WorldWideScience

Sample records for r2r3 myb transcription

  1. A sugarcane R2R3-MYB transcription factor gene is alternatively spliced during drought stress

    Science.gov (United States)

    Guo, Jinlong; Ling, Hui; Ma, Jingjing; Chen, Yun; Su, Yachun; Lin, Qingliang; Gao, Shiwu; Wang, Hengbo; Que, Youxiong; Xu, Liping

    2017-01-01

    MYB transcription factors of the R2R3-MYB family have been shown to play important roles in many plant processes. A sugarcane R2R3-MYB gene (ScMYB2) and its two alternative forms of transcript (ScMYB2S1 and ScMYB2S2) were identified in this study. The deduced protein of ScMYB2S1 is a typical plant R2R3-MYB protein, while ScMYB2S2 encodes a truncated protein. Real-time qPCR analysis revealed that ScMYB2S1 is suppressed under PEG-simulated drought stress in sugarcane, while ScMYB2S2 is induced at later treatment stage. A senescence symptom was observed when ScMYB2S1 was injected into tobacco leaves mediated by Agrobacterium, but no symptom for ScMYB2S2. Further investigation showed that the expression levels of 4 senescence-associated genes, NtPR-1a, NtNYC1, NtCAT3 and NtABRE, were markedly induced in tobacco leaves after ScMYB2S1-injection, while they were not sensitive to ScMYB2S2-injection. Moreover, MDA and proline were also investigated after injection. Similarly, MDA and proline levels were induced by ABA and ScMYB2S1, while inhibited by ScMYB2S2. We propose that ScMYB2, by alternatively splicing two transcripts (ScMYB2S1 and ScMYB2S2), is involved in an ABA-mediated leaf senescence signaling pathway and play positive role in respond to drought-induced senescence in sugarcane. The results of this study provide information for further research in sugarcane stress processes. PMID:28167824

  2. An R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis.

    Science.gov (United States)

    Arce-Rodríguez, Magda L; Ochoa-Alejo, Neftalí

    2017-07-01

    Capsaicinoids are responsible for the hot taste of chili peppers. They are restricted to the genus Capsicum and are synthesized by the acylation of the aromatic compound vanillylamine (derived from the phenylpropanoid pathway) with a branched-chain fatty acid by the catalysis of the putative enzyme capsaicinoid synthase. R2R3-MYB transcription factors have been reported in different species of plants as regulators of structural genes of the phenylpropanoid pathway; therefore, we hypothesized that MYB genes might be involved in the regulation of the biosynthesis of pungent compounds. In this study, an R2R3-MYB transcription factor gene, designated CaMYB31, was isolated and characterized in Capsicum annuum 'Tampiqueño 74'. Bioinformatic analysis suggested that CaMYB31 could be involved in secondary metabolism, stress and plant hormone responses, and development. CaMYB31 expression analysis from placental tissue of pungent and nonpungent chili pepper fruits showed a positive correlation with the structural genes Ca4H, Comt, Kas, pAmt, and AT3 expression and also with the content of capsaicin and dihydrocapsacin during fruit development. However, CaMYB31 also was expressed in vegetative tissues (leaves, roots, and stems). Moreover, CaMYB31 silencing significantly reduced the expression of capsaicinoid biosynthetic genes and the capsaicinoid content. Additionally, CaMYB31 expression was affected by the plant hormones indoleacetic acid, jasmonic acid, salicylic acid, and gibberellic acid or by wounding, temperature, and light, factors known to affect the production of capsaicinoids. These findings indicate that CaMYB31 is indeed involved in the regulation of structural genes of the capsaicinoid biosynthetic pathway. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. An R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis1[OPEN

    Science.gov (United States)

    Arce-Rodríguez, Magda L.

    2017-01-01

    Capsaicinoids are responsible for the hot taste of chili peppers. They are restricted to the genus Capsicum and are synthesized by the acylation of the aromatic compound vanillylamine (derived from the phenylpropanoid pathway) with a branched-chain fatty acid by the catalysis of the putative enzyme capsaicinoid synthase. R2R3-MYB transcription factors have been reported in different species of plants as regulators of structural genes of the phenylpropanoid pathway; therefore, we hypothesized that MYB genes might be involved in the regulation of the biosynthesis of pungent compounds. In this study, an R2R3-MYB transcription factor gene, designated CaMYB31, was isolated and characterized in Capsicum annuum ‘Tampiqueño 74’. Bioinformatic analysis suggested that CaMYB31 could be involved in secondary metabolism, stress and plant hormone responses, and development. CaMYB31 expression analysis from placental tissue of pungent and nonpungent chili pepper fruits showed a positive correlation with the structural genes Ca4H, Comt, Kas, pAmt, and AT3 expression and also with the content of capsaicin and dihydrocapsacin during fruit development. However, CaMYB31 also was expressed in vegetative tissues (leaves, roots, and stems). Moreover, CaMYB31 silencing significantly reduced the expression of capsaicinoid biosynthetic genes and the capsaicinoid content. Additionally, CaMYB31 expression was affected by the plant hormones indoleacetic acid, jasmonic acid, salicylic acid, and gibberellic acid or by wounding, temperature, and light, factors known to affect the production of capsaicinoids. These findings indicate that CaMYB31 is indeed involved in the regulation of structural genes of the capsaicinoid biosynthetic pathway. PMID:28483879

  4. A new role for plant R2R3-MYB transcription factors in cell cycle regulation

    Institute of Scientific and Technical Information of China (English)

    Eleonora Cominelli; Chiara Tonelli

    2009-01-01

    @@ MYB proteins are transcription factors present in all eukaryotes,sharing a common DNA-binding domain that consists of one to three imperfect helix-helix-turn-helix repeats of about 50 amino acids,called RI,R2,and R3 respectively [1].In animals and yeast these proteins represent a small gene family [1].Animal R1R2R3-MYB proteins have been described for their role in cell cycle regulation mainly at the G1/S,but also at the G2/M transition,as firstly demonstrated in Drosophila [2].

  5. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles.

    Science.gov (United States)

    Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan

    2015-06-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (emission of benzenoid II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of cinnamyl alcohol dehydrogenase1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles.

  6. Interactions between the R2R3-MYB transcription factor, AtMYB61, and target DNA binding sites.

    Directory of Open Access Journals (Sweden)

    Michael B Prouse

    Full Text Available Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing. The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators.

  7. MYB56 Encoding a R2R3 MYB Transcription Factor Regulates Seed Size in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Yanjie Zhang; Wanqi Liang; Jianxin Shi; Jie Xu; Dabing Zhang

    2013-01-01

    Plant seed size is tightly regulated by the development of seed coat, embryo, and endosperm;however, currently, its underlying mechanism remains unclear. In this study, we revealed a regulatory role of an R2R3 MYB transcription factor MYB56 in controlling seed size specifically in Arabidopsis thaliana L. Loss-of-function or knock-down of MYB56 yielded smaller seeds as compared with the wild type. Conversely, overexpression of MYB56 produced larger seeds. Further observation using semi-thin sections showed that myb56 developed smaller contracted endothelial cells and reduced cell number in the outer integument layer of the seed coat during the seed development;by contrast, MYB56 overexpressing lines had expanded endothelial cells and increased cell number in the outer integument layer of the seed coat, suggesting the essential role of MYB56 in regulating seed development. In addition, reciprocal cross-analysis showed that MYB56 affected the seed development maternally. MYB56 was shown to be dominantly expressed in developing seeds, consistently with its function in seed development. Moreover, quantitative reverse transcription polymerase chain reaction analysis revealed that MYB56 regulates the expression of genes involved in cell wall metabolism such as cell division and expansion. Altogether, our results demonstrated that MYB56 represents an unknown pathway for positively controlling the seed size.

  8. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    NARCIS (Netherlands)

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the

  9. Characterization of a citrus R2R3-MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis

    Science.gov (United States)

    Flavonols and hydroxycinnamic acids are important phenylpropanoid metabolites in plants. In this study, we isolated and characterized a citrus R2R3-MYB transcription factor CsMYBF1, encoding a protein belonging to the flavonol-specific MYB subgroup. Ectopic expression of CsMYBF1 in tomato led to an ...

  10. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    Science.gov (United States)

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange.

  12. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis.

    Science.gov (United States)

    Wang, Shucai; Li, Eryang; Porth, Ilga; Chen, Jin-Gui; Mansfield, Shawn D; Douglas, Carl J

    2014-05-23

    Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that in phloem. When expressed in Arabidopsis under the control of either 35S or PtrCesA8 promoters, PtrMYB152 increased secondary cell wall thickness, which is likely caused by increased lignification. Accordingly, elevated expression of genes encoding sets of enzymes in secondary wall biosynthesis were observed in transgenic plants expressing PtrMYB152. Arabidopsis protoplast transfection assays suggested that PtrMYB152 functions as a transcriptional activator. Taken together, our results suggest that PtrMYB152 may be part of a regulatory network activating expression of discrete sets of secondary cell wall biosynthesis genes.

  13. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shucai [Northeast Normal Univ., Changchun (China); Univ. of British Columbia, Vancouver, BC (Canada); Li, Eryang [Univ. of British Columbia, Vancouver, BC (Canada); Porth, Ilga [Univ. of British Columbia, Vancouver, BC (Canada); Chen, Jin-Gui [Univ. of British Columbia, Vancouver, BC (Canada); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mansfield, Shawn D. [Univ. of British Columbia, Vancouver, BC (Canada); Douglas, Carl [Univ. of British Columbia, Vancouver, BC (Canada)

    2014-05-23

    Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that in phloem. When expressed in Arabidopsis under the control of either 35S or PtrCesA8 promoters, PtrMYB152 increased secondary cell wall thickness, which is likely caused by increased lignification. Accordingly, elevated expression of genes encoding sets of enzymes in secondary wall biosynthesis were observed in transgenic plants expressing PtrMYB152. Arabidopsis protoplast transfection assays suggested that PtrMYB152 functions as a transcriptional activator. Taken together, our results suggest that PtrMYB152 may be part of a regulatory network activating expression of discrete sets of secondary cell wall biosynthesis genes.

  14. An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population.

    Science.gov (United States)

    Fraser, Lena G; Seal, Alan G; Montefiori, Mirco; McGhie, Tony K; Tsang, Gianna K; Datson, Paul M; Hilario, Elena; Marsh, Hinga E; Dunn, Juanita K; Hellens, Roger P; Davies, Kevin M; McNeilage, Mark A; De Silva, H Nihal; Allan, Andrew C

    2013-01-16

    Red colour in kiwifruit results from the presence of anthocyanin pigments. Their expression, however, is complex, and varies among genotypes, species, tissues and environments. An understanding of the biosynthesis, physiology and genetics of the anthocyanins involved, and the control of their expression in different tissues, is required. A complex, the MBW complex, consisting of R2R3-MYB and bHLH transcription factors together with a WD-repeat protein, activates anthocyanin 3-O-galactosyltransferase (F3GT1) to produce anthocyanins. We examined the expression and genetic control of anthocyanins in flowers of Actinidia hybrid families segregating for red and white petal colour. Four inter-related backcross families between Actinidia chinensis Planch. var. chinensis and Actinidia eriantha Benth. were identified that segregated 1:1 for red or white petal colour. Flower pigments consisted of five known anthocyanins (two delphinidin-based and three cyanidin-based) and three unknowns. Intensity and hue differed in red petals from pale pink to deep magenta, and while intensity of colour increased with total concentration of anthocyanin, no association was found between any particular anthocyanin data and hue. Real time qPCR demonstrated that an R2R3 MYB, MYB110a, was expressed at significant levels in red-petalled progeny, but not in individuals with white petals.A microsatellite marker was developed that identified alleles that segregated with red petal colour, but not with ovary, stamen filament, or fruit flesh colour in these families. The marker mapped to chromosome 10 in Actinidia.The white petal phenotype was complemented by syringing Agrobacterium tumefaciens carrying Actinidia 35S::MYB110a into the petal tissue. Red pigments developed in white petals both with, and without, co-transformation with Actinidia bHLH partners. MYB110a was shown to directly activate Actinidia F3GT1 in transient assays. The transcription factor, MYB110a, regulates anthocyanin production in

  15. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca

    Directory of Open Access Journals (Sweden)

    Grima-Pettenati Jacqueline

    2007-03-01

    Full Text Available Abstract Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences, and loblolly pine, Pinus taeda L. (five sequences. Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco.

  16. Three R2R3 MYB transcription factor genes from Capsicum annuum ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    mail: ... basic-helix-loop-helix; CHI, chalcone isomerase; CHS, chalcone synthase; DFR ... polymerase chain reaction; UFGT, UDP-glucose:flavonoid ... transcription at 50°C, 2 min denaturation at 94°C, followed by 32 cycles of ...

  17. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles

    NARCIS (Netherlands)

    Medina-Puche, L.; Molina-Hidalgo, F.J.; Boersma, M.; Schuurink, R.C.; López-Vidriero, I.; Solano, R.; Franco-Zorrilla, J.M.; Caballero, J.L.; Blanco-Portales, R.; Muñoz-Blanco, J.

    2015-01-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria x ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and

  18. Over-expression of a subgroup 4 R2R3 type MYB transcription factor gene from Leucaena leucocephala reduces lignin content in transgenic tobacco.

    Science.gov (United States)

    Omer, Sumita; Kumar, Santosh; Khan, Bashir M

    2013-01-01

    KEY MESSAGE : LlMYB1 , a subgroup 4 R2R3-type MYB transcription factor gene from Leucaena leucocephala appears to be a repressor of lignin biosynthesis pathway by regulating the transcription of general phenylpropanoid pathway genes. R2R3MYB transcription factors are known to play a wide role in regulating the phenylpropanoid pathway in plants. In this study, we report isolation, cloning and characterization of an R2R3MYB transcription factor gene (LlMYB1) from an economically important tree species, Leucaena leucocephala. LlMYB1 consists of 705 bp coding sequence corresponding to 235 amino acids. Sequence alignment revealed that the N-terminal (MYB) domain of the gene shares up to 95 % similarity with subgroup 4 (Sg4) members of R2R3Myb gene family functionally known to be lignin repressors. Highly divergent C-terminal region of the gene carried an ERF-associated amphiphilic repression (EAR) motif, another characteristic of the Sg4. The gene was phylogenetically grouped closest with AmMYB308, a known repressor of monolignol biosynthetic pathway genes. Spatio-temporal expression studies at different ages of seedlings using quantitative real-time PCR (QRT-PCR) showed highest transcript level of the gene in 10 day old stem tissues. Over-expression of the gene in transgenic tobacco showed statistically significant decline in the transcript levels of the general phenylpropanoid pathway genes and reduction in lignin content. Our study suggests that LlMYB1 might be playing the role of a repressor of lignin biosynthesis in L. leucocephala.

  19. MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways.

    Science.gov (United States)

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Obata, Toshihiro; Fernie, Alisdair R; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2013-10-01

    Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth.

  20. Arabidopsis ABA Receptor RCAR1/PYL9 Interacts with an R2R3-Type MYB Transcription Factor, AtMYB44

    Directory of Open Access Journals (Sweden)

    Dekuan Li

    2014-05-01

    Full Text Available Abscisic acid (ABA signaling plays important roles in plant growth, development and adaptation to various stresses. RCAR1/PYL9 has been known as a cytoplasm and nuclear ABA receptor in Arabidopsis. To obtain further insight into the regulatory mechanism of RCAR1/PYL9, a yeast two-hybrid approach was performed to screen for RCAR1/PYL9-interacting proteins and an R2R3-type MYB transcription factor, AtMYB44, was identified. The interaction between RCAR1/PYL9 and AtMYB44 was further confirmed by glutathione S-transferase (GST pull-down and bimolecular fluorescence complementation (BiFC assays. Gene expression analysis showed that AtMYB44 negatively regulated the expression of ABA-responsive gene RAB18, in contrast to the opposite role reported for RCAR1/PYL9. Competitive GST pull-down assay and analysis of phosphatase activity demonstrated that AtMYB44 and ABI1 competed for binding to RCAR1/PYL9 and thereby reduced the inhibitory effect of RCAR1/PYL9 on ABI1 phosphatase activity in the presence of ABA in vitro. Furthermore, transient activation assay in protoplasts revealed AtMYB44 probably also decreased RCAR1/PYL9-mediated inhibition of ABI1 activity in vivo. Taken together, our work provides a reasonable molecular mechanism of AtMYB44 in ABA signaling.

  1. Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa.

    Science.gov (United States)

    Hancock, Kerry R; Collette, Vern; Fraser, Karl; Greig, Margaret; Xue, Hong; Richardson, Kim; Jones, Chris; Rasmussen, Susanne

    2012-07-01

    Proanthocyanidins (PAs) are oligomeric flavonoids and one group of end products of the phenylpropanoid pathway. PAs have been reported to be beneficial for human and animal health and are particularly important in pastoral agricultural systems for improved animal production and reduced greenhouse gas emissions. However, the main forage legumes grown in these systems, such as Trifolium repens and Medicago sativa, do not contain any substantial amounts of PAs in leaves. We have identified from the foliar PA-accumulating legume Trifolium arvense an R2R3-MYB transcription factor, TaMYB14, and provide evidence that this transcription factor is involved in the regulation of PA biosynthesis in legumes. TaMYB14 expression is necessary and sufficient to up-regulate late steps of the phenylpropanoid pathway and to induce PA biosynthesis. RNA interference silencing of TaMYB14 resulted in almost complete cessation of PA biosynthesis in T. arvense, whereas Nicotiana tabacum, M. sativa, and T. repens plants constitutively expressing TaMYB14 synthesized and accumulated PAs in leaves up to 1.8% dry matter. Targeted liquid chromatography-multistage tandem mass spectrometry analysis identified foliar PAs up to degree of polymerization 6 in leaf extracts. Hence, genetically modified M. sativa and T. repens plants expressing TaMYB14 provide a viable option for improving animal health and mitigating the negative environmental impacts of pastoral animal production systems.

  2. A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional Chinese medicinal plant, Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2016-07-01

    Full Text Available Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from E. sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase and EsFLS (flavonol synthase, but not the promoters of EsDFRs (dihydroflavonol 4-reductase and EsANS (anthocyanidin synthase in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase, NtCHI (chalcone isomerase, NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived bioactive components in E

  3. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression.

    Science.gov (United States)

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106-a R2R3-MYB transcription factor-upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis.

  4. Novel R2R3-MYB transcription factors from Prunus Americana regulates differential patterns of anthocyanin accumulation in tobacco and citrus

    Science.gov (United States)

    The levels of anthocyanins in plants vary widely among cultivars, developmental stages and environmental stimuli. Previous studies have reported that the expression of various MYBs regulate anthocyanin pigmentation during growth and development. Here we examine the activity of three novel R2R3-MYB ...

  5. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar.

    Science.gov (United States)

    Cho, Jin-Seong; Nguyen, Van Phap; Jeon, Hyung-Woo; Kim, Min-Ha; Eom, Seok Hyun; Lim, You Jin; Kim, Won-Chan; Park, Eung-Jun; Choi, Young-Im; Ko, Jae-Heung

    2016-09-01

    Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120

  6. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis.

    Science.gov (United States)

    Schwinn, Kathy E; Ngo, Hanh; Kenel, Fernand; Brummell, David A; Albert, Nick W; McCallum, John A; Pither-Joyce, Meeghan; Crowhurst, Ross N; Eady, Colin; Davies, Kevin M

    2016-01-01

    Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  7. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis

    Science.gov (United States)

    Schwinn, Kathy E.; Ngo, Hanh; Kenel, Fernand; Brummell, David A.; Albert, Nick W.; McCallum, John A.; Pither-Joyce, Meeghan; Crowhurst, Ross N.; Eady, Colin; Davies, Kevin M.

    2016-01-01

    Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species. PMID:28018399

  8. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.)

    OpenAIRE

    Yang, Chunhua; Li, Dayong; Liu, Xue; Ji, Chengjun; Hao, Lili; Zhao, Xianfeng; Li, Xiaobing; Chen, Caiyan; Cheng, Zhukuan; Zhu, Lihuang

    2014-01-01

    Background The shape of grass leaves possesses great value in both agronomy and developmental biology research. Leaf rolling is one of the important traits in rice (Oryza sativa L.) breeding. MYB transcription factors are one of the largest gene families and have important roles in plant development, metabolism and stress responses. However, little is known about their functions in rice. Results In this study, we report the functional characterization of a rice gene, OsMYB103L, which encodes ...

  9. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Ashraf El-Kereamy

    Full Text Available Temperatures higher than the optimum negatively affects plant growth and development. Tolerance to high temperature is a complex process that involves several pathways. Understanding this process, especially in crops such as rice, is essential to prepare for predicted climate changes due to global warming. Here, we show that OsMYB55 is induced by high temperature and overexpression of OsMYB55 resulted in improved plant growth under high temperature and decreased the negative effect of high temperature on grain yield. Transcriptome analysis revealed an increase in expression of several genes involved in amino acids metabolism. We demonstrate that OsMYB55 binds to the promoter regions of target genes and directly activates expression of some of those genes including glutamine synthetase (OsGS1;2 glutamine amidotransferase (GAT1 and glutamate decarboxylase 3 (GAD3. OsMYB55 overexpression resulted in an increase in total amino acid content and of the individual amino acids produced by the activation of the above mentioned genes and known for their roles in stress tolerance, namely L-glutamic acid, GABA and arginine especially under high temperature condition. In conclusion, overexpression of OsMYB55 improves rice plant tolerance to high temperature, and this high tolerance is associated with enhanced amino acid metabolism through transcription activation.

  10. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok

    2014-08-27

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  11. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin.

    Science.gov (United States)

    Jung, Chun Suk; Griffiths, Helen M; De Jong, Darlene M; Cheng, Shuping; Bodis, Mary; Kim, Tae Sung; De Jong, Walter S

    2009-12-01

    A dominant allele at the D locus (also known as I in diploid potato) is required for the synthesis of red and purple anthocyanin pigments in tuber skin. It has previously been reported that D maps to a region of chromosome 10 that harbors one or more homologs of Petunia an2, an R2R3 MYB transcription factor that coordinately regulates the expression of multiple anthocyanin biosynthetic genes in the floral limb. To test whether D acts similarly in tuber skin, RT-PCR was used to evaluate the expression of flavanone 3-hydroxylase (f3h), dihydroflavonol 4-reductase (dfr) and flavonoid 3',5'-hydroxylase (f3'5'h). All three genes were expressed in the periderm of red- and purple-skinned clones, while dfr and f3'5'h were not expressed, and f3h was only weakly expressed, in white-skinned clones. A potato cDNA clone with similarity to an2 was isolated from an expression library prepared from red tuber skin, and an assay developed to distinguish the two alleles of this gene in a diploid potato clone known to be heterozygous Dd. One allele was observed to cosegregate with pigmented skin in an F(1) population of 136 individuals. This allele was expressed in tuber skin of red- and purple-colored progeny, but not in white tubers, while other parental alleles were not expressed in white or colored tubers. The allele was placed under the control of a doubled 35S promoter and transformed into the light red-colored cultivar Désirée, the white-skinned cultivar Bintje, and two white diploid clones known to lack the functional allele of D. Transformants accumulated pigment in tuber skin, as well as in other tissues, including young foliage, flower petals, and tuber flesh.

  12. Genome-wide identification and characterization of R2R3MYB family in Rosaceae.

    Science.gov (United States)

    González, Máximo; Carrasco, Basilio; Salazar, Erika

    2016-09-01

    Transcription factors R2R3MYB family have been associated with the control of secondary metabolites, development of structures, cold tolerance and response to biotic and abiotic stress, among others. In recent years, genomes of Rosaceae botanical family are available. Although this information has been used to study the karyotype evolution of these species from an ancestral genome, there are no studies that treat the evolution and diversity of gene families present in these species or in the botanical family. Here we present the first comparative study of the R2R3MYB subfamily of transcription factors in three species of Rosaceae family (Malus domestica, Prunus persica and Fragaria vesca). We described 186, 98 and 86 non-redundant gene models for apple, peach and strawberry, respectively. In this research, we analyzed the intron-exon structure and genomic distribution of R2R3MYB families mentioned above. The phylogenetic comparisons revealed putative functions of some R2R3MYB transcription factors. This analysis found 44 functional subgroups, seven of which were unique for Rosaceae. In addition, our results showed a highly collinearity among some genes revealing the existence of conserved gene models between the three species studied. Although some gene models in these species have been validated under several approaches, more research in the Rosaceae family is necessary to determine gene expression patterns in specific tissues and development stages to facilitate understanding of the regulatory and biochemical mechanism in this botanical family.

  13. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.).

    Science.gov (United States)

    Jin, Wanmei; Wang, Hua; Li, Maofu; Wang, Jing; Yang, Yuan; Zhang, Xiaoming; Yan, Guohua; Zhang, Hong; Liu, Jiashen; Zhang, Kaichun

    2016-11-01

    Sweet cherry is a diploid tree species and its fruit skin has rich colours from yellow to blush to dark red. The colour is closely related to anthocyanin biosynthesis and is mainly regulated at the transcriptional level by transcription factors that regulate the expression of multiple structural genes. However, the genetic and molecular bases of how these genes ultimately determine the fruit skin colour traits remain poorly understood. Here, our genetic and molecular evidences identified the R2R3 MYB transcription factor PavMYB10.1 that is involved in anthocyanin biosynthesis pathway and determines fruit skin colour in sweet cherry. Interestingly, we identified three functional alleles of the gene causally leading to the different colours at mature stage. Meanwhile, our experimental results of yeast two-hybrid assays and chromatin immunoprecipitation assays revealed that PavMYB10.1 might interact with proteins PavbHLH and PavWD40, and bind to the promoter regions of the anthocyanin biosynthesis genes PavANS and PavUFGT; these findings provided to a certain extent mechanistic insight into the gene's functions. Additionally, genetic and molecular evidences confirmed that PavMYB10.1 is a reliable DNA molecular marker to select fruit skin colour in sweet cherry.

  14. Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet (Beta vulgaris).

    Science.gov (United States)

    Stracke, Ralf; Holtgräwe, Daniela; Schneider, Jessica; Pucker, Boas; Sörensen, Thomas Rosleff; Weisshaar, Bernd

    2014-09-25

    The R2R3-MYB genes comprise one of the largest transcription factor gene families in plants, playing regulatory roles in plant-specific developmental processes, metabolite accumulation and defense responses. Although genome-wide analysis of this gene family has been carried out in some species, the R2R3-MYB genes in Beta vulgaris ssp. vulgaris (sugar beet) as the first sequenced member of the order Caryophyllales, have not been analysed heretofore. We present a comprehensive, genome-wide analysis of the MYB genes from Beta vulgaris ssp. vulgaris (sugar beet) which is the first species of the order Caryophyllales with a sequenced genome. A total of 70 R2R3-MYB genes as well as genes encoding three other classes of MYB proteins containing multiple MYB repeats were identified and characterised with respect to structure and chromosomal organisation. Also, organ specific expression patterns were determined from RNA-seq data. The R2R3-MYB genes were functionally categorised which led to the identification of a sugar beet-specific clade with an atypical amino acid composition in the R3 domain, putatively encoding betalain regulators. The functional classification was verified by experimental confirmation of the prediction that the R2R3-MYB gene Bv_iogq encodes a flavonol regulator. This study provides the first step towards cloning and functional dissection of the role of MYB transcription factor genes in the nutritionally and evolutionarily interesting species B. vulgaris. In addition, it describes the flavonol regulator BvMYB12, being the first sugar beet R2R3-MYB with an experimentally proven function.

  15. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.

    Directory of Open Access Journals (Sweden)

    Matoušek Jaroslav

    2012-02-01

    chs_H1 gene that depends on variable activation by combinations of R2R3Myb, bHLH and WDR TF homologues and inhibition by a Myb repressor.

  16. Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis

    Science.gov (United States)

    Butt, Hamama Islam; Yang, Zhaoen; Chen, Eryong; Zhao, Ge; Gong, Qian; Yang, Zuoren; Zhang, Xueyan

    2017-01-01

    Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop. PMID:28125637

  17. Genome-wide analysis of citrus R2R3MYB genes and their spatiotemporal expression under stresses and hormone treatments.

    Science.gov (United States)

    Xie, Rangjin; Li, Yongjie; He, Shaolan; Zheng, Yongqiang; Yi, Shilai; Lv, Qiang; Deng, Lie

    2014-01-01

    The R2R3MYB proteins represent one of the largest families of transcription factors, which play important roles in plant growth and development. Although genome-wide analysis of this family has been conducted in many species, little is known about R2R3MYB genes in citrus, In this study, 101 R2R3MYB genes has been identified in the citrus (Citrus sinesis and Citrus clementina) genomes, which are almost equal to the number of rice. Phylogenetic analysis revealed that they could be subdivided into 21 subgroups. The evolutionary relationships and the intro-exon organizations were also analyzed, revealing strong gene conservation but also the expansions of particular functional genes during the plant evolution. Tissue-specific expression profiles showed that 95 citrus R2R3MYB genes were expressed in at least one tissue and the other 6 genes showed very low expression in all tissues tested, suggesting that citrus R2R3MYB genes play important roles in the development of all citrus organs. The transcript abundance level analysis during abiotic conditions (NaCl, abscisic acid, jasmonic acid, drought and low temperature) identified a group of R2R3MYB genes that responded to one or multiple treatments, which showed a promising for improving citrus adaptation to stresses. Our results provided an essential foundation for the future selection of the citrus R2R3MYB genes for cloning and functional dissection with an aim of uncovering their roles in citrus growth and development.

  18. Genome-wide analysis of citrus R2R3MYB genes and their spatiotemporal expression under stresses and hormone treatments.

    Directory of Open Access Journals (Sweden)

    Rangjin Xie

    Full Text Available The R2R3MYB proteins represent one of the largest families of transcription factors, which play important roles in plant growth and development. Although genome-wide analysis of this family has been conducted in many species, little is known about R2R3MYB genes in citrus, In this study, 101 R2R3MYB genes has been identified in the citrus (Citrus sinesis and Citrus clementina genomes, which are almost equal to the number of rice. Phylogenetic analysis revealed that they could be subdivided into 21 subgroups. The evolutionary relationships and the intro-exon organizations were also analyzed, revealing strong gene conservation but also the expansions of particular functional genes during the plant evolution. Tissue-specific expression profiles showed that 95 citrus R2R3MYB genes were expressed in at least one tissue and the other 6 genes showed very low expression in all tissues tested, suggesting that citrus R2R3MYB genes play important roles in the development of all citrus organs. The transcript abundance level analysis during abiotic conditions (NaCl, abscisic acid, jasmonic acid, drought and low temperature identified a group of R2R3MYB genes that responded to one or multiple treatments, which showed a promising for improving citrus adaptation to stresses. Our results provided an essential foundation for the future selection of the citrus R2R3MYB genes for cloning and functional dissection with an aim of uncovering their roles in citrus growth and development.

  19. The Evolutionary History of R2R3-MYB Proteins Across 50 Eukaryotes: New Insights Into Subfamily Classification and Expansion.

    Science.gov (United States)

    Du, Hai; Liang, Zhe; Zhao, Sen; Nan, Ming-Ge; Tran, Lam-Son Phan; Lu, Kun; Huang, Yu-Bi; Li, Jia-Na

    2015-06-05

    R2R3-MYB proteins (2R-MYBs) are one of the main transcription factor families in higher plants. Since the evolutionary history of this gene family across the eukaryotic kingdom remains unknown, we performed a comparative analysis of 2R-MYBs from 50 major eukaryotic lineages, with particular emphasis on land plants. A total of 1548 candidates were identified among diverse taxonomic groups, which allowed for an updated classification of 73 highly conserved subfamilies, including many newly identified subfamilies. Our results revealed that the protein architectures, intron patterns, and sequence characteristics were remarkably conserved in each subfamily. At least four subfamilies were derived from early land plants, 10 evolved from spermatophytes, and 19 from angiosperms, demonstrating the diversity and preferential expansion of this gene family in land plants. Moreover, we determined that their remarkable expansion was mainly attributed to whole genome and segmental duplication, where duplicates were preferentially retained within certain subfamilies that shared three homologous intron patterns (a, b, and c) even though up to 12 types of patterns existed. Through our integrated distributions, sequence characteristics, and phylogenetic tree analyses, we confirm that 2R-MYBs are old and postulate that 3R-MYBs may be evolutionarily derived from 2R-MYBs via intragenic domain duplication.

  20. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry ( Prunus avium L.)

    OpenAIRE

    Jin, Wanmei; Wang, Hua; Li, Maofu; Wang, Jing; Yang, Yuan; Zhang, Xiaoming; Yan, Guohua; Zhang, Hong; Liu, Jiashen; Zhang, Kaichun

    2016-01-01

    Summary Sweet cherry is a diploid tree species and its fruit skin has rich colours from yellow to blush to dark red. The colour is closely related to anthocyanin biosynthesis and is mainly regulated at the transcriptional level by transcription factors that regulate the expression of multiple structural genes. However, the genetic and molecular bases of how these genes ultimately determine the fruit skin colour traits remain poorly understood. Here, our genetic and molecular evidences identif...

  1. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates.

    Directory of Open Access Journals (Sweden)

    Ida Elken Sønderby

    Full Text Available BACKGROUND: Glucosinolates are natural metabolites in the order Brassicales that defend plants against both herbivores and pathogens and can attract specialized insects. Knowledge about the genes controlling glucosinolate regulation is limited. Here, we identify three R2R3 MYB transcription factors regulating aliphatic glucosinolate biosynthesis in Arabidopsis by combining several systems biology tools. METHODOLOGY/PRINCIPAL FINDINGS: MYB28 was identified as a candidate regulator of aliphatic glucosinolates based on its co-localization within a genomic region controlling variation both in aliphatic glucosinolate content (metabolite QTL and in transcript level for genes involved in the biosynthesis of aliphatic glucosinolates (expression QTL, as well as its co-expression with genes in aliphatic glucosinolate biosynthesis. A phylogenetic analysis with the R2R3 motif of MYB28 showed that it and two homologues, MYB29 and MYB76, were members of an Arabidopsis-specific clade that included three characterized regulators of indole glucosinolates. Over-expression of the individual MYB genes showed that they all had the capacity to increase the production of aliphatic glucosinolates in leaves and seeds and induce gene expression of aliphatic biosynthetic genes within leaves. Analysis of leaves and seeds of single knockout mutants showed that mutants of MYB29 and MYB76 have reductions in only short-chained aliphatic glucosinolates whereas a mutant in MYB28 has reductions in both short- and long-chained aliphatic glucosinolates. Furthermore, analysis of a double knockout in MYB28 and MYB29 identified an emergent property of the system since the absence of aliphatic glucosinolates in these plants could not be predicted by the chemotype of the single knockouts. CONCLUSIONS/SIGNIFICANCE: It seems that these cruciferous-specific MYB regulatory genes have evolved both overlapping and specific regulatory capacities. This provides a unique system within which to

  2. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes.

    Science.gov (United States)

    Zhang, Zengyan; Liu, Xin; Wang, Xindong; Zhou, Miaoping; Zhou, Xianyao; Ye, Xingguo; Wei, Xuening

    2012-12-01

    In this study, we report new insights into the function of a wheat (Triticum aestivum) MYB gene TaPIMP1 through overexpression and underexpression, and its underlying mechanism in wheat. Electrophoretic mobility shift and yeast-one-hybrid assays indicated that TaPIMP1 can bind to five MYB-binding sites including ACI, and activate the expression of the genes with the cis-element, confirming that TaPIMP1 is an MYB transcription activator. TaPIMP1-overexpressing transgenic wheat exhibited significantly enhanced resistance to the fungal pathogen Bipolaris sorokiniana and drought stresses, whereas TaPIMP1-underexpressing transgenic wheat showed more susceptibility to the stresses compared with untransformed wheat, revealing that TaPIMP1 positively modulates host-defense responses to B. sorokiniana and drought stresses. Microarray analysis showed that a subset of defense- and stress-related genes were up-regulated by TaPIMP1. These genes, including TaPIMP1, RD22, TLP4 and PR1a, were regulated by ABA and salicylic acid (SA). TaPIMP1-underexpressing transgenic wheat showed compromised induction of these stress-responsive genes following ABA and SA treatments. In summary, TaPIMP1, as a positive molecular linker, mediates resistance to B. sorokiniana and drought stresses by regulation of stress-related genes in ABA- and SA-signaling pathways in wheat. Furthermore, TaPIMP1 may provide a transgenic tool for engineering multiple-resistance wheat in breeding programs.

  3. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission.

    Science.gov (United States)

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-01-01

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation.

  4. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission

    Science.gov (United States)

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-01-01

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation. PMID:27573926

  5. Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Qinlong Zhu

    Full Text Available Proanthocyanidins (PAs play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides, to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1 and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR and late anthocyanin structural genes (NtDFR and NtANS, but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering.

  6. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Directory of Open Access Journals (Sweden)

    Arce-Johnson Patricio

    2008-07-01

    Full Text Available Abstract Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions.

  7. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors.

    Science.gov (United States)

    Liu, Yuhui; Lin-Wang, Kui; Espley, Richard V; Wang, Li; Yang, Hongyu; Yu, Bin; Dare, Andrew; Varkonyi-Gasic, Erika; Wang, Jing; Zhang, Junlian; Wang, Di; Allan, Andrew C

    2016-04-01

    In potato (Solanum tuberosum L.), R2R3 MYBs are involved in the regulation of anthocyanin biosynthesis. We examined sequences of these MYBs in cultivated potatoes, which are more complex than diploid potato due to ploidy and heterozygosity. We found amino acid variants in the C-terminus of the MYB StAN1, termed R0, R1, and R3, due to the presence of a repeated 10-amino acid motif. These variant MYBs showed some expression in both white and pigmented tubers. We found several new alleles or gene family members of R2R3 MYBs,StMYBA1 and StMYB113, which were also expressed in white potato tubers. From functional analysis in tobacco, we showed that the presence of a C-terminal 10-amino acid motif is optimal for activating anthocyanin accumulation. Engineering a motif back into a MYB lacking this sequence enhanced its activating ability. Versions of StMYBA1 and StMYB113 can also activate anthocyanin accumulation in tobacco leaves, with the exception of StMYB113-3, which has a partial R2R3 domain. We isolated five family members of potato StbHLH1, and one StJAF13, to test their ability to interact with MYB variants. The results showed that two alleles of StbHLH1 from white skin and red skin are non-functional, while three other StbHLH1s have different co-regulating abilities, and need to be activated by StJAF13. Combined with expression analysis in potato tuber, results suggest that StbHLH1 and StJAF13a re key co-regulators of anthocyanin biosynthesis, while the transcripts of MYB variants StAN1,StMYBA1, and StMYB113 are well expressed, even in the absence of pigmentation.

  8. Physiological changes in fruit ripening caused by overexpression of tomato SlAN2, an R2R3-MYB factor.

    Science.gov (United States)

    Meng, Xia; Yang, Dongyue; Li, Xiaodong; Zhao, Shuya; Sui, Na; Meng, Qingwei

    2015-04-01

    The R2R3-MYB protein SlAN2 has long been thought to be a positive regulator of anthocyanin accumulation. To investigate the role of SlAN2, we have previously overexpressed the gene in tomato. In this work, we analysed physiological characters of the transgenic plants during the fruit ripening. We show that fruits of transformants overexpressing SlAN2 displayed an orange colour, fast softening and elevated ethylene production. Overexpression of SlAN2 resulted in reduction of carotenoid levels via alteration of flux through the carotenoid pathway, elevated ethylene synthesis mainly via upregulation of ethylene biosynthesis genes, and early softening of fruits. We also found that the transcript level of SlRIN, an important ripening-related gene, was up-regulated in transgenic fruits. These results suggest that SlAN2 acts as an important regulator of fruit ripening.

  9. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.).

    Science.gov (United States)

    Sun, Shan-Shan; Gugger, Paul F; Wang, Qing-Feng; Chen, Jin-Ming

    2016-01-01

    The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1) were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus.

  10. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.)

    Science.gov (United States)

    Sun, Shan-Shan

    2016-01-01

    The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1) were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus. PMID:27635336

  11. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.

    Directory of Open Access Journals (Sweden)

    Shan-Shan Sun

    2016-09-01

    Full Text Available The lotus (Nelumbonaceae: Nelumbo Adans. is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten. with red flowers and the American lotus (N. lutea Willd. with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1 were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus.

  12. A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis.

    Science.gov (United States)

    Shin, Dong Ho; Choi, Myoung-Goo; Kang, Chon-Sik; Park, Chul-Soo; Choi, Sang-Bong; Park, Youn-Il

    2016-01-15

    Transcriptional activation of anthocyanin biosynthesis genes in vegetative tissues of monocotyledonous plants is mediated by cooperative activity of one component from each of the following two transcription factor families: MYB encoded by PURPLE PLANT1/COLORED ALEURONE1 (PL1/C1), and basic helix-loop-helix (bHLH) encoded by RED/BOOSTER (R1/B1). In the present study, putative PL cDNA was cloned from the wheat (Triticum aestivum) cultivar Iksan370, which preferentially expresses anthocyanins in coleoptiles. Phylogenetic tree analysis of deduced amino acid sequences showed that a putative TaPL1 is highly homologous to barley (Hordeum vulgare) HvPL1, but is distinct from wheat TaC1. Transgenic Arabidopsis thaliana stably expressing putative TaPL1 accumulated anthocyanin pigments in leaves and up-regulated structural genes involved in both early and late anthocyanin biosynthesis steps. TaPL1 transcript levels in Iksan370 were more prominent in vegetative tissues such as young coleoptiles than in reproductive tissues such as spikelets. TaPL1 expression was significantly up-regulated by environmental stresses including cold, salt, and light, which are known to induce anthocyanin accumulation. These combined results suggest that TaPL1 is an active positive regulator of anthocyanin biosynthesis in wheat coleoptiles.

  13. Poplar MYB115 and MYB134 Transcription Factors Regulate Proanthocyanidin Synthesis and Structure.

    Science.gov (United States)

    James, Amy Midori; Ma, Dawei; Mellway, Robin; Gesell, Andreas; Yoshida, Kazuko; Walker, Vincent; Tran, Lan; Stewart, Don; Reichelt, Michael; Suvanto, Jussi; Salminen, Juha-Pekka; Gershenzon, Jonathan; Séguin, Armand; Constabel, C Peter

    2017-05-01

    The accumulation of proanthocyanidins is regulated by a complex of transcription factors composed of R2R3 MYB, basic helix-loop-helix, and WD40 proteins that activate the promoters of biosynthetic genes. In poplar (genus Populus), MYB134 is known to regulate proanthocyanidin biosynthesis by activating key flavonoid genes. Here, we characterize a second MYB regulator of proanthocyanidins, MYB115. Transgenic poplar overexpressing MYB115 showed a high-proanthocyanidin phenotype and reduced salicinoid accumulation, similar to the effects of MYB134 overexpression. Transcriptomic analysis of MYB115- and MYB134-overexpressing poplar plants identified a set of common up-regulated genes encoding proanthocyanidin biosynthetic enzymes and several novel uncharacterized MYB transcriptional repressors. Transient expression experiments demonstrated the capacity of both MYB134 and MYB115 to activate flavonoid promoters, but only in the presence of a basic helix-loop-helix cofactor. Yeast two-hybrid experiments confirmed the direct interaction of these transcription factors. The unexpected identification of dihydromyricetin in leaf extracts of both MYB115- and MYB134-overexpressing poplar led to the discovery of enhanced flavonoid B-ring hydroxylation and an increased proportion of prodelphinidins in proanthocyanidin of the transgenics. The dramatic hydroxylation phenotype of MYB115 overexpressors is likely due to the up-regulation of both flavonoid 3',5'-hydroxylases and cytochrome b5 Overall, this work provides new insight into the complexity of the gene regulatory network for proanthocyanidin synthesis in poplar. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Identification of transcription factors ZmMYB111and ZmMYB148 involved in phenylpropanoid metabolism

    Directory of Open Access Journals (Sweden)

    Junjie eZhang

    2016-02-01

    Full Text Available Maize is the leading crop worldwide in terms of both planting area and total yields, but environmental stresses cause significant losses in productivity. Phenylpropanoid compounds play an important role in plant stress resistance; however, the mechanism of their synthesis is not fully understood, especially in regard to the expression and regulation of key genes. Phenylalanine ammonia-lyase (PAL is the first key enzyme involved in phenylpropanoid metabolism, and it has a significant effect on the synthesis of important phenylpropanoid compounds. According to the results of sequence alignments and functional prediction, we selected two conserved R2R3-MYB transcription factors as candidate genes for the regulation of phenylpropanoid metabolism. The two candidate R2R3-MYB genes, which we named ZmMYB111and ZmMYB148, were cloned, and then their structural characteristics and phylogenetic placement were predicted and analyzed. In addition, a series of evaluations were performed, including expression profiles, subcellular localization, transcription activation, protein-DNA interaction, and transient expression in maize endosperm. Our results indicated that both ZmMYB111 and ZmMYB148 are indeed R2R3-MYB transcription factors and that they may play a regulatory role in PAL gene expression.

  15. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Katiyar Amit

    2012-10-01

    Full Text Available Abstract Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and

  16. [Cloning and functional analysis of Phyllostachys edulis MYB transcription factor PeMYB2].

    Science.gov (United States)

    Xiao, Dong-Chang; Zhang, Zhi-Jun; Xu, Ying-Wu; Yang, Li; Zhang, Feng-Xue; Wang, Chao-Li

    2013-10-01

    MYB-type transcription factor is one of the largest families in plants, which plays important roles in accepting stress signals from environment and regulating the expression of stress-tolerant genes. In this paper, using homologous cloning and RACE technology, a MYB-type transcription factor, designated PeMYB2, was cloned from Phyllostachys edulis. The results of bioinformatics showed that PeMYB2 is a typical R2R3-MYB. It contained two tandem repeats in its N-terminus, and a membrane protein DUF3651 in its C-terminus. In addition, phylogenetic analysis indicated that PeMYB2 shared the highest homology with 85.98% to OsMYB18 protein from Oryza sativa spp. Japonica. In addition, a yeast one-hybrid assay showed that PeMYB2 could activate the expression of downstream genes. After PeMYB2 was transformed into Arabidopsis thaliana, seven PeMYB2 transgenic Arabidopsis lines were obtained. Phenotypic analysis of the transgenic and wild-type Arabidopsis showed that over-expression of PeMYB2 caused delayed flower or dwarfism in transgenic Arabidopsis. Under the abiotic stress conditions, such as salt and cold stresses, the over-expression of PeMYB2 in Arabidopsis had higher survival rate than the wild-type Arabidopsis. Expression analysis of saline stress response marker genes in the transgenic and wild-type plants under the salt stress condition showed that PeMYB2 regulated the expression of NXH1, SOS1, RD29A, and COR15A. As the result, PeMYB2 might play an important role in various responses to abiotic stresses in P. edulis.

  17. Characterization of RsMYB28 and RsMYB29 transcription factor genes in radish (Raphanus sativus L.).

    Science.gov (United States)

    Luo, X B; Liu, Z; Xu, L; Wang, Y; Zhu, X W; Zhang, W; Chen, W; Zhu, Y L; Su, X J; Everlyne, M; Liu, L W

    2016-09-23

    Glucosinolates (GSLs) are important secondary metabolites in Brassicaceae plants. Previous studies have mainly focused on GSL contents, types, and biosynthesis-related genes, but the molecular characterization patterns of GSL biosynthesis-related transcription factors remain largely unexplored in radish (Raphanus sativus L.). To isolate transcription factor genes regulating the GSL biosynthesis, genomic DNA and cDNA sequences of RsMYB28 and RsMYB29 genes were isolated in radish. Two R2R3-MYB domains were identified in the deduced amino acid sequences. Subcellular localization and yeast-one hybrid assays indicated that both the RsMYB28 and RsMYB29 genes were located in the nucleus and possessed transactivation activity. Reverse transcription quantitative analysis showed that the RsMYB28 and RsMYB29 genes were expressed in seeds, leaves, stems, and roots at the seedling, taproot thickening, and mature stages. Both genes were highly expressed during the seedling and taproot thickening stages. The expression level of RsMYB28 was found to be up-regulated following wounding, glucose, and abscisic acid treatments, whereas RsMYB29 was up-regulated following wounding and methyl jasmonate treatments. These results provide insights into the biological function and characterization of the RsMYB28 and RsMYB29 genes, and facilitate further dissection of the molecular regulatory mechanism underlying the GSL biosynthesis in radish.

  18. The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves.

    Science.gov (United States)

    Paolocci, Francesco; Robbins, Mark P; Passeri, Valentina; Hauck, Barbara; Morris, Phil; Rubini, Andrea; Arcioni, Sergio; Damiani, Francesco

    2011-01-01

    Proanthocyanidins (PAs) are agronomically important biopolymers in higher plants composed primarily of catechin and epicatechin units. The biosynthesis of these natural products is regulated by transcription factors including proteins of the R2R3MYB class. To gain insight into the genetic control of the catechin and epicatechin branches of the PA pathway in forage legumes, here the effects of the expression of FaMYB1, a flavonoid R2R3MYB repressor from strawberry, in Lotus corniculatus (birdsfoot trefoil), were tested. It was found that in leaves of T(0) transgenic lines the degree of PA inhibition correlated with the level of FaMYB1 expression. These effects were heritable in the transgene-positive plant T(1) generation and were tissue specific as the suppression of proanthocyanidin biosynthesis was most pronounced in mesophyll cells within the leaf, whereas other flavonoid and phenolic compounds were substantially unaltered. The data suggest that FaMYB1 may counter-balance the activity of the endogenous transcriptional MYB-bHLH-WD40 (MBW) complex promoting proanthocyanidin biosynthesis via the catechin and epicatechin branches and that FaMYB1 does not interfere with the expression levels of a resident R2R3MYB activator of PAs. It is proposed that in forage legumes leaf cell commitment to synthesize proanthocyanidins relies on the balance between the activity of activator and repressor MYBs operating within the MBW complex.

  19. Characterization and pilot functional study of a rootspecific MYB transcription factor of Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An MYB transcription factor (AtMYB305) ofArabidopsis was structurally characterized. The biochemical activity of the protein was tested and its in vivo function was preliminarily analyzed. AtMYB305 contains two imperfect repeats (R2, R3) in its DNA binding domain. Gel mobility shift assay demonstrated that GST-AtMYB305 fusion protein bound specifically to the DNA fragment that included a consensus MYB recognition sequence (TAACTG). Overexpression of AtMYB305 in the fission yeast caused the formation of elongated cells with one condensed nucleus.Semi-quantitative RT-PCR analysis revealed that AtMYB305was expressed specifically in the roots of Arabidopsis.

  20. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    Directory of Open Access Journals (Sweden)

    Hui eZhou

    2015-10-01

    Full Text Available Proanthocyanidins (PAs are a group of natural phenolic compounds that have a great effect on both flavour and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5 via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants.

  1. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    Science.gov (United States)

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function.

  2. A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine.

    Science.gov (United States)

    Craven-Bartle, Blanca; Pascual, M Belen; Cánovas, Francisco M; Avila, Concepción

    2013-06-01

    During the life cycles of conifer trees, such as maritime pine (Pinus pinaster Ait.), large quantities of carbon skeletons are irreversibly immobilized in the wood. In energetic terms this is an expensive process, in which carbon from photosynthesis is channelled through the shikimate pathway for the biosynthesis of phenylpropanoids. This crucial metabolic pathway is finely regulated, primarily through transcriptional control, and because phenylalanine is the precursor for phenylpropanoid biosynthesis, the precise regulation of phenylalanine synthesis and use should occur simultaneously. The promoters of three genes encoding the enzymes prephenate aminotransferase (PAT), phenylalanine ammonia lyase (PAL) and glutamine synthetase (GS1b) contain AC elements involved in the transcriptional activation mediated by R2R3-Myb factors. We have examined the capacity of the R2R3-Myb transcription factors Myb1, Myb4 and Myb8 to co-regulate the expression of PAT, PAL and GS1b. Only Myb8 was able to activate the transcription of the three genes. Moreover, the expression of this transcription factor is higher in lignified tissues, in which a high demand for phenylpropanoids exits. In a gain-of-function experiment, we have shown that Myb8 can specifically bind a well-conserved eight-nucleotide-long AC-II element in the promoter regions of PAT, PAL and GS1b, thereby activating their expression. Our results show that Myb8 regulates the expression of these genes involved in phenylalanine metabolism, which is required for channelling photosynthetic carbon to promote wood formation. The co-localization of PAT, PAL, GS1b and MYB8 transcripts in vascular cells further supports this conclusion.

  3. Genome-wide analysis of the MYB transcription factor superfamily in soybean

    Directory of Open Access Journals (Sweden)

    Du Hai

    2012-07-01

    Full Text Available Abstract Background The MYB superfamily constitutes one of the most abundant groups of transcription factors described in plants. Nevertheless, their functions appear to be highly diverse and remain rather unclear. To date, no genome-wide characterization of this gene family has been conducted in a legume species. Here we report the first genome-wide analysis of the whole MYB superfamily in a legume species, soybean (Glycine max, including the gene structures, phylogeny, chromosome locations, conserved motifs, and expression patterns, as well as a comparative genomic analysis with Arabidopsis. Results A total of 244 R2R3-MYB genes were identified and further classified into 48 subfamilies based on a phylogenetic comparative analysis with their putative orthologs, showed both gene loss and duplication events. The phylogenetic analysis showed that most characterized MYB genes with similar functions are clustered in the same subfamily, together with the identification of orthologs by synteny analysis, functional conservation among subgroups of MYB genes was strongly indicated. The phylogenetic relationships of each subgroup of MYB genes were well supported by the highly conserved intron/exon structures and motifs outside the MYB domain. Synonymous nucleotide substitution (dN/dS analysis showed that the soybean MYB DNA-binding domain is under strong negative selection. The chromosome distribution pattern strongly indicated that genome-wide segmental and tandem duplication contribute to the expansion of soybean MYB genes. In addition, we found that ~ 4% of soybean R2R3-MYB genes had undergone alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Comparative expression profile analysis of R2R3-MYB genes in soybean and Arabidopsis revealed that MYB genes play conserved and various roles in plants, which is indicative of a divergence in

  4. MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in arabidopsis

    DEFF Research Database (Denmark)

    Li, Shengnan; Wang, Wenyi; Gao, Jinlan

    2016-01-01

    anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75...

  5. A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening.

    Science.gov (United States)

    Palapol, Yossapol; Ketsa, Saichol; Lin-Wang, Kui; Ferguson, Ian B; Allan, Andrew C

    2009-05-01

    Mangosteen (Garcinia mangostana L.) fruit undergo rapid red colour development, both on the tree and after harvest, resulting in high anthocyanin production in the pericarp. Here, we report the isolation of three full-length mangosteen MYB transcription factors (GmMYB1, GmMYB7 and GmMYB10) and all the anthocyanin biosynthetic pathway genes (GmPal to GmUFGT). Phylogenetic analysis at the protein level of the R2R3-MYB transcription factor family showed GmMYB10 had a high degree of similarity with production of anthocyanin pigment1 in Arabidopsis and as well as sequences from other plant species related to the elevation of anthocyanin pigmentation. In transient transactivation assays, GmMYB10, co-expressed with AtbHLH2, strongly activated the GmDFR and AtDFR promoters. Transcripts of GmMYB10 and GmUFGT were highly abundant with onset of pigmentation and subsequently during red colouration. Our results suggest that GmMYB10 plays an important role in regulating anthocyanin biosynthesis both on the tree and after harvest, while GmUFGT may be a key biosynthetic gene in mangosteen pigmentation. The expression patterns of GmMYB10 and GmUFGT correlated with ethylene production that increased linearly until stage 5 (dark purple) and decreased thereafter. 1-Methycyclopropene (1-MCP) clearly delayed red colouration with resulting down-regulation of GmMYB10. These results suggest that the effect of ethylene on anthocyanin biosynthesis may be via the regulation of GmMYB10 expression.

  6. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease.

    Science.gov (United States)

    Liu, Xin; Yang, Lihua; Zhou, Xianyao; Zhou, Miaoping; Lu, Yan; Ma, Lingjian; Ma, Hongxiang; Zhang, Zengyan

    2013-05-01

    The disease take-all, caused by the fungus Gaeumannomyces graminis, is one of the most destructive root diseases of wheat worldwide. Breeding resistant cultivars is an effective way to protect wheat from take-all. However, little progress has been made in improving the disease resistance level in commercial wheat cultivars. MYB transcription factors play important roles in plant responses to environmental stresses. In this study, an R2R3-MYB gene in Thinopyrum intermedium, TiMYB2R-1, was cloned and characterized. The gene sequence includes two exons and an intron. The expression of TiMYB2R-1 was significantly induced following G. graminis infection. An in vitro DNA binding assay proved that TiMYB2R-1 protein could bind to the MYB-binding site cis-element ACI. Subcellular localization assays revealed that TiMYB2R-1 was localized in the nucleus. TiMYB2R-1 transgenic wheat plants were generated, characterized molecularly, and evaluated for take-all resistance. PCR and Southern blot analyses confirmed that TiMYB2R-1 was integrated into the genomes of three independent transgenic wheat lines by distinct patterns and the transgene was heritable. Reverse transcription-PCR and western blot analyses revealed that TiMYB2R-1 was highly expressed in the transgenic wheat lines. Based on disease response assessments for three successive generations, the significantly enhanced resistance to take-all was observed in the three TiMYB2R-1-overexpressing transgenic wheat lines. Furthermore, the transcript levels of at least six wheat defence-related genes were significantly elevated in the TiMYB2R-1 transgenic wheat lines. These results suggest that engineering and overexpression of TiMYB2R-1 may be used for improving take-all resistance of wheat and other cereal crops.

  7. Identification and possible role of a MYB transcription factor from saffron (Crocus sativus).

    Science.gov (United States)

    Gómez-Gómez, Lourdes; Trapero-Mozos, Almudena; Gómez, Maria Dolores; Rubio-Moraga, Angela; Ahrazem, Oussama

    2012-03-15

    The MYB family is the most abundant group of transcription factors described for plants. Plant MYB genes have been shown to be involved in the regulation of many aspects of plant development. No MYB genes are described for saffron, the dried stigma of Crocus sativus, utilized as a colorant for foodstuffs. In this study, we used RACE-PCR to isolate a full length cDNA of 894bp with a 591bp open reading frame, encoding a putative CsMYB1 from C. sativus. Comparison between gDNA and cDNA revealed no introns. Homology studies indicated that the deduced amino acid sequence is similar to members of the R2R3 MYB subfamily. Expression analysis showed the presence of high transcript levels in stigma tissue and low levels in tepals, whereas no signal was detected in either anthers or leaves. The RT-PCR analysis revealed that CsMYB1 expression is developmentally regulated during stigma development. Furthermore, expression analysis in stigmas from different Crocus species showed a correlation with stigma morphology. No transcripts were found in stigma tissues of Crocus species characterized by branched stigma morphology. Taken together, these results suggest that CsMYB1 may be involved in the regulation of stigma morphology in Crocus.

  8. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng.

    Science.gov (United States)

    Afrin, Sadia; Zhu, Jie; Cao, Hongzhe; Huang, Jingjia; Xiu, Hao; Luo, Tiao; Luo, Zhiyong

    2015-04-01

    The v-myb avian myeloblastosis viral oncogene homolog (MYB) family constitutes one of the most abundant groups of transcription factors and plays vital roles in developmental processes and defense responses in plants. A ginseng (Panax ginseng C.A. Meyer) MYB gene was cloned and designated as PgMYB1. The cDNA of PgMYB1 is 762 base pairs long and encodes the R2R3-type protein consisting 238 amino acids. Subcellular localization showed that PgMYB1-mGFP5 fusion protein was specifically localized in the nucleus. To understand the functional roles of PgMYB1, we investigated the expression patterns of PgMYB1 in different tissues and under various conditions. Quantitative real-time polymerase chain reaction and western blot analysis showed that PgMYB1 was expressed at higher level in roots, leaves, and lateral roots than in stems and seeds. The expression of PgMYB1 was up-regulated by abscisic acid, salicylic acid, NaCl, and cold (chilling), and down-regulated by methyl jasmonate. These results suggest that PgMYB1 might be involved in responding to environmental stresses and hormones. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  9. Phosphate Starvation Responses and Gibberellic Acid Biosynthesis Are Regulated by the MYB62 Transcription Factor in Arabiclopsis

    Institute of Scientific and Technical Information of China (English)

    Ballachanda N. Devaiah; Ramaiah Madhuvanthi; Athikkattuvalasu S. Karthikeyan; Kashchandra G. Raghothama

    2009-01-01

    The limited availability of phosphate (Pi) in most soils results in the manifestation of Pi starvation responses in plants. To dissect the transcriptional regulation of Pi stress-response mechanisms, we have characterized the biological role of MYB62, an R2R3-type MYB transcription factor that is induced in response to Pi deficiency. The induction of MYB62 is a specific response in the leaves during Pi deprivation. The MYB62 protein localizes to the nucleus. The overexpression of MYB62 resulted in altered root architecture, Pi uptake, and acid phosphatase activity, leading to decreased total Pi content in the shoots. The expression of several Pi starvation-induced (PSI) genes was also suppressed in the MYB62 overexpressing plants. Overexpression of MYB62 resulted in a characteristic gibberellic acid (GA)-deficient phenotype that could be partially reversed by exogenous application of GA. In addition, the expression of SOC1 and SUPERMAN, molecular regulators of flowering, was suppressed in the MYB62 overexpressing plants. Interestingly, the expression of these genes was also reduced during Pi deprivation in wild-type plants, suggesting a role for GA biosynthetic and floral regulatory genes in Pi starvation responses. Thus, this study highlights the role of MYB62 in the regulation of phosphate starvation responses via changes in GA metabolism and signaling. Such cross-talk between Pi homeostasis and GA might have broader implications on flowering, root development and adaptive mechanisms during nutrient stress.

  10. A highly organized structure mediating nuclear localization of a Myb2 transcription factor in the protozoan parasite Trichomonas vaginalis.

    Science.gov (United States)

    Chu, Chien-Hsin; Chang, Lung-Chun; Hsu, Hong-Ming; Wei, Shu-Yi; Liu, Hsing-Wei; Lee, Yu; Kuo, Chung-Chi; Indra, Dharmu; Chen, Chinpan; Ong, Shiou-Jeng; Tai, Jung-Hsiang

    2011-12-01

    Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis. The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import.

  11. A Myb transcription factor of Phytophthora sojae, regulated by MAP kinase PsSAK1, is required for zoospore development.

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    Full Text Available PsSAK1, a mitogen-activated protein (MAP kinase from Phytophthora sojae, plays an important role in host infection and zoospore viability. However, the downstream mechanism of PsSAK1 remains unclear. In this study, the 3'-tag digital gene expression (DGE profiling method was applied to sequence the global transcriptional sequence of PsSAK1-silenced mutants during the cysts stage and 1.5 h after inoculation onto susceptible soybean leaf tissues. Compared with the gene expression levels of the recipient P. sojae strain, several candidates of Myb family were differentially expressed (up or down in response to the loss of PsSAK1, including of a R2R3-type Myb transcription factor, PsMYB1. qRT-PCR indicated that the transcriptional level of PsMYB1 decreased due to PsSAK1 silencing. The transcriptional level of PsMYB1 increased during sporulating hyphae, in germinated cysts, and early infection. Silencing of PsMYB1 results in three phenotypes: a no cleavage of the cytoplasm into uninucleate zoospores or release of normal zoospores, b direct germination of sporangia, and c afunction in zoospore-mediated plant infection. Our data indicate that the PsMYB1 transcription factor functions downstream of MAP kinase PsSAK1 and is required for zoospore development of P. sojae.

  12. The Arabidopsis MYB96 Transcription Factor Is a Positive Regulator of ABSCISIC ACID-INSENSITIVE4 in the Control of Seed Germination1

    Science.gov (United States)

    Lee, Kyounghee; Lee, Hong Gil; Kim, Hyun Uk; Seo, Pil Joon

    2015-01-01

    Seed germination is a key developmental transition that initiates the plant life cycle. The timing of germination is determined by the coordinated action of two phytohormones, gibberellin and abscisic acid (ABA). In particular, ABA plays a key role in integrating environmental information and inhibiting the germination process. The utilization of embryonic lipid reserves contributes to seed germination by acting as an energy source, and ABA suppresses lipid degradation to modulate the germination process. Here, we report that the ABA-responsive R2R3-type MYB transcription factor MYB96, which is highly expressed in embryo, regulates seed germination by controlling the expression of ABSCISIC ACID-INSENSITIVE4 (ABI4) in Arabidopsis (Arabidopsis thaliana). In the presence of ABA, germination was accelerated in MYB96-deficient myb96-1 seeds, whereas the process was significantly delayed in MYB96-overexpressing activation-tagging myb96-ox seeds. Consistently, myb96-1 seeds degraded a larger extent of lipid reserves even in the presence of ABA, while reduced lipid mobilization was observed in myb96-ox seeds. MYB96 directly regulates ABI4, which acts as a repressor of lipid breakdown, to define its spatial and temporal expression. Genetic analysis further demonstrated that ABI4 is epistatic to MYB96 in the control of seed germination. Taken together, the MYB96-ABI4 module regulates lipid mobilization specifically in the embryo to ensure proper seed germination under suboptimal conditions. PMID:25869652

  13. The Arabidopsis MYB96 Transcription Factor Is a Positive Regulator of ABSCISIC ACID-INSENSITIVE4 in the Control of Seed Germination.

    Science.gov (United States)

    Lee, Kyounghee; Lee, Hong Gil; Yoon, Seongmun; Kim, Hyun Uk; Seo, Pil Joon

    2015-06-01

    Seed germination is a key developmental transition that initiates the plant life cycle. The timing of germination is determined by the coordinated action of two phytohormones, gibberellin and abscisic acid (ABA). In particular, ABA plays a key role in integrating environmental information and inhibiting the germination process. The utilization of embryonic lipid reserves contributes to seed germination by acting as an energy source, and ABA suppresses lipid degradation to modulate the germination process. Here, we report that the ABA-responsive R2R3-type MYB transcription factor MYB96, which is highly expressed in embryo, regulates seed germination by controlling the expression of abscisic acid-insensitive4 (ABI4) in Arabidopsis (Arabidopsis thaliana). In the presence of ABA, germination was accelerated in MYB96-deficient myb96-1 seeds, whereas the process was significantly delayed in MYB96-overexpressing activation-tagging myb96-ox seeds. Consistently, myb96-1 seeds degraded a larger extent of lipid reserves even in the presence of ABA, while reduced lipid mobilization was observed in myb96-ox seeds. MYB96 directly regulates ABI4, which acts as a repressor of lipid breakdown, to define its spatial and temporal expression. Genetic analysis further demonstrated that ABI4 is epistatic to MYB96 in the control of seed germination. Taken together, the MYB96-ABI4 module regulates lipid mobilization specifically in the embryo to ensure proper seed germination under suboptimal conditions.

  14. Control of trichome formation in Arabidopsis by poplar single-repeat R3 MYB transcription factors

    Directory of Open Access Journals (Sweden)

    Limei eZhou

    2014-06-01

    Full Text Available In Arabidopsis, trichome formation is regulated by the interplay of R3 MYBs and several others transcription factors including the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1, the R2R3 MYB transcription factor GLABRA1 (GL1, the bHLH transcription factor GLABRA3 (GL3 or ENHANCER OF GLABRA3 (EGL3, and the homeodomain protein GLABRA2 (GL2. R3 MYBs including TRICHOMELESS1 (TCL1, TRYPTICHON (TRY, CAPRICE (CPC, ENHANCER OF TRY AND CPC1 (ETC1, ETC2 and ETC3 negatively regulate trichome formation by competing with GL1 for binding GL3 or EGL3, thus blocking the formation of TTG1-GL3/EGL3-GL1, an activator complex required for the activation of the trichome positive regulator gene GL2. However, it is largely unknown if R3 MYBs in other plant species especially woody plants have similar functions. By BLASTing the Populus trichocarpa protein database using the entire amino acid sequence of TCL1, an Arabidopsis R3 MYB transcription factor, we identified a total of eight R3 MYB transcription factor genes in poplar, namely Populus trichocarpa TRICHOMELESS1through 8 (PtrTCL1-PtrTCL8. The amino acid signature required for interacting with bHLH transcription factors and the amino acids required for cell-to-cell movement of R3 MYBs are not fully conserved in all PtrTCLs. When tested in Arabidopsis protoplasts, however, all PtrTCL interacted with GL3. Expressing each of the eight PtrTCLs genes in Arabidopsis resulted in either glabrous phenotypes or plants with reduced trichome numbers, and expression levels of GL2 in all transgenic plants tested were greatly reduced. Expression of PtrTCL1 under the control of TCL1 native promoter almost completely complemented the mutant phenotype of tcl. In contrast, expression of PtrTCL1 under the control of TRY native promoter in the try mutant, or under the control of CPC native promoter in the cpc mutant resulted in glabrous phenotypes, suggesting that PtrTCL1 functions similarly to TCL1, but not TRY and CPC.

  15. A single amino acid change within the R2 domain of the VvMYB5b transcription factor modulates affinity for protein partners and target promoters selectivity

    Directory of Open Access Journals (Sweden)

    Granier Thierry

    2011-08-01

    Full Text Available Abstract Background Flavonoid pathway is spatially and temporally controlled during plant development and the transcriptional regulation of the structural genes is mostly orchestrated by a ternary protein complex that involves three classes of transcription factors (R2-R3-MYB, bHLH and WDR. In grapevine (Vitis vinifera L., several MYB transcription factors have been identified but the interactions with their putative bHLH partners to regulate specific branches of the flavonoid pathway are still poorly understood. Results In this work, we describe the effects of a single amino acid substitution (R69L located in the R2 domain of VvMYB5b and predicted to affect the formation of a salt bridge within the protein. The activity of the mutated protein (name VvMYB5bL, the native protein being referred as VvMYB5bR was assessed in different in vivo systems: yeast, grape cell suspensions, and tobacco. In the first two systems, VvMYB5bL exhibited a modified trans-activation capability. Moreover, using yeast two-hybrid assay, we demonstrated that modification of VvMYB5b transcriptional properties impaired its ability to correctly interact with VvMYC1, a grape bHLH protein. These results were further substantiated by overexpression of VvMYB5bR and VvMYB5bL genes in tobacco. Flowers from 35S::VvMYB5bL transgenic plants showed a distinct phenotype in comparison with 35S::VvMYB5bR and the control plants. Finally, significant differences in transcript abundance of flavonoid metabolism genes were observed along with variations in pigments accumulation. Conclusions Taken together, our findings indicate that VvMYB5bL is still able to bind DNA but the structural consequences linked to the mutation affect the capacity of the protein to activate the transcription of some flavonoid genes by modifying the interaction with its co-partner(s. In addition, this study underlines the importance of an internal salt bridge for protein conformation and thus for the establishment

  16. The promoter structure differentiation of a MYB transcription factor RLC1 causes red leaf coloration in Empire Red Leaf Cotton under light.

    Science.gov (United States)

    Gao, Zhenrui; Liu, Chuanliang; Zhang, Yanzhao; Li, Ying; Yi, Keke; Zhao, Xinhua; Cui, Min-Long

    2013-01-01

    The red leaf coloration of Empire Red Leaf Cotton (ERLC) (Gossypium hirsutum L.), resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (Gossypium hirsutum L.). Introduction of R2R3-MYB transcription factor Rosea1, the master regulator anthocyanin biosynthesis in Antirrhinum majus, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor RLC1 (Red Leaf Cotton 1) which encodes the ortholog of PAP1/Rosea1 was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of RLC1 from ERLC and CCRI 24 in hairy roots of Antirrhinum majus and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of RLC1 promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced RLC1 expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.

  17. GmMYB58 and GmMYB205 are seed-specific activators for isoflavonoid biosynthesis in Glycine max.

    Science.gov (United States)

    Han, Xiaoyan; Yin, Qinggang; Liu, Jinyue; Jiang, Wenbo; Di, Shaokang; Pang, Yongzhen

    2017-09-13

    GmMYB58 and GmMYB205 are key positive regulators that are involved in isoflavonoid biosynthesis in seeds of Glycine max, and they activate the expression of several structural genes in the isoflavonoid pathway. MYB transcription factors (TFs) are major regulators involved in flavonoid/isoflavonoid biosynthesis in many plant species. However, functions of most MYB TFs remain unknown in flavonoid/isoflavonoid pathway in Glycine max. In this study, we identified 321 MYB TFs by genome-wide searching, and further isolated and functionally characterized two MYB TFs, GmMYB58 and GmMYB205. The deduced GmMYB58 and GmMYB205 proteins contain highly conserved R2R3 repeat domain at the N-terminal region that is the signature motif of R2R3-type MYB TFs. GmMYB58 and GmMYB205 were highly expressed in early seed development stages than in the other tested organs. GmMYB58 and GmMYB205 GFP fusion proteins were found to be localized in the nucleus when they were transiently expressed in Arabidopsis thaliana mesophyll protoplast. Both GmMYB58 and GmMYB205 can activate the promoter activities of GmCHS, GmIFS2, and GmHID in the transient trans-activation assays, and the activation of GmHID by both GmMYB58 and GmMYB205 was further confirmed by yeast one-hybrid assay. In addition, over-expression of GmMYB58 and GmMYB205 resulted in significant increases in expression levels of several pathway genes in soybean hairy roots, in particular, IFS2 by more than fivefolds in GmMYB205-over-expressing lines. Moreover, isoflavonoid contents were remarkably enhanced in the GmMYB58 and GmMYB205 over-expressing hairy roots than in the control. Our results suggest that GmMYB58 and GmMYB205 are seed-specific TFs, and they can enhance isoflavonoid biosynthesis mainly through the regulation of GmIFS2 and GmHID in G. max.

  18. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development

    KAUST Repository

    Park, Myoungryoul

    2010-09-28

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  19. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development.

    Science.gov (United States)

    Park, Myoung-Ryoul; Yun, Kil-Young; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Wijaya, Edward; Bajic, Vladimir B; Yun, Song-Joong; De Los Reyes, Benildo G

    2010-12-01

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development.

  20. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network.

    Directory of Open Access Journals (Sweden)

    Avital Adato

    2009-12-01

    Full Text Available The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB-type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle.

  1. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar

    Science.gov (United States)

    Yang, Li; Zhao, Xin; Ran, Lingyu; Li, Chaofeng; Fan, Di; Luo, Keming

    2017-01-01

    Some R2R3 MYB transcription factors have been shown to be major regulators of phenylpropanoid biosynthetic pathway and impact secondary wall formation in plants. In this study, we describe the functional characterization of PtoMYB156, encoding a R2R3-MYB transcription factor, from Populus tomentosa. Expression pattern analysis showed that PtoMYB156 is widely expressed in all tissues examined, but predominantly in leaves and developing wood cells. PtoMYB156 localized to the nucleus and acted as a transcriptional repressor. Overexpression of PtoMYB156 in poplar repressed phenylpropanoid biosynthetic genes, leading to a reduction in the amounts of total phenolic and flavonoid compounds. Transgenic plants overexpressing PtoMYB156 also displayed a dramatic decrease in secondary wall thicknesses of xylem fibers and the content of cellulose, lignin and xylose compared with wild-type plants. Transcript accumulation of secondary wall biosynthetic genes was down-regulated by PtoMYB156 overexpression. Transcriptional activation assays revealed that PtoMYB156 was able to repress the promoter activities of poplar CESA17, C4H2 and GT43B. By contrast, knockout of PtoMYB156 by CRISPR/Cas9 in poplar resulted in ectopic deposition of lignin, xylan and cellulose during secondary cell wall formation. Taken together, these results show that PtoMYB156 may repress phenylpropanoid biosynthesis and negatively regulate secondary cell wall formation in poplar. PMID:28117379

  2. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes.

    Science.gov (United States)

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.

  3. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes

    OpenAIRE

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gen...

  4. The promoter structure differentiation of a MYB transcription factor RLC1 causes red leaf coloration in Empire Red Leaf Cotton under light.

    Directory of Open Access Journals (Sweden)

    Zhenrui Gao

    Full Text Available The red leaf coloration of Empire Red Leaf Cotton (ERLC (Gossypium hirsutum L., resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (Gossypium hirsutum L.. Introduction of R2R3-MYB transcription factor Rosea1, the master regulator anthocyanin biosynthesis in Antirrhinum majus, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor RLC1 (Red Leaf Cotton 1 which encodes the ortholog of PAP1/Rosea1 was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of RLC1 from ERLC and CCRI 24 in hairy roots of Antirrhinum majus and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of RLC1 promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced RLC1 expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.

  5. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms

    Directory of Open Access Journals (Sweden)

    Elena Baldoni

    2015-07-01

    Full Text Available Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L. Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed.

  6. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms.

    Science.gov (United States)

    Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora

    2015-07-13

    Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed.

  7. CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis

    Science.gov (United States)

    Wang, Yinjie; Sheng, Liping; Zhang, Huanru; Du, Xinping; An, Cong; Xia, Xiaolong; Chen, Fadi; Jiang, Jiafu; Chen, Sumei

    2017-01-01

    The gene encoding the MYB (v-myb avian myeloblastosis vira l oncogene homolog) transcription factor CmMYB19 was isolated from chrysanthemum. It encodes a 200 amino acid protein and belongs to the R2R3-MYB subfamily. CmMYB19 was not transcriptionally activated in yeast, while a transient expression experiment conducted in onion epidermal cells suggested that the CmMYB19 product localized to the nucleus. CmMYB19 transcription was induced by aphid (Macrosiphoniella sanborni) infestation, and the abundance of transcript was higher in the leaf and stem than in the root. The over-expression of CmMYB19 restricted the multiplication of the aphids. A comparison of transcript abundance of the major genes involved in lignin synthesis showed that CmPAL1 (phenylalanine ammonia lyase 1), CmC4H (cinnamate4 hydroxylase), Cm4CL1 (4-hydroxy cinnamoyl CoA ligase 1), CmHCT (hydroxycinnamoyl CoA-shikimate/quinate hydroxycinnamoyl transferase), CmC3H1 (coumarate3 hydroxylase1), CmCCoAOMT1 (caffeoyl CoA O-methyltransferase 1) and CmCCR1 (cinnamyl CoA reductase1) were all upregulated, in agreement with an increase in lignin content in CmMYB19 over-expressing plants. Collectively, the over-expression of CmMYB19 restricted the multiplication of the aphids on the host, mediated by an enhanced accumulation of lignin. PMID:28287502

  8. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins.

    Science.gov (United States)

    Punwani, Jayson A; Rabiger, David S; Drews, Gary N

    2007-08-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98-green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation.

  9. Molecular characterization of the Jatropha curcas JcR1MYB1 gene encoding a putative R1-MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Hui-Liang Li

    2014-09-01

    Full Text Available The cDNA encoding the R1-MYB transcription factor, designated as JcR1MYB1, was isolated from Jatropha curcas using rapid amplification of cDNA ends. JcR1MYB1 contains a 951 bp open reading frame that encodes 316 amino acids. The deduced JcR1MYB1 protein was predicted to possess the conserved, 56-amino acid-long DNA-binding domain, which consists of a single helix-turn-helix module and usually occurs in R1-MYBs. JcR1MYB1 is a member of the R1-MYB transcription factor subfamily. A subcellular localization study confirmed the nuclear localization of JcR1MYB1. Expression analysis showed that JcR1MYB1 transcripts accumulated in various examined tissues, with high expression levels in the root and low levels in the stem. JcR1MYB1 transcription was up-regulated by polyethylene glycol, NaCl, and cold treatments, as well as by abscisic acid, jasmonic acid, and ethylene treatment. Analysis of transgenic tobacco plants over-expressing JcR1MYB1 indicates an inportant function for this gene in salt stress.

  10. Large scale in silico identification of MYB family genes from wheat expressed sequence tags.

    Science.gov (United States)

    Cai, Hongsheng; Tian, Shan; Dong, Hansong

    2012-10-01

    The MYB proteins constitute one of the largest transcription factor families in plants. Much research has been performed to determine their structures, functions, and evolution, especially in the model plants, Arabidopsis, and rice. However, this transcription factor family has been much less studied in wheat (Triticum aestivum), for which no genome sequence is yet available. Despite this, expressed sequence tags are an important resource that permits opportunities for large scale gene identification. In this study, a total of 218 sequences from wheat were identified and confirmed to be putative MYB proteins, including 1RMYB, R2R3-type MYB, 3RMYB, and 4RMYB types. A total of 36 R2R3-type MYB genes with complete open reading frames were obtained. The putative orthologs were assigned in rice and Arabidopsis based on the phylogenetic tree. Tissue-specific expression pattern analyses confirmed the predicted orthologs, and this meant that gene information could be inferred from the Arabidopsis genes. Moreover, the motifs flanking the MYB domain were analyzed using the MEME web server. The distribution of motifs among wheat MYB proteins was investigated and this facilitated subfamily classification.

  11. Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Helene Persak

    2014-02-01

    Full Text Available In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance—the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.

  12. MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops.

    Science.gov (United States)

    Phan, Huy A; Li, Song F; Parish, Roger W

    2012-01-01

    The Arabidopsis AtMYB80 transcription factor (formerly AtMYB103) regulate genes essential for tapetal and pollen development. One of these genes, coding for an aspartic protease (UNDEAD), may control the timing of tapetal programmed cell death (PCD). In crop plants such as rice and wheat, abiotic stresses lead to abnormal tapetal development resulting in delayed PCD. Manipulation of AtMYB80 function has been used to develop a reversible male sterility system applicable to hybrid crop production. MYB80 homologs were cloned from wheat, rice, canola and cotton. The promoters of the homologs drove temporal and spatial expression patterns of the GUS reporter gene in the tapetum and microspores of Arabidopsis anthers identical to the AtMYB80 promoter. A short region is conserved in all five MYB80 promoters. The MYB80 homolog genes, driven by the AtMYB80 or their respective promoters, rescued the atmyb80 mutant, completely restoring male fertility. The canola MYB80 was fused to the EAR (ERF-associated amphiphilic repression) repressor and canola plants transgenic for the construct exhibited premature tapetal degradation and subsequent pollen abortion. The five MYB80 homologs all shared a 44 amino acid sequence immediately adjacent to the R2R3 domain which appears to be necessary for MYB80 function.

  13. Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans.

    Science.gov (United States)

    Xiang, Qijun; Judelson, Howard S

    2014-01-01

    Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision.

  14. Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans.

    Directory of Open Access Journals (Sweden)

    Qijun Xiang

    Full Text Available Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision.

  15. Genome-wide analysis of the MYB gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Zhou, Changpin; Chen, Yanbo; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2015-11-01

    The MYB proteins comprise one of the largest transcription factor families in plants, and play key roles in regulatory networks controlling development, metabolism, and stress responses. A total of 125 MYB genes (JcMYB) have been identified in the physic nut (Jatropha curcas L.) genome, including 120 2R-type MYB, 4 3R-MYB, and 1 4R-MYB genes. Based on exon-intron arrangement of MYBs from both lower (Physcomitrella patens) and higher (physic nut, Arabidopsis, and rice) plants, we can classify plant MYB genes into ten groups (MI-X), except for MIX genes which are nonexistent in higher plants. We also observed that MVIII genes may be one of the most ancient MYB types which consist of both R2R3- and 3R-MYB genes. Most MYB genes (76.8% in physic nut) belong to the MI group which can be divided into 34 subgroups. The JcMYB genes were nonrandomly distributed on its 11 linkage groups (LGs). The expansion of MYB genes across several subgroups was observed and resulted from genome triplication of ancient dicotyledons and from both ancient and recent tandem duplication events in the physic nut genome. The expression patterns of several MYB duplicates in the physic nut showed differences in four tissues (root, stem, leaf, and seed), and 34 MYB genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots based on the data analysis of digital gene expression tags. Overexpression of the JcMYB001 gene in Arabidopsis increased its sensitivity to drought and salinity stresses.

  16. PyMYB10 and PyMYB10.1 Interact with bHLH to Enhance Anthocyanin Accumulation in Pears.

    Directory of Open Access Journals (Sweden)

    Shouqian Feng

    Full Text Available Color is an important agronomic trait of pears, and the anthocyanin content of fruit is immensely significant for pear coloring. In this study, an anthocyanin-activating R2R3-MYB transcription factor gene, PyMYB10.1, was isolated from fruits of red sand pear (Pyrus pyrifolia cv. Aoguan. Alignments of the nucleotide and amino acid sequences suggested that PyMYB10.1 was involved in anthocyanin regulation. Similar to PyMYB10, PyMYB10.1 was predominantly expressed in red tissues, including the skin, leaf and flower, but it was minimally expressed in non-red fruit flesh. The expression of this gene could be induced by light. Dual-luciferase assays indicated that both PyMYB10 and PyMYB10.1 activated the AtDFR promoter. The activation of AtDFR increased to a greater extent when combined with a bHLH co-factor, such as PybHLH, MrbHLH1, MrbHLH2, or AtbHLH2. However, the response of this activation depended on the protein complex formed. PyMYB10-AtbHLH2 activated the AtDFR promoter to a greater extent than other combinations of proteins. PyMYB10-AtbHLH2 also induced the highest anthocyanin accumulation in tobacco transient-expression assays. Moreover, PybHLH interacted with PyMYB10 and PyMYB10.1. These results suggest that both PyMYB10 and PyMYB10.1 are positive anthocyanin biosynthesis regulators in pears that act via the formation of a ternary complex with PybHLH. The functional characterization of PyMYB10 and PyMYB10.1 will aid further understanding of the anthocyanin regulation in pears.

  17. Situational Awareness: Regulation of the Myb Transcription Factor in Differentiation, the Cell Cycle and Oncogenesis

    Energy Technology Data Exchange (ETDEWEB)

    George, Olivia L.; Ness, Scott A., E-mail: sness@salud.unm.edu [Department of Internal Medicine, Section of Molecular Medicine, University of New Mexico Health Sciences Center, MSC07 4025-CRF 121, 1 University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-02

    This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.

  18. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean.

    Science.gov (United States)

    Yi, Jinxin; Derynck, Michael R; Li, Xuyan; Telmer, Patrick; Marsolais, Frédéric; Dhaubhadel, Sangeeta

    2010-06-01

    Here we demonstrate that GmMYB176 regulates CHS8 expression and affects isoflavonoid synthesis in soybean. We previously established that CHS8 expression determines the isoflavonoid level in soybean seeds by comparing the transcript profiles of cultivars with different isoflavonoid contents. In the present study, a functional genomic approach was used to identify the factor that regulates CHS8 expression and isoflavonoid synthesis. Candidate genes were cloned, and co-transfection assays were performed in Arabidopsis leaf protoplasts. The results showed that GmMYB176 can trans-activate the CHS8 promoter with maximum activity. Transient expression of GmMYB176 in soybean embryo protoplasts increased endogenous CHS8 transcript levels up to 169-fold after 48 h. GmMYB176 encodes an R1 MYB protein, and is expressed in soybean seed during maturation. Furthermore, GmMYB176 recognizes a 23 bp motif containing a TAGT(T/A)(A/T) sequence within the CHS8 promoter. A subcellular localization study confirmed nuclear localization of GmMYB176. A predicted pST binding site for 14-3-3 protein is required for subcellular localization of GmMYB176. RNAi silencing of GmMYB176 in hairy roots resulted in reduced levels of isoflavonoids, showing that GmMYB176 is necessary for isoflavonoid biosynthesis. However, over-expression of GmMYB176 was not sufficient to increase CHS8 transcript and isoflavonoid levels in hairy roots. We conclude that an R1 MYB transcription factor, GmMYB176, regulates CHS8 expression and isoflavonoid synthesis in soybean.

  19. MYB98 Positively Regulates a Battery of Synergid-Expressed Genes Encoding Filiform Apparatus–Localized Proteins[W

    Science.gov (United States)

    Punwani, Jayson A.; Rabiger, David S.; Drews, Gary N.

    2007-01-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98–green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation. PMID:17693534

  20. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses.

    Science.gov (United States)

    Liu, Hongxia; Zhou, Xianyao; Dong, Na; Liu, Xin; Zhang, Huaiyu; Zhang, Zengyan

    2011-09-01

    MYB transcription factors play diverse roles in plant growth, developmental processes and stress responses. A full-length cDNA sequence of a MYB gene, namely TaPIMP1, was isolated from wheat (Triticum aestivum L.). The TaPIMP1 transcript level was significantly up-regulated by inoculation with a fungal pathogen Bipolaris sorokiniana and by drought treatment. TaPIMP1 encodes the MYB protein TaPIMP1 consisting of 323 amino acids. TaPIMP1 contains two MYB DNA binding domains (R2, R3), two putative nuclear localization sites and two putative transcription activation domains. TaPIMP1 is a new member of the R2R3-MYB transcription factor subfamily. Transient expression in onion epidermal cells of GFP fused with TaPIMP1 proved that subcellular localization of TaPIMP1 occurred in the nucleus. The TaPIMP1 gene was transferred into tobacco (Nicotiana tabacum L.) cultivar W38 by Agrobacterium-mediated transformation. After screening through PCR and RT-PCR analyses, transgenic tobacco lines expressing TaPIMP1 were identified and evaluated for pathogen resistance, and drought and salt tolerance. Compared to untransformed tobacco host plants, TaPIMP1 expressing plants displayed significantly enhanced resistance to Ralstonia solanacearum and exhibited improved tolerances to drought and salt stresses. In these transgenic lines, the activities of phenylalanine ammonia-lyase (PAL) and superoxide dismutase (SOD) were significantly increased relative to wild-type tobacco plants. The results suggested that the wheat R2R3-MYB transcription factor plays an important role in modulating responses to biotic and abiotic stresses.

  1. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Teresa eDocimo

    2016-01-01

    Full Text Available Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena fruits. Chlorogenic acid (CGA accounts for 70 to 90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena.Higher contents of CGA, Delphinidin 3-rutinoside and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group 6 MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties.In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation.Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9 resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of

  2. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Won-Chan; Han, Kyung-Hwan

    2009-11-01

    MYB46 functions as a transcriptional switch that turns on the genes necessary for secondary wall biosynthesis. Elucidating the transcriptional regulatory network immediately downstream of MYB46 is crucial to our understanding of the molecular and biochemical processes involved in the biosynthesis and deposition of secondary walls in plants. To gain insights into MYB46-mediated transcriptional regulation, we first established an inducible secondary wall thickening system in Arabidopsis by expressing MYB46 under the control of dexamethasone-inducible promoter. Then, we used an ATH1 GeneChip microarray and Illumina digital gene expression system to obtain a series of transcriptome profiles with regard to the induction of secondary wall development. These analyses allowed us to identify a group of transcription factors whose expression coincided with or preceded the induction of secondary wall biosynthetic genes. A transient transcriptional activation assay was used to confirm the hierarchical relationships among the transcription factors in the network. The in vivo assay showed that MYB46 transcriptionally activates downstream target transcription factors, three of which (AtC3H14, MYB52 and MYB63) were shown to be able to activate secondary wall biosynthesis genes. AtC3H14 activated the transcription of all of the secondary wall biosynthesis genes tested, suggesting that AtC3H14 may be another master regulator of secondary wall biosynthesis. The transcription factors identified here may include direct activators of secondary wall biosynthesis genes. The present study discovered novel hierarchical relationships among the transcription factors involved in the transcriptional regulation of secondary wall biosynthesis, and generated several testable hypotheses.

  3. Genome-wide classification and evolutionary and expression analyses of citrus MYB transcription factor families in sweet orange.

    Directory of Open Access Journals (Sweden)

    Xiao-Jin Hou

    Full Text Available MYB family genes are widely distributed in plants and comprise one of the largest transcription factors involved in various developmental processes and defense responses of plants. To date, few MYB genes and little expression profiling have been reported for citrus. Here, we describe and classify 177 members of the sweet orange MYB gene (CsMYB family in terms of their genomic gene structures and similarity to their putative Arabidopsis orthologs. According to these analyses, these CsMYBs were categorized into four groups (4R-MYB, 3R-MYB, 2R-MYB and 1R-MYB. Gene structure analysis revealed that 1R-MYB genes possess relatively more introns as compared with 2R-MYB genes. Investigation of their chromosomal localizations revealed that these CsMYBs are distributed across nine chromosomes. Sweet orange includes a relatively small number of MYB genes compared with the 198 members in Arabidopsis, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative studies of CsMYBs and Arabidopsis showed that CsMYBs had fewer gene duplication events. Expression analysis revealed that the MYB gene family has a wide expression profile in sweet orange development and plays important roles in development and stress responses. In addition, 337 new putative microsatellites with flanking sequences sufficient for primer design were also identified from the 177 CsMYBs. These results provide a useful reference for the selection of candidate MYB genes for cloning and further functional analysis forcitrus.

  4. Genome-wide classification and evolutionary and expression analyses of citrus MYB transcription factor families in sweet orange.

    Science.gov (United States)

    Hou, Xiao-Jin; Li, Si-Bei; Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi

    2014-01-01

    MYB family genes are widely distributed in plants and comprise one of the largest transcription factors involved in various developmental processes and defense responses of plants. To date, few MYB genes and little expression profiling have been reported for citrus. Here, we describe and classify 177 members of the sweet orange MYB gene (CsMYB) family in terms of their genomic gene structures and similarity to their putative Arabidopsis orthologs. According to these analyses, these CsMYBs were categorized into four groups (4R-MYB, 3R-MYB, 2R-MYB and 1R-MYB). Gene structure analysis revealed that 1R-MYB genes possess relatively more introns as compared with 2R-MYB genes. Investigation of their chromosomal localizations revealed that these CsMYBs are distributed across nine chromosomes. Sweet orange includes a relatively small number of MYB genes compared with the 198 members in Arabidopsis, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative studies of CsMYBs and Arabidopsis showed that CsMYBs had fewer gene duplication events. Expression analysis revealed that the MYB gene family has a wide expression profile in sweet orange development and plays important roles in development and stress responses. In addition, 337 new putative microsatellites with flanking sequences sufficient for primer design were also identified from the 177 CsMYBs. These results provide a useful reference for the selection of candidate MYB genes for cloning and further functional analysis forcitrus.

  5. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor).

    Science.gov (United States)

    Zhang, Bin; Hu, Zongli; Zhang, Yanjie; Li, Yali; Zhou, Shuang; Chen, Guoping

    2012-02-01

    The purple kale (Brassica Oleracea var. acephala f. tricolor) is a mutation in kales, giving the mutant phenotype of brilliant purple color in the interior. Total anthocyanin analysis showed that the amount of anthocyanins in the purple kale was up to 1.73 mg g(-1) while no anthocyanin was detected in the white kale. To elucidate the molecular mechanism of the anthocyanin biosynthesis in the purple kale, we analyzed the expression of structural genes and some transcription factors associated with anthocyanin biosynthesis in the purple cultivar "Red Dove" and the white cultivar "White Dove". The result showed that nearly all the anthocyanin biosynthetic genes showed higher expression levels in the purple cultivar than in the white cultivar, especially for DFR and ANS, they were barely detected in the white cultivar. Interestingly, the fact that a R2R3 MYB transcription factor named BoPAP1 was extremely up-regulated in the purple kale and induced by low temperature attracted our attention. Further sequence analysis showed that BoPAP1 shared high similarity with AtPAP1 and BoMYB1. In addition, the anthocyanin accumulation in the purple kale is strongly induced by the low temperature stress. The total anthocyanin contents in the purple kale under low temperature were about 50-fold higher than the plants grown in the greenhouse. The expression of anthocyanin biosynthetic genes C4H, F3H, DFR, ANS and UFGT were all enhanced under the low temperature. These evidences strongly suggest that BoPAP1 may play an important role in activating the anthocyanin structural genes for the abundant anthocyanin accumulation in the purple kale.

  6. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Science.gov (United States)

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  7. Isolation of a novel MYB transcription factor OsMyb1R from rice and ...

    African Journals Online (AJOL)

    Yomi

    2012-02-23

    Feb 23, 2012 ... sterilized with 0.1% HgCl2 for 10 min, water washing 3 times, seeds soaking was done for .... dividing point of OsMyb1R relative expression level was the same as .... tolerance to freezing, drought, and salt stress in transgenic.

  8. MYB Transcription Factors in Chinese Pear (Pyrus bretschneideri Rehd.: Genome-Wide Identification, Classification and Expression Profiling during Fruit Development

    Directory of Open Access Journals (Sweden)

    Yun Peng eCao

    2016-04-01

    Full Text Available The MYB family is one of the largest families of transcription factors in plants. Although some MYBs have been reported to play roles in secondary metabolism, no comprehensive study of the MYB family in Chinese pear (Pyrus bretschneideri Rehd. has been reported. In the present study, we performed genome-wide analysis of MYB genes in Chinese pear, designated as PbMYBs, including analyses of their phylogenic relationships, structures, chromosomal locations, promoter regions, GO annotations and collinearity. A total of 129 PbMYB genes were identified in the pear genome and were divided into 31 subgroups based on phylogenetic analysis. These PbMYBs were unevenly distributed among 16 chromosomes (total of 17 chromosomes. The occurrence of gene duplication events indicated that whole-genome duplication and segmental duplication likely played key roles in expansion of the PbMYB gene family. Ka/Ks analysis suggested that the duplicated PbMYBs mainly experienced purifying selection with restrictive functional divergence after the duplication events. Interspecies microsynteny analysis revealed maximum orthology between pear and peach, followed by plum and strawberry. Subsequently, the expression patterns of 20 PbMYB genes that may be involved in lignin biosynthesis according to their phylogenetic relationships were examined throughout fruit development. Among the twenty genes examined, PbMYB25 and PbMYB52 exhibited expression patterns consistent with the typical variations in the lignin content previously reported. Moreover, sub-cellular localization analysis revealed that two proteins PbMYB25 and PbMYB52 were localized to the nucleus. All together, PbMYB25 and PbMYB52 were inferred to be candidate genes involved in the regulation of lignin biosynthesis during the development of pear fruit. This study provides useful information for further functional analysis of the MYB gene family in pear.

  9. Coordination of seed dormancy and germination processes by MYB96.

    Science.gov (United States)

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    The transition between seed dormancy and germination is an important stage that initiates plant life cycle. Hormonal balances of abscisic acid (ABA) and gibberellin (GA) contribute to determining the proper timing to germinate. Here, we demonstrate that the R2R3-type MYB96 transcription factor, a key ABA signaling mediator, coordinates seed dormancy and germination processes through distinct downstream events. This transcription factor controls ABA-INSENSITIVE 4 (ABI4) expression to inhibit seed germination by suppressing breakdown of lipid reserves in embryo. In addition, it also induces seed dormancy by stimulating ABA biosynthesis in an ABI4-independent manner. We propose that MYB96 integrates a multitude of environmental stress signals and acts as a master regulator in the determination of timing for seed germination.

  10. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis.

    Science.gov (United States)

    Kasahara, Ryushiro D; Portereiko, Michael F; Sandaklie-Nikolova, Linda; Rabiger, David S; Drews, Gary N

    2005-11-01

    The synergid cells of the female gametophyte play a role in many steps of the angiosperm fertilization process, including guidance of pollen tube growth to the female gametophyte. However, the mechanisms by which the synergid cells become specified and develop their unique features during female gametophyte development are not understood. We identified MYB98 in a screen for Arabidopsis thaliana genes expressed in the female gametophyte. MYB98 is a member of the R2R3-MYB gene family, the members of which likely encode transcription factors. In the context of the ovule, MYB98 is expressed exclusively in the synergid cells, and mutations in this gene affect the female gametophyte specifically. myb98 female gametophytes are affected in two unique features of the synergid cell, pollen tube guidance and the filiform apparatus, but are otherwise normal. MYB98 also is expressed in trichomes and endosperm. Homozygous myb98 mutants exhibit no sporophytic defects, including trichome and endosperm defects. Together, these data suggest that MYB98 controls the development of specific features within the synergid cell during female gametophyte development.

  11. MYB98 Is Required for Pollen Tube Guidance and Synergid Cell Differentiation in ArabidopsisW⃞

    Science.gov (United States)

    Kasahara, Ryushiro D.; Portereiko, Michael F.; Sandaklie-Nikolova, Linda; Rabiger, David S.; Drews, Gary N.

    2005-01-01

    The synergid cells of the female gametophyte play a role in many steps of the angiosperm fertilization process, including guidance of pollen tube growth to the female gametophyte. However, the mechanisms by which the synergid cells become specified and develop their unique features during female gametophyte development are not understood. We identified MYB98 in a screen for Arabidopsis thaliana genes expressed in the female gametophyte. MYB98 is a member of the R2R3-MYB gene family, the members of which likely encode transcription factors. In the context of the ovule, MYB98 is expressed exclusively in the synergid cells, and mutations in this gene affect the female gametophyte specifically. myb98 female gametophytes are affected in two unique features of the synergid cell, pollen tube guidance and the filiform apparatus, but are otherwise normal. MYB98 also is expressed in trichomes and endosperm. Homozygous myb98 mutants exhibit no sporophytic defects, including trichome and endosperm defects. Together, these data suggest that MYB98 controls the development of specific features within the synergid cell during female gametophyte development. PMID:16214903

  12. Regulation of root hair cell differentiation by R3 MYB transcription factors in tomato and Arabidopsis.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Wada, Takuji

    2014-01-01

    CAPRICE (CPC) encodes a small protein with an R3 MYB motif and regulates root hair and trichome cell differentiation in Arabidopsis thaliana. Six additional CPC-like MYB proteins including TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), TRICHOMELESS1 (TCL1), and TRICHOMELESS2/CPC-LIKE MYB4 (TCL2/CPL4) also have the ability to regulate root hair and/or trichome cell differentiation in Arabidopsis. In this review, we describe our latest findings on how CPC-like MYB transcription factors regulate root hair cell differentiation. Recently, we identified the tomato SlTRY gene as an ortholog of the Arabidopsis TRY gene. Transgenic Arabidopsis plants harboring SlTRY produced more root hairs, a phenotype similar to that of 35S::CPC transgenic plants. CPC is also known to be involved in anthocyanin biosynthesis. Anthocyanin accumulation was repressed in the SlTRY transgenic plants, suggesting that SlTRY can also influence anthocyanin biosynthesis. We concluded that tomato and Arabidopsis partially use similar transcription factors for root hair cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant root-hair development.

  13. Root hair cell differentiation by tomato and Arabidopsis R3 MYB transcription factors

    Directory of Open Access Journals (Sweden)

    Rumi eTominaga-Wada

    2014-03-01

    Full Text Available CAPRICE (CPC encodes a small protein with an R3 MYB motif and regulates root hair and trichome cell differentiation in Arabidopsis thaliana. Six additional CPC-like MYB proteins including TRIPTYCHON (TRY, ENHANCER OF TRY AND CPC1 (ETC1, ENHANCER OF TRY AND CPC2 (ETC2, ENHANCER OF TRY AND CPC3/ CPC-LIKE MYB3 (ETC3/CPL3, TRICHOMELESS1 (TCL1 and TRICHOMELESS2/CPC-LIKE MYB4 (TCL2/CPL4 also have the ability to regulate root hair and/or trichome cell differentiation in Arabidopsis. In this review, we describe our latest findings on how CPC-like MYB transcription factors regulate root hair cell differentiation. Recently, we identified the tomato SlTRY gene as an ortholog of the Arabidopsis TRY gene. Transgenic Arabidopsis plants harboring SlTRY produced more root hairs, a phenotype similar to that of 35S::CPC transgenic plants. CPC is also known to be involved in anthocyanin biosynthesis. Anthocyanin accumulation was repressed in the SlTRY transgenic plants, suggesting that SlTRY can also influence anthocyanin biosynthesis. We concluded that tomato and Arabidopsis partially use similar transcription factors for root hair cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant root-hair development.

  14. Functional interactions between a glutamine synthetase promoter and MYB proteins.

    Science.gov (United States)

    Gómez-Maldonado, Josefa; Avila, Concepción; Torre, Fernando; Cañas, Rafael; Cánovas, Francisco M; Campbell, Malcolm M

    2004-08-01

    In Scots pine (Pinus sylvestris), ammonium assimilation is catalysed by glutamine synthetase (GS) [EC 6.3.1.2], which is encoded by two genes, PsGS1a and PsGS1b. PsGS1b is expressed in the vascular tissue throughout the plant body, where it is believed to play a role in recycling ammonium released by various facets of metabolism. The mechanisms that may underpin the transcriptional regulation of PsGS1b were explored. The PsGS1b promoter contains a region that is enriched in previously characterized cis-acting elements, known as AC elements. Pine nuclear proteins bound these AC element-rich regions in a tissue-specific manner. As previous experiments had shown that R2R3-MYB transcription factors could interact with AC elements, the capacity of the AC elements in the PsGS1b promoter to interact with MYB proteins was examined. Two MYB proteins from loblolly pine (Pinus taeda), PtMYB1 and PtMYB4, bound to the PsGS1b promoter were able to activate transcription from this promoter in yeast, arabidopsis and pine cells. Immunolocalization experiments revealed that the two MYB proteins were most abundant in cells previously shown to accumulate PsGS1b transcripts. Immunoprecipitation analysis and supershift electrophoretic mobility shift assays implicated these same two proteins in the formation of complexes between pine nuclear extracts and the PsGS1b promoter. Given that these MYB proteins were previously shown to have the capacity to activate gene expression related to lignin biosynthesis, we hypothesize that they may function to co-regulate lignification, a process that places significant demands on nitrogen recycling, and GS, the major enzyme involved in the nitrogen recycling pathway.

  15. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis1[OPEN

    Science.gov (United States)

    Yang, Huijun; Cai, Yuanheng; Kai, Guoyin

    2017-01-01

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis (Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberin but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature. PMID:27965303

  16. DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter

    Directory of Open Access Journals (Sweden)

    Cominelli Eleonora

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated that the Arabidopsis thaliana AtMYB60 protein is an R2R3MYB transcription factor required for stomatal opening. AtMYB60 is specifically expressed in guard cells and down-regulated at the transcriptional levels by the phytohormone ABA. Results To investigate the molecular mechanisms governing AtMYB60 expression, its promoter was dissected through deletion and mutagenesis analyses. By studying different versions of AtMYB60 promoter::GUS reporter fusions in transgenic plants we were able to demonstrate a modular organization for the AtMYB60 promoter. Particularly we defined: a minimal promoter sufficient to confer guard cell-specific activity to the reporter gene; the distinct roles of different DOF-binding sites organised in a cluster in the minimal promoter in determining guard cell-specific expression; the promoter regions responsible for the enhancement of activity in guard cells; a promoter region responsible for the negative transcriptional regulation by ABA. Moreover from the analysis of single and multiple mutants we could rule out the involvement of a group of DOF proteins, known as CDFs, already characterised for their involvement in flowering time, in the regulation of AtMYB60 expression. Conclusions These findings shed light on the regulation of gene expression in guard cells and provide new promoter modules as useful tools for manipulating gene expression in guard cells, both for physiological studies and future biotechnological applications.

  17. QsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber.

    Science.gov (United States)

    Almeida, Tânia; Pinto, Glória; Correia, Barbara; Santos, Conceição; Gonçalves, Sónia

    2013-12-01

    Cork oak is an economically important forest species showing a great tolerance to high temperatures and shortage of water. However, the mechanisms underlying this plasticity are still poorly understood. Among the stress regulators, transcription factors (TFs) are especially important since they can control a wide range of stress-inducible genes, which make them powerful targets for genetic engineering of stress tolerance. Here we evaluated the influence of increasing temperatures (up to 55 °C) or drought (18% field capacity, FC) on the expression profile of an R2R3-MYB transcription factor of cork oak, the QsMYB1. QsMYB1 was previously identified as being preferentially expressed in cork tissues and as having an associated alternative splicing mechanism, which results in two different transcripts (QsMYB1.1 and QsMYB1.2). Expression analysis by reverse transcription quantitative PCR (RT-qPCR) revealed that increasing temperatures led to a gradual down-regulation of QsMYB1 transcripts with more effect on QsMYB1.1 abundance. On the other hand, under drought condition, expression of QsMYB1 variants, mainly the QsMYB1.2, was transiently up-regulated shortly after the stress imposition. Recovery from each stress has also resulted in a differential response by both QsMYB1 transcripts. Several physiological and biochemical parameters (plant water status, chlorophyll fluorescence, lipid peroxidation and proline content) were determined in order to monitor the plant performance under stress and recovery. In conclusion, this report provides the first evidence that QsMYB1 TF may have a putative function in the regulatory network of cork oak response to heat and drought stresses and during plant recovery.

  18. Arabidopsis MYB68 in development and responses to environmental cues

    DEFF Research Database (Denmark)

    Feng, Caiping; Andreasson, E.; Maslak, A.

    2004-01-01

    The Arabidopsis MYB68 gene encodes a MYB family protein with N-terminal R2R3 DNA-binding domains. Analyses of MYB68 expression by RNA blot and a transposant gene-trap MYB68::GUS reporter indicated that MYB68 is expressed specifically in root pericycle cells. Root cultures of the myb68 mutant, cau......68 is involved in some step(s) in root development. The closest MYB68 homolog, MYB84, exhibited an overlapping expression pattern in pericycle cells, suggesting that their functions may be partly redundant....

  19. Identification and molecular characterization of MYB Transcription Factor Superfamily in C4 model plant foxtail millet (Setaria italica L..

    Directory of Open Access Journals (Sweden)

    Mehanathan Muthamilarasan

    Full Text Available MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L. is a model crop for investigating systems biology of millets and bioenergy grasses. Further, the crop is also known for its potential abiotic stress-tolerance. In this context, a comprehensive genome-wide survey was conducted and 209 MYB protein-encoding genes were identified in foxtail millet. All 209 S. italica MYB (SiMYB genes were physically mapped onto nine chromosomes of foxtail millet. Gene duplication study showed that segmental- and tandem-duplication have occurred in genome resulting in expansion of this gene family. The protein domain investigation classified SiMYB proteins into three classes according to number of MYB repeats present. The phylogenetic analysis categorized SiMYBs into ten groups (I-X. SiMYB-based comparative mapping revealed a maximum orthology between foxtail millet and sorghum, followed by maize, rice and Brachypodium. Heat map analysis showed tissue-specific expression pattern of predominant SiMYB genes. Expression profiling of candidate MYB genes against abiotic stresses and hormone treatments using qRT-PCR revealed specific and/or overlapping expression patterns of SiMYBs. Taken together, the present study provides a foundation for evolutionary and functional characterization of MYB TFs in foxtail millet to dissect their functions in response to environmental stimuli.

  20. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco.

    Science.gov (United States)

    Ganesan, G; Sankararamasubramanian, H M; Harikrishnan, M; Ganpudi, Ashwin; Ashwin, G; Parida, Ajay

    2012-07-01

    MYB transcription factor genes play important roles in developmental and various other processes in plants. In this study, functional characterization of AmMYB1, a single-repeat MYB transcription factor isolated from the salt-tolerant mangrove tree Avicennia marina is reported. AmMYB1 cDNA was 1046 bp in length with an open reading frame of 783 bp, encoding 260 amino acids. The corresponding gene had two introns and three exons and was present as a single copy in A. marina. The deduced amino acid sequence showed similarities to MYB proteins reported in other plants, including the conserved MYB binding domain. RNA gel blot analysis showed that the AmMYB1 transcript expression was more pronounced in green photosynthetic tissue and was strongly induced by stresses such as salt (500 mM), light (500 µE m(-2) s(-1)), and the exogenous application of ABA (100 µM). An analysis of the upstream sequence of AmMYB1 gene revealed the presence of regulatory elements identical to those present in the promoters of stress inducible genes. The promoter was responsive to NaCl and could enhance reporter gene expression in planta. An in vitro DNA binding assay using the promoter region (TGGTTAG) of the AtRD22 gene and a transactivation assay in yeast cells suggest the possibility of AmMYB1 protein regulating the expression of other genes during salt stress. Transgenic tobacco plants constitutively expressing the AmMYB1 transcription factor showed better tolerance to NaCl stress.

  1. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    Full Text Available We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum.

  2. 茄子花青素合成相关基因SmMYB的克隆与表达分析%Cloning and Expression Analysis of an Anthocyanin-related Transcription Factor Gene SmMYB in Eggplant

    Institute of Scientific and Technical Information of China (English)

    邵文婷; 刘杨; 韩洪强; 陈火英

    2013-01-01

    MYB gene's cDNA and gDNA sequences in full length were cloned from eggplant {Solarium melongenaL.) cultivars'YZ14'and'YZ3'using RT-PCR and RACE. Sequence analysis shows that the full length of cDNA is 1 035 bp long, and the open reading frame (ORF) is 837 bp long, encoding 278 amino acids. The protein ispelectric point is at pH8.47. The SmMYB protein contains two typical DNA-binding domains and has 71% homologies with anthocyanin biosynthesis-related R2R3-MYB transcription factor in capsicum. Furthermore, the protein is located mostly in the nucleus, in agreement with the regulatory function of MYB transcription factors. The corresponding gDNA is 3 834 bp in length, consisting of three exons and two introns. Fluorescence semi-quantitative PCR analysis indicates that SmMYB is expressed in all organs of the plant, including roots, stems, leaves, petals, and peels. However, the expression level of SmMYB is tissue-specific, and highly correlated with the concentration of anthocyanin in peel after shading treatment. Therefore, the SmMYB is speculated to be a MYB transcription factor gene, which positively regulates the biosynthesis of anthocyanin in eggplant.%以茄子(Solanum melongenaL.) ‘YZ14’ (紫茄)和‘YZ3’ (白茄)为试验材料,采用同源克隆与RACE (rapid amplification of cDNA ends)相结合的方法克隆了茄子MYB基因cDNA及gDNA全长序列,命名为SmMYB.序列分析结果表明:该基因cDNA全长1 035 bp,开放阅读框837 bp,编码278个氨基酸,与辣椒(Capsicum annuum L.)MYB转录因子氨基酸序列相似性达71%;成熟蛋白的等电点为8.47,具有2个典型的DNA-binding结构域且亚细胞定位于细胞核; gDNA全长3 834 bp,包含3个外显子及2个内含子.荧光半定量检测结果表明:SmMYB在茄子根、茎、叶、花瓣、果皮中均有表达,但表达水平具有组织特异性;遮光处理后紫色茄子果皮中该基因表达量变化与花青素合成量变化趋势相似.推测SmMYB为一个MYB转

  3. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in Chili pepper leaves

    Directory of Open Access Journals (Sweden)

    zhen ezhang

    2015-07-01

    Full Text Available The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3’5’H, DFR, ANS, UFGT, ANP and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

  4. Cloning, Expression, and Functional Analysis of GhMYB0 Gene from Cotton (Gossypium hirsumtum L.)%棉花GhMYB0基因的克隆、表达分析及功能鉴定

    Institute of Scientific and Technical Information of China (English)

    王诺菡; 喻树迅; 于霁雯; 吴嫚; 马启峰; 李兴丽; 裴文锋; 李海晶; 黄双领; 张金发

    2014-01-01

    MYB类转录因子是植物转录因子最大的家族之一,参与控制植物腺毛细胞的模式和形态建成。本研究利用雷蒙德氏棉(Gossypium raimondii) D5基因组数据库以 AtMYB0(GL1, NM_113708)蛋白为参比序列获得同源基因GrMYB0,从徐州142中克隆了陆地棉的GhMYB0,其开放阅读框长度为843 bp,编码280个氨基酸。经过保守结构域分析和亚细胞定位确定GhMYB0为R2R3-MYB转录因子。qRT-PCR的结果表明, GhMYB0在徐州142开花当天开始高调表达,开花后20 d表达量达高峰;在所有的组织器官中,花中表达量最高,其次为胚珠。转基因功能分析结果表明,在野生型拟南芥(Columbia)中过表达 GhMYB0,使其叶片表皮毛与野生型相比明显减少;该基因在拟南芥突变体 gl-1中过表达,能恢复表皮毛缺失型突变体的表型,说明该基因可能对拟南芥表皮毛的形态建成发挥一定作用,本试验为研究R2R3-MYB转录因子在棉纤维起始和伸长过程中的调控作用提供有力证据。%MYB transcription factor, one of the most important protein families in plants, is involved in the regulation of secon-dary metabolism, morphogenesis of plant, responding to environment stress and plant hormone. In this study, we used D5 genomic bank of Gossypium raimondii as the reference to AtMYB0 (GL1, NM_113708) protein, and cloned the full-length cDNA of a new MYB transcription factor gene GhMYB0 from cotton (Gossypium hirsutum L.). The open reading frame of GhMYB0 is 843 bp in length, which encodes 280 amino acid residues. GhMYB0 was confirmed as R2R3-MYB transcription factor via conserved struc-ture analysis and subcellular localization. The qRT-PCR result indicated that GhMYB0 was highly expressed at the blossom day, its expresssion amount reached the peak after 20 days, with the most amount in flower, then in ovules. Transgenic funtion analysis indicated that GhMYB0 over-expressed in Arabidopsis lines, showing fewer trichomes in leaf

  5. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey

    Directory of Open Access Journals (Sweden)

    Ling Yin

    2017-06-01

    Full Text Available Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28 was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey. Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate

  6. Regulation of a Myb transcription factor by cyclin-dependent kinase 2 in Giardia lamblia.

    Science.gov (United States)

    Cho, Chao-Cheng; Su, Li-Hsin; Huang, Yu-Chang; Pan, Yu-Jiao; Sun, Chin-Hung

    2012-02-03

    The protozoan Giardia lamblia parasitizes the human small intestine to cause diseases. It undergoes differentiation into infectious cysts by responding to intestinal stimulation. How the activated signal transduction pathways relate to encystation stimulation remain largely unknown. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately up-regulated by a Myb2 transcription factor. Because cell differentiation is linked to cell cycle regulation, we tried to understand the role of cell cycle regulators, cyclin-dependent kinases (Cdks), in encystation. We found that the recombinant Myb2 was phosphorylated by Cdk-associated complexes and the levels of phosphorylation increased significantly during encystation. We have identified a putative cdk gene (cdk2) by searching the Giardia genome database. Cdk2 was found to localize in the cytoplasm with higher expression during encystation. Interestingly, overexpression of Cdk2 resulted in a significant increase of the levels of cwp gene expression and cyst formation. In addition, the Cdk2-associated complexes can phosphorylate Myb2 and the levels of phosphorylation increased significantly during encystation. Mutations of important catalytic residues of Cdk2 resulted in a significant decrease of kinase activity and ability of inducing cyst formation. Addition of a Cdk inhibitor, purvalanol A, significantly decreased the Cdk2 kinase activity and the levels of cwp gene expression and cyst formation. Our results suggest that the Cdk2 pathway may be involved in phosphorylation of Myb2, leading to activation of the Myb2 function and up-regulation of cwp genes during encystation. The results provide insights into the use of Cdk inhibitory drugs in disruption of Giardia differentiation into cysts.

  7. c-Myb protein interacts with Rcd-1, a component of the CCR4 transcription mediator complex.

    Science.gov (United States)

    Haas, Martin; Siegert, Michaela; Schürmann, André; Sodeik, Beate; Wolfes, Heiner

    2004-06-29

    Transcriptional initiation of eukaryotic genes depends on the cooperative interaction of various transcription factors. Using the yeast two-hybrid assay, we have identified the murine Rcd-1 protein as a cofactor of the c-myb proto-oncogene product. Rcd-1 is evolutionarily conserved among many species, and moreover the yeast homologue CAF40 is part of the carbon catabolite repressor protein transcriptional mediator thought to be involved in the negative regulation of genes transcribed by RNA polymerase II. Rcd-1 is located mainly in the nucleus, and it interacts with c-Myb both in vitro and in vivo. The activation of the myeloid c-myb-specific mim-1 promoter is repressed by Rcd-1. Interestingly, rcd-1 is an erythropoietin regulated gene, which also represses the action of the AP-1 transcription factor on its target genes.

  8. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions

    Directory of Open Access Journals (Sweden)

    Kathy E Schwinn

    2014-11-01

    Full Text Available Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida] and Eustoma grandiflorum (lisianthus plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor (ROSEA1 that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related bHLH transcription factor transgene (LEAF COLOR, LC, which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1×35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment accumulation in the petal throat region, and the anthers changed from yellow to purple colour. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1×35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants.

  9. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit

    Science.gov (United States)

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription f...

  10. CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis

    Directory of Open Access Journals (Sweden)

    Yinjie Wang

    2017-03-01

    Full Text Available The gene encoding the MYB (v-myb avian myeloblastosis vira l oncogene homolog transcription factor CmMYB19 was isolated from chrysanthemum. It encodes a 200 amino acid protein and belongs to the R2R3-MYB subfamily. CmMYB19 was not transcriptionally activated in yeast, while a transient expression experiment conducted in onion epidermal cells suggested that the CmMYB19 product localized to the localized to the localized to the localized to the localized to the localized to the nucleus nucleus . CmMYB19 transcription was induced by aphid (Macrosiphoniella sanborni infestation, and the abundance of transcript was higher in the leaf and stem than in the root. The over-expression of CmMYB19 restricted the multiplication of the aphids. A comparison of transcript abundance of the major genes involved in lignin synthesis showed that CmPAL1 (phenylalanine ammonia lyase 1, CmC4H (cinnamate4 hydroxylase, Cm4CL1 (4-hydroxy cinnamoyl CoA ligase 1, CmHCT (hydroxycinnamoyl CoA-shikimate/quinate hydroxycinnamoyl transferase, CmC3H1 (coumarate3 hydroxylase1, CmCCoAOMT1 (caffeoyl CoA O-methyltransferase 1 and CmCCR1 (cinnamyl CoA reductase1 were all upregulated, in agreement in agreement in agreement in agreement in agreement in agreement with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content in CmMYB19 over-expressing plants plants plants. Collectively, the over-expression of CmMYB19 restricted the multiplication of the aphids on the host, mediated by an enhanced accumulation of lignin.

  11. Cloning and Expression of an Ogura Cytoplasmic Male Sterile (OguCMS)-related MYB Transcription Factor in Brassica oleracea var.capitata%甘蓝胞质雄性不育(OguCMS)相关的MYB转录因子BoMYB1的克隆与表达分析

    Institute of Scientific and Technical Information of China (English)

    张磊; 康宗利; 刘海霞; 康俊根

    2012-01-01

    Ogura cytoplasmic male sterile (OguCMS) is the most widely used male sterile type in cabbage breeding. MYB transcription factors play a key role in regulation of plant defense response and multiple development processes. In present experiment, a R2R3-MYB transcription factor which down regulated 10.3 times in cabbage (Brasska okracea var. capitata) OguCMS lines was cloned by SMART RACE strategy.The full-length cDNA of B0MYB1 was 1 141 bp, which contained a 196 bp long 5' untranslated region, a 246 bp long 3' untranslated region and a 699 bp long open reading frame (GenBank accession number: JN703995). It was localized in the nucleus by subcellular localization prediction. It was an anther preferentially expressed gene in cabbage, which reached its expression peak in the late development. It was induced by the regulation of plant hormones salicylic acid(SA) and jasmonate methyl (JA-ME), and consequently regulated the expression of anther development genes. The experimental results suggests that B0MYB1 may be one of the important genes which involved in OguCMS anther development.%萝卜胞质雄性不育(OguCMS)是目前甘蓝中应用较广的雄性不育类型,MYB转录因子具有调控植物防御应答反应和多个发育过程的作用.本实验以在甘蓝(Brassica oleracea var.capitata)OguCMS花药中下调10.3倍的EST序列为信息探针,结合电子克隆及RACE技术,得到一个与甘蓝OguCMS雄性不育相关的MYB转录因子全长cDNA,命名为BoMYB1(GenBank登录号:JN703995).经亚细胞定位预测,该基因定位于细胞核,全长1 141 bp,包含一个长度为196 bp的5’非翻译区、246 bp的3’非翻译区和一个699 bp的开放阅读框.该基因在花药中具表达优势,并在花药发育晚期出现表达高峰,受植物激素水杨酸(SA)和茉莉酸甲酯(JA-ME)的调控,诱导花药发育基因的表达.实验结果提示,BoMY B1可能是参与OguCMS花药发育的重要基因之一.

  12. Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis

    Science.gov (United States)

    Bi, Huihui; Luang, Sukanya; Li, Yuan; Bazanova, Natalia; Morran, Sarah; Song, Zhihong; Perera, M. Ann; Hrmova, Maria; Borisjuk, Nikolai; Lopato, Sergiy

    2016-01-01

    A plant cuticle forms a hydrophobic layer covering plant organs, and plays an important role in plant development and protection from environmental stresses. We examined epicuticular structure, composition, and a MYB-based regulatory network in two Australian wheat cultivars, RAC875 and Kukri, with contrasting cuticle appearance (glaucousness) and drought tolerance. Metabolomics and microscopic analyses of epicuticular waxes revealed that the content of β-diketones was the major compositional and structural difference between RAC875 and Kukri. The content of β-diketones remained the same while those of alkanes and primary alcohols were increased by drought in both cultivars, suggesting that the interplay of all components rather than a single one defines the difference in drought tolerance between cultivars. Six wheat genes encoding MYB transcription factors (TFs) were cloned; four of them were regulated in flag leaves of both cultivars by rapid dehydration and/or slowly developing cyclic drought. The involvement of selected MYB TFs in the regulation of cuticle biosynthesis was confirmed by a transient expression assay in wheat cell culture, using the promoters of wheat genes encoding cuticle biosynthesis-related enzymes and the SHINE1 (SHN1) TF. Two functional MYB-responsive elements, specifically recognized by TaMYB74 but not by other MYB TFs, were localized in the TdSHN1 promoter. Protein structural determinants underlying the binding specificity of TaMYB74 for functional DNA cis-elements were defined, using 3D protein molecular modelling. A scheme, linking drought-induced expression of the investigated TFs with downstream genes that participate in the synthesis of cuticle components, is proposed. PMID:27489236

  13. A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize.

    Science.gov (United States)

    Ibraheem, Farag; Gaffoor, Iffa; Tan, Qixian; Shyu, Chi-Ren; Chopra, Surinder

    2015-01-30

    Sorghum responds to the ingress of the fungal pathogen Colletotrichum sublineolum through the biosynthesis of 3-deoxyanthocyanidin phytoalexins at the site of primary infection. Biosynthesis of 3-deoxyanthocyanidins in sorghum requires a MYB transcription factor encoded by yellow seed1 (y1), an orthologue of the maize gene pericarp color1 (p1). Maize lines with a functional p1 and flavonoid structural genes do not produce foliar 3-deoxyanthocyanidins in response to fungal ingress. To perform a comparative metabolic analysis of sorghum and maize 3-deoxyanthocyanidin biosynthetic pathways, we developed transgenic maize lines expressing the sorghum y1 gene. In maize, the y1 transgene phenocopied p1-regulated pigment accumulation in the pericarp and cob glumes. LC-MS profiling of fungus-challenged Y1-maize leaves showed induction of 3-deoxyanthocyanidins, specifically luteolinidin. Y1-maize plants also induced constitutive and higher levels of flavonoids in leaves. In response to Colletotrichum graminicola, Y1-maize showed a resistance response.

  14. CMYB1 Encoding a MYB Transcriptional Activator Is Involved in Abiotic Stress and Circadian Rhythm in Rice

    Directory of Open Access Journals (Sweden)

    Min Duan

    2014-01-01

    Full Text Available Through analysis of cold-induced transcriptome, a novel gene encoding a putative MYB transcription factor was isolated and designated Cold induced MYB 1 (CMYB1. Tissue-specific gene expression analysis revealed that CMYB1 was highly expressed in rice stems and nodes. qRT-PCR assay indicated that CMYB1 was dramatically induced by cold stress (>100-folds and induced by exogenous ABA and osmotic stress. Interestingly, CMYB1 showed rhythmic expression profile in rice leaves at different developmental stages. Subcellular localization assay suggested that CMYB1-GFP (green fluorescent protein fusion protein was localized in the nuclei. Moreover, CMYB1 exhibited the transcriptional activation activity when transiently expressed in rice protoplast cells. Taken together, CMYB1 probably functions as a transcriptional activator in mediating stress and rhythm responsive gene expression in rice.

  15. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ming Zhan

    Full Text Available Embryonic stem cells (ESCs are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs, and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.

  16. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells.

    Science.gov (United States)

    Zhan, Ming; Riordon, Daniel R; Yan, Bin; Tarasova, Yelena S; Bruweleit, Sarah; Tarasov, Kirill V; Li, Ronald A; Wersto, Robert P; Boheler, Kenneth R

    2012-01-01

    Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.

  17. Regulation of root hair cell differentiation by R3 MYB transcription factors in tomato and Arabidopsis

    OpenAIRE

    Tominaga-Wada, Rumi; Wada, Takuji

    2014-01-01

    CAPRICE (CPC) encodes a small protein with an R3 MYB motif and regulates root hair and trichome cell differentiation in Arabidopsis thaliana. Six additional CPC-like MYB proteins including TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), TRICHOMELESS1 (TCL1), and TRICHOMELESS2/CPC-LIKE MYB4 (TCL2/CPL4) also have the ability to regulate root hair and/or trichome cell differentiation in Arabidopsis. In this r...

  18. The Woody-Preferential Gene EgMYB88 Regulates the Biosynthesis of Phenylpropanoid-Derived Compounds in Wood

    Science.gov (United States)

    Soler, Marçal; Plasencia, Anna; Lepikson-Neto, Jorge; Camargo, Eduardo L. O.; Dupas, Annabelle; Ladouce, Nathalie; Pesquet, Edouard; Mounet, Fabien; Larbat, Romain; Grima-Pettenati, Jacqueline

    2016-01-01

    Comparative phylogenetic analyses of the R2R3-MYB transcription factor family revealed that five subgroups were preferentially found in woody species and were totally absent from Brassicaceae and monocots (Soler et al., 2015). Here, we analyzed one of these subgroups (WPS-I) for which no gene had been yet characterized. Most Eucalyptus members of WPS-I are preferentially expressed in the vascular cambium, the secondary meristem responsible for tree radial growth. We focused on EgMYB88, which is the most specifically and highly expressed in vascular tissues, and showed that it behaves as a transcriptional activator in yeast. Then, we functionally characterized EgMYB88 in both transgenic Arabidopsis and poplar plants overexpressing either the native or the dominant repression form (fused to the Ethylene-responsive element binding factor-associated Amphiphilic Repression motif, EAR). The transgenic Arabidopsis lines had no phenotype whereas the poplar lines overexpressing EgMYB88 exhibited a substantial increase in the levels of the flavonoid catechin and of some salicinoid phenolic glycosides (salicortin, salireposide, and tremulacin), in agreement with the increase of the transcript levels of landmark biosynthetic genes. A change in the lignin structure (increase in the syringyl vs. guaiacyl, S/G ratio) was also observed. Poplar lines overexpressing the EgMYB88 dominant repression form did not show a strict opposite phenotype. The level of catechin was reduced, but the levels of the salicinoid phenolic glycosides and the S/G ratio remained unchanged. In addition, they showed a reduction in soluble oligolignols containing sinapyl p-hydroxybenzoate accompanied by a mild reduction of the insoluble lignin content. Altogether, these results suggest that EgMYB88, and more largely members of the WPS-I group, could control in cambium and in the first layers of differentiating xylem the biosynthesis of some phenylpropanoid-derived secondary metabolites including lignin. PMID

  19. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals.

    Science.gov (United States)

    Li, Chonghui; Qiu, Jian; Ding, Ling; Huang, Mingzhong; Huang, Surong; Yang, Guangsui; Yin, Junmei

    2017-03-01

    Dendrobium hybrids orchid are popular throughout the world. They have various floral color and pigmentation patterns that are mainly caused by anthocyanins. It is well established that anthocyanin biosynthesis is regulated by the interplay between MYB and bHLH transcription factors (TF) in most plants. In this study, we identified one R2R3-MYB gene, DhMYB2, and one bHLH gene, DhbHLH1, from a Dendrobium hybrid. Their expression profiles were related to anthocyanin pigmentation in Dendrobium petals. Transient over-expression of these two TF genes showed that both DhMYB2 and DhbHLH1 resulted in anthocyanin production in white petals. The interaction between the two TFs was observed in vitro. In different Dendrobium hybrids petals with various pigmentations, DhMYB2 and DhbHLH1 were co-expressed with DhDFR and DhANS, which are regarded as potential regulatory targets of the two TFs. In flowers with distinct purple lips but white or yellow petals/sepals, the expression of DhbHLH1 was only related to anthocyanin accumulation in the lips. Taken together, DhMYB2 interacted with DhbHLH1 to regulate anthocyanin production in Dendrobium hybrid petals. DhbHLH1 was also responsible for the distinct anthocyanin pigmentation in lip tissues. The functional characterization of DhMYB2 and DhbHLH1 will improve understanding of anthocyanin biosynthesis modulation in Dendrobium orchids. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development

    NARCIS (Netherlands)

    R. Stadhouders (Ralph); S. Thongjuea (Supat); C. Andrieu-Soler (Charlotte); R.-J.T.S. Palstra (Robert-Jan); J.C. Bryne; A. van den Heuvel (Anita); M. Stevens (Martijn); E. de Boer (Ernie); C. Kockx (Christel); A. Van Der Sloot (Antoine); M.C.G.N. van den hout (Mirjam); W.F.J. van IJcken (Wilfred); D. Eick (Dirk); B. Lenhard (Boris); F.G. Grosveld (Frank); E. Soler (Eric)

    2012-01-01

    textabstractThe key haematopoietic regulator Myb is essential for coordinating proliferation and differentiation. ChIP-Sequencing and Chromosome Conformation Capture (3C)-Sequencing were used to characterize the structural and protein-binding dynamics of the Myb locus during erythroid differentiatio

  1. An MYB Transcription Factor from Malus xiaojinensis Has a Potential Role in Iron Nutrition

    Institute of Scientific and Technical Information of China (English)

    Jie Shen; Xuefeng Xu; Tianzhong Li; Dongmei Cao; Zhenhai Han

    2008-01-01

    Regulation of iron uptake and use is critical for plant survival and growth. We isolated an MYB gene from Malus xiaojinensis named MxMYB1, which is induced under Fe-deficient conditions. Expression of MxMYB1 was upregulated by Fe starvation in the roots but not in leaves, suggesting that MxMYB1 might play a role in iron nutrition in roots. Transgenic Arabidopsis plants expressing MxMYB1 exhibited lower iron content as compared with wild type plants under both Fe-normal (40 Μm) and Fe-deflcient conditions (Fe omitted and Ferrozine 300 Μm). However, the contents of Cu, Zn and Mn were not changed in these transgenic plants. Gene chip and real-time polymerase chain reaction analyses indicated that the expression of two Fe-related genes encoding an iron transporter AtIRT1 and an iron storage protein ferritin AtFER1 might be negatively regulated by MxMYB1 as the expression levels of these genes were lower in MxMYB1 expressing transgenic Arabidopsls plants as compared with wild type plants under both Fe-normal and Fe-deficient conditions. These results suggest that MxMYB1 may function as a negative regulator of iron uptake and storage In plants.

  2. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula

    OpenAIRE

    2012-01-01

    MtPAR (Medicago truncatula proanthocyanidin regulator) is an MYB family transcription factor that functions as a key regulator of proanthocyanidin (PA) biosynthesis in the model legume Medicago truncatula. MtPAR expression is confined to the seed coat, the site of PA accumulation. Loss-of-function par mutants contained substantially less PA in the seed coat than the wild type, whereas levels of anthocyanin and other specialized metabolites were normal in the mutants. In contrast, massive accu...

  3. Engineering phenolics metabolism in the grasses using transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Grotewold, Erich [The Ohio State University

    2013-07-26

    The economical competitiveness of agriculture-derived biofuels can be significantly enhanced by increasing biomass/acre yields and by furnishing the desired carbon balance for facilitating liquid fuel production (e.g., ethanol) or for high-energy solid waste availability to be used as biopower (e.g., for electricity production). Biomass production and carbon balance are tightly linked to the biosynthesis of phenolic compounds, which are found in crops and in agricultural residues either as lignins, as part of the cell wall, or as soluble phenolics which play a variety of functions in the biology of plants. The grasses, in particular maize, provide the single major source of agricultural biomass, offering significant opportunities for increasing renewable fuel production. Our laboratory has pioneered the use of transcription factors for manipulating plant metabolic pathways, an approach that will be applied here towards altering the composition of phenolic compounds in maize. Previously, we identified a small group of ten maize R2R3-MYB transcription factors with all the characteristics of regulators of different aspects of phenolic biosynthesis. Here, we propose to investigate the participation of these R2R3-MYB factors in the regulation of soluble and insoluble maize phenolics, using a combination of over-expression and down-regulation of these transcription factors in transgenic maize cultured cells and in maize plants. Maize cells and plants altered in the activity of these regulatory proteins will be analyzed for phenolic composition by targeted metabolic profiling. Specifically, we will I) Investigate the effect of gain- and loss-of-function of a select group of R2R3-MYB transcription factors on the phenolic composition of maize plants and II) Identify the biosynthetic genes regulated by each of the selected R2R3-MYB factors. While a likely outcome of these studies are transgenic maize plants with altered phenolic composition, this research will significantly

  4. 两个大豆MYB转录因子在原核细胞中的高效表达%High Expression of Two Soybean MYB Transcription Factor in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    李晓薇; 苏连泰; 赵旭; 翟莹; 张海军; 张庆林; 李景文; 王庆钰

    2011-01-01

    大豆(Glycine max)GmMYB12a与GmMYB12B2基因属于典型的植物R2R3-MYB转录因子.为进一步研究两个MYB12转录因子与相应顺式作用元件的相互作用,构建了两基因的原核表达载体,并在大肠杆菌Rosetta(DE3)中实现高效表达.利用PCR技术,将两端带有特异酶切位点的GmMYB12a与GrnMYB12B2全长基因亚克隆于原核表达载体pET-28a(+),酶切、测序鉴定确认获得两基因的重组原核表达载体pET-28a-GmMYB12a与pET-28a-GmMYB1 2B2.然后把重组载体转化到大肠杆菌Rosetta(DE3)中,经IPTG诱导蛋白表达,提取细胞蛋白并采用SDS-PAGE检测目的蛋白的表达情况.结果表明,成功构建了两基因的原核表达载体,在IPTG浓度为1.2 mmol/L,诱导6h后,目的蛋白能在Rosetta(DE3)中高效表达.

  5. A Sorghum MYB Transcription Factor Induces 3-Deoxyanthocyanidins and Enhances Resistance against Leaf Blights in Maize

    Directory of Open Access Journals (Sweden)

    Farag Ibraheem

    2015-01-01

    Full Text Available Sorghum responds to the ingress of the fungal pathogen Colletotrichum sublineolum through the biosynthesis of 3-deoxyanthocyanidin phytoalexins at the site of primary infection. Biosynthesis of 3-deoxyanthocyanidins in sorghum requires a MYB transcription factor encoded by yellow seed1 (y1, an orthologue of the maize gene pericarp color1 (p1. Maize lines with a functional p1 and flavonoid structural genes do not produce foliar 3-deoxyanthocyanidins in response to fungal ingress. To perform a comparative metabolic analysis of sorghum and maize 3-deoxyanthocyanidin biosynthetic pathways, we developed transgenic maize lines expressing the sorghum y1 gene. In maize, the y1 transgene phenocopied p1-regulated pigment accumulation in the pericarp and cob glumes. LC-MS profiling of fungus-challenged Y1-maize leaves showed induction of 3-deoxyanthocyanidins, specifically luteolinidin. Y1-maize plants also induced constitutive and higher levels of flavonoids in leaves. In response to Colletotrichum graminicola, Y1-maize showed a resistance response.

  6. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor.

    Science.gov (United States)

    Fernandez-Moreno, Josefina-Patricia; Tzfadia, Oren; Forment, Javier; Presa, Silvia; Rogachev, Ilana; Meir, Sagit; Orzaez, Diego; Aharoni, Aspah; Granell, Antonio

    2016-07-01

    The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation.

  7. CPC,a Single-Repeat R3 MYB,Is a Negative Regulator of Anthocyanin Biosynthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Hui-Fen Zhu; Karen Fitzsimmons; Abha Khandelwal; Robert G.Kranz

    2009-01-01

    Single-repeat R3 MYB transcription factors like CPC (CAPRICE) are known to play roles in developmental processes such as root hair differentiation and trichome initiation.However,none of the six Arabidopsis single-repeat R3 MYB members has been reported to regulate flavonoid biosynthesis.We show here that CPC is a negative regulator of anthocyanin biosynthesis.In the process of using CPC to test GAL4-dependent driver lines,we observed a repression of anthocyanin synthesis upon GAL4-mediated CPC overexpression,We demonstrated that this is not due to an increase in nutrient uptake because of more root hairs.Rather,CPC expression level tightly controls anthocyanin accumulation.Microarray analysis on the whole genome showed that,of 37 000 features tested,85 genes are repressed greater than three-fold by CPC overexpression.Of these 85,seven are late anthocyanin biosynthesis genes.Also,anthocyanin synthesis genes were shown to be down-regulated in 35S::CPC overexpression plants.Transient expression results suggest that CPC competes with the R2R3-MYB transcription factor PAP1/2,which is an activator of anthocyanin biosynthesis genes.This report adds anthocyanin biosynthesis to the set of programs that are under CPC control,indicating that this regulator is not only for developmental programs (e.g.root hairs,trichomes),but can influence anthocyanin pigment synthesis.

  8. The red sport of 'Zaosu' pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter.

    Science.gov (United States)

    Qian, Minjie; Sun, Yongwang; Allan, Andrew C; Teng, Yuanwen; Zhang, Dong

    2014-11-01

    'Zaosu' pear, a hybrid of Pyrus pyrifolia and Pyrus communis, is a popular cultivar developed in China. 'Zaosu Red' is a bud sport of 'Zaosu' with red shoots, young leaves, and fruit. After grafting of 'Zaosu Red', reverse mutations in some branches lead to a loss of colour in leaves and stems. Also, the mature fruit of 'Zaosu Red' exhibits two phenotypes; fully red and striped. The aim of this study was to establish the mechanism of the red colour mutation in 'Zaosu' and the striped pigmentation pattern in fruit of 'Zaosu Red'. The accumulation of anthocyanins and transcript levels of the genes PpUFGT2 and PyMYB10 were highly correlated. The open reading frames (ORF) and promoter regions of these two key genes were cloned and compared between 'Zaosu' and its bud sports, but no sequence differences were found. The R2R3 MYB, PyMYB10, can activate expression of genes encoding enzymes of the anthocyanin biosynthetic pathway. A yeast one-hybrid assay showed that PyMYB10 was associated with the -658 to -172bp fragment of the PpUFGT2 promoter, probably via a MYB binding site (MBS) located at -466bp. The PyMYB10 promoter had lower methylation levels in anthocyanin-rich tissues, indicating that the red bud sport of 'Zaosu' pear and the striped pigmentation pattern of 'Zaosu Red' pear are associated with demethylation of the PyMYB10 promoter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela N; Payne, Mark J; Guiltinan, Mark J

    2015-06-25

    The flavan-3-ols catechin and epicatechin, and their polymerized oligomers, the proanthocyanidins (PAs, also called condensed tannins), accumulate to levels of up to 15 % of the total weight of dry seeds of Theobroma cacao L. These compounds have been associated with several health benefits in humans. They also play important roles in pest and disease defense throughout the plant. In Arabidopsis, the R2R3 type MYB transcription factor TT2 regulates the major genes leading to the synthesis of PA. To explore the transcriptional regulation of the PA synthesis pathway in cacao, we isolated and characterized an R2R3 type MYB transcription factor MYBPA from cacao. We examined the spatial and temporal gene expression patterns of the Tc-MYBPA gene and found it to be developmentally expressed in a manner consistent with its involvement in PAs and anthocyanin synthesis. Functional complementation of an Arabidopsis tt2 mutant with Tc-MYBPA suggested that it can functionally substitute the Arabidopsis TT2 gene. Interestingly, in addition to PA accumulation in seeds of the Tc-MYBPA expressing plants, we also observed an obvious increase of anthocyanidin accumulation in hypocotyls. We observed that overexpression of the Tc-MYBPA gene resulted in increased expression of several key genes encoding the major structural enzymes of the PA and anthocyanidin pathway, including DFR (dihydroflavanol reductase), LDOX (leucoanthocyanidin dioxygenase) and BAN (ANR, anthocyanidin reductase). We conclude that the Tc-MYBPA gene that encodes an R2R3 type MYB transcription factor is an Arabidopsis TT2 like transcription factor, and may be involved in the regulation of both anthocyanin and PA synthesis in cacao. This research may provide molecular tools for breeding of cacao varieties with improved disease resistance and enhanced flavonoid profiles for nutritional and pharmaceutical applications.

  10. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation

    Directory of Open Access Journals (Sweden)

    Biao eLai

    2016-02-01

    Full Text Available Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2 and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, And this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

  11. Signal transduction triggered by iron to induce the nuclear importation of a Myb3 transcription factor in the parasitic protozoan Trichomonas vaginalis.

    Science.gov (United States)

    Hsu, Hong-Ming; Lee, Yu; Hsu, Pang-Hung; Liu, Hsing-Wei; Chu, Chien-Hsin; Chou, Ya-Wen; Chen, Yet-Ran; Chen, Shu-Hui; Tai, Jung-Hsiang

    2014-10-17

    Iron was previously shown to induce rapid nuclear translocation of a Myb3 transcription factor in the protozoan parasite, Trichomonas vaginalis. In the present study, iron was found to induce a transient increase in cellular cAMP, followed by the nuclear influx of Myb3, whereas the latter was also induced by 8-bromo-cyclic AMP. Iron-inducible cAMP production and nuclear influx of Myb3 were inhibited by suramin and SQ22536, respective inhibitors of the Gα subunit of heterotrimeric G proteins and adenylyl cyclases. In contrast, the nuclear influx of Myb3 induced by iron or 8-bromo-cAMP was delayed or inhibited, respectively, by H89, the inhibitor of protein kinase A. Using liquid chromatography-coupled tandem mass spectrometry, Thr(156) and Lys(143) in Myb3 were found to be phosphorylated and ubiquitinated, respectively. These modifications were induced by iron and inhibited by H89, as shown by immunoprecipitation-coupled Western blotting. Iron-inducible ubiquitination and nuclear influx were aborted in T156A and K143R, but T156D was constitutively ubiquitinated and persistently localized to the nucleus. Myb3 was phosphorylated in vitro by the catalytic subunit of a T. vaginalis protein kinase A, TvPKAc. A transient interaction between TvPKAc and Myb3 and the phosphorylation of both proteins were induced in the parasite shortly after iron or 8-bromo-cAMP treatment. Together, these observations suggest that iron may induce production of cAMP and activation of TvPKAc, which then induces the phosphorylation of Myb3 and subsequent ubiquitination for accelerated nuclear influx. It is conceivable that iron probably exerts a much broader impact on the physiology of the parasite than previously thought to encounter environmental changes.

  12. Regulation of nuclear translocation of the Myb1 transcription factor by TvCyclophilin 1 in the protozoan parasite Trichomonas vaginalis.

    Science.gov (United States)

    Hsu, Hong-Ming; Chu, Chien-Hsin; Wang, Ya-Ting; Lee, Yu; Wei, Shu-Yi; Liu, Hsing-Wei; Ong, Shiou-Jeng; Chen, Chinpan; Tai, Jung-Hsiang

    2014-07-01

    In Trichomonas vaginalis, a Myb1 protein was previously demonstrated to repress transcription of an iron-inducible ap65-1 gene. In this study, a human cyclophilin A homologue, TvCyclophilin 1 (TvCyP1), was identified as a Myb1-binding protein using a bacterial two-hybrid library screening system. The recombinant TvCyP1 exhibited typical peptidyl-prolyl isomerase activity with kcat/Km of ∼7.1 μm(-1) s(-1). In a pulldown assay, the His-tagged Myb1 interacted with a GST-TvCyP1 fusion protein, which had an enzymatic proficiency half that of recombinant TvCyP1. Both the enzymatic proficiency of GST-TvCyP1 and its binding to His-Myb1 were eliminated by mutation of Arg(63) in the catalytic motif or inhibited by cyclosporin A. TvCyP1 was primarily localized to the hydrogenosomes by immunofluorescence assay, but it was also co-purified with Myb1 in certain vesicle fractions from differential and gradient centrifugations. Transgenic cells overexpressing HA-TvCyP1 had a higher level of nuclear Myb1 but a much lower level of Myb1 associated with the vesicles than control and those overexpressing HA-TvCyP1(R63A). Myb1 was detected at a much higher level in the HA-TvCyP1 protein complex than in the HA-TvCyP1(R63A) protein complex immunoprecipitated from P15 and P100, but not S100, fractions of postnuclear lysates. A TvCyP1-binding motif, (105)YGPKWNK(111), was identified in Myb1 in which Gly(106) and Pro(107) were essential for its binding to TvCyP1. Mutation of Gly(106) and Pro(107), respectively, in HA-Myb1 resulted in cytoplasmic retention and elevated nuclear translocation of the overexpressed protein. These results suggest that TvCyP1 may induce the release of Myb1 that is restrained to certain cytoplasmic vesicles prior to its nuclear translocation.

  13. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color.

    Science.gov (United States)

    Ballester, Ana-Rosa; Molthoff, Jos; de Vos, Ric; Hekkert, Bas te Lintel; Orzaez, Diego; Fernández-Moreno, Josefina-Patricia; Tripodi, Pasquale; Grandillo, Silvana; Martin, Cathie; Heldens, Jos; Ykema, Marieke; Granell, Antonio; Bovy, Arnaud

    2010-01-01

    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines had a homozygous S. chmielewskii introgression on the short arm of chromosome 1, consistent with the position of the y (yellow) mutation known to result in colorless epidermis, and hence pink-colored fruit, when combined with a red flesh. Metabolic analysis showed that pink fruit lack the ripening-dependent accumulation of the yellow-colored flavonoid naringenin chalcone in the fruit peel, while carotenoid levels are not affected. The expression of all genes encoding biosynthetic enzymes involved in the production of the flavonol rutin from naringenin chalcone was down-regulated in pink fruit, suggesting that the candidate gene underlying the pink phenotype encodes a regulatory protein such as a transcription factor rather than a biosynthetic enzyme. Of 26 MYB and basic helix-loop-helix transcription factors putatively involved in regulating transcription of genes in the phenylpropanoid and/or flavonoid pathway, only the expression level of the MYB12 gene correlated well with the decrease in the expression of structural flavonoid genes in peel samples of pink- and red-fruited genotypes during ripening. Genetic mapping and segregation analysis showed that MYB12 is located on chromosome 1 and segregates perfectly with the characteristic pink fruit color. Virus-induced gene silencing of SlMYB12 resulted in a decrease in the accumulation of naringenin chalcone, a phenotype consistent with the pink-colored tomato fruit of IL1b. In conclusion, biochemical and molecular data, gene mapping, segregation analysis, and virus-induced gene silencing experiments demonstrate that the MYB12 transcription factor plays an important role in regulating the flavonoid pathway in tomato fruit

  14. (1R,2R,3R,4R,5S-2,3-Bis[(2S′-2-acetoxy-2-phenylacetoxy]-4-azido-1-[(2,4-dinitrophenylhydrazonomethyl]bicyclo[3.1.0]hexane

    Directory of Open Access Journals (Sweden)

    Robert McDonald

    2008-02-01

    Full Text Available In the title compound, C38H29N7O12, the five-membered ring adopts an envelope conformation in which the `flap' is cis to the cyclopropane group. This conformation is similar to those of other bicyclo[3.1.0]hexane analogues for which crystal structures have been reported. The absolute configuration of the stereogenic centers on the cyclopentane ring, as determined by comparison with the known configurations of the stereogenic centers in the (2S-2-acetoxy-2-phenylacetoxy groups, is 1(R, 2(R, 3(R, 4(R and 5(S. An intramolecular N—H...O hydrogen bond is present.

  15. A functional interaction of E7 with B-Myb-MuvB complex promotes acute cooperative transcriptional activation of both S- and M-phase genes. (129 c).

    Science.gov (United States)

    Pang, C L; Toh, S Y; He, P; Teissier, S; Ben Khalifa, Y; Xue, Y; Thierry, F

    2014-07-31

    High-risk human papillomaviruses are causative agents of cervical cancer. Viral protein E7 is required to establish and maintain the pro-oncogenic phenotype in infected cells, but the molecular mechanisms by which E7 promotes carcinogenesis are only partially understood. Our transcriptome analyses in primary human fibroblasts transduced with the viral protein revealed that E7 activates a group of mitotic genes via the activator B-Myb-MuvB complex. We show that E7 interacts with the B-Myb, FoxM1 and LIN9 components of this activator complex, leading to cooperative transcriptional activation of mitotic genes in primary cells and E7 recruitment to the corresponding promoters. E7 interaction with LIN9 and FoxM1 depended on the LXCXE motif, which is also required for pocket protein interaction and degradation. Using E7 mutants for the degradation of pocket proteins but intact for the LXCXE motif, we demonstrate that E7 functional interaction with the B-Myb-MuvB complex and pocket protein degradation are two discrete functions of the viral protein that cooperate to promote acute transcriptional activation of mitotic genes. Transcriptional level of E7 in patient's cervical lesions at different stages of progression was shown to correlate with those of B-Myb and FoxM1 as well as other mitotic gene transcripts, thereby linking E7 with cellular proliferation and progression in cervical cancer in vivo. E7 thus can directly activate the transcriptional levels of cell cycle genes independently of pocket protein stability.

  16. 中国野生种葡萄mybA转录因子SNP特征分析%Characterization of SNP Associated with mybA Transcription Factor in Chinese Wild Grapes

    Institute of Scientific and Technical Information of China (English)

    焦健; 刘崇怀; 樊秀彩; 张颖; 孙海生; 姜建福; 李民

    2013-01-01

    The transcription factor corresponding to the mybA that regulates anthocyanin biosynthesis was cloned and analyzed on a sample of 14 Chinese wild grapes species.Two complete mybA-related gene sequences,VvmybA1 and VlmybA2 were obtained,and a total of 121 SNPs were detected in the sequenced fragments which give a high level of polymorphism.Three neutrality tests had been used to compare the patterns of sequence variations,the result indicates a non departure from neutrality expectations for gene VvmybA1 and VlmybA2 of Chinese wild grape which reflected equilibrium between genetic drift and selectively neutral mutation.The mybA gene acquired form different wild accessions represented a highly homology.Yet extensive base deletion,insertion and substitution existed in promotor region,intron region and the third coding exon,which exhibited rich genetic diversity between species of Chinese wild grapes.Furthermore,there were several unique bases or mutations in the mybA gene of wild grapes that might be selected to be the molecular marker to distinguish themselves from others well.Comparing and analysising the gene structure and phylogenetic tree of the gene sequence,the studied Chinese wild grape species were divided into five groups.Moreover,V.betulifolia and V.hancockii were initially predicted to be primitive in the evolution.%以中国野生葡萄14个种为材料,对控制花色苷合成的mybA转录因子进行克隆和序列分析,获得VvmybA1和VlmybA2两个转录因子的全长基因序列,共检测到121个SNP,表现出丰富的遗传多样性.3种中性检测方法比较序列变异模式,结果表明,中国野生种葡萄VvmybA1和VlmybA2基因没有偏离中性模型,反映出基因漂移和选择性中性突变之间的平衡.不同野生种材料的mybA基因结构存在很高的同源相似性.但是在启动子区、内含子区以及第3个外显子区存在不同程度碱基的缺失、插入和替换,而且野生种葡萄mybA基因存在一些特

  17. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.

    Science.gov (United States)

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng

    2015-04-01

    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors.

  18. Cloning and sequence analysis of nine novel MYB genes in Taxodiaceae plants

    Institute of Scientific and Technical Information of China (English)

    Yong-quan LU; Qing JIA; Zai-kang TONG

    2014-01-01

    Myeloblastosis (MYB) is one of the largest transcribed factor families in plants. To gain an overall picture of the evolution of MYB genes in relict plants, we cloned nine novel MYB genes in Taxodiaceae plants (Taxodium distichum, Taxodium ascendens, Cryptomeria japonica var. Sinensis, Cryptomeria japonica cv. Araucarioides, Cryptomer Ja-ponica, Metasequoia glyptostroboides, Cunninghamia lanceolata, Tai-wania cryptomerioides and Glyptostrobus pensilis). The deduced amino acid sequences for MYBs showed that the nine MYB proteins contained two DNA binding domains. The first domain is from amino acid position 29 to 78, wherein three tryptophanes at 33, 53 and 73 were separated by 19 amino acids, respectively. The second domain is from amino acid position 82 to 127, wherein three tryptophanes at 86, 105 and 124 were separated by 18 amino acids, respectively, whereas the first tryptophane at amino acid position 86 is replaced by a phenylalanine. The characteri-zation of these conserved domains at nine MYBs indicated that they all belong to the R2R3-MYB group. The secondary structure analysis showed that α-helix and β-turn are the major motifs of the predicted secondary structure of MYBs. The three dimensional model of each MYB protein showed that the structure is like clip, making it more flexi-ble and mobile. The similarities between the nine MYB proteins in Taxodiaceae were calculated. The highest identical value of 99% is be-tween CjsMYB, CjMYB and CjaMYB, whereas the lowest value of 82%is between TaMYB and ClMYB. According to the phylogenetic tree, the distances between different genera were relatively large whereas those within genera were relatively small. As expected, accessions of the same genus formed a subgroup before being grouped with other genera.

  19. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula.

    Science.gov (United States)

    Verdier, Jerome; Zhao, Jian; Torres-Jerez, Ivone; Ge, Shujun; Liu, Chenggang; He, Xianzhi; Mysore, Kirankumar S; Dixon, Richard A; Udvardi, Michael K

    2012-01-31

    MtPAR (Medicago truncatula proanthocyanidin regulator) is an MYB family transcription factor that functions as a key regulator of proanthocyanidin (PA) biosynthesis in the model legume Medicago truncatula. MtPAR expression is confined to the seed coat, the site of PA accumulation. Loss-of-function par mutants contained substantially less PA in the seed coat than the wild type, whereas levels of anthocyanin and other specialized metabolites were normal in the mutants. In contrast, massive accumulation of PAs occurred when MtPAR was expressed ectopically in transformed hairy roots of Medicago. Transcriptome analysis of par mutants and MtPAR-expressing hairy roots, coupled with yeast one-hybrid analysis, revealed that MtPAR positively regulates genes encoding enzymes of the flavonoid-PA pathway via a probable activation of WD40-1. Expression of MtPAR in the forage legume alfalfa (Medicago sativa) resulted in detectable levels of PA in shoots, highlighting the potential of this gene for biotechnological strategies to increase PAs in forage legumes for reduction of pasture bloat in ruminant animals.

  20. The over-expression of two transcription factors, ABS5/bHLH30 and ABS7/MYB101, leads to upwardly curly leaves.

    Directory of Open Access Journals (Sweden)

    Rui An

    Full Text Available Proper leaf development is essential for plant growth and development, and leaf morphogenesis is under the control of intricate networks of genetic and environmental cues. We are interested in dissecting these regulatory circuits genetically and report here the isolation of two Arabidopsis dominant mutants, abnormal shoot5-1D (abs5-1D and abs7-1D identified through activation tagging screens. Both abs5-1D and abs7-1D display an intriguing upwardly curly leaf phenotype. Molecular cloning showed that the elevated expression of a bHLH transcription factor ABS5/T5L1/bHLH30 or a MYB transcription factor ABS7/MYB101 is the cause for the abnormal leaf phenotypes found in abs5-1D or abs7-1D, respectively. Protoplast transient expression assays confirmed that both ABS5/T5L1 and ABS7/MYB101 are targeted to the nucleus. Interestingly, the expression domains of auxin response reporter DR5::GUS were abnormal in leaves of abs5-1D and ABS5/T5L1 over-expression lines. Moreover, cotyledon venation analysis showed that more areoles and free-ending veins are formed in abs5-1D. We found that the epidermis-specific expressions of ABS5/T5L1 or ABS7/MYB101 driven by the Arabidopsis Meristem Layer 1 promoter (PAtML1 were sufficient to recapitulate the curly leaf phenotype of abs5-1D or abs7-1D. In addition, PAtML1::ABS5 lines exhibited similar changes in DR5::GUS expression patterns as those found in 35S-driven ABS5/T5L1 over-expression lines. Our work demonstrated that enhanced expressions of two transcription factors, ABS5/T5L1 and ABS7/MYB101, are able to alter leaf lamina development and reinforce the notion that leaf epidermis plays critical roles in regulating plant organ morphogenesis.

  1. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production.

    Science.gov (United States)

    Araki, Ryoichi; Hasumi, Akiko; Nishizawa, Osamu Ishizaki; Sasaki, Katsunori; Kuwahara, Ayuko; Sawada, Yuji; Totoki, Yasushi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Li, Yimeng; Saito, Kazuki; Ogawa, Toshiya; Hirai, Masami Yokota

    2013-10-01

    Plants belonging to the Brassicaceae family exhibit species-specific profiles of glucosinolates (GSLs), a class of defence compounds against pathogens and insects. GSLs also exhibit various human health-promoting properties. Among them, glucoraphanin (aliphatic 4-methylsulphinylbutyl GSL) has attracted the most attention because it hydrolyses to form a potent anticancer compound. Increased interest in developing commercial varieties of Brassicaceae crops with desirable GSL profiles has led to attempts to identify genes that are potentially valuable for controlling GSL biosynthesis. However, little attention has been focused on genes of kale (Brassica oleracea var. acephala). In this study, we established full-length kale cDNA libraries containing 59 904 clones, which were used to generate an expressed sequence tag (EST) data set with 119 204 entries. The EST data set clarified genes related to the GSL biosynthesis pathway in kale. We specifically focused on BoMYB29, a homolog of Arabidopsis MYB29/PMG2/HAG3, not only to characterize its function but also to demonstrate its usability as a biological resource. BoMYB29 overexpression in wild-type Arabidopsis enhanced the expression of aliphatic GSL biosynthetic genes and the accumulation of aliphatic GSLs. When expressed in the myb28myb29 mutant, which exhibited no detectable aliphatic GSLs, BoMYB29 restored the expression of biosynthetic genes and aliphatic GSL accumulation. Interestingly, the ratio of methylsulphinyl GSL content, including glucoraphanin, to that of methylthio GSLs was greatly increased, indicating the suitability of BoMYB29 as a regulator for increasing methylsulphinyl GSL content. Our results indicate that these biological resources can facilitate further identification of genes useful for modifications of GSL profiles and accumulation in kale.

  2. Global solution of the 3D incompressible Navier-Stokes equations in the Besov spaces ${dot{varvec{R}}}_{{varvec{r}}_{varvec{1}},{varvec{r}}_{{varvec{2}}},{varvec{r}}_{{varvec{3}}}}({{varvec{sigma) }},{varvec{1}}}$ R ˙ r 1 , r 2 , r 3 σ , 1

    Science.gov (United States)

    Ru, Shaolei; Chen, Jiecheng

    2017-04-01

    In this paper, we construct a more general Besov spaces \\dot{R}_{r1,r2,r3}^{σ ,q} and consider the global well-posedness of incompressible Navier-Stokes equations with small data in \\dot{R}_{r1,r2,r3}^{σ ,1} for 1/r1+1/r2+1/r3-σ =1, 1≤ riu2(x,t) and u3(x,t) in u( x, t).

  3. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera

    Science.gov (United States)

    Matus, José Tomás; Loyola, Rodrigo; Vega, Andrea; Peña-Neira, Alvaro; Bordeu, Edmundo; Arce-Johnson, Patricio; Alcalde, José Antonio

    2009-01-01

    Anthocyanins, flavan-3-ols, and flavonols are the three major classes of flavonoid compounds found in grape berry tissues. Several viticultural practices increase flavonoid content in the fruit, but the underlying genetic mechanisms responsible for these changes have not been completely deciphered. The impact of post-veraison sunlight exposure on anthocyanin and flavonol accumulation in grape berry skin and its relation to the expression of different transcriptional regulators known to be involved in flavonoid synthesis was studied. Treatments consisting of removing or moving aside the basal leaves which shade berry clusters were applied. Shading did not affect sugar accumulation or gene expression of HEXOSE TRANSPORTER 1, although in the leaf removal treatment, these events were retarded during the first weeks of ripening. Flavonols were the most drastically reduced flavonoids following shading and leaf removal treatments, related to the reduced expression of FLAVONOL SYNTHASE 4 and its putative transcriptional regulator MYB12. Anthocyanin accumulation and the expression of CHS2, LDOX, OMT, UFGT, MYBA1, and MYB5a genes were also affected. Other regulatory genes were less affected or not affected at all by these treatments. Non-transcriptional control mechanisms for flavonoid synthesis are also suggested, especially during the initial stages of ripening