WorldWideScience

Sample records for rab4 effector grasp-1

  1. Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes

    NARCIS (Netherlands)

    C.C. Hoogenraad (Casper); I. Popa (Ioana); K. Futai (Kensuke); E. Sanchez-Martinez (Emma); P. Wulf (Phebe); T. van Vlijmen (Thijs); B.R. Dortland (Bjorn); V. Oorschot (Viola); R. Govers (Robert); M. Monti (Maria); A.J.R. Heck (Albert); M. Sheng (Morgan); J. Klumperman (Judith); H. Rehmann (Holger); D. Jaarsma (Dick); L.C. Kapitein (Lukas); P. van der Sluijs

    2010-01-01

    textabstractThe endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1

  2. The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    Science.gov (United States)

    Kachhap, Sushant K; Faith, Dennis; Qian, David Z; Shabbeer, Shabana; Galloway, Nathan L; Pili, Roberto; Denmeade, Samuel R; DeMarzo, Angelo M; Carducci, Michael A

    2007-09-05

    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  3. The N-Myc down regulated Gene1 (NDRG1 Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    Directory of Open Access Journals (Sweden)

    Sushant K Kachhap

    2007-09-01

    Full Text Available Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1 increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  4. Rab4GTPase modulates CFTR function by impairing channel expression at plasma membrane

    International Nuclear Information System (INIS)

    Saxena, Sunil K.; Kaur, Simarna; George, Constantine

    2006-01-01

    Cystic fibrosis (CF), an autosomal recessive disorder, is caused by the disruption of biosynthesis or the function of a membrane cAMP-activated chloride channel, CFTR. CFTR regulatory mechanisms include recruitment of channel proteins to the cell surface from intracellular pools and by protein-protein interactions. Rab proteins are small GTPases involved in regulated trafficking controlling vesicle docking and fusion. Rab4 controls recycling events from endosome to the plasma membrane, fusion, and degradation. The colorectal cell line HT-29 natively expresses CFTR and responds to cAMP stimulation with an increase in CFTR-mediated currents. Rab4 over-expression in HT-29 cells inhibits both basal and cAMP-stimulated CFTR-mediated currents. GTPase-deficient Rab4Q67L and GDP locked Rab4S22N both inhibit channel activity, which appears characteristically different. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. The pull-down and immunoprecipitation experiments suggest that Rab4 physically interacts with CFTR through protein-protein interaction. Biotinylation with cell impermeant NHS-Sulfo-SS-Biotin implies that Rab4 impairs CFTR expression at cell surface. The enhanced cytosolic CFTR indicates that Rab4 expression restrains CFTR appearance at the cell membrane. The study suggests that Rab4 regulates the channel through multiple mechanisms that include protein-protein interaction, GTP/GDP exchange, and channel protein trafficking. We propose that Rab4 is a dynamic molecule with a significant role in CFTR function

  5. PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading.

    Science.gov (United States)

    Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J

    2001-09-18

    It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.

  6. Orbital maneuvering end effectors

    Science.gov (United States)

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)

    1986-01-01

    This invention relates to an end effector device for grasping and maneuvering objects such as berthing handles of a space telescope. The device includes a V-shaped capture window defined as inclined surfaces in parallel face plates which converge toward a retainer recess in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess where latches lock handle in the recess. To align the capture window, plates may be cocked plus or minus five degrees on base. Drive means is included in the form of a motor coupled with a harmonic drive speed reducer, which provides for slow movement of the fingers at a high torque so that large articles may be handled. Novelty of the invention is believed to reside in the combined intermeshing finger structure, drive means and the harmonic drive speed reducer, which features provide the required maneuverability and strength.

  7. Oomycetes, effectors, and all that jazz.

    Science.gov (United States)

    Bozkurt, Tolga O; Schornack, Sebastian; Banfield, Mark J; Kamoun, Sophien

    2012-08-01

    Plant pathogenic oomycetes secrete a diverse repertoire of effector proteins that modulate host innate immunity and enable parasitic infection. Understanding how effectors evolve, translocate and traffic inside host cells, and perturb host processes are major themes in the study of oomycete-plant interactions. The last year has seen important progress in the study of oomycete effectors with, notably, the elucidation of the 3D structures of five RXLR effectors, and novel insights into how cytoplasmic effectors subvert host cells. In this review, we discuss these and other recent advances and highlight the most important open questions in oomycete effector biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effector proteins of rust fungi.

    Science.gov (United States)

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  9. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  10. Orbital maneuvering vehicle end effectors

    Science.gov (United States)

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)

    1988-01-01

    An end effector device (A) for grasping and holding an article such as a handle (18) of a space telescope is disclosed. The device includes a V-shaped capture window (74) defined as inclined surfaces (76, 78) in parallel face plates (22, 24) which converge toward a retainer recess (54) in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers (26, 28) which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess (54) where latches (50) lock handle (18) in the recess. To align the capture window, plates (22, 24) may be cocked plus or minus five degrees on base (64).

  11. SPRYSEC effector proteins in Globodera rostochiensis

    NARCIS (Netherlands)

    Rehman, S.

    2008-01-01

    Plant pathogens inject so-called effector molecules into the cells of a host plant to promote their growth and reproduction in these hosts. In plant parasitic nematodes, these effector molecules are produced in the salivary glands. The objective of this thesis was to identify and characterize

  12. ROBOTIC TANK INSPECTION END EFFECTOR

    International Nuclear Information System (INIS)

    Rachel Landry

    1999-01-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related sub-tasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these sub-tasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these sub-tasks were derived from the original intent

  13. Oxysterols and Their Cellular Effectors

    Directory of Open Access Journals (Sweden)

    Eija Nissilä

    2012-02-01

    Full Text Available Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR α and γ, and Epstein-Barr virus induced gene 2 (EBI2 have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.

  14. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  15. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  16. TAL effectors and the executor R genes.

    Science.gov (United States)

    Zhang, Junli; Yin, Zhongchao; White, Frank

    2015-01-01

    Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized-recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

  17. TAL effectors and the executor R genes

    Directory of Open Access Journals (Sweden)

    Junli eZhang

    2015-08-01

    Full Text Available Transcription activation-like (TAL effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R genes have been characterized - recessive, dominant non-transcriptional and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

  18. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    Science.gov (United States)

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  19. Repeat-containing protein effectors of plant-associated organisms

    Directory of Open Access Journals (Sweden)

    Carl H. Mesarich

    2015-10-01

    Full Text Available Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  20. Manipulation of host membranes by bacterial effectors.

    Science.gov (United States)

    Ham, Hyeilin; Sreelatha, Anju; Orth, Kim

    2011-07-18

    Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.

  1. Fibre optic sensor on robot end effector for flexible assembly

    International Nuclear Information System (INIS)

    Yung, K.L.; Lau, W.S.; Choi, C.K.; Shan, Y.Y.

    1995-01-01

    A fibre optic sensor system was constructed for use on robot end effectors for flexible assembly. The sensor detected the deviations between robot end effector and the workpiece. The signal was fed back to robot controller to shift the end effector until the centre of end effector and the centre of workpiece were aligned at the correct orientation. Then workpiece can be grasped symmetrically. Sensor fusion concept was used to guard against sensor system failure. Fuzzy linguistic variable and control rule concept were introduced in the sensor integration. The experimental setup for the sensor integrated system was shown. The accuracy was also discussed

  2. Nematode effector proteins: an emerging paradigm of parasitism

    Science.gov (United States)

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  3. Effector-Triggered Self-Replication in Coupled Subsystems.

    Science.gov (United States)

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  5. TAL effectors specificity stems from negative discrimination.

    Directory of Open Access Journals (Sweden)

    Basile I M Wicky

    Full Text Available Transcription Activator-Like (TAL effectors are DNA-binding proteins secreted by phytopathogenic bacteria that interfere with native cellular functions by binding to plant DNA promoters. The key element of their architecture is a domain of tandem-repeats with almost identical sequences. Most of the polymorphism is located at two consecutive amino acids termed Repeat Variable Diresidue (RVD. The discovery of a direct link between the RVD composition and the targeted nucleotide allowed the design of TAL-derived DNA-binding tools with programmable specificities that revolutionized the field of genome engineering. Despite structural data, the molecular origins of this specificity as well as the recognition mechanism have remained unclear. Molecular simulations of the recent crystal structures suggest that most of the protein-DNA binding energy originates from non-specific interactions between the DNA backbone and non-variable residues, while RVDs contributions are negligible. Based on dynamical and energetic considerations we postulate that, while the first RVD residue promotes helix breaks--allowing folding of TAL as a DNA-wrapping super-helix--the second provides specificity through a negative discrimination of matches. Furthermore, we propose a simple pharmacophore-like model for the rationalization of RVD-DNA interactions and the interpretation of experimental findings concerning shared affinities and binding efficiencies. The explanatory paradigm presented herein provides a better comprehension of this elegant architecture and we hope will allow for improved designs of TAL-derived biotechnological tools.

  6. System for exchanging tools and end effectors on a robot

    International Nuclear Information System (INIS)

    Burry, D.B.; Williams, P.M.

    1991-01-01

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot. 12 figures

  7. Uncovering the Legionella genus effector repertoire - strength in diversity and numbers

    Science.gov (United States)

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-01-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ~300 virulence proteins, termed effectors, which manipulate host-cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species, and predicted their effector repertoire using a previously validated machine-learning approach. This analysis revealed a treasure trove of 5,885 predicted effectors. The effector repertoire of different Legionella species was found to be largely non-overlapping, and only seven core-effectors were shared among all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from their natural protozoan hosts. Furthermore, we detected numerous novel conserved effector domains, and discovered new domain combinations, which allowed inferring yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution. PMID:26752266

  8. Effector-triggered immunity: from pathogen perception to robust defense.

    Science.gov (United States)

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  9. Robotic end-effector for rewaterproofing shuttle tiles

    Science.gov (United States)

    Manouchehri, Davoud; Hansen, Joseph M.; Wu, Cheng M.; Yamamoto, Brian S.; Graham, Todd

    1992-11-01

    This paper summarizes work by Rockwell International's Space Systems Division's Robotics Group at Downey, California. The work is part of a NASA-led team effort to automate Space Shuttle rewaterproofing in the Orbiter Processing Facility at the Kennedy Space Center and the ferry facility at the Ames-Dryden Flight Research Facility. Rockwell's effort focuses on the rewaterproofing end-effector, whose function is to inject hazardous dimethylethyloxysilane into thousands of ceramic tiles on the underside of the orbiter after each flight. The paper has five sections. First, it presents background on the present manual process. Second, end-effector requirements are presented, including safety and interface control. Third, a design is presented for the five end-effector systems: positioning, delivery, containment, data management, and command and control. Fourth, end-effector testing and integrating to the total system are described. Lastly, future applications for this technology are discussed.

  10. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  11. Functional heterogeneity of human effector CD8+ T cells.

    Science.gov (United States)

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  12. Target selection biases from recent experience transfer across effectors.

    Science.gov (United States)

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.

  13. Diacylglycerol kinases in T cell tolerance and effector function

    Directory of Open Access Journals (Sweden)

    Shelley S Chen

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs are a family of enzymes that regulate the relative levels of diacylglycerol (DAG and phosphatidic acid (PA in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR signal by recruiting multiple effector molecules such as RasGRP1, PKC, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms,  and , in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.

  14. Special-purpose multifingered robotic end-effectors

    International Nuclear Information System (INIS)

    Crowder, R.M.

    1990-01-01

    A number of advanced multifingered robotic end-effectors have been developed recently in which the finger joints are powered from external actuators. Although this gives dexterous performance, there are considerable problems with power transmission, due to the use of flexible tendons between the external actuators and the individual finger joints. If a multifingered robotic end-effector is to be operated in a confined space, local actuation of the fingers needs to be fully considered, even if there is a reduction in hand dexterity over that of an externally mounted actuator system. The University of Southampton has developed a number of end-effectors that incorporate integral finger actuators and mechanisms, two examples of which are discussed in this paper

  15. Development and testing of the cooling coil cleaning end effector

    International Nuclear Information System (INIS)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-01-01

    The Retrieval Process Development and Enhancement (KPD ampersand E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design

  16. Identification of Anaplasma marginale type IV secretion system effector proteins.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS. The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now.By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141 of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system.The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.

  17. Identification and functional analysis of secreted effectors from phytoparasitic nematodes.

    Science.gov (United States)

    Rehman, Sajid; Gupta, Vijai K; Goyal, Aakash K

    2016-03-21

    Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant

  18. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  19. Nanorobotic end-effectors: Design, fabrication, and in situ characterization

    Science.gov (United States)

    Fan, Zheng

    Nano-robotic end-effectors have promising applications for nano-fabrication, nano-manufacturing, nano-optics, nano-medical, and nano-sensing; however, low performances of the conventional end-effectors have prevented the widespread utilization of them in various fields. There are two major difficulties in developing the end-effectors: their nano-fabrication and their advanced characterization in the nanoscale. Here we introduce six types of end-effectors: the nanotube fountain pen (NFP), the super-fine nanoprobe, the metal-filled carbon nanotube (m CNT)-based sphere-on-pillar (SOP) nanoantennas, the tunneling nanosensor, and the nanowire-based memristor. The investigations on the NFP are focused on nano-fluidics and nano-fabrications. The NFP could direct write metallic "inks" and fabricating complex metal nanostructures from 0D to 3D with a position servo control, which is critically important to future large-scale, high-throughput nanodevice production. With the help of NFP, we could fabricate the end-effectors such as super-fine nanoprobe and m CNT-based SOP nanoantennas. Those end-effectors are able to detect local flaws or characterize the electrical/mechanical properties of the nanostructure. Moreover, using electron-energy-loss-spectroscopy (EELS) technique during the operation of the SOP optical antenna opens a new basis for the application of nano-robotic end-effectors. The technique allows advanced characterization of the physical changes, such as carrier diffusion, that are directly responsible for the device's properties. As the device was coupled with characterization techniques of scanning-trasmission-electron-microscopy (STEM), the development of tunneling nanosensor advances this field of science into quantum world. Furthermore, the combined STEM-EELS technique plays an important role in our understanding of the memristive switching performance in the nanowire-based memristor. The developments of those nano-robotic end-effectors expend the study

  20. Developmental control of integrin expression regulates Th2 effector homing

    Science.gov (United States)

    Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T ...

  1. How to conquer a tomato plant? Fusarium oxysporum effector targets

    NARCIS (Netherlands)

    de Sain, M.

    2016-01-01

    Pathogens secrete small proteins, called effectors, to alter the environment in their host to facilitate infection. The causal agent of Fusarium wilt on tomato, Fusarium oxysporum f. sp. lycopersici (Fol), secretes these proteins in the xylem sap of infected plants and hence they have been called

  2. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    DEFF Research Database (Denmark)

    Stone, J C; Vass, W C; Willumsen, B M

    1988-01-01

    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...

  3. Structure and evolution of barley powdery mildew effector candidates

    DEFF Research Database (Denmark)

    Pedersen, Carsten; Themaat, Emiel Ver Loren van; McGuffin, Liam J.

    2012-01-01

    Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute...

  4. Effector profiles distinguish formae speciales of Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; Fokkens, Like; Schmidt, Sarah M; Linmans, Jasper H J; Kistler, H Corby; Ma, Li-Jun; Rep, Martijn

    2016-11-01

    Formae speciales (ff.spp.) of the fungus Fusarium oxysporum are often polyphyletic within the species complex, making it impossible to identify them on the basis of conserved genes. However, sequences that determine host-specific pathogenicity may be expected to be similar between strains within the same forma specialis. Whole genome sequencing was performed on strains from five different ff.spp. (cucumerinum, niveum, melonis, radicis-cucumerinum and lycopersici). In each genome, genes for putative effectors were identified based on small size, secretion signal, and vicinity to a "miniature impala" transposable element. The candidate effector genes of all genomes were collected and the presence/absence patterns in each individual genome were clustered. Members of the same forma specialis turned out to group together, with cucurbit-infecting strains forming a supercluster separate from other ff.spp. Moreover, strains from different clonal lineages within the same forma specialis harbour identical effector gene sequences, supporting horizontal transfer of genetic material. These data offer new insight into the genetic basis of host specificity in the F. oxysporum species complex and show that (putative) effectors can be used to predict host specificity in F. oxysporum. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Type IV Secretion System of Brucella spp. and its Effectors

    Directory of Open Access Journals (Sweden)

    Yuehua eKe

    2015-10-01

    Full Text Available Brucella spp. cause brucellosis in domestic and wild animals. They are intracellular bacterial pathogens and used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we will discuss roles of Brucella VirB T4SS and in more detail of all 15 identified effectors, which may be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells, suggesting that it plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. So, we listed some key molecular events in the intracellular life cycle of Brucella potentially targeted by the VirB T4SS effectors. Elucidating functions of the effectors secreted will be crucial to clarifying mechanism of T4SS during infection. Studying the effectors secreted by Brucella spp. might provide insights into the mechanisms by which the bacteria hijack the host signaling pathways, which help us to develop better vaccines and therapies against brucellosis.

  6. Type IV secretion system of Brucella spp. and its effectors.

    Science.gov (United States)

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.

  7. The Coding and Effector Transfer of Movement Sequences

    Science.gov (United States)

    Kovacs, Attila J.; Muhlbauer, Thomas; Shea, Charles H.

    2009-01-01

    Three experiments utilizing a 14-element arm movement sequence were designed to determine if reinstating the visual-spatial coordinates, which require movements to the same spatial locations utilized during acquisition, results in better effector transfer than reinstating the motor coordinates, which require the same pattern of homologous muscle…

  8. Cell volume homeostatic mechanisms: effectors and signalling pathways

    DEFF Research Database (Denmark)

    Hoffmann, E K; Pedersen, Stine Helene Falsig

    2011-01-01

    . Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased...

  9. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach.

    Directory of Open Access Journals (Sweden)

    David Burstein

    2009-07-01

    Full Text Available A large number of highly pathogenic bacteria utilize secretion systems to translocate effector proteins into host cells. Using these effectors, the bacteria subvert host cell processes during infection. Legionella pneumophila translocates effectors via the Icm/Dot type-IV secretion system and to date, approximately 100 effectors have been identified by various experimental and computational techniques. Effector identification is a critical first step towards the understanding of the pathogenesis system in L. pneumophila as well as in other bacterial pathogens. Here, we formulate the task of effector identification as a classification problem: each L. pneumophila open reading frame (ORF was classified as either effector or not. We computationally defined a set of features that best distinguish effectors from non-effectors. These features cover a wide range of characteristics including taxonomical dispersion, regulatory data, genomic organization, similarity to eukaryotic proteomes and more. Machine learning algorithms utilizing these features were then applied to classify all the ORFs within the L. pneumophila genome. Using this approach we were able to predict and experimentally validate 40 new effectors, reaching a success rate of above 90%. Increasing the number of validated effectors to around 140, we were able to gain novel insights into their characteristics. Effectors were found to have low G+C content, supporting the hypothesis that a large number of effectors originate via horizontal gene transfer, probably from their protozoan host. In addition, effectors were found to cluster in specific genomic regions. Finally, we were able to provide a novel description of the C-terminal translocation signal required for effector translocation by the Icm/Dot secretion system. To conclude, we have discovered 40 novel L. pneumophila effectors, predicted over a hundred additional highly probable effectors, and shown the applicability of machine

  10. The Shigella flexneri OspB effector: an early immunomodulator.

    Science.gov (United States)

    Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro

    2015-01-01

    Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. End-Effector Development for the PIP Puck Handling Robot

    International Nuclear Information System (INIS)

    Fowley, M.D.

    2001-01-01

    It has been decided that excess, weapons-grade plutonium shall be immobilized to prevent nuclear proliferation. The method of immobilization is to encapsulate the plutonium in a ceramic puck, roughly the size of a hockey puck, using a sintering process. This method has been officially identified as the Plutonium Immobilization Process (PIP). A Can-in-Canister storage method will be used to further immobilize the plutonium. The Can-in-Canister method uses the existing design of a Defense Waste Processing Facility (DWPF) canister to house the plutonium pucks. the process begins with several pucks being stacked in a stainless steel can. Several of the stainless steel cans are stacked in a cage-like magazine. Several of the magazines are then placed in a DWPF canister. The DWPF canister is then filled with molten glass containing high-level, radioactive waste from the DWPF vitrification process. The Can-in-Canister method makes reclamation of plutonium from the pucks technically difficult and highly undesirable. The mechanical requirements of the Can-in-Canister process, in conjunction with the amount of time required to immobilize the vast quantities of weapons-grade plutonium, will expose personnel to unnecessarily high levels of radiation if the processes were completed manually, in glove boxes. Therefore, automated equipment is designed into the process to reduce or eliminate personnel exposure. Robots are used whenever the automated handling operations become complicated. There are two such operations in the initial stages of the Can-in-Canister process, which required a six-axis robot. The first operation is a press unloading process. The second operation is a tray transfer process. To successfully accomplish the operational tasks described in the two operations, the end-effector of the robot must be versatile, lightweight, and rugged. As a result of these demands, an extensive development process was undertaken to design the optimum end-effector for these puck

  12. Structure and evolution of barley powdery mildew effector candidates

    Directory of Open Access Journals (Sweden)

    Pedersen Carsten

    2012-12-01

    Full Text Available Abstract Background Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress or avoid host immunity if it is to survive and cause disease. Results Here we characterise a superfamily predicted to be the full complement of Candidates for Secreted Effector Proteins (CSEPs in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes encoding these proteins constitute over 7% of this pathogen’s annotated genes and most were grouped into 72 families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins (100–150 amino acids, with a high relative expression level in the haustoria and evidence of extensive diversifying selection between paralogs; the second type consists of longer proteins (300–400 amino acids, with lower levels of differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-transposons. Conclusions We employed the full complement of genomic, transcriptomic and proteomic analyses as well as structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f

  13. Systematic Identification of Intracellular-Translocated Candidate Effectors in Edwardsiella piscicida

    Directory of Open Access Journals (Sweden)

    Lingzhi Zhang

    2018-02-01

    Full Text Available Many bacterial pathogens inject effectors directly into host cells to target a variety of host cellular processes and promote bacterial dissemination and survival. Identifying the bacterial effectors and elucidating their functions are central to understanding the molecular pathogenesis of these pathogens. Edwardsiella piscicida is a pathogen with a wide host range, and very few of its effectors have been identified to date. Here, based on the genes significantly regulated by macrophage infection, we identified 25 intracellular translocation-positive candidate effectors, including all five previously reported effectors, namely EseG, EseJ, EseH, EseK, and EvpP. A subsequent secretion analysis revealed diverse secretion patterns for the 25 effector candidates, suggesting that multiple transport pathways were involved in the internalization of these candidate effectors. Further, we identified two novel type VI secretion system (T6SS putative effectors and three outer membrane vesicles (OMV-dependent putative effectors among the candidate effectors described above, and further analyzed their contribution to bacterial virulence in a zebrafish model. This work demonstrates an effective approach for screening bacterial effectors and expands the effectors repertoire in E. piscicida.

  14. Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells

    NARCIS (Netherlands)

    van Leeuwen, Ester M.; Gamadia, Laila E.; Baars, Paul A.; Remmerswaal, Ester B.; ten Berge, Ineke J.; van Lier, René A.

    2002-01-01

    Two prototypic types of virus-specific CD8(+) T cells can be found in latently infected individuals: CD45R0(+)CD27(+)CCR7(-) effector-memory, and CD45RA(+)CD27(-)CCR7(-) effector-type cells. It has recently been implied that CD45RA(+)CD27(-)CCR7(-) T cells are terminally differentiated effector

  15. Evidence for acquisition of virulence effectors in pathogenic chytrids

    Directory of Open Access Journals (Sweden)

    Summers Kyle

    2011-07-01

    Full Text Available Abstract Background The decline in amphibian populations across the world is frequently linked to the infection of the chytrid fungus Batrachochytrium dendrobatidis (Bd. This is particularly perplexing because Bd was only recently discovered in 1999 and no chytrid fungus had previously been identified as a vertebrate pathogen. Results In this study, we show that two large families of known virulence effector genes, crinkler (CRN proteins and serine peptidases, were acquired by Bd from oomycete pathogens and bacteria, respectively. These two families have been duplicated after their acquisition by Bd. Additional selection analyses indicate that both families evolved under strong positive selection, suggesting that they are involved in the adaptation of Bd to its hosts. Conclusions We propose that the acquisition of virulence effectors, in combination with habitat disruption and climate change, may have driven the Bd epidemics and the decline in amphibian populations. This finding provides a starting point for biochemical investigations of chytridiomycosis.

  16. Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Thorpe, Peter; Mantelin, Sophie; Cock, Peter Ja; Blok, Vivian C; Coke, Mirela C; Eves-van den Akker, Sebastian; Guzeeva, Elena; Lilley, Catherine J; Smant, Geert; Reid, Adam J; Wright, Kathryn M; Urwin, Peter E; Jones, John T

    2014-10-23

    The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure - the syncytium - which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.

  17. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin.

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2017-01-01

    Full Text Available Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.

  18. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire.

    Science.gov (United States)

    Wang, Qunqing; Han, Changzhi; Ferreira, Adriana O; Yu, Xiaoli; Ye, Wenwu; Tripathy, Sucheta; Kale, Shiv D; Gu, Biao; Sheng, Yuting; Sui, Yangyang; Wang, Xiaoli; Zhang, Zhengguang; Cheng, Baoping; Dong, Suomeng; Shan, Weixing; Zheng, Xiaobo; Dou, Daolong; Tyler, Brett M; Wang, Yuanchao

    2011-06-01

    The genome of the soybean pathogen Phytophthora sojae contains nearly 400 genes encoding candidate effector proteins carrying the host cell entry motif RXLR-dEER. Here, we report a broad survey of the transcription, variation, and functions of a large sample of the P. sojae candidate effectors. Forty-five (12%) effector genes showed high levels of polymorphism among P. sojae isolates and significant evidence for positive selection. Of 169 effectors tested, most could suppress programmed cell death triggered by BAX, effectors, and/or the PAMP INF1, while several triggered cell death themselves. Among the most strongly expressed effectors, one immediate-early class was highly expressed even prior to infection and was further induced 2- to 10-fold following infection. A second early class, including several that triggered cell death, was weakly expressed prior to infection but induced 20- to 120-fold during the first 12 h of infection. The most strongly expressed immediate-early effectors could suppress the cell death triggered by several early effectors, and most early effectors could suppress INF1-triggered cell death, suggesting the two classes of effectors may target different functional branches of the defense response. In support of this hypothesis, misexpression of key immediate-early and early effectors severely reduced the virulence of P. sojae transformants.

  19. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity.

    Directory of Open Access Journals (Sweden)

    Remco Stam

    Full Text Available Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.

  20. Exact positioning of the robotic arm end effector

    Science.gov (United States)

    Korepanov, Valery; Dudkin, Fedir

    2016-07-01

    Orbital service becomes a new challenge of space exploration. The necessity to introduce it is connected first of all with an attractive opportunity to prolong the exploitation terms of expensive commercial satellites by, e.g., refilling of fuel or changing batteries. Other application area is a fight with permanently increasing amount of space litter - defunct satellites, burnt-out rocket stages, discarded trash and other debris. Now more than few tens of thousands orbiting objects larger than 5-10 cm (or about 1 million junks larger than 1 cm) are a huge problem for crucial and costly satellites and manned vehicles. For example, in 2014 the International Space Station had to change three times its orbit to avoid collision with space debris. So the development of the concepts and actions related to removal of space debris or non-operational satellites with use of robotic arm of a servicing satellite is very actual. Such a technology is also applicable for unmanned exploratory missions in solar system, for example for collecting a variety of samples from a celestial body surface. Naturally, the robotic arm movements should be controlled with great accuracy at influence of its non-rigidity, thermal and other factors. In these circumstances often the position of the arm end effector has to be controlled with high accuracy. The possibility of coordinate determination for the robotic arm end effector with use of a low frequency active electromagnetic system has been considered in the presented report. The proposed design of such a system consists of a small magnetic dipole source, which is mounted inside of the arm end effector and two or three 3-component magnetic field sensors mounted on a servicing satellite body. The data from this set of 3-component magnetic field sensors, which are fixed relatively to the satellite body, allows use of the mathematical approach for determination of position and orientation of the magnetic dipole source. The theoretical

  1. Telepresence master glove controller for dexterous robotic end-effectors

    Science.gov (United States)

    Fisher, Scott S.

    1987-01-01

    This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computer in real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.

  2. Hacker Within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    Directory of Open Access Journals (Sweden)

    Taslima Taher Lina

    2016-05-01

    Full Text Available Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME, an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  3. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    Science.gov (United States)

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  4. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus

    Directory of Open Access Journals (Sweden)

    Maryam eRafiqi

    2013-07-01

    Full Text Available One of the emerging systems in plant-microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe in silico analyses to predict effectors of P. indica and we explore effector features considered here to mine a high priority protein list for functional analysis.

  5. Principles and applications of TAL effectors for plant physiology and metabolism.

    Science.gov (United States)

    Bogdanove, Adam J

    2014-06-01

    Recent advances in DNA targeting allow unprecedented control over gene function and expression. Targeting based on TAL effectors is arguably the most promising for systems biology and metabolic engineering. Multiple, orthogonal TAL-effector reagents of different types can be used in the same cell. Furthermore, variation in base preferences of the individual structural repeats that make up the TAL effector DNA recognition domain makes targeting stringency tunable. Realized applications range from genome editing to epigenome modification to targeted gene regulation to chromatin labeling and capture. The principles that govern TAL effector DNA recognition make TAL effectors well suited for applications relevant to plant physiology and metabolism. TAL effector targeting has merits that are distinct from those of the RNA-based DNA targeting CRISPR/Cas9 system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Innovative technology summary report: Confined sluicing end effector

    International Nuclear Information System (INIS)

    1998-09-01

    A Confined Sluicing End-Effector (CSEE) was field tested during the summer of 1997 in Tank W-3, one of the Gunite and Associated Tanks (GAAT) at the Oak Ridge Reservation (ORR). It should be noted that the specific device used at the Oak Ridge Reservation demonstration was the Sludge Retrieval End-Effector (SREE), although in common usage it is referred to as the CSEE. Deployed by the Modified Light-Duty Utility Arm (MLDUA) and the Houdini remotely operated vehicle (ROV), the CSEE was used to mobilize and retrieve waste from the tank. After removing the waste, the CSEE was used to scarify the gunite walls of Tank W-3, removing approximately 0.1 in of material. The CSEE uses three rotating water-jets to direct a short-range pressurized jet of water to effectively mobilize the waste. Simultaneously, the water and dislodged tank waste, or scarified materials, are aspirated using a water-jet pump-driven conveyance system. The material is then pumped outside of the tank, where it can be stored for treatment. The technology, its performance, uses, cost, and regulatory issues are discussed

  7. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.

  8. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2015-12-01

    Full Text Available The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen’s advantage. Proteinaceous effectors are synthesised intracellularly and must be externalised to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localisation predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes.

  9. Functions and requirements for the INEL light duty utility arm gripper end effector

    International Nuclear Information System (INIS)

    Pace, D.P.; Barnes, G.E.

    1995-02-01

    This gripper end effector system functions and requirements document defines the system functions that the end effector must perform as well as the requirements the design must meet. Safety, quality assurance, operations, environmental conditions, and regulatory requirements have been considered. The main purpose of this document is to provide a basis for the end effector engineering, design, and fabrication activities. The document shall be the living reference document to initiate the development activities and will be updated as system technologies are finalized

  10. Functions and requirements for the INEL light duty utility arm sampler end effector

    International Nuclear Information System (INIS)

    Pace, D.P.; Barnes, G.E.

    1995-02-01

    This sampler end effector system functions and requirements document defines the system functions that the end effector must perform as well as the requirements the design must meet. Safety, quality assurance, operations, environmental conditions, and regulatory requirements have been considered. The main purpose of this document is to provide a basis for the end effector engineering, design, and fabrication activities. The document shall be the living reference document to initiate the development activities and will be updated as system technologies are finalized

  11. The barley powdery mildew effector candidates CSEP0081 and CSEP0254 promote fungal infection success

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim; Pedersen, Carsten; Thordal-Christensen, Hans

    2016-01-01

    Effectors play significant roles in the success of pathogens. Recent advances in genome sequencing have revealed arrays of effectors and effector candidates from a wide range of plant pathogens. Yet, the vast majority of them remain uncharacterized. Among the ~500 Candidate Secreted Effector...... independent silencing of the transcripts for these CSEPs significantly reduced the fungal penetration and haustoria formation rate. Both CSEPs are likely required during and after the formation of haustoria, in which their transcripts were found to be differentially expressed, rather than in epiphytic tissue...

  12. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  13. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation.

    Science.gov (United States)

    Jefferis, R; Lund, J; Pound, J D

    1998-06-01

    The Fc region of human IgG expresses interaction sites for many effector ligands. In this review the topographical distributions of ten of these sites are discussed in relation to functional requirement. It is apparent that interaction sites localised to the inter-CH2-CH3 domain region of the Fc allow for functional divalency, whereas sites localised to the hinge proximal region of the CH2 domain are functionally monovalent, with expression of the latter sites being particularly dependent on glycosylation. All x-ray crystal structures for Fc and Fc-ligand complexes report that the protein structure of the hinge proximal region of the CH2 domain is "disordered", suggesting "internal mobility". We propose a model in which such "internal mobility" results in the generation of a dynamic equilibrium between multiple conformers, certain of which express interaction sites specific to individual ligands. The emerging understanding of the influence of oligosaccharide/protein interactions on protein conformation and biological function of IgG antibodies suggests a potential to generate novel glycoforms of antibody molecules having unique profiles of effector functions.

  14. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System.

    Science.gov (United States)

    Tay, Daniel Ming Ming; Govindarajan, Kunde Ramamoorthy; Khan, Asif M; Ong, Terenze Yao Rui; Samad, Hanif M; Soh, Wei Wei; Tong, Minyan; Zhang, Fan; Tan, Tin Wee

    2010-10-15

    Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The T3SEdb represents a platform for inclusion of

  15. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Tong Minyan

    2010-10-01

    Full Text Available Abstract Background Effectors of Type III Secretion System (T3SS play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Results Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i comprehensive annotation of experimental status of effectors, ii submission and curation review of records by users of the database, and iii the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%. Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. Conclusions T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors

  16. End effectors and attachments for buried waste excavation equipment

    International Nuclear Information System (INIS)

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER ampersand WM) Department's needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications

  17. Hanford Waste End Effector Phase I Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatchell, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mount, Jason C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A.M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-22

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulants to determine pumping rate, dilution factors, and screen fouling rate.

  18. Comparative reactivity of human IgE to cynomolgus monkey and human effector cells and effects on IgE effector cell potency

    Science.gov (United States)

    Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N

    2014-01-01

    Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations.   Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303

  19. Pointing Hand Stimuli Induce Spatial Compatibility Effects and Effector Priming

    Directory of Open Access Journals (Sweden)

    Akio eNishimura

    2013-04-01

    Full Text Available The present study investigated the automatic influence of perceiving a picture that indicates other’s action on one’s own task performance in terms of spatial compatibility and effector priming. Participants pressed left and right buttons with their left and right hands respectively, depending on the color of a central dot target. Preceding the target, a left or right hand stimulus (pointing either to the left or right with the index or little finger was presented. In Experiment 1, with brief presentation of the pointing hand, a spatial compatibility effect was observed: Responses were faster when the direction of the pointed finger and the response position were spatially congruent than when incongruent. The spatial compatibility effect was larger for the pointing index finger stimulus compared to the pointing little finger stimulus. Experiment 2 employed longer duration of the pointing hand stimuli. In addition to the spatial compatibility effect for the pointing index finger, the effector priming effect was observed: Responses were faster when the anatomical left/right identity of the pointing and response hands matched than when the pointing and response hands differed in left/right identity. The results indicate that with sufficient processing time, both spatial/symbolic and anatomical features of a static body part implying another’s action simultaneously influence different aspects of the perceiver’s own action. Hierarchical coding, according to which an anatomical code is used only when a spatial code is unavailable, may not be applicable if stimuli as well as responses contain anatomical features.

  20. Genotyping of polymorphic effectors of Toxoplasma gondii isolates from China

    Directory of Open Access Journals (Sweden)

    Weisheng Cheng

    2017-11-01

    Full Text Available Abstract Background Toxoplasma gondii is an opportunistic protozoan apicomplexan and obligate intracellular parasite that infects a wide range of animals and humans. Rhoptry proteins 5 (ROP5, ROP16, ROP18 and dense granules 15 (GRA15 are the important effectors secreted by T. gondii which link to the strain virulence for mice and modulate the host’s response to the parasite. Little has been known about these molecules as well as GRA3 in type Chinese 1 strains that show polymorphism among strains of archetypical genotypes. This study examined the genetic diversity of these effectors and its correlated virulence in mice among T. gondii isolates from China. Results Twenty-one isolates from stray cats were detected, of which 15 belong to Chinese 1, and 6 to ToxoDB #205. Wh6 isolate, a Chinese 1 strain, has an avirulent phenotype. PCR-RFLP results of ROP5 and ROP18 presented few variations among the strains. Genotyping of GRA15 and ROP16 revealed that all the strains belong to type II allele except Xz7 which carries type I allele. ROP16 amino acid alignment at 503 locus demonstrated that 17 isolates are featured as type I or type III (ROP16I/III, and the other 4 as type II (ROP16II. The strains investigated may be divided into four groups based on GRA3 amino acid alignment, and all isolates of type Chinese 1 belong to the μ-1 allele except Wh6 which is identical to type II strain. Conclusions PCR-RFLP and sequence alignment analyses of ROP5, ROP16, ROP18, GRA3, and GRA15 in T. gondii revealed that strains with the same genotype may have variations in some of their key genes. GRA3 variation exhibited by Wh6 strain may be associated with the difference in phenotype and pathogenesis.

  1. Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities.

    Science.gov (United States)

    Ray, Ann; Schwartz, Nika; de Souza Santos, Marcela; Zhang, Junmei; Orth, Kim; Salomon, Dor

    2017-11-01

    Most type VI secretion systems (T6SSs) described to date are protein delivery apparatuses that mediate bactericidal activities. Several T6SSs were also reported to mediate virulence activities, although only few anti-eukaryotic effectors have been described. Here, we identify three T6SSs in the marine bacterium Vibrio proteolyticus and show that T6SS1 mediates bactericidal activities under warm marine-like conditions. Using comparative proteomics, we find nine potential T6SS1 effectors, five of which belong to the polymorphic MIX-effector class. Remarkably, in addition to six predicted bactericidal effectors, the T6SS1 secretome includes three putative anti-eukaryotic effectors. One of these is a MIX-effector containing a cytotoxic necrotizing factor 1 domain. We demonstrate that T6SS1 can use this MIX-effector to target phagocytic cells, resulting in morphological changes and actin cytoskeleton rearrangements. In conclusion, the V. proteolyticus T6SS1, a system homologous to one found in pathogenic vibrios, uses a suite of polymorphic effectors that target both bacteria and eukaryotic neighbors. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Guo-Feng Jiang

    2013-09-01

    Full Text Available It is well known that the type III secretion system (T3SS and type III (T3 effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2 which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2 is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME. Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.

  3. High immunosuppressive burden in advanced hepatocellular carcinoma patients: Can effector functions be restored?

    Science.gov (United States)

    Lugade, Amit A; Kalathil, Suresh; Miller, Austin; Iyer, Renuka; Thanavala, Yasmin

    2013-07-01

    The accumulation of immunosuppressive cells and exhausted effector T cells highlight an important immune dysfunction in advanced stage hepatocellular carcinoma (HCC) patients. These cells significantly hamper the efficacy immunotherapies and facilitate HCC progression. We have recently demonstrated that the multipronged depletion of immunosuppressive cells potentially restores effector T-cell function in HCC.

  4. Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Pedersen, Carsten; Kwaaitaal, Mark Adrianus Cornelis J

    2012-01-01

    A large number of effector candidates have been identified recently in powdery mildew fungi. However, their roles and how they perform their functions remain unresolved. In this study, we made use of host-induced gene silencing and confirmed that the secreted barley powdery mildew effector candid...

