD between groups. Despite inferior cortical bone properties at the radius, FEA-estimated failure load was similar between groups. Tibia vBMD and microarchitecture were also similar between groups. There were no significant associations between cortical parameters and duration of DM2 or HOMA-IR. However, among women with DM2, higher fasting glucose levels were associated with lower cortical vBMD (r=-0.54, p=0.018). DM2 and higher fasting glucose are associated with unfavorable cortical bone microarchitecture at the distal radius in African-American women. These structural deficits may contribute to the increased fracture risk among women with DM2. Further, our results suggest that hyperglycemia may be involved in mechanisms of skeletal fragility associated with DM2.

  10. Alterations of bone microstructure and strength in end-stage renal failure.

    Science.gov (United States)

    Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R

    2013-05-01

    End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.

  11. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria.

    Science.gov (United States)

    Kook, Min-Suk; Roh, Hee-Sang; Kim, Byung-Hoon

    2018-05-02

    This study was to investigate the effects of O 2 plasma-etching of the 3D polycaprolactone (PCL) scaffold surface on preosteoblast cell proliferation and differentiation, and early new bone formation. The PCL scaffolds were fabricated by 3D printing technique. After O 2 plasma treatment, surface characterizations were examined by scanning electron microscopy, atomic force microscopy, and contact angle. MTT assay was used to determine cell proliferation. To investigate the early new bone formation, rabbits were sacrificed at 2 weeks for histological analyses. As the O 2 plasma etching time is increased, roughness and hydrophilicity of the PCL scaffold surface increased. The cell proliferation and differentiation on plasma-etched samples was significantly increased than on untreated samples. At 2 weeks, early new bone formation in O 2 plasma-etched PCL scaffolds was the higher than that of untreated scaffolds. The O 2 plasma-etched PCL scaffolds showed increased preosteoblast differentiation as well as increased new bone formation.

  12. Molt performance and bone density of cortical, medullary, and cancellous bone in laying hens during feed restriction or alfalfa-based feed molt.

    Science.gov (United States)

    Kim, W K; Donalson, L M; Bloomfield, S A; Hogan, H A; Kubena, L F; Nisbet, D J; Ricke, S C

    2007-09-01

    A study was conducted to evaluate the effects of alfalfa-based molt diets on molting performance and bone qualities. A total of 36 Single Comb White Leghorn hens were used for the study. There were 6 treatments: pretrial control (PC), fully fed (FF), feed withdrawal (FW), 90% alfalfa:10% layer ration (A90), 80% alfalfa:20% layer ration (A80), and 70% alfalfa:30% layer ration (A70). For the PC treatment, hens were euthanized by CO(2) gas, and bones were collected before molt was initiated. At the end of the 9-d molt period, hens were euthanized, and femurs and tibias were collected to evaluate bone qualities by peripheral quantitative computed tomography, mechanical testing, and conventional ash weights. The hens fed alfalfa-based molt diets and FW stopped laying eggs within 5 d after molt started, and all hens in these groups had reduced ovary weights compared with those of the FF hens. In the FW and A90 groups, total femur volumetric bone mineral densities (vBMD) at the midshaft were significantly lower, but those of the A80 and A70 groups were not significantly different from the values for the PC and FF hens. In cortical bone density, the midshaft tibial vBMD were significantly higher for FF and A70 hens than for PC hens. The medullary bone densities at the midshaft femur or tibia of the FW, A90, A80, and A70 hens were reduced compared with those of the PC hens. Femur cancellous densities at the distal femur for the FW and A90 hens were significantly reduced compared with those of the PC and FF hens. The FW, A80, and A70 hens yielded significantly higher elastic moduli, and the A80 hens had higher ultimate stress compared with the PC hens, suggesting that the mechanical integrity of the midshaft bone was maintained even though the medullary vBMD was reduced. These results suggest that alfalfa-based molt diets exhibit molt performance similar to FW, that medullary and cancellous bones are labile bone compartments during molting, and that alfalfa-based molt diets

  13. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    International Nuclear Information System (INIS)

    Herlin, Maria; Finnilä, Mikko A.J.; Zioupos, Peter; Aula, Antti; Risteli, Juha; Miettinen, Hanna M.; Jämsä, Timo; Tuukkanen, Juha; Korkalainen, Merja; Håkansson, Helen; Viluksela, Matti

    2013-01-01

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr −/− ) and wild-type (Ahr +/+ ) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr +/+ mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr −/− mice displayed a slightly modified bone phenotype as compared with untreated Ahr +/+ mice, while TCDD exposure caused only a few changes in bones of Ahr −/− mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr +/+ mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone

  14. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  15. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    Science.gov (United States)

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  16. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    Science.gov (United States)

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (pBone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (pbone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Cortical splitting of the mandible after irradiation. Special reference to osteoradionecrosis

    International Nuclear Information System (INIS)

    Katsura, Kouji; Ito, Jusuke; Hayashi, Takafumi; Taira, Shuhzou; Nakajima, Syunichi

    2001-01-01

    The purpose of this study was to discuss the relationship between radiation bone injuries and a splitting of the cortical bone in the radiation field. Between January 1993 and September 1998, 53 patients with head and neck cancer received radiotherapy. The study cohort consisted of 23 patients who were followed with computed tomographic scans more than one year after radiotherapy. We evaluated clinical and computed tomographic features. Computed tomographic scanning was performed with a section thickness of 3 or 4 mm. Bone images were obtained with identical window width (4000 Haunsfield units) and window level (1000 Haunsfield units). Splitting of the cortical bone was defined as disappearance of bone density in the cortical bone, showing a linear shape running parallel to the surface of the cortex. Splitting appeared in 9 sites in 8 patients. All patients fulfilled UICC criteria for classifying oral cancer. Most of the patients received external irradiation with a total radiation dose of 50 or 60 Gy. In all cases, splitting was found in the mandibular cortex at the site of muscle attachment, that was included in the radiation field. Appearance of bone changes in chronological order were periosteal reaction, splitting and bone necrosis. We speculate that splitting results from injuries to bone structure cells caused by blood flow disturbance after surgery and radiotherapy. It is suggested that such splitting can be a predictor of osteoradionecrosis. (author)

  18. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study.

    Science.gov (United States)

    Bjørnerem, Åshild; Bui, Minh; Wang, Xiaofang; Ghasem-Zadeh, Ali; Hopper, John L; Zebaze, Roger; Seeman, Ego

    2015-03-01

    All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size - void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high-resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold-based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ∼18%) for the distal tibial total, cortical, and medullary cross-sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross-twin cross-trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ  = 0.49) than DZ (rDZ  = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle-aged women differ in their bone microarchitecture and remodeling markers more because of differences in their genetic factors than

  19. Effects of increasing doses of samarium-153-ethylenediaminetetramethylene phosphonate on axial and appendicular skeletal growth in juvenile rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Essman, Stephanie C. [Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211 (United States)], E-mail: essmans@missouri.edu; Lewis, Michael R. [Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211 (United States); Department of Radiology, University of Missouri-Columbia, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO 65211 (United States); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Fox, Derek B. [Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2008-02-15

    Introduction: Targeted radiotherapy using samarium-153-ethylenediaminetetramethylene phosphonate ({sup 153}Sm-EDTMP) is currently under investigation for treatment of osteosarcoma. Osteosarcoma often occurs in children, and previous studies on a juvenile rabbit model demonstrated that clinically significant damage to developing physeal cartilage may occur as a result of systemic {sup 153}Sm-EDTMP therapy. The aim of this study was to evaluate the late effects of {sup 153}Sm-EDTMP on skeletal structures during growth to maturity and to determine if there is a dose response of {sup 153}Sm-EDTMP on growth of long bones. Methods: Female 8-week-old New Zealand white rabbits were divided into three treatment groups plus controls. Each rabbit was intravenously administered a predetermined dose of {sup 153}Sm-EDTMP. Multiple bones of each rabbit were radiographed every 2 months until physeal closure, with subsequent measurements made to assess for abbreviated bone growth. Statistical analyses were performed to determine the differences in bone length between groups, with significance set at P<.05. Results: Significant differences in lengths of multiple bones were detected between the high-dose group and other treatment groups and controls at each time interval. A significant difference in lengths of the tibias was also noted in the medium-treatment group, compared to controls. Mean reduction of bone length was first detected at 4 months and did not increase significantly over time. Conclusions: These data suggest that clinically significant bone shortening may occur as a result of high-dosage administration of {sup 153}Sm-EDTMP. Further investigation regarding the effects of bone-seeking radiopharmaceuticals on bone growth and physeal cartilage is warranted.

  20. Evaluation of cortical bone mass, thickness and density by z-scores in osteopenic conditions and in relation to menopause and estrogen treatment

    International Nuclear Information System (INIS)

    Meema, S.; Meema, H.E.

    1982-01-01

    Z-scores express, differences from normals in standard deviation units, and are particularly useful for comparison of changes where normal values are age- and sex-dependent. We determined z-scores for bone mineral mass, cortical thickness, and bone mineral density in the radius in various conditions and diseases in both sexes. In the males, z-scores were calculated for age, but in the females z-scores for menopausal status (years postmenopausal exclusive of years on estrogen treatment) were found to be more appropriate. With few exceptions, changes in a disease were of a similar order in both sexes. For bone minerals mass few mean z-scores were significantly increased, but diseases with significantly decreased mean z-scores were numerous. The usefulness of z-scores in diagnosis and study of metabolic bone disease is discussed. (orig.)

  1. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Science.gov (United States)

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both pbones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  2. Histological Observation of Regions around Bone Tunnels after Compression of the Bone Tunnel Wall in Ligament Reconstruction

    International Nuclear Information System (INIS)

    Maeda, Shintaro; Ishikawa, Hiroki; Tanigawa, Naoaki; Miyazaki, Kyosuke; Shioda, Seiji

    2012-01-01

    The objectives of this study were to investigate the time-course of influence of compression of bone tunnel wall in ligament reconstruction on tissue around the bone tunnel and to histologically examine the mechanism of preventing the complication of bone tunnel dilation, using rabbit tibia. A model in which the femoral origin of the extensor digitorum longus tendon was cut and inserted into a bone tunnel made proximal to the tibia was prepared in the bilateral hind legs of 20 Japanese white rabbits. In each animal, a tunnel was made using a drill only in the right leg, while an undersized bone tunnel was made by drilling and then dilated by compression using a dilator to the same tunnel size as that in the right leg. Animals were sacrificed at 0, 2, 4, 8 and 12 weeks after surgery (4 animals at each time point). Observation of bone tunnels by X-ray radiography showed osteosclerosis in the 2- and 4-week dilation groups. Osteosclerosis appeared as white lines around the bone tunnel on X-ray radiography. This suggests that dilation promotes callus formation in the bone tunnel wall and prevents the complication of bone tunnel enlargement after ligament reconstruction

  3. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Cao, Lei; Yang, Fei; Liu, Guangwang; Yu, Degang; Li, Huiwu; Fan, Qiming; Gan, Yaokai; Tang, Tingting; Dai, Kerong

    2011-06-01

    Although Sox9 is essential for chondrogenic differentiation and matrix production, its application in cartilage tissue engineering has been rarely reported. In this study, the chondrogenic effect of Sox9 on bone marrow mesenchymal stem cells (BMSCs) in vitro and its application in articular cartilage repair in vivo were evaluated. Rabbit BMSCs were transduced with adenoviral vector containing Sox9. Toluidine blue, safranin O staining and real-time PCR were performed to check chondrogenic differentiation. The results showed that Sox9 could induce chondrogenesis of BMSCs both in monolayer and on PGA scaffold effectively. The rabbit model with full-thickness cartilage defects was established and then repaired by PGA scaffold and rabbit BMSCs with or without Sox9 transduction. HE, safranin O staining and immunohistochemistry were used to assess the repair of defects by the complex. Better repair, including more newly-formed cartilage tissue and hyaline cartilage-specific extracellular matrix and greater expression of several chondrogenesis marker genes were observed in PGA scaffold and BMSCs with Sox9 transduction, compared to that without transduction. Our findings defined the important role of Sox9 in the repair of cartilage defects in vivo and provided evidence that Sox9 had the potential and advantage in the application of tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Differential response of risedronate on tibial and mandibular bone quality in glucocorticoid-treated growing rats

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2008-01-01

    Glucocorticoids induce bone loss and retard bone growth in children. In this study we investigated the effect of treatment with risedronate on glucocorticoid -prednisolone-induced decreases in bone density, quality, strength and growth of the tibia and mandible in growing rats. Trabecular and cortical bone structure was measured by peripheral quantitative computed tomography (pQCT) and three-dimensional (3D) micro-computed tomography (micro-CT). Indicators of bone strength were calculated from cortical bone density and the modulus of sections obtained from pQCT analysis. Tibial and mandibular bone sizes were also measured. Prednisolone decreased the bone growth of both tibia and mandible. It also caused deterioration of trabecular and cortical bone structure and strength in the mandible, and in cortical bone in the tibia, but had no effect on trabecular bone in the tibia. Risedronate inhibited the prednisolone-induced decreases in tibial width and mandibular length and height but did not improve the retardation of longitudinal bone growth. Risedronate prevented prednisolone-induced deterioration of trabecular and cortical bone architecture. In the mandible, this protective effect of risedronate was accompanied by an increase in cortical bone density and in bone strength. These findings show that risedronate inhibits prednisolone-induced loss of bone density, structure, decrease in bone strength, and retardation of bone growth in the mandible in young growing rats. (author)

  5. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.

    Science.gov (United States)

    Prinz, Cornelia; Elhensheri, Mohamed; Rychly, Joachim; Neumann, Hans-Georg

    2017-08-01

    Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm 2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.

  6. Enhancing the bioactivity of Poly(lactic-co-glycolic acid scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model

    Directory of Open Access Journals (Sweden)

    Wang DX

    2013-05-01

    Full Text Available De-Xin Wang,1,* Yao He,2,* Long Bi1,* Ze-Hua Qu,2 Ji-Wei Zou,1 Zhen Pan,2 Jun-Jun Fan,1 Liang Chen,2 Xin Dong,1 Xiang-Nan Liu,2 Guo-Xian Pei,1 Jian-Dong Ding,21Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China; 2State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China*These authors contributed equally to this workPurpose: Poly(lactic-co-glycolic acid (PLGA is excellent as a scaffolding matrix due to feasibility of processing and tunable biodegradability, yet the virgin scaffolds lack osteoconduction and osteoinduction. In this study, nano-hydroxyapatite (nHA was coated on the interior surfaces of PLGA scaffolds in order to facilitate in vivo bone defect restoration using biomimetic ceramics while keeping the polyester skeleton of the scaffolds.Methods: PLGA porous scaffolds were prepared and surface modification was carried out by incubation in modified simulated body fluids. The nHA coated PLGA scaffolds were compared to the virgin PLGA scaffolds both in vitro and in vivo. Viability and proliferation rate of bone marrow stromal cells of rabbits were examined. The constructs of scaffolds and autogenous bone marrow stromal cells were implanted into the segmental bone defect in the rabbit model, and the bone regeneration effects were observed.Results: In contrast to the relative smooth pore surface of the virgin PLGA scaffold, a biomimetic hierarchical nanostructure was found on the surface of the interior pores of the nHA coated PLGA scaffolds by scanning electron microscopy. Both the viability and proliferation rate of the cells seeded in nHA coated PLGA scaffolds were higher than those in PLGA scaffolds. For bone defect repairing, the radius defects had, after 12 weeks implantation of nHA coated PLGA scaffolds, completely recuperated with significantly better bone formation than in

  7. Influence and evolution mechanism of different sharpness contact forms to mechanical property of cortical bone by nanoindentation

    Science.gov (United States)

    Sun, Xingdong; Guo, Yue; Li, Lijia; Liu, Zeyang; Wu, Di; Shi, Dong; Zhao, Hongwei; Zhang, Shizhong

    2018-03-01

    Based on different damage forms of various contact forms to bone, the mechanical response and mechanism were investigated by nanoindentation under different sharpness contact forms. For the purpose of simulating the different sharpness contact forms, two kinds of indenters were used in experiments and finite elements simulations. Through nanoindentation experiments, it was concluded that the residual depth of sharp indenter was bigger than that of blunt indenter with small penetration depth. However, the contrary law was obtained with bigger penetration depth. There was a turning point of transition from blunt tendency to sharp tendency. By calculation, it was concluded that the sharper the indenter was, the bigger the proportion of plastic energy in total energy was. Basically, results of finite elements simulation could correspond with the experimental conclusions. By the observation of FE-SEM, the surface of cortical bone compressed was more seriously directly below the blunt indenter than the lateral face. For the berkovich indenter, the surface of indentation compressed was less directly below the indenter, but seriously on three lateral faces. This research may provide some new references to the studies of bone fracture mechanism in different load patterns in the initial press-in stage and offer new explanation for bone trauma diagnosis in clinical treatment and criminal investigation.

  8. Influence and evolution mechanism of different sharpness contact forms to mechanical property of cortical bone by nanoindentation

    Directory of Open Access Journals (Sweden)

    Xingdong Sun

    2018-03-01

    Full Text Available Based on different damage forms of various contact forms to bone, the mechanical response and mechanism were investigated by nanoindentation under different sharpness contact forms. For the purpose of simulating the different sharpness contact forms, two kinds of indenters were used in experiments and finite elements simulations. Through nanoindentation experiments, it was concluded that the residual depth of sharp indenter was bigger than that of blunt indenter with small penetration depth. However, the contrary law was obtained with bigger penetration depth. There was a turning point of transition from blunt tendency to sharp tendency. By calculation, it was concluded that the sharper the indenter was, the bigger the proportion of plastic energy in total energy was. Basically, results of finite elements simulation could correspond with the experimental conclusions. By the observation of FE-SEM, the surface of cortical bone compressed was more seriously directly below the blunt indenter than the lateral face. For the berkovich indenter, the surface of indentation compressed was less directly below the indenter, but seriously on three lateral faces. This research may provide some new references to the studies of bone fracture mechanism in different load patterns in the initial press-in stage and offer new explanation for bone trauma diagnosis in clinical treatment and criminal investigation.

  9. Effect of osteogenic periosteal distraction by a modified Hyrax device with and without platelet-rich fibrin on bone formation in a rabbit model: a pilot study.

    Science.gov (United States)

    Pripatnanont, P; Balabid, F; Pongpanich, S; Vongvatcharanon, S

    2015-05-01

    This study evaluated the effect of a modified Hyrax device and platelet-rich fibrin (PRF) on osteogenic periosteal distraction (OPD). Twelve adult male New Zealand white rabbits were separated into two main groups (six in each) according to the duration of the consolidation period (4 or 8 weeks). In each main group, the animals underwent OPD of the left and right sides of the mandible and were divided into four subgroups (three animals per group): device vs. device+PRF, and PRF vs. sham. Radiographic, histological, histomorphometric, and micro-computed tomography (micro-CT) analyses were performed. New bone formation was observed on the lateral and vertical sides of the mandible of all groups. Micro-CT and histomorphometry showed that the device+PRF group presented the highest percentages of bone volume and bone area at 4 weeks (56.67 ± 12.67%, 41.37 ± 7.57%) and at 8 weeks (49.67 ± 8.33%, 55.46 ± 10.67%; significantly higher than the other groups, P<0.001), followed by the device group at 4 weeks (33.00 ± 1.73%, 33.21 ± 11.00%) and at 8 weeks (30.00 ± 3.00%, 23.25 ± 5.46%). In conclusion, the modified Hyrax device was used successfully for OPD in a rabbit model to gain vertical ridge augmentation, and greater bone maturation was achieved with the addition of PRF. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Lipid metabolism abnormalities in alcohol-treated rabbits: a morphometric and haematologic study comparing high and low alcohol doses.

    Science.gov (United States)

    Ikemura, Satoshi; Yamamoto, Takuaki; Motomura, Goro; Iwasaki, Kenyu; Yamaguchi, Ryosuke; Zhao, Garida; Iwamoto, Yukihide

    2011-08-01

    The pathogenesis of alcohol-induced osteonecrosis remains unclear. The purpose of the present study was to evaluate the morphological changes in bone marrow fat cells and the changes in the serum lipid levels in alcohol-treated rabbits. Fifteen rabbits were randomly assigned into three groups: Four rabbits intragastrically received low-dose alcohol (LDA) (15 ml/kg per day) containing 15% ethanol for 4 weeks, five rabbits received high-dose alcohol (HDA) (30 ml/kg per day) for 4 weeks and six rabbits received physiologic saline for 4 weeks as a control group. Six weeks after the initial alcohol administration, all rabbits were sacrificed. The mean size of the bone marrow fat cells in rabbits treated with HDA was significantly larger than that in the control group (P = 0.0001). Haematologically, the levels of triglycerides and free fatty acids in the rabbits treated with both low-dose and HDA were significantly higher than those in the control group (P = 0.001 for both comparisons). The results of this study are that there are lipid metabolism abnormalities, both morphologically and haematologically, after alcohol administration. Also these findings were more apparent in rabbits treated with HDA than those treated with LDA. © 2011 The Authors. International Journal of Experimental Pathology © 2011 International Journal of Experimental Pathology.

  11. Effect of 2 Different Drilling Speeds on the Osseointegration of Implants Placed With Flapless Guided Surgery: A Study in Rabbits

    DEFF Research Database (Denmark)

    Landazuri-Del Barrio, Ricardo Andres; Nunes de Paula, Wagner; Spin-Neto, Rubens

    2017-01-01

    OBJECTIVE: The aim of this study was to evaluate the influence of the drilling speed on bone healing and the osseointegration of implants placed with a guided flapless surgical technique in rabbit tibias. METHODS: For the evaluation of bone healing, a total of 30 perforations (defects) were made...... in both tibias of 15 rabbits using 2 different drilling speeds (1500 rpm-control group; 50 rpm-test group). The regeneration of bone tissue in the surgical sites was evaluated at 0, 7, and 14 days. For the evaluation of implant osseointegration, another 15 rabbits underwent drilling in both tibias...... with no statistically significant differences in the assessment of the osseointegration between the groups. CONCLUSION: In the experimental models used, the drilling speed does not prejudice the pattern of bone healing and osseointegration of implants placed with guided flapless surgery....

  12. Cartilage Protective and Chondrogenic Capacity of WIN-34B, a New Herbal Agent, in the Collagenase-Induced Osteoarthritis Rabbit Model and in Progenitor Cells from Subchondral Bone

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Huh

    2013-01-01

    Full Text Available We sought to determine the cartilage repair capacity of WIN-34B in the collagenase-induced osteoarthritis rabbit model and in progenitor cells from subchondral bone. The cartilage protective effect of WIN-34B was measured by clinical and histological scores, cartilage area, and proteoglycan and collagen contents in the collagenase-induced osteoarthritis rabbit model. The efficacy of chondrogenic differentiation of WIN-34B was assessed by expression of CD105, CD73, type II collagen, and aggrecan in vivo and was analyzed by the surface markers of progenitor cells, the mRNA levels of chondrogenic marker genes, and the level of proteoglycan, GAG, and type II collagen in vitro. Oral administration of WIN-34B significantly increased cartilage area, and this was associated with the recovery of proteoglycan and collagen content. Moreover, WIN-34B at 200 mg/kg significantly increased the expression of CD105, CD73, type II collagen, and aggrecan compared to the vehicle group. WIN-34B markedly enhanced the chondrogenic differentiation of CD105 and type II collagen in the progenitor cells from subchondral bone. Also, we confirmed that treatment with WIN-34B strongly increased the number of SH-2(CD105 cells and expression type II collagen in subchondral progenitor cells. Moreover, WIN-34B significantly increased proteoglycan, as measured by alcian blue staining; the mRNA level of type II α1 collagen, cartilage link protein, and aggrecan; and the inhibition of cartilage matrix molecules, such as GAG and type II collagen, in IL-1β-treated progenitor cells. These findings suggest that WIN-34B could be a potential candidate for effective anti-osteoarthritic therapy with cartilage repair as well as cartilage protection via enhancement of chondrogenic differentiation in the collagenase-induced osteoarthritis rabbit model and progenitor cells from subchondral bone.

  13. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters

    International Nuclear Information System (INIS)

    Prevrhal, S.; Engelke, K.; Kalender, W.A.

    1999-01-01

    In this study we analysed the accuracy of computed tomography (CT) measurements in assessing cortical bone. We determined the dependency of thickness and density measurements on the true width and density of the cortex and on the spatial resolution in the CT images using two optimized segmentation methods. As a secondary goal, we assessed the ability of CT to reflect small changes in cortical thickness. Two different bone-mimicking phantoms with varying cortical thickness were scanned with single-slice CT on a Somatom Plus 4 scanner. Images were reconstructed with both a standard and a high-resolution convolution kernel. Two special operator-independent segmentation methods were used to automatically detect the edges of the cortical shell. We measured cortical thickness and density and compared the phantom measurements with theoretical computations by simulating a cross-sectional shape of the cortical shell. Based on the simulations, we calculated CT's power to detect small changes in cortical thickness. Simulations and phantom measurements were in very good agreement. Cortical thickness could be measured with an error of less than 10% if the true thickness was larger than 0.9 (0.7) mm for the standard (high-resolution) kernel which is close to the full width at half maximum (FWHM) of the point spread functions for these kernels and our scanner. Density measurements yielded errors of less than 10% for true cortical thickness values above two to three times the FWHM corresponding to 2.5 (2) mm in our case. The simulations showed that a 10% change in cortical width would not be detected with satisfying probability in bones with a cortical shell thinner than 1.2 mm. An accurate determination of the cortical thickness is limited to bones with a thickness higher than the FWHM of the scanner's point spread function. Therefore, the use of a high-resolution reconstruction kernel is crucial. Cortical bone mineral density can only be measured accurately in bones two to three

  14. Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women.

    Science.gov (United States)

    Biver, E; Durosier-Izart, C; Merminod, F; Chevalley, T; van Rietbergen, B; Ferrari, S L; Rizzoli, R

    2018-05-03

    A longitudinal analysis of bone microstructure in postmenopausal women of the Geneva Retirees Cohort indicates that age-related cortical bone loss is attenuated at non-bearing bone sites in fermented dairy products consumers, not in milk or ripened cheese consumers, independently of total energy, calcium, or protein intakes. Fermented dairy products (FDP), including yogurts, provide calcium, phosphorus, and proteins together with prebiotics and probiotics, all being potentially beneficial for bone. In this prospective cohort study, we investigated whether FDP, milk, or ripened cheese consumptions influence age-related changes of bone mineral density (BMD) and microstructure. Dietary intakes were assessed at baseline and after 3.0 ± 0.5 years with a food frequency questionnaire in 482 postmenopausal women enrolled in the Geneva Retirees Cohort. Cortical (Ct) and trabecular (Tb) volumetric (v) BMD and microstructure at the distal radius and tibia were assessed by high-resolution peripheral quantitative computerized tomography, in addition to areal (a) BMD and body composition by dual-energy X-ray absorptiometry, at the same time points. At baseline, FDP consumers had lower abdominal fat mass and larger bone size at the radius and tibia. Parathyroid hormone and β-carboxyterminal cross-linked telopeptide of type I collagen levels were inversely correlated with FDP consumption. In the longitudinal analysis, FDP consumption (mean of the two assessments) was associated with attenuated loss of radius total vBMD and of Ct vBMD, area, and thickness. There was no difference in aBMD and at the tibia. These associations were independent of total energy, calcium, or protein intakes. For other dairy products categories, only milk consumption was associated with lower decrease of aBMD and of failure load at the radius. In this prospective cohort of healthy postmenopausal women, age-related Ct bone loss was attenuated at non-bearing bone sites in FDP consumers, not in milk

  15. Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice.

    Science.gov (United States)

    Watt, James; Baker, Amelia H; Meeks, Brett; Pajevic, Paola D; Morgan, Elise F; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2018-09-01

    The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR. © 2018 Wiley Periodicals, Inc.

  16. MicroCT evaluation of bone mineral density loss in human bones

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Oliveira, Luis F.

    2007-01-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca 10 (PO 4 ) 6 OH 2 ], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 μm (±5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm -3 and 1.92 g.cm -3 respectively. The correlation of the measured absorption coefficient with the mineral content in the samples was then

  17. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  18. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  19. Bone development

    DEFF Research Database (Denmark)

    Tatara, M.R.; Tygesen, Malin Plumhoff; Sawa-Wojtanowicz, B.

    2007-01-01

    The objective of this study was to determine the long-term effect of alpha-ketoglutarate (AKG) administration during early neonatal life on skeletal development and function, with emphasis on bone exposed to regular stress and used to serve for systemic changes monitoring, the rib. Shropshire ram.......01). Furthermore, AKG administration induced significantly higher bone mineral density of the cortical bone by 7.1% (P

  20. In vitro deposition of hydroxyapatite on cortical bone collagen stimulated by deformation-induced piezoelectricity.

    Science.gov (United States)

    Noris-Suárez, Karem; Lira-Olivares, Joaquin; Ferreira, Ana Marina; Feijoo, José Luis; Suárez, Nery; Hernández, Maria C; Barrios, Esteban

    2007-03-01

    In the present work, we have studied the effect of the piezoelectricity of elastically deformed cortical bone collagen on surface using a biomimetic approach. The mineralization process induced as a consequence of the piezoelectricity effect was evaluated using scanning electron microscopy (SEM), thermally stimulated depolarization current (TSDC), and differential scanning calorimetry (DSC). SEM micrographs showed that mineralization occurred predominantly over the compressed side of bone collagen, due to the effect of piezoelectricity, when the sample was immersed in the simulated body fluid (SBF) in a cell-free system. The TSDC method was used to examine the complex collagen dielectric response. The dielectric spectra of deformed and undeformed collagen samples with different hydration levels were compared and correlated with the mineralization process followed by SEM. The dielectric measurements showed that the mineralization induced significant changes in the dielectric spectra of the deformed sample. DSC and TSDC results demonstrated a reduction of the collagen glass transition as the mineralization process advanced. The combined use of SEM, TSDC, and DSC showed that, even without osteoblasts present, the piezoelectric dipoles produced by deformed collagen can produce the precipitation of hydroxyapatite by electrochemical means, without a catalytic converter as occurs in classical biomimetic deposition.

  1. [Polarized microscopic observation of the collagen change in bone healing during bone lengthening].

    Science.gov (United States)

    Zou, Pei; Li, Junhui; Li, Zhuyi

    2006-01-01

    To investigate the feature and regularity of the collagen change in bone healing during bone lengthening. Bone lengthening model was made in the middle segment of the rabbit tibia. Five days after the model was established, the bone was lengthened 1.5 mm per day for 14 days. The rabbits were put to death after elongation, 7, 14, 21, 30, 40, 50, 60 and 70 days after elongation. The distracted area of the bone was imbedded with paraffin. After being stained by the picric acid-sirius red staining, the slice was observed under polarized microscope. The features of the collagen change in the distracted bone were as follows: (1) In the fibrous tissue of the distracted area during lengthening period and the early stage after lengthening, there was not only collagen III but also much collagen I. (2) Collagen I , II and III were observed in the cartilage. (3) Collagen I, II and III were also observed in the pseudo-growth plate. (4) Collagen I took the dominance during lengthening period and the late stage after lengthening. New bone formation in bone lengthening is under the distracted force, so the collagen changes have different features compared with that in fracture healing. Collagen I, II and III can be identified by picric acid-sirius red staining and polarized microscope, so a new method for studying the collagen typing in bone repairing is provided.

  2. BMP9-Induced Osteogenetic Differentiation and Bone Formation of Muscle-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2012-01-01

    Full Text Available Efficient osteogenetic differentiation and bone formation from muscle-derived stem cells (MDSCs should have potential clinical applications in treating nonunion fracture healing or bone defects. Here, we investigate osteogenetic differentiation ability of MDSCs induced by bone morphogenetic protein 9 (BMP9 in vitro and bone formation ability in rabbit radius defects repairing model. Rabbit's MDSCs were extracted by type I collagenase and trypsin methods, and BMP9 was introduced into MDSCs by infection with recombinant adenovirus. Effects of BMP9-induced osteogenetic differentiation of MDSCs were identified with alkaline phosphatase (ALP activity and expression of later marker. In stem-cell implantation assay, MDSCs have also shown valuable potential bone formation ability induced by BMP9 in rabbit radius defects repairing test. Taken together, our findings suggest that MDSCs are potentiated osteogenetic stem cells which can be induced by BMP9 to treat large segmental bone defects, nonunion fracture, and/or osteoporotic fracture.

  3. Modelling of Cortical Bone Tissue as a Fluid Saturated Double-Porous Material - Parametric Study

    Directory of Open Access Journals (Sweden)

    Jana TURJANICOVÁ

    2013-06-01

    Full Text Available In this paper, the cortical bone tissue is considered as a poroelastic material with periodic structure represented at microscopic and mesoscopic levels. The pores of microscopic scale are connected with the pores of mesoscopic scale creating one system of connected network filled with compressible fluid. The method of asymptotic homogenization is applied to upscale the microscopic model of the fluid-solid interaction under a static loading. Obtained homogenized coefficients describe material properties of the poroelastic matrix fractured by fluid-filled pores whose geometry is described at the mesoscopic level. The second-level upscaling provides homogenized poroelastic coefficients relevant on the macroscopic scale. Furthermore, we study the dependence of these coefficients on geometrical parameters on related microscopic and macroscopic scales.

  4. Avaliação de centrifugado osteogênico de medula óssea na consolidação de fratura em coelhos Evaluation of centrifuged osteogenic bone marrow in fracture consolidation in rabbits

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Sanches Vaz

    2010-01-01

    Full Text Available OBJETIVO: Avaliar a eficácia de um centrifugado osteogênico de medula óssea em estimular a consolidação de osteotomias da fíbula em coelhos. MÉTODOS: Foram utilizados dez coelhos machos adultos da raça Nova Zelândia albino. Realizou-se uma osteotomia transversa médio-diafisária da fíbula direita, seguida da adição local de uma esponja de colágeno absorvível embebida em um centrifugado osteogênico, obtido pela centrifugação de aspirado de medula óssea do osso ilíaco ipsilateral. A fíbula esquerda foi utilizada como controle, sendo feita a mesma osteotomia, porém neste caso adicionando-se somente a esponja de colágeno absorvível. Após quatro semanas os animais foram sacrificados para estudo dos calos ósseos formados. Os critérios de avaliação foram a mensuração da densidade mineral utilizando-se a densitometria óssea com DEXA, do volume do calo com tomografia computadorizada multi-slice e dos tecidos formados por meio de histomorfometria. RESULTADOS: A utilização do centrifugado osteogênico resultou em um aumento médio na densidade mineral óssea dos calos de 40,3% e da quantidade relativa de tecido ósseo de 9,4%, sem aumento significativo nas quantidades relativas de cartilagem ou fibrose nem no volume do calo ósseo. CONCLUSÃO: A administração do centrifugado osteogênico de medula óssea utilizado neste estudo favoreceu a consolidação óssea de osteotomias experimentais em coelhos.OBJECTIVE: The purpose of this study was to evaluate the efficacy of a centrifuged osteogenic bone marrow aspirate to stimulate healing in rabbit fibular osteotomies. METHODS: Ten white New Zealand rabbits were used. A transverse medial diaphyseal fibular osteotomy was performed on the right fibula, where an absorbable collagen sponge embedded in osteogenic centrifuged bone marrow aspirate, obtained from the ipsilateral iliac bone, was inserted. The left fibula was used as the control group, where the collagen absorbable

  5. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.

    Science.gov (United States)

    Turmezei, Tom D; Treece, Graham M; Gee, Andrew H; Fotiadou, Anastasia F; Poole, Kenneth E S

    2016-07-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K&L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K&L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. • CT is being increasingly used to assess bony involvement in osteoarthritis • CBM provides accurate and reliable quantitative analysis of cortical bone thickness • Cortical bone is thicker at the superior femoral head-neck with worse osteoarthritis • Regions of increased thickness co-locate with impingement and osteophyte formation • Quantitative 3D bone analysis could enable clinical disease prediction and therapy development.

  6. Regulation of cyclic AMP metabolism by prostaglandins in rabbit cortical collecting tubule cells

    International Nuclear Information System (INIS)

    Sonnenburg, W.K.

    1987-01-01

    In the rabbit cortical collecting tubule (RCCT), prostaglandin E 1 (PGE 1 ) and prostaglandin E 2 (PGE 2 ) at 1 nM inhibit arginine-vasopressin (AVP)-induced water reabsorption, while 100 nM PGE 1 and PGE 2 alone stimulate water reabsorption. Reported here are studies designed to investigate the molecular basis for the biphasic physiological action of PGE 1 and PGE 2 in the collecting duct. In freshly isolated RCCT cells, PGE 1 , PGE 2 , and 16,16-dimethyl-PGE 2 (DM-PGE 2 ) stimulated cAMP synthesis at concentrations ranging from 0.1 to 10 M. Other prostaglandins including the synthetic PGE 2 analogue, sulprostone, failed to stimulate cAMP synthesis. Moreover, sulprostone did not antagonize PGE 2 -stimulated cAMP formation. In contrast, PGE 2 and sulprostone at concentrations ranging from 1 to 100 nM, inhibited AVP-induced cAMP accumulation in freshly isolated RCCT cells. PGE 2 , PGE 1 , DM-PGE 2 and sulprostone at 100 nM were equally effective in inhibiting AVP-induced cAMP formation. Moreover sulprostone inhibited AVP-stimulated adenylate cyclase activity. These results suggest that PGE derivatives mediate either inhibition or activation of adenylate cyclase by stimulating different PGE receptors. To further test this concept, PGE 2 binding to freshly isolated RCCT cell membranes was characterized. Two different classes of PGE 2 binding were detected. / 3 H/PGE 2 binding to the high affinity class of sites was increased by the GTP-analogue, GTP S, while pertussis toxin pretreatment blocked the stimulatory action. In contrast, / 3 H/ PGE 2 binding to the low affinity class of sites was decreased by GTP S; this inhibitory effect was not blocked by pertussis toxin pretreatment

  7. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Population Dynamic Of Rabbit Fish Siganus Canaliculatus In Gulf Of Bone Luwu Regency South Sulawesi

    Directory of Open Access Journals (Sweden)

    Irman Halid

    2015-08-01

    Full Text Available Rabbitfish Siganus canaliculatus is ones of coral reef inhabitants are exploited intensively and suspected population decline so the necessary management measures was needed. The study aims to analyze aspects of the dynamics of rabbit fish populations in the Bone Gulf Luwu waters. Data was collected by Staratied Random Sampling estimation of the size structure the number of age groups and average length of fish per age group use a column diagram and Bhattacharya method. Population growth is analyzed using the Von Bertalanffy equation exponential growth the value of L K by Ford and Walford method and t0 by Pauly method. The total mortality fishing mortality the rate of exploitation and Y R were estimated by methods of Beverton and Holt and natural mortality by method of Pauly. The results showed that the population of rabbit fish in the waters of the Gulf of Bone Luwu consists of five age groups has the average length and the lenth range of 8.0904 cm and 5.7 to 9.0 cm on the relative age of one year 10.9222 cm and 9.0 to 12.3 cm on the relative age of two years from 12.3 to 15.6 cm 14.1543 cm on the relative age of three years 16.8949 cm and 15.6 to 18.9 cm on the relative age four years and 19.4906 cm and 18.9 to 20.7 cm on the relative age of five years. Maximum length Lamp8734 of 30.5814 cm and the growth rate coefficient K of 0.1572 per year while the t0 value of -1.4815 ofyear. The total mortality Z of 1.6913 per year the mortality M of 0.6109 fishing mortality t 1.0804 per year the rate of exploitation E of 0.6388 and optimal exploitation rate Eopt of 0.50 the value of Y R is now 0.0127 and the value of Y R optimal 0.0150. The conclusion that the population is dominated medium sized fish slow population growth as a result of the high mortality rate of the capture and exploitation as well as the recruitment process is not optimal.

  9. Effects of Na2CaEDTA on lead deposits in rabbit osseous tissue

    International Nuclear Information System (INIS)

    Doniec, J.; Trojanowska, B.; Trzcinka-Ochocka, M.; Garlicka, I.

    1983-01-01

    Radiochemical and autoradiographic methods were used for 210 Pb determination after Na 2 CaEDTA administration to rabbits. 210 Pb was determined in soft tissues, compact and trabecular bones and growing microareas on the endosteum of the long bone. After Na 2 CaEDTA injection lead was depleted from 'new' deposits mainly on the growing surface of both trabecular and compact bones. (Auth.)

  10. Mid-thigh cortical bone structural parameters, muscle mass and strength, and association with lower limb fractures in older men and women (AGES-Reykjavik Study).

    Science.gov (United States)

    Johannesdottir, Fjola; Aspelund, Thor; Siggeirsdottir, Kristin; Jonsson, Brynjolfur Y; Mogensen, Brynjolfur; Sigurdsson, Sigurdur; Harris, Tamara B; Gudnason, Vilmundur G; Lang, Thomas F; Sigurdsson, Gunnar

    2012-05-01

    In a cross-sectional study we investigated the relationship between muscle and bone parameters in the mid-thigh in older people using data from a single axial computed tomographic section through the mid-thigh. Additionally, we studied the association of these variables with incident low-trauma lower limb fractures. A total of 3,762 older individuals (1,838 men and 1,924 women), aged 66-96 years, participants in the AGES-Reykjavik study, were studied. The total cross-sectional muscular area and knee extensor strength declined with age similarly in both sexes. Muscle parameters correlated most strongly with cortical area and total shaft area (adjusted for age, height, and weight) but explained lower limb fractures. Small muscular area, low knee extensor strength, large MA, low cortical thickness, and high BR were significantly associated with fractures in both sexes. Our results show that bone and muscle loss proceed at different rates and with different gender patterns.

  11. Effects of Hydroxyapatite on Bone Graft Resorption in an Experimental Model of Maxillary Alveolar Arch Defects

    Directory of Open Access Journals (Sweden)

    Ozgur Pilanci

    2013-06-01

    Full Text Available Most commonly used treatments use autologous bone grafts to address bony defects in patients with cleft palate. Major disadvantages of autogenous bone grafts include donor site morbidity and resorption. Suggestions to overcome such problems include biomaterials that can be used alone or in combination with bone. We examined the effect of hydroxyapatite cement on bone graft resorption in a rabbit maxillary alveolar defect model. We divided 16 young adult albino New Zealand rabbits into two groups. A defect 1 cm wide was created in each rabbit's maxillary arch. In Group 1, the removed bone was disrupted, and the pieces were replaced in the defect. In the other group, the pieces were replaced after mixing (1:1 with hydroxyapatite cement. Quantitative computed tomographic evaluation of these grafts was performed in axial and coronal planes for each rabbit at 2 and 12 weeks. In axial images at 12 weeks, the group without cement showed mean bone resorption of 15%. In the cement group, a mean volumetric increase of 68% was seen. No resorption occurred when bone grafts were mixed with hydroxyapatite cement. [Arch Clin Exp Surg 2013; 2(3.000: 170-175

  12. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    Science.gov (United States)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  13. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-01-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, pbone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (pbone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Reduced bone formation markers, and altered trabecular and cortical bone mineral densities of non-paretic femurs observed in rats with ischemic stroke: A randomized controlled pilot study.

    Directory of Open Access Journals (Sweden)

    Karen N Borschmann

    Full Text Available Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans.To investigate the skeletal effect of middle cerebral artery occlusion (MCAo stroke in rats and examine its utility as a model of human post-stroke bone loss.Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV measured by Micro-CT (10.5 micron istropic voxel size at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults and physical activity (cage monitoring were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX were assessed at baseline, and days 7 and 27.No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046 at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9 and total volume (6.4%, IQR 1.2, 7.6 were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals.MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss.

  15. MR imaging characteristics in primary lymphoma of bone with emphasis on non-aggressive appearance

    International Nuclear Information System (INIS)

    Heyning, Fenna H.; Kroon, Herman M.J.A.; Hogendoorn, Pancras C.W.; Taminiau, Antonie H.M.; Woude, Henk-Jan van der

    2007-01-01

    To assess the heterogeneity of magnetic resonance (MR) imaging characteristics in primary lymphoma of bone (PLB), in particular the non-aggressive appearance. In a retrospective study, MR imaging features were analyzed in 29 patients with histologically proven PLB. The following parameters were evaluated: tumor size, bone marrow and extension into soft tissues, signal characteristics of bone marrow and soft-tissue components, including enhancement, and involvement of cortical bone (complete disruption, focal destruction, permeative destruction and cortical thickening). PLB presented with extension into the soft tissue in 22 (76%) of 29 patients, was only subtle in three of these 22 patients, and was absent in seven patients. Signal intensity (SI) of the soft-tissue part was most frequently homogeneously isointense with muscle on T1-weighted images (90%) and high on T2-weighted images (91%). Enhancement was predominantly homogeneous and diffuse (82%). In 93% of patients cortical bone appeared abnormal: among those patients complete cortical disruption was seen in 28%, with extension into soft tissues in all but one patient; a permeative pattern of destruction was present in 52% of patients, 66% of these had an associated soft-tissue mass. Two patients with normal-appearing cortical bone had no extension into soft tissues. In two patients focal cortical destruction was noticed; in one patient cortical bone was homogeneously thickened, and in one patient PLB was selectively localized within the cortical bone. SI of the bone marrow tumor component was more frequently heterogeneous (in 54%), compared with the soft-tissue component, being high on T2-weighted images in 89%, intermediate in 7% and low in 4%. Similarly, enhancement was heterogeneous in 59%. The MR imaging appearance of PLB is variable. In 31% of PLB patients, the tumor was intra-osseous, with linear cortical signal abnormalities or even normal-appearing or thickened cortical bone without soft-tissue mass

  16. Seaweed flour (“Lithothamnium calcareum” as a mineral supplement in the bone healing of a cortical autograft in dogs Farinha de algas marinhas (“Lithothamnium calcareum” como suplemento mineral na cicatrização óssea de autoenxerto cortical em cães

    Directory of Open Access Journals (Sweden)

    Emanoel Ferreira Martins Filho

    2010-03-01

    Full Text Available The influence of the seaweed flour (Lithothamnium calcareum was evaluated as a mineral supplement in during healing of bone failure reconstructed with a cortical autograft. Ten adult male mongrel dogs, weighing between 10 and 15kg, were used. The graft made of a cilinder block of the cortical bone was obtained by the ulna proximal diaphysis by ostectomy with a trephine of eight millimeters. In the same way, it was created a bone failure located in the middle-skull region of the proximal diaphysis of the ipsolateral tibia, and it served as a receptor bed. Two experimental groups were formed randomly, with five animals each. One group received a daily mineral supplement of seaweed flour for 30 consecutive days, and the other served as a control group. Clinical, radiological, and histopatological evaluations of bone healing were performed. Mineral supplementation with seaweed flour (Lithothamnium calcareum contributed to a better cicatricial performance, since both the degree of radiopacity and the number of osteoclasts were higher in treated animals.Foi avaliada, em cães, a influência da farinha de algas marinhas (Lithothamnium calcareum como suplemento mineral na cicatrização de falha óssea cortical reconstituída com autoenxerto cortical. Foram utilizados dez cães adultos, machos, sem raça definida, com peso entre 10 e 15kg. O enxerto, constituído de um bloco cilíndrico de osso cortical foi obtido da diáfise proximal da ulna, mediante ostectomia com trefina de oito milímetros de diâmetro. Igualmente criada, a falha óssea, localizada na região crânio-medial da diáfise proximal da tíbia ipsolateral, serviu como leito receptor. Efetuou-se separação aleatória em dois grupos experimentais, com cinco animais cada. Um grupo recebeu suplementação mineral diária à base de farinha de algas marinhas por 30 dias consecutivos, e o outro serviu como controle. Foram feitas avaliações clínicas, radiográficas e histopatológicas da

  17. Radiogrammetric analysis of upper limb long bones

    Directory of Open Access Journals (Sweden)

    Stojanović Zlatan

    2011-01-01

    Full Text Available Radiogrammetry is radiological method of bone mineral density quantification. Besides giving an insight in diagnostics and evolution of metabolic bone disorders (osteoporosis, osteomalacia, osteitis deformans- Paget's disease, it can also explain some specific biomechanical characteristics of bone structures. The aim of this study is to evaluate the significance and perspectives of radiogrammetry as a scientific model for further inquiry of skeletal system. The work demonstrates mathematical parameters (Ca-Cortical area, CI- Cortical index, GI- Garn's index, ESI- Exton Smith's index of upper limb long bones (humerus, radius, ulna. Two standard radiological projections of bones were taken: antero-posterior (AP and latero-lateral (LL. Correlation with metacarpal and lower limb bones was also performed. The value of the cortical area of humerus is significantly higher comparing with the two other examined bones (Xmean 2,2443 cm2, p < 0.01. Radial bone has the highest values of the relational mathematical parameters, which implicates its higher strength by volumetric unit concerning humerus and ulna. Despite the development of contemporary osteometric procedures (ultrasound densitometry, dual X-ray absorptiometry, digital X-ray radiogrammetry, the classical radiogrammetry sustains its important role in diagnostics of metabolic bone disorders and it can be successfully used for biomechanical inquiry of skeletal system.

  18. Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis--part I.

    Science.gov (United States)

    Bouchgua, M; Alexander, K; d'Anjou, M André; Girard, C A; Carmel, E Norman; Beauchamp, G; Richard, H; Laverty, S

    2009-02-01

    To evaluate in vivo the evolution of osteoarthritis (OA) lesions temporally in a rabbit model of OA with clinically available imaging modalities: computed radiography (CR), helical single-slice computed tomography (CT), and 1.5 tesla (T) magnetic resonance imaging (MRI). Imaging was performed on knees of anesthetized rabbits [10 anterior cruciate ligament transection (ACLT) and contralateral sham joints and six control rabbits] at baseline and at intervals up to 12 weeks post-surgery. Osteophytosis, subchondral bone sclerosis, bone marrow lesions (BMLs), femoropatellar effusion and articular cartilage were assessed. CT had the highest sensitivity (90%) and specificity (91%) to detect osteophytes. A significant increase in total joint osteophyte score occurred at all time-points post-operatively in the ACLT group alone. BMLs were identified and occurred most commonly in the lateral femoral condyle of the ACLT joints and were not identified in the tibia. A significant increase in joint effusion was present in the ACLT joints until 8 weeks after surgery. Bone sclerosis or cartilage defects were not reliably assessed with the selected imaging modalities. Combined, clinically available CT and 1.5 T MRI allowed the assessment of most of the characteristic lesions of OA and at early time-points in the development of the disease. However, the selected 1.5 T MRI sequences and acquisition times did not permit the detection of cartilage lesions in this rabbit OA model.

  19. Healing of osteotomy sites applying either piezosurgery or two conventional saw blades: a pilot study in rabbits.

    Science.gov (United States)

    Ma, Li; Stübinger, Stefan; Liu, Xi Ling; Schneider, Urs A; Lang, Niklaus P

    2013-08-01

    The purpose of this study was to compare bone healing of experimental osteotomies applying either piezosurgery or two different oscillating saw blades in a rabbit model. The 16 rabbits were randomly assigned into four groups to comply with observation periods of one, two, three and five weeks. In all animals, four osteotomy lines were performed on the left and right nasal bone using a conventional saw blade, a novel saw blade and piezosurgery. All three osteotomy techniques revealed an advanced gap healing starting after one week. The most pronounced new bone formation took place between two and three weeks, whereby piezoelectric surgery revealed a tendency to faster bone formation and remodelling. Yet, there were no significant differences between the three modalities. The use of a novel as well as the piezoelectric bone-cutting instrument revealed advanced bone healing with a favourable surgical performance compared to a traditional saw.

  20. Calcifying tendinitis of the rotator cuff with cortical bone erosion

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Roxanne; Kim, David H.; Millett, Peter J. [Harvard Medical School, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Weissman, Barbara N. [Harvard Medical School, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Brigham and Women' s Hospital, Department of Radiology, Musculoskeletal Division, Boston (United States)

    2004-10-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. We present a pathologically proven case of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, CT, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed. (orig.)

  1. Calcifying tendinitis of the rotator cuff with cortical bone erosion

    International Nuclear Information System (INIS)

    Chan, Roxanne; Kim, David H.; Millett, Peter J.; Weissman, Barbara N.

    2004-01-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. We present a pathologically proven case of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, CT, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed. (orig.)

  2. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    Directory of Open Access Journals (Sweden)

    Henry Todd

    Full Text Available Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an

  3. Spatial Differences in the Distribution of Bone Between Femoral Neck and Trochanteric Fractures.

    Science.gov (United States)

    Yu, Aihong; Carballido-Gamio, Julio; Wang, Ling; Lang, Thomas F; Su, Yongbin; Wu, Xinbao; Wang, Manyi; Wei, Jie; Yi, Chen; Cheng, Xiaoguang

    2017-08-01

    There is little knowledge about the spatial distribution differences in volumetric bone mineral density and cortical bone structure at the proximal femur between femoral neck fractures and trochanteric fractures. In this case-control study, a total of 93 women with fragility hip fractures, 72 with femoral neck fractures (mean ± SD age: 70.6 ± 12.7 years) and 21 with trochanteric fractures (75.6 ± 9.3 years), and 50 control subjects (63.7 ± 7.0 years) were included for the comparisons. Differences in the spatial distributions of volumetric bone mineral density, cortical bone thickness, cortical volumetric bone mineral density, and volumetric bone mineral density in a layer adjacent to the endosteal surface were investigated using voxel-based morphometry (VBM) and surface-based statistical parametric mapping (SPM). We compared these spatial distributions between controls and both types of fracture, and between the two types of fracture. Using VBM, we found spatially heterogeneous volumetric bone mineral density differences between control subjects and subjects with hip fracture that varied by fracture type. Interestingly, femoral neck fracture subjects, but not subjects with trochanteric fracture, showed significantly lower volumetric bone mineral density in the superior aspect of the femoral neck compared with controls. Using surface-based SPM, we found that compared with controls, both fracture types showed thinner cortices in regions in agreement with the type of fracture. Most outcomes of cortical and endocortical volumetric bone mineral density comparisons were consistent with VBM results. Our results suggest: 1) that the spatial distribution of trabecular volumetric bone mineral density might play a significant role in hip fracture; 2) that focal cortical bone thinning might be more relevant in femoral neck fractures; and 3) that areas of reduced cortical and endocortical volumetric bone mineral density might be more relevant for

  4. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  5. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration

    Science.gov (United States)

    Halima Shamaz, Bibi; Anitha, A.; Vijayamohan, Manju; Kuttappan, Shruthy; Nair, Shantikumar; Nair, Manitha B.

    2015-10-01

    Porous nanohydroxyapatite (nanoHA) is a promising bone substitute, but it is brittle, which limits its utility for load bearing applications. To address this issue, herein, biodegradable electrospun microfibrous sheets of poly(L-lactic acid)-(PLLA)-polyvinyl alcohol (PVA) were incorporated into a gelatin-nanoHA matrix which was investigated for its mechanical properties, the physical integration of the fibers with the matrix, cell infiltration, osteogenic differentiation and bone regeneration. The inclusion of sacrificial fibers like PVA along with PLLA and leaching resulted in improved cellular infiltration towards the center of the scaffold. Furthermore, the treatment of PLLA fibers with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide enhanced their hydrophilicity, ensuring firm anchorage between the fibers and the gelatin-HA matrix. The incorporation of PLLA microfibers within the gelatin-nanoHA matrix reduced the brittleness of the scaffolds, the effect being proportional to the number of layers of fibrous sheets in the matrix. The proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells was augmented on the fibrous scaffolds in comparison to those scaffolds devoid of fibers. Finally, the scaffold could promote cell infiltration, together with bone regeneration, upon implantation in a rabbit femoral cortical defect within 4 weeks. The bone regeneration potential was significantly higher when compared to commercially available HA (Surgiwear™). Thus, this biomimetic, porous, 3D composite scaffold could be offered as a promising candidate for bone regeneration in orthopedics.

  6. Bone collagen stable carbon and nitrogen isotope variability in modern South Australian mammals: A baseline for palaeoecological inferences

    International Nuclear Information System (INIS)

    Pate, F.D.; Anson, T.J.; Noble, A.H.; Schoeninger, M.J.

    1997-01-01

    Cortical bone samples were collected from a range of modern mammals at four field sites along a 1225 km north-south transect from temperate coastal to arid interior South Australia in order to address variability in stable carbon and nitrogen isotope composition. Collection sites were located along the eastern border of the state and included Mount Gambier, Karte, Plumbago and Innamincka. Mean annual rainfall along the transect ranges from 700-800 mm at Mount Gambier to 150-200 mm at Innamincka. Bone collagen carbon and nitrogen isotope values become more positive toward the arid north in relation to increasing quantities of C-4 plants and decreasing amounts of rainfall. respectively. In addition, carnivores and herbivores can be differentiated by stable nitrogen isotope values. On average, carnivore bone collagen is approximately 6 per mil more positive than that of rabbits at Mount Gambier but only 2.6 - 3.4 per mil more positive at the three arid collection sites. In general, the large eutherian herbivores have mean bone collagen δ15N values that are 1.4 - 2.3 per mil more positive than those of the marsupial herbivores. Eutherian and marsupial bone collagen δ15N differences only disappear at the most arid collection site, Innamincka

  7. Bone collagen stable carbon and nitrogen isotope variability in modern South Australian mammals: A baseline for palaeoecological inferences.

    Energy Technology Data Exchange (ETDEWEB)

    Pate, F.D.; Anson, T.J.; Noble, A.H. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). Department of Archaeology; Schoeninger, M.J. [Wisconsin Univ., Madison, WI (United States). Department of Anthropology

    1997-12-31

    Cortical bone samples were collected from a range of modern mammals at four field sites along a 1225 km north-south transect from temperate coastal to arid interior South Australia in order to address variability in stable carbon and nitrogen isotope composition. Collection sites were located along the eastern border of the state and included Mount Gambier, Karte, Plumbago and Innamincka. Mean annual rainfall along the transect ranges from 700-800 mm at Mount Gambier to 150-200 mm at Innamincka. Bone collagen carbon and nitrogen isotope values become more positive toward the arid north in relation to increasing quantities of C-4 plants and decreasing amounts of rainfall. respectively. In addition, carnivores and herbivores can be differentiated by stable nitrogen isotope values. On average, carnivore bone collagen is approximately 6 per mil more positive than that of rabbits at Mount Gambier but only 2.6 - 3.4 per mil more positive at the three arid collection sites. In general, the large eutherian herbivores have mean bone collagen {delta}15N values that are 1.4 - 2.3 per mil more positive than those of the marsupial herbivores. Eutherian and marsupial bone collagen {delta}15N differences only disappear at the most arid collection site, Innamincka.

  8. Understanding age-induced cortical porosity in women

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Delaisse, Jean-Marie; van der Eerden, Bram C J

    2018-01-01

    of a histomorphometric analysis of sections of iliac bone specimens from 35 women (age 16-78 years). Firstly, the study shows that the aging-induced cortical porosity reflects an increased pore size rather than an increased pore density. Secondly, it establishes a novel histomorphometric classification of the pores...... initiation of the subsequent bone formation. This article is protected by copyright. All rights reserved....

  9. Comparative study of bridge plate associated to the intramedullary pin and the dynamic compression plate on the experimental osteotomy fixation of femoral in rabbits (Oryctolagus cuniculus). Clinical, radiographic, histological and scintigraphy analyses; Estudo comparativo da placa em ponte associada ao pino intramedular e da placa de compressao dinamica na fixacao de osteotomia experimental em femur de coelhos (Oryctolagus cuniculus). Analises clinica, radiografica, histologica e cintilografica

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Natalie Ferreira

    2011-07-01

    The objectives were to benchmark and monitor the fracture healing of femoral osteotomy in rabbits after fixation with dynamic compression plate and bridge plate associated with intramedullary pin. Were used 14 New Zealand rabbits, four months old with mean weight of 3.5 pounds, from the Experimental Farm Professor Helio Barbosa of the Veterinary School of Minas Gerais Federal Univ. (UFMG). The animals were randomly divided into two groups (I and II). All rabbits underwent osteotomy across the middle third of right femur. In the group I was made to fix the osteotomy with the bridge plate (BP) associated with intramedullary pin, introduced the technique of minimal invasion. In group II, we used dynamic compression plate (DCP) via the conventional approach. Both groups were evaluated clinical, radiographic, histologic and scintigraphic findings. Clinical assessments were performed weekly until the 12{sup th} postoperative week and radiographic examinations were performed before, immediately after, at 15, 30, 45, 60 and 90 days. The bone scintigraphy were performed before and at 20, 50 and 90 days after surgery to monitor the bone metabolism qualitatively and quantitatively. Observed perfusion and bone healing process. After 90 days of study, there was histopathologic evaluation of the osteotomized area and the insertion of screws. In the region of the osteotomy was observed predominance of trabecular bone in group I and group II, the predominance of bone osteons, compatible with the original bone. On insertion of the screws did not differ between groups and there was cortical discontinuity, little necrosis and local hemorrhage. The two types of fixation have led to consolidation within the scheduled period, maturing in early fixation with DCP fixation compared with BP. Scintigraphy demonstrated by the indices of activity and image characteristics, the process of bone healing was significantly greater in animals undergoing early fixation with DCP. (author)

  10. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  11. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder.

    Science.gov (United States)

    Tu, Shu-Ju; Huang, Hong-Wen; Chang, Wei-Jeng

    2015-04-01

    Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.

    Science.gov (United States)

    Hoemann, C D; Sun, J; McKee, M D; Chevrier, A; Rossomacha, E; Rivard, G-E; Hurtig, M; Buschmann, M D

    2007-01-01

    We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (Phyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.

  13. Effect of vitamin K2 and growth hormone on the long bones in hypophysectomized young rats: a bone histomorphometry study.

    Science.gov (United States)

    Iwamoto, Jun; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2007-01-01

    The purpose of the present study was to determine whether vitamin K(2) and growth hormone (GH) had an additive effect on the long bones in hypophysectomized young rats. Forty-eight female Sprague-Dawley rats (6 weeks old) were assigned to the following five groups by the stratified weight randomization method: intact controls, hypophysectomy (HX) alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + GH (0.625 mg/kg, s.c., 5 days a week), and HX + vitamin K(2) + GH. The duration of the experiment was 4 weeks. HX resulted in a reduction of the cancellous bone volume/total tissue volume (BV/TV) at the proximal tibial metaphysis, as well as decreasing the total tissue area and cortical area of the tibial diaphysis. These changes resulted from a decrease of the longitudinal growth rate and the bone formation rate (BFR)/TV of cancellous bone, as well as a decrease of the periosteal BFR/bone surface (BS) and an increase of endocortical bone turnover (indicated by the BFR/BS) in cortical bone. Administration of vitamin K(2) to HX rats did not affect the cancellous BV/TV or the cortical area. On the other hand, GH completely prevented the decrease of total tissue area and cortical area in cortical bone, as well as the decrease of marrow area and endocortical circumference, by increasing the periosteal BFR/BS compared with that in intact controls and reversing the increase of endocortical bone turnover (BFR/BS). However, GH only partly improved the reduction of the cancellous BV/TV, despite an increase of the longitudinal growth rate and BFR/TV compared with those of intact controls. When administered with GH, vitamin K(2) counteracted the reduction of endocortical bone turnover (BFR/BS) and circumference caused by GH treatment, resulting in no significant difference of marrow area from that in untreated HX rats. These results suggest that, despite the lack of an obvious effect on bone parameters, vitamin K(2) normalizes the size of the marrow cavity during development of

  14. Study of bony trabecular characteristics using bone morphometry and micro-CT

    International Nuclear Information System (INIS)

    Song, Young Han; Lee, Wan; Lee, Chang Jin; Ji, Jung Hyun; Lee, Byung Do

    2007-01-01

    The research was done to investigate the effectiveness of 2D bony morphometry and microstructure of micro-computed tomography (micro-CT) on the osteoporotic bony change. We performed the bone morphometric analysis of proximal femur in ovariectomized rabbits with BMD and micro-CT examination. Twenty-one female (Newzeland, about 16 weeks old, 2.9-3.4 kg) rabbits were used. Three rabbits were sacrificed on the day when experiment began (Basline). The remaining 18 rabbits were divided into two groups. One group was ovariectomized bilaterally (OVX) and the other animals were subjected to sham operation (Sham). Bone specimens were obtained from the right and left femur of sacrificed rabbits. At intervals of 1,2,3,5,6 months respectively, BMD tests were performed on the proximal on the proximal femur by using PIXImus 2 (GE Lunar Co. USA), 2-dimensional bone morphometric analysis by custom computer program and 2D / 3D bone structure analysis by micro-CT (Skyscan1072, Antwerpen, Belgium). Statistical analysis was carried out for the correlation between bone morphometry, micro-CT and BMD. BV/TV, Tb.Th, Tb.N of micro-CT parameters showed higher values in sham group than OVX group. N.Nd/Ar.RI, N.NdNd, N.NdTm, N. TmTm, PmB/Ar.RI, 3-D BoxSlope of 2D morphometric parameters showed higher values in Sham group than OVX group. The micro-CT parameters of Tb.Sp. Tb.N were statistically significant correlated with BMD respectively. Several 2D morphometric parameters were statistically significant correlated with BMD respectively. Several parameters of 2D bony morphometry and micro-CT showed effective aspects on the osteoporotic bony change

  15. A Comparative Study of Bio artificial Bone Tissue Poly-L-lactic Acid/Polycaprolactone and PLLA Scaffolds Applied in Bone Regeneration

    International Nuclear Information System (INIS)

    Weng, W.; Song, Sh.; Cao, L.; Chen, X.; Cai, Y.; Li, H.; Zhou, Q.; Zhang, J.; Su, J.

    2014-01-01

    Bio artificial bone tissue engineering is an increasingly popular technique to repair bone defect caused by injury or disease. This study aimed to investigate the feasibility of PLLA/PCL (poly-L-lactic acid/polycaprolactone) by a comparison study of PLLA/PCL and PLLA scaffolds applied in bone regeneration. Thirty healthy mature New Zealand rabbits on which 15 mm distal ulna defect model had been established were selected and then were divided into three groups randomly: group A (repaired with PLLA scaffold), group B (repaired with PLLA/PCL scaffold), and group C (no scaffold) to evaluate the bone-remodeling ability of the implants. Micro-CT examination revealed the prime bone regeneration ability of group B in three groups. Bone mineral density of surgical site in group B was higher than group A but lower than group C. Meanwhile, the bone regeneration in both groups A and B proceeded with signs of inflammation for the initial fast degradation of scaffolds. As a whole, PLLA/PCL scaffolds in vivo initially degrade fast and were better suited to repair bone defect than PLLA in New Zealand rabbits. Furthermore, for the low mineral density of new bone and rapid degradation of the scaffolds, more researches were necessary to optimize the composite for bone regeneration.

  16. Local induction of inflammation affects bone formation

    NARCIS (Netherlands)

    Croes, M; Kruyt, M C; Loozen, L; Kragten, A H; Yuan, H; Dhert, W J; Öner, F C; Alblas, J

    2017-01-01

    To explore the influence of inflammatory processes on bone formation, we applied a new in vivo screening model. Confined biological pockets were first created in rabbits as a response to implanted bone cement discs. These biomembrane pockets were subsequently used to study the effects of

  17. Observation of microscopic bone structure during bone formation. Application of micro-computed tomography for evaluation of bone quality

    International Nuclear Information System (INIS)

    Ueno, Takaaki; Yamamoto, Hiromitsu; Mizukawa, Nobuyoshi; Mishima, Katsuaki; Takagi, Shin; Sugahara, Toshio

    1998-01-01

    Bone formation in the autogenous periosteum of the tibia grafted to the floor of the mouth to bridge the mandible was studied by micro-CT to assess its efficacy in evaluating bone formation in rabbits. On soft radiographs, bone formation was observed from both ends of the periosteum on day 14. The bone increased in width and extended medially; contact was made in the center on day 28. The time course of the development of bone trabeculae was well demonstrated three-dimensionally on micro-CT. Indices of bone quality such as Tb-Th, Tb.N, and BV, which reflect the growth of trabeculae, increased gradually from days 14 to 21 and more rapidly from days 21 to 28, whereas Tb. S decreased gradually after grafting. The results suggest that micro-CT is useful in evaluating bone formation three-dimensionally. (author)

  18. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer

    Science.gov (United States)

    Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie

    2018-04-01

    The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.

  19. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shihong [Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040 (China); Yancheng Medical College, Jiangsu (China); The First People' s Hospital of Yancheng City, Jiangsu 224005 (China); Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, San Diego, California 92161 and Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Bae, Won C.; Du, Jiang, E-mail: jiangdu@ucsd.edu [Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Hua, Yanqing [Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040 (China); Zhou, Yi [The First People' s Hospital of Yancheng City, Jiangsu 224005 (China)

    2014-02-15

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can

  20. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    International Nuclear Information System (INIS)

    Li, Shihong; Chang, Eric Y.; Chung, Christine B.; Bae, Won C.; Du, Jiang; Hua, Yanqing; Zhou, Yi

    2014-01-01

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2 * s and/or relative fractions of short and long T2 * s. Results: For all bone samples UTE T2 * signal decay showed bicomponent behavior. A higher short T2 * fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2 * fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2 * fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2 * components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2 * s and relative fractions can be assessed using UTE bicomponent

  1. Evaluation of the effect of platelet rich plasma (PRP) on enhancement of bone healing in diaphyseal bone defects by radiography and computed tomography

    International Nuclear Information System (INIS)

    Özak, Ahmet; Yardimci, Cenk; Nİsbet, Özlem H.; Bayrak, İlkay Koray; Nİsbet, Cevat

    2010-01-01

    The effect of platelet-rich plasma (PRP) with autogenous cancellous bone graft on enhancement of bone healing in diaphyseal bone defects was evaluated. A 4-mm defect was created in the middiaphysis of the tibias of 20 rabbits. Rabbits were divided into two groups of ten animals each: only autogenous cancellous graft, PRP and autogenous cancellous graft. In animals of group 1, only autogenous cancellous grafts, and to those in group 2, PRP and autogenous cancellous grafts, were applied to the defect. Radiographical and computed tomography (CT) views were taken and evaluated on postoperative days 0, 15, 30, 60, and 90. According to the bone formation, union, and remodeling scores, group 1 had better scores than group 2 on days 30, 60, and 90. The density was significantly increased on day 60 than on days 0, 15, and 30 in group 1. In conclusion, it was evaluated that PRP could not enhance the bone regeneration in diaphyseal defects when used with autogenous cancellous bone graft

  2. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.

    Science.gov (United States)

    Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W

    2010-11-01

    The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Intra- and inter-observer variation in histological criteria used in age at death determination based on femoral cortical bone

    DEFF Research Database (Denmark)

    Lynnerup, N; Thomsen, J L; Frohlich, B

    1998-01-01

    been carried out dealing with the intra- and inter-observer error. Furthermore, when such studies have been completed, the statistical tools for assessing variability have not been adequate. This study presents the results of applying simple quantitative statistics on several counts of microscopic...... elements as observed on photographic images of cortical bone, in order to assess intra- and inter-observer error. Overall, substantial error was present at the level of identifying and counting secondary osteons, osteon fragments and Haversian canals. Only secondary osteons can be reliably identified...

  4. The double cortical line: a sign of osteopenia

    International Nuclear Information System (INIS)

    Lamb, C.R.

    1990-01-01

    The double cortical line is a radiographic sign of osteopenia which results from intracortical resorption of bone. This sign is frequently seen in humans with osteopenia but has received minimal attention in the veterinary literature. This report describes the double cortical line in cases of senile osteopenia, nutritional secondary hyperparathyroidism, suspected renal secondary hyperparathyroidism and in the acetabulum following triple pelvic osteotomy for hip dysplasia

  5. Correlation between radiological, scintigraphic and histological changes in bone in rabbits following irradiation with single and fractionated doses

    International Nuclear Information System (INIS)

    Burgener, F.A.; King, M.A.; Weber, D.A.

    1979-01-01

    In the left hind legs of eight rabbits were irradiated with 1,750 rad in a single dose or with 4,650 rad divided over a period of three weeks. These animals, as well as four who had not been irradiated, were examined periodically radiologically and with 99 mTechnetium pyrophosphate scintigrams during one year. No difference could be detected between the results of the single and fractionated doses. Scintigraphically there was a biphasic increase in uptake, the first peak co-inciding with the irradiation and of vascular origin, whereas the second peak occured at four months and was due to a change in bone metabolism. At the end of a year uptake in the irradiated limb was slightly reduced. The earliest radiological changes were found after six months, at the end of the second scintigraphic peak; they consisted of coarsening and blurring of the trabeculae, non-homogeneous spotty mineralisation and endosteal scalloping. Six animals developed a radiation-induced bone sarcoma, first demonstrated either by scintigraphy or radiology depending on its histology. The value of combining radiological and scintigraphic examinations for the early detection of post-radiation abnormalities is stressed. (orig.) [de

  6. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography

    International Nuclear Information System (INIS)

    Turmezei, Tom D.; Treece, Graham M.; Gee, Andrew H.; Fotiadou, Anastasia F.; Poole, Kenneth E.S.

    2016-01-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K and L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K and L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. (orig.)

  7. Osteogenic capability of autologous rabbit adipose-derived stromal cells in repairing calvarial defects

    Directory of Open Access Journals (Sweden)

    CHENG Shao-wen

    2012-02-01

    Full Text Available 【Abstract】Objective: To evaluate the in vitro and in vivo osteogenic capability of adipose-derived stromal cells (ASCs. Methods: ASCs were isolated from New Zealand white rabbits and determined by alkaline phosphatase (ALP staining, von Kossa staining and alizarin red staining. Some specific markers of osteogenic differentiation, including ALP, osteocalcin (OCN, osteopontin (OPN were examined by reverse transcription-polymerase chain reaction (RT-PCR. In vivo, demineralized bone matrix (DBM-ASCs composites were implanted into the rabbit calvarial defects created at each side of the longitudinal midline. After 6 weeks, histologic properties of the transplants were analyzed. Results: ASCs were successfully induced into osteogenesis. ALP staining, von Kossa staining and alizarin red staining showed positive results. The expressions of ALP, OCN and OPN were detected in ASCs after cultivation in osteogenic medium. Extensive new bone was observed in the defects transplanted with DBM-ASCs composites. Conclusion: ASCs have the potential to differentiate into osteogenic lineage and DBM-ASCs constructs are a promising method for regeneration in bone defects. Key words: Adipose tissue; Bone regeneration; Osteogenesis

  8. Effect of latrogenic trauma on the bone scintigram: an animal study. Concise communication

    International Nuclear Information System (INIS)

    Alazraki, N.; Moitoza, J.; Heaphy, J.; Taylor, A. Jr.

    1984-01-01

    An animal study was performed to assess the effect on the Tc-99m phosphate bone scintigram of injury by needle aspiration or drill hole to metaphyseal and diaphyseal areas in immature and mature bones. Results showed that in 12 immature rabbits such trauma to metaphyseal regions had no effect on the bone image. Similar metaphyseal trauma in two mature dogs showed definite abnormalities on the bone image, but in one mature rabbit, no abnormality could be identified by scintigram. Diaphyseal trauma always gave a definitely abnormal bone image. Extrapolation of these results to humans should be cautious, but it suggests that needling or drilling in metaphyseal regions in neonates or young children probably does not affect later bone images

  9. Effect of calvarial burring on resorption of onlay cranial bone graft.

    Science.gov (United States)

    Hassanein, Aladdin H; Clune, James E; Mulliken, John B; Arany, Praveen R; Rogers, Gary F; Kulungowski, Ann M; Greene, Arin K

    2012-09-01

    Variable resorption occurs whenever calvarial bone graft is used for onlay cranioplasty. The recipient ectocortex may be burred to expose vessels and osteocytes to maximize healing. The purpose of this study was to determine whether abrading the recipient site improves the volume of onlay graft. The parietal bones of 17 rabbits were sectioned into split-thickness and full-thickness grafts. The right frontal cortex was abraded with a bur to punctate bleeding. Pairs of split-thickness (n = 48) or full-thickness (n = 20) grafts were onlayed to the burred right frontal bone and to the nonburred left frontal bone. Micro-computed tomography was used to determine graft volume immediately postoperatively and 16 weeks later. Histology, including tartrate-resistant acid phosphatase staining, was performed to quantify vascular channels and osteoclasts per high-power field 10 days postoperatively. Split-thickness graft volume decreased 58.0% when placed on the burred calvarial site, compared with grafts on the nonburred cortex (28.4%) (P = 0.01). Full-thickness grafts showed a similar trend: greater resorption (39.1%) when onlayed onto abraded calvaria compared with nonburred ectocortex (26.0%) (P = 0.11). Split-thickness graft orientation (cortical vs cancellous side in contact with the recipient site) did not affect resorption (P = 0.67). Onlay grafts placed on the burred recipient site had more vascular channels (11.8) and osteoclasts (5.7), compared with grafts over nonabraded cortex (3.4 and 4.2, respectively) (P cranial bone grafting promotes resorption, possibly by increasing vascularization and osteoclastic activity. This technique cannot be recommended.

  10. The effect of local injection of the human growth hormone on the mandibular condyle growth in rabbit

    Directory of Open Access Journals (Sweden)

    Masood Feizbakhsh

    2014-01-01

    Full Text Available Background: The aim of this study was to evaluate the effect of local injection of human growth hormone (GH in stimulating cartilage and bone formation in a rabbit model of temporomandibular joint (TMJ. Materials and Methods: In an experimental animal study, 16 male Albino New Zealand white rabbits aged 12 weeks were divided into two groups: In the first group (7 rabbits 2 mg/kg/1 ml human GH and in the control group (9 rabbits 1 ml normal saline was administered locally in both mandibular condyles. Injections were employed under sedation and by single experienced person. Injections were made for 6 times with 3 injections a week in the all test and control samples. Rabbits were sacrified at the 20th day from the beginning of study and TMJs were histologically examined. ANOVA (two-sided with Dunnett post hoc test was used to compare data of bone and cartridge thickness while chi-square test was used to analyze hyperplasia and disk deformity data. P < 0.05 was considered as significant. Results: Cartilage layer thickness was greater in the GH-treated (0.413 ± 0.132 than the control group (0.287 ± 0.098 (P value = 0.02. Although bone thickness and condylar cartilage hyperplasia were greater in the GH-treated group, these differences were not statistically significant (P value = 0.189 and 0.083, respectively. There was no statistically significant difference between two groups regarding the disc deformity (P value = 0.46. Conclusion: Local injection of human GH in the TMJ is able to accelerate growth activity of condylar cartilage in rabbit.

  11. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Zhang, Guangdao [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Tan, Lili; Yang, Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Ai, Hongjun, E-mail: aihongjuna@sina.com [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China)

    2016-06-01

    This study aimed to evaluate the effect of fluorine coated Mg alloy and clarify its mechanism in bone formation. We implanted the fluorine coated AZ31B Mg alloy screw (group F) in rabbit mandibular and femur in vivo. Untreated AZ31B Mg alloy screw (group A) and titanium screw (group T) were used as control. Then, scanning electron microscopy, the spectral energy distribution analysis, hard and decalcified bone tissues staining were performed. Immunohistochemistry was employed to examine the protein expressions of bone morphogenetic protein 2 (BMP-2) and collagen type I in the vicinity of the implant. Compared with the group A, the degradation of the alloy was reduced, the rates of Mg corrosion and Mg ion release were slowed down, and the depositions of calcium and phosphate increased in the group F in the early stage of implantation. Histological results showed that fluorine coated Mg alloy had well osteogenic activity and biocompatibility. Moreover, fluoride coating obviously up-regulated the expressions of collagen type I and BMP-2. This study confirmed that the fluorine coating might improve the corrosion resistance of AZ31B Mg alloy and promote bone formation by up-regulated the expressions of collagen type I and BMP-2. - Highlights: • Fluoride coating inhibited the degradation of the alloy in the early implantation. • Fluorine coating could slow down the rate of Mg corrosion and Mg ion release. • Fluorine coating could promote the deposition of Ca and P in vivo. • Fluorine coated Mg alloy had well osteogenic activity and biocompatibility. • Fluorine coating up-regulated the expression of BMP-2 and collagen type I protein.

  12. Lacunar-canalicular network in femoral cortical bone is reduced in aged women and is predominantly due to a loss of canalicular porosity

    Directory of Open Access Journals (Sweden)

    A.M. Ashique

    2017-12-01

    Full Text Available The lacunar-canalicular network (LCN of bone contains osteocytes and their dendritic extensions, which allow for intercellular communication, and are believed to serve as the mechanosensors that coordinate the processes of bone modeling and remodeling. Imbalances in remodeling, for example, are linked to bone disease, including fragility associated with aging. We have reported that there is a reduction in scale for one component of the LCN, osteocyte lacunar volume, across the human lifespan in females. In the present study, we explore the hypothesis that canalicular porosity also declines with age. To visualize the LCN and to determine how its components are altered with aging, we examined samples from young (age: 20–23 y; n = 5 and aged (age: 70–86 y; n = 6 healthy women donors utilizing a fluorescent labelling technique in combination with confocal laser scanning microscopy. A large cross-sectional area of cortical bone spanning the endosteal to periosteal surfaces from the anterior proximal femoral shaft was examined in order to account for potential trans-cortical variation in the LCN. Overall, we found that LCN areal fraction was reduced by 40.6% in the samples from aged women. This reduction was due, in part, to a reduction in lacunar density (21.4% decline in lacunae number per given area of bone, but much more so due to a 44.6% decline in canalicular areal fraction. While the areal fraction of larger vascular canals was higher in endosteal vs. periosteal regions for both age groups, no regional differences were observed in the areal fractions of the LCN and its components for either age group. Our data indicate that the LCN is diminished in aged women, and is largely due to a decline in the canalicular areal fraction, and that, unlike vascular canal porosity, this diminished LCN is uniform across the cortex.

  13. Scintigraphic findings of bone and bone-marrow and determination of bone mineral density using photon absorptiometry in osteopetrosis

    International Nuclear Information System (INIS)

    Otsuka, Nobuaki; Fukunaga, Masao; Morita, Koichi

    1988-01-01

    On a 15-year-old girl with osteopetrosis, bone and bonemarrow scintigraphy were performed. Also, bone mineral density (BMD) with quantitative CT (QCT), single photon absorptiometry (SPA) and dual photon absorptiometry (DPA) were measured. On bone scintigraphy the diffusely increased skeletal uptake and relatively diminished renal uptake were noted. On the other hand, on bone marrow scintigraphy poor accumulation in central marrow and peripheral expansion were shown. BMD value by QCT and DPA (mainly trabecular bone) was markedly high, while BMD by SPA (mainly cortical bone) was within normal range. Thus, it was shown that bone and bone-marrow scintigraphy combined with BMD measurement by photon absorptiometry were useful and essential in evaluating the pathophysiology of osteosclerosis. (author)

  14. Interpreting the three-dimensional orientation of vascular canals and cross-sectional geometry of cortical bone in birds and bats.

    Science.gov (United States)

    Pratt, Isaac V; Johnston, James D; Walker, Ernie; Cooper, David M L

    2018-06-01

    Cortical bone porosity and specifically the orientation of vascular canals is an area of growing interest in biomedical research and comparative/paleontological anatomy. The potential to explain microstructural adaptation is of great interest. However, the determinants of the development of canal orientation remain unclear. Previous studies of birds have shown higher proportions of circumferential canals (called laminarity) in flight bones than in hindlimb bones, and interpreted this as a sign that circumferential canals are a feature for resistance to the torsional loading created by flight. We defined the laminarity index as the percentage of circumferential canal length out of the total canal length. In this study we examined the vascular canal network in the humerus and femur of a sample of 31 bird and 24 bat species using synchrotron micro-computed tomography (micro-CT) to look for a connection between canal orientation and functional loading. The use of micro-CT provides a full three-dimensional (3D) map of the vascular canal network and provides measurements of the 3D orientation of each canal in the whole cross-section of the bone cortex. We measured several cross-sectional geometric parameters and strength indices including principal and polar area moments of inertia, principal and polar section moduli, circularity, buckling ratio, and a weighted cortical thickness index. We found that bat cortices are relatively thicker and poorly vascularized, whereas those of birds are thinner and more highly vascularized, and that according to our cross-sectional geometric parameters, bird bones have a greater resistance to torsional stress than the bats; in particular, the humerus in birds is more adapted to resist torsional stresses than the femur. Our results show that birds have a significantly (P = 0.031) higher laminarity index than bats, with birds having a mean laminarity index of 0.183 in the humerus and 0.232 in the femur, and bats having a mean laminarity

  15. EPR dosimetry of cortical bone and tooth enamel irradiated with X and gamma rays: Study of energy dependence

    International Nuclear Information System (INIS)

    Schauer, D.A.; Links, J.M.; Desrosiers, M.F.; Le, F.G.; Seltzer, S.M.

    1994-01-01

    Previous investigators have reported that the radiation-induced EPR signal intensity in compact or cortical bone increases up to a factor of two with decreasing photon energy for a given absorbed dose. If the EPR signal intensity was dependent on energy, it could limit the application of EPR spectrometry and the additive reirradiation method to obtain dose estimates. We have recently shown that errors in the assumptions governing conversion of measured exposure to absorbed dose can lead to similar open-quotes apparentclose quotes energy-dependence results. We hypothesized that these previous results were due to errors in the estimated dose in bone, rather than the effects of energy dependence per se. To test this hypothesis we studied human adult cortical bone from male and female donors ranging in age from 23 to 95 years, and bovine tooth enamel, using 34 and 138 keV average energy X-ray beams and 137 Cs (662 keV) and 60 Co (1250 keV) γ rays. In a femur from a 47-year-old male (subject 1), there was a difference of borderline significance at the α = 0.05 level in the mean radiation-induced hydroxyapatite signal intensities as a function of photon energy. No other statistically significant differences in EPR signal intensity as a function of photon energy were observed in this subject, or in the tibia from a 23-year-old male (subject 2) and the femur from a 75-year-old female (subject 3). However, there was a trend toward a decrease (12-15%) in signal intensity at the lowest energy compared with the highest energy in subjects 1 and 3. Further analysis of the data from subject 1 revealed that this trend, which is in the opposite direction of previous reports but is consistent with theory, is statistically significant. There were no efforts of energy dependence in the tooth samples. 16 refs., 7 figs., 5 tabs

  16. Age-related compaction of lens fibers affects the structure and optical properties of rabbit lenses

    Directory of Open Access Journals (Sweden)

    Al-Ghoul Walid M

    2007-12-01

    Full Text Available Abstract Background The goal of this investigation was to correlate particular age-related structural changes (compaction to the amount of scatter in rabbit lenses and to determine if significant fiber compaction occurred in the nuclear and inner cortical regions. Methods New Zealand White rabbits at 16–20 months old (adult; n = 10 and at 3.5–4 years old (aged; n = 10 were utilized for this study. Immediately after euthanising, scatter was assessed in fresh lenses by low power helium-neon laser scan analysis. Scatter data was analyzed both for whole lenses and regionally, to facilitate correlation with morphometric data. After functional analysis, lenses were fixed and processed for scanning electron microcopy (SEM; right eyes and light microscopy (LM; left eyes. Morphometric analysis of SEM images was utilized to evaluate compaction of nuclear fibers. Similarly, measurements from LM images were used to assess compaction of inner cortical fibers. Results Scatter was significantly greater in aged lenses as compared to adult lenses in all regions analyzed, however the difference in the mean was slightly more pronounced in the inner cortical region. The anterior and posterior elliptical angles at 1 mm (inner fetal nucleus were significantly decreased in aged vs. adult lenses (anterior, p = 0.040; posterior, p = 0.036. However, the average elliptical angles at 2.5 mm (outer fetal nucleus were not significantly different in adult and aged lenses since all lenses examined had comparable angles to inner fetal fibers of aged lenses, i.e. they were all compacted. In cortical fibers, measures of average cross-sectional fiber area were significantly different at diameters of both 6 and 7 mm as a function of age (p = 0.011 and p = 0.005, respectively. Accordingly, the estimated fiber volume was significantly decreased in aged as compared to adult lenses at both 6 mm diameter (p = 0.016 and 7 mm diameter (p = 0.010. Conclusion Morphometric data indicates

  17. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    Science.gov (United States)

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. © 2015. Published by The Company of Biologists Ltd.

  18. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  19. Role of endocortical contouring methods on precision of HR-pQCT-derived cortical micro-architecture in postmenopausal women and young adults.

    Science.gov (United States)

    Kawalilak, C E; Johnston, J D; Cooper, D M L; Olszynski, W P; Kontulainen, S A

    2016-02-01

    Precision errors of cortical bone micro-architecture from high-resolution peripheral quantitative computed tomography (pQCT) ranged from 1 to 16 % and did not differ between automatic or manually modified endocortical contour methods in postmenopausal women or young adults. In postmenopausal women, manually modified contours led to generally higher cortical bone properties when compared to the automated method. First, the objective of the study was to define in vivo precision errors (coefficient of variation root mean square (CV%RMS)) and least significant change (LSC) for cortical bone micro-architecture using two endocortical contouring methods: automatic (AUTO) and manually modified (MOD) in two groups (postmenopausal women and young adults) from high-resolution pQCT (HR-pQCT) scans. Second, it was to compare precision errors and bone outcomes obtained with both methods within and between groups. Using HR-pQCT, we scanned twice the distal radius and tibia of 34 postmenopausal women (mean age ± SD 74 ± 7 years) and 30 young adults (27 ± 9 years). Cortical micro-architecture was determined using AUTO and MOD contour methods. CV%RMS and LSC were calculated. Repeated measures and multivariate ANOVA were used to compare mean CV% and bone outcomes between the methods within and between the groups. Significance was accepted at P young adults, postmenopausal women had better precision for radial cortical porosity (precision difference 9.3 %) and pore volume (7.5 %) with MOD. Young adults had better precision for cortical thickness (0.8 %, MOD) and tibial cortical density (0.2 %, AUTO). In postmenopausal women, MOD resulted in 0.2-54 % higher values for most cortical outcomes, as well as 6-8 % lower radial and tibial cortical BMD and 2 % lower tibial cortical thickness. Results suggest that AUTO and MOD endocortical contour methods provide comparable repeatability. In postmenopausal women, manual modification of endocortical contours led to

  20. Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, J.S.; Klibanski, A.; Neer, R.M.; Doppelt, S.H.; Rosenthal, D.I.; Segre, G.V.; Crowley, W.F. Jr. (Massachusetts General Hospital, Boston (USA))

    1989-10-01

    To assess the effects of gonadal steroid replacement on bone density in men with osteoporosis due to severe hypogonadism, we measured cortical bone density in the distal radius by 125I photon absorptiometry and trabecular bone density in the lumbar spine by quantitative computed tomography in 21 men with isolated GnRH deficiency while serum testosterone levels were maintained in the normal adult male range for 12-31 months (mean +/- SE, 23.7 +/- 1.1). In men who initially had fused epiphyses (n = 15), cortical bone density increased from 0.71 +/- 0.02 to 0.74 +/- 0.01 g/cm2 (P less than 0.01), while trabecular bone density did not change (116 +/- 9 compared with 119 +/- 7 mg/cm3). In men who initially had open epiphyses (n = 6), cortical bone density increased from 0.62 +/- 0.01 to 0.70 +/- 0.03 g/cm2 (P less than 0.01), while trabecular bone density increased from 96 +/- 13 to 109 +/- 12 mg/cm3 (P less than 0.01). Cortical bone density increased 0.03 +/- 0.01 g/cm2 in men with fused epiphyses and 0.08 +/- 0.02 g/cm2 in men with open epiphyses (P less than 0.05). Despite these increases, neither cortical nor trabecular bone density returned to normal levels. Histomorphometric analyses of iliac crest bone biopsies demonstrated that most of the men had low turnover osteoporosis, although some men had normal to high turnover osteoporosis. We conclude that bone density increases during gonadal steroid replacement of GnRH-deficient men, particularly in men who are skeletally immature.

  1. Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism

    International Nuclear Information System (INIS)

    Finkelstein, J.S.; Klibanski, A.; Neer, R.M.; Doppelt, S.H.; Rosenthal, D.I.; Segre, G.V.; Crowley, W.F. Jr.

    1989-01-01

    To assess the effects of gonadal steroid replacement on bone density in men with osteoporosis due to severe hypogonadism, we measured cortical bone density in the distal radius by 125I photon absorptiometry and trabecular bone density in the lumbar spine by quantitative computed tomography in 21 men with isolated GnRH deficiency while serum testosterone levels were maintained in the normal adult male range for 12-31 months (mean +/- SE, 23.7 +/- 1.1). In men who initially had fused epiphyses (n = 15), cortical bone density increased from 0.71 +/- 0.02 to 0.74 +/- 0.01 g/cm2 (P less than 0.01), while trabecular bone density did not change (116 +/- 9 compared with 119 +/- 7 mg/cm3). In men who initially had open epiphyses (n = 6), cortical bone density increased from 0.62 +/- 0.01 to 0.70 +/- 0.03 g/cm2 (P less than 0.01), while trabecular bone density increased from 96 +/- 13 to 109 +/- 12 mg/cm3 (P less than 0.01). Cortical bone density increased 0.03 +/- 0.01 g/cm2 in men with fused epiphyses and 0.08 +/- 0.02 g/cm2 in men with open epiphyses (P less than 0.05). Despite these increases, neither cortical nor trabecular bone density returned to normal levels. Histomorphometric analyses of iliac crest bone biopsies demonstrated that most of the men had low turnover osteoporosis, although some men had normal to high turnover osteoporosis. We conclude that bone density increases during gonadal steroid replacement of GnRH-deficient men, particularly in men who are skeletally immature

  2. The influence of radiation therapy on subperiosteal hydroxyapatite implants in rabbits

    International Nuclear Information System (INIS)

    Khateery, S.; Waite, P.D.; Lemons, J.E.

    1991-01-01

    Granular hydroxyapatite (HA) was implanted into subperiosteal pockets along both the right and left proximal tibias of 12 adult New Zealand white rabbits. The left extremities of 10 rabbits served as controls, whereas the right sides were irradiated with 2,250 rad in three doses over 5 days. The animals were killed at 1-week intervals starting at 2 weeks postirradiation. One half of each site was evaluated using standard histologic techniques while the other half was examined as a nondecalcified section. The quantity and the quality of new bone formation was determined using a rating scale and histomorphometric digitization. The results of this 4-month study showed that the amount of new bone formation around the HA granules was significantly greater in the irradiated sites. The irradiation produced no deleterious effects on the implant or the surrounding tissue areas

  3. Assessment of fluoride-induced changes on physicochemical and structural properties of bone and the impact of calcium on its control in rabbits.

    Science.gov (United States)

    Gopalakrishnan, Subarayan Bothi; Viswanathan, Gopalan

    2012-03-01

    Bone deformities caused by the chronic intake of large quantities of fluoride and the beneficial effect of calcium on its control have been studied for many years, but only limited data are available on the quantitative effect of fluoride intake and the beneficial impact of calcium on fluoride-induced changes in bone at the molecular level. It is necessary to determine the degree of fluoride-induced changes in bone at different levels of fluoride intake to evaluate the optimum safe intake level of fluoride for maintaining bone health and quality. The ameliorative effect of calcium at different dose levels on minimizing fluoride-induced changes in bone is important to quantify the amount of calcium intake necessary for reducing fluoride toxicity. Thirty rabbits, 2 months old, were divided into five groups. Group I animals received 1 mg/l fluoride and 0.11% calcium diet; groups II and III received 10 mg/l fluoride and diet with 0.11% or 2.11% calcium, respectively; and groups IV and V received 150 mg/l fluoride and diet with 2.11% or 0.11% calcium, respectively. Analysis of bone density, ash content, fluoride, calcium, phosphorus, and Ca:P molar ratio levels after 6 months of treatment indicated that animals that received high fluoride with low-calcium diet showed significant detrimental changes in physicochemical properties of bone. Animals that received fluoride with high calcium intake showed notable amelioration of the impact of calcium on fluoride-induced changes in bone. The degree of fluoride-induced characteristic changes in structural properties such as crystalline size, crystallinity, and crystallographic "c"-axis length of bone apatite cells was also assessed by X-ray diffraction and Fourier transform infrared studies. X-ray images showed bone deformity changes such as transverse stress growth lines, soft tissue ossification, and calcification in different parts of bones as a result of high fluoride accumulation and the beneficial role of calcium

  4. Comparison of new bone formation, implant integration, and biocompatibility between RGD-hydroxyapatite and pure hydroxyapatite coating for cementless joint prostheses--an experimental study in rabbits.

    Science.gov (United States)

    Bitschnau, Achim; Alt, Volker; Böhner, Felicitas; Heerich, Katharina Elisabeth; Margesin, Erika; Hartmann, Sonja; Sewing, Andreas; Meyer, Christof; Wenisch, Sabine; Schnettler, Reinhard

    2009-01-01

    This is the first work to report on additional Arginin-Glycin-Aspartat (RGD) coating on precoated hydroxyapatite (HA) surfaces regarding new bone formation, implant bone contact, and biocompatibility compared to pure HA coating and uncoated stainless K-wires. There were 39 rabbits in total with 6 animals for the RGD-HA and HA group for the 4 week time period and 9 animals for each of the 3 implant groups for the 12 week observation. A 2.0 K-wire either with RGD-HA or with pure HA coating or uncoated was placed into the intramedullary canal of the tibia. After 4 and 12 weeks, the tibiae were harvested and three different areas of the tibia were assessed for quantitative and qualitative histology for new bone formation, direct implant bone contact, and formation of multinucleated giant cells. Both RGD-HA and pure HA coating showed statistically higher new bone formation and implant bone contact after 12 weeks than the uncoated K-wire. There were no significant differences between the RGD-HA and the pure HA coating in new bone formation and direct implant bone contact after 4 and 12 weeks. The number of multinucleated giant did not differ significantly between the RGD-HA and HA group after both time points. Overall, no significant effects of an additional RGD coating on HA surfaces were detected in this model after 12 weeks. (c) 2008 Wiley Periodicals, Inc.

  5. Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry

    Directory of Open Access Journals (Sweden)

    Anderud J

    2015-03-01

    Full Text Available Jonas Anderud,1,2 Peter Abrahamsson,2 Ryo Jimbo,1 Sten Isaksson,2 Erik Adolfsson,3 Johan Malmström,2 Yoshihito Naito,4 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Maxillofacial Unit Halmstad, Region Halland, Halmstad, Sweden; 3Swedish Ceramic Institute, IVF, Mölndal, Sweden; 4Department of Oral and Maxillofacial Prosthodontics and Oral Implantology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Abstract: The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. Keywords: hydroxyapatite, zirconia, guided bone regeneration, GBR, histology, membrane

  6. Osteogenic capability of autologous rabbit adipose-derived stromal cells in repairing calvarial defects.

    Science.gov (United States)

    Cheng, Shao-Wen; Lin, Zhong-Qin; Wang, Wei; Zhang, Wei; Kou, Dong-Quan; Ying, Xiao-Zhou; Chen, Qing-Yu; Shen, Yue; Cheng, Xiao-Jie; Peng, Lei; Lv, Chuan-Zhu

    2011-01-01

    To evaluate the in vitro and in vivo osteogenic capability of adipose-derived stromal cells (ASCs). ASCs were isolated from New Zealand white rabbits and determined by alkaline phosphatase (ALP) staining, von Kossa staining and alizarin red staining. Some specific markers of osteogenic differentiation, including ALP, osteocalcin (OCN), osteopontin (OPN) were examined by reverse transcription-polymerase chain reaction (RT-PCR). In vivo, demineralized bone matrix (DBM)-ASCs composites were implanted into the rabbit calvarial defects created at each side of the longitudinal midline. After 6 weeks, histologic properties of the transplants were analyzed. ASCs were successfully induced into osteogenesis. ALP staining, von Kossa staining and alizarin red staining showed positive results. The expressions of ALP, OCN and OPN were detected in ASCs after cultivation in osteogenic medium. Extensive new bone was observed in the defects transplanted with DBM-ASCs composites. ASCs have the potential to differentiate into osteogenic lineage and DBM-ASCs constructs are a promising method for regeneration in bone defects.

  7. Comparative uptake of 67Ga and /sup 99m/Tc MDP in rabbits with a benign noninfected bone lesion (fracture)

    International Nuclear Information System (INIS)

    Bushberg, J.T.; Hoffer, P.B.; Schreiber, G.J.; Lawson, A.J.; Lawson, J.P.; Lord, P.

    1985-01-01

    Mid-shaft fractures of the radius and ulna were produced in 3 to 4 kg New Zealand white rabbits and quantitative uptake of /sup 99m/Tc MDP and 67 Ga determined at 11, 18, 25, 32, 51, and 78 days following fracture. Two hundred microCi of 67 Ga was administered 24 hours prior to sacrifice and 1.5 mCi /sup 99m/Tc MDP 2 hours prior to sacrifice. Specific activity ratios (SARs) were determined between fracture and control sides for bone, muscle and skin. SARs for bone were surprisingly similar for /sup 99m/Tc MDP and 67 Ga, reaching peak values of 6.07 +/- 0.64 (/sup 99m/Tc 18 days); 6.58 +/- 0.90 ( 67 Ga 32 days), subsequently decreasing to minimum values at 78 days postfracture (/sup 99m/Tc MDP 2.25 +/- 0.14; 67 Ga 2.18 +/- 0.08). There was no statistically significant difference in SAR for /sup 99m/Tc MDP vs. 67 Ga in bone at any time after fracture. Whole sections of limb were resected on selected animals and activity ratios determined for these sections as a function of the contribution of activity from the various tissues in the volume of interest. Total activity ratios of 67 Ga were lower than bone SARs as a result of the contribution of activity from muscle and skin. Thus, the apparent lower activity ratios noted on 67 Ga images compared with /sup 99m/Tc MDP images in this fracture model were not due to differences in bone SARs but rather due to the higher soft tissue background activity contribution in the 67 Ga images

  8. Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits

    Directory of Open Access Journals (Sweden)

    Antonio Scarano

    2017-01-01

    Full Text Available Background. Scientific evidence in the field of implant dentistry of the past 20 years established that titanium rough surfaces have shown improved osseointegration rates. In a majority of dental implants, the surface microroughness was obtained by grit blasting and/or acid etching. The aim of the study was to evaluate in vivo two different highly hydrophilic surfaces at different experimental times. Methods. Calcium-modified (CA and SLActive surfaces were evaluated and a total of 18 implants for each type of surface were positioned into the rabbit articular femoral knee-joint in a split model experiment, and they were evaluated histologically and histomorphometrically at 15, 30, and 60 days of healing. Results. Bone-implant contact (BIC at the two-implant surfaces was significantly different in favor of the CA surface at 15 days (p=0.027, while SLActive displayed not significantly higher values at 30 (p=0.51 and 60 days (p=0.061. Conclusion. Both implant surfaces show an intimate interaction with newly formed bone.

  9. Fabrication and characterization of electrospun osteon mimicking scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Andric, T. [Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Sampson, A.C. [Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Freeman, J.W., E-mail: jwfreeman@vt.edu [Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2011-01-01

    Skeletal loss and bone deficiencies are a major worldwide problem with over 600,000 procedures performed in the US alone annually, making bone one of the most transplanted tissues, second to blood only. Bone is a composite tissue composed of organic matrix, inorganic bone mineral, and water. Structurally bone is organized into two distinct types: trabecular (or cancellous) and cortical (or compact) bones. Trabecular bone is characterized by an extensive interconnected network of pores. Cortical bone is composed of tightly packed units, called osteons, oriented parallel along to the axis of the bone. While the majority of scaffolds attempt to replicate the structure of the trabecular bone, fewer attempts have been made to create scaffolds to mimic the structure of cortical bone. The aim of this study was to develop a technique to fabricate scaffolds that mimic the organization of an osteon, the structural unit of cortical bone. We successfully built a rotating stage for PGA fibers and utilized it for collecting electrospun nanofibers and creating scaffolds. Resulting scaffolds consisted of concentric layers of electrospun PLLA or gelatin/PLLA nanofibers wrapped around PGA microfiber core with diameters that ranged from 200 to 600 {mu}m. Scaffolds were mineralized by incubation in 10x simulated body fluid, and scaffolds composed of 10%gelatin/PLLA had significantly higher amounts of calcium phosphate. The electrospun scaffolds also supported cellular attachment and proliferation of MC3T3 cells over the period of 28 days.

  10. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm -1 and 2700-3800cm -1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright

  11. The use of CT for evaluate to healing of segmental replantation in rabbits' tibia

    International Nuclear Information System (INIS)

    Liu Yifan; Hong Tianlu

    2000-01-01

    Objective: To study the value of CT in the bone healing. Methods: The rabbit's tibia segments were resected and replanted X-ray and CT photograph were taken after operation at 2,4,8,12 week. Results: CT is more clear than X-ray. Conclusion: CT is superior to X-ray photography in observed bone healing

  12. Medullary bone and humeral breaking strength in laying hens

    International Nuclear Information System (INIS)

    Fleming, R.H.; McCormack, H.A.; McTeir, L.; Whitehead, C.C.

    1998-01-01

    To test the hypothesis that large amounts of medullary bone in the humeral diaphysis may increase breaking strength, various parameters of bone quality and quantity were examined in two large flocks of hens near end of lay. We conclude that the amount of medullary bone in the humerus of hens during the laying period influences bone strength. This medullary bone may not have any intrinsic strength, but may act by contributing to the fracture resistance of the surrounding cortical bone. Using a quantitative, low dose, radiographic technique, we can predict, from early in the laying period, those birds which will develop large amounts of medullary bone in their humeri by the end of the laying period. The formation of medullary bone in the humeral diaphysis is not at the expense of the surrounding radiographed cortical bone

  13. Atelocollagen Enhances the Healing of Rotator Cuff Tendon in Rabbit Model.

    Science.gov (United States)

    Suh, Dong-Sam; Lee, Jun-Keun; Yoo, Ji-Chul; Woo, Sang-Hun; Kim, Ga-Ram; Kim, Ju-Won; Choi, Nam-Yong; Kim, Yongdeok; Song, Hyun-Seok

    2017-07-01

    Failure of rotator cuff healing is a common complication despite the rapid development of surgical repair techniques for the torn rotator cuff. To verify the effect of atelocollagen on tendon-to-bone healing in the rabbit supraspinatus tendon compared with conventional cuff repair. Controlled laboratory study. A tear of the supraspinatus tendon was created and repaired in 46 New Zealand White rabbits. They were then randomly allocated into 2 groups (23 rabbits per group; 15 for histological and 8 for biomechanical test). In the experimental group, patch-type atelocollagen was implanted between bone and tendon during repair; in the control group, the torn tendon was repaired without atelocollagen. Each opposite shoulder served as a sham (tendon was exposed only). Histological evaluation was performed at 4, 8, and 12 weeks. Biomechanical tensile strength was tested 12 weeks after surgery. Histological evaluation scores of the experimental group (4.0 ± 1.0) were significantly superior to those of the control group (7.7 ± 2.7) at 12 weeks ( P = .005). The load to failure was significantly higher in the experimental group (51.4 ± 3.9 N) than in the control group (36.4 ± 5.9 N) ( P = .001). Histological and biomechanical studies demonstrated better results in the experimental group using atelocollagen in a rabbit model of the supraspinatus tendon tear. Atelocollagen patch could be used in the cuff repair site to enhance healing.

  14. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats Influência da deficiência estrogênica e do tratamento com tibolona no osso trabecular e cortical avaliada pelo sistema de radiografia computadorizada em ratas

    Directory of Open Access Journals (Sweden)

    Ana Carolina Bergmann de Carvalho

    2012-03-01

    Full Text Available PURPOSE: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS. METHODS: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T while the other did not (OVX, those groups were compared to a control group (C not ovariectomized. Tibolone administration (1mg/day began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographies of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at POBJETIVO: Verificar o efeito da administração de tibolona no tecido ósseo cortical e trabecular de ratas castradas através de radiografia computadorizada. MÉTODOS: O experimento foi realizado em dois grupos de ratas previamente ooforectomizadas, onde um grupo recebeu tibolona (OVX+T e o outro não (OVX. Esses grupos foram comparados a um grupo controle (C não ooforectomizado. A administração de tibolona (1mg/dia começou trinta dias após a ooforectomia e o tratamento teve duração de cinco meses. No final, os animais foram mortos e fêmures e tibias coletados. As radiografias computadorizadas dos ossos foram obtidas e as imagens digitais usadas para determinar a densidade óssea e a espessura cortical em todos os grupos. Todos os resultados foram avaliados estatisticamente com significância estabelecida a 5%. RESULTADOS: A administração de tibolona mostrou ser benéfica apenas para análise densitométrica da cabeça do fêmur, apresentando maiores valores de densidade comparada ao grupo OVX. Nenhuma diferença significativa foi encontrada para espessura óssea cortical. CONCLUSÃO: A ooforectomia ocasionou perda óssea nas regiões analisadas e a tibolona

  15. Mechanical properties of radial bone defects treated with autogenous graft covered with hydroxyapatite in rabbit Propriedades mecânicas de defeito de osso radial tratado com enxerto autógeno coberto com nano-hydroxyapatite em coelho

    Directory of Open Access Journals (Sweden)

    Davood Sharifi

    2012-03-01

    Full Text Available PURPOSE: To determine biomechanical property of autogenous bone graft covered with hydroxyapatite in the defect of radial bone in rabbit. METHODS: Eighteen adult male New Zealand white rabbits were used which were divided into three groups (I, II, III of six rabbits each. A segmental bone defect of 10 mm in length was created in the middle of the right radial shaft under general effective anesthesia in all rabbits and were stabilized using mini-plate with four screws. The defects In group I were left as such without filler, whereas in group II the defect were filled up with harvested 10 mm rib bone and in group III the defect were packed with rib bone covered with nano-hydroxyapatite. All rabbits in three groups were divided into two subgroups (one month and three months duration with three rabbits in each one. RESULTS: The mechanical property and the mean load for fracturing normal radial bone was recorded 388.2±6 N whereas it was 72.4±12.8 N for group I in 1 month duration which was recorded 182.4±14.2 N for group II and 211.6±10.4 N for group III at the end of 1 month. These values were 97.6±10.2 N for group I and 324.6±8.2 N for group II and 372.6±17.4 N for group III at the end of three months after implantation. CONCLUSION: Implantation of autologous graft covered with hydroxyapatite indicated to have positive effect in integral formation of qualitative callus at the site of fracture and early re-organization of callus to regain mechanical strength too.OBJETIVO: Determinar as propriedades biomecânicas de enxerto ósseo autógeno coberto com hidroxiapatita em defeito do osso radial em coelhos. MÉTODOS: Foram utilizados 18 coelhos adultos, machos, brancos, Nova Zelândia, distribuídos em três grupos (I, II, III de seis coelhos cada. Um defeito segmentar de 10 mm de comprimento foi criado no meio do eixo radial direito sob anestesia geral efetiva em todos os coelhos e foram fixados usando mini-placa com quatro parafusos. Os

  16. Assessment of the Quality of Newly Formed Bone around Titanium Alloy Implants by Using X-Ray Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hiroshi Nakada

    2012-01-01

    Full Text Available The aim of this study was to evaluate differences in bones quality between newly formed bone and cortical bone formed around titanium alloy implants by using X-ray photoelectron spectroscopy. As a result of narrow scan measurement at 4 weeks, the newly formed bone of C1s, P2p, O1s, and Ca2p were observed at a different peak range and strength compared with a cortical bone. At 8 weeks, the peak range and strength of newly formed bone were similar to those of cortical bone at C1s, P2p, and Ca2p, but not O1s. The results from this analysis indicate that the peaks and quantities of each element of newly formed bone were similar to those of cortical bone at 8 weeks, suggestive of a strong physicochemical resemblance.

  17. Profile of serum alkaline phosphatase after inoculation of mononuclear cells and bone morphogenetic protein in the repair of osteochondral defects in rabbits

    Directory of Open Access Journals (Sweden)

    Luiz Augusto de Souza

    2011-12-01

    Full Text Available In this study, serum alkaline phosphatase activity was measured in response to the repair of osteochondral defects in twenty-four New Zealand rabbits. The animals were divided into three groups: a control (GC, those treated with bone marrow mononuclear cells (GCM and those that received mononuclear cells with autologous bone morphogenetic protein (BMP + GCM. After exposing the trochlear groove of the left stifle joint, a wedge-shaped segment was removed. Later, the defect was filled with an osteochondral autograft preserved in 98% glycerin. For the GC group, only the bone graft was performed. For the GCM, in addition to the graft, 2x106 seed mononuclear cells were implanted. For the GCM + BMP, the same number of cells, associated with 1μg of bone morphogenetic protein, were intraarticularly administered. The osteoblastic response was measured by analyzing the serum alkaline phosphatase on day 0 (preoperative 3, 15, 30, and 45 after surgery, and by radiographic examinations. Analysis of variance in randomized blocks, factorial and Tukey’s test (p = 0.05 were made. The overall mean GCM was superior to the other groups and the highest rates were among the 15th and 45th days postoperatively. The discrepancy in values between individuals of the same group casts doubts on the veracity of the test.

  18. Radiographic evaluation of bone adaptation adjacent to percutaneous osseointegrated prostheses in a sheep model.

    Science.gov (United States)

    Jeyapalina, Sujee; Beck, James Peter; Bachus, Kent N; Chalayon, Ornusa; Bloebaum, Roy D

    2014-10-01

    Percutaneous osseointegrated prostheses (POPs) are being investigated as an alternative to conventional socket suspension and require a radiographic followup in translational studies to confirm that design objectives are being met. In this 12-month animal study, we determined (1) radiographic signs of osseointegration and (2) radiographic signs of periprosthetic bone hypertrophy and resorption (adaptation) and (3) confirmed them with the histologic evidence of host bone osseointegration and adaptation around a novel, distally porous-coated titanium POP with a collar. A POP device was designed to fit the right metacarpal bone of sheep. Amputation and implantation surgeries (n = 14) were performed, and plane-film radiographs were collected quarterly for 12 months. Radiographs were assessed for osseointegration (fixation) and bone adaptation (resorption and hypertrophy). The cortical wall and medullary canal widths were used to compute the cortical index and expressed as a percentage. Based on the cortical index changes and histologic evaluations, bone adaptation was quantified. Radiographic data showed signs of osseointegration including those with incomplete seating against the collar attachment. Cortical index data indicated distal cortical wall thinning if the collar was not seated distally. When implants were bound proximally, bone resorbed distally and the diaphyseal cortex hypertrophied. Histopathologic evidence and cortical index measurements confirmed the radiographic indications of adaptation and osseointegration. Distal bone loading, through collar attachment and porous coating, limited the distal bone resorption. Serial radiographic studies, in either animal models or preclinical trials for new POP devices, will help to determine which designs are likely to be safe over time and avoid implant failures.

  19. Bone mineral density and computer tomographic measurements in correlation with failure strength of equine metacarpal bones

    Directory of Open Access Journals (Sweden)

    Péter Tóth

    2014-01-01

    Full Text Available Information regarding bone mineral density and fracture characteristics of the equine metacarpus are lacking. The aim of this study was to characterize the relationship between mechanical properties of the equine metacarpal bone and its biomechanical and morphometric properties. Third metacarpal bones were extracted from horses euthanized unrelated to musculoskeletal conditions. In total, bone specimens from 26 front limbs of 13 horses (7.8 ± 5.8 years old including Lipizzaner (n = 5, Hungarian Warmblood (n = 2, Holsteiner (n = 2, Thoroughbred (n = 1, Hungarian Sporthorse (n = 1, Friesian (n = 1, and Shagya Arabian (n = 1 were collected. The horses included 7 mares, 4 stallions and 2 geldings. Assessment of the bone mineral density of the whole bone across four specific regions of interest was performed using dual-energy X-ray absorptiometry. The bones were scanned using a computer tomographic scanner to measure cross-sectional morphometric properties such as bone mineral density and cross-sectional dimensions including cortical area and cortical width. Mechanical properties (breaking force, bending strength, elastic modulus were determined by a 3-point bending test. Significant positive linear correlations were found between the breaking force and bone mineral density of the entire third metacarpal bones (P P P in vivo investigations.

  20. Influence of Micro Threads Alteration on Osseointegration and Primary Stability of Implants: An FEA and In Vivo Analysis in Rabbits.

    Science.gov (United States)

    Chowdhary, Ramesh; Halldin, Anders; Jimbo, Ryo; Wennerberg, Ann

    2015-06-01

    To describe the early bone tissue response to implants with and without micro threads designed to the full length of an oxidized titanium implant. A pair of two-dimensional finite element models was designed using a computer aided three-dimensional interactive application files of an implant model with micro threads in between macro threads and one without micro threads. Oxidized titanium implants with (test implants n=20) and without (control implants n=20) micro thread were prepared. A total of 12 rabbits were used and each received four implants. Insertion torque while implant placement and removal torque analysis after 4 weeks was performed in nine rabbits, and histomorphometric analysis in three rabbits, respectively. Finite element analysis showed less stress accumulation in test implant models with 31Mpa when compared with 62.2 Mpa in control implant model. Insertion and removal torque analysis did not show any statistical significance between the two implant designs. At 4 weeks, there was a significant difference between the two groups in the percentage of new bone volume and bone-to-implant contact in the femur (pmicro threads was prominent in the femur suggesting that micro threads promote bone formation. The stress distribution supported by the micro threads was especially effective in the cancellous bone. © 2013 Wiley Periodicals, Inc.

  1. Calcium citrate: a new biomaterial that can enhance bone formation in situ

    Directory of Open Access Journals (Sweden)

    WANG Li-ming

    2012-11-01

    Full Text Available 【Abstract】 Objective: To investigate the effect of a new biomaterial combining calcium citrate and recombinant human bone morphogenetic protein-2 (rhBMP-2 on bone regeneration in a bone defect rabbit model. Methods: Totally 30 male New Zealand white rabbits were randomly and equally divided into calcium citrate-rhBMP-2 (CC-rhBMP-2 group and rhBMP-2 only group. Two 10 mm-long and 5 mm-deep bone defects were respec-tively created in the left and right femoral condyles of the rabbits. Subsequently 5 pellets of calcium citrate (10 mg combined with rhBMP-2 (2 mg or rhBMP-2 alone were im-planted into the bone defects and compressed with cotton swab. Bone granules were obtained at 2, 4 and 6 weeks after procedure and received histological analysis. LSD t-test and a subsequent t-test were adopted for statistical analysis. Results: Histomorphometric analysis revealed newly formed bones, and calcium citrate has been absorbed in the treatment group. The percent of newly formed bone area in femoral condyle in control group and CC-rhBMP-2 group was respectively 31.73%±1.26% vs 48.21%±2.37% at 2 weeks; 43.40%±1.65% vs 57.32%±1.47% at 4 weeks, and 51.32%±7.80% vs 66.74%±4.05% at 6 weeks (P<0.05 for all. At 2 weeks, mature cancellous bone was observed to be already formed in the treatment group. Conclusion: From this study, it can be concluded that calcium citrate combined with rhBMP-2 signifcantly en-hances bone regeneration in bone defects. This synthetic gelatin matrix stimulates formation of new bone and bone marrow in the defect areas by releasing calcium ions. Key words: Bone morphogenetic protein-2; Biocompatible materials; Calcium citrate; Gelatin

  2. Three-dimensional visualization and characterization of bone structure using reconstructed in-vitro μCT images: A pilot study for bone microarchitecture analysis

    Energy Technology Data Exchange (ETDEWEB)

    Latief, Fourier Dzar Eljabbar, E-mail: fourier@fi.itb.ac.id [Physics of Earth and Complex Systems, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Dewi, Dyah Ekashanti Octorina [2Biomedical Engineering Research Division, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Shari, Mohd Aliff Bin Mohd [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40000 Shah Alam, Selangor (Malaysia)

    2014-03-24

    Micro Computed Tomography (μCT) has been largely used to perform micrometer scale imaging of specimens, bone biopsies and small animals for the study of porous or cavity-containing objects. One of its favored applications is for assessing structural properties of bone. In this research, we perform a pilot study to visualize and characterize bone structure of a chicken bone thigh, as well as to delineate its cortical and trabecular bone regions. We utilize an In-Vitro μCT scanner Skyscan 1173 to acquire a three dimensional image data of a chicken bone thigh. The thigh was scanned using X-ray voltage of 45 kV and current of 150 μA. The reconstructed images have spatial resolution of 142.50 μm/pixel. Using image processing and analysis e.i segmentation by thresholding the gray values (which represent the pseudo density) and binarizing the images, we were able to visualize each part of the bone, i.e., the cortical and trabecular regions. Total volume of the bone is 4663.63 mm{sup 3}, and the surface area of the bone is 7913.42 mm{sup 2}. The volume of the cortical is approximately 1988.62 mm{sup 3} which is nearly 42.64% of the total bone volume. This pilot study has confirmed that the μCT is capable of quantifying 3D bone structural properties and defining its regions separately. For further development, these results can be improved for understanding the pathophysiology of bone abnormality, testing the efficacy of pharmaceutical intervention, or estimating bone biomechanical properties.

  3. Evaluation of the 3D spatial distribution of the Calcium/Phosphorus ratio in bone using computed-tomography dual-energy analysis.

    Science.gov (United States)

    Hadjipanteli, A; Kourkoumelis, N; Fromme, P; Huang, J; Speller, R D

    2016-01-01

    The Calcium/Phosphorus (Ca/P) ratio was shown to vary between healthy bones and bones with osteoporotic symptoms. The relation of the Ca/P ratio to bone quality remains under investigation. To study this relation and determine if the ratio can be used to predict bone fractures, a non-invasive 3D imaging technique is required. The first aim of this study was to test the effectiveness of a computed-tomography dual-energy analysis (CT-DEA) technique developed to assess the Ca/P ratio in bone apatite (collagen-free bone) in identifying differences between healthy and inflammation-mediated osteoporotic (IMO) bones. The second aim was to extend the above technique for its application to a more complex structure, intact bone, that could potentially lead to clinical use. For the first aim, healthy and IMO rabbit cortical bone apatite samples were assessed. For the second aim, some changes were made to the technique, which was applied to healthy and IMO intact bone samples. Statistically significant differences between healthy and IMO bone apatite were found for the bulk Ca/P ratio, low Ca/P ratio proportion and interconnected low Ca/P ratio proportion. For the intact bone samples, the bulk Ca/P ratio was found to be significantly different between healthy and IMO. Results show that the CT-DEA technique can be used to identify differences in the Ca/P ratio between healthy and osteoporotic, in both bone apatite and intact bone. With quantitative imaging becoming an increasingly important advancement in medical imaging, CT-DEA for bone decomposition could potentially have several applications. Copyright © 2015. Published by Elsevier Ltd.

  4. Radiographic evaluation of fracture healing after rigid plate fixation

    International Nuclear Information System (INIS)

    Paavolainen, P.; Karaharju, E.; Slaetis, P.; Waris, P.

    1981-01-01

    Experimental osteotomies were made in 35 rabbit tibio-fibular bones and fixed with rigid stainless steel osteosynthesis plates (DCP/ASIF). The radiographic and histopathologic appearances in the healing osteotomies and adjacent bone were analysed at intervals from 3 up to 24 weeks postoperatively. Radiologically the osteotomy had closed at 9 weeks and microscopically this could be confirmed as longitudinal orientation of the cutter heads across the osteotomy gap with longitudinal orientation of the bone structure. The healing of the osteotomy was accompanied by gross structural changes in the adjacent cortical bone with loss of intracortical and subendosteal osteons, cementing lines and intermediate tissue between the osteons. This was characterized by decreasing attenuation of the cortical bone after healing of the osteotomy and should clinically be regarded as an indication for removal of the implant. (Auth.)

  5. Experimental Evaluation of the Effectiveness of Demineralized Bone Matrix and Collagenated Heterologous Bone Grafts Used Alone or in Combination with Platelet-Rich Fibrin on Bone Healing in Sinus Floor Augmentation.

    Science.gov (United States)

    Peker, Elif; Karaca, Inci Rana; Yildirim, Benay

    2016-01-01

    The aim of this study was an experimental evaluation of the effectiveness of demineralized bone matrix (DBM) and collagenated heterologous bone graft (CHBG) used alone or in combination with platelet-rich fibrin on bone healing in sinus floor augmentation procedures. In this study, 36 New Zealand rabbits were used. The bilateral sinus elevation was performed, and 72 defects were obtained. The rabbit maxillary sinuses were divided into four groups according to the augmentation biomaterials obtained: demineralized bone matrix (Grafton DBM Putty, Osteotech; DBM group), DBM combined with platelet-rich fibrin (PRF; DBM + PRF group), collagenated heterologous bone graft (CHBG; Apatos Mix, OsteoBiol, Tecnoss; CHBG group), CHBG combined with PRF (CHBG + PRF group). All groups were sacrificed at 2, 4, and 8 weeks after surgery for histologic, histomorphometric, and immunohistochemical analyses. The inflammatory reaction was moderate to intense at the second week in all groups and declined from 2 to 8 weeks. New bone formation was started at the second week and increased from 2 to 8 weeks in all groups. There was no significant difference in bone formation between the experimental groups that used PRF mixed graft material and control groups that used only graft material. The percentage of new bone formation showed a significant difference in DBM groups and DBM + PRF groups compared with other groups. There were osteoclasts around all the bone graft materials used, but the percentage of residual graft particles was significantly higher in CHBG groups and CHBG + PRF groups at the eighth week. There is no beneficial effect of the application of PRF in combination with demineralized bone matrix or collagenated heterologous bone graft on bone formation in sinus floor augmentation. The results of this study showed that both collagenated heterologous bone graft and demineralized bone matrix have osteoconductive properties, but demineralized bone matrix showed more bone formation

  6. Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep.

    Science.gov (United States)

    Trisi, Paolo; Berardini, Marco; Falco, Antonello; Podaliri Vulpiani, Michele; Perfetti, Giorgio

    2014-06-01

    To measure in vivo impact of dense bone overheating on implant osseointegration and peri-implant bone resorption comparing different bur irrigation methods vs. no irrigation. Twenty TI-bone implants were inserted in the inferior edge of mandibles of sheep. Different cooling procedures were used in each group: no irrigation (group A), only internal bur irrigation (group B), both internal and external irrigation (group C), and external irrigation (group D). The histomorphometric parameters calculated for each implant were as follows: %cortical bone-implant contact (%CBIC) and %cortical bone volume (%CBV). Friedman's test was applied to test the statistical differences. In group A, we found a huge resorption of cortical bone with %CBIC and %CBV values extremely low. Groups B and C showed mean %CBIC and %BV values higher than other groups The mean %CBV value was significantly different when comparing group B and group C vs. group A (P bone caused massive resorption of the cortical bone and implant failure. Drilling procedures on hard bone need an adequate cooling supply because the bone matrix overheating may induce complete resorption of dense bone around implants. Internal-external irrigation and only internal irrigation showed to be more efficient than other types of cooling methods in preventing bone resorption around implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  7. Total glucosides of paeony prevents juxta-articular bone loss in experimental arthritis.

    Science.gov (United States)

    Wei, Chen Chao; You, Fan Tian; Mei, Li Yu; Jian, Sun; Qiang, Chen Yong

    2013-07-21

    Total glucosides of paeony (TGP) is a biologically active compound extracted from Paeony root. TGP has been used in rheumatoid arthritis therapy for many years. However, the mechanism by which TGP prevents bone loss has been less explored. TGP was orally administered for 3 months to New Zealand rabbits with antigen-induced arthritis (AIA). Digital x-ray knee images and bone mineral density (BMD) measurements of the subchondral knee bone were performed before sacrifice. Chondrocytes were observed using transmission electron microscopy (TEM). Histological analysis and mRNA expression of receptor activator of nuclear factor-B ligand (RANKL) and osteoprotegerin (OPG) were evaluated in joint tissues. The BMD value in TGP rabbits was significantly higher compared with that seen in the AIA model rabbits. In addition, the subchondral bone plate was almost completely preserved by TGP treatment, while there was a decrease in bone plate integrity in AIA rabbits. There was less damage to the chondrocytes of the TGP treated group. Immunohistochemical examination of the TGP group showed that a higher percentage of TGP treated chondrocytes expressed OPG as compared to the chondrocytes isolated from AIA treated animals. In contrast, RANKL expression was significantly decreased in the TGP treated group compared to the AIA group. In support of the immunohistochemistry data, the expression of RANKL mRNA was decreased and OPG mRNA expression was enhanced in the TGP group when compared to that of the AIA model group. These results reveal that TGP suppresses juxta-articular osteoporosis and prevents subchondral bone loss. The decreased RANKL and increased OPG expression seen in TGP treated animals could explain how administration of TGP maintains higher BMD.

  8. Ceramic-polylactide composite material used in a model of healing of osseous defects in rabbits.

    Science.gov (United States)

    Myciński, Paweł; Zarzecka, Joanna; Skórska-Stania, Agnieszka; Jelonek, Agnieszka; Okoń, Krzysztof; Wróbel, Maria

    The growing demand for various kinds of bone regeneration material has in turn increased the desire to find materials with optimal physical, chemical, and biological properties. The objective of the present study was to identify the proportions of ceramic and polylactide components in a bone substitute material prepared in collaboration with the Crystal Chemistry of Drugs Team of the Faculty of Chemistry at the Jagiellonian University, which would be optimal for bone regeneration processes. Another goal was to provide a histological analysis of the influence of a ceramic-polylactide composite on the healing of osseous defects in rabbits. The study was performed on laboratory animals (18 New Zealand White rabbits). The following study groups were formed: - group A (study group, 9 animals) - in this group we performed a histological analysis of healing with a ceramic-polylactide composite based on an 80/20 mix of hydroxyapatite and polylactide; - group B (study group, 9 animals) - in this group we performed a histological analysis of healing with a ceramic-polylactide composite with a reduced amount of hydroxyapatite compared to the previous group, i.e. in a ratio of 61/39; - group K (control, 18 animals) - the control group comprised self-healing, standardised osseous defects prepared in the calvarial bone of the rabbits on the contralateral side. In the assessment of histological samples, we were also able to eliminate individual influences that might have led to differentiation in wound healing. The material used in the histological analysis took the form of rabbit bone tissue samples, containing both defects, with margins of around 0.5 cm, taken 1, 3, and 6 months after the experiment. The osseous defects from groups A and B filled with ceramic-polylactide material healed with less inflammatory infiltration than was the case with control group K. They were also characterised by faster regression, and no resorption or osteonecrosis, which allowed for better

  9. Desenvolvimento de um modelo experimental de falha óssea infectada na ulna de coelhos Development of an experimental model of infected bone void in the ulna of rabbits

    Directory of Open Access Journals (Sweden)

    Matheus Lemos Azi

    2012-01-01

    Full Text Available OBJETIVO: Desenvolver um modelo experimental que permita estudar a regeneração de grandes falhas ósseas em condições de infecção. MÉTODO: Falhas ósseas segmentares de 15mm foram criadas cirurgicamente na ulna de 12 coelhos e inoculadas com 5x10(8 unidades formadoras de colônia (UFC de S. aureus. O desbridamento da infecção foi realizado duas semanas após, seguida da aplicação sistêmica de gentamicina por quatro semanas. Os animais foram acompanhados por um período de 12 semanas para avaliação do controle da infecção e da regeneração óssea. RESULTADOS: A regeneração espontânea foi inferior a 25% do defeito na avaliação radiográfica e histológica. CONCLUSÃO: A Falha óssea infectada de 15mm na ulna de coelhos é incapaz de alcançar a regeneração completa sem tratamentos adicionais. Nível de Evidência V, Estudo experimental.OBJECTIVE: Develop a model that allowed the study of bone regeneration in infection conditions. METHOD: A 15 mm defect was surgically created in the rabbit ulna and inoculated with 5x10(8 colony-forming units (CFU of S. aureus. Surgical debridement was performed two weeks after and systemic gentamicin was administered for four weeks. Animals were followed up to 12 weeks to evaluate infection control and bone regeneration. RESULT: Bone regeneration was inferior to 25% of the defect in radiological and histological analysis. CONCLUSION: Infected bone defect of 15 mm in the rabbit ulna was unable to achieve full regeneration without further treatment. Level of Evidence V, Experimental Study.

  10. Computerized bone density analysis of the proximal phalanx of the horse

    International Nuclear Information System (INIS)

    Thompson, K.N.; Cheung, T.K.; Putnam, M.

    1996-01-01

    This study utilized computed tomography to determine the density patterns and the subchondral bone thickness of the first phalanx of the horse. An image processing system and commercially available software were used to process the computed tomographic slices obtained from the first phalanges of a 2-year-old Thoroughbred horse. The thickness and density of the medial and lateral cortices in the mid-shaft of the bone were similar; however, the cortex on the dorsal aspect was more dense and extended farther toward the proximal and distal aspects of the bone than the cortex on the palmar aspect. Density of the cortical bone was highest at the region of the bone with the smallest diameter. The cortical bone density at mid-shaft was approximately 3.5 times the cancellous bone density at the proximal aspect and 2.5 times that at the distal aspect of the bone. A moderate correlation (r = 0.53, p < 0.01)was found between the subchondral bone density and thickness. Despite limited numbers of specimens used, this study demonstrated the potential applications of computed tomography for investigating equine joint mechanics and diseases

  11. Low-intensity pulsed ultrasound enhances bone formation around miniscrew implants.

    Science.gov (United States)

    Ganzorig, Khaliunaa; Kuroda, Shingo; Maeda, Yuichi; Mansjur, Karima; Sato, Minami; Nagata, Kumiko; Tanaka, Eiji

    2015-06-01

    Miniscrew implants (MSIs) are currently used to provide absolute anchorage in orthodontics; however, their initial stability is an issue of concern. Application of low-intensity pulsed ultrasound (LIPUS) can promote bone healing. Therefore, LIPUS application may stimulate bone formation around MSIs and enhance their initial stability. To investigate the effect of LIPUS exposure on bone formation after implantation of titanium (Ti) and stainless steel (SS) MSIs. MSIs made of Ti-6Al-4V and 316L SS were placed on rat tibiae and treated with LIPUS. The bone morphology around MSIs was evaluated by scanning electron microscopy and three-dimensional micro-computed tomography. MC3T3-E1 cells cultured on Ti and SS discs were treated with LIPUS, and the temporary expression of alkaline phosphatase (ALP) was examined. Bone-implant contact increased gradually from day 3 to day 14 after MSI insertion. LIPUS application increased the cortical bone density, cortical bone thickness, and cortical bone rate after implantation of Ti and SS MSIs (P<0.05). LIPUS exposure induced ALP upregulation in MC3T3-E1 cells at day 3 (P<0.05). LIPUS enhanced bone formation around Ti and SS MSIs, enhancing the initial stability of MSIs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. [Experimental study on carbon fiber reinforced plastic plate--analysis of stabilizing force required for plate].

    Science.gov (United States)

    Iizuka, H

    1990-11-01

    Plates currently in use for the management of bone fracture made of metal present with various problems. We manufactured carbon fiber reinforced plastic (CFRP) plates from Pyrofil T/530 puriplegs overlaid at cross angles of +/- 10 degrees, +/- 20 degrees, and +/- 30 degrees for trial and carried out an experimental study on rabbit tibiofibular bones using 316L stainless steel plates of comparable shape and size as controls. The results indicate the influence of CFRP plate upon cortical bone was milder than that of stainless steel plate, with an adequate stabilizing force for the repair of fractured rabbit tibiofibular bones. CFRP has the advantages over metals of being virtually free from corrosion and fatigue, reasonably radiolucent and able to meet a wide range of mechanical requirements. This would make CFRP plate quite promising as a new devices of treating fracture of bones.

  13. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit.

    Science.gov (United States)

    de Wild, Michael; Schumacher, Ralf; Mayer, Kyrill; Schkommodau, Erik; Thoma, Daniel; Bredell, Marius; Kruse Gujer, Astrid; Grätz, Klaus W; Weber, Franz E

    2013-12-01

    The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or cell constructs to realize advanced bone tissue engineering strategies. Such implants could prove useful for mandibular reconstruction, spinal fusion, the treatment of extended long bone defects, or to fill in gaps created on autograft harvesting. The aim of this study was to determine the mechanical properties and potential of bone formation of light weight implants generated by selective laser melting (SLM). We mainly focused on osteoconduction, as this is a key feature in bone healing and could serve as a back-up for osteoinduction and cell transplantation strategies. To that end, defined implants were produced by SLM, and their surfaces were left untreated, sandblasted, or sandblasted/acid etched. In vivo bone formation with the different implants was tested throughout calvarial defects in rabbits and compared with untreated defects. Analysis by micro computed tomography (μCT) and histomorphometry revealed that all generatively produced porous Ti structures were well osseointegrated into the surrounding bone. The histomorphometric analysis revealed that bone formation was significantly increased in all implant-treated groups compared with untreated defects and significantly increased in sand blasted implants compared with untreated ones. Bone bridging was significantly increased in sand blasted acid-etched scaffolds. Therefore, scaffolds manufactured by SLM should be surface treated. Bone augmentation beyond the original bone margins was only seen in implant-treated defects, indicating an osteoconductive potential of the implants that could be utilized clinically for bone

  14. Wound healing of osteotomy defects prepared with piezo or conventional surgical instruments: a pilot study in rabbits.

    Science.gov (United States)

    Ma, Li; Mattheos, Nikos; Sun, Yan; Liu, Xi Ling; Yip Chui, Ying; Lang, Niklaus Peter

    2015-08-01

    The aim of the present study was to evaluate and compare the wound-healing process following osteotomies performed with either conventional rotary burs or piezoelectric surgery in a rabbit model. Two types of osteotomy window defects of the nasal cavities were prepared on the nasal bone of 16 adult New Zealand white rabbits with either a conventional rotary bur or piezo surgery. The defects were covered with a resorbable membrane. Four animals were killed at 1, 2, 3, and 5 weeks after the surgical procedure, respectively. Histological and morphometric evaluations were performed to assess the volumetric density of various tissue components: the blood clot, vascularized structures, provisional matrix, osteoid, mineralized bone, bone debris, residual tissue, and old bone. Significantly more bone debris was found at 1 week in the conventionally-prepared defects compared to the piezo surgically-prepared defects. At 2 and 3 weeks, a newly-formed hard tissue bridge, mainly composed of woven bone, was seen; however, no statistically-significant differences were observed. At 5 weeks, the defects were completely filled with newly-formed bone. The defects prepared by piezo surgery showed a significantly decreased proportion of bone debris at 1 week, compared to conventional rotary bur defect. © 2014 Wiley Publishing Asia Pty Ltd.

  15. MRI of fibrous cortical defect and non-ossifying fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Yoshiko; Aoki, Takatoshi; Watanabe, Hideyuki; Nakata, Hajime; Hashimoto, Hiroshi; Nakamura, Toshitaka [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    1999-02-01

    Fibrous cortical defect and non-ossifying fibroma are the benign fibrous lesions of bone commonly involving children. Their diagnosis is usually done with radiography, and MR examinations are rarely performed. We evaluated MRI findings of 11 lesions in 10 cases of fibrous cortical defect and non-ossifying fibroma. Signal intensity of the lesions was varied and large lesions (2 cm<) tended to show heterogeneous signal intensity on both T1-weighted and T2-weighted images corresponding to a mixture of components including fibrous tissue, hemosiderin and foam cells. MRI helps to delineate the extent of the involved bone and to assess the various histological components of the lesions. However, their diagnosis is basically made on the radiographic findings and the role of MRI is limited. (author)

  16. Evaluation of Low Intensity Pulsed Ultrasound Effects on the Osteogenesis Potential of Demineralized Bone Matrix in Experimental Tibial Defect in Rabbits

    Directory of Open Access Journals (Sweden)

    Ezzati Givi

    2016-09-01

    Full Text Available Background Many studies have assessed the effects of either low intensity pulsed ultrasound (LIPUS or demineralized bone matrix (DBM on bone repair; however, an evaluation of the combination of these modalities (LIPUS + DBM has not yet been considered. Objectives This study aimed to investigate combined effects of DBM and LIPUS on fracture healing. Methods Bilateral 5-mm tibial defects were created in male Dutch rabbits (n = 30. Animals were divided to two groups of empty defect (A and DBM group (B, in which commercial DBM putty was used in defects. In each animal left tibia was treated with LIPUS (intensity = 30 mW/cm2, I SATA, 1 MHz, 20 min/day, pulsed duty 1:4 and the contralateral limb was used as the control. Animals, after 14, 28 and 60 days, were submitted to radiographic or computerized tomography (CT scanning analysis. Results At two weeks, LIPUS had no substantial effect on bone formation. Slight increase of average rates in LIPUS group (A2 were seen compared to the empty defect group (A1 at day 21 and 28. In the DBM–treated group compared with the sham LIPUS, bone-healing rate was reduced at the end of the period (60 days after surgery. The average healing rate in group B at the end of the 60-day period was less than group A after 21 days. Conclusions The present study discusses systemic effect of LIPUS because of non-significant results between treated group and control group and is the first to demonstrate that LIPUS decreases bone formation induced by DBM.

  17. Effect of systemic administration of nicotine on healing in osseous defects. An experimental study in rabbits. Part II

    DEFF Research Database (Denmark)

    Balatsouka, Dimitra; Gotfredsen, Klaus; Sørensen, Lars

    2006-01-01

    OBJECTIVES: The aim of the present study was to analyze the effect of systemic administration of nicotine on bone healing in osseous defects in the tibia of rabbits. MATERIAL AND METHODS: Sixteen female rabbits received nicotine (n=8; test group) or saline (n=8; control group) via subcutaneously...... 4 weeks and in the left leg after 6 weeks of nicotine/placebo exposure. Thus, 2- and 4-week healing groups were created for the bone defects. After 8 weeks, the animals were killed. Tissue blocks including the bone defects were prepared for histological analysis. RESULTS: The animals in the test...... group lost weight, while the control group gained weight during the experiment. The prostaglandin E(2) levels in plasma increased significantly following nicotine exposure in the test group. No significant differences in the percentage of vessels and bone density in the osseous defects were found...

  18. Experimental study of the radiation effects on the bone growth. Changes in Tc-99m pyrophosphate bone imaging

    International Nuclear Information System (INIS)

    Ohtake, H.; Sakai, Y.; Morita, S.; Kikuchi, S.; Bussaka, Y.; Oshibuchi, M.; Fukae, S.; Kaneyuki, Y.; Umezaki, N.

    1983-01-01

    Bones of immature rabbits during growth period were irradiated and followed up with bone scintigraphy with Tc-99m pyrophosphate. The accumulation ratio of radionuclide was decreased on the irradiated bone from an early period compared to the control side, and the decrease was more pronounced as the dose of irradiation increased. In groups irradiated with less than 4,000 rad, the ratio reached the minimum at 5 weeks, followed by a gradual recovery. These changes were evaluated with reference to the inhibition on longitudinal growth of the bone

  19. Human Bone Derived Collagen for the Development of an Artificial Corneal Endothelial Graft. In Vivo Results in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Natalia Vázquez

    Full Text Available Corneal keratoplasty (penetrating or lamellar using cadaveric human tissue, is nowadays the main treatment for corneal endotelial dysfunctions. However, there is a worldwide shortage of donor corneas available for transplantation and about 53% of the world's population have no access to corneal transplantation. Generating a complete cornea by tissue engineering is still a tough goal, but an endothelial lamellar graft might be an easier task. In this study, we developed a tissue engineered corneal endothelium by culturing human corneal endothelial cells on a human purified type I collagen membrane. Human corneal endothelial cells were cultured from corneal rims after corneal penetrating keratoplasty and type I collagen was isolated from remnant cancellous bone chips. Isolated type I collagen was analyzed by western blot, liquid chromatography -mass spectrometry and quantified using the exponentially modified protein abundance index. Later on, collagen solution was casted at room temperature obtaining an optically transparent and mechanically manageable membrane that supports the growth of human and rabbit corneal endothelial cells which expressed characteristic markers of corneal endothelium: zonula ocluddens-1 and Na+/K+ ATPase. To evaluate the therapeutic efficiency of our artificial endothelial grafts, human purified type I collagen membranes cultured with rabbit corneal endothelial cells were transplanted in New Zealand white rabbits that were kept under a minimal immunosuppression regimen. Transplanted corneas maintained transparency for as long as 6 weeks without obvious edema or immune rejection and maintaining the same endothelial markers that in a healthy cornea. In conclusion, it is possible to develop an artificial human corneal endothelial graft using remnant tissues that are not employed in transplant procedures. This artificial endothelial graft can restore the integrality of corneal endothelium in an experimental model of

  20. Imaging the 3D structure of secondary osteons in human cortical bone using phase-retrieval tomography

    Energy Technology Data Exchange (ETDEWEB)

    Arhatari, B D; Peele, A G [Department of Physics, La Trobe University, Victoria 3086 (Australia); Cooper, D M L [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon (Canada); Thomas, C D L; Clement, J G [Melbourne Dental School, University of Melbourne, Victoria 3010 (Australia)

    2011-08-21

    By applying a phase-retrieval step before carrying out standard filtered back-projection reconstructions in tomographic imaging, we were able to resolve structures with small differences in density within a densely absorbing sample. This phase-retrieval tomography is particularly suited for the three-dimensional segmentation of secondary osteons (roughly cylindrical structures) which are superimposed upon an existing cortical bone structure through the process of turnover known as remodelling. The resulting images make possible the analysis of the secondary osteon structure and the relationship between an osteon and the surrounding tissue. Our observations have revealed many different and complex 3D structures of osteons that could not be studied using previous methods. This work was carried out using a laboratory-based x-ray source, which makes obtaining these sorts of images readily accessible.