  5. The Alpha-Melanocyte Stimulating Hormone Induces Conversion of Effector T Cells into Treg Cells

    Directory of Open Access Journals (Sweden)

    Andrew W. Taylor

    2011-01-01

    Full Text Available The neuropeptide alpha-melanocyte stimulating hormone (α-MSH has an important role in modulating immunity and homeostasis. The production of IFN-γ by effector T cells is suppressed by α-MSH, while TGF-β production is promoted in the same cells. Such α-MSH-treated T cells have immune regulatory activity and suppress hypersensitivity, autoimmune diseases, and graft rejection. Previous characterizations of the α-MSH-induced Treg cells showed that the cells are CD4+ T cells expressing the same levels of CD25 as effector T cells. Therefore, we further analyzed the α-MSH-induced Treg cells for expression of effector and regulatory T-cell markers. Also, we examined the potential for α-MSH-induced Treg cells to be from the effector T-cell population. We found that the α-MSH-induced Treg cells are CD25+  CD4+ T cells that share similar surface markers as effector T cells, except that they express on their surface LAP. Also, the α-MSH treatment augments FoxP3 message in the effector T cells, and α-MSH induction of regulatory activity was limited to the effector CD25+ T-cell population. Therefore, α-MSH converts effector T cells into Treg cells, which suppress immunity targeting specific antigens and tissues.

  6. Identification of proteins similar to AvrE type III effector proteins from ...

    African Journals Online (AJOL)

    Type III effector proteins are injected into host cells through type III secretion systems. Some effectors are similar to host proteins to promote pathogenicity, while others lead to the activation of disease resistance. We used partial least squares alignment-free bioinformatics methods to identify proteins similar to AvrE proteins ...

  7. The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens.

    Science.gov (United States)

    Sánchez-Vallet, Andrea; Fouché, Simone; Fudal, Isabelle; Hartmann, Fanny E; Soyer, Jessica L; Tellier, Aurélien; Croll, Daniel

    2018-05-16

    Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  8. TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA targeting proteins

    Science.gov (United States)

    Doyle, Erin L.; Stoddard, Barry L.; Voytas, Daniel F.; Bogdanove, Adam J.

    2013-01-01

    Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria in the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting. PMID:23707478

  9. The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Directory of Open Access Journals (Sweden)

    Adnane eNemri

    2014-03-01

    Full Text Available Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp. Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimise parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analysed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote

  10. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    Science.gov (United States)

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  11. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    Directory of Open Access Journals (Sweden)

    Nam-Soo Jwa

    2017-09-01

    Full Text Available Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  12. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    Directory of Open Access Journals (Sweden)

    Diane G O Saunders

    Full Text Available Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i contain a secretion signal, (ii are encoded by in planta induced genes, (iii have similarity to haustorial proteins, (iv are small and cysteine rich, (v contain a known effector motif or a nuclear localization signal, (vi are encoded by genes with long intergenic regions, (vii contain internal repeats, and (viii do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  13. Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model

    Energy Technology Data Exchange (ETDEWEB)

    Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George; Brown, Roslyn N.; Adkins, Joshua N.; Heffron, Fred

    2013-08-12

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  14. The genome sequence and effector complement of the flax rust pathogen Melampsora lini.

    Science.gov (United States)

    Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N

    2014-01-01

    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their

  15. In Planta Functional Analysis and Subcellular Localization of the Oomycete Pathogen Plasmopara viticola Candidate RXLR Effector Repertoire

    Directory of Open Access Journals (Sweden)

    Yunxiao Liu

    2018-04-01

    Full Text Available Downy mildew is one of the most destructive diseases of grapevine, causing tremendous economic loss in the grape and wine industry. The disease agent Plasmopara viticola is an obligate biotrophic oomycete, from which over 100 candidate RXLR effectors have been identified. In this study, 83 candidate RXLR effector genes (PvRXLRs were cloned from the P. viticola isolate “JL-7-2” genome. The results of the yeast signal sequence trap assay indicated that most of the candidate effectors are secretory proteins. The biological activities and subcellular localizations of all the 83 effectors were analyzed via a heterologous Agrobacterium-mediated Nicotiana benthamiana expression system. Results showed that 52 effectors could completely suppress cell death triggered by elicitin, 10 effectors could partially suppress cell death, 11 effectors were unable to suppress cell death, and 10 effectors themselves triggered cell death. Live-cell imaging showed that the majority of the effectors (76 of 83 could be observed with informative fluorescence signals in plant cells, among which 34 effectors were found to be targeted to both the nucleus and cytosol, 29 effectors were specifically localized in the nucleus, and 9 effectors were targeted to plant membrane system. Interestingly, three effectors PvRXLR61, 86 and 161 were targeted to chloroplasts, and one effector PvRXLR54 was dually targeted to chloroplasts and mitochondria. However, western blot analysis suggested that only PvRXLR86 carried a cleavable N-terminal transit peptide and underwent processing in planta. Many effectors have previously been predicted to target organelles, however, to the best of our knowledge, this is the first study to provide experimental evidence of oomycete effectors targeted to chloroplasts and mitochondria.

  16. DMPD: MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18191460 MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis...g) (.svg) (.html) (.csml) Show MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis...e and effector immunity totuberculosis. Authors Reiling N, Ehlers S, Holscher C. Publication Immunol Lett. 2

  17. Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane

    Science.gov (United States)

    Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...

  18. Intrinsic disorder in pathogen effectors: protein flexibility as an evolutionary hallmark in a molecular arms race.

    Science.gov (United States)

    Marín, Macarena; Uversky, Vladimir N; Ott, Thomas

    2013-09-01

    Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants' innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein-protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.

  19. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  20. The death effector domains of caspase-8 induce terminal differentiation.

    Directory of Open Access Journals (Sweden)

    Ainhoa Mielgo

    2009-11-01

    Full Text Available The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DEDs, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156 in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence.

  1. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Sirjana Devi Shrestha

    Full Text Available The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076 with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  2. Hematopoietic Stem and Progenitor Cells as Effectors in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Jennifer L. Granick

    2012-01-01

    Full Text Available Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC. While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.

  3. Exosomes: novel effectors of human platelet lysate activity

    Directory of Open Access Journals (Sweden)

    E Torreggiani

    2014-09-01

    Full Text Available Despite the popularity of platelet-rich plasma (PRP and platelet lysate (PL in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF, vascular endothelial growth factor (VEGF, platelet-derived growth factor (PDGF-BB and transforming growth factor beta 1 (TGF-β1 as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies.

  4. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors.

    Science.gov (United States)

    Lopez, David; Ribeiro, Sébastien; Label, Philippe; Fumanal, Boris; Venisse, Jean-Stéphane; Kohler, Annegret; de Oliveira, Ricardo R; Labutti, Kurt; Lipzen, Anna; Lail, Kathleen; Bauer, Diane; Ohm, Robin A; Barry, Kerrie W; Spatafora, Joseph; Grigoriev, Igor V; Martin, Francis M; Pujade-Renaud, Valérie

    2018-01-01

    Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species ( Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca , and Botrosphaeria dothidea ) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  5. Space-based multifunctional end effector systems functional requirements and proposed designs

    Science.gov (United States)

    Mishkin, A. H.; Jau, B. M.

    1988-01-01

    The end effector is an essential element of teleoperator and telerobot systems to be employed in space in the next decade. The report defines functional requirements for end effector systems to perform operations that are currently only feasible through Extra-Vehicular Activity (EVA). Specific tasks and functions that the end effectors must be capable of performing are delineated. Required capabilities for forces and torques, clearances, compliance, and sensing are described, using current EVA requirements as guidelines where feasible. The implications of these functional requirements on the elements of potential end effector systems are discussed. The systems issues that must be considered in the design of space-based manipulator systems are identified; including impacts on subsystems tightly coupled to the end effector, i.e., control station, information processing, manipulator arm, tool and equipment stowage. Possible end effector designs are divided into three categories: single degree-of-freedom end effectors, multiple degree of freedom end effectors, and anthropomorphic hands. Specific design alternatives are suggested and analyzed within the individual categories. Two evaluations are performed: the first considers how well the individual end effectors could substitute for EVA; the second compares how manipulator systems composed of the top performers from the first evaluation would improve the space shuttle Remote Manipulator System (RMS) capabilities. The analysis concludes that the anthropomorphic hand is best-suited for EVA tasks. A left- and right-handed anthropomorphic manipulator arm configuration is suggested as appropriate to be affixed to the RMS, but could also be used as part of the Smart Front End for the Orbital Maneuvering Vehicle (OMV). The technical feasibility of the anthropomorphic hand and its control are demonstrated. An evolutionary development approach is proposed and approximate scheduling provided for implementing the suggested

  6. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors

    Directory of Open Access Journals (Sweden)

    David Lopez

    2018-03-01

    Full Text Available Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  7. Design and force analysis of end-effector for plug seedling transplanter.

    Directory of Open Access Journals (Sweden)

    Zhuohua Jiang

    Full Text Available Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients. Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.

  8. Design and force analysis of end-effector for plug seedling transplanter.

    Science.gov (United States)

    Jiang, Zhuohua; Hu, Yang; Jiang, Huanyu; Tong, Junhua

    2017-01-01

    Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.

  9. Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein.

    Science.gov (United States)

    Alcoforado Diniz, Juliana; Coulthurst, Sarah J

    2015-07-01

    The type VI secretion system (T6SS) is widespread in Gram-negative bacteria and can deliver toxic effector proteins into eukaryotic cells or competitor bacteria. Antibacterial T6SSs are increasingly recognized as key mediators of interbacterial competition and may contribute to the outcome of many polymicrobial infections. Multiple antibacterial effectors can be delivered by these systems, with diverse activities against target cells and distinct modes of secretion. Polymorphic toxins containing Rhs repeat domains represent a recently identified and as-yet poorly characterized class of T6SS-dependent effectors. Previous work had revealed that the potent antibacterial T6SS of the opportunistic pathogen Serratia marcescens promotes intraspecies as well as interspecies competition (S. L. Murdoch, K. Trunk, G. English, M. J. Fritsch, E. Pourkarimi, and S. J. Coulthurst, J Bacteriol 193:6057-6069, 2011, http://dx.doi.org/10.1128/JB.05671-11). In this study, two new Rhs family antibacterial effectors delivered by this T6SS have been identified. One of these was shown to act as a DNase toxin, while the other contains a novel, cytoplasmic-acting toxin domain. Importantly, using S. marcescens, it has been demonstrated for the first time that Rhs proteins, rather than other T6SS-secreted effectors, can be the primary determinant of intraspecies competition. Furthermore, a new family of accessory proteins associated with T6SS effectors has been identified, exemplified by S. marcescens EagR1, which is specifically required for deployment of its associated Rhs effector. Together, these findings provide new insight into how bacteria can use the T6SS to deploy Rhs-family effectors and mediate different types of interbacterial interactions. Infectious diseases caused by bacterial pathogens represent a continuing threat to health and economic prosperity. To counter this threat, we must understand how such organisms survive and prosper. The type VI secretion system is a weapon that

  10. Abscisic Acid as Pathogen Effector and Immune Regulator

    Science.gov (United States)

    Lievens, Laurens; Pollier, Jacob; Goossens, Alain; Beyaert, Rudi; Staal, Jens

    2017-01-01

    Abscisic acid (ABA) is a sesquiterpene signaling molecule produced in all kingdoms of life. To date, the best known functions of ABA are derived from its role as a major phytohormone in plant abiotic stress resistance. Different organisms have developed different biosynthesis and signal transduction pathways related to ABA. Despite this, there are also intriguing common themes where ABA often suppresses host immune responses and is utilized by pathogens as an effector molecule. ABA also seems to play an important role in compatible mutualistic interactions such as mycorrhiza and rhizosphere bacteria with plants, and possibly also the animal gut microbiome. The frequent use of ABA in inter-species communication could be a possible reason for the wide distribution and re-invention of ABA as a signaling molecule in different organisms. In humans and animal models, it has been shown that ABA treatment or nutrient-derived ABA is beneficial in inflammatory diseases like colitis and type 2 diabetes, which confer potential to ABA as an interesting nutraceutical or pharmacognostic drug. The anti-inflammatory activity, cellular metabolic reprogramming, and other beneficial physiological and psychological effects of ABA treatment in humans and animal models has sparked an interest in this molecule and its signaling pathway as a novel pharmacological target. In contrast to plants, however, very little is known about the ABA biosynthesis and signaling in other organisms. Genes, tools and knowledge about ABA from plant sciences and studies of phytopathogenic fungi might benefit biomedical studies on the physiological role of endogenously generated ABA in humans. PMID:28469630

  11. Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors

    Directory of Open Access Journals (Sweden)

    Fadel Sayes

    2018-04-01

    Full Text Available Summary: The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II. : Sayes et al. develop an approach to express distinct fluorescent reporters that is based on the recognition of specific Mycobacterium tuberculosis MHC class II epitopes by highly discriminative T cell hybridomas. This multiplexed technology allows the study of secretion, subcellular location, and regulation patterns of these instrumental protein members. Keywords: mycobacterium tuberculosis, type VII secretion systems, intracellular bacteria, T-cell hybridomas, mycobacterial virulence factors, bacterial antigen presentation, lentiviral vectors, reporter T cells, in vivo antigen presentation, protein localization

  12. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    Science.gov (United States)

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Hitting the Sweet Spot: Glycans as Targets of Fungal Defense Effector Proteins

    Directory of Open Access Journals (Sweden)

    Markus Künzler

    2015-05-01

    Full Text Available Organisms which rely solely on innate defense systems must combat a large number of antagonists with a comparatively low number of defense effector molecules. As one solution of this problem, these organisms have evolved effector molecules targeting epitopes that are conserved between different antagonists of a specific taxon or, if possible, even of different taxa. In order to restrict the activity of the defense effector molecules to physiologically relevant taxa, these target epitopes should, on the other hand, be taxon-specific and easily accessible. Glycans fulfill all these requirements and are therefore a preferred target of defense effector molecules, in particular defense proteins. Here, we review this defense strategy using the example of the defense system of multicellular (filamentous fungi against microbial competitors and animal predators.

  14. Controlling transcription in human pluripotent stem cells using CRISPR-effectors.

    Science.gov (United States)

    Genga, Ryan M; Kearns, Nicola A; Maehr, René

    2016-05-15

    The ability to manipulate transcription in human pluripotent stem cells (hPSCs) is fundamental for the discovery of key genes and mechanisms governing cellular state and differentiation. Recently developed CRISPR-effector systems provide a systematic approach to rapidly test gene function in mammalian cells, including hPSCs. In this review, we discuss recent advances in CRISPR-effector technologies that have been employed to control transcription through gene activation, gene repression, and epigenome engineering. We describe an application of CRISPR-effector mediated transcriptional regulation in hPSCs by targeting a synthetic promoter driving a GFP transgene, demonstrating the ease and effectiveness of CRISPR-effector mediated transcriptional regulation in hPSCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    NARCIS (Netherlands)

    Ordonez, Soledad R; Veldhuizen, Edwin J A; van Eijk, Martin; Haagsman, Henk P

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that

  16. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong; Yan, Chuangye; Pan, Xiaojing; Mahfouz, Magdy M.; Wang, Jiawei; Zhu, Jiankang; Shi, Yi Gong; Yan, Nieng

    2012-01-01

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair

  17. The Role of CD39 in Modulating Effector Immune Responses in Inflammatory Bowel Disease

    OpenAIRE

    Huang, Huang

    2015-01-01

    Inflammatory bowel disease is associated with excessive inflammation of the bowel and intestinal tissues in genetically susceptible individuals. IBD can manifest in two major forms, ulcerative colitis and Crohn’s disease. T helper type 17 cells (Th17) are effector lymphocytes that have been linked to intestinal inflammation in both mice and humans. Effector Th17 cells and regulatory T cells (Treg) – a subset pivotal to immune-tolerance maintenance – derive from the same CD4 progenitors. Our i...

  18. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    Science.gov (United States)

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (T EM ), and longer-lived central memory (T CM ) and stem cell memory (T SCM ) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of T CM and T SCM memory cells resulted in phenotypic conversion into T EM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired T EM -associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  19. New clues in the nucleus: Transcriptional reprogramming in effector-triggered immunity

    Directory of Open Access Journals (Sweden)

    SAIKAT eBHATTACHARJEE

    2013-09-01

    Full Text Available The robustness of plant effector-triggered immunity is correlated with massive alterations of the host transcriptome. Yet the molecular mechanisms that cause and underlie this reprogramming remain obscure. Here we will review recent advances in deciphering nuclear functions of plant immune receptors and of associated proteins. Important open questions remain, such as the identities of the primary transcription factors involved in control of effector-triggered immune responses, and indeed whether this can be generalized or whether particular effector-resistance protein interactions impinge on distinct sectors in the transcriptional response web. Multiple lines of evidence have implicated WRKY transcription factors at the core of responses to microbe-associated molecular patterns and in intersections with effector-triggered immunity. Recent findings from yeast two-hybrid studies suggest that members of the TCP transcription factor family are targets of several effectors from diverse pathogens. Additional transcription factor families that are directly or indirectly involved in effector-triggered immunity are likely to be identified.

  20. SPRYSEC effectors: a versatile protein-binding platform to disrupt plant innate immunity

    Directory of Open Access Journals (Sweden)

    Amalia Diaz-Granados

    2016-10-01

    Full Text Available Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These round worms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.

  1. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene

    Science.gov (United States)

    Lilley, Catherine J.; Maqbool, Abbas; Wu, Duqing; Yusup, Hazijah B.; Jones, Laura M.; Birch, Paul R. J.; Urwin, Peter E.

    2018-01-01

    Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to “GS-like effectors”. Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function. PMID:29641602

  2. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.

    Science.gov (United States)

    MacLean, Allyson M; Sugio, Akiko; Makarova, Olga V; Findlay, Kim C; Grieve, Victoria M; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A

    2011-10-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches' Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches' broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.

  3. DEEP--a tool for differential expression effector prediction.

    Science.gov (United States)

    Degenhardt, Jost; Haubrock, Martin; Dönitz, Jürgen; Wingender, Edgar; Crass, Torsten

    2007-07-01

    --differentially expressed or not--may play pivotal roles in the tissues or conditions under examination. The described method has been implemented in Java as a client/server application and a web interface called DEEP (Differential Expression Effector Prediction). The client, which features an easy-to-use graphical interface, can freely be downloaded from the following URL: http://deep.bioinf.med.uni-goettingen.de.

  4. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis

    Directory of Open Access Journals (Sweden)

    Hai-Lei Wei

    2018-05-01

    Full Text Available Summary: The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana. : Wei et al. used a Pseudomonas syringae strain lacking all known type III effectors with a modularized library expressing the 29 active effectors in the strain’s native repertoire, individually and in pairs, to comprehensively determine effector actions and interplay in inducing and suppressing responses associated with plant pathogenesis and immunity. Keywords: effector-triggered-immunity, pattern-triggered-immunity, Hop proteins, plant immunity, mini-Tn7

  5. Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.

    Science.gov (United States)

    Alteri, Christopher J; Himpsl, Stephanie D; Zhu, Kevin; Hershey, Haley L; Musili, Ninette; Miller, Jessa E; Mobley, Harry L T

    2017-11-01

    Type VI secretion systems (T6SS) function to deliver lethal payloads into target cells. Many studies have shown that protection against a single, lethal T6SS effector protein requires a cognate antidote immunity protein, both of which are often encoded together in a two-gene operon. The T6SS and an effector-immunity pair is sufficient for both killing and immunity. HereIn this paper we describe a T6SS effector operon that differs from conventional effector-immunity pairs in that eight genes are necessary for lethal effector function, yet can be countered by a single immunity protein. In this study, we investigated the role that the PefE T6SS immunity protein plays in recognition between two strains harboring nearly identical effector operons. Interestingly, despite containing seven of eight identical effector proteins, the less conserved immunity proteins only provided protection against their native effectors, suggesting that specificity and recognition could be dependent on variation within an immunity protein and one effector gene product. The variable effector gene product, PefD, is encoded upstream from pefE, and displays toxic activity that can be countered by PefE independent of T6SS-activity. Interestingly, while the entire pef operon was necessary to exert toxic activity via the T6SS in P. mirabilis, production of PefD and PefE alone was unable to exert this effector activity. Chimeric PefE proteins constructed from two P. mirabilis strains were used to localize immunity function to three amino acids. A promiscuous immunity protein was created using site-directed mutagenesis to change these residues from one variant to another. These findings support the notion that subtle differences between conserved effectors are sufficient for T6SS-mediated kin discrimination and that PefD requires additional factors to function as a T6SS-dependent effector.

  6. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita Júnior, D. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cruvinel, W.M. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Departamento de Biomedicina, Universidade Católica de Goiás, Goiânia, GO (Brazil); Araujo, J.A.P. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salmazi, K.C.; Kallas, E.G. [Disciplina de Imunologia Clínica e Alergia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Andrade, L.E.C. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-22

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25{sup +/high}CD127{sup Ø/low}FoxP3{sup +}, and effector T cells were defined as CD25{sup +}CD127{sup +}FoxP3{sup Ø}. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4{sup +}TREG and CD28{sup +}TREG cells and an increased frequency of CD40L{sup +}TREG cells. There was a decrease in the TREG/effector-T ratio for GITR{sup +}, HLA-DR{sup +}, OX40{sup +}, and CD45RO{sup +} cells, and an increased ratio of TREG/effector-T CD40L{sup +} cells in patients with SLE. In addition, CD40L{sup +}TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  7. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Mesquita Júnior, D.; Cruvinel, W.M.; Araujo, J.A.P.; Salmazi, K.C.; Kallas, E.G.; Andrade, L.E.C.

    2014-01-01

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25 +/high CD127 Ø/low FoxP3 + , and effector T cells were defined as CD25 + CD127 + FoxP3 Ø . The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4 + TREG and CD28 + TREG cells and an increased frequency of CD40L + TREG cells. There was a decrease in the TREG/effector-T ratio for GITR + , HLA-DR + , OX40 + , and CD45RO + cells, and an increased ratio of TREG/effector-T CD40L + cells in patients with SLE. In addition, CD40L + TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease

  8. Calixarene methylene bisphosphonic acids as promising effectors of biochemical processes

    Directory of Open Access Journals (Sweden)

    S. V. Komisarenko

    2013-12-01

    Full Text Available This interdisciplinary study, performed with participation of research workers of Palladin Institute of Biochemistry and Institute of Organic Chemist­ry of NAS of Ukraine, is devoted to analysis of biochemical effects of some calixarene methylene bisphosphonic acids (cyclic phenol oligomers on two well-known biological phenomenons – Mg2+-dependent ATP hydrolysis (myosin subfragment-1 of myometrium smooth muscle was used as an example and fibrin polymerization. Calix[4]arene С-97 (calix[4]arene methylene bisphosphonic acids is a macrocyclic substance, which contains intramolecular highly ordered lipophilic cavity formed by four aromatic rings, one of which is functionalized at the upper rim with methylene bisphosphonic group. At concentration of 100 µM, this substance was shown to effectively inhibit ATPase activity of pig myometrium myosin subfragment-1 (inhibition coefficient І0.5 = 83 ± 7 µM. At the same time, this calix[4]arene causes significant (vs. control increase of myosin subfragment-1 hydrodynamic diameter, which may indicate formation of an intermolecular complex between calixa­rene and myosin head. Computer simulation methods (docking and molecular dynamics with addition of grid technologies enabled to elucidate the grounds of intermolecular interactions between calix[4]arene С-97 and myometrium myosin subfragment-1, that involve hydrophobic, electrostatic and π-π-stacking interactions, some of which are close to the ATPase active centre. In view of the ability of calixarenes to penetrate into the cell and their low toxicity, the results obtained may be used as a basis for further development of a new generation of supramolecular effectors (starting from the above mentioned substances, in particular calix[4]arene С-97 for regulation of smooth muscle contractile activity at the level of ATP dependent actin-myosin interaction. Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper

  9. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis

    Science.gov (United States)

    McNally, Alice; Hill, Geoffrey R.; Sparwasser, Tim; Thomas, Ranjeny; Steptoe, Raymond J.

    2011-01-01

    CD4+CD25+ regulatory T cells (Treg) play a crucial role in the regulation of immune responses. Although many mechanisms of Treg suppression in vitro have been described, the mechanisms by which Treg modulate CD8+ T cell differentiation and effector function in vivo are more poorly defined. It has been proposed, in many instances, that modulation of cytokine homeostasis could be an important mechanism by which Treg regulate adaptive immunity; however, direct experimental evidence is sparse. Here we demonstrate that CD4+CD25+ Treg, by critically regulating IL-2 homeostasis, modulate CD8+ T-cell effector differentiation. Expansion and effector differentiation of CD8+ T cells is promoted by autocrine IL-2 but, by competing for IL-2, Treg limit CD8+ effector differentiation. Furthermore, a regulatory loop exists between Treg and CD8+ effector T cells, where IL-2 produced during CD8+ T-cell effector differentiation promotes Treg expansion. PMID:21502514

  10. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C

    2009-01-01

    effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype......, or function in any of the tissues examined. These findings demonstrate that CXCR3 controls virus-specific effector CD4(+) T cell migration in vivo, and suggest that blocking CXCR3-mediated recruitment may limit T cell-induced immunopathology during respiratory virus infections....

  11. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    Directory of Open Access Journals (Sweden)

    Christina eNeumann

    2014-10-01

    Full Text Available Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6, thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  12. GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.

    Science.gov (United States)

    Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide

    2015-01-01

    Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.

  13. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    Directory of Open Access Journals (Sweden)

    Fleur eGawehns

    2015-11-01

    Full Text Available Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f. sp. lycopersici (Fol secretes small proteins that are referred to as SIX (Secreted In Xylem proteins. Of these, Six1 (Avr3, Six3 (Avr2, Six5 and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5 or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS. Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs, each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome.

  14. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    KAUST Repository

    Neumann, Christina

    2014-10-17

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  15. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria.

    Science.gov (United States)

    Ashida, Hiroshi; Sasakawa, Chihiro

    2015-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.

  16. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    Science.gov (United States)

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  17. Shigella IpaH family effectors as a versatile model for studying pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Hiroshi eAshida

    2016-01-01

    Full Text Available Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis. Via the type III secretion system (T3SS, Shigella deliver a subset of virulence proteins (effectors that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC. Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.

  18. Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Nakayasu, Ernesto S.; Brown, Roslyn N.; Niemann, George S.; Sydor, Michael A.; Sanchez, Octavio; Ansong, Charles; Lu, Shao-Yeh; Choi, Hyungwon; Valleau, Dylan; Weitz, Karl K.; Savchenko, Alexei; Cambronne, Eric D.; Adkins, Joshua N.; McFall-Ngai, Margaret J.

    2016-07-12

    Many pathogenic bacteria of the familyEnterobacteriaceaeuse type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from theEnterobacteriaceaeintracellular pathogensSalmonella entericaserovar Typhimurium andCitrobacter rodentium. We identified 54 high-confidence host interactors for theSalmonellaeffectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for theCitrobactereffectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfHSalmonellaprotein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction.

    IMPORTANCEDuring infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets ofSalmonellaandCitrobactereffectors, which will help elucidate their mechanisms of

  19. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation.

    Directory of Open Access Journals (Sweden)

    Eric D Cambronne

    2007-12-01

    Full Text Available Many gram-negative pathogens use a type IV secretion system (T4SS to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.

  20. Learning-based position control of a closed-kinematic chain robot end-effector

    Science.gov (United States)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1990-01-01

    A trajectory control scheme whose design is based on learning theory, for a six-degree-of-freedom (DOF) robot end-effector built to study robotic assembly of NASA hardwares in space is presented. The control scheme consists of two control systems: the feedback control system and the learning control system. The feedback control system is designed using the concept of linearization about a selected operating point, and the method of pole placement so that the closed-loop linearized system is stabilized. The learning control scheme consisting of PD-type learning controllers, provides additional inputs to improve the end-effector performance after each trial. Experimental studies performed on a 2 DOF end-effector built at CUA, for three tracking cases show that actual trajectories approach desired trajectories as the number of trials increases. The tracking errors are substantially reduced after only five trials.

  1. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins

    Directory of Open Access Journals (Sweden)

    Mary M. Weber

    2018-01-01

    Full Text Available Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis, and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.

  2. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    Science.gov (United States)

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  3. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  4. Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Suzuki, Godai; Wang, Yang; Kubo, Karen; Hirata, Eri; Ohnuki, Shinsuke; Ohya, Yoshikazu

    2018-02-20

    The size of the phenotypic effect of a gene has been thoroughly investigated in terms of fitness and specific morphological traits in the budding yeast Saccharomyces cerevisiae, but little is known about gross morphological abnormalities. We identified 1126 holistic morphological effectors that cause severe gross morphological abnormality when deleted, and 2241 specific morphological effectors with weak holistic effects but distinctive effects on yeast morphology. Holistic effectors fell into many gene function categories and acted as network hubs, affecting a large number of morphological traits, interacting with a large number of genes, and facilitating high protein expression. Holistic morphological abnormality was useful for estimating the importance of a gene to morphology. The contribution of gene importance to fitness and morphology could be used to efficiently classify genes into functional groups. Holistic morphological abnormality can be used as a reproducible and reliable gene feature for high-dimensional morphological phenotyping. It can be used in many functional genomic applications.

  5. Role of Rab family GTPases and their effectors in melanosomal logistics.

    Science.gov (United States)

    Ohbayashi, Norihiko; Fukuda, Mitsunori

    2012-04-01

    Rab GTPases constitute a family of small GTPases that regulate a variety of membrane trafficking events in all eukaryotic cells by recruiting their specific effector molecules. Recent accumulating evidence indicates that members of the mammalian Rab small GTPase family are involved in certain physiological and pathological processes. In particular, functional impairments of specific Rab proteins, e.g. Rab38 and Rab27A, their regulators or their effectors cause pigmentation disorders in humans and coat colour variations in mice because such impairments cause defects in melanosomal logistics, i.e. defects in melanosome biogenesis and transport. Genetic and biochemical analyses of the gene products responsible for mammalian pigmentation disorders in the past decade have revealed that Rab-mediated endosomal transport systems and melanosome transport systems play crucial roles in the efficient darkening of mammalian hair and skin. In this article, we review current knowledge regarding melanosomal logistics, with particular focus on the roles of Rab small GTPases and their effectors.

  6. Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames.

    Science.gov (United States)

    Wiestler, Tobias; Waters-Metenier, Sheena; Diedrichsen, Jörn

    2014-04-02

    Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere.

  7. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    Science.gov (United States)

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  8. Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida.

    Science.gov (United States)

    Chavarría, Max; Santiago, César; Platero, Raúl; Krell, Tino; Casasnovas, José M; de Lorenzo, Víctor

    2011-03-18

    The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5'-TTAAACGTTTCA-3' (K(D) = 26.3 ± 3.1 nM) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a K(D) of 209 ± 20 nM. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida.

  9. Fructose 1-Phosphate Is the Preferred Effector of the Metabolic Regulator Cra of Pseudomonas putida*

    Science.gov (United States)

    Chavarría, Max; Santiago, César; Platero, Raúl; Krell, Tino; Casasnovas, José M.; de Lorenzo, Víctor

    2011-01-01

    The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of Gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5′-TTAAACGTTTCA-3′ (KD = 26.3 ± 3.1 nm) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a KD of 209 ± 20 nm. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida. PMID:21239488

  10. A generalized quantitative antibody homeostasis model: maintenance of global antibody equilibrium by effector functions.

    Science.gov (United States)

    Prechl, József

    2017-11-01

    The homeostasis of antibodies can be characterized as a balanced production, target-binding and receptor-mediated elimination regulated by an interaction network, which controls B-cell development and selection. Recently, we proposed a quantitative model to describe how the concentration and affinity of interacting partners generates a network. Here we argue that this physical, quantitative approach can be extended for the interpretation of effector functions of antibodies. We define global antibody equilibrium as the zone of molar equivalence of free antibody, free antigen and immune complex concentrations and of dissociation constant of apparent affinity: [Ab]=[Ag]=[AbAg]= K D . This zone corresponds to the biologically relevant K D range of reversible interactions. We show that thermodynamic and kinetic properties of antibody-antigen interactions correlate with immunological functions. The formation of stable, long-lived immune complexes correspond to a decrease of entropy and is a prerequisite for the generation of higher-order complexes. As the energy of formation of complexes increases, we observe a gradual shift from silent clearance to inflammatory reactions. These rules can also be applied to complement activation-related immune effector processes, linking the physicochemical principles of innate and adaptive humoral responses. Affinity of the receptors mediating effector functions shows a wide range of affinities, allowing the continuous sampling of antibody-bound antigen over the complete range of concentrations. The generation of multivalent, multicomponent complexes triggers effector functions by crosslinking these receptors on effector cells with increasing enzymatic degradation potential. Thus, antibody homeostasis is a thermodynamic system with complex network properties, nested into the host organism by proper immunoregulatory and effector pathways. Maintenance of global antibody equilibrium is achieved by innate qualitative signals modulating a

  11. Design criteria for the light duty utility arm system end effectors

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1995-01-01

    This document provides the criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. The LDUA System consists of a deployment vehicle, a vertical positioning mast, a light duty multi-axis robotic arm, a tank riser interface and confinement, a tool interface plate, a control system, and an operations control trailer. The criteria specified in this document will apply to all end effector systems being developed for use on or with the LDUA system at the Hanford site. The requirement stipulated in this document are mandatory

  12. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    Science.gov (United States)

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  13. The pore-forming bacterial effector, VopQ, halts autophagic turnover.

    Science.gov (United States)

    Sreelatha, Anju; Orth, Kim; Starai, Vincent J

    2013-12-01

    Vibrio parahemolyticus Type III effector VopQ is both necessary and sufficient to induce autophagy within one hour of infection. We demonstrated that VopQ interacts with the Vo domain of the conserved vacuolar H(+)-ATPase. Membrane-associated VopQ subsequently forms pores in the membranes of acidic compartments, resulting in immediate release of protons without concomitant release of lumenal protein contents. These studies show how a bacterial pathogen can compromise host ion potentials using a gated pore-forming effector to equilibrate levels of small molecules found in endolysosomal compartments and disrupt cellular processes such as autophagy.

  14. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing

    NARCIS (Netherlands)

    Jonge, de R.; Esse, van H.P.; Maruthachalam, K.; Bolton, M.D.; Santhanam, P.; Keykha Saber, M.; Zhang, Z.; Usami, T.; Lievens, B.; Subbarao, K.V.; Thomma, B.

    2012-01-01

    Fungal plant pathogens secrete effector molecules to establish disease on their hosts, and plants in turn use immune receptors to try to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and

  15. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on diots and monocots

    NARCIS (Netherlands)

    Stergiopoulos, I.; Burg, van den H.A.; Ökmen, B.; Beenen, H.G.; Liere, van S.; Kema, G.H.J.; Wit, de P.J.G.M.

    2010-01-01

    Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce

  16. Effector Gene Suites in Some Soil Isolates of Fusarium oxysporum Are Not Sufficient Predictors of Vascular Wilt in Tomato.

    Science.gov (United States)

    Jelinski, Nicolas A; Broz, Karen; Jonkers, Wilfried; Ma, Li-Jun; Kistler, H Corby

    2017-07-01

    Seventy-four Fusarium oxysporum soil isolates were assayed for known effector genes present in an F. oxysporum f. sp. lycopersici race 3 tomato wilt strain (FOL MN-25) obtained from the same fields in Manatee County, Florida. Based on the presence or absence of these genes, four haplotypes were defined, two of which represented 96% of the surveyed isolates. These two most common effector haplotypes contained either all or none of the assayed race 3 effector genes. We hypothesized that soil isolates with all surveyed effector genes, similar to FOL MN-25, would be pathogenic toward tomato, whereas isolates lacking all effectors would be nonpathogenic. However, inoculation experiments revealed that presence of the effector genes alone was not sufficient to ensure pathogenicity on tomato. Interestingly, a nonpathogenic isolate containing the full suite of unmutated effector genes (FOS 4-4) appears to have undergone a chromosomal rearrangement yet remains vegetatively compatible with FOL MN-25. These observations confirm the highly dynamic nature of the F. oxysporum genome and support the conclusion that pathogenesis among free-living populations of F. oxysporum is a complex process. Therefore, the presence of effector genes alone may not be an accurate predictor of pathogenicity among soil isolates of F. oxysporum.

  17. Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is a bona fide substrate for Legionelle pneumophila effector glucosyltransferases

    DEFF Research Database (Denmark)

    Tzivelekidis, Tina; Jank, Thomas; Pohl, Corinna

    2011-01-01

    Legionella pneumophila, which is the causative organism of Legionnaires disease, translocates numerous effector proteins into the host cell cytosol by a type IV secretion system during infection. Among the most potent effector proteins of Legionella are glucosyltransferases (Lgt’s), which...

  18. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Jones, John T; Urwin, Peter E

    2014-09-01

    Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  19. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Directory of Open Access Journals (Sweden)

    Sebastian Eves-van den Akker

    2014-09-01

    Full Text Available Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  20. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair.

    Science.gov (United States)

    Whitney, John C; Chou, Seemay; Russell, Alistair B; Biboy, Jacob; Gardiner, Taylor E; Ferrin, Michael A; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D

    2013-09-13

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.

  1. Identification, Structure, and Function of a Novel Type VI Secretion Peptidoglycan Glycoside Hydrolase Effector-Immunity Pair*

    Science.gov (United States)

    Whitney, John C.; Chou, Seemay; Russell, Alistair B.; Biboy, Jacob; Gardiner, Taylor E.; Ferrin, Michael A.; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D.

    2013-01-01

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity. PMID:23878199

  2. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors.

    Science.gov (United States)

    Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E

    2013-10-01

    The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.

  3. Human reinforcement learning subdivides structured action spaces by learning effector-specific values.

    Science.gov (United States)

    Gershman, Samuel J; Pesaran, Bijan; Daw, Nathaniel D

    2009-10-28

    Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an equally formidable reinforcement learning problem of discovering which actions are most valuable because of the high dimensionality of the action space. An unresolved question is how neural systems for reinforcement learning-such as prediction error signals for action valuation associated with dopamine and the striatum-can cope with this "curse of dimensionality." We propose a reinforcement learning framework that allows for learned action valuations to be decomposed into effector-specific components when appropriate to a task, and test it by studying to what extent human behavior and blood oxygen level-dependent (BOLD) activity can exploit such a decomposition in a multieffector choice task. Subjects made simultaneous decisions with their left and right hands and received separate reward feedback for each hand movement. We found that choice behavior was better described by a learning model that decomposed the values of bimanual movements into separate values for each effector, rather than a traditional model that treated the bimanual actions as unitary with a single value. A decomposition of value into effector-specific components was also observed in value-related BOLD signaling, in the form of lateralized biases in striatal correlates of prediction error and anticipatory value correlates in the intraparietal sulcus. These results suggest that the human brain can use decomposed value representations to "divide and conquer" reinforcement learning over high-dimensional action spaces.

  4. Using effectors of Phytophthora infestans to teach pathogenesis: Our attempt to provide a more comprehensive education

    Science.gov (United States)

    The topic of pathogenesis mechanisms (R/avirulence genes, effectors, and hypersensitive response) has proved challenging for students in our introductory plant pathology course. An apparent gap exists in the curriculum between this introductory course and higher level plant-microbe interaction cours...

  5. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    Science.gov (United States)

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Rail-guided robotic end-effector position error due to rail compliance and ship motion

    NARCIS (Netherlands)

    Borgerink, Dian; Stegenga, J.; Brouwer, Dannis Michel; Woertche, H.J.; Stramigioli, Stefano

    2014-01-01

    A rail-guided robotic system is currently being designed for the inspection of ballast water tanks in ships. This robotic system will manipulate sensors toward the interior walls of the tank. In this paper, the influence of rail compliance on the end-effector position error due to ship movement is

  7. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion.

    Science.gov (United States)

    Hesse, S; Schattat, N; Mehrholz, J; Werner, C

    2013-01-01

    A task-specific repetitive approach in gait rehabilitation after CNS lesion is well accepted nowadays. To ease the therapists' and patients' physical effort, the past two decades have seen the introduction of gait machines to intensify the amount of gait practice. Two principles have emerged, an exoskeleton- and an endeffector-based approach. Both systems share the harness and the body weight support. With the end-effector-based devices, the patients' feet are positioned on two foot plates, whose movements simulate stance and swing phase. This article provides an overview on the end-effector based machine's effectiveness regarding the restoration of gait. For the electromechanical gait trainer GT I, a meta analysis identified nine controlled trials (RCT) in stroke subjects (n = 568) and were analyzed to detect differences between end-effector-based locomotion + physiotherapy and physiotherapy alone. Patients practising with the machine effected in a superior gait ability (210 out of 319 patients, 65.8% vs. 96 out of 249 patients, 38.6%, respectively, Z = 2.29, p = 0.020), due to a larger training intensity. Only single RCTs have been reported for other devices and etiologies. The introduction of end-effector based gait machines has opened a new succesful chapter in gait rehabilitation after CNS lesion.

  8. Structure of the effector-binding domain of deoxyribonucleoside regulator DeoR from Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Škerlová, Jana; Fábry, Milan; Hubálek, Martin; Otwinowski, Z.; Řezáčová, Pavlína

    2014-01-01

    Roč. 281, č. 18 (2014), s. 4280-4292 ISSN 1742-464X R&D Projects: GA MŠk ME08016 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : dimeric interface * effector binding * Schiff base * transcription repressor * X-ray crystallography Subject RIV: CE - Biochemistry; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 4.001, year: 2014

  9. The interplay between a Phytophthora RXLR effector and an Arabidopsis lectin receptor kinase

    NARCIS (Netherlands)

    Bouwmeester, K.

    2010-01-01

    Phytophthora infestans – the causal agent of potato late blight – secretes a plethora of effector proteins to facilitate plant infection. The central subject of this thesis is ipiO, one of the first cloned Phytophthora genes with a putative function in pathogenicity as was anticipated based on its

  10. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  11. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector

    Science.gov (United States)

    Caplan, Jeffrey L.; Mamillapalli, Padmavathi; Burch-Smith, Tessa M.; Czymmek, Kirk; Dinesh-Kumar, S.P.

    2008-01-01

    Summary Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50-kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein, NRIP1, that directly interacts with both N's TIR domain and p50. NRIP1 is a functional rhodanese sulfurtransferase and is required for N to provide complete resistance to TMV. Interestingly, NRIP1 that normally localizes to the chloroplasts is recruited to the cytoplasm and nucleus by the p50 effector. As a consequence, NRIP1 interacts with N only in the presence of the p50 effector. Our findings show that a chloroplastic protein is intimately involved in pathogen recognition. We propose that N's activation requires a pre-recognition complex containing the p50 effector and NRIP1. PMID:18267075

  12. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat induced point mutations

    NARCIS (Netherlands)

    Rouxel, T.; Grandaubert, J.; Hane, J.K.; Hoede, C.; Wouw, A.; Couloux, A.; Dominguez, V.; Anthouard, V.; Bally, P.; Bourras, S.; Cozijnsen, A.J.; Ciuffetti, L.M.; Degrave, A.; Dilmaghani, A.; Duret, L.; Fudal, L.; Goodwin, S.B.; Gout, L.; Glaser, N.; Linglin, J.; Kema, G.H.J.; Lapalu, N.; Lawrence, C.B.; May, K.; Meyer, M.; Ollivier, B.; Poulain, J.; Schoch, C.L.; Simon, A.; Spatafora, J.W.; Stachowiak, A.; Turgeon, B.G.; Tyler, B.M.; Vincent, D.; Weissenbach, J.; Amselem, J.; Quesneville, H.; Oliver, R.P.; Wincker, P.; Balesdent, M.H.; Howlett, B.J.

    2011-01-01

    Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes

  13. Identification of virulence factors and type III effectors of Phylotype I ...

    Indian Academy of Sciences (India)

    HP2000

    R. solanacearum finds its way into the plant through wounds in the roots and .... 10% (c) Acidic residues should be absent within the first twelve amino acids. .... PilA has been used to study the genetic diversity in soil bacterium ..... the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different.

  14. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    NARCIS (Netherlands)

    Gawehns, Fleur; Ma, Lisong; Bruning, Oskar; Houterman, Petra M.; Boeren, Sjef; Cornelissen, B.J.C.; Rep, Martijn; Takken, Frank L.W.

    2015-01-01

    Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f.sp. lycopersici (Fol) secretes small proteins that are referred to as SIX (Secreted In Xylem) proteins. Of these, Six1

  15. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum

    NARCIS (Netherlands)

    Schmidt, S.M.; Houterman, P.M.; Schreiver, I.; Ma, L.; Amyotte, S.; Chellappan, B.; Boeren, S.; Takken, F.L.W.; Rep, M.

    2013-01-01

    Background The plant-pathogenic fungus Fusarium oxysporum f.sp.lycopersici (Fol) has accessory, lineage-specific (LS) chromosomes that can be transferred horizontally between strains. A single LS chromosome in the Fol4287 reference strain harbors all known Fol effector genes. Transfer of this

  16. Specific Hypersensitive Response–Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato

    NARCIS (Netherlands)

    Mesarich, Carl H.; Ӧkmen, Bilal; Rovenich, Hanna; Griffiths, Scott A.; Wang, Changchun; Karimi Jashni, Mansoor; Mihajlovski, Aleksandar; Collemare, Jérôme; Hunziker, Lukas; Deng, Cecilia H.; Burgt, Van Der Ate; Beenen, Henriek G.; Templeton, Matthew D.; Bradshaw, Rosie E.; Wit, De Pierre J.G.M.

    2018-01-01

    Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes

  17. Parallel manipulators with two end-effectors : Getting a grip on Jacobian-based stiffness analysis

    NARCIS (Netherlands)

    Hoevenaars, A.G.L.

    2016-01-01

    Robots that are developed for applications which require a high stiffness-over-inertia ratio, such as pick-and-place robots, machining robots, or haptic devices, are often based on parallel manipulators. Parallel manipulators connect an end-effector to an inertial base using multiple serial

  18. Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors.

    Science.gov (United States)

    Kast, David J; Yang, Changsong; Disanza, Andrea; Boczkowska, Malgorzata; Madasu, Yadaiah; Scita, Giorgio; Svitkina, Tatyana; Dominguez, Roberto

    2014-04-01

    The Rho family GTPase effector IRSp53 has essential roles in filopodia formation and neuronal development, but its regulatory mechanism is poorly understood. IRSp53 contains a membrane-binding BAR domain followed by an unconventional CRIB motif that overlaps with a proline-rich region (CRIB-PR) and an SH3 domain that recruits actin cytoskeleton effectors. Using a fluorescence reporter assay, we show that human IRSp53 adopts a closed inactive conformation that opens synergistically with the binding of human Cdc42 to the CRIB-PR and effector proteins, such as the tumor-promoting factor Eps8, to the SH3 domain. The crystal structure of Cdc42 bound to the CRIB-PR reveals a new mode of effector binding to Rho family GTPases. Structure-inspired mutations disrupt autoinhibition and Cdc42 binding in vitro and decouple Cdc42- and IRSp53-dependent filopodia formation in cells. The data support a combinatorial mechanism of IRSp53 activation.

  19. Distribution of non-LEE-encoded type 3 secretion system dependent effectors in enteropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Fábia A. Salvador

    2014-09-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC are important human gastroenteritis agents. The prevalence of six non-LEE genes encoding type 3 translocated effectors was investigated. The nleC, cif and nleB genes were more prevalent in typical than in atypical EPEC, although a higher diversity of genes combinations was observed in atypical EPEC.

  20. Persistent expansion of CD4(+) effector memory T cells in Wegener's granulomatosis

    NARCIS (Netherlands)

    Abdulahad, W. H.; van der Geld, Y. M.; Stegeman, C. A.; Kallenberg, C. G. M.

    In order to test the hypothesis that Wegener's granulomatosis (WG) is associated with an ongoing immune effector response, even in remission, we examined the distribution of peripheral naive and memory T-lymphocytes in this disease, and analyzed the function-related phenotypes of the memory T-cell

  1. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex.

    Directory of Open Access Journals (Sweden)

    Kris E Spaeth

    2009-09-01

    Full Text Available In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone. Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole ("inclusion". The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection.

  2. Plant parasitic nematode effectors target host defence and nuclear functions to establish feeding cells

    Directory of Open Access Journals (Sweden)

    Michaël eQuentin

    2013-03-01

    Full Text Available Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells. Effectors synthesised in the oesophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized feeding cells requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defence responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalised within feeding cell nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesised roles in the unique feeding behaviour of these pests.

  3. Assessing the ability of Salmonella enterica to translocate Type III effectors into plant cells

    Science.gov (United States)

    Salmonella enterica, a human enteric pathogen, has the ability to multiply and survive endophytically in plants, and mutations in genes encoding the type III secretion system (T3SS) or its effectors (T3Es) may contribute to this colonization. Two reporter plasmids for T3E translocation into plant ce...

  4. Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family

    NARCIS (Netherlands)

    Thaw, P.; Sedelnikova, S.E.; Muranova, T.; Wiese, S.; Ayora, S.; Alonso, J.C.; Brinkman, A.B.; Akerboom, A.P.; Oost, van der J.; Rafferty, J.B.

    2006-01-01

    The Lrp/AsnC family of transcriptional regulatory proteins is found in both archaea and bacteria. Members of the family influence cellular metabolism in both a global (Lrp) and specific (AsnC) manner, often in response to exogenous amino acid effectors. In the present study we have determined both

  5. Abstract and Effector-Selective Decision Signals Exhibit Qualitatively Distinct Dynamics before Delayed Perceptual Reports.

    Science.gov (United States)

    Twomey, Deirdre M; Kelly, Simon P; O'Connell, Redmond G

    2016-07-13

    Electrophysiological research has isolated neural signatures of decision formation in a variety of brain regions. Studies in rodents and monkeys have focused primarily on effector-selective signals that translate the emerging decision into a specific motor plan, but, more recently, research on the human brain has identified an abstract signature of evidence accumulation that does not appear to play any direct role in action preparation. The functional dissociations between these distinct signal types have only begun to be characterized, and their dynamics during decisions with deferred actions with or without foreknowledge of stimulus-effector mapping, a commonly studied task scenario in single-unit and functional imaging investigations, have not been established. Here we traced the dynamics of distinct abstract and effector-selective decision signals in the form of the broad-band centro-parietal positivity (CPP) and limb-selective β-band (8-16 and 18-30 Hz) EEG activity, respectively, during delayed-reported motion direction decisions with and without foreknowledge of direction-response mapping. With foreknowledge, the CPP and β-band signals exhibited a similar gradual build-up following evidence onset, but whereas choice-predictive β-band activity persisted up until the delayed response, the CPP dropped toward baseline after peaking. Without foreknowledge, the CPP exhibited identical dynamics, whereas choice-selective β-band activity was eliminated. These findings highlight qualitative functional distinctions between effector-selective and abstract decision signals and are of relevance to the assumptions founding functional neuroimaging investigations of decision-making. Neural signatures of evidence accumulation have been isolated in numerous brain regions. Although animal neurophysiology has largely concentrated on effector-selective decision signals that translate the emerging decision into a specific motor plan, recent research on the human brain has

  6. Yeast as a Heterologous Model System to Uncover Type III Effector Function.

    Directory of Open Access Journals (Sweden)

    Crina Popa

    2016-02-01

    Full Text Available Type III effectors (T3E are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. "Favourite" targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure-function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations

  7. Generation mechanism of RANKL(+) effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis.

    Science.gov (United States)

    Ota, Yuri; Niiro, Hiroaki; Ota, Shun-Ichiro; Ueki, Naoko; Tsuzuki, Hirofumi; Nakayama, Tsuyoshi; Mishima, Koji; Higashioka, Kazuhiko; Jabbarzadeh-Tabrizi, Siamak; Mitoma, Hiroki; Akahoshi, Mitsuteru; Arinobu, Yojiro; Kukita, Akiko; Yamada, Hisakata; Tsukamoto, Hiroshi; Akashi, Koichi

    2016-03-16

    The efficacy of B cell-depleting therapies for rheumatoid arthritis underscores antibody-independent functions of effector B cells such as cognate T-B interactions and production of pro-inflammatory cytokines. Receptor activator of nuclear factor κB ligand (RANKL) is a key cytokine involved in bone destruction and is highly expressed in synovial fluid B cells in patients with rheumatoid arthritis. In this study we sought to clarify the generation mechanism of RANKL(+) effector B cells and their impacts on osteoclast differentiation. Peripheral blood and synovial fluid B cells from healthy controls and patients with rheumatoid arthritis were isolated using cell sorter. mRNA expression of RANKL, osteoprotegerin, tumor necrosis factor (TNF)-α, and Blimp-1 was analyzed by quantitative real-time polymerase chain reaction. Levels of RANKL, CD80, CD86, and CXCR3 were analyzed using flow cytometry. Functional analysis of osteoclastogenesis was carried out in the co-culture system using macrophage RAW264 reporter cells. RANKL expression was accentuated in CD80(+)CD86(+) B cells, a highly activated B-cell subset more abundantly observed in patients with rheumatoid arthritis. Upon activation via B-cell receptor and CD40, switched-memory B cells predominantly expressed RANKL, which was further augmented by interferon-γ (IFN-γ) but suppressed by interleukin-21. Strikingly, IFN-γ also enhanced TNF-α expression, while it strongly suppressed osteoprotegerin expression in B cells. IFN-γ increased the generation of CXCR3(+)RANKL(+) effector B cells, mimicking the synovial B cell phenotype in patients with rheumatoid arthritis. Finally, RANKL(+) effector B cells in concert with TNF-α facilitated osteoclast differentiation in vitro. Our current findings have shed light on the generation mechanism of pathogenic RANKL(+) effector B cells that would be an ideal therapeutic target for rheumatoid arthritis in the future.

  8. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.

    Science.gov (United States)

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-10-18

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVR a gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVR a genes and identified AVR a1 and AVR a13 , encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVR a1 and AVR a13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVR A1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVR A1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVR A1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.

  9. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    Science.gov (United States)

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  10. Field performance of the waste retrieval end effectors in the Oak Ridge gunite tanks

    International Nuclear Information System (INIS)

    Mullen, O.D.

    1997-09-01

    Waterjet-based tank waste retrieval end effectors have been developed by Retrieval Process Development and Enhancements through several generations of test articles targeted at deployment in Hanford underground storage tanks with a large robotic arm. The basic technology has demonstrated effectiveness for retrieval of simulants bounding a wide range of waste properties and compatibility with foreseen deployment systems. The Oak Ridge National Laboratory (ORNL) selected the waterjet scarifying end effector, the jet pump conveyance system, and the Modified Light Duty Utility Arm and Houdini Remotely Operated Vehicle deployment and manipulator systems for evaluation in the Gunite and Associated Tanks Treatability Study (GAAT-TS). The Retrieval Process Development and Enhancements (RPD ampersand E) team was tasked with developing a version of the retrieval end effector tailored to the Oak Ridge tanks, waste, and deployment platforms. The conceptual design was done by the University of Missouri-Rolla in FY 1995-96. The university researchers conducted separate effects tests of the component concepts, scaled the basic design features, and constructed a full-scale test article incorporating their findings in early FY 1996. The test article was extensively evaluated in the Hanford Hydraulic Testbed and the design features were further refined. Detail design of the prototype item was started at Waterjet Technology, Inc. before the development testing was finished, and two of the three main subassemblies were substantially complete before final design of the waterjet manifold was determined from the Hanford hydraulic testbed (HTB) testing. The manifold on the first prototype was optimized for sludge retrieval; assembled with that manifold, the end effector is termed the Sludge Retrieval End Effector (SREE)

  11. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function.

    Science.gov (United States)

    Chung, Amy W; Crispin, Max; Pritchard, Laura; Robinson, Hannah; Gorny, Miroslaw K; Yu, Xiaojie; Bailey-Kellogg, Chris; Ackerman, Margaret E; Scanlan, Chris; Zolla-Pazner, Susan; Alter, Galit

    2014-11-13

    To determine monoclonal antibody (mAb) features that predict fragment crystalizable (Fc)-mediated effector functions against HIV. Monoclonal antibodies, derived from Chinese hamster ovary cells or Epstein-Barr virus-immortalized mouse heteromyelomas, with specificity to key regions of the HIV envelope including gp120-V2, gp120-V3 loop, gp120-CD4(+) binding site, and gp41-specific antibodies, were functionally profiled to determine the relative contribution of the variable and constant domain features of the antibodies in driving robust Fc-effector functions. Each mAb was assayed for antibody-binding affinity to gp140(SR162), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and for the ability to bind to FcγRIIa, FcγRIIb and FcγRIIIa receptors. Antibody glycan profiles were determined by HPLC. Neither the specificity nor the affinity of the mAbs determined the potency of Fc-effector function. FcγRIIIa binding strongly predicted ADCC and decreased galactose content inversely correlated with ADCP, whereas N-glycolylneuraminic acid-containing structures exhibited enhanced ADCP. Additionally, the bi-antenary glycan arm onto which galactose was added predicted enhanced binding to FcγRIIIa and ADCC activity, independent of the specificity of the mAb. Our studies point to the specific Fc-glycan structures that can selectively promote Fc-effector functions independently of the antibody specificity. Furthermore, we demonstrated antibody glycan structures associated with enhanced ADCP activity, an emerging Fc-effector function that may aid in the control and clearance of HIV infection.

  12. Meta-analytic approach to the accurate prediction of secreted virulence effectors in gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Sato Yoshiharu

    2011-11-01

    Full Text Available Abstract Background Many pathogens use a type III secretion system to translocate virulence proteins (called effectors in order to adapt to the host environment. To date, many prediction tools for effector identification have been developed. However, these tools are insufficiently accurate for producing a list of putative effectors that can be applied directly for labor-intensive experimental verification. This also suggests that important features of effectors have yet to be fully characterized. Results In this study, we have constructed an accurate approach to predicting secreted virulence effectors from Gram-negative bacteria. This consists of a support vector machine-based discriminant analysis followed by a simple criteria-based filtering. The accuracy was assessed by estimating the average number of true positives in the top-20 ranking in the genome-wide screening. In the validation, 10 sets of 20 training and 20 testing examples were randomly selected from 40 known effectors of Salmonella enterica serovar Typhimurium LT2. On average, the SVM portion of our system predicted 9.7 true positives from 20 testing examples in the top-20 of the prediction. Removal of the N-terminal instability, codon adaptation index and ProtParam indices decreased the score to 7.6, 8.9 and 7.9, respectively. These discrimination features suggested that the following characteristics of effectors had been uncovered: unstable N-terminus, non-optimal codon usage, hydrophilic, and less aliphathic. The secondary filtering process represented by coexpression analysis and domain distribution analysis further refined the average true positive counts to 12.3. We further confirmed that our system can correctly predict known effectors of P. syringae DC3000, strongly indicating its feasibility. Conclusions We have successfully developed an accurate prediction system for screening effectors on a genome-wide scale. We confirmed the accuracy of our system by external validation

  13. Predicting the biodistribution of radiolabeled cMORF effector in MORF-pretargeted mice

    International Nuclear Information System (INIS)

    Liu, Guozheng; Dou, Shuping; He, Jiang; Liu, Xinrong; Rusckowski, Mary; Hnatowich, Donald J.

    2007-01-01

    Pretargeting with phosphorodiamidate morpholino oligomers (MORFs) involves administration of a MORF-conjugated anti-tumor antibody such as MN14 as a pretargeting agent before that of the radiolabeled complementary MORF (cMORF) as the effector. The dosages of the pretargeting agent and effector, the pretargeting interval, and the detection time are the four pretargeting variables. The goal of this study was to develop a semiempirical description capable of predicting the biodistribution of the radiolabeled effector in pretargeted mice and then to compare predictions with experimental results from pretargeting studies in tumored animals in which the pretargeting interval and the detection time were both fixed but the dosages of both the effector and the pretargeting agent were separately varied. Pretargeting studies in LS174T tumored mice were performed using the anti-CEA antibody MN14 conjugated with MORF and the cMORF radiolabeled with 99m Tc. A description was developed based on our previous observations in the same mouse model of the blood and tumor levels of MORF-MN14, accessibility of MORF-MN14 to labeled cMORF, the tumor accumulation of labeled cMORF relative to MORF-MN14 levels therein, and the kidney accumulation of labeled cMORF. The predicted values were then compared with the experimental values. The predicted biodistribution of the radiolabeled effector and the experimental data were in gratifying agreement in normal organs, suggesting that the description of the pretargeting process was reliable. The tumor accumulations occasionally fell outside two standard deviations of that predicted, but after tumor size correction, good agreement between predicted and experimental values was observed here as well. A semiempirical description of the biodistribution of labeled cMORF was capable of predicting the biodistribution of the radiolabeled effector in the pretargeted tumored mouse model, demonstrating that the underlying pretargeting concepts are correct. We

  14. Enavatuzumab, a Humanized Anti-TWEAK Receptor Monoclonal Antibody, Exerts Antitumor Activity through Attracting and Activating Innate Immune Effector Cells

    Directory of Open Access Journals (Sweden)

    Shiming Ye

    2017-01-01

    Full Text Available Enavatuzumab is a humanized IgG1 anti-TWEAK receptor monoclonal antibody that was evaluated in a phase I clinical study for the treatment of solid malignancies. The current study was to determine whether and how myeloid effector cells were involved in postulated mechanisms for its potent antitumor activity in xenograft models. The initial evidence for a role of effector cells was obtained in a subset of tumor xenograft mouse models whose response to enavatuzumab relied on the binding of Fc of the antibody to Fcγ receptor. The involvement of effector cells was further confirmed by immunohistochemistry, which revealed strong infiltration of CD45+ effector cells into tumor xenografts in responding models, but minimal infiltration in nonresponders. Consistent with the xenograft studies, human effector cells preferentially migrated toward in vivo-responsive tumor cells treated by enavatuzumab in vitro, with the majority of migratory cells being monocytes. Conditioned media from enavatuzumab-treated tumor cells contained elevated levels of chemokines, which might be responsible for enavatuzumab-triggered effector cell migration. These preclinical studies demonstrate that enavatuzumab can exert its potent antitumor activity by actively recruiting and activating myeloid effectors to kill tumor cells. Enavatuzumab-induced chemokines warrant further evaluation in clinical studies as potential biomarkers for such activity.

  15. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence1[OPEN

    Science.gov (United States)

    2017-01-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451

  16. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    Science.gov (United States)

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor

    DEFF Research Database (Denmark)

    Zhao, Chaoyang; Escalante, Lucio Navarro; Chen, Hang

    2015-01-01

    Gall-forming arthropods are highly specialized herbivores that, in combination with their hosts, produce extended phenotypes with unique morphologies [1]. Many are economically important, and others have improved our understanding of ecology and adaptive radiation [2]. However, the mechanisms...... in plants and E3-ligase-mimicking effectors in plant pathogenic bacteria. SSGP-71 proteins and wheat Skp proteins interact in vivo. Mutations in different SSGP-71 genes avoid the effector-triggered immunity that is directed by the wheat resistance genes H6 and H9. Results point to effectors as the agents...

  18. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape-gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum.

    Science.gov (United States)

    Simbaqueba, Jaime; Catanzariti, Ann-Maree; González, Carolina; Jones, David A

    2018-05-22

    RNAseq reads from cape-gooseberry plants (Physalis peruviana) infected with Fusarium oxysporum f. sp. physali (Foph) were mapped against the lineage-specific transcriptome of Fusarium oxysporum f. sp. lycopersici (Fol) to look for putative effector genes. Homologues of Fol SIX1 (designated SIX1a and SIX1b), SIX7, SIX10, SIX12, SIX15 and Ave1 were identified. The near identity of the Foph and Fol SIX7, SIX10 and SIX12 genes and their intergenic regions suggest that this gene cluster may have undergone recent lateral transfer. Foph SIX1a and SIX1b were tested for their ability to complement a SIX1 knockout mutant of Fol. This mutant has reduced pathogenicity on susceptible tomato plants, but is able to infect otherwise resistant tomato plants carrying the I-3 gene for Fusarium wilt resistance (SIX1 corresponds to Avr3). Neither, SIX1a nor SIX1b could restore full pathogenicity on susceptible tomato plants, suggesting that any role they may play in pathogenicity is likely to be specific to cape gooseberry. SIX1b, but not SIX1a, was able to restore avirulence on tomato plants carrying I-3. These findings separate the recognition of SIX1 from its role as an effector and suggest direct recognition by I-3. A hypervariable region of SIX1 undergoing diversifying selection within the F. oxysporum species complex is likely to play an important role in SIX1 recognition. These findings also indicate that I-3 could potentially be deployed as a transgene in cape gooseberry to protect this emerging crop from Foph. Alternatively, cape gooseberry germplasm could be explored for I-3 homologues capable of providing resistance to Foph. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  19. System design description for the LDUA common video end effector system (CVEE)

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1998-01-01

    The Common Video End Effector System (CVEE), system 62-60, was designed by the Idaho National Engineering Laboratory (INEL) to provide the control interface of the various video end effectors used on the LDUA. The CVEE system consists of a Support Chassis which contains the input and output Opto-22 modules, relays, and power supplies and the Power Chassis which contains the bipolar supply and other power supplies. The combination of the Support Chassis and the Power Chassis make up the CVEE system. The CVEE system is rack mounted in the At Tank Instrument Enclosure (ATIE). Once connected it is controlled using the LDUA supervisory data acquisition system (SDAS). Video and control status will be displayed on monitors within the LDUA control center

  20. Generation of knockout rabbits using transcription activator-like effector nucleases

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  1. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...... about the function of many CSEPs in virulence and the identities of their host targets. In this PhD study, we investigated the function of nine CSEPs and found that CSEP0081, CSEP0105, CSEP0162 and CSEP0254 act as effectors by promoting the Bgh infection success. Independent silencing of these CSEPs...... proteins (sHsps), Hsp16.9 and Hsp17.5, were identified as interactors for both CSEP0105 and CSEP0162. These interactions were confirmed in planta by BiFC and co-localization studies. Small heat shock proteins are highly conserved ATP-independent chaperones that protect the cell from stress-induced protein...

  2. Generation of knockout rabbits using transcription activator-like effector nucleases.

    Science.gov (United States)

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  3. Procedure for definition of end-effector orientation in planar surfaces robot applications

    Directory of Open Access Journals (Sweden)

    Vidaković Jelena Z.

    2017-01-01

    Full Text Available Design of user-friendly and at the same time powerful robot programming methods is the subject of significant efforts undertaken by the international robotics community. For the purpose of facilitating robot programming, with regard to the most common present-day applications in industry, it would be useful to develop programming procedures for frequently used manipulator tasks which could be easily implemented and used as ready-made application software. Important class of industrial robot applications involves end-effector trajectories in planar surfaces. Development of robot programming language procedure intended for determination of object plane normal with respect to frame of interest, as well as programming of end-effector orientation is presented in this paper. This procedure can be used as integral part of task oriented robot programing applications as well as a procedure for explicit programming languages, and it is illustrated in practical example with the robot Lola 15.

  4. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors.

    Science.gov (United States)

    Wei, Hai-Lei; Collmer, Alan

    2017-12-25

    Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  5. Human reinforcement learning subdivides structured action spaces by learning effector-specific values

    OpenAIRE

    Gershman, Samuel J.; Pesaran, Bijan; Daw, Nathaniel D.

    2009-01-01

    Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an equally formidable reinforcement learning problem of discovering which actions are most valuable, due to the high dimensionality of the action space. An unresolved question is how neural systems for reinforcement learning – such as prediction error signals for action valuation associated with dopamine and the striatum – can cope with this “curse of dimensionality...

  6. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties.

    Science.gov (United States)

    Prajeeth, Chittappen K; Kronisch, Julius; Khorooshi, Reza; Knier, Benjamin; Toft-Hansen, Henrik; Gudi, Viktoria; Floess, Stefan; Huehn, Jochen; Owens, Trevor; Korn, Thomas; Stangel, Martin

    2017-10-16

    Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously, we have shown that only Th1 but not Th17 effectors activate microglia. However, it is not clear which cells are targets of Th17 effectors in the CNS. To understand the effects driven by Th17 cells in the CNS, we induced experimental autoimmune encephalomyelitis in wild-type mice and CD4 + T cell-specific integrin α4-deficient mice where trafficking of Th1 cells into the CNS was affected. We compared microglial and astrocyte response in the brain and spinal cord of these mice. We further treated astrocytes with supernatants from highly pure Th1 and Th17 cultures and assessed the messenger RNA expression of neurotrophic factors, cytokines and chemokines, using real-time PCR. Data obtained was analyzed using the Kruskal-Wallis test. We observed in α4-deficient mice weak microglial activation but comparable astrogliosis to that of wild-type mice in the regions of the brain populated with Th17 infiltrates, suggesting that Th17 cells target astrocytes and not microglia. In vitro, in response to supernatants from Th1 and Th17 cultures, astrocytes showed altered expression of neurotrophic factors, pro-inflammatory cytokines and chemokines. Furthermore, increased expression of chemokines in Th1- and Th17-treated astrocytes enhanced recruitment of microglia and transendothelial migration of Th17 cells in vitro. Our results demonstrate the delicate interaction between T cell subsets and glial cells and how they communicate to mediate their effects. Effectors of Th1 act on both microglia and astrocytes whereas Th17 effectors preferentially target astrocytes to promote neuroinflammation.

  7. Test plan for the remote conveyance and innovative end effector demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.; Smith, A.M. [EG& G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.; Peterson, R.

    1994-08-01

    This test plan describes the demonstration of innovative equipment and processes specifically designed to be superior to currently employed technology for buried waste retrieval. The dumping of dry soil into a funnel/dumpster arrangement has been found to be the primary mechanism for dust generation during the retrieval of buried transuranic waste. The primary goal of the innovative end effector is to reduce dust generation and the potential spread of airborne contaminants during the dumping operation. In addition, regardless of the excavation technique, exhumed waste will have to be conveyed away from the retrieval area to a packaging area or directly to a treatment facility. The remote conveyance system is aimed at developing a remotely controlled vehicle to convey retrieved waste that will operate on variable terrain and remove workers from the hazardous zone. To demonstrate the remote conveyance system and the innovative end effector, the Buried Waste Integrated Demonstration (BWID) Program has subcontracted with RAHCO International to provide equipment and services to perform a demonstration of the technologies. The demonstration will be performed in two phases. In Phase I, the subcontractor will perform a full scale demonstration to assess the ability of the innovative end effector to control dust generation and the potential spread of contamination during dumping operations. Phase II includes performing a retrieval/conveyance demonstration. This demonstration will excavate, dump, and convey simulated waste to demonstrate the functionality of the system (e.g., maneuverability, retrieval rates, and system integration). Phase II of the demonstration will include all elements of the remote conveyance and end effector system. This test plan will describe the demonstration objectives, data quality objectives, equipment operation, and methods for collecting data during the demonstration.

  8. Stimulation over primary motor cortex during action observation impairs effector recognition.

    Science.gov (United States)

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  9. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  10. Generation of knockout rabbits using transcription activator-like effector nucleases

    OpenAIRE

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large ...

  11. Test plan for the remote conveyance and innovative end effector demonstration

    International Nuclear Information System (INIS)

    Rice, P.; Smith, A.M.; Peterson, R.

    1994-08-01

    This test plan describes the demonstration of innovative equipment and processes specifically designed to be superior to currently employed technology for buried waste retrieval. The dumping of dry soil into a funnel/dumpster arrangement has been found to be the primary mechanism for dust generation during the retrieval of buried transuranic waste. The primary goal of the innovative end effector is to reduce dust generation and the potential spread of airborne contaminants during the dumping operation. In addition, regardless of the excavation technique, exhumed waste will have to be conveyed away from the retrieval area to a packaging area or directly to a treatment facility. The remote conveyance system is aimed at developing a remotely controlled vehicle to convey retrieved waste that will operate on variable terrain and remove workers from the hazardous zone. To demonstrate the remote conveyance system and the innovative end effector, the Buried Waste Integrated Demonstration (BWID) Program has subcontracted with RAHCO International to provide equipment and services to perform a demonstration of the technologies. The demonstration will be performed in two phases. In Phase I, the subcontractor will perform a full scale demonstration to assess the ability of the innovative end effector to control dust generation and the potential spread of contamination during dumping operations. Phase II includes performing a retrieval/conveyance demonstration. This demonstration will excavate, dump, and convey simulated waste to demonstrate the functionality of the system (e.g., maneuverability, retrieval rates, and system integration). Phase II of the demonstration will include all elements of the remote conveyance and end effector system. This test plan will describe the demonstration objectives, data quality objectives, equipment operation, and methods for collecting data during the demonstration

  12. Effector genomics accelerates discovery and functional profiling of potato disease resistance and phytophthora infestans avirulence genes.

    Directory of Open Access Journals (Sweden)

    Vivianne G A A Vleeshouwers

    Full Text Available Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R genes into potato (Solanum tuberosum is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.

  13. Characterisation of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    Directory of Open Access Journals (Sweden)

    Remco eStam

    2013-10-01

    Full Text Available Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centres on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signalling. Here, we characterised three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localisation of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organisation, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.

  14. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity.

    Science.gov (United States)

    Peng, Yujun; van Wersch, Rowan; Zhang, Yuelin

    2018-04-01

    Plants use diverse immune receptors to sense pathogen attacks. Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors localized on the plasma membrane leads to PAMP-triggered immunity (PTI). Detection of pathogen effectors by intracellular or plasma membrane-localized immune receptors results in effector-triggered immunity (ETI). Despite the large variations in the magnitude and duration of immune responses triggered by different PAMPs or pathogen effectors during PTI and ETI, plasma membrane-localized immune receptors activate similar downstream molecular events such as mitogen-activated protein kinase activation, oxidative burst, ion influx, and increased biosynthesis of plant defense hormones, indicating that defense signals initiated at the plasma membrane converge at later points. On the other hand, activation of ETI by immune receptors localized to the nucleus appears to be more directly associated with transcriptional regulation of defense gene expression. Here, we review recent progress in signal transductions downstream of different groups of plant immune receptors, highlighting the converging and diverging molecular events.

  15. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Profiling calcium signals of in vitro polarized human effector CD4+ T cells.

    Science.gov (United States)

    Kircher, Sarah; Merino-Wong, Maylin; Niemeyer, Barbara A; Alansary, Dalia

    2018-06-01

    Differentiation of naïve CD4 + T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca 2+ signals, mainly mediated by the store operated Ca 2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4 + T cell subsets show differential Ca 2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4 + effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca 2+ release activated Ca 2+ currents (I CRAC ) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca 2+ profiles of helper CD4 + Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4 + T cells. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Attention to body-parts varies with visual preference and verb-effector associations.

    Science.gov (United States)

    Boyer, Ty W; Maouene, Josita; Sethuraman, Nitya

    2017-05-01

    Theories of embodied conceptual meaning suggest fundamental relations between others' actions, language, and our own actions and visual attention processes. Prior studies have found that when people view an image of a neutral body in a scene they first look toward, in order, the head, torso, hands, and legs. Other studies show associations between action verbs and the body-effectors used in performing the action (e.g., "jump" with feet/legs; "talk" with face/head). In the present experiment, the visual attention of participants was recorded with a remote eye-tracking system while they viewed an image of an actor pantomiming an action and heard a concrete action verb. Participants manually responded whether or not the action image was a good example of the verb they heard. The eye-tracking results confirmed that participants looked at the head most, followed by the hands, and the feet least of all; however, visual attention to each of the body-parts also varied as a function of the effector associated with the spoken verb on image/verb congruent trials, particularly for verbs associated with the legs. Overall, these results suggest that language influences some perceptual processes; however, hearing auditory verbs did not alter the previously reported fundamental hierarchical sequence of directed attention, and fixations on specific body-effectors may not be essential for verb comprehension as peripheral visual cues may be sufficient to perform the task.

  18. Differential expression of candidate salivary effector proteins in field collections of Hessian fly, Mayetiola destructor

    Science.gov (United States)

    Johnson, A J; Shukle, R H; Chen, M-S; Srivastava, S; Subramanyam, S; Schemerhorn, B J; Weintraub, P G; Abdel Moniem, H E M; Flanders, K L; Buntin, G D; Williams, C E

    2015-01-01

    Evidence is emerging that some proteins secreted by gall-forming parasites of plants act as effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are the putative effectors responsible for the physiological changes elicited in susceptible seedling wheat by Hessian fly, Mayetiola destructor (Say), larvae have been documented. However, how the genes encoding these candidate effectors might respond under field conditions is unknown. The goal of this study was to use microarray analysis to investigate variation in SSGP transcript abundance amongst field collections from different geographical regions (southeastern USA, central USA, and the Middle East). Results revealed significant variation in SSGP transcript abundance amongst the field collections studied. The field collections separated into three distinct groups that corresponded to the wheat classes grown in the different geographical regions as well as to recently described Hessian fly populations. These data support previous reports correlating Hessian fly population structure with micropopulation differences owing to agro-ecosystem parameters such as cultivation of regionally adapted wheat varieties, deployment of resistance genes and variation in climatic conditions. PMID:25528896

  19. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Soledad R. Ordonez

    2017-10-01

    Full Text Available Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung.

  20. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection.

    Science.gov (United States)

    Qiao, Yongli; Shi, Jinxia; Zhai, Yi; Hou, Yingnan; Ma, Wenbo

    2015-05-05

    A broad range of parasites rely on the functions of effector proteins to subvert host immune response and facilitate disease development. The notorious Phytophthora pathogens evolved effectors with RNA silencing suppression activity to promote infection in plant hosts. Here we report that the Phytophthora Suppressor of RNA Silencing 1 (PSR1) can bind to an evolutionarily conserved nuclear protein containing the aspartate-glutamate-alanine-histidine-box RNA helicase domain in plants. This protein, designated PSR1-Interacting Protein 1 (PINP1), regulates the accumulation of both microRNAs and endogenous small interfering RNAs in Arabidopsis. A null mutation of PINP1 causes embryonic lethality, and silencing of PINP1 leads to developmental defects and hypersusceptibility to Phytophthora infection. These phenotypes are reminiscent of transgenic plants expressing PSR1, supporting PINP1 as a direct virulence target of PSR1. We further demonstrate that the localization of the Dicer-like 1 protein complex is impaired in the nucleus of PINP1-silenced or PSR1-expressing cells, indicating that PINP1 may facilitate small RNA processing by affecting the assembly of dicing complexes. A similar function of PINP1 homologous genes in development and immunity was also observed in Nicotiana benthamiana. These findings highlight PINP1 as a previously unidentified component of RNA silencing that regulates distinct classes of small RNAs in plants. Importantly, Phytophthora has evolved effectors to target PINP1 in order to promote infection.

  1. Mechanism of host substrate acetylation by a YopJ family effector.

    Science.gov (United States)

    Zhang, Zhi-Min; Ma, Ka-Wai; Gao, Linfeng; Hu, Zhenquan; Schwizer, Simon; Ma, Wenbo; Song, Jikui

    2017-07-24

    The Yersinia outer protein J (YopJ) family of bacterial effectors depends on a novel acetyltransferase domain to acetylate signalling proteins from plant and animal hosts. However, the underlying mechanism is unclear. Here, we report the crystal structures of PopP2, a YopJ effector produced by the plant pathogen Ralstonia solanacearum, in complex with inositol hexaphosphate (InsP 6 ), acetyl-coenzyme A (AcCoA) and/or substrate Resistance to Ralstonia solanacearum 1 (RRS1-R) WRKY . PopP2 recognizes the WRKYGQK motif of RRS1-R WRKY to position a targeted lysine in the active site for acetylation. Importantly, the PopP2-RRS1-R WRKY association is allosterically regulated by InsP 6 binding, suggesting a previously unidentified role of the eukaryote-specific cofactor in substrate interaction. Furthermore, we provide evidence for the reaction intermediate of PopP2-mediated acetylation, an acetyl-cysteine covalent adduct, lending direct support to the 'ping-pong'-like catalytic mechanism proposed for YopJ effectors. Our study provides critical mechanistic insights into the virulence activity of YopJ class of acetyltransferases.

  2. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.

    Science.gov (United States)

    Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias

    2017-09-01

    In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.

  3. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy.

    Science.gov (United States)

    Golubovskaya, Vita; Wu, Lijun

    2016-03-15

    This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy--a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4⁺ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8⁺ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4⁺ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  4. Multinucleation during C. trachomatis infections is caused by the contribution of two effector pathways.

    Directory of Open Access Journals (Sweden)

    Heather M Brown

    Full Text Available Chlamydia trachomatis is an obligate intracellular bacterial pathogen and the second leading cause of sexually transmitted infections in the US. Infections cause significant morbidity and can lead to serious reproductive sequelae, including an epidemiological link to increased rates of reproductive cancers. One of the overt changes that infected cells exhibit is the development of genomic instability leading to multinucleation. Here we demonstrate that the induction of multinucleation is not conserved equally across chlamydial species; C. trachomatis L2 caused high levels of multinucleation, C. muridarum intermediate levels, and C. caviae had very modest effects on multinucleation. Our data show that at least two effector pathways together cause genomic instability during infection leading to multinucleation. We find that the highly conserved chlamydial protease CPAF is a key effector for one of these pathways. CPAF secretion is required for the loss of centrosome duplication regulation as well as inducing early mitotic exit. The second effector pathway involves the induction of centrosome position errors. This function is not conserved in three chlamydial species tested. Together these two pathways contribute to the induction of high levels of genomic instability and multinucleation seen in C. trachomatis infections.

  5. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    Directory of Open Access Journals (Sweden)

    Vita Golubovskaya

    2016-03-01

    Full Text Available This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.; intracellular markers (FOXP3; epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic; and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  6. Duplications and losses in gene families of rust pathogens highlight putative effectors

    Directory of Open Access Journals (Sweden)

    Amanda L. Pendleton

    2014-06-01

    Full Text Available Rust fungi are a group of fungal pathogens that cause some of the world’s most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host’s cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of sixteen diverse fungal species, which include fifteen basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: i arose or expanded in rust pathogens relative to other fungi, or ii contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  7. On design and development of additional End-Effectors for the Cassette Multifunctional Mover

    Energy Technology Data Exchange (ETDEWEB)

    Valkama, Peetu, E-mail: peetu.valkama@tut.fi [Department of Intelligent Hydraulics and Automation, Tampere University of Technology, P.O. Box 589, FI-33720 Tampere (Finland); Mattila, J.; Amjad, F.; Vaeyrynen, J.; Vilenius, M. [Department of Intelligent Hydraulics and Automation, Tampere University of Technology, P.O. Box 589, FI-33720 Tampere (Finland); Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Semeraro, L.; Esque, S. [F4E, Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain)

    2011-10-15

    The divertor area of ITER Vacuum Vessel (VV) consists of 54 modular cassettes which must be replaced three times during the estimated 20 years of operation of the ITER. Cassette Multifunctional Mover (CMM) and Cassette Toroidal Mover (CTM) are used in the cassette remote handling (RH). In this paper we discuss the design and development process for the RH equipment to be used in the ITER environment. Design concepts for the Standard Cassette End-Effector and Central Cassette End-Effector are described and the conceptual design phase methodology is presented. The main improvements of the new End-Effector concept designs are more robust and reliable assembly process with reduced CMM mover assembly accuracy requirement. New Central Cassette locking system was developed to address the high forces and contact pressures emerging during the Central Cassette installation. The chosen design concepts are verified with virtual reality simulations and are fulfilling the requirements defined in the concept design phase, including structural, assembly sequence, safety and reliability.

  8. X-linked inhibitor of apoptosis regulates T cell effector function

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonnière, Lyne; Moore, Craig S

    2007-01-01

    To understand how the balance between pro- and anti-apoptotic signals influences effector function in the immune system, we studied the X-linked inhibitor of apoptosis (XIAP), an endogenous regulator of cellular apoptosis. Real-time PCR showed increased XIAP expression in blood of mice with exper......To understand how the balance between pro- and anti-apoptotic signals influences effector function in the immune system, we studied the X-linked inhibitor of apoptosis (XIAP), an endogenous regulator of cellular apoptosis. Real-time PCR showed increased XIAP expression in blood of mice...... dramatically reduced within the CNS. Flow cytometry showed an 88-93% reduction in T cells. The proportion of TUNEL(+) apoptotic CD4(+) T cells in the CNS was increased from Neurons...... and oligodendrocytes were not affected; neither did apoptosis increase in liver, where XIAP knockdown also occurred. ASO-XIAP increased susceptibility of T cells to activation-induced apoptosis in vitro. Our results identify XIAP as a critical controller of apoptotic susceptibility of effector T cell function...

  9. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes.

    Science.gov (United States)

    Marwaha, Rituraj; Arya, Subhash B; Jagga, Divya; Kaur, Harmeet; Tuli, Amit; Sharma, Mahak

    2017-04-03

    Endocytic, autophagic, and phagocytic vesicles move on microtubule tracks to fuse with lysosomes. Small GTPases, such as Rab7 and Arl8b, recruit their downstream effectors to mediate this transport and fusion. However, the potential cross talk between these two GTPases is unclear. Here, we show that the Rab7 effector PLEKHM1 simultaneously binds Rab7 and Arl8b, bringing about clustering and fusion of late endosomes and lysosomes. We show that the N-terminal RUN domain of PLEKHM1 is necessary and sufficient for interaction with Arl8b and its subsequent localization to lysosomes. Notably, we also demonstrate that Arl8b mediates recruitment of HOPS complex to PLEKHM1-positive vesicle contact sites. Consequently, Arl8b binding to PLEKHM1 is required for its function in delivery and, therefore, degradation of endocytic and autophagic cargo in lysosomes. Finally, we also show that PLEKHM1 competes with SKIP for Arl8b binding, which dictates lysosome positioning. These findings suggest that Arl8b, along with its effectors, orchestrates lysosomal transport and fusion. © 2017 Marwaha et al.

  10. Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons.

    Directory of Open Access Journals (Sweden)

    Soledad Sacristán

    2009-10-01

    Full Text Available Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVR(k1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVR(k1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1 the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2 the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome.

  11. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    Science.gov (United States)

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  12. Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst.

    Science.gov (United States)

    Zárský, Viktor; Potocký, Martin

    2010-04-01

    The Rho/Rop small GTPase regulatory module is central for initiating exocytotically ACDs (active cortical domains) in plant cell cortex, and a growing array of Rop regulators and effectors are being discovered in plants. Structural membrane phospholipids are important constituents of cells as well as signals, and phospholipid-modifying enzymes are well known effectors of small GTPases. We have shown that PLDs (phospholipases D) and their product, PA (phosphatidic acid), belong to the regulators of the secretory pathway in plants. We have also shown that specific NOXs (NADPH oxidases) producing ROS (reactive oxygen species) are involved in cell growth as exemplified by pollen tubes and root hairs. Most plant cells exhibit several distinct plasma membrane domains (ACDs), established and maintained by endocytosis/exocytosis-driven membrane protein recycling. We proposed recently the concept of a 'recycling domain' (RD), uniting the ACD and the connected endosomal recycling compartment (endosome), as a dynamic spatiotemporal entity. We have described a putative GTPase-effector complex exocyst involved in exocytic vesicle tethering in plants. Owing to the multiplicity of its Exo70 subunits, this complex, along with many RabA GTPases (putative recycling endosome organizers), may belong to core regulators of RD organization in plants.

  13. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    Science.gov (United States)

    Ordonez, Soledad R.; Veldhuizen, Edwin J. A.; van Eijk, Martin; Haagsman, Henk P.

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung. PMID:29163395

  14. Engineering development of waste retrieval end effectors for the Oak Ridge gunite waste tanks

    International Nuclear Information System (INIS)

    Mullen, O.D.

    1997-05-01

    The Gunite and Associated Tanks Treatability Study at Oak Ridge National Laboratory selected the waterjet scarifying end effector, the jet pump conveyance system, and the Modified Light Duty Utility Arm and Houdini Remotely Operated Vehicle deployment and manipulator systems for evaluation. The waterjet-based retrieval end effector had been developed through several generations of test articles targeted at deployment in Hanford underground storage tanks with a large robotic arm. The basic technology had demonstrated effectiveness at retrieval of simulants bounding the foreseen range of waste properties and indicated compatibility with the planned deployment systems. The Retrieval Process Development and Enhancements team was tasked with developing a version of the retrieval end effector tailored to the Oak Ridge tanks, waste and deployment platforms. The finished prototype was delivered to PNNL and subjected to a brief round of characterization and performance testing at the Hydraulic Testbed prior to shipment to Oak Ridge. It has undergone extensive operational testing in the Oak Ridge National Laboratory Tanks Technology Cold Test Facility and performed well, as expected. A second unit has been delivered outfitted with the high pressure manifold

  15. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors.

    Science.gov (United States)

    Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G; Dehio, Christoph

    2014-06-01

    Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that

  16. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors.

    Directory of Open Access Journals (Sweden)

    Rusudan Okujava

    2014-06-01

    Full Text Available Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs infected with a ΔbepE mutant of B. henselae (Bhe displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID domain of BepEBhe (BID2.EBhe. Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d. model for B. tribocorum (Btr infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we

  17. A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet.

    Science.gov (United States)

    Xin, Annie; Masson, Frederick; Liao, Yang; Preston, Simon; Guan, Tianxia; Gloury, Renee; Olshansky, Moshe; Lin, Jian-Xin; Li, Peng; Speed, Terence P; Smyth, Gordon K; Ernst, Matthias; Leonard, Warren J; Pellegrini, Marc; Kaech, Susan M; Nutt, Stephen L; Shi, Wei; Belz, Gabrielle T; Kallies, Axel

    2016-04-01

    T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.

  18. Bio-effectors from waste materials as growth promoters, an agronomic and metabolomic study

    Science.gov (United States)

    Alwanney, Deaa; Chami, Ziad Al; Angelica De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2014-05-01

    Nowadays, improving plant performance by providing growth promoters is a main concern of the organic agriculture. As a consequence of increased food demands, more efficient and alternatives of the current plant nutrition strategies are becoming urgent. Recently, a novel concept "bio-effectors" raised on to describe a group of products that are able to improve plant performance and do not belong to fertilizers or pesticides. Agro-Food processing residues are promising materials as bio-effector. Three plant-derived materials: brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as bio-effector candidates. Plant-derived materials were characterized in term of total macro and micronutrients content. Green extraction methodology and solvent choice (aqueous; ethanol; and aqueous: ethanol mixture 1:1) was based on the extraction yield as main factor. Optimum extracts, to be used on the tomato test plant, were determined using phytotoxicity test (seed germination test) as main constraint. Thereafter, selected extracts were characterized and secondary metabolites profiling were detected by NMR technique. Selected extracts were applied on tomato in a growth chamber at different doses in comparison to humic-like substances as positive control (Ctrl+) and to a Hoagland solution as negative control (Ctrl-). At the end of the experiment, agronomical parameters were determined and NMR-metabolomic profiling were conducted on tomato seedlings. Results are summarized as follow: (i) raw showed an interesting content, either at nutritional or biological level; (ii) aqueous extraction resulted higher yield than other used solvent; (iii) at high extraction ratio (1:25 for BSG; 1:100 for FPR; and 1:200 for LPR) aqueous extracts were not phytotoxic on the tomato test plant; (iv) all aqueous extract are differently rich in nutrients, aminoacids, sugars and low molecular weight molecules; (v) all extract exhibited a growth promotion at

  19. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  20. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  1. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    Directory of Open Access Journals (Sweden)

    Sema eKurtulus

    2013-01-01

    Full Text Available Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of

  2. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement

    Directory of Open Access Journals (Sweden)

    Seung-Hye Lee

    2016-08-01

    Full Text Available The spread of tau pathology correlates with cognitive decline in Alzheimer’s disease. In vitro, tau antibodies can block cell-to-cell tau spreading. Although mechanisms of anti-tau function in vivo are unknown, effector function might promote microglia-mediated clearance. In this study, we investigated whether antibody effector function is required for targeting tau. We compared efficacy in vivo and in vitro of two versions of the same tau antibody, with and without effector function, measuring tau pathology, neuron health, and microglial function. Both antibodies reduced accumulation of tau pathology in Tau-P301L transgenic mice and protected cultured neurons against extracellular tau-induced toxicity. Only the full-effector antibody enhanced tau uptake in cultured microglia, which promoted release of proinflammatory cytokines. In neuron-microglia co-cultures, only effectorless anti-tau protected neurons, suggesting full-effector tau antibodies can induce indirect toxicity via microglia. We conclude that effector function is not required for efficacy, and effectorless tau antibodies may represent a safer approach to targeting tau.

  3. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants1[C][W][OA

    Science.gov (United States)

    MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host. PMID:21849514

  4. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Simone I Richardson

    2018-04-01

    Full Text Available While the induction of broadly neutralizing antibodies (bNAbs is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP, complement deposition (ADCD, cellular cytotoxicity (ADCC and cellular trogocytosis (ADCT were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies.

  5. Global impact of Salmonella type III secretion effector SteA on host cells

    International Nuclear Information System (INIS)

    Cardenal-Muñoz, Elena; Gutiérrez, Gabriel; Ramos-Morales, Francisco

    2014-01-01

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration

  6. Global impact of Salmonella type III secretion effector SteA on host cells

    Energy Technology Data Exchange (ETDEWEB)

    Cardenal-Muñoz, Elena; Gutiérrez, Gabriel; Ramos-Morales, Francisco

    2014-07-11

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.

  7. Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein

    International Nuclear Information System (INIS)

    Wang, Tianyu; Ding, Jinjing; Zhang, Ying; Wang, Da-Cheng; Liu, Wei

    2013-01-01

    The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair

  8. Three New Pierce's Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1.

    Science.gov (United States)

    Zhang, Shujian; Chakrabarty, Pranjib K; Fleites, Laura A; Rayside, Patricia A; Hopkins, Donald L; Gabriel, Dean W

    2015-01-01

    Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.

  9. Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species

    Directory of Open Access Journals (Sweden)

    Thao Thi Nguyen

    2018-02-01

    Full Text Available Type VI secretion system (T6SS has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM of T6SEs that possess markers for type VI effectors (MIX motif (MIX T6SEs, 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.

  10. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence.

    Directory of Open Access Journals (Sweden)

    Shi-qi An

    2014-10-01

    Full Text Available Bis-(3',5' cyclic di-guanylate (cyclic di-GMP is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc. This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K(d∼2 µM. Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence.

  11. Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianyu [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ding, Jinjing; Zhang, Ying; Wang, Da-Cheng, E-mail: dcwang@ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Wei, E-mail: dcwang@ibp.ac.cn [The Third Military Medical University, Chongqing 400038 (China); Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-10-01

    The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair.

  12. Differential association of GABAB receptors with their effector ion channels in Purkinje cells.

    Science.gov (United States)

    Luján, Rafael; Aguado, Carolina; Ciruela, Francisco; Cózar, Javier; Kleindienst, David; de la Ossa, Luis; Bettler, Bernhard; Wickman, Kevin; Watanabe, Masahiko; Shigemoto, Ryuichi; Fukazawa, Yugo

    2018-04-01

    Metabotropic GABA B receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABA B receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABA B1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABA B receptors with two key effector ion channels, the G protein-gated inwardly rectifying K + (GIRK/Kir3) channel and the voltage-dependent Ca 2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABA B receptors co-assembled with GIRK and Ca V 2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABA B1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABA B1 and Ca V 2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABA B1 and GIRK2 or Ca V 2.1 channels was detected, inter-cluster distance for GABA B1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABA B1 and Ca V 2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABA B receptors are associated with GIRK and Ca V 2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABA B receptors and their effector ion channels in the cerebellar network.

  13. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Deng, Meng-Ying; Sun, Yun-Hao; Li, Pai; Fu, Bei; Shen, Dong; Lu, Yong-Jun

    2016-10-01

    Virulent protein toxins secreted by the bacterial pathogens can cause cytotoxicity by various molecular mechanisms to combat host cell defense. On the other hand, these proteins can also be used as probes to investigate the defense pathway of host innate immunity. Ralstonia solanacearum, one of the most virulent bacterial phytopathogens, translocates more than 70 effector proteins via type III secretion system during infection. Here, we characterized the cytotoxicity of effector RipI in budding yeast Saccharomyce scerevisiae, an alternative host model. We found that over-expression of RipI resulted in severe growth defect and arginine (R) 117 within the predicted integrase motif was required for inhibition of yeast growth. The phenotype of death manifested the hallmarks of apoptosis. Our data also revealed that RipI-induced apoptosis was independent of Yca1 and mitochondria-mediated apoptotic pathways because Δyca1 and Δaif1 were both sensitive to RipI as compared with the wild type. We further demonstrated that RipI was localized in the yeast nucleus and the N-terminal 1-174aa was required for the localization. High-throughput RNA sequencing analysis showed that upon RipI over-expression, 101 unigenes of yeast ribosome presented lower expression level, and 42 GO classes related to the nucleus or recombination were enriched with differential expression levels. Taken together, our data showed that a nuclear-targeting effector RipI triggers yeast apoptosis, potentially dependent on its integrase function. Our results also provided an alternative strategy to dissect the signaling pathway of cytotoxicity induced by the protein toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Three New Pierce's Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1.

    Directory of Open Access Journals (Sweden)

    Shujian Zhang

    Full Text Available Xylella fastidiosa (X. fastidiosa infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703 and a serine protease (PD0956; two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928, and at least one relatively short, hemagglutinin-like protein (PD0986. Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3 overexpressing PD1703 exhibited a hypersensitive response (HR in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot and a PD0986 (hemagglutinin were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.

  15. INFLUENCE OF MODIFIED BIOFLAVONOIDS UPON EFFECTOR LYMPHOCYTES IN MURINE MODEL OF CONTACT SENSITIVITY

    Directory of Open Access Journals (Sweden)

    D. Z. Albegova

    2015-01-01

    Full Text Available Contact sensitivity reaction (CSR to 2,4-dinitrofluorobenzene (DNFB in mice is a model of in vivo immune response, being an experimental analogue to contact dermatitis in humans. CSR sensitization phase begins after primary contact with antigen, lasting for 10-15 days in humans, and 5-7 days, in mice. Repeated skin exposure to the sensitizing substance leads to its recognition and triggering immune inflammatory mechanisms involving DNFB-specific effector T lymphocytes. The CSR reaches its maximum 18-48 hours after re-exposure to a hapten. There is only scarce information in the literature about effects of flavonoids on CSR, including both stimulatory and inhibitory effects. Flavonoids possessed, predominantly, suppressive effects against the CSR development. In our laboratory, a model of contact sensitivity was reproduced in CBA mice by means of cutaneous sensitization by 2,4-dinitrofluorobenzene. The aim of the study was to identify the mechanisms of immunomodulatory action of quercetin dihydrate and modified bioflavonoids, using the method of adoptive transfer contact sensitivity by splenocytes and T-lymphocytes. As shown in our studies, a 30-min pre-treatment of splenocytes and T-lymphocytes from sensitized mice with modified bioflavonoids before the cell transfer caused complete prevention of contact sensitivity reaction in syngeneic recipient mice. Meanwhile, this effect was not associated with cell death induction due to apoptosis or cytotoxicity. Quercetin dihydrate caused only partially suppression the activity of adaptively formed T-lymphocytes, the contact sensitivity effectors. It was shown that the modified bioflavonoid more stronger suppress adoptive transfer of contact sensitivity in comparison with quercetin dehydrate, without inducing apoptosis of effector cells. Thus, the modified bioflavonoid is a promising compound for further studies in a model of contact sensitivity, due to its higher ability to suppress transfer of CSR with

  16. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies.

    Science.gov (United States)

    Richardson, Simone I; Chung, Amy W; Natarajan, Harini; Mabvakure, Batsirai; Mkhize, Nonhlanhla N; Garrett, Nigel; Abdool Karim, Salim; Moore, Penny L; Ackerman, Margaret E; Alter, Galit; Morris, Lynn

    2018-04-01

    While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies.

  17. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Directory of Open Access Journals (Sweden)

    Agnes S. M. Yong

    2017-04-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01% in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR, which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important

  18. Design criteria for the light duty utility arm system end effectors

    International Nuclear Information System (INIS)

    Pardini, A.F.; Kiebel, G.R.

    1995-12-01

    The purpose of this document is to provide criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. Actual component design, fabrication, testing, and inspection will be performed by various DOE laboratories, industry, and academia. This document augments WHC-SD-TD-FRD-003, 'Functions and Requirements for the Light Duty Utility Arm Integrated System' (F). All requirements dictated in the F shall also be applicable in this document. Whenever conflicts arise between this document and the F, this document shall take precedence

  19. Effector Mimics and Integrated Decoys, the Never-Ending Arms Race between Rice and Xanthomonas oryzae.

    Science.gov (United States)

    Zuluaga, Paola; Szurek, Boris; Koebnik, Ralf; Kroj, Thomas; Morel, Jean-Benoit

    2017-01-01

    Plants are constantly challenged by a wide range of pathogens and have therefore evolved an array of mechanisms to defend against them. In response to these defense systems, pathogens have evolved strategies to avoid recognition and suppress plant defenses (Brown and Tellier, 2011). Three recent reports dealing with the resistance of rice to Xanthomonas oryzae have added a new twist to our understanding of this fascinating co-evolutionary arms race (Ji et al., 2016; Read et al., 2016; Triplett et al., 2016). They show that pathogens also develop sophisticated effector mimics to trick recognition.

  20. Timing of in utero malaria exposure influences fetal CD4 T cell regulatory versus effector differentiation

    Directory of Open Access Journals (Sweden)

    Mary Prahl

    2016-10-01

    Full Text Available Abstract Background In malaria-endemic areas, the first exposure to malaria antigens often occurs in utero when the fetal immune system is poised towards the development of tolerance. Children exposed to placental malaria have an increased risk of clinical malaria in the first few years of life compared to unexposed children. Recent work has suggested the potential of pregnancy-associated malaria to induce immune tolerance in children living in malaria-endemic areas. A study was completed to evaluate the effect of malaria exposure during pregnancy on fetal immune tolerance and effector responses. Methods Using cord blood samples from a cohort of mother-infant pairs followed from early in pregnancy until delivery, flow cytometry analysis was completed to assess the relationship between pregnancy-associated malaria and fetal cord blood CD4 and dendritic cell phenotypes. Results Cord blood FoxP3+ Treg counts were higher in infants born to mothers with Plasmodium parasitaemia early in pregnancy (12–20 weeks of gestation; p = 0.048, but there was no association between Treg counts and the presence of parasites in the placenta at the time of delivery (by loop-mediated isothermal amplification (LAMP; p = 0.810. In contrast, higher frequencies of activated CD4 T cells (CD25+FoxP3−CD127+ were observed in the cord blood of neonates with active placental Plasmodium infection at the time of delivery (p = 0.035. This population exhibited evidence of effector memory differentiation, suggesting priming of effector T cells in utero. Lastly, myeloid dendritic cells were higher in the cord blood of infants with histopathologic evidence of placental malaria (p < 0.0001. Conclusion Together, these data indicate that in utero exposure to malaria drives expansion of both regulatory and effector T cells in the fetus, and that the timing of this exposure has a pivotal role in determining the polarization of the fetal immune response.

  1. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Science.gov (United States)

    Hughes, Amy; Yong, Agnes S. M.

    2017-01-01

    Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating

  2. Physical and neural entrainment to rhythm: human sensorimotor coordination across tasks and effector systems

    Directory of Open Access Journals (Sweden)

    Jessica Marie Ross

    2014-08-01

    Full Text Available The human sensorimotor system can be readily entrained to environmental rhythms, through multiple sensory modalities. In this review, we provide an overview of theories of timekeeping that make this neuroentrainment possible. First, we present recent evidence that contests the assumptions made in classic timekeeper models. The role of state estimation, sensory feedback and movement parameters on the organization of sensorimotor timing are discussed in the context of recent experiments that examined simultaneous timing and force control. This discussion is extended to the study of coordinated multi-effector movements and how they may be entrained.

  3. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3.

    Science.gov (United States)

    Urry, Zoe L; Richards, David F; Black, Cheryl; Morales, Maria; Carnés, Jerónimo; Hawrylowicz, Catherine M; Robinson, Douglas S

    2014-05-29

    Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT.

  4. Altered T cell memory and effector cell development in chronic lymphatic filarial infection that is independent of persistent parasite antigen.

    Directory of Open Access Journals (Sweden)

    Cathy Steel

    2011-04-01

    Full Text Available Chronic lymphatic filarial (LF infection is associated with suppression of parasite-specific T cell responses that persist even following elimination of infection. While several mechanisms have been implicated in mediating this T cell specific downregulation, a role for alterations in the homeostasis of T effector and memory cell populations has not been explored. Using multiparameter flow cytometry, we investigated the role of persistent filarial infection on the maintenance of T cell memory in patients from the filarial-endemic Cook Islands. Compared to filarial-uninfected endemic normals (EN, microfilaria (mf positive infected patients (Inf had a reduced CD4 central memory (T(CM compartment. In addition, Inf patients tended to have more effector memory cells (T(EM and fewer effector cells (T(EFF than did ENs giving significantly smaller T(EFF:T(EM ratios. These contracted T(CM and T(EFF populations were still evident in patients previously mf+ who had cleared their infection (CLInf. Moreover, the density of IL-7Rα, necessary for T memory cell maintenance (but decreased in T effector cells, was significantly higher on memory cells of Inf and CLInf patients, although there was no evidence for decreased IL-7 or increased soluble IL7-Rα, both possible mechanisms for signaling defects in memory cells. However, effector cells that were present in Inf and CLInf patients had lower percentages of HLA-DR suggesting impaired function. These changes in T cell populations appear to reflect chronicity of infection, as filarial-infected children, despite the presence of active infection, did not show alterations in the frequencies of these T cell phenotypes. These data indicate that filarial-infected patients have contracted T(CM compartments and a defect in effector cell development, defects that persist even following clearance of infection. The fact that these global changes in memory and effector cell compartments do not yet occur in infected children

  5. Identification and Initial Characterization of the Effectors of an Anther Smut Fungus and Potential Host Target Proteins

    Directory of Open Access Journals (Sweden)

    Venkata S. Kuppireddy

    2017-11-01

    Full Text Available (1 Background: Plant pathogenic fungi often display high levels of host specificity and biotrophic fungi; in particular, they must manipulate their hosts to avoid detection and to complete their obligate pathogenic lifecycles. One important strategy of such fungi is the secretion of small proteins that serve as effectors in this process. Microbotryum violaceum is a species complex whose members infect members of the Caryophyllaceae; M. lychnidis-dioicae, a parasite on Silene latifolia, is one of the best studied interactions. We are interested in identifying and characterizing effectors of the fungus and possible corresponding host targets; (2 Methods: In silico analysis of the M. lychnidis-dioicae genome and transcriptomes allowed us to predict a pool of small secreted proteins (SSPs with the hallmarks of effectors, including a lack of conserved protein family (PFAM domains and also localized regions of disorder. Putative SSPs were tested for secretion using a yeast secretion trap method. We then used yeast two-hybrid analyses for candidate-secreted effectors to probe a cDNA library from a range of growth conditions of the fungus, including infected plants; (3 Results: Roughly 50 SSPs were identified by in silico analysis. Of these, 4 were studied further and shown to be secreted, as well as examined for potential host interactors. One of the putative effectors, MVLG_01732, was found to interact with Arabidopsis thaliana calcium-dependent lipid binding protein (AtCLB and with cellulose synthase interactive protein 1 orthologues; and (4 Conclusions: The identification of a pool of putative effectors provides a resource for functional characterization of fungal proteins that mediate the delicate interaction between pathogen and host. The candidate targets of effectors, e.g., AtCLB, involved in pollen germination suggest tantalizing insights that could drive future studies.

  6. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity.

    Directory of Open Access Journals (Sweden)

    Xiangzi Zheng

    2014-04-01

    Full Text Available Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs, such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs, the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI, significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the

  7. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism

    Science.gov (United States)

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Wang, Gaofeng; Xiao, Xueqiong; Xiao, Yannong

    2016-01-01

    Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita. PMID:27446188

  8. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Procházková, Kateřina; Čermáková, Kateřina [Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6 (Czech Republic); Pachl, Petr; Sieglová, Irena [Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6 (Czech Republic); Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 (Czech Republic); Fábry, Milan [Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 (Czech Republic); Otwinowski, Zbyszek [UT Southwestern Medical Center, Dallas, Texas (United States); Řezáčová, Pavlína, E-mail: rezacova@uochb.cas.cz [Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6 (Czech Republic); Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 (Czech Republic)

    2012-02-01

    The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similarity to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.

  9. Bio-effectors from waste materials as growth promoters for tomato plants, an agronomic and metabolomic study

    Science.gov (United States)

    Abou Chehade, Lara; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    In organic farming, where nutrient management is constrained and sustainability is claimed, bio-effectors pave their way. Considering selected bio-effectors, this study integrates metabolomics to agronomy in depicting induced relevant phenomena. Extracts of three agro-industrial wastes (Lemon processing residues, Fennel processing residues and Brewer's spent grain) are being investigated as sources of bio-effectors for the third trial consequently. Corresponding individual and mixture aqueous extracts are assessed for their synergistic and/or single agronomic and qualitative performances on soil-grown tomato, compared to both a control and humic acid treatments. A metabolomic profiling of tomato fruits via the Proton Nuclear Magnetic Resonance (NMR) spectroscopy, as holistic indicator of fruit quality and extract-induced responses, complements crop productivity and organoleptic/nutritional qualitative analyses. Results are expected to show mainly an enhancement of the fruit qualitative traits, and to confirm partly the previous results of better crop productivity and metabolism enhancement. Waste-derived bio-effectors could be, accordingly, demonstrated as potential candidates of plant-enhancing substances. Keywords: bio-effectors, organic farming, agro-industrial wastes, nuclear magnetic resonance (NMR), tomato.

  10. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    Science.gov (United States)

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  11. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  12. The influence of computer-generated path on the robot’s effector stability of motion

    Science.gov (United States)

    Foit, K.; Banaś, W.; Gwiazda, A.; Ćwikła, G.

    2017-08-01

    The off-line trajectory planning is often carried out due to economical and practical reasons: the robot is not excluded from the production process and the operator could benefit from testing programs in the virtual environment. On the other hand, the dedicated off-line programming and simulation software is often limited in features and is intended to roughly check the program. It should be expected that the arm of the real robot’s manipulator will realize the trajectory in different manner: the acceleration and deceleration phases may trigger the vibrations of the kinematic chain that could affect the precision of effector positioning and degrade the quality of process realized by the robot. The purpose of this work is the analysis of the selected cases, when the robot’s effector has been moved along the programmed path. The off-line generated, test trajectories have different arrangement of points: such approach has allowed evaluating the time needed to complete the each of the tasks, as well as measuring the level of the vibration of the robot’s wrist. All tests were performed without the load. The conclusions of the experiment may be useful during the trajectory planning in order to avoid the critical configuration of points.

  13. Cirtical role for Salmonella effector SopB in regulating inflammasome activation.

    Science.gov (United States)

    Hu, Gui-Qiu; Song, Pei-Xuan; Chen, Wei; Qi, Shuai; Yu, Shui-Xing; Du, Chong-Tao; Deng, Xu-Ming; Ouyang, Hong-Sheng; Yang, Yong-Jun

    2017-10-01

    Salmonella is known to evolve many mechanisms to avoid or delay inflammasome activation which remain largely unknown. In this study, we investigated whether the SopB protein critical to bacteria virulence capacity was an effector that involved in the regulation of inflammasome activation. BMDMs from NLRC4-, NLRP3-, caspase-1/-11-, IFI16- and AIM2-deficient mice were pretreated with LPS, and subsequently stimulated with a series of SopB-related strains of Salmonella, inflammasome induced cell death, IL-1β secretion, cleaved caspase-1 production and ASC speckle formation were detected. We found that SopB could inhibit host IL-1β secretion, caspase-1 activation and inflammasome induced cell death using a series of SopB-related strains of Salmonella; however the reduction of IL-1β secretion was not dependent on sensor that contain PYD domain, such as NLRP3, AIM2 or IFI16, but dependent on NLRC4. Notably, SopB specifically prevented ASC oligomerization and the enzymatic activity of SopB was responsible for the inflammasome inhibition. Furthermore, inhibition of Akt signaling induced enhanced inflammasome activation. These results revealed a novel role in inhibition of NLRC4 inflammasome for Salmonella effector SopB. Copyright © 2017. Published by Elsevier Ltd.

  14. Role of Blimp-1 in programing Th effector cells into IL-10 producers

    Science.gov (United States)

    Neumann, Christian; Heinrich, Frederik; Neumann, Katrin; Junghans, Victoria; Mashreghi, Mir-Farzin; Ahlers, Jonas; Janke, Marko; Rudolph, Christine; Mockel-Tenbrinck, Nadine; Kühl, Anja A.; Heimesaat, Markus M.; Esser, Charlotte; Im, Sin-Hyeog; Radbruch, Andreas

    2014-01-01

    Secretion of the immunosuppressive cytokine interleukin (IL) 10 by effector T cells is an essential mechanism of self-limitation during infection. However, the transcriptional regulation of IL-10 expression in proinflammatory T helper (Th) 1 cells is insufficiently understood. We report a crucial role for the transcriptional regulator Blimp-1, induced by IL-12 in a STAT4-dependent manner, in controlling IL-10 expression in Th1 cells. Blimp-1 deficiency led to excessive inflammation during Toxoplasma gondii infection with increased mortality. IL-10 production from Th1 cells was strictly dependent on Blimp-1 but was further enhanced by the synergistic function of c-Maf, a transcriptional regulator of IL-10 induced by multiple factors, such as the Notch pathway. We found Blimp-1 expression, which was also broadly induced by IL-27 in effector T cells, to be antagonized by transforming growth factor (TGF) β. While effectively blocking IL-10 production from Th1 cells, TGF-β shifted IL-10 regulation from a Blimp-1–dependent to a Blimp-1–independent pathway in IL-27–induced Tr1 (T regulatory 1) cells. Our findings further illustrate how IL-10 regulation in Th cells relies on several transcriptional programs that integrate various signals from the environment to fine-tune expression of this critical immunosuppressive cytokine. PMID:25073792

  15. Systems-Biology Approaches to Discover Anti-Viral Effectors of the Human Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Andreas F.R. Sommer

    2011-07-01

    Full Text Available Virus infections elicit an immediate innate response involving antiviral factors. The activities of some of these factors are, in turn, blocked by viral countermeasures. The ensuing battle between the host and the viruses is crucial for determining whether the virus establishes a foothold and/or induces adaptive immune responses. A comprehensive systems-level understanding of the repertoire of anti-viral effectors in the context of these immediate virus-host responses would provide significant advantages in devising novel strategies to interfere with the initial establishment of infections. Recent efforts to identify cellular factors in a comprehensive and unbiased manner, using genome-wide siRNA screens and other systems biology “omics” methodologies, have revealed several potential anti-viral effectors for viruses like Human immunodeficiency virus type 1 (HIV-1, Hepatitis C virus (HCV, West Nile virus (WNV, and influenza virus. This review describes the discovery of novel viral restriction factors and discusses how the integration of different methods in systems biology can be used to more comprehensively identify the intimate interactions of viruses and the cellular innate resistance.

  16. Cognate antigen stimulation generates potent CD8+ inflammatory effector T cells.

    Directory of Open Access Journals (Sweden)

    Hsueh-Cheng eSung

    2013-12-01

    Full Text Available Inflammatory reactions are believed to be triggered by innate signals and have a major protective role by recruiting innate immunity cells, favoring lymphocyte activation and differentiation, and thus contributing to the sequestration and elimination of the injurious stimuli. Although certain lymphocyte types such as TH17 cells co-participate in inflammatory reactions, their generation from the naïve pool requires the pre-existence of an inflammatory milieu. In this context, inflammation is always regarded as beginning with an innate response that may be eventually perpetuated and amplified by certain lymphocyte types. In contrast, we here show that even in sterile immunizations or in MyD88 deficient mice, CD8 T cells produce a burst of pro-inflammatory cytokines and chemokines. These functions follow opposite rules to the classic CD8 effector functions since they are generated prior to cell expansion and decline before antigen elimination. As few as 56 CD8+ inflammatory effector cells in a lymph node can mobilize 107 cells in 24h, including lymphocytes, natural killer cells and several accessory cell types involved in inflammatory reactions. Thus, although inflammation modulates cognate responses, CD8 cognate responses also initiate local inflammatory reactions.

  17. Cytokine Secreting Microparticles Engineer the Fate and the Effector Functions of T-Cells.

    Science.gov (United States)

    Majedi, Fatemeh S; Hasani-Sadrabadi, Mohammad Mahdi; Kidani, Yoko; Thauland, Timothy J; Moshaverinia, Alireza; Butte, Manish J; Bensinger, Steven J; Bouchard, Louis-S

    2018-02-01

    T-cell immunotherapy is a promising approach for cancer, infection, and autoimmune diseases. However, significant challenges hamper its therapeutic potential, including insufficient activation, delivery, and clonal expansion of T-cells into the tumor environment. To facilitate T-cell activation and differentiation in vitro, core-shell microparticles are developed for sustained delivery of cytokines. These particles are enriched by heparin to enable a steady release of interleukin-2 (IL-2), the major T-cell growth factor, over 10+ d. The controlled delivery of cytokines is used to steer lineage specification of cultured T-cells. This approach enables differentiation of T-cells into central memory and effector memory subsets. It is shown that the sustained release of stromal cell-derived factor 1α could accelerate T-cell migration. It is demonstrated that CD4+ T-cells could be induced to high concentrations of regulatory T-cells through controlled release of IL-2 and transforming growth factor beta. It is found that CD8+ T-cells that received IL-2 from microparticles are more likely to gain effector functions as compared with traditional administration of IL-2. Culture of T-cells within 3D scaffolds that contain IL-2-secreting microparticles enhances proliferation as compared with traditional, 2D approaches. This yield a new method to control the fate of T-cells and ultimately to new strategies for immune therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression.

    Science.gov (United States)

    Kerk, Sze Yen; Kratsios, Paschalis; Hart, Michael; Mourao, Romulo; Hobert, Oliver

    2017-01-04

    A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

    Science.gov (United States)

    Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-05-01

    The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.

  20. Association of Effector Six6 with Vascular Wilt Symptoms Caused by Fusarium oxysporum on Soybean.

    Science.gov (United States)

    Lanubile, Alessandra; Ellis, Margaret L; Marocco, Adriano; Munkvold, Gary P

    2016-11-01

    The Fusarium oxysporum species complex (FOSC) is a widely distributed group of fungi that includes both pathogenic and nonpathogenic isolates. In a previous study, isolates within the FOSC collected primarily from soybean were assessed for the presence of 12 fungal effector genes. Although none of the assayed genes was significantly associated with wilt symptoms on soybean, the secreted in xylem 6 (Six6) gene was present only in three isolates, which all produced high levels of vascular wilt on soybean. In the current study, a collection of F. oxysporum isolates from soybean roots and F. oxysporum f. sp. phaseoli isolates from common bean was screened for the presence of the Six6 gene. Interestingly, all isolates for which the Six6 amplicon was generated caused wilt symptoms on soybean, and two-thirds of the isolates showed high levels of aggressiveness, indicating a positive association between the presence of the effector gene Six6 and induction of wilt symptoms. The expression profile of the Six6 gene analyzed by quantitative reverse-transcription polymerase chain reaction revealed an enhanced expression for the isolates that caused more severe wilt symptoms on soybean, as established by the greenhouse assay. These findings suggest the suitability of the Six6 gene as a possible locus for pathogenicity-based molecular diagnostics across the various formae speciales.

  1. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    Science.gov (United States)

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  2. Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T Cell Function and Promoting Treg Activity

    Directory of Open Access Journals (Sweden)

    Astrid M. Westendorf

    2017-03-01

    Full Text Available Background/Aims: Hypoxia occurs in many pathological conditions, including inflammation and cancer. Within this context, hypoxia was shown to inhibit but also to promote T cell responses. Due to this controversial function, we aimed to explore whether an insufficient anti-tumour response during colitis-associated colon cancer could be ascribed to a hypoxic microenvironment. Methods: Colitis-associated colon cancer was induced in wildtype mice, and hypoxia as well as T cell immunity were analysed in the colonic tumour tissues. In addition, CD4+ effector T cells and regulatory T cells were cultured under normoxic and hypoxic conditions and examined regarding their phenotype and function. Results: We observed severe hypoxia in the colon of mice suffering from colitis-associated colon cancer that was accompanied by a reduced differentiation of CD4+ effector T cells and an enhanced number and suppressive activity of regulatory T cells. Complementary ex vivo and in vitro studies revealed that T cell stimulation under hypoxic conditions inhibited the differentiation, proliferation and IFN-γ production of TH1 cells and enhanced the suppressive capacity of regulatory T cells. Moreover, we identified an active role for HIF-1α in the modulation of CD4+ T cell functions under hypoxic conditions. Conclusion: Our data indicate that oxygen availability can function as a local modulator of CD4+ T cell responses and thus influences tumour immune surveillance in inflammation-associated colon cancer.

  3. Differential sensitivity of regulatory and effector T cells to cell death: a prerequisite for transplant tolerance

    Directory of Open Access Journals (Sweden)

    Sylvaine eYou

    2015-05-01

    Full Text Available Despite significant progress achieved in transplantation, immunosuppressive therapies currently used to prevent graft rejection are still endowed with severe side effects impairing their efficiency over the long term. Thus, the development of graft-specific, non toxic innovative therapeutic strategies has become a major challenge, the goal being to selectively target alloreactive effector T cells while sparing CD4+Foxp3+ regulatory T cells (Tregs to promote operational tolerance. Various approaches, notably the one based on monoclonal antibodies or fusion proteins directed against the TCR/CD3 complex, TCR coreceptors, or costimulatory molecules, have been proposed to reduce the alloreactive T cell pool which is an essential prerequisite to create a therapeutic window allowing Tregs to induce and maintain allograft tolerance. In this minireview, we focus on the differential sensitivity of Tregs and effector T cells to the depleting and inhibitory effect of these immunotherapies, with a particular emphasis on CD3-specific antibodies that beyond their immunosuppressive effect, also express potent tolerogenic capacities.

  4. Identification and characterization of LysM effectors in Penicillium expansum.

    Science.gov (United States)

    Levin, Elena; Ballester, Ana Rosa; Raphael, Ginat; Feigenberg, Oleg; Liu, Yongsheng; Norelli, John; Gonzalez-Candelas, Luis; Ma, Jing; Dardick, Christopher; Wisniewski, Michael; Droby, Samir

    2017-01-01

    P. expansum is regarded as one of the most important postharvest rots of apple fruit and is also of great concern to fruit processing industries. Elucidating the pathogenicity mechanism of this pathogen is of utmost importance for the development of effective and safe management strategies. Although, many studies on modification of the host environment by the pathogen were done, its interactions with fruit during the early stages of infection and the virulence factors that mediate pathogenicity have not been fully defined. Effectors carrying LysM domain have been identified in numerous pathogenic fungi and their role in the first stages of infection has been established. In this study, we identified 18 LysM genes in the P. expansum genome. Amino acid sequence analysis indicated that P. expansum LysM proteins belong to a clade of fungal-specific LysM. Eleven of the discovered LysM genes were found to have secretory pathway signal peptide, among them, 4 (PeLysM1 PeLysM2, PeLysM3 and PeLysM4) were found to be highly expressed during the infection and development of decay of apple fruit. Effect of targeted deletion of the four putative PeLysM effectors on the growth and pathogenicity was studied. Possible interactions of PeLysM with host proteins was investigated using the yeast-two-hybrid system.

  5. Identification and characterization of LysM effectors in Penicillium expansum.

    Directory of Open Access Journals (Sweden)

    Elena Levin

    Full Text Available P. expansum is regarded as one of the most important postharvest rots of apple fruit and is also of great concern to fruit processing industries. Elucidating the pathogenicity mechanism of this pathogen is of utmost importance for the development of effective and safe management strategies. Although, many studies on modification of the host environment by the pathogen were done, its interactions with fruit during the early stages of infection and the virulence factors that mediate pathogenicity have not been fully defined. Effectors carrying LysM domain have been identified in numerous pathogenic fungi and their role in the first stages of infection has been established. In this study, we identified 18 LysM genes in the P. expansum genome. Amino acid sequence analysis indicated that P. expansum LysM proteins belong to a clade of fungal-specific LysM. Eleven of the discovered LysM genes were found to have secretory pathway signal peptide, among them, 4 (PeLysM1 PeLysM2, PeLysM3 and PeLysM4 were found to be highly expressed during the infection and development of decay of apple fruit. Effect of targeted deletion of the four putative PeLysM effectors on the growth and pathogenicity was studied. Possible interactions of PeLysM with host proteins was investigated using the yeast-two-hybrid system.

  6. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors

    KAUST Repository

    Li, Lixin

    2013-07-01

    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. © 2013 The Author.

  7. GITR ligand-costimulation activates effector and regulatory functions of CD4+ T cells

    International Nuclear Information System (INIS)

    Igarashi, Hanna; Cao, Yujia; Iwai, Hideyuki; Piao, Jinhua; Kamimura, Yosuke; Hashiguchi, Masaaki; Amagasa, Teruo; Azuma, Miyuki

    2008-01-01

    Engagement of glucocorticoid-induced TNFR-related protein (GITR) enables the costimulation of both CD25 - CD4 + effector (Teff) and CD25 + CD4 + regulatory (Treg) cells; however, the effects of GITR-costimulation on Treg function remain controversial. In this study, we examined the effects of GITR ligand (GITRL) binding on the respective functions of CD4 + T cells. GITRL-P815 transfectants efficiently augmented anti-CD3-induced proliferation and cytokine production by Teff cells. Proliferation and IL-10 production in Treg were also enhanced by GITRL transfectants when exogenous IL-2 and stronger CD3 stimulation was provided. Concomitant GITRL-costimulation of Teff and Treg converted the anergic state of Treg into a proliferating state, maintaining and augmenting their function. Thus, GITRL-costimulation augments both effector and regulatory functions of CD4 + T cells. Our results suggest that highly activated and increased ratios of Treg reverse the immune-enhancing effects of GITRL-costimulation in Teff, which may be problematic for therapeutic applications using strong GITR agonists

  8. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    Science.gov (United States)

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  9. ULtiMATE system for rapid assembly of customized TAL effectors.

    Directory of Open Access Journals (Sweden)

    Junjiao Yang

    Full Text Available Engineered TAL-effector nucleases (TALENs and TALE-based constructs have become powerful tools for eukaryotic genome editing. Although many methods have been reported, it remains a challenge for the assembly of designer-based TALE repeats in a fast, precise and cost-effective manner. We present an ULtiMATE (USER-based Ligation Mediated Assembly of TAL Effector system for speedy and accurate assembly of customized TALE constructs. This method takes advantage of uracil-specific excision reagent (USER to create multiple distinct sticky ends between any neighboring DNA fragments for specific ligation. With pre-assembled templates, multiple TALE DNA-binding domains could be efficiently assembled in order within hours with minimal manual operation. This system has been demonstrated to produce both functional TALENs for effective gene knockout and TALE-mediated gene-specific transcription activation (TALE-TA. The feature of both ease-of-operation and high efficiency of ULtiMATE system makes it not only an ideal method for biologic labs, but also an approach well suited for large-scale assembly of TALENs and any other TALE-based constructions.

  10. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    Directory of Open Access Journals (Sweden)

    Lindsay M Margoles

    Full Text Available Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43 and effector molecules (IFN-γ, TNF as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  11. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    Science.gov (United States)

    Margoles, Lindsay M; Mittal, Rohit; Klingensmith, Nathan J; Lyons, John D; Liang, Zhe; Serbanescu, Mara A; Wagener, Maylene E; Coopersmith, Craig M; Ford, Mandy L

    2016-01-01

    Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43) and effector molecules (IFN-γ, TNF) as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  12. Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation.

    Science.gov (United States)

    Scheidegger, F; Ellner, Y; Guye, P; Rhomberg, T A; Weber, H; Augustin, H G; Dehio, C

    2009-07-01

    The zoonotic pathogen Bartonella henselae (Bh) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh. Spheroids generated from Bh-infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh-induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella- induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.

  13. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis.

    Science.gov (United States)

    Wei, Hai-Lei; Zhang, Wei; Collmer, Alan

    2018-05-08

    The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E) proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Bacterial Effectors and Their Functions in the Ubiquitin-Proteasome System: Insight from the Modes of Substrate Recognition

    Directory of Open Access Journals (Sweden)

    Minsoo Kim

    2014-08-01

    Full Text Available Protein ubiquitination plays indispensable roles in the regulation of cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative diseases. Given the importance of this modification, it is to be expected that several pathogenic bacteria have developed the ability to utilize the host ubiquitin system for their own benefit. Modulation of the host ubiquitin system by bacterial effector proteins inhibits innate immune responses and hijacks central signaling pathways. Bacterial effectors mimic enzymes of the host ubiquitin system, but may or may not be structurally similar to the mammalian enzymes. Other effectors bind and modify components of the host ubiquitin system, and some are themselves subject to ubiquitination. This review will describe recent findings, based on structural analyses, regarding how pathogens use post-translational modifications of proteins to establish an infection.

  15. Bacterial effectors and their functions in the ubiquitin-proteasome system: insight from the modes of substrate recognition.

    Science.gov (United States)

    Kim, Minsoo; Otsubo, Ryota; Morikawa, Hanako; Nishide, Akira; Takagi, Kenji; Sasakawa, Chihiro; Mizushima, Tsunehiro

    2014-08-18

    Protein ubiquitination plays indispensable roles in the regulation of cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative diseases. Given the importance of this modification, it is to be expected that several pathogenic bacteria have developed the ability to utilize the host ubiquitin system for their own benefit. Modulation of the host ubiquitin system by bacterial effector proteins inhibits innate immune responses and hijacks central signaling pathways. Bacterial effectors mimic enzymes of the host ubiquitin system, but may or may not be structurally similar to the mammalian enzymes. Other effectors bind and modify components of the host ubiquitin system, and some are themselves subject to ubiquitination. This review will describe recent findings, based on structural analyses, regarding how pathogens use post-translational modifications of proteins to establish an infection.

  16. Serial Assessment of Immune Status by Circulating CD8+ Effector T Cell Frequencies for Posttransplant Infectious Complications

    Directory of Open Access Journals (Sweden)

    Shinji Uemoto

    2008-01-01

    Full Text Available To clarify the role of CD8+ effector T cells for infectious complications, 92 recipients were classified according to the hierarchical clustering of preoperative CD8+CD45 isoforms: Group I was naive, Group II was effector memory, and Group III was effector (E T cell-dominant. The posttransplant infection rates progressively increased from 29% in Group I to 64.3% in Group III recipients. The posttransplant immune status was compared with the pretransplant status, based on the measure (% difference and its graphical form (scatter plot. In Groups I and II, both approaches showed a strong upward deviation from pretransplant status upon posttransplant infection, indicating an enhanced clearance of pathogens. In Group III, in contrast, both approaches showed a clear downward deviation from preoperative status, indicating deficient cytotoxicity. The % E difference and scatter plot can be used as a useful indicator of a posttransplant infectious complication.

  17. Development of an Intrinsic Continuum Robot and Attitude Estimation of Its End-effector Based on a Kalman Filter

    International Nuclear Information System (INIS)

    Kang, Chang Hyun; Bae, Ji Hwan; Kang, Bong Soo

    2015-01-01

    This paper presents the design concept of an intrinsic continuum robot for safe man-machine interface and characteristic behaviors of its end-effector based on real experiments. Since pneumatic artificial muscles having similar antagonistic actuation to human muscles are used for main backbones of the proposed robot as well as in the role of the actuating devices, variable stiffness of robotic joints can be available in the actual environment. In order to solve the inherent shortcoming of an intrinsic continuum robot due to bending motion of the backbone materials, a Kalman filter scheme based on a triaxial accelerometer and a triaxial gyroscope was proposed to conduct an attitude estimation of the end-effector of the robot. The experimental results verified that the proposed method was effective in estimating the attitude of the end-effector of the intrinsic continuum robot

  18. Immune Response Induction and New Effector Mechanisms Possibly Involved in Protection Conferred by the Cuban Anti-Meningococcal BC Vaccine

    Science.gov (United States)

    Pérez, Oliver; Lastre, Miriam; Lapinet, José; Bracho, Gustavo; Díaz, Miriam; Zayas, Caridad; Taboada, Carlos; Sierra, Gustavo

    2001-01-01

    This report explores the participation of some afferent mechanisms in the immune response induced by the Cuban anti-meningococcal vaccine VA-MENGOC-BC. The induction of delayed-type hypersensitivity in nursing babies and lymphocyte proliferation after immunization is demonstrated. The presence of gamma interferon IFN-γ and interleukin-2 (IL-2) mRNAs but absence of IL-4, IL-5, and IL-10 mRNAs were observed in peripheral blood mononuclear cells from immunized subjects after in vitro challenge with outer membrane vesicles. In addition, some effector functions were also explored. The presence of opsonic activity was demonstrated in sera from vaccinees. The role of neutrophils as essential effector cells was shown. In conclusion, we have shown that, at least in the Cuban adult population, VA-MENGOC-BC induces mechanisms with a T-helper 1 pattern in the afferent and effector branches of the immune response. PMID:11401992

  19. Development of an Intrinsic Continuum Robot and Attitude Estimation of Its End-effector Based on a Kalman Filter

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Hyun; Bae, Ji Hwan; Kang, Bong Soo [Hannam University, Daejeon (Korea, Republic of)

    2015-04-15

    This paper presents the design concept of an intrinsic continuum robot for safe man-machine interface and characteristic behaviors of its end-effector based on real experiments. Since pneumatic artificial muscles having similar antagonistic actuation to human muscles are used for main backbones of the proposed robot as well as in the role of the actuating devices, variable stiffness of robotic joints can be available in the actual environment. In order to solve the inherent shortcoming of an intrinsic continuum robot due to bending motion of the backbone materials, a Kalman filter scheme based on a triaxial accelerometer and a triaxial gyroscope was proposed to conduct an attitude estimation of the end-effector of the robot. The experimental results verified that the proposed method was effective in estimating the attitude of the end-effector of the intrinsic continuum robot.

  20. The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis

    Science.gov (United States)

    Gimenez-Ibanez, Selena; Boter, Marta; Fernández-Barbero, Gemma; Chini, Andrea; Rathjen, John P.; Solano, Roberto

    2014-01-01

    Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta) 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA)-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto) DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome. PMID:24558350

  1. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots.

    Science.gov (United States)

    Stergiopoulos, Ioannis; van den Burg, Harrold A; Okmen, Bilal; Beenen, Henriek G; van Liere, Sabine; Kema, Gert H J; de Wit, Pierre J G M

    2010-04-20

    Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce effector-triggered immunity in their presence. Here we show that homologs of the C. fulvum Avr4 and Ecp2 effectors are present in other pathogenic fungi of the Dothideomycete class, including Mycosphaerella fijiensis, the causal agent of black Sigatoka disease of banana. We demonstrate that the Avr4 homolog of M. fijiensis is a functional ortholog of C. fulvum Avr4 that protects fungal cell walls against hydrolysis by plant chitinases through binding to chitin and, despite the low overall sequence homology, triggers a Cf-4-mediated hypersensitive response (HR) in tomato. Furthermore, three homologs of C. fulvum Ecp2 are found in M. fijiensis, one of which induces different levels of necrosis or HR in tomato lines that lack or contain a putative cognate Cf-Ecp2 protein, respectively. In contrast to Avr4, which acts as a defensive virulence factor, M. fijiensis Ecp2 likely promotes virulence by interacting with a putative host target causing host cell necrosis, whereas Cf-Ecp2 could possibly guard the virulence target of Ecp2 and trigger a Cf-Ecp2-mediated HR. Overall our data suggest that Avr4 and Ecp2 represent core effectors that are collectively recognized by single cognate Cf-proteins. Transfer of these Cf genes to plant species that are attacked by fungi containing these cognate core effectors provides unique ways for breeding disease-resistant crops.

  2. Development of position control of end-effector for CS-113 robot based on three degree of freedom motions

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Setiawan, Widi; Arif, Agus

    2003-01-01

    A software development for three degrees of freedom motions of CS-113 robot arm has been done. This software, which was based on inverse kinematic, can be used to control position of D and D (decontamination and Dismantlement) robot. A preliminary construction of robot arm (three degrees of freedom) has been constructed also to study the mechanic aspects. The scope of this research consist of direct kinematic and inverse kinematic implementation. The direct kinematic implementation developed according to following steps: (1) assigning kinematic parameters of CS-113 robot arm using Denavit-Hertenberg methods, (2) formulating kinematic equation for all joint. The inverse kinematic implementation developed by transforming position in Cartesian coordinates into joint angle in angle coordinates. Both direct and inverse kinematic were implemented with computer software which is written in the VISUAL BASIC. This software was tested on CS-113 robot. The theoretically calculation was done on MATLAB. Input of direct kinematic were joint angles (5 o , 10 o , -20 o , 15 o , 25 o , 30 o , -50 o , and 60 o ), whereas the input of inverse kinematic were the position on Cartesian coordinate, with the duration for moving end-effector testing 4 seconds. The test results of direct kinematic implementation on CS-113 robot were the position of end-effector on Cartesian coordinates. The position of end-effector which was measured experimentally on CS-113 robot compared with position of end-effector which was calculated on MATLAB. This comparison showed that static performance of CS-113 robot manipulator, bias (systematic error) that different from the end-effector position change within 8,9%, 12,3% and 27,3% on X, Y, Z axes, respectively, the measurements repeatability (precision) of end-effector position were ± 0,031 cm to ±0,183 cm. The test results of inverse kinematic implementation on CS-113 robot showed that the accuracy of end-effector position varied on all axes, the bias

  3. Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements.

    Science.gov (United States)

    Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng

    2010-03-31

    Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was

  4. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella.

    Science.gov (United States)

    Harms, Alexander; Liesch, Marius; Körner, Jonas; Québatte, Maxime; Engel, Philipp; Dehio, Christoph

    2017-10-01

    Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery) domain-similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the

  5. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella.

    Directory of Open Access Journals (Sweden)

    Alexander Harms

    2017-10-01

    Full Text Available Host-targeting type IV secretion systems (T4SS evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery domain-similar to the Bartonella effector proteins (Beps that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping

  6. miRNA profiling of naive, effector and memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Haoquan Wu

    Full Text Available microRNAs have recently emerged as master regulators of gene expression during development and cell differentiation. Although profound changes in gene expression also occur during antigen-induced T cell differentiation, the role of miRNAs in the process is not known. We compared the miRNA expression profiles between antigen-specific naïve, effector and memory CD8+ T cells using 3 different methods--small RNA cloning, miRNA microarray analysis and real-time PCR. Although many miRNAs were expressed in all the T cell subsets, the frequency of 7 miRNAs (miR-16, miR-21, miR-142-3p, miR-142-5p, miR-150, miR-15b and let-7f alone accounted for approximately 60% of all miRNAs, and their expression was several fold higher than the other expressed miRNAs. Global downregulation of miRNAs (including 6/7 dominantly expressed miRNAs was observed in effector T cells compared to naïve cells and the miRNA expression levels tended to come back up in memory T cells. However, a few miRNAs, notably miR-21 were higher in effector and memory T cells compared to naïve T cells. These results suggest that concomitant with profound changes in gene expression, miRNA profile also changes dynamically during T cell differentiation. Sequence analysis of the cloned mature miRNAs revealed an extensive degree of end polymorphism. While 3'end polymorphisms dominated, heterogeneity at both ends, resembling drosha/dicer processing shift was also seen in miR-142, suggesting a possible novel mechanism to generate new miRNA and/or to diversify miRNA target selection. Overall, our results suggest that dynamic changes in the expression of miRNAs may be important for the regulation of gene expression during antigen-induced T cell differentiation. Our study also suggests possible novel mechanisms for miRNA biogenesis and function.

  7. An optimal set of features for predicting type IV secretion system effector proteins for a subset of species based on a multi-level feature selection approach.

    Directory of Open Access Journals (Sweden)

    Zhila Esna Ashari

    Full Text Available Type IV secretion systems (T4SS are multi-protein complexes in a number of bacterial pathogens that can translocate proteins and DNA to the host. Most T4SSs function in conjugation and translocate DNA; however, approximately 13% function to secrete proteins, delivering effector proteins into the cytosol of eukaryotic host cells. Upon entry, these effectors manipulate the host cell's machinery for their own benefit, which can result in serious illness or death of the host. For this reason recognition of T4SS effectors has become an important subject. Much previous work has focused on verifying effectors experimentally, a costly endeavor in terms of money, time, and effort. Having good predictions for effectors will help to focus experimental validations and decrease testing costs. In recent years, several scoring and machine learning-based methods have been suggested for the purpose of predicting T4SS effector proteins. These methods have used different sets of features for prediction, and their predictions have been inconsistent. In this paper, an optimal set of features is presented for predicting T4SS effector proteins using a statistical approach. A thorough literature search was performed to find features that have been proposed. Feature values were calculated for datasets of known effectors and non-effectors for T4SS-containing pathogens for four genera with a sufficient number of known effectors, Legionella pneumophila, Coxiella burnetii, Brucella spp, and Bartonella spp. The features were ranked, and less important features were filtered out. Correlations between remaining features were removed, and dimensional reduction was accomplished using principal component analysis and factor analysis. Finally, the optimal features for each pathogen were chosen by building logistic regression models and evaluating each model. The results based on evaluation of our logistic regression models confirm the effectiveness of our four optimal sets of

  8. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole.

    Directory of Open Access Journals (Sweden)

    Hayley J Newton

    Full Text Available The human pathogen Coxiella burnetii encodes a type IV secretion system called Dot/Icm that is essential for intracellular replication. The Dot/Icm system delivers bacterial effector proteins into the host cytosol during infection. The effector proteins delivered by C. burnetii are predicted to have important functions during infection, but when these proteins are needed during infection has not been clearly defined. Here, we use a reporter system consisting of fusion proteins that have a β-lactamase enzyme (BlaM fused to C. burnetii effector proteins to study protein translocation by the Dot/Icm system. Translocation of BlaM fused to the effector proteins CBU0077, CBU1823 and CBU1524 was not detected until 8-hours after infection of HeLa cells, which are permissive for C. burnetii replication. Translocation of these effector fusion proteins by the Dot/Icm system required acidification of the Coxiella-containing vacuole. Silencing of the host genes encoding the membrane transport regulators Rab5 or Rab7 interfered with effector translocation, which indicates that effectors are not translocated until bacteria traffic to a late endocytic compartment in the host cell. Similar requirements for effector translocation were discerned in bone marrow macrophages derived from C57BL/6 mice, which are primary cells that restrict the intracellular replication of C. burnetii. In addition to requiring endocytic maturation of the vacuole for Dot/Icm-mediated translocation of effectors, bacterial transcription was required for this process. Thus, translocation of effector proteins by the C. burnetii Dot/Icm system occurs after acidification of the CCV and maturation of this specialized organelle to a late endocytic compartment. This indicates that creation of the specialized vacuole in which C. burnetii replicates represents a two-stage process mediated initially by host factors that regulate endocytic maturation and then by bacterial effectors delivered into

  9. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene.

    Directory of Open Access Journals (Sweden)

    Raul A Cernadas

    2014-02-01

    Full Text Available Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo, which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting.

  10. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island.

    Science.gov (United States)

    Iribarren, María Josefina; Pascuan, Cecilia; Soto, Gabriela; Ayub, Nicolás Daniel

    2015-11-01

    Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  12. Remote Viewing End Effectors for Light Duty Utility Arm Robot (U)

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.; Haynes, H.B.; Anderosn, E.K.; Pardini, A.F.

    1996-01-01

    The Robotics Development Groups at the Savannah River Site (SRS) and at the Hanford site have developed remote video and photography systems for deployment in underground radioactive-waste storage tanks at the Department of Energy (DOE) sites as a part of the Office of Science and Technology (OST) program within DOE. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and out of the tank, with all viewing functions remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Only the remote video systems are discussed in this paper

  13. A transcription activator-like effector (TALE) induction system mediated by proteolysis.

    Science.gov (United States)

    Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F

    2016-04-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.

  14. Milk-derived GM3 and GD3 differentially inhibit dendritic cell maturation and effector functionalities

    DEFF Research Database (Denmark)

    Brønnum, H.; Seested, T.; Hellgren, Lars

    2005-01-01

    value of gangliosides in breast milk has yet to be elucidated but when milk is ingested, dietary gangliosides might conceptually affect immune cells, such as dendritic cells (DCs). In this study, we address the in vitro effect of GD(3) and GM(3) on DC effector functionalities. Treatment of bone marrow......Gangliosides are complex glycosphingolipids, which exert immune-modulating effects on various cell types. Ganglioside GD(3) and GM(3) are the predominant gangliosides of human breast milk but during the early phase of lactation, the content of GD(3) decreases while GM(3) increases. The biological...... by GM(3,) and the potency of DCs to activate CD4(+) cells in MLR was unaffected by GM(3). However, both gangliosides suppressed expression of CD40, CD80, CD86 and major histocompatibility complex class II on DCs. Because GD(3) overall inhibits DC functionalities more than GM(3), the immune modulating...

  15. Milk-derived GM(3) and GD(3) differentially inhibit dendritic cell maturation and effector functionalities

    DEFF Research Database (Denmark)

    Bronnum, H.; Seested, T.; Hellgren, Lars

    2005-01-01

    value of gangliosides in breast milk has yet to be elucidated but when milk is ingested, dietary gangliosides might conceptually affect immune cells, such as dendritic cells (DCs). In this study, we address the in vitro effect of GD(3) and GM(3) on DC effector functionalities. Treatment of bone marrow......Gangliosides are complex glycosphingolipids, which exert immune-modulating effects on various cell types. Ganglioside GD(3) and GM(3) are the predominant gangliosides of human breast milk but during the early phase of lactation, the content of GD(3) decreases while GM(3) increases. The biological...... by GM(3,) and the potency of DCs to activate CD4(+) cells in MLR was unaffected by GM(3). However, both gangliosides suppressed expression of CD40, CD80, CD86 and major histocompatibility complex class II on DCs. Because GD(3) overall inhibits DC functionalities more than GM(3), the immune modulating...

  16. Effector stage CC chemokine receptor-1 selective antagonism reduces multiple sclerosis-like rat disease.

    Science.gov (United States)

    Eltayeb, Sana; Sunnemark, Dan; Berg, Anna-Lena; Nordvall, Gunnar; Malmberg, Asa; Lassmann, Hans; Wallström, Erik; Olsson, Tomas; Ericsson-Dahlstrand, Anders

    2003-09-01

    We have studied the role of the chemokine receptor CCR1 during the effector stage of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in DA rats. In situ hybridization histochemistry revealed local production of the CCR1 ligands CCL3 (MIP-1 alpha) and CCL5 (RANTES), as well as large numbers of CCR1 and CCR5 expressing cells within inflammatory brain lesions. A low-molecular weight CCR1 selective antagonist potently abrogated both clinical and histopathological disease signs during a 5-day treatment period, without signs of peripheral immune compromise. Thus, we demonstrate therapeutic targeting of CCR1-dependent leukocyte recruitment to the central nervous system in a multiple sclerosis (MS)-like rat model.

  17. Comprehensive analysis of the specificity of transcription activator-like effector nucleases

    DEFF Research Database (Denmark)

    Juillerat, Alexandre; Dubois, Gwendoline; Valton, Julien

    2014-01-01

    A key issue when designing and using DNA-targeting nucleases is specificity. Ideally, an optimal DNA-targeting tool has only one recognition site within a genomic sequence. In practice, however, almost all designer nucleases available today can accommodate one to several mutations within...... their target site. The ability to predict the specificity of targeting is thus highly desirable. Here, we describe the first comprehensive experimental study focused on the specificity of the four commonly used repeat variable diresidues (RVDs; NI:A, HD:C, NN:G and NG:T) incorporated in transcription activator......-like effector nucleases (TALEN). The analysis of >15 500 unique TALEN/DNA cleavage profiles allowed us to monitor the specificity gradient of the RVDs along a TALEN/DNA binding array and to present a specificity scoring matrix for RVD/nucleotide association. Furthermore, we report that TALEN can only...

  18. End-Effector Position Analysis Using Forward Kinematics For 5 Dof Pravak Robot Arm

    Directory of Open Access Journals (Sweden)

    Jolly Atit Shah

    2013-03-01

    Full Text Available Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the kinematic analysis of a Pravak Robot arm which is used for doing successful robotic manipulation task in its workspace. The Pravak Robot Arm is a 5-DOF robot having all the joints revolute. The kinematics problem is defined as the transformation from the Cartesian space to the joint space and vice versa. In this study the Denavit- Hartenberg (D-H model is used to model robot links and joints. Pravak Robot Arm is a simple and safe robotic system designed for laboratory training and research applications. This robot allows to gain theoretical and practical experience in robotics, automation and control systems. The MATLAB R2007 is used to analyse end effectors position for a set of joint parameter.

  19. The role of complement in CD4⁺ T cell homeostasis and effector functions.

    Science.gov (United States)

    Kolev, Martin; Le Friec, Gaëlle; Kemper, Claudia

    2013-02-01

    The complement system is among the evolutionary oldest 'players' of the immune system. It was discovered in 1896 by Jules Bordet as a heat-labile fraction of the serum responsible for the opsonisation and subsequent killing of bacteria. The decades between the 1920s and 1990s then marked the discovery and biochemical characterization of the proteins comprising the complement system. Today, complement is defined as a complex system consisting of more than 30 membrane-bound and soluble plasma proteins, which are activated in a cascade-like manner, very similarly to the caspase proteases and blood coagulation systems. Complement is engrained in the immunologist's mind as a serum-effective, quintessential part of innate immunity, vitally required for the detection and removal of pathogens or other dangerous entities. Three decades ago, this rather confined definition was challenged and then refined when it was shown that complement participates vitally in the induction and regulation of B cell responses, thus adaptive immunity. Similarly, research work published in more recent years supports an equally important role for the complement system in shaping T cell responses. Today, we are again facing paradigm shifts in the field: complement is actively involved in the negative control of T cell effector immune responses, and thus, by definition in immune homeostasis. Further, while serum complement activity is without doubt fundamental in the defence against invading pathogens, local immune cell-derived production of complement emerges as key mediator of complement's impact on adaptive immune responses. And finally, the impact of complement on metabolic pathways and the crosstalk between complement and other immune effector systems is likely more extensive than previously anticipated and is fertile ground for future discoveries. In this review, we will discuss these emerging new roles of complement, with a focus on Th1 cell biology. Copyright © 2013 Elsevier Ltd. All

  20. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif

    Directory of Open Access Journals (Sweden)

    Emmersen Jeppe

    2010-05-01

    Full Text Available Abstract Background Powdery mildew and rust fungi are widespread, serious pathogens that depend on developing haustoria in the living plant cells. Haustoria are separated from the host cytoplasm by a plant cell-derived extrahaustorial membrane. They secrete effector proteins, some of which are subsequently transferred across this membrane to the plant cell to suppress defense. Results In a cDNA library from barley epidermis containing powdery mildew haustoria, two-thirds of the sequenced ESTs were fungal and represented ~3,000 genes. Many of the most highly expressed genes encoded small proteins with N-terminal signal peptides. While these proteins are novel and poorly related, they do share a three-amino acid motif, which we named "Y/F/WxC", in the N-terminal of the mature proteins. The first amino acid of this motif is aromatic: tyrosine, phenylalanine or tryptophan, and the last is always cysteine. In total, we identified 107 such proteins, for which the ESTs represent 19% of the fungal clones in our library, suggesting fundamental roles in haustoria function. While overall sequence similarity between the powdery mildew Y/F/WxC-proteins is low, they do have a highly similar exon-intron structure, suggesting they have a common origin. Interestingly, searches of public fungal genome and EST databases revealed that haustoria-producing rust fungi also encode large numbers of novel, short proteins with signal peptides and the Y/F/WxC-motif. No significant numbers of such proteins were identified from genome and EST sequences from either fungi which do not produce haustoria or from haustoria-producing Oomycetes. Conclusion In total, we identified 107, 178 and 57 such Y/F/WxC-proteins from the barley powdery mildew, the wheat stem rust and the wheat leaf rust fungi, respectively. All together, our findings suggest the Y/F/WxC-proteins to be a new class of effectors from haustoria-producing pathogenic fungi.

  1. Temporal prediction abilities are mediated by motor effector and rhythmic expertise.

    Science.gov (United States)

    Manning, Fiona C; Harris, Jennifer; Schutz, Michael

    2017-03-01

    Motor synchronization is a critical part of musical performance and listening. Recently, motor control research has described how movements that contain more available degrees of freedom are more accurately timed. Previously, we demonstrated that stick tapping improves perception in a timing detection task, where percussionists greatly outperformed non-percussionists only when tapping along. Since most synchronization studies implement finger tapping to examine simple motor synchronization, here we completed a similar task where percussionists and non-percussionists synchronized using finger tapping; movement with fewer degrees of freedom than stick tapping. Percussionists and non-percussionists listened to an isochronous beat sequence and identified the timing of a probe tone. On half of the trials, they tapped along with their index finger, and on the other half of the trials, they listened without moving prior to making timing judgments. We found that both groups benefited from tapping overall. Interestingly, percussionists performed only marginally better than did non-percussionists when finger tapping and no different when listening alone, differing from past studies reporting highly superior timing abilities in percussionists. Additionally, we found that percussionist finger tapping was less variable and less asynchronous than was non-percussionist tapping. Moreover, in both groups finger tapping was more variable and more asynchronous than stick tapping in our previous study. This study demonstrates that the motor effector implemented in tapping studies affects not only synchronization abilities, but also subsequent prediction abilities. We discuss these findings in light of effector-specific training and degrees of freedom in motor timing, both of which impact timing abilities to different extents.

  2. Legionella Effector AnkX Disrupts Host Cell Endocytic Recycling in a Phosphocholination-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Samual C. Allgood

    2017-09-01

    Full Text Available The facultative intracellular bacterium Legionella pneumophila proliferates within amoebae and human alveolar macrophages, and it is the causative agent of Legionnaires' disease, a life-threatening pneumonia. Within host cells, L. pneumophila establishes a replicative haven by delivering numerous effector proteins into the host cytosol, many of which target membrane trafficking by manipulating the function of Rab GTPases. The Legionella effector AnkX is a phosphocholine transferase that covalently modifies host Rab1 and Rab35. However, a detailed understanding of the biological consequence of Rab GTPase phosphocholination remains elusive. Here, we broaden the understanding of AnkX function by presenting three lines of evidence that it interferes with host endocytic recycling. First, using immunogold transmission electron microscopy, we determined that GFP-tagged AnkX ectopically produced in mammalian cells localizes at the plasma membrane and tubular membrane compartments, sites consistent with targeting the endocytic recycling pathway. Furthermore, the C-terminal region of AnkX was responsible for association with the plasma membrane, and we determined that this region was also able to bind the phosphoinositide lipids PI(3P and PI(4P in vitro. Second, we observed that mCherry-AnkX co-localized with Rab35, a regulator of recycling endocytosis and with major histocompatibility class I protein (MHC-I, a key immunoregulatory protein whose recycling from and back to the plasma membrane is Rab35-dependent. Third, we report that during infection of macrophages, AnkX is responsible for the disruption of endocytic recycling of transferrin, and AnkX's phosphocholination activity is critical for this function. These results support the hypothesis that AnkX targets endocytic recycling during host cell infection. Finally, we have demonstrated that the phosphocholination activity of AnkX is also critical for inhibiting fusion of the Legionella

  3. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    Science.gov (United States)

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  4. Genetic diversity of Candidatus Liberibacter asiaticus based on two hypervariable effector genes in Thailand.

    Science.gov (United States)

    Puttamuk, Thamrongjet; Zhou, Lijuan; Thaveechai, Niphone; Zhang, Shouan; Armstrong, Cheryl M; Duan, Yongping

    2014-01-01

    Huanglongbing (HLB), also known as citrus greening, is one of the most destructive diseases of citrus worldwide. HLB is associated with three species of 'Candidatus Liberibacter' with 'Ca. L. asiaticus' (Las) being the most widely distributed around the world, and the only species detected in Thailand. To understand the genetic diversity of Las bacteria in Thailand, we evaluated two closely-related effector genes, lasAI and lasAII, found within the Las prophages from 239 infected citrus and 55 infected psyllid samples collected from different provinces in Thailand. The results indicated that most of the Las-infected samples collected from Thailand contained at least one prophage sequence with 48.29% containing prophage 1 (FP1), 63.26% containing prophage 2 (FP2), and 19.38% containing both prophages. Interestingly, FP2 was found to be the predominant population in Las-infected citrus samples while Las-infected psyllids contained primarily FP1. The multiple banding patterns that resulted from amplification of lasAI imply extensive variation exists within the full and partial repeat sequence while the single band from lasAII indicates a low amount of variation within the repeat sequence. Phylogenetic analysis of Las-infected samples from 22 provinces in Thailand suggested that the bacterial pathogen may have been introduced to Thailand from China and the Philippines. This is the first report evaluating the genetic variation of a large population of Ca. L. asiaticus infected samples in Thailand using the two effector genes from Las prophage regions.

  5. Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection.

    Directory of Open Access Journals (Sweden)

    Eva Rothmeier

    2013-09-01

    Full Text Available The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS to form in phagocytes a distinct "Legionella-containing vacuole" (LCV, which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.

  6. Activation of Ran GTPase by a Legionella Effector Promotes Microtubule Polymerization, Pathogen Vacuole Motility and Infection

    Science.gov (United States)

    Rothmeier, Eva; Pfaffinger, Gudrun; Hoffmann, Christine; Harrison, Christopher F.; Grabmayr, Heinrich; Repnik, Urska; Hannemann, Mandy; Wölke, Stefan; Bausch, Andreas; Griffiths, Gareth; Müller-Taubenberger, Annette; Itzen, Aymelt; Hilbi, Hubert

    2013-01-01

    The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila. PMID:24068924

  7. Signs of impaired immunoregulation and enhanced effector T-cell responses in the primary antiphospholipid syndrome.

    Science.gov (United States)

    Jakiela, B; Iwaniec, T; Plutecka, H; Celinska-Lowenhoff, M; Dziedzina, S; Musial, J

    2016-04-01

    We investigated whether primary antiphospholipid syndrome (PAPS) is characterized by a deficiency in immunoregulatory pathways, a phenomenon recently implicated in the pathogenesis of autoimmune diseases. Serum levels of immunoregulatory (e.g., IL-10 and TGF-β1) and proinflammatory (e.g., IL-17A) cytokines were measured in PAPS, systemic lupus erythematosus (SLE) with secondary APS (SAPS), or without APS, and in healthy controls (n = 40 in each group). In a subgroup of PAPS patients we also compared phenotype and function (flow cytometry) of regulatory T-cells (Treg) and cytokine production by effector T-cells. Our major finding was decreased levels of TGF-β1 in PAPS and SAPS as compared to SLE without APS and controls. TGF-β1 was the lowest in PAPS patients showing high levels of aPL IgG with significant negative correlation with the titer. SLE patients were characterized by lower serum levels of IL-2 and increased IL-17A, as compared to the other groups. The numbers of circulating Treg cells and their phenotype (e.g., FoxP3 isoforms) were not disturbed in PAPS. However, surface expression of latency associated peptide (binds TGF-β) in activated FoxP3 + cells and in vitro production of TGF-β1 were decreased in PAPS patients with high titers of aPL IgG. Moreover, frequencies of cytokine producing effector T-helper cells (including Th17) were significantly elevated in this group. PAPS patients with high titers of aPL IgG antibodies were characterized by decreased systemic levels of TGF-β1 and its impaired production in vitro, suggesting impaired immunoregulation and enhanced adaptive autoimmune responses leading to the production of aPL antibodies. © The Author(s) 2015.

  8. Extracellular vesicles – biomarkers and effectors of the cellular interactome in cancer

    Directory of Open Access Journals (Sweden)

    Janusz eRak

    2013-03-01

    Full Text Available In multicellular organisms both health and disease are defined by patterns of communications between the constituent cells. In addition to networks of soluble mediators, cells are also programmed to exchange complex messages pre-assembled as multimolecular cargo of membraneous structures known extracellular vesicles (EV. Several biogenetic pathways produce EVs with different properties and known as exosomes, ectosomes and apoptotic bodies. In cancer, EVs carry molecular signatures and effectors of the disease, such as mutant oncoproteins, oncogenic transcripts, microRNA and DNA sequences. Intercellular trafficking of such EVs (oncosomes may contribute to horizontal cellular transformation, phenotypic reprogramming and functional re-education of recipient cells, both locally and systemically. The EV-mediated, reciprocal molecular exchange also includes tumor suppressors, phosphoproteins, proteases, growth factors and bioactive lipids, all of which participate in the functional integration of multiple cells and their collective involved in tumor angiogenesis, inflammation, immunity, coagulopathy, mobilization of bone marrow derived effectors, metastasis, drug resistance or cellular stemness. In cases where the EV involvement is rate limiting their production and uptake may represent and unexplored anticancer therapy target. Moreover, oncosomes circulating in biofluids of cancer patients offer an unprecedented, remote and non-invasive access to crucial molecular information about cancer cells, including their driver mutations, classifiers, molecular subtypes, therapeutic targets and biomarkers of drug resistance. New nanotechnologies are being developed to exploit this unique biomarker platform. Indeed, embracing the notion that human cancers are defined not only by processes occurring within cancer cells, but also between them, and amidst the altered tumor and systemic microenvironment may open new diagnostic and therapeutic opportunities.

  9. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.

    Science.gov (United States)

    Yasuda, Michiko; Miwa, Hiroki; Masuda, Sachiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Okazaki, Shin

    2016-08-01

    Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Biological Characterization of a Stable Effector Functionless (SEFL) Monoclonal Antibody Scaffold in Vitro*

    Science.gov (United States)

    Liu, Ling; Jacobsen, Frederick W.; Everds, Nancy; Zhuang, Yao; Yu, Yan Bin; Li, Nianyu; Clark, Darcey; Nguyen, Mai Phuong; Fort, Madeline; Narayanan, Padma; Kim, Kei; Stevenson, Riki; Narhi, Linda; Gunasekaran, Kannan; Bussiere, Jeanine L.

    2017-01-01

    The stable effector functionLess (SEFL) antibody was designed as an IgG1 antibody with a constant region that lacks the ability to interact with Fcγ receptors. The engineering and stability and pharmacokinetic assessments of the SEFL scaffold is described in the accompanying article (Jacobsen, F. W., Stevenson, R., Li, C., Salimi-Moosavi, H., Liu, L., Wen, J., Luo, Q., Daris, K., Buck, L., Miller, S., Ho, S-Y., Wang, W., Chen, Q., Walker, K., Wypych, J., Narhi, L., and Gunasekaran, K. (2017) J. Biol. Chem. 292). The biological properties of these SEFL antibodies were assessed in a variety of human and cynomolgus monkey in vitro assays. Binding of parent molecules and their SEFL variants to human and cynomolgus monkey FcγRs were evaluated using flow cytometry-based binding assays. The SEFL variants tested showed decreased binding affinity to human and cynomolgus FcγRs compared with the wild-type IgG1 antibody. In addition, SEFL variants demonstrated no antibody-dependent cell-mediated cytotoxicity in vitro against Daudi cells with cynomolgus monkey peripheral blood mononuclear cells, and had minimal complement-dependent cytotoxicity activity similar to that of the negative control IgG2 in a CD20+ human Raji lymphoma cell line. SEFL mutations eliminated off-target antibody-dependent monocyte phagocytosis of cynomolgus monkey platelets, and cynomolgus platelet activation in vitro. These experiments demonstrate that the SEFL modifications successfully eliminated Fc-associated effector binding and functions. PMID:27994063

  11. Interferon-alpha triggers B cell effector 1 (Be1 commitment.

    Directory of Open Access Journals (Sweden)

    Marie-Ghislaine de Goër de Herve

    Full Text Available B-cells can contribute to the pathogenesis of autoimmune diseases not only through auto-antibody secretion but also via cytokine production. Therapeutic depletion of B-cells influences the functions and maintenance of various T-cell subsets. The mechanisms governing the functional heterogeneity of B-cell subsets as cytokine-producing cells are poorly understood. B-cells can differentiate into two functionally polarized effectors, one (B-effector-1-cells producing a Th-1-like cytokine pattern and the other (Be2 producing a Th-2-like pattern. IL-12 and IFN-γ play a key role in Be1 polarization, but the initial trigger of Be1 commitment is unclear. Type-I-interferons are produced early in the immune response and prime several processes involved in innate and adaptive responses. Here, we report that IFN-α triggers a signaling cascade in resting human naive B-cells, involving STAT4 and T-bet, two key IFN-γ gene imprinting factors. IFN-α primed naive B-cells for IFN-γ production and increased IFN-γ gene responsiveness to IL-12. IFN-γ continues this polarization by re-inducing T-bet and up-regulating IL-12Rβ2 expression. IFN-α and IFN-γ therefore pave the way for the action of IL-12. These results point to a coordinated action of IFN-α, IFN-γ and IL-12 in Be1 polarization of naive B-cells, and may provide new insights into the mechanisms by which type-I-interferons favor autoimmunity.

  12. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization

    Science.gov (United States)

    Hyre, Amanda N.; Kavanagh, Kylie; Kock, Nancy D.; Donati, George L.

    2016-01-01

    ABSTRACT Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae, in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI. PMID:28031261

  13. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana.

    Science.gov (United States)

    Xiong, Qin; Ye, Wenwu; Choi, Duseok; Wong, James; Qiao, Yongli; Tao, Kai; Wang, Yuanchao; Ma, Wenbo

    2014-12-01

    The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.

  14. Pseudomonas syringae pv. Tomato DC3000 Type III secretion effector polymutants reveal an interplay between hopAD1 and AvrPtoB

    Science.gov (United States)

    The model pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of plants by injecting a complex repertoire of effector proteins into host cells via the type III secretion system. The model effector AvrPtoB has multiple domains and plant protein interactors i...

  15. In planta processing and glycosylation of a nematode CLE effector and its interaction with a CLV2-like receptor to promote parasitism

    Science.gov (United States)

    Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ESR (CLE)-like proteins have been identified in several cyst nematodes including the potato cyst nematode (PCN); however, th...

  16. Structure-function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune-suppressing activity from recognition

    NARCIS (Netherlands)

    Di, X.; Cao, L.; Hughes, R.K.; Tintor, N.; Banfield, M.J.; Takken, F.L.W.

    2017-01-01

    Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol

  17. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity.

    Science.gov (United States)

    Medina, Cesar Augusto; Reyes, Paola Andrea; Trujillo, Cesar Augusto; Gonzalez, Juan Luis; Bejarano, David Alejandro; Montenegro, Nathaly Andrea; Jacobs, Jonathan M; Joe, Anna; Restrepo, Silvia; Alfano, James R; Bernal, Adriana

    2018-03-01

    Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  18. Waste materials derived bio-effectors used as growth promoters for strawberry plants. An agronomic and metabolomic study

    Science.gov (United States)

    Vasileva, Brankica; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    Recently, a novel concept of bio-effectors has emerged to describe a group of products that are able to improve plant performance more than fertilizers. In this study, three different agro-industrial residues, i.e. brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as potential bio-effectors. A greenhouse soilless pot experiment was conducted on strawberry plants (Fragaria x ananassa var. Festival) in order to study the effect of BSG, FPR and LPR water extracts, at different concentrations, on plant growth and fruit quality. Their effect was compared with humic-like substances as a positive/reference control (Ctrl+) and with Hoagland solution as a negative control (Ctrl-). Agronomic parameters and the nutrient uptake were measured on shoots, roots and fruits. Metabolomic profiling tests were carried out on leaves, roots and fruit juices through the NMR technique. Plants treated with the FPR extract showed better vegetative growth, while plants treated with the BSG extract gave higher yield and better fruit size. Metabolomic profiling showed that fruits and roots of plants treated with FPR and LPR extracts had higher concentrations of sucrose, malate and acetate, while BSG treated plants had higher concentrations of citrate and β-glucose. In conclusion, according to the results achieved, the bio-effectors used in this study promote plant growth and fruit quality regardless of their nutritional content. Keywords: bio-effectors, agro-industrial waste, nuclear magnetic resonance (NMR), strawberry, growth promotion, fruit quality.

  19. Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species.

    Science.gov (United States)

    Giesbers, Anne K J; Pelgrom, Alexandra J E; Visser, Richard G F; Niks, Rients E; Van den Ackerveken, Guido; Jeuken, Marieke J W

    2017-11-01

    Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its cross-compatibility with the host species L. sativa enables the study of inheritance of nonhost resistance (NHR). We performed transient expression of candidate RXLR effector genes from B. lactucae in a diverse Lactuca germplasm set. Responses to two candidate effectors (BLR31 and BLN08) were genetically mapped and tested for co-segregation with disease resistance. BLN08 induced a hypersensitive response (HR) in 55% of the L. saligna accessions, but responsiveness did not co-segregate with resistance to Bl:24. BLR31 triggered an HR in 5% of the L. saligna accessions, and revealed a novel R gene providing complete B. lactucae race Bl:24 resistance. Resistant hybrid plants that were BLR31 nonresponsive indicated other unlinked R genes and/or nonhost QTLs. We have identified a candidate avirulence effector of B. lactucae (BLR31) and its cognate R gene in L. saligna. Concurrently, our results suggest that R genes are not required for NHR of L. saligna. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Effector-mediated discovery of a novel resistance gene against Bremia Lactucae in a nonhost lettuce species

    NARCIS (Netherlands)

    Giesbers, A.K.J.; Pelgrom, Alexandra; Visser, R.G.F.; Niks, R.E.; Ackerveken, Van Den Guido; Jeuken, M.J.W.

    2017-01-01

    Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its

  1. Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species

    NARCIS (Netherlands)

    Giesbers, Anne K J; Pelgrom, Alexandra J E; Visser, Richard G F; Niks, Rients E; Van den Ackerveken, Guido; Jeuken, Marieke J W

    2017-01-01

    Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its

  2. Long-Term Live Cell Imaging Reveals New Roles For Salmonella Effector Proteins SseG and SteA

    Science.gov (United States)

    McQuate, Sarah E.; Young, Alexandra M.; Silva-Herzog, Eugenia; Bunker, Eric; Hernandez, Mateo; de Chaumont, Fabrice; Liu, Xuedong; Detweiler, Corrella S.; Palmer, Amy E.

    2016-01-01

    Summary Salmonella Typhimurium is an intracellular bacterial pathogen that infects both epithelial cells and macrophages. Salmonella effector proteins, which are translocated into the host cell and manipulate host cell components, control the ability to replicate and/or survive in host cells. Due to the complexity and heterogeneity of Salmonella infections, there is growing recognition of the need for single cell and live-cell imaging approaches to identify and characterize the diversity of cellular phenotypes and how they evolve over time. Here we establish a pipeline for long-term (16 hours) live-cell imaging of infected cells and subsequent image analysis methods. We apply this pipeline to track bacterial replication within the Salmonella-containing vacuole in epithelial cells, quantify vacuolar replication versus survival in macrophages, and investigate the role of individual effector proteins in mediating these parameters. This approach revealed that dispersed bacteria can coalesce at later stages of infection, that the effector protein SseG influences the propensity for cytosolic hyperreplication in epithelial cells, and that while SteA only has a subtle effect on vacuolar replication in epithelial cells, it has a profound impact on infection parameters in immunocompetent macrophages, suggesting differential roles for effector proteins in different infection models. PMID:27376507

  3. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins

    Science.gov (United States)

    Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...

  4. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Science.gov (United States)

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins that are delivered to the apoplast, as well as...

  5. Ganglioside-specific IgG and IgA recruit leukocyte effector functions in Guillain-Barre syndrome

    NARCIS (Netherlands)

    Sorge, N.M. van; Yuki, N.; Koga, M.; Susuki, K.; Jansen, M.D.; Kooten, C. van; Wokke, J.H.; Winkel, J.G.J. van de; Pol, W.L. van der; Berg, L.H. van den

    2007-01-01

    The capacity of ganglioside-specific autoantibodies to recruit leukocyte effector functions was studied. Serum samples from 87 patients with Guillain–Barré (GBS) or Miller Fisher syndrome (MFS), containing GM1-, GQ1b-, or GD1b-specific IgG or IgA, were tested for leukocyte activating capacity.

  6. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development.

    Science.gov (United States)

    Vargas, Walter A; Sanz-Martín, José M; Rech, Gabriel E; Armijos-Jaramillo, Vinicio D; Rivera, Lina P; Echeverria, María Mercedes; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A

    2016-02-01

    Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.

  7. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation.

    Directory of Open Access Journals (Sweden)

    Roger W Kramer

    2007-02-01

    Full Text Available Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins.

  8. Urinary CD4+ Effector Memory T Cells Reflect Renal Disease Activity in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis

    NARCIS (Netherlands)

    Abdulahad, Wayel H.; Kallenberg, Cees G. M.; Limburg, Pieter C.; Stegeman, Coen A.

    Objective. Numbers of circulating CD4+ effector memory T cells are proportionally increased in patients with proteinase 3 antineutrophil cytoplasmic antibody-associated vasculitis (AAV) whose disease is in remission and are decreased during active disease, which presumably reflects their migration

  9. Repertoire Development and the Control of Cytotoxic/Effector Function in Human γδ T Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Urban

    2010-01-01

    Full Text Available T cells develop into two major populations distinguished by their T cell receptor (TCR chains. Cells with the αβ TCR generally express CD4 or CD8 lineage markers and mostly fall into helper or cytotoxic/effector subsets. Cells expressing the alternate γδ TCR in humans generally do not express lineage markers, do not require MHC for antigen presentation, and recognize nonpeptidic antigens. We are interested in the dominant Vγ2Vδ2+ T cell subset in human peripheral blood and the control of effector function in this population. We review the literature on γδ T cell generation and repertoire selection, along with recent work on CD56 expression and defining a cytotoxic/effector lineage within the phosphoantigen-reactive Vγ2Vδ2 cells. A unique mechanism for MHC-independent repertoire selection is linked to the control of effector function that is vital to the role for γδ T cells in tumor surveillance. Better understanding of these mechanisms will improve our ability to exploit this population for tumor immunotherapy.

  10. A statically balanced and bi-stable compliant end effector combined with a laparoscopic 2DoF robotic arm

    NARCIS (Netherlands)

    Lassooij, J.; Tolou, N.; Tortora, G.; Caccavaro, S.; Menciassi, A.; Herder, J.L.

    2012-01-01

    This article presents the design of a newly developed 2DoF robotic arm with a novel statically balanced and bi-stable compliant grasper as the end effector for laparoscopic surgery application. The arm is based on internal motors actuating 2 rotational DoFs: pitch and roll. The positive stiffness of

  11. Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense.

    Science.gov (United States)

    Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K

    2014-07-29

    The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Human IgG lacking effector functions demonstrate lower FcRn-binding and reduced transplacental transport

    NARCIS (Netherlands)

    Stapleton, Nigel M.; Armstrong-Fisher, Sylvia S.; Andersen, Jan Terje; van der Schoot, C. Ellen; Porter, Charlene; Page, Kenneth R.; Falconer, Donald; de Haas, Masja; Williamson, Lorna M.; Clark, Michael R.; Vidarsson, Gestur; Armour, Kathryn L.

    2018-01-01

    We have previously generated human IgG1 antibodies that were engineered for reduced binding to the classical Fcγ receptors (FcγRI-III) and C1q, thereby eliminating their destructive effector functions (constant region G1Δnab). In their potential use as blocking agents, favorable binding to the

  13. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr; Sieglová, Irena; Fábry, Milan; Otwinowski, Z.; Řezáčová, Pavlína

    2012-01-01

    Roč. 68, č. 2 (2012), s. 176-185 ISSN 0907-4449 R&D Projects: GA MŠk ME08016 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : repressor * dimerization * effector binding * isothermal titration calorimetry Subject RIV: CE - Biochemistry Impact factor: 14.103, year: 2012

  14. Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation

    NARCIS (Netherlands)

    Arens, Ramon; Schepers, Koen; Nolte, Martijn A.; van Oosterwijk, Michiel F.; van Lier, René A. W.; Schumacher, Ton N. M.; van Oers, Marinus H. J.

    2004-01-01

    In vivo priming of antigen-specific CD8+ T cells results in their expansion and differentiation into effector T cells followed by contraction into a memory T cell population that can be maintained for life. Recent evidence suggests that after initial antigenic stimulation, the magnitude and kinetics

  15. Partial Diversity Generates Effector Immunity Specificity of the Bac41-Like Bacteriocins of Enterococcus faecalis Clinical Strains.

    Science.gov (United States)

    Kurushima, Jun; Ike, Yasuyoshi; Tomita, Haruyoshi

    2016-09-01

    Bacteriocin 41 (Bac41) is the plasmid-encoded bacteriocin produced by the opportunistic pathogen Enterococcus faecalis Its genetic determinant consists of bacL1 (effector), bacL2 (regulator), bacA (effector), and bacI (immunity). The secreted effectors BacL1 and BacA coordinate to induce the lytic cell death of E. faecalis Meanwhile, the immunity factor BacI provides self-resistance to the Bac41 producer, E. faecalis, against the action of BacL1 and BacA. In this study, we demonstrated that more than half of the 327 clinical strains of E. faecalis screened had functional Bac41 genes. Analysis of the genetic structure of the Bac41 genes in the DNA sequences of the E. faecalis strains revealed that the Bac41-like genes consist of a relatively conserved region and a variable region located downstream from bacA Based on similarities in the variable region, the Bac41-like genes could be classified into type I, type IIa, and type IIb. Interestingly, the distinct Bac41 types had specific immunity factors for self-resistance, BacI1 or BacI2, and did not show cross-immunity to the other type of effector. We also demonstrated experimentally that the specificity of the immunity was determined by the combination of the C-terminal region of BacA and the presence of the unique BacI1 or BacI2 factor. These observations suggested that Bac41-like bacteriocin genes are extensively disseminated among E. faecalis strains in the clinical environment and can be grouped into at least three types. It was also indicated that the partial diversity results in specificity of self-resistance which may offer these strains a competitive advantage. Bacteriocins are antibacterial effectors produced by bacteria. In general, a bacteriocin-coding gene is accompanied by a cognate immunity gene that confers self-resistance on the bacteriocin-producing bacterium itself. We demonstrated that one of the bacteriocins, Bac41, is disseminated among E. faecalis clinical strains and the Bac41 subtypes with

  16. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    Energy Technology Data Exchange (ETDEWEB)

    Ganusov, Vitaly V [Los Alamos National Laboratory

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targets with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the

  17. Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid

    Science.gov (United States)

    Asai, Shuta; Caillaud, Marie-Cécile; Furzer, Oliver J.; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D. G.

    2014-01-01

    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome. PMID:25329884

  18. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex.

    Directory of Open Access Journals (Sweden)

    Marie-Cécile Caillaud

    2013-12-01

    Full Text Available Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa, and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a, resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA-triggered immunity (SATI in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.

  19. Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity.

    Directory of Open Access Journals (Sweden)

    Barbara A Fox

    2016-07-01

    Full Text Available Nonreplicating type I uracil auxotrophic mutants of Toxoplasma gondii possess a potent ability to activate therapeutic immunity to established solid tumors by reversing immune suppression in the tumor microenvironment. Here we engineered targeted deletions of parasite secreted effector proteins using a genetically tractable Δku80 vaccine strain to show that the secretion of specific rhoptry (ROP and dense granule (GRA proteins by uracil auxotrophic mutants of T. gondii in conjunction with host cell invasion activates antitumor immunity through host responses involving CD8α+ dendritic cells, the IL-12/interferon-gamma (IFN-γ TH1 axis, as well as CD4+ and CD8+ T cells. Deletion of parasitophorous vacuole membrane (PVM associated proteins ROP5, ROP17, ROP18, ROP35 or ROP38, intravacuolar network associated dense granule proteins GRA2 or GRA12, and GRA24 which traffics past the PVM to the host cell nucleus severely abrogated the antitumor response. In contrast, deletion of other secreted effector molecules such as GRA15, GRA16, or ROP16 that manipulate host cell signaling and transcriptional pathways, or deletion of PVM associated ROP21 or GRA3 molecules did not affect the antitumor activity. Association of ROP18 with the PVM was found to be essential for the development of the antitumor responses. Surprisingly, the ROP18 kinase activity required for resistance to IFN-γ activated host innate immunity related GTPases and virulence was not essential for the antitumor response. These data show that PVM functions of parasite secreted effector molecules, including ROP18, manipulate host cell responses through ROP18 kinase virulence independent mechanisms to activate potent antitumor responses. Our results demonstrate that PVM associated rhoptry effector proteins secreted prior to host cell invasion and dense granule effector proteins localized to the intravacuolar network and host nucleus that are secreted after host cell invasion coordinately

  20. Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid.

    Directory of Open Access Journals (Sweden)

    Shuta Asai

    2014-10-01

    Full Text Available Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome.

  1. Diversifying Selection in the Wheat Stem Rust Fungus Acts Predominantly on Pathogen-Associated Gene Families and Reveals Candidate Effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2014-09-01

    Full Text Available Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defence proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialised gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control.

  2. SfDredd, a Novel Initiator Caspase Possessing Activity on Effector Caspase Substrates in Spodoptera frugiperda.

    Science.gov (United States)

    Yang, Zhouning; Zhou, Ke; Liu, Hao; Wu, Andong; Mei, Long; Liu, Qingzhen

    2016-01-01

    Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells.

  3. Human herpesvirus-8 infection leads to expansion of the preimmune/natural effector B cell compartment.

    Directory of Open Access Journals (Sweden)

    Silvia Della Bella

    Full Text Available BACKGROUND: Human herpesvirus-8 (HHV-8 is the etiological agent of Kaposi's sarcoma (KS and of some lymphoproliferative disorders of B cells. Most malignancies develop after long-lasting viral dormancy, and a preventing role for both humoral and cellular immune control is suggested by the high frequency of these pathologies in immunosuppressed patients. B cells, macrophages and dendritic cells of peripheral lymphoid organs and blood represent the major reservoir of HHV-8. Due to the dual role of B cells in HHV-8 infection, both as virus reservoir and as agents of humoral immune control, we analyzed the subset distribution and the functional state of peripheral blood B cells in HHV-8-infected individuals with and without cKS. METHODOLOGY/PRINCIPAL FINDINGS: Circulating B cells and their subsets were analyzed by 6-color flow cytometry in the following groups: 1- patients HHV-8 positive with classic KS (cKS (n = 47; 2- subjects HHV-8 positive and cKS negative (HSP (n = 10; 3- healthy controls, HHV-8 negative and cKS negative (HC (n = 43. The number of B cells belonging to the preimmune/natural effector compartment, including transitional, pre-naïve, naïve and MZ-like subsets, was significantly higher among HHV-8 positive subjects, with or without cKS, while was comparable to healthy controls in the antigen-experienced T-cell dependent compartment. The increased number of preimmune/natural effector B cells was associated with increased resistance to spontaneous apoptosis, while it did not correlate with HHV-8 viral load. CONCLUSIONS/SIGNIFICANCE: Our results indicate that long-lasting HHV-8 infection promotes an imbalance in peripheral B cell subsets, perturbing the equilibrium between earlier and later steps of maturation and activation processes. This observation may broaden our understanding of the complex interplay between viral and immune factors leading HHV-8-infected individuals to develop HHV-8-associated malignancies.

  4. Effector T-cells are expanded in systemic lupus erythematosus patients with high disease activity and damage indexes.

    Science.gov (United States)

    Piantoni, S; Regola, F; Zanola, A; Andreoli, L; Dall'Ara, F; Tincani, A; Airo', P

    2018-01-01

    Background and objectives T-cell activation may be one of the pathogenic mechanisms of systemic lupus erythematosus (SLE). After repeated antigenic stimulation, T-cells undergo different modifications, leading to the differentiation into effector memory T-cells (CCR7-CD45RA-) and terminally differentiated effector memory (TDEM) T-cells (CCR7-CD45RA+). Similarly, down-modulation of CD28 may lead to the expansion of the CD28- T-cells, a subpopulation with peculiar effector activities. The aim of this study was the characterization of T-cell phenotype in a cohort of patients with SLE according to disease activity and damage index. Materials and methods Phenotypic analysis of peripheral blood T lymphocytes of 51 SLE patients and 21 healthy controls was done by flow-cytometry. SLE disease activity was evaluated by SLE Disease Activity Index-2000 (SLEDAI-2K) and damage by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index (SDI). The variations between different groups were evaluated by Mann-Whitney test. Bonferroni correction was applied to adjust for multiple comparisons ( p adj ). Spearman rank test was used to evaluate the correlations between quantitative variables. Results CD4+ lymphopenia was found among SLE patients. Patients showed a trend for a higher percentage of TDEM among the CD4+ T-cell subpopulation in comparison with healthy controls ( p = .04). SLE patients were divided into two groups according to disease activity: patients with SLEDAI-2K ≥ 6 ( n = 13) had a higher percentage of circulating CD4+ T-cells with CD28- phenotype ( p adj  = .005) as well as those with an effector memory ( p adj  = .004) and TDEM ( p adj  = .002) phenotype and a trend of decrease of regulatory T-cells (TREGs) ( p = .02), in comparison with patients with low disease activity ( n = 38). Patients with damage (SDI ≥ 1) tended to show an expansion of TDEM among CD4+ T-cells as compared with

  5. Beyond differential expression: the quest for causal mutations and effector molecules

    Directory of Open Access Journals (Sweden)

    Hudson Nicholas J

    2012-07-01

    Full Text Available Abstract High throughput gene expression technologies are a popular choice for researchers seeking molecular or systems-level explanations of biological phenomena. Nevertheless, there has been a groundswell of opinion that these approaches have not lived up to the hype because the interpretation of the data has lagged behind its generation. In our view a major problem has been an over-reliance on isolated lists of differentially expressed (DE genes which – by simply comparing genes to themselves – have the pitfall of taking molecular information out of context. Numerous scientists have emphasised the need for better context. This can be achieved through holistic measurements of differential connectivity in addition to, or in replacement, of DE. However, many scientists continue to use isolated lists of DE genes as the major source of input data for common readily available analytical tools. Focussing this opinion article on our own research in skeletal muscle, we outline our resolutions to these problems – particularly a universally powerful way of quantifying differential connectivity. With a well designed experiment, it is now possible to use gene expression to identify causal mutations and the other major effector molecules with whom they cooperate, irrespective of whether they themselves are DE. We explain why, for various reasons, no other currently available experimental techniques or quantitative analyses are capable of reaching these conclusions.

  6. Functions of galectins as 'self/non-self'-recognition and effector factors.

    Science.gov (United States)

    Vasta, Gerardo R; Feng, Chiguang; González-Montalbán, Nuria; Mancini, Justin; Yang, Lishi; Abernathy, Kelsey; Frost, Graeme; Palm, Cheyenne

    2017-07-31

    Carbohydrate structures on the cell surface encode complex information that through specific recognition by carbohydrate-binding proteins (lectins) modulates interactions between cells, cells and the extracellular matrix, or mediates recognition of potential microbial pathogens. Galectins are a family of ß-galactoside-binding lectins, which are evolutionary conserved and have been identified in most organisms, from fungi to invertebrates and vertebrates, including mammals. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of endogenous carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their roles in tissue repair and regulation of immune homeostasis. More recently, evidence has accumulated to support the notion that galectins can also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity, thus establishing a new paradigm. Furthermore, some parasites 'subvert' the recognition roles of the vector/host galectins for successful attachment or invasion. These recent findings have revealed a striking functional diversification in this structurally conserved lectin family. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction.

    Science.gov (United States)

    Han, Wenyuan; Li, Yingjun; Deng, Ling; Feng, Mingxia; Peng, Wenfang; Hallstrøm, Søren; Zhang, Jing; Peng, Nan; Liang, Yun Xiang; White, Malcolm F; She, Qunxin

    2017-02-28

    The CRISPR (clustered regularly interspaced short palindromic repeats) system protects archaea and bacteria by eliminating nucleic acid invaders in a crRNA-guided manner. The Sulfolobus islandicus type III-B Cmr-α system targets invading nucleic acid at both RNA and DNA levels and DNA targeting relies on the directional transcription of the protospacer in vivo. To gain further insight into the involved mechanism, we purified a native effector complex of III-B Cmr-α from S. islandicus and characterized it in vitro. Cmr-α cleaved RNAs complementary to crRNA present in the complex and its ssDNA destruction activity was activated by target RNA. The ssDNA cleavage required mismatches between the 5΄-tag of crRNA and the 3΄-flanking region of target RNA. An invader plasmid assay showed that mutation either in the histidine-aspartate acid (HD) domain (a quadruple mutation) or in the GGDD motif of the Cmr-2α protein resulted in attenuation of the DNA interference in vivo. However, double mutation of the HD motif only abolished the DNase activity in vitro. Furthermore, the activated Cmr-α binary complex functioned as a highly active DNase to destroy a large excess DNA substrate, which could provide a powerful means to rapidly degrade replicating viral DNA. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Identification and characterization of a lymphocytic Rho-GTPase effector: rhotekin-2

    International Nuclear Information System (INIS)

    Collier, F.M.; Gregorio-King, C.C.; Gough, T.J.; Talbot, C.D.; Walder, K.; Kirkland, M.A.

    2004-01-01

    Rhotekin belongs to the group of proteins containing a Rho-binding domain that are target peptides (effectors) for the Rho-GTPases. We previously identified a novel cDNA with homology to human rhotekin and in this study we cloned and characterized the coding region of this novel 12-exon gene. The ORF encodes a 609 amino-acid protein comprising a Class I Rho-binding domain and pleckstrin homology (PH) domain. Cellular cDNA expression of this new protein, designated Rhotekin-2 (RTKN2), was shown in the cytosol and nucleus of CHO cells. Using bioinformatics and RTPCR we identified three major splice variants, which vary in both the Rho-binding and PH domains. Real-time PCR studies showed exclusive RTKN2 expression in pooled lymphocytes and further purification indicated sole expression in CD4 pos T-cells and bone marrow-derived B-cells. Gene expression was increased in quiescent T-cells but negligible in activated proliferating cells. In malignant samples expression was absent in myeloid leukaemias, low in most B-cell malignancies and CD8 pos T-cell malignancies, but very high in CD4 pos /CD8 pos T-lymphoblastic lymphoma. As the Rho family is critical in lymphocyte development and function, RTKN2 may play an important role in lymphopoiesis

  9. MIWI2 as an Effector of DNA Methylation and Gene Silencing in Embryonic Male Germ Cells

    Directory of Open Access Journals (Sweden)

    Kanako Kojima-Kita

    2016-09-01

    Full Text Available During the development of mammalian embryonic germ cells, global demethylation and de novo DNA methylation take place. In mouse embryonic germ cells, two PIWI family proteins, MILI and MIWI2, are essential for the de novo DNA methylation of retrotransposons, presumably through PIWI-interacting RNAs (piRNAs. Although piRNA-associated MIWI2 has been reported to play critical roles in the process, its molecular mechanisms have remained unclear. To identify the mechanism, transgenic mice were produced; they contained a fusion protein of MIWI2 and a zinc finger (ZF that recognized the promoter region of a type A LINE-1 gene. The ZF-MIWI2 fusion protein brought about DNA methylation, suppression of the type A LINE-1 gene, and a partial rescue of the impaired spermatogenesis of MILI-null mice. In addition, ZF-MIWI2 was associated with the proteins involved in DNA methylation. These data indicate that MIWI2 functions as an effector of de novo DNA methylation of the retrotransposon.

  10. Sentence comprehension: effectors and goals, self and others. An overview of experiments and implications for robotics

    Directory of Open Access Journals (Sweden)

    Anna M Borghi

    2010-06-01

    Full Text Available According to theories referring to embodied and grounded cognition (Barsalou, 2008, language comprehension encompasses an embodied simulation of actions. The neural underpinnings of this simulation could be found in wide neural circuits that involve canonical and mirror neurons (Rizzolatti et al., 1996. In keeping with this view, we review behavioural and kinematic studies conducted in our lab which help characterize the relationship existing between language and the motor system. Overall, our results reveal that the simulation evoked during sentence comprehension is fine-grained, primarily in its sensitivity to the different effectors we employ to perform actions. In addition, they suggest that linguistic comprehension also relies on the representation of actions in terms of goals and of the chains of motor acts necessary to accomplish them. Finally, they indicate that these goals are modulated by both the object features the sentence refers to as well as by social aspects such as the characteristics of the agents implied by sentences. We will discuss the implications of these studies for embodied robotics.

  11. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.

    Science.gov (United States)

    Krishnamurthy, Nithya; Kurzrock, Razelle

    2018-01-01

    The Wnt/beta-catenin pathway is a family of proteins that is implicated in many vital cellular functions such as stem cell regeneration and organogenesis. Several intra-cellular signal transduction pathways are induced by Wnt, notably the Wnt/beta-catenin dependent pathway or canonical pathway and the non-canonical or beta-catenin-independent pathway; the latter includes the Wnt/Ca2+ and Planar Cell Polarity pathway (PCP). Wnt activation occurs at the intestinal crypt floor, and is critical to optimal maintenance of stem cells. Colorectal cancers show evidence of Wnt signaling pathway activation and this is associated with loss of function of the tumor regulator APC. Wnt activation has been observed in breast, lung, and hematopoietic malignancies and contributes to tumor recurrence. The Wnt pathway cross talks with the Notch and Sonic Hedgehog pathways, which has implications for therapeutic interventions in cancers. There are significant challenges in targeting the Wnt pathway, including finding agents that are efficacious without damaging the system of normal somatic stem cell function in cellular repair and tissue homeostasis. Here, we comprehensively review the Wnt pathway and its interactions with the Notch and Sonic Hedgehog pathways. We present the state of the field in effectors and inhibitors of Wnt signaling, including updates on clinical trials in various cancers with inhibitors of Wnt, Notch, and Sonic Hedgehog. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Locked and proteolysis-based transcription activator-like effector (TALE) regulation.

    Science.gov (United States)

    Lonzarić, Jan; Lebar, Tina; Majerle, Andreja; Manček-Keber, Mateja; Jerala, Roman

    2016-02-18

    Development of orthogonal, designable and adjustable transcriptional regulators is an important goal of synthetic biology. Their activity has been typically modulated through stimulus-induced oligomerization or interaction between the DNA-binding and activation/repression domain. We exploited a feature of the designable Transcription activator-like effector (TALE) DNA-binding domain that it winds around the DNA which allows to topologically prevent it from binding by intramolecular cyclization. This new approach was investigated through noncovalent ligand-induced cyclization or through a covalent split intein cyclization strategy, where the topological inhibition of DNA binding by cyclization and its restoration by a proteolytic release of the topologic constraint was expected. We show that locked TALEs indeed have diminished DNA binding and regain full transcriptional activity by stimulation with the rapamycin ligand or site-specific proteolysis of the peptide linker, with much higher level of activation than rapamycin-induced heterodimerization. Additionally, we demonstrated reversibility, activation of genomic targets and implemented logic gates based on combinations of protein cyclization, proteolytic cleavage and ligand-induced dimerization, where the strongest fold induction was achieved by the proteolytic cleavage of a repression domain from a linear TALE. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. A Transcription Activator-Like Effector (TALE) Toolbox for Genome Engineering

    Science.gov (United States)

    Sanjana, Neville E.; Cong, Le; Zhou, Yang; Cunniff, Margaret M.; Feng, Guoping; Zhang, Feng

    2013-01-01

    Transcription activator-like effectors (TALEs) are a class of naturally occurring DNA binding proteins found in the plant pathogen Xanthomonas sp. The DNA binding domain of each TALE consists of tandem 34-amino acid repeat modules that can be rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Here we describe a toolbox for rapid construction of custom TALE transcription factors (TALE-TFs) and nucleases (TALENs) using a hierarchical ligation procedure. This toolbox facilitates affordable and rapid construction of custom TALE-TFs and TALENs within one week and can be easily scaled up to construct TALEs for multiple targets in parallel. We also provide details for testing the activity in mammalian cells of custom TALE-TFs and TALENs using, respectively, qRT-PCR and Surveyor nuclease. The TALE toolbox described here will enable a broad range of biological applications. PMID:22222791

  14. Design of a piezoelectric inchworm actuator and compliant end effector for minimally invasive surgery

    Science.gov (United States)

    Canfield, Shawn; Edinger, Ben; Frecker, Mary I.; Koopmann, Gary H.

    1999-06-01

    Recent advances in robotics, tele-robotics, smart material actuators, and mechatronics raise new possibilities for innovative developments in millimeter-scale robotics capable of manipulating objects only fractions of a millimeter in size. These advances can have a wide range of applications in the biomedical community. A potential application of this technology is in minimally invasive surgery (MIS). The focus of this paper is the development of a single degree of freedom prototype to demonstrate the viability of smart materials, force feedback and compliant mechanisms for minimally invasive surgery. The prototype is a compliant gripper that is 7-mm by 17-mm, made from a single piece of titanium that is designed to function as a needle driver for small scale suturing. A custom designed piezoelectric `inchworm' actuator drives the gripper. The integrated system is computer controlled providing a user interface device capable of force feedback. The design methodology described draws from recent advances in three emerging fields in engineering: design of innovative tools for MIS, design of compliant mechanisms, and design of smart materials and actuators. The focus of this paper is on the design of a millimeter-scale inchworm actuator for use with a compliant end effector in MIS.

  15. Multilocus analysis using putative fungal effectors to describe a population of Fusarium oxysporum from sugar beet.

    Science.gov (United States)

    Covey, Paul A; Kuwitzky, Brett; Hanson, Mia; Webb, Kimberly M

    2014-08-01

    Sugar beet (Beta vulgaris) Fusarium yellows is caused by Fusarium oxysporum f. sp. betae and can lead to significant reductions in root yield, sucrose percentage, juice purity, and storability. F. oxysporum f. sp. betae can be highly variable and many F. oxysporum strains isolated from symptomatic sugar beet are nonpathogenic. Identifying pathogenicity factors and their diversity in the F. oxysporum f. sp. betae population could further understanding of how this pathogen causes disease and potentially provide molecular markers to rapidly identify pathogenic isolates. This study used several previously described fungal effector genes (Fmk1, Fow1, Pda1, PelA, PelD, Pep1, Prt1, Rho1, Sge1, Six1, Six6, Snf1, and Ste12) as genetic markers, in a population of 26 pathogenic and nonpathogenic isolates of F. oxysporum originally isolated from symptomatic sugar beet. Of the genes investigated, six were present in all F. oxysporum isolates from sugar beet (Fmk1, Fow1, PelA, Rho1, Snf1, and Ste12), and seven were found to be dispersed within the population (Pda1, PelD, Pep1, Prt1, Sge1, Six1, and Six6). Of these, Fmk1, Fow1, PelA, Rho1, Sge1, Snf1, and Ste12 were significant in relating clade designations and PelD, and Prt1 were significant for correlating with pathogenicity in F. oxysporum f. sp. betae.

  16. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Condon, Bradford J.; Leng, Yueqiang; Wu, Dongliang; Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinlzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian

    2013-01-24

    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25 higher than those between inbred lines and 50 lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.

  17. Consequences of exposure to ionizing radiation for effector T cell function in vivo

    International Nuclear Information System (INIS)

    Rouse, B.T.; Hartley, D.; Doherty, P.C.

    1989-01-01

    The adoptive transfer of acutely primed and memory virus-immune CD8+ T cells causes enhanced meningitis in both cyclophosphamide (Cy) suppressed, and unsuppressed, recipients infected with lymphocytic choriomeningitis virus (LCMV). The severity of meningitis is assessed by counting cells in cerebrospinal fluid (CSF) obtained from the cisterna magna, which allows measurement of significant inflammatory process ranging from 3 to more than 300 times the background number of cells found in mice injected with virus alone. Exposure of the donor immune population to ionizing radiation prior to transfer has shown that activated T cells from mice primed 7 or 8 days previously with virus may still promote a low level of meningitis in unsuppressed recipients following as much as 800 rads, while this effect is lost totally in Cy-suppressed mice at 600 rads. Memory T cells are more susceptible and show no evidence of in vivo effector function in either recipient population subsequent to 400 rads, a dose level which also greatly reduces the efficacy of acutely-primed T cells. The results are interpreted as indicating that heavily irradiated cells that are already fully functional show evidence of primary localization to the CNS and a limited capacity to cause pathology. Secondary localization, and events that require further proliferation of the T cells in vivo, are greatly inhibited by irradiation

  18. Kinematics Analysis of End Effector for Carrier Robot of Feeding Broiler Chicken System

    Science.gov (United States)

    Syam, Rafiuddin; Arsyad, Hairul; Bauna, Ruslan; Renreng, Ilyas; Bakhri, Syaiful

    2018-02-01

    The demand for commodities, especially Broiler chicken farms are increasing, the volume of feed requirements Broiler chickens increased with age up to the age of 30-57 days required feed 3,829 grams/day/head, so if the chicken population is 3,000 needed transporting feed 11 487 kg/day, This research aims to produce a robot capable of transporting feed in the top of the cage by using a control system so as to make efficient use of manpower. Design robot performed using software design three-dimensional Solidworks2010, process of making the robot is started with the design manufacture three (3) units of mechanical systems (mechanical system for holder feed, mechanical systems for lifter feed and mechanical systems for transporting feed), then do the design process framework as a component buffer so that the mechanical system will work properly and safely when the robot operates. Furthermore, the manufacture of electronic circuits and control are using Arduino Mega microcontroller. After assembling all components mechanical systems and installation of electronic systems and control, then experiments to evaluate the performance of the robot have been made. The results of experiments showed that all components work well according to plan, in particular the speed and acceleration of end effector motion so it can hold and release the feed well. This strongly supports the robots perform tasks in accordance with the intent, i.e., holding, lifting and moving feed.

  19. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.

    Science.gov (United States)

    Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos

    2018-03-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.

  20. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*

    Science.gov (United States)

    Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva

    2018-01-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367

  1. Rho-GTPase effector ROCK phosphorylates cofilin in actin-meditated cytokinesis during mouse oocyte meiosis.

    Science.gov (United States)

    Duan, Xing; Liu, Jun; Dai, Xiao-Xin; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Zhen-Bo; Wang, Qiang; Sun, Shao-Chen

    2014-02-01

    During oocyte meiosis, a spindle forms in the central cytoplasm and migrates to the cortex. Subsequently, the oocyte extrudes a small body and forms a highly polarized egg; this process is regulated primarily by actin. ROCK is a Rho-GTPase effector that is involved in various cellular functions, such as stress fiber formation, cell migration, tumor cell invasion, and cell motility. In this study, we investigated possible roles for ROCK in mouse oocyte meiosis. ROCK was localized around spindles after germinal vesicle breakdown and was colocalized with cytoplasmic actin and mitochondria. Disrupting ROCK activity by RNAi or an inhibitor resulted in cell cycle progression and polar body extrusion failure. Time-lapse microscopy showed that this may have been due to spindle migration and cytokinesis defects, as chromosomes segregated but failed to extrude a polar body and then realigned. Actin expression at oocyte membranes and in cytoplasm was significantly decreased after these treatments. Actin caps were also disrupted, which was confirmed by a failure to form cortical granule-free domains. The mitochondrial distribution was also disrupted, which indicated that mitochondria were involved in the ROCK-mediated actin assembly. In addition, the phosphorylation levels of Cofilin, a downstream molecule of ROCK, decreased after disrupting ROCK activity. Thus, our results indicated that a ROCK-Cofilin-actin pathway regulated meiotic spindle migration and cytokinesis during mouse oocyte maturation.

  2. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    Directory of Open Access Journals (Sweden)

    Xinxia Zhao

    2016-03-01

    Full Text Available Myostatin (MSTN is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs in tandem with single-stranded DNA oligonucleotides (ssODNs. We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

  3. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells.

    Directory of Open Access Journals (Sweden)

    Vincent M Bruno

    2009-08-01

    Full Text Available Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP kinase and NF-kappaB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies.

  4. Exercise as a Time-conditioning Effector in Chronic Disease: a Complementary Treatment Strategy

    Directory of Open Access Journals (Sweden)

    Luis F. B. P. Costa Rosa

    2004-01-01

    Full Text Available Exercise has been widely believed to be a preventive and therapeutic aid in the treatment of various pathophysiological conditions such as cardiovascular disease and cancer. A common problem associated with such pathologies is cachexia, characterized by progressive weight loss and depletion of lean and fat body mass, and is linked to poor prognosis. As this syndrome comprises changes in many physiological systems, it is tempting to assume that the modulation of the psychoneuroimmunoendocrine axis could attenuate or even prevent cachexia progression in cancer patients. Cancer cachexia is characterized by a disruption in the rhythmic secretion of melatonin, an important time-conditioning effector. This hormone, secreted by the pineal gland, transmits circadian and seasonal information to all organs and cells of the body, synchronizing the organism with the photoperiod. Considering that exercise modulates the immune response through at least two different mechanisms—metabolic and neuroendocrine—we propose that the adoption of a regular exercise program as a complementary strategy in the treatment of cancer patients, with the exercise bouts regularly performed at the same time of the day, will ameliorate cachexia symptoms and increase survival and quality of life.

  5. Immune effector mechanisms of the nitric oxide pathway in malaria: cytotoxicity versus cytoprotection

    Directory of Open Access Journals (Sweden)

    Hossein Nahrevanian

    Full Text Available Nitric oxide (NO is thought to be an important mediator and critical signaling molecule for malaria immunopathology; it is also a target for therapy and for vaccine. Inducible nitric oxide synthase (iNOS is synthesized by a number of cell types under inflammatory conditions. The most relevant known triggers for its expression are endotoxins and cytokines. To date, there have been conflicting reports concerning the clinical significance of NO in malaria. Some researchers have proposed that NO contributes to the development of severe and complicated malaria, while others have argued that NO has a protective role. Infection with parasites resistant to the microbicidal action of NO may result in high levels of NO being generated, which could then damage the host, instead of controlling parasitemia. Consequently, the host-parasite interaction is a determining factor for whether the parasite is capable of stimulating NO production; the role of NO in resistance to malaria appears to be strain specific. It is known that NO and/or its related molecules are involved in malaria, but their involvement is not independent of other immune events. NO is an important, but possibly not an essential contributor to the control of acute-phase malaria infection. The protective immune responses against malaria parasite are multifactorial; however, they necessarily involve final effector molecules, including NO, iNOS and RNI.

  6. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework.

    Science.gov (United States)

    Hussein, Sami; Kruger, Jörg

    2011-01-01

    Robot assisted training has proven beneficial as an extension of conventional therapy to improve rehabilitation outcome. Further facilitation of this positive impact is expected from the application of cooperative control algorithms to increase the patient's contribution to the training effort according to his level of ability. This paper presents an approach for cooperative training for end-effector based gait rehabilitation devices. Thereby it provides the basis to firstly establish sophisticated cooperative control methods in this class of devices. It uses a haptic control framework to synthesize and render complex, task specific training environments, which are composed of polygonal primitives. Training assistance is integrated as part of the environment into the haptic control framework. A compliant window is moved along a nominal training trajectory compliantly guiding and supporting the foot motion. The level of assistance is adjusted via the stiffness of the moving window. Further an iterative learning algorithm is used to automatically adjust this assistance level. Stable haptic rendering of the dynamic training environments and adaptive movement assistance have been evaluated in two example training scenarios: treadmill walking and stair climbing. Data from preliminary trials with one healthy subject is provided in this paper. © 2011 IEEE

  7. NMR derived model of GTPase effector domain (GED self association: relevance to dynamin assembly.

    Directory of Open Access Journals (Sweden)

    Swagata Chakraborty

    Full Text Available Self-association of dynamin to form spiral structures around lipidic vesicles during endocytosis is largely mediated by its 'coiled coil' GTPase Effector Domain (GED, which, in vitro, self-associates into huge helical assemblies. Residue-level structural characterizations of these assemblies and understanding the process of association have remained a challenge. It is also impossible to get folded monomers in the solution phase. In this context, we have developed here a strategy to probe the self-association of GED by first dissociating the assembly using Dimethyl Sulfoxide (DMSO and then systematically monitoring the refolding into helix and concomitant re-association using NMR spectroscopy, as DMSO concentration is progressively reduced. The short segment, Arg109 - Met116, acts as the nucleation site for helix formation and self-association. Hydrophobic and complementary charge interactions on the surfaces drive self-association, as the helices elongate in both the directions resulting in an antiparallel stack. A small N-terminal segment remains floppy in the assembly. Following these and other published results on inter-domain interactions, we have proposed a plausible mode of dynamin self assembly.

  8. Transcription Activator-Like Effectors (TALEs) Hybrid Nucleases for Genome Engineering Application

    KAUST Repository

    Wibowo, Anjar

    2011-06-06

    Gene targeting is a powerful genome engineering tool that can be used for a variety of biotechnological applications. Genomic double-strand DNA breaks generated by engineered site-specific nucleases can stimulate gene targeting. Hybrid nucleases are composed of DNA binding module and DNA cleavage module. Zinc Finger Nucleases were used to generate double-strand DNA breaks but it suffers from failures and lack of reproducibility. The transcription activator–like effectors (TALEs) from plant pathogenic Xanthomonas contain a unique type of DNA-binding domain that bind specific DNA targets. The purpose of this study is to generate novel sequence specific nucleases by fusing a de novo engineered Hax3 TALE-based DNA binding domain to a FokI cleavage domain. Our data show that the de novo engineered TALE nuclease can bind to its target sequence and create double-strand DNA breaks in vitro. We also show that the de novo engineered TALE nuclease is capable of generating double-strand DNA breaks in its target sequence in vivo, when transiently expressed in Nicotiana benthamiana leaves. In conclusion, our data demonstrate that TALE-based hybrid nucleases can be tailored to bind a user-selected DNA sequence and generate site-specific genomic double-strand DNA breaks. TALE-based hybrid nucleases hold much promise as powerful molecular tools for gene targeting applications.

  9. Exploitation of the host cell ubiquitin machinery by microbial effector proteins.

    Science.gov (United States)

    Lin, Yi-Han; Machner, Matthias P

    2017-06-15

    Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu ( J. Cell Sci. 130 , 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' ( J. Cell Sci. 130 , 1981-1983). © 2017. Published by The Company of Biologists Ltd.

  10. Potential Role of the Last Half Repeat in TAL Effectors Revealed by a Molecular Simulation Study

    Directory of Open Access Journals (Sweden)

    Hua Wan

    2016-01-01

    Full Text Available TAL effectors (TALEs contain a modular DNA-binding domain that is composed of tandem repeats. In all naturally occurring TALEs, the end of tandem repeats is invariantly a truncated half repeat. To investigate the potential role of the last half repeat in TALEs, we performed comparative molecular dynamics simulations for the crystal structure of DNA-bound TALE AvrBs3 lacking the last half repeat and its modeled structure having the last half repeat. The structural stability analysis indicates that the modeled system is more stable than the nonmodeled system. Based on the principle component analysis, it is found that the AvrBs3 increases its structural compactness in the presence of the last half repeat. The comparison of DNA groove parameters of the two systems implies that the last half repeat also causes the change of DNA major groove binding efficiency. The following calculation of hydrogen bond reveals that, by stabilizing the phosphate binding with DNA at the C-terminus, the last half repeat helps to adopt a compact conformation at the protein-DNA interface. It further mediates more contacts between TAL repeats and DNA nucleotide bases. Finally, we suggest that the last half repeat is required for the high-efficient recognition of DNA by TALE.

  11. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.

    Science.gov (United States)

    Akino, Kimishige; Toyota, Minoru; Suzuki, Hiromu; Mita, Hiroaki; Sasaki, Yasushi; Ohe-Toyota, Mutsumi; Issa, Jean-Pierre J; Hinoda, Yuji; Imai, Kohzoh; Tokino, Takashi

    2005-07-01

    Activation of Ras signaling is a hallmark of colorectal cancer (CRC), but the roles of negative regulators of Ras are not fully understood. Our aim was to address that question by surveying genetic and epigenetic alterations of Ras-Ras effector genes in CRC cells. The expression and methylation status of 6 RASSF family genes were examined using RT-PCR and bisulfite PCR in CRC cell lines and in primary CRCs and colorectal adenomas. Colony formation assays and flow cytometry were used to assess the tumor suppressor activities of RASSF1 and RASSF2. Immunofluorescence microscopy was used to determine the effect of altered RASSF2 expression on cell morphology. Mutations of K- ras , BRAF, and p53 were identified using single-strand conformation analysis and direct sequencing. Aberrant methylation and histone deacetylation of RASSF2 was associated with the gene's silencing in CRC. The activities of RASSF2, which were distinct from those of RASSF1, included induction of morphologic changes and apoptosis; moreover, its ability to prevent cell transformation suggests that RASSF2 acts as a tumor suppressor in CRC. Primary CRCs that showed K- ras /BRAF mutations also frequently showed RASSF2 methylation, and inactivation of RASSF2 enhanced K- ras -induced oncogenic transformation. RASSF2 methylation was also frequently identified in colorectal adenomas. RASSF2 is a novel tumor suppressor gene that regulates Ras signaling and plays a pivotal role in the early stages of colorectal tumorigenesis.

  12. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    Science.gov (United States)

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001. Copyright © 2014, Cai et al.

  13. PKC-theta in regulatory and effector T-cell functions

    Directory of Open Access Journals (Sweden)

    Vedran eBrezar

    2015-10-01

    Full Text Available One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teff or regulatory (Tregs T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ to the immunological synapse is instrumental for the formation of signalling complexes, that ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the immunological synapse where its formation induces altered signalling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance.This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.

  14. Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD.

    Directory of Open Access Journals (Sweden)

    Yang Chen

    Full Text Available The covalent attachment of adenosine monophosphate (AMP to proteins, a process called AMPylation (adenylylation, has recently emerged as a novel theme in microbial pathogenesis. Although several AMPylating enzymes have been characterized, the only known virulence protein with de-AMPylation activity is SidD from the human pathogen Legionella pneumophila. SidD de-AMPylates mammalian Rab1, a small GTPase involved in secretory vesicle transport, thereby targeting the host protein for inactivation. The molecular mechanisms underlying Rab1 recognition and de-AMPylation by SidD are unclear. Here, we report the crystal structure of the catalytic region of SidD at 1.6 Å resolution. The structure reveals a phosphatase-like fold with additional structural elements not present in generic PP2C-type phosphatases. The catalytic pocket contains a binuclear metal-binding site characteristic of hydrolytic metalloenzymes, with strong dependency on magnesium ions. Subsequent docking and molecular dynamics simulations between SidD and Rab1 revealed the interface contacts and the energetic contribution of key residues to the interaction. In conjunction with an extensive structure-based mutational analysis, we provide in vivo and in vitro evidence for a remarkable adaptation of SidD to its host cell target Rab1 which explains how this effector confers specificity to the reaction it catalyses.

  15. Proton channel HVCN1 is required for effector functions of mouse eosinophils

    Science.gov (United States)

    2013-01-01

    Background Proton currents are required for optimal respiratory burst in phagocytes. Recently, HVCN1 was identified as the molecule required for the voltage-gated proton channel activity associated with the respiratory burst in neutrophils. Although there are similarities between eosinophils and neutrophils regarding their mechanism for respiratory burst, the role of proton channels in eosinophil functions has not been fully understood. Results In the present study, we first identified the expression of the proton channel HVCN1 in mouse eosinophils. Furthermore, using HVCN1-deficient eosinophils, we demonstrated important cell-specific effector functions for HVCN1. Similar to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils produced significantly less reactive oxygen species (ROS) upon phorbol myristate acetate (PMA) stimulation compared with WT eosinophils. In contrast to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils did not show impaired calcium mobilization or migration ability compared with wild-type (WT) cells. Uniquely, HVCN1-deficient eosinophils underwent significantly increased cell death induced by PMA stimulation compared with WT eosinophils. The increased cell death was dependent on NADPH oxidase activation, and correlated with the failure of HVCN1-deficient cells to maintain membrane polarization and intracellular pH in the physiological range upon activation. Conclusions Eosinophils require proton channel HVCN1 for optimal ROS generation and prevention of activation-induced cell death. PMID:23705768

  16. Consequences of exposure to ionizing radiation for effector T cell function in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, B.T.; Hartley, D.; Doherty, P.C. (Univ. of Tennessee, Knoxville (USA))

    1989-01-01

    The adoptive transfer of acutely primed and memory virus-immune CD8+ T cells causes enhanced meningitis in both cyclophosphamide (Cy) suppressed, and unsuppressed, recipients infected with lymphocytic choriomeningitis virus (LCMV). The severity of meningitis is assessed by counting cells in cerebrospinal fluid (CSF) obtained from the cisterna magna, which allows measurement of significant inflammatory process ranging from 3 to more than 300 times the background number of cells found in mice injected with virus alone. Exposure of the donor immune population to ionizing radiation prior to transfer has shown that activated T cells from mice primed 7 or 8 days previously with virus may still promote a low level of meningitis in unsuppressed recipients following as much as 800 rads, while this effect is lost totally in Cy-suppressed mice at 600 rads. Memory T cells are more susceptible and show no evidence of in vivo effector function in either recipient population subsequent to 400 rads, a dose level which also greatly reduces the efficacy of acutely-primed T cells. The results are interpreted as indicating that heavily irradiated cells that are already fully functional show evidence of primary localization to the CNS and a limited capacity to cause pathology. Secondary localization, and events that require further proliferation of the T cells in vivo, are greatly inhibited by irradiation.

  17. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus.

    Directory of Open Access Journals (Sweden)

    Marcela de Souza Santos

    2017-06-01

    Full Text Available The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS production using the Type III Secretion System 2 (T3SS2 effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.

  18. Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development.

    Science.gov (United States)

    Hilton, Matthew J; Tu, Xiaolin; Cook, Julie; Hu, Hongliang; Long, Fanxin

    2005-10-01

    Indian hedgehog (Ihh) controls multiple aspects of endochondral skeletal development, including proliferation and maturation of chondrocytes, osteoblast development and cartilage vascularization. Although it is known that Gli transcription factors are key effectors of hedgehog signaling, it has not been established which Gli protein mediates Ihh activity in skeletal development. Here, we show that removal of Gli3 in Ihh-null mouse embryos restored normal proliferation and maturation of chondrocytes, but only partially rescued the defects in osteoblast development and cartilage vascularization. Remarkably, in both Ihh-/- and Ihh-/-; Gli3-/- embryos, vascularization promoted osteoblast development in perichondrial progenitor cells. Our results not only establish Gli3 as a critical effector for Ihh activity in the developing skeleton, but also identify an osteogenic role for a vasculature-derived signal, which integrates with Ihh and Wnt signals to determine the osteoblast versus chondrocyte fate in the mesenchymal progenitors.

  19. Design and Kinematic Analysis of a New End-Effector for a Robotic Needle Insertion-Type Intervention System

    Directory of Open Access Journals (Sweden)

    Youngjin Moon

    2014-12-01

    Full Text Available This paper presents a new end-effector as a key component for a robotic needle insertion-type intervention system and its kinematic analysis. The mechanism is designed as a spherical mechanism with a revolute joint and a curved sliding joint, and its links always move on the surface of a sphere. The remote centre of motion (RCM of the designed mechanism is placed below the base of the mechanism to avoid contact with the patient's body, unlike the conventional end-effectors developed for needle insertion. For the proposed mechanism, the forward kinematics are solved in terms of input joint parameters and then the reverse kinematics are solved by using the cross-product relationship between each joint vector and a vector mutually perpendicular to the vectors. The kinematic solutions are confirmed by numerical examples.

  20. Peptide Nucleic Acid Knockdown and Intra-host Cell Complementation of Ehrlichia Type IV Secretion System Effector

    Directory of Open Access Journals (Sweden)

    Pratibha Sharma

    2017-06-01

    Full Text Available Survival of Ehrlichia chaffeensis depends on obligatory intracellular infection. One of the barriers to E. chaffeensis research progress has been the inability, using conventional techniques, to generate knock-out mutants for genes essential for intracellular infection. This study examined the use of Peptide Nucleic Acids (PNAs technology to interrupt type IV secretion system (T4SS effector protein expression in E. chaffeensis followed by intracellular complementation of the effector to determine its requirement for infection. Successful E. chaffeensis infection depends on the E. chaffeensis-specific T4SS protein effector, ehrlichial translocated factor-1 (Etf-1, which induces Rab5-regulated autophagy to provide host cytosolic nutrients required for E. chaffeensis proliferation. Etf-1 is also imported by host cell mitochondria where it inhibits host cell apoptosis to prolong its infection. We designed a PNA specific to Etf-1 and showed that the PNA bound to the target region of single-stranded Etf-1 RNA using a competitive binding assay. Electroporation of E. chaffeensis with this PNA significantly reduced Etf-1 mRNA and protein, and the bacteria's ability to induce host cell autophagy and infect host cells. Etf-1 PNA-mediated inhibition of ehrlichial Etf-1 expression and E. chaffeensis infection could be intracellularly trans-complemented by ectopic expression of Etf-1-GFP in host cells. These data affirmed the critical role of bacterial T4SS effector in host cell autophagy and E. chaffeensis infection, and demonstrated the use of PNA to analyze the gene functions of obligate intracellular bacteria.

  1. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants.

    Science.gov (United States)

    Postma, Wiebe J; Slootweg, Erik J; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O G; van Gelderen, Kasper; Lozano-Torres, Jose L; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-10-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.

  2. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function.

    Science.gov (United States)

    Fu, Shin-Huei; Yeh, Li-Tzu; Chu, Chin-Chen; Yen, B Lin-Ju; Sytwu, Huey-Kang

    2017-07-21

    B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3 + regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8 + T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8 + T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.

  3. Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules.

    Science.gov (United States)

    Kenny, Brendan; Ellis, Sarah; Leard, Alan D; Warawa, Jonathan; Mellor, Harry; Jepson, Mark A

    2002-05-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of paediatric diarrhoea and a model for the family of attaching and effacing (A/E) pathogens. A/E pathogens encode a type III secretion system to transfer effector proteins into host cells. The EPEC Tir effector protein acts as a receptor for the bacterial surface protein intimin and is involved in the formation of Cdc42-independent, actin-rich pedestal structures beneath the adhered bacteria. In this paper, we demonstrate that EPEC binding to HeLa cells also induces Tir-independent, cytoskeletal rearrangement evidenced by the early, transient formation of filopodia-like structures at sites of infection. Filopodia formation is dependent on expression of the EPEC Map effector molecule - a protein that targets mitochondria and induces their dysfunction. We show that Map-induced filopodia formation is independent of mitochondrial targeting and is abolished by cellular expression of the Cdc42 inhibitory WASP-CRIB domain, demonstrating that Map has at least two distinct functions in host cells. The transient nature of the filopodia is related to an ability of EPEC to downregulate Map-induced cell signalling that, like pedestal formation, was dependent on both Tir and intimin proteins. The ability of Tir to downregulate filopodia was impaired by disrupting a putative GTPase-activating protein (GAP) motif, suggesting that Tir may possess such a function, with its interaction with intimin triggering this activity. Furthermore, we also found that Map-induced cell signalling inhibits pedestal formation, revealing that the cellular effects of Tir and Map must be co-ordinately regulated during infection. Possible implications of the multifunctional nature of EPEC effector molecules in pathogenesis are discussed.

  4. Effector and naturally occurring regulatory T cells display no abnormalities in activation induced cell death in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ayelet Kaminitz

    Full Text Available BACKGROUND: Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff and regulatory T cells (Treg to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS: Both effector (CD25(-, FoxP3(- and suppressor (CD25(+, FoxP3(+ CD4(+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP trangeneess. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL in both strains. The effector and suppressor CD4(+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4(+CD25(- T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. CONCLUSION: These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.

  5. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis

    OpenAIRE

    Sugio, Akiko; Kingdom, Heather N.; MacLean, Allyson M.; Grieve, Victoria M.; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect per...

  6. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.

    Science.gov (United States)

    Sugio, Akiko; Kingdom, Heather N; MacLean, Allyson M; Grieve, Victoria M; Hogenhout, Saskia A

    2011-11-29

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.

  7. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Joëlle Mounier

    2009-01-01

    Full Text Available Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial stages of Shigella entry. Src recruitment occurred at bacterial-cell contact sites independent of actin polymerization at the onset of the invasive process and was still observed in Shigella strains mutated for translocated T3S effectors of invasion. A Shigella strain with a polar mutation that expressed low levels of the translocator components IpaB and IpaC was fully proficient for Src recruitment and bacterial invasion. In contrast, a Shigella strain mutated in the IpaC carboxyterminal effector domain that was proficient for T3S effector translocation did not induce Src recruitment. Consistent with a direct role for IpaC in Src activation, cell incubation with the IpaC last 72 carboxyterminal residues fused to the Iota toxin Ia (IaC component that translocates into the cell cytosol upon binding to the Ib component led to Src-dependent ruffle formation. Strikingly, IaC also induced actin structures resembling bacterial entry foci that were enriched in activated Src and were inhibited by the Src inhibitor PP2. These results indicate that the IpaC effector domain determines Src-dependent actin polymerization and ruffle formation during bacterial invasion.

  8. Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Torrealdea Javier

    2011-07-01

    Full Text Available Abstract Background The relapsing-remitting dynamics is a hallmark of autoimmune diseases such as Multiple Sclerosis (MS. Although current understanding of both cellular and molecular mechanisms involved in the pathogenesis of autoimmune diseases is significant, how their activity generates this prototypical dynamics is not understood yet. In order to gain insight about the mechanisms that drive these relapsing-remitting dynamics, we developed a computational model using such biological knowledge. We hypothesized that the relapsing dynamics in autoimmunity can arise through the failure in the mechanisms controlling cross-regulation between regulatory and effector T cells with the interplay of stochastic events (e.g. failure in central tolerance, activation by pathogens that are able to trigger the immune system. Results The model represents five concepts: central tolerance (T-cell generation by the thymus, T-cell activation, T-cell memory, cross-regulation (negative feedback between regulatory and effector T-cells and tissue damage. We enriched the model with reversible and irreversible tissue damage, which aims to provide a comprehensible link between autoimmune activity and clinical relapses and active lesions in the magnetic resonances studies in patients with Multiple Sclerosis. Our analysis shows that the weakness in this negative feedback between effector and regulatory T-cells, allows the immune system to generate the characteristic relapsing-remitting dynamics of autoimmune diseases, without the need of additional environmental triggers. The simulations show that the timing at which relapses appear is highly unpredictable. We also introduced targeted perturbations into the model that mimicked immunotherapies that modulate effector and regulatory populations. The effects of such therapies happened to be highly dependent on the timing and/or dose, and on the underlying dynamic of the immune system. Conclusion The relapsing dynamic in MS

  9. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  10. An effector of apple proliferation phytoplasma targets TCP transcription factors-a generalized virulence strategy of phytoplasma?

    Science.gov (United States)

    Janik, Katrin; Mithöfer, Axel; Raffeiner, Margot; Stellmach, Hagen; Hause, Bettina; Schlink, Katja

    2017-04-01

    The plant pathogen Candidatus Phytoplasma mali (P. mali) is the causative agent of apple proliferation, a disease of increasing importance in apple-growing areas within Europe. Despite its economic importance, little is known about the molecular mechanisms of disease manifestation within apple trees. In this study, we identified two TCP (TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR) transcription factors of Malus x domestica as binding partners of the P. mali SAP11-like effector ATP_00189. Phytohormone analyses revealed an effect of P. mali infection on jasmonates, salicylic acid and abscisic acid levels, showing that P. mali affects phytohormonal levels in apple trees, which is in line with the functions of the effector assumed from its binding to TCP transcription factors. To our knowledge, this is the first characterization of the molecular targets of a P. mali effector and thus provides the basis to better understand symptom development and disease progress during apple proliferation. As SAP11 homologues are found in several Phytoplasma species infecting a broad range of different plants, SAP11-like proteins seem to be key players in phytoplasmal infection. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  11. Graft rejection by cytolytic T cells. Specificity of the effector mechanism in the rejection of allogeneic marrow

    International Nuclear Information System (INIS)

    Nakamura, H.; Gress, R.E.

    1990-01-01

    Cellular effector mechanisms of allograft rejection remain incompletely described. Characterizing the rejection of foreign-marrow allografts rather than solid-organ grafts has the advantage that the cellular composition of the marrow graft, as a single cell suspension, can be altered to include cellular components with differing antigen expression. Rejection of marrow grafts is sensitive to lethal doses of radiation in the mouse but resistant to sublethal levels of radiation. In an effort to identify cells mediating host resistance, lymphocytes were isolated and cloned from spleens of mice 7 days after sublethal TBI (650 cGy) and inoculation with allogeneic marrow. All clones isolated were cytolytic with specificity for MHC encoded gene products of the allogeneic marrow donor. When cloned cells were transferred in vivo into lethally irradiated (1025 cGy) recipients unable to reject allogeneic marrow, results utilizing splenic 125IUdR uptake indicated that these MHC-specific cytotoxic clones could suppress marrow proliferation. In order to characterize the effector mechanism and the ability of the clones to affect final engraftment, double donor chimeras were constructed so that 2 target cell populations differing at the MHC from each other and from the host were present in the same marrow allograft. Results directly demonstrated an ability of CTL of host MHC type to mediate graft rejection and characterized the effector mechanism as one with specificity for MHC gene products

  12. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression.

    Science.gov (United States)

    Yang, Bo; Wang, Qunqing; Jing, Maofeng; Guo, Baodian; Wu, Jiawei; Wang, Haonan; Wang, Yang; Lin, Long; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Wang, Yuanchao

    2017-04-01

    Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79 th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions

    Directory of Open Access Journals (Sweden)

    Endalew Yizengaw

    2016-11-01

    Full Text Available Immunologically, active visceral leishmaniasis (VL is characterised by profound immunosuppression, severe systemic inflammatory responses and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis, however, their role in human visceral leishmaniasis is poorly understood.In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase and elastase, all contained in neutrophils’ granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analysed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species and phagocytose bacterial particles, but not Leishmania parasites.Our results suggest that impaired effector functions, increased activation and immaturity of neutrophils play a key role in the pathogenesis of VL.

  14. Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Lu, Defen; Shang, Guijun; Yu, Qian; Zhang, Heqiao; Zhao, Yanyu; Cang, Huaixing; Gu, Lichuan; Xu, Sujuan; Huang, Yan

    2013-01-01

    Tse3, one of the effectors of the type VI secretion system in Pseudomonas aeruginosa, has been crystallized and diffracted to 1.5 Å resolution. Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to inject effector proteins into rival cells in niche competition. Tse3, one of the effectors of T6SS, is delivered into the periplasm of recipient cells. Tse3 functions as a muramidase that degrades the β-1,4-linkage between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan, thus leading to lysis of the recipient cells and providing a competitive advantage to the donor cells. Here, the preliminary crystallographic study of Tse3 is reported. A crystal of Tse3 diffracted to 1.5 Å resolution. It belonged to space group C121, with unit-cell parameters a = 166.99, b = 70.13, c = 41.94 Å, α = 90.00, β = 90.52, γ = 90.00° and one molecule per asymmetric unit

  15. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  16. Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies.

    Science.gov (United States)

    Tipton, Thomas R W; Roghanian, Ali; Oldham, Robert J; Carter, Matthew J; Cox, Kerry L; Mockridge, C Ian; French, Ruth R; Dahal, Lekh N; Duriez, Patrick J; Hargreaves, Philip G; Cragg, Mark S; Beers, Stephen A

    2015-03-19

    Following the success of rituximab, 2 other anti-CD20 monoclonal antibodies (mAbs), ofatumumab and obinutuzumab, have entered clinical use. Ofatumumab has enhanced capacity for complement-dependent cytotoxicity, whereas obinutuzumab, a type II mAb, lacks the ability to redistribute into lipid rafts and is glycoengineered for augmented antibody-dependent cellular cytotoxicity (ADCC). We previously showed that type I mAbs such as rituximab have a propensity to undergo enhanced antigenic modulation compared with type II. Here we assessed the key effector mechanisms affected, comparing type I and II antibodies of various isotypes in ADCC and antibody-dependent cellular-phagocytosis (ADCP) assays. Rituximab and ofatumumab depleted both normal and leukemic human CD20-expressing B cells in the mouse less effectively than glycoengineered and wild-type forms of obinutuzumab, particularly when human immunoglobulin G1 (hIgG1) mAbs were compared. In contrast to mouse IgG2a, hIgG1 mAbs were ineffective in ADCC assays with murine natural killer cells as effectors, whereas ADCP was equivalent for mouse IgG2a and hIgG1. However, rituximab's ability to elicit both ADCC and ADCP was reduced by antigenic modulation, whereas type II antibodies remained unaffected. These data demonstrate that ADCP and ADCC are impaired by antigenic modulation and that ADCP is the main effector function employed in vivo. © 2015 by The American Society of Hematology.

  17. The neuro-immunological interface in an evolutionary perspective: the dynamic relationship between effector and recognition systems.

    Science.gov (United States)

    Ottaviani, E; Valensin, S; Franceschi, C

    1998-04-16

    The evolutionary perspective indicates that an immune-neuroendocrine effector system integrating innate immunity, stress and inflammation is present in invertebrates. This defense network, centered on the macrophage and exerting primitive and highly promiscuous recognition units, is very effective, ancestral and appears to have been conserved throughout evolution from invertebrates to higher vertebrates. It would seem that there was a "big bang" in the recognition system of lower vertebrates, and T and B cell repertoires, MHC and antibodies suddenly appeared. We argue that this phenomenon is the counterpart of the increasing complexity of the internal circuitry and recognition units in the effector system. The immediate consequences were a progressive enlargement of the pathogen repertoire and new problems regarding self/not-self discrimination. Probably not by chance, a new organ appeared, capable of purging cells able of excessive self recognition. This organ, the thymus, appears to be the result of a well known evolutionary strategy of re-using pre-existing material (neuroendocrine cells and mediators constituting the thymic microenvironment). This bricolage at an organ level is similar to the effect we have already described at the level of molecules and functions of the defense network, and has a general counterpart at genetic level. Thus, in vertebrates, the conserved immune-neuroendocrine effector system remains of fundamental importance in defense against pathogens, while its efficiency has increased through synergy with the new, clonotipical recognition repertoire.

  18. IL-21 augments NK effector functions in chronically HIV-infected individuals

    Science.gov (United States)

    Strbo, Natasa; de Armas, Lesley; Liu, Huanliang; Kolber, Michael A.; Lichtenheld, Mathias; Pahwa, Savita

    2009-01-01

    Objective This study addresses the interleukin (IL)-21 effects on resting peripheral blood NK cells in chronically HIV-infected individuals. Design The effects of IL-21 on perforin expression, proliferation, degranulation, IFN-γ production, cytotoxicity and induction of STAT phosphorylation in NK cells were determined in vitro. Methods Peripheral blood mononuclear cells from HIV-infected and healthy individuals were incubated in vitro for 6h, 24h or 5 days with IL-21 or IL-15. Percentages of perforin, IFN-γ, CD107a, NKG2D and STAT3-5 positive cells were determined within NK cell populations. K562 cells were used as target cells in NK cytotoxicity assay. Results Frequency of CD56dim cells in chronically HIV-infected individuals was diminished. Perforin expression in CD56dim and CD56bright was comparable in healthy and HIV-infected individuals. IL-15 up-regulated perforin expression primarily in CD56bright NK cells while IL-21 up-regulated perforin in both NK subsets. IL-21 and IL- 15 up-regulated CD107a and IFN-γ as well as NK cytotoxicity. IL-15 predominantly activated STAT5, while IL-21 activated STAT5 and STAT3. IL-15, but not IL-21 increased NK cell proliferation in uninfected and HIV-infected individuals. Conclusion IL-21 augments NK effector functions in chronically HIV-infected individuals and due to its perforin enhancing properties it has potential for immunotherapy or as a vaccine adjuvant. PMID:18670213

  19. Specificity and Effector Functions of Human RSV-Specific IgG from Bovine Milk.

    Directory of Open Access Journals (Sweden)

    Gerco den Hartog

    Full Text Available Respiratory syncytial virus (RSV infection is the second most important cause of death in the first year of life, and early RSV infections are associated with the development of asthma. Breastfeeding and serum IgG have been shown to protect against RSV infection. Yet, many infants depend on bovine milk-based nutrition, which at present lacks intact immunoglobulins.To investigate whether IgG purified from bovine milk (bIgG can modulate immune responses against human RSV.ELISAs were performed to analyse binding of bIgG to human respiratory pathogens. bIgG or hRSV was coated to plates to assess dose-dependent binding of bIgG to human Fcγ receptors (FcγR or bIgG-mediated binding of myeloid cells to hRSV respectively. S. Epidermidis and RSV were used to test bIgG-mediated binding and internalisation of pathogens by myeloid cells. Finally, the ability of bIgG to neutralise infection of HEp2 cells by hRSV was evaluated.bIgG recognised human RSV, influenza haemagglutinin and Haemophilus influenza. bIgG bound to FcγRII on neutrophils, monocytes and macrophages, but not to FcγRI and FcγRIII, and could bind simultaneously to hRSV and human FcγRII on neutrophils. In addition, human neutrophils and dendritic cells internalised pathogens that were opsonised with bIgG. Finally, bIgG could prevent infection of HEp2 cells by hRSV.The data presented here show that bIgG binds to hRSV and other human respiratory pathogens and induces effector functions through binding to human FcγRII on phagocytes. Thus bovine IgG may contribute to immune protection against RSV.

  20. Specificity and Effector Functions of Human RSV-Specific IgG from Bovine Milk.

    Science.gov (United States)

    den Hartog, Gerco; Jacobino, Shamir; Bont, Louis; Cox, Linda; Ulfman, Laurien H; Leusen, Jeanette H W; van Neerven, R J Joost

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the second most important cause of death in the first year of life, and early RSV infections are associated with the development of asthma. Breastfeeding and serum IgG have been shown to protect against RSV infection. Yet, many infants depend on bovine milk-based nutrition, which at present lacks intact immunoglobulins. To investigate whether IgG purified from bovine milk (bIgG) can modulate immune responses against human RSV. ELISAs were performed to analyse binding of bIgG to human respiratory pathogens. bIgG or hRSV was coated to plates to assess dose-dependent binding of bIgG to human Fcγ receptors (FcγR) or bIgG-mediated binding of myeloid cells to hRSV respectively. S. Epidermidis and RSV were used to test bIgG-mediated binding and internalisation of pathogens by myeloid cells. Finally, the ability of bIgG to neutralise infection of HEp2 cells by hRSV was evaluated. bIgG recognised human RSV, influenza haemagglutinin and Haemophilus influenza. bIgG bound to FcγRII on neutrophils, monocytes and macrophages, but not to FcγRI and FcγRIII, and could bind simultaneously to hRSV and human FcγRII on neutrophils. In addition, human neutrophils and dendritic cells internalised pathogens that were opsonised with bIgG. Finally, bIgG could prevent infection of HEp2 cells by hRSV. The data presented here show that bIgG binds to hRSV and other human respiratory pathogens and induces effector functions through binding to human FcγRII on phagocytes. Thus bovine IgG may contribute to immune protection against RSV.

  1. Hydraulic impact end effector final test report. Automation and robotics section, ER/WM-AT Program

    International Nuclear Information System (INIS)

    Couture, S.

    1994-01-01

    One tool being developed for dislodging and fragmenting the hard salt cake waste in the single-shell nuclear waste tanks at the Hanford Reservation near Richland, Washington, is the hydraulic impact end effector (HIEE). This total operates by discharging 11-in. slugs of water at ultrahigh pressures. The HIEE was designed, built, and initially tested in 1992. Work in 1993 included advanced developments of the HIEE to further investigate its fragmentation abilities and to determine more effective operating procedures. These tests showed that more fragmentation can be achieved by increasing the charge pressure of 40 kpsi to 55 kpsi and by the use of different operating procedures. The size of the material and the impact energy of the water slug fired from the HIEE are believed to be major factors in material fragmentation. The material's ability to fracture also appears to depend on the distance a fracture or crack line must travel to a free surface. Thus, larger material is more difficult to fracture than smaller material. Discharge pressures of 40 kpsi resulted in little penetration or fracturing of the material. At 55 kpsi, however, the size and depth of the fractures increased. Nozzle geometry had a significant effect on fragment size and quantity. Fragmentation was about an order of magnitude greater when the HIEE was discharged into drilled holes rather than onto the material surface. Since surface shots tend to create craters, a multi-shot procedure, coupled with an advanced nozzle design, was used to drill (crater) deep holes into large material. With this procedure, a 600-lb block was reduced to smaller pieces without the use of any additional equipment. Through this advanced development program, the HIEE has demonstrated that it can quickly fragment salt cake material into small, easily removable fragments. The HIEE's material fragmentation ability can be substantially increased through the use of different nozzle geometries and operating procedures

  2. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs.

    Directory of Open Access Journals (Sweden)

    Finola E Moore

    Full Text Available Zinc Finger Nucleases (ZFNs made by Context-Dependent Assembly (CoDA and Transcription Activator-Like Effector Nucleases (TALENs provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%-76.8% compared to 1.1%-3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish.

  3. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood.

    Directory of Open Access Journals (Sweden)

    Kerstin Hünniger

    2014-02-01

    Full Text Available Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment

  4. Special Aspects of Dynamic Properties of Combination Jet Effectors for Flying Vehicle Control

    Directory of Open Access Journals (Sweden)

    Val. V. Zelencov

    2015-01-01

    Full Text Available The paper considers an experimental study of special aspects of disturbed flow region dynamics that is formed when an injected high-pressure gas jet interacts with a supersonic crossflow of gas nearby a surface of a nozzle or a plate. The study objective was to determine a difference of the pressure distribution in the region and its sizes under dynamic action from stationary flow characteristics.The experiment involved measuring pressure distribution on the surface of a nozzle or a plate along with high-speed filming of the flow.The study has revealed that the difference in size of the disturbed flow region and the flow distribution is observed only in transition segments: under injected jet stagnation pressure increase or decrease. The region is formed with a time lag close to zero under pulsation frequencies used. The disturbed flow region size and boundary shape and pressure distribution in constant pressure segment are independent of jet pulsation.It was determined that the dynamic properties (i.e. time of formation of disturbed flow region depend of induced force and crossflow properties.Disturbed flow region size behavior in time domain can be represented by an aperiodic element with a time constant significantly smaller than that of the gas-feed circuit.The results gained make it possible to state that in assessing dynamic properties of combination jet effectors it is sufficient to take into account gas generator and gas-feed circuit which response is significantly slower than that of the disturbed flow region.The recommendations based on the study results can be used for supersonic and hypersonic flying vehicle design.

  5. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes

    Science.gov (United States)

    Orlovskis, Zigmunds; Hogenhout, Saskia A.

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  6. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms

    Science.gov (United States)

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  7. Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors.

    Directory of Open Access Journals (Sweden)

    Hua Wan

    Full Text Available TAL (transcriptional activator-like effectors (TALEs are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA, the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL. The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.

  8. Effector and regulatory dendritic cells display distinct patterns of miRNA expression.

    Science.gov (United States)

    Lombardi, Vincent; Luce, Sonia; Moussu, Hélène; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet-Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron-Bodo, Véronique; Moingeon, Philippe

    2017-09-01

    MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Using specific culture conditions, we differentiated immature human monocyte-derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of T H 1, T H 2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non-allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR-132 and miR-155), was down-regulated compared to non-allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow-up AIT efficacy. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  9. Hydroxychloroquine preferentially induces apoptosis of CD45RO+ effector T cells by inhibiting autophagy: A possible mechanism for therapeutic modulation of T cells

    OpenAIRE

    van Loosdregt, Jorg; Spreafico, Roberto; Rossetti, Maura; Prakken, Berent J; Lotz, Martin; Albani, Salvatore

    2013-01-01

    Although hydroxychloroquine is used for treatment of numerous autoimmune disorders the mechanism is unclear. We here demonstrate that hydroxychloroquine preferentially induces apoptosis of CD45RO+ memory and effector T cells by inhibiting the survival pathway of autophagy.

  10. A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment.

    Science.gov (United States)

    Tomkins, Melissa; Kliot, Adi; Marée, Athanasius Fm; Hogenhout, Saskia A

    2018-03-13

    Members of the Candidatus genus Phytoplasma are small bacterial pathogens that hijack their plant hosts via the secretion of virulence proteins (effectors) leading to a fascinating array of plant phenotypes, such as witch's brooms (stem proliferations) and phyllody (retrograde development of flowers into vegetative tissues). Phytoplasma depend on insect vectors for transmission, and interestingly, these insect vectors were found to be (in)directly attracted to plants with these phenotypes. Therefore, phytoplasma effectors appear to reprogram plant development and defence to lure insect vectors, similarly to social engineering malware, which employs tricks to lure people to infected computers and webpages. A multi-layered mechanistic modelling approach will enable a better understanding of how phytoplasma effector-mediated modulations of plant host development and insect vector behaviour contribute to phytoplasma spread, and ultimately to predict the long reach of phytoplasma effector genes. Copyright © 2018. Published by Elsevier Ltd.

  11. Recent History of Effector Use Modulates Practice-Dependent Changes in Corticospinal Excitability but Not Motor Learning.

    Science.gov (United States)

    Hussain, Sara J; Darling, Warren G; Cole, Kelly J

    2016-01-01

    The theory of homeostatic metaplasticity has significant implications for human motor cortical plasticity and motor learning. Previous work has shown that the extent of recent effector use before exogenously-induced plasticity can affect the direction, magnitude and variability of aftereffects. However, the impact of recent effector use on motor learning and practice-dependent plasticity is not known. We hypothesized that reducing effector use for 8 hours via hand/wrist immobilization would facilitate practice-dependent changes in corticospinal excitability and TMS-evoked thumb movement kinematics, while also promoting 24-hour retention of a ballistic motor skill. Subjects participated in a crossover study involving two conditions. During the immobilization condition, subjects wore a splint that restricted motion of the left hand and thumb for 8 hours. While wearing the splint, subjects were instructed to avoid using their left hand as much as possible. During the control condition, subjects did not wear a splint at any time nor were they instructed to avoid hand use. After either an 8 hour period of immobilization or normal hand use, we collected MEP and TMS-evoked thumb movement recruitment curves, and subjects practiced a ballistic motor skill involving rapid thumb extension. After motor practice, MEP and TMS-evoked thumb movement recruitment curves were re-tested. Retention of the motor skill was tested 30 minutes and 24 hours after motor practice. Reduced effector use did not impact pre-practice corticospinal excitability but did facilitate practice-dependent changes in corticospinal excitability, and this enhancement was specific to the trained muscle. In contrast, reducing effector use did not affect practice-dependent changes in TMS-evoked thumb movements nor did it promote acquisition or retention of the skill. Finally, we detected some associations between pre-practice excitability levels, plasticity effects and learning effects, but these did not reach

  12. Functional differences between PD-1+ and PD-1- CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Brittany A Goods

    Full Text Available Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1 have been highly successful in the treatment of cancer. While PD-1 expression has been widely investigated, its role in CD4+ effector T cells in the setting of health and cancer remains unclear, particularly in the setting of glioblastoma multiforme (GBM, the most aggressive and common form of brain cancer. We examined the functional and molecular features of PD-1+CD4+CD25-CD127+Foxp3-effector cells in healthy subjects and in patients with GBM. In healthy subjects, we found that PD-1+CD4+ effector cells are dysfunctional: they do not proliferate but can secrete large quantities of IFNγ. Strikingly, blocking antibodies against PD-1 did not rescue proliferation. RNA-sequencing revealed features of exhaustion in PD-1+ CD4 effectors. In the context of GBM, tumors were enriched in PD-1+ CD4+ effectors that were similarly dysfunctional and unable to proliferate. Furthermore, we found enrichment of PD-1+TIM-3+ CD4+ effectors in tumors, suggesting that co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial. RNA-sequencing of blood and tumors from GBM patients revealed distinct differences between CD4+ effectors from both compartments with enrichment in multiple gene sets from tumor infiltrating PD-1-CD4+ effectors cells. Enrichment of these gene sets in tumor suggests a more metabolically active cell state with signaling through other co-receptors. PD-1 expression on CD4 cells identifies a dysfunctional subset refractory to rescue with PD-1 blocking antibodies, suggesting that the influence of immune checkpoint inhibitors may involve recovery of function in the PD-1-CD4+ T cell compartment. Additionally, co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial.

  13. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC.

    Science.gov (United States)

    Akeda, Yukihiro; Kodama, Toshio; Saito, Kazunobu; Iida, Tetsuya; Oishi, Kazunori; Honda, Takeshi

    2011-11-01

    The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V. parahaemolyticus. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function

    Science.gov (United States)

    Tomalka, Amanda G.; Stopford, Charles M.; Lee, Pei-Chung; Rietsch, Arne

    2012-01-01

    Summary Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the P. aeruginosa translocator protein PopD as a model to identify its export signals. The amino-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone-binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells. PMID:23121689

  15. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Eric Warren

    2017-02-01

    Full Text Available Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs, which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG

  16. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication.

    Science.gov (United States)

    Fusco, Dahlene N; Brisac, Cynthia; John, Sinu P; Huang, Yi-Wen; Chin, Christopher R; Xie, Tiao; Zhao, Hong; Jilg, Nikolaus; Zhang, Leiliang; Chevaliez, Stephane; Wambua, Daniel; Lin, Wenyu; Peng, Lee; Chung, Raymond T; Brass, Abraham L

    2013-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, β 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this

  17. Differential responses of human regulatory T cells (Treg and effector T cells to rapamycin.

    Directory of Open Access Journals (Sweden)

    Laura Strauss

    Full Text Available BACKGROUND: The immunosuppressive drug rapamycin (RAPA promotes the expansion of CD4(+ CD25(highFoxp3(+ regulatory T cells via mechanisms that remain unknown. Here, we studied expansion, IL-2R-gamma chain signaling, survival pathways and resistance to apoptosis in human Treg responding to RAPA. METHODOLOGY/PRINCIPAL FINDINGS: CD4(+CD25(+ and CD4(+CD25(neg T cells were isolated from PBMC of normal controls (n = 21 using AutoMACS. These T cell subsets were cultured in the presence of anti-CD3/CD28 antibodies and 1000 IU/mL IL-2 for 3 to 6 weeks. RAPA (1-100 nM was added to half of the cultures. After harvest, the cell phenotype, signaling via the PI3K/mTOR and STAT pathways, expression of survival proteins and Annexin V binding were determined and compared to values obtained with freshly-separated CD4(+CD25(high and CD4(+CD25(neg T cells. Suppressor function was tested in co-cultures with autologous CFSE-labeled CD4(+CD25(neg or CD8(+CD25(neg T-cell responders. The frequency and suppressor activity of Treg were increased after culture of CD4(+CD25(+ T cells in the presence of 1-100 nM RAPA (p<0.001. RAPA-expanded Treg were largely CD4(+CD25(highFoxp3(+ cells and were resistant to apoptosis, while CD4(+CD25(neg T cells were sensitive. Only Treg upregulated anti-apoptotic and down-regulated pro-apoptotic proteins. Treg expressed higher levels of the PTEN protein than CD4(+CD25(neg cells. Activated Treg+/-RAPA preferentially phosphorylated STAT5 and STAT3 and did not utilize the PI3K/mTOR pathway. CONCLUSIONS/SIGNIFICANCE: RAPA favors Treg expansion and survival by differentially regulating signaling, proliferation and sensitivity to apoptosis of human effector T cells and Treg after TCR/IL-2 activation.

  18. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells

    Science.gov (United States)

    2011-01-01

    , which are important Btk-expressing effector cells in arthritis. PMID:21752263

  19. Development of an optimum end-effector with a nano-scale uneven surface for non-adhesion cell manipulation using a micro-manipulator

    International Nuclear Information System (INIS)

    Horade, M; Kojima, M; Kamiyama, K; Kurata, T; Mae, Y; Arai, T

    2015-01-01

    In order to realize effective micro-manipulation using a micro-manipulator system, an optimum end-effector is proposed. Cell-manipulation experiments using mouse fibroblast cells are conducted, and the usability of the proposed end-effector is confirmed. A key advantage of the micro-manipulator is high-accuracy, high-speed 3D micro- and nano-scale positioning. Micro-manipulation has often been used in research involving biological cells. However, there are two important concerns with the micro-manipulator system: gripping efficiency and the release of gripped objects. When it is not possible to grip a micro-object, such as a cell, near its center, the object may be dropped during manipulation. Since the acquisition of exact position information for a micro-object in the vertical direction is difficult using a microscope, the gripping efficiency of the end-effector should be improved. Therefore, technical skill or operational support is required. Since, on the micro-scale, surface forces such as the adsorption force are greater than body forces, such as the gravitational force, the adhesion force between the end-effector and the object is strong. Therefore, manipulation techniques without adhesion are required for placed an object at an arbitrary position. In the present study, we consider direct physical contact between the end-effector and objects. First, the design and materials of the end-effector for micro-scale manipulation were optimized, and an end-effector with an optimum shape to increase the grip force was fabricated. Second, the surface of the end-effector tip was made uneven, and the adhesion force from increasing on the micro-scale was prevented. When an end-effector with an uneven surface was used, release without adhesion was successful 85.0% of the time. On the other hand, when an end-effector without an uneven surface was used, release without adhesion was successful 6.25% of the time. Therefore, the superiority of a structure with an uneven

  20. A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola.

    Science.gov (United States)

    Triplett, Lindsay R; Cohen, Stephen P; Heffelfinger, Christopher; Schmidt, Clarice L; Huerta, Alejandra I; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J; Leach, Jan E

    2016-09-01

    The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. USP2-45 Is a Circadian Clock Output Effector Regulating Calcium Absorption at the Post-Translational Level.

    Directory of Open Access Journals (Sweden)

    Daniel Pouly

    Full Text Available The mammalian circadian clock influences most aspects of physiology and behavior through the transcriptional control of a wide variety of genes, mostly in a tissue-specific manner. About 20 clock-controlled genes (CCGs oscillate in virtually all mammalian tissues and are generally considered as core clock components. One of them is Ubiquitin-Specific Protease 2 (Usp2, whose status remains controversial, as it may be a cogwheel regulating the stability or activity of core cogwheels or an output effector. We report here that Usp2 is a clock output effector related to bodily Ca2+ homeostasis, a feature that is conserved across evolution. Drosophila with a whole-body knockdown of the orthologue of Usp2, CG14619 (dUsp2-kd, predominantly die during pupation but are rescued by dietary Ca2+ supplementation. Usp2-KO mice show hyperabsorption of dietary Ca2+ in small intestine, likely due to strong overexpression of the membrane scaffold protein NHERF4, a regulator of the Ca2+ channel TRPV6 mediating dietary Ca2+ uptake. In this tissue, USP2-45 is found in membrane fractions and negatively regulates NHERF4 protein abundance in a rhythmic manner at the protein level. In clock mutant animals (Cry1/Cry2-dKO, rhythmic USP2-45 expression is lost, as well as the one of NHERF4, confirming the inverse relationship between USP2-45 and NHERF4 protein levels. Finally, USP2-45 interacts in vitro with NHERF4 and endogenous Clathrin Heavy Chain. Taken together these data prompt us to define USP2-45 as the first clock output effector acting at the post-translational level at cell membranes and possibly regulating membrane permeability of Ca2+.

  2. Fructose 1-phosphate is the one and only physiological effector of the Cra (FruR) regulator of Pseudomonas putida.

    Science.gov (United States)

    Chavarría, Max; Durante-Rodríguez, Gonzalo; Krell, Tino; Santiago, César; Brezovsky, Jan; Damborsky, Jiri; de Lorenzo, Víctor

    2014-01-01

    Fructose-1-phosphate (F1P) is the preferred effector of the catabolite repressor/activator (Cra) protein of the soil bacterium Pseudomonas putida but its ability to bind other metabolic intermediates in vivo is unclear. The Cra protein of this microorganism (Cra(PP)) was submitted to mobility shift assays with target DNA sequences (the PfruB promoter) and candidate effectors fructose-1,6-bisphosphate (FBP), glucose 6-phosphate (G6P), and fructose-6-phosphate (F6P). 1 mM F1P was sufficient to release most of the Cra protein from its operators but more than 10 mM of FBP or G6P was required to free the same complex. However, isothermal titration microcalorimetry failed to expose any specific interaction between Cra(PP) and FBP or G6P. To solve this paradox, transcriptional activity of a PfruB-lacZ fusion was measured in wild-type and ΔfruB cells growing on substrates that change the intracellular concentrations of F1P and FBP. The data indicated that PfruB activity was stimulated by fructose but not by glucose or succinate. This suggested that Cra(PP) represses expression in vivo of the cognate fruBKA operon in a fashion dependent just on F1P, ruling out any other physiological effector. Molecular docking and dynamic simulations of the Cra-agonist interaction indicated that both metabolites can bind the repressor, but the breach in the relative affinity of Cra(PP) for F1P vs FBP is three orders of magnitude larger than the equivalent distance in the Escherichia coli protein. This assigns the Cra protein of P. putida the sole role of transducing the presence of fructose in the medium into a variety of direct and indirect physiological responses.

  3. Age related changes in T cell mediated immune response and effector memory to Respiratory Syncytial Virus (RSV in healthy subjects

    Directory of Open Access Journals (Sweden)

    Campoccia Giuseppe

    2010-10-01

    Full Text Available Abstract Respiratory syncytial virus (RSV is the major pathogen causing respiratory disease in young infants and it is an important cause of serious illness in the elderly since the infection provides limited immune protection against reinfection. In order to explain this phenomenon, we investigated whether healthy adults of different age (20-40; 41-60 and > 60 years, have differences in central and effector memory, RSV-specific CD8+ T cell memory immune response and regulatory T cell expression status. In the peripheral blood of these donors, we were unable to detect any age related difference in term of central (CD45RA-CCR7+ and effector (CD45RA-CCR7- memory T cell frequency. On the contrary, we found a significant increase in immunosuppressive regulatory (CD4+25+FoxP3+ T cells (Treg in the elderly. An immunocytofluorimetric RSV pentamer analysis performed on these donors' peripheral blood mononuclear cells (PBMCs, in vitro sensitized against RSV antigen, revealed a marked decline in long-lasting RSV specific CD8+ memory T cell precursors expressing interleukin 7 receptor α (IL-7Rα, in the elderly. This effect was paralleled by a progressive switch from a Th1 (IFN-γ and TNF-α to a Th2 (IL-10 functional phenotype. On the contrary, an increase in Treg was observed with aging. The finding of Treg over-expression status, a prominent Th2 response and an inefficient RSV-specific effector memory CD8+ T cell expansion in older donors could explain the poor protection against RSV reinfection and the increased risk to develop an RSV-related severe illness in this population. Our finding also lays the basis for new therapeutic perspectives that could limit or prevent severe RSV infection in elderly.

  4. Design and Computational Fluid Dynamics Optimization of the Tube End Effector for Reactor Pressure Vessel Head Type VVER-1000

    International Nuclear Information System (INIS)

    Novosel, D.

    2006-01-01

    In this paper is presented development and optimization of the tube end effector design which should consist of 4 ultrasonic transducers, 4 Eddy Current's transducers and Radiation Proof Dot Camera. Basically, designing was conducted by main input requests, such as: inner diameter of a tested reactor pressure vessel head penetration tube, dimensions of a transducers and maximum allowable vertical movement of a manipulator connection rod in order to cover all inner tube surface. As is obvious, for ultrasonic testing should be provided the thin layer of liquid material (in our case water was chosen) which is necessary to make physical contact between transducer surface and investigated inner tube surface. By help of Computational Fluid Dynamics, determined were parameters of geometry, as the most important factor of transducer housing, hydraulically parameters for water supply and primary drain together implemented into this housing, movement of the end effectors (vertical and cylindrical) and finally, necessary equipment which has to provide all hydraulically and pneumatic requirements. As the cylindrical surface of the inner tube diameter was liquefied and contact between transducer housing and tested tube wasn't ideally covered, water leakage could occur in downstream direction. To reduce water leakage, which is highly contaminated, developed was second water drain by diffuser assembly which is driven by Venturi pipe, commercially called vacuum generator. Using the Computational Fluid Dynamic, obtained was optimized geometry of diffuser control volume with the highest efficiency, in other words, unobstructed fluid flux. Afterwards, the end effectors system was synchronized to the existing operable system for NDT methods all invented and designed by INETEC. (author)

  5. The Rho GTPase Effector ROCK Regulates Cyclin A, Cyclin D1, and p27Kip1 Levels by Distinct Mechanisms

    OpenAIRE

    Croft, Daniel R.; Olson, Michael F.

    2006-01-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. H...

  6. Optimal expression of a Fab-effector fusion protein in Escherichia coli by removing the cysteine residues responsible for an interchain disulfide bond of a Fab molecule.

    Science.gov (United States)

    Kang, Hyeon-Ju; Kim, Hye-Jin; Jung, Mun-Sik; Han, Jae-Kyu; Cha, Sang-Hoon

    2017-04-01

    Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (V H +C H1 ) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  7. The Effector Domain Region of the Vibrio vulnificus MARTX Toxin Confers Biphasic Epithelial Barrier Disruption and Is Essential for Systemic Spread from the Intestine.

    Directory of Open Access Journals (Sweden)

    Hannah E Gavin

    2017-01-01

    Full Text Available Vibrio vulnificus causes highly lethal bacterial infections in which the Multifunctional Autoprocessing Repeats-in-Toxins (MARTX toxin product of the rtxA1 gene is a key virulence factor. MARTX toxins are secreted proteins up to 5208 amino acids in size. Conserved MARTX N- and C-terminal repeat regions work in concert to form pores in eukaryotic cell membranes, through which the toxin's central region of modular effector domains is translocated. Upon inositol hexakisphosphate-induced activation of the of the MARTX cysteine protease domain (CPD in the eukaryotic cytosol, effector domains are released from the holotoxin by autoproteolytic activity. We previously reported that the native MARTX toxin effector domain repertoire is dispensable for epithelial cellular necrosis in vitro, but essential for cell rounding and apoptosis prior to necrotic cell death. Here we use an intragastric mouse model to demonstrate that the effector domain region is required for bacterial virulence during intragastric infection. The MARTX effector domain region is essential for bacterial dissemination from the intestine, but dissemination occurs in the absence of overt intestinal tissue pathology. We employ an in vitro model of V. vulnificus interaction with polarized colonic epithelial cells to show that the MARTX effector domain region induces rapid intestinal barrier dysfunction and increased paracellular permeability prior to onset of cell lysis. Together, these results negate the inherent assumption that observations of necrosis in vitro directly predict bacterial virulence, and indicate a paradigm shift in our conceptual understanding of MARTX toxin function during intestinal infection. Results implicate the MARTX effector domain region in mediating early bacterial dissemination from the intestine to distal organs-a key step in V. vulnificus foodborne pathogenesis-even before onset of overt intestinal pathology.

  8. CD4+ T cells are required to contain early extrathoracic TB dissemination and sustain multi-effector functions of CD8+ T and CD3− lymphocytes

    Science.gov (United States)

    Yao, Shuyu; Huang, Dan; Chen, Crystal Y.; Halliday, Lisa; Wang, Richard C.; Chen, Zheng W.

    2014-01-01

    The possibility that CD4+ T cells can act as “innate-like” cells to contain very-early M. tuberculosis (Mtb) dissemination and function as master helpers to sustain multiple effector functions of CD8+ T cells and CD3-negative lymphocytes during development of adaptive immunity against primary tuberculosis(TB) has not been demonstrated. We showed that pulmonary Mtb infection of CD4-depleted macaques surprisingly led to very-early extrathoracic Mtb dissemination, whereas CD4 deficiency clearly resulted in rapid TB progression. CD4 depletion during Mtb infection revealed the ability of CD8+ T cells to compensate and rapidly differentiate to Th17-like/Th1-like, and cytotoxic-like effectors, but these effector functions were subsequently unsustainable due to CD4 deficiency. While CD3-negative non-T lymphocytes in presence of CD4+ T cells developed predominant Th22-like and NK-like (perforin production) responses to Mtb infection, CD4 depletion abrogated these Th22-/NK-like effector functions and favored IL-17 production by CD3-negative lymphocytes. CD4-depleted macaques exhibited no or few pulmonary T effector cells constitutively producing IFN-γ, TNFα, IL-17, IL-22, and perforin at the endpoint of more severe TB, but presented pulmonary IL-4+ T effectors. TB granulomas in CD4-depleted macaques contained fewer IL-22+ and perforin+ cells despite presence of IL-17+ and IL-4+ cells. These results implicate previously-unknown “innate-like” ability of CD4+ T cells to contain extrathoracic Mtb dissemination at very early stage. Data also suggest that CD4+ T cells are required to sustain multiple effector functions of CD8+ T cells and CD3-negative lymphocytes and to prevent rapid TB progression during Mtb infection of nonhuman primates. PMID:24489088

  9. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  10. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range.

    Science.gov (United States)

    Deng, Cecilia H; Plummer, Kim M; Jones, Darcy A B; Mesarich, Carl H; Shiller, Jason; Taranto, Adam P; Robinson, Andrew J; Kastner, Patrick; Hall, Nathan E; Templeton, Matthew D; Bowen, Joanna K

    2017-05-02

    Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host

  11. Curtailed T-cell activation curbs effector differentiation and generates CD8+ T cells with a naturally-occurring memory stem cell phenotype.

    Science.gov (United States)

    Zanon, Veronica; Pilipow, Karolina; Scamardella, Eloise; De Paoli, Federica; De Simone, Gabriele; Price, David A; Martinez Usatorre, Amaia; Romero, Pedro; Mavilio, Domenico; Roberto, Alessandra; Lugli, Enrico

    2017-09-01

    Human T memory stem (T SCM ) cells with superior persistence capacity and effector functions are emerging as important players in the maintenance of long-lived T-cell memory and are thus considered an attractive population to be used in adoptive transfer-based immunotherapy of cancer. However, the molecular signals regulating their generation remain poorly defined. Here we show that curtailed T-cell receptor stimulation curbs human effector CD8 + T-cell differentiation and allows the generation of CD45RO - CD45RA + CCR7 + CD27 + CD95 + -phenotype cells from highly purified naïve T-cell precursors, resembling naturally-occurring human T SCM . These cells proliferate extensively in vitro and in vivo, express low amounts of effector-associated genes and transcription factors and undergo considerable self-renewal in response to IL-15 while retaining effector differentiation potential. Such a phenotype is associated with a lower number of mitochondria compared to highly-activated effector T cells committed to terminal differentiation. These results shed light on the molecular signals that are required to generate long-lived memory T cells with potential application in adoptive cell transfer immunotherapy. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.

  12. Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors.

    Directory of Open Access Journals (Sweden)

    Bijay S Jaiswal

    Full Text Available BACKGROUND: Oncogenic RAS is a highly validated cancer target. Attempts at targeting RAS directly have so far not succeeded in the clinic. Understanding downstream RAS-effectors that mediate oncogenesis in a RAS mutant setting will help tailor treatments that use RAS-effector inhibitors either alone or in combination to target RAS-driven tumors. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have investigated the sufficiency of targeting RAS-effectors, RAF, MEK and PI3-Kinase either alone or in combination in RAS mutant lines, using an inducible shRNA in vivo mouse model system. We find that in colon cancer cells harboring a KRAS(G13D mutant allele, knocking down KRAS alone or the RAFs in combination or the RAF effectors, MEK1 and MEK2, together is effective in delaying tumor growth in vivo. In melanoma cells harboring an NRAS(Q61L or NRAS(Q61K mutant allele, we find that targeting NRAS alone or both BRAF and CRAF in combination or both BRAF and PIK3CA together showed efficacy. CONCLUSION/SIGNIFICANCE: Our data indicates that targeting oncogenic NRAS-driven melanomas require decrease in both pERK and pAKT downstream of RAS-effectors for efficacy. This can be achieved by either targeting both BRAF and CRAF or BRAF and PIK3CA simultaneously in NRAS mutant tumor cells.

  13. Demonstration of NK cell-mediated lysis of varicella-zoster virus (VZV)-infected cells: characterization of the effector cells

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, A.B.; Cauda, R.; Grossi, C.E.; Balch, C.M.; Lakeman, A.D.; Whitley, R.J.

    1986-06-01

    Infection with varicella-zoster virus (VZV) rendered RAJI cells more susceptible to lysis by non-adherent blood lymphocytes. At an effector to target ratio of 80:1 the mean percentage of /sup 51/Cr release of VZV-infected RAJI cells was 41 +/- 12%, whereas that of uninfected RAJI cells was 15 +/- 6%. The increased susceptibility to lysis was associated with increased effector to target conjugate formation in immunofluorescence binding assays. The effector cells cytotoxic for VZV-infected RAJI cells were predominantly Leu-11a/sup +/ Leu-4/sup -/ granular lymphocytes as demonstrated by fluorescence-activated cell sorting. The effector cell active against VZV-infected RAJI cells appeared similar to those active against herpes simplex virus (HSV)-infected cells, because in cold target competition experiments the lysis of /sup 51/Cr-labeled VZV-infected RAJI cells was efficiently inhibited by either unlabeled VZV-infected RAJI cells (mean 71% inhibition, 2:1 ratio unlabeled to labeled target) or HSV-infected RAJI cells (mean 69% inhibition) but not by uninfected RAJI cells (mean 10% inhibition). In contrast, competition experiments revealed donor heterogeneity in the overlap between effector cells for VZV- or HSV-infected RAJI vs K-562 cells.

  14. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000.

    Science.gov (United States)

    Lewis, Laura A; Polanski, Krzysztof; de Torres-Zabala, Marta; Jayaraman, Siddharth; Bowden, Laura; Moore, Jonathan; Penfold, Christopher A; Jenkins, Dafyd J; Hill, Claire; Baxter, Laura; Kulasekaran, Satish; Truman, William; Littlejohn, George; Prusinska, Justyna; Mead, Andrew; Steinbrenner, Jens; Hickman, Richard; Rand, David; Wild, David L; Ott, Sascha; Buchanan-Wollaston, Vicky; Smirnoff, Nick; Beynon, Jim; Denby, Katherine; Grant, Murray

    2015-11-01

    Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. © 2015 American Society of Plant Biologists. All rights reserved.

  15. Peripheral tissue homing receptor control of naïve, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues.

    Science.gov (United States)

    Brinkman, C Colin; Peske, J David; Engelhard, Victor Henry

    2013-01-01

    T cell activation induces homing receptors that bind ligands on peripheral tissue vasculature, programing movement to sites of infection and injury. There are three major types of CD8 effector T cells based on homing receptor expression, which arise in distinct lymphoid organs. Recent publications indicate that naïve, effector, and memory T cell migration is more complex than once thought; while many effectors enter peripheral tissues, some re-enter lymph nodes (LN), and contain central memory precursors. LN re-entry can depend on CD62L or peripheral tissue homing receptors. Memory T cells in LN tend to express the same homing receptors as their forebears, but often are CD62Lneg. Homing receptors also control CD8 T cell tumor entry. Tumor vasculature has low levels of many peripheral tissue homing receptor ligands, but portions of it resemble high endothelial venules (HEV), enabling naïve T cell entry, activation, and subsequent effector activity. This vasculature is associated with positive prognoses in humans, suggesting it may sustain ongoing anti-tumor responses. These findings reveal new roles for homing receptors expressed by naïve, effector, and memory CD8 T cells in controlling entry into lymphoid and non-lymphoid tissues.

  16. RXLR and CRN effectors from the sunflower downy mildew pathogen Plasmopara halstedii induce hypersensitive-like responses in resistant sunflower lines

    Directory of Open Access Journals (Sweden)

    Quentin Gascuel

    2016-12-01

    Full Text Available Plasmopara halstedii is an obligate biotrophic oomycete causing downy mildew disease on sunflower, Helianthus annuus, an economically important oil crop. Severe symptoms of the disease (e.g. plant dwarfism, leaf bleaching, sporulation and production of infertile flower strongly impair seed yield. Pl resistance genes conferring resistance to specific P. halstedii pathotypes were located on sunflower genetic map but yet not cloned. They are present in cultivated lines to protect them against downy mildew disease. Among the 16 different P. halstedii pathotypes recorded in France, pathotype 710 is frequently found, and therefore continuously controlled in sunflower by different Pl genes. High-throughput sequencing of cDNA from P. halstedii led us to identify potential effectors with the characteristic RXLR or CRN motifs described in other oomycetes. Expression of six P. halstedii putative effectors, five RXLR and one CRN, was analysed by qRT-PCR in pathogen spores and in the pathogen infecting sunflower leaves and these six effectors were selected for functional analyses. We developed a new method for transient expression in sunflower plant leaves and showed for the first time subcellular localization of P. halstedii effectors fused to a fluorescent protein in sunflower leaf cells. Overexpression of the CRN and of 3 RXLR effectors induced hypersensitive-like cell death reactions in some sunflower near-isogenic lines resistant to pathotype 710 and not in susceptible corresponding lines, suggesting they could be involved in Pl loci-mediated resistances.

  17. Vibrio Type III Effector VPA1380 Is Related to the Cysteine Protease Domain of Large Bacterial Toxins

    Science.gov (United States)

    Calder, Thomas; Kinch, Lisa N.; Fernandez, Jessie; Salomon, Dor; Grishin, Nick V.; Orth, Kim

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2), but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6)-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator. PMID:25099122

  18. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members.

    Directory of Open Access Journals (Sweden)

    Jana Kamanova

    2016-04-01

    Full Text Available Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.

  19. A Novel Function for the Streptococcus pneumoniae Aminopeptidase N: Inhibition of T Cell Effector Function through Regulation of TCR Signaling

    Directory of Open Access Journals (Sweden)

    Lance K. Blevins

    2017-11-01

    Full Text Available Streptococcus pneumoniae (Spn causes a variety of disease states including fatal bacterial pneumonia. Our previous finding that introduction of Spn into an animal with ongoing influenza virus infection resulted in a CD8+ T cell population with reduced effector function gave rise to the possibility of direct regulation by pneumococcal components. Here, we show that treatment of effector T cells with lysate derived from Spn resulted in inhibition of IFNγ and tumor necrosis factor α production as well as of cytolytic granule release. Spn aminopeptidase N (PepN was identified as the inhibitory bacterial component and surprisingly, this property was independent of the peptidase activity found in this family of proteins. Inhibitory activity was associated with reduced activation of ZAP-70, ERK1/2, c-Jun N-terminal kinase, and p38, demonstrating the ability of PepN to negatively regulate TCR signaling at multiple points in the cascade. These results reveal a novel immune regulatory function for a bacterial aminopeptidase.

  20. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    Science.gov (United States)

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  1. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins.

    Directory of Open Access Journals (Sweden)

    Thomas Calder

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2, but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator.

  2. Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation.

    Directory of Open Access Journals (Sweden)

    Feng Mei

    Full Text Available Quetiapine (Que, a commonly used atypical antipsychotic drug (APD, can prevent myelin from breakdown without immune attack. Multiple sclerosis (MS, an autoimmune reactive inflammation demyelinating disease, is triggered by activated myelin-specific T lymphocytes (T cells. In this study, we investigated the potential efficacy of Que as an immune-modulating therapeutic agent for experimental autoimmune encephalomyelitis (EAE, a mouse model for MS. Que treatment was initiated on the onset of MOG(35-55 peptide induced EAE mice and the efficacy of Que on modulating the immune response was determined by Flow Cytometry through analyzing CD4(+/CD8(+ populations and the proliferation of effector T cells (CD4(+CD25(- in peripheral immune organs. Our results show that Que dramatically attenuates the severity of EAE symptoms. Que treatment decreases the extent of CD4(+/CD8(+ T cell infiltration into the spinal cord and suppresses local glial activation, thereby diminishing the loss of mature oligodendrocytes and myelin breakdown in the spinal cord of EAE mice. Our results further demonstrate that Que treatment decreases the CD4(+/CD8(+ T cell populations in lymph nodes and spleens of EAE mice and inhibits either MOG(35-55 or anti-CD3 induced proliferation as well as IL-2 production of effector T cells (CD4(+CD25(- isolated from EAE mice spleen. Together, these findings suggest that Que displays an immune-modulating role during the course of EAE, and thus may be a promising candidate for treatment of MS.

  3. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway.

    Science.gov (United States)

    Popa, Crina; Li, Liang; Gil, Sergio; Tatjer, Laura; Hashii, Keisuke; Tabuchi, Mitsuaki; Coll, Núria S; Ariño, Joaquín; Valls, Marc

    2016-06-03

    Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation.

  4. The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death.

    Science.gov (United States)

    Yu, Xiaoli; Tang, Junli; Wang, Qunqing; Ye, Wenwu; Tao, Kai; Duan, Shuyi; Lu, Chenchen; Yang, Xinyu; Dong, Suomeng; Zheng, Xiaobo; Wang, Yuanchao

    2012-10-01

    • The Phytophthora sojae genome encodes hundreds of RxLR effectors predicted to manipulate various plant defense responses, but the molecular mechanisms involved are largely unknown. Here we have characterized in detail the P. sojae RxLR effector Avh241. • To determine the function and localization of Avh241, we transiently expressed it on different plants. Silencing of Avh241 in P. sojae, we determined its virulence during infection. Through the assay of promoting infection by Phytophthora capsici to Nicotiana benthamiana, we further confirmed this virulence role. • Avh241 induced cell death in several different plants and localized to the plant plasma membrane. An N-terminal motif within Avh241 was important for membrane localization and cell death-inducing activity. Two mitogen-activated protein kinases, NbMEK2 and NbWIPK, were required for the cell death triggered by Avh241 in N. benthamiana. Avh241 was important for the pathogen's full virulence on soybean. Avh241 could also promote infection by P. capsici and the membrane localization motif was not required to promote infection. • This work suggests that Avh241 interacts with the plant immune system via at least two different mechanisms, one recognized by plants dependent on subcellular localization and one promoting infection independent on membrane localization. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  5. Cellular renewal and improvement of local cell effector activity in peritoneal cavity in response to infectious stimuli.

    Directory of Open Access Journals (Sweden)

    Alexandra dos Anjos Cassado

    Full Text Available The peritoneal cavity (PerC is a singular compartment where many cell populations reside and interact. Despite the widely adopted experimental approach of intraperitoneal (i.p. inoculation, little is known about the behavior of the different cell populations within the PerC. To evaluate the dynamics of peritoneal macrophage (MØ subsets, namely small peritoneal MØ (SPM and large peritoneal MØ (LPM, in response to infectious stimuli, C57BL/6 mice were injected i.p. with zymosan or Trypanosoma cruzi. These conditions resulted in the marked modification of the PerC myelo-monocytic compartment characterized by the disappearance of LPM and the accumulation of SPM and monocytes. In parallel, adherent cells isolated from stimulated PerC displayed reduced staining for β-galactosidase, a biomarker for senescence. Further, the adherent cells showed increased nitric oxide (NO and higher frequency of IL-12-producing cells in response to subsequent LPS and IFN-γ stimulation. Among myelo-monocytic cells, SPM rather than LPM or monocytes, appear to be the central effectors of the activated PerC; they display higher phagocytic activity and are the main source of IL-12. Thus, our data provide a first demonstration of the consequences of the dynamics between peritoneal MØ subpopulations by showing that substitution of LPM by a robust SPM and monocytes in response to infectious stimuli greatly improves PerC effector activity.

  6. The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U RNA.

    Directory of Open Access Journals (Sweden)

    Tiago Antonio de Souza

    Full Text Available Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC, a translin-associated factor X (CsTRAX, a VirE2-interacting protein (CsVIP2, a high mobility group (CsHMG and two poly(A-binding proteins (CsPABP1 and 2, interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control.

  7. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism.

    Science.gov (United States)

    Guzmán-Guzmán, Paulina; Alemán-Duarte, Mario Iván; Delaye, Luis; Herrera-Estrella, Alfredo; Olmedo-Monfil, Vianey

    2017-02-15

    Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host's defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T

  8. α4β7+ CD4+ Effector/Effector Memory T Cells Differentiate into Productively and Latently Infected Central Memory T Cells by Transforming Growth Factor β1 during HIV-1 Infection.

    Science.gov (United States)

    Cheung, Ka-Wai; Wu, Tongjin; Ho, Sai Fan; Wong, Yik Chun; Liu, Li; Wang, Hui; Chen, Zhiwei

    2018-04-15

    HIV-1 transmission occurs mainly through mucosal tissues. During mucosal transmission, HIV-1 preferentially infects α 4 β 7 + gut-homing CCR7 - CD4 + effector/effector memory T cells (T EM ) and results in massive depletion of these cells and other subsets of T EM in gut-associated lymphoid tissues. However, besides being eliminated by HIV-1, the role of T EM during the early stage of infection remains inconclusive. Here, using in vitro -induced α 4 β 7 + gut-homing T EM (α 4 β 7 + T EM ), we found that α 4 β 7 + T EM differentiated into CCR7 + CD4 + central memory T cells (T CM ). This differentiation was HIV-1 independent but was inhibited by SB431542, a specific transforming growth factor β (TGF-β) receptor I kinase inhibitor. Consistently, T EM -to-T CM differentiation was observed in α 4 β 7 + T EM stimulated with TGF-β1 (TGF-β). The T CM properties of the TGF-β-induced T EM -derived T CM (α 4 β 7 + T CM ) were confirmed by their enhanced CCL19 chemotaxis and the downregulation of surface CCR7 upon T cell activation in vitro Importantly, the effect of TGF-β on T CM differentiation also held in T EM directly isolated from peripheral blood. To investigate the significance of the TGF-β-dependent T EM -to-T CM differentiation in HIV/AIDS pathogenesis, we observed that both productively and latently infected α 4 β 7 + T CM could differentiate from α 4 β 7 + T EM in the presence of TGF-β during HIV-1 infection. Collectively, this study not only provides a new insight for the plasticity of T EM but also suggests that the TGF-β-dependent T EM -to-T CM differentiation is a previously unrecognized mechanism for the formation of latently infected T CM after HIV-1 infection. IMPORTANCE HIV-1 is the causative agent of HIV/AIDS, which has led to millions of deaths in the past 30 years. Although the implementation of highly active antiretroviral therapy has remarkably reduced the HIV-1-related morbidity and mortality, HIV-1 is not eradicated in

  9. T-cell effector function and unresponsiveness in the murine lymphocytic choriomeningitis virus infection. II. Delayed-type hypersensitivity unresponsiveness reflects a defective differentiation from TD precursor to effector cell

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Marker, O

    1986-01-01

    is markedly depressed in high-dose mice, suggesting an association between DTH and virus clearance. When virus-primed memory cells are transferred, DTH reactivity as well as virus-clearing capacity is restored in high-dose mice, indicating that the virus is not present in a changed or concealed form. The role...... transfer a DTH response emerged, indicating that TD priming had taken place in high-dose animals. Pre-irradiation of high-dose primed cells markedly inhibited the antiviral activity as well as DTH, suggesting that upon transfer to naive recipients TD precursors from high-dose mice would proliferate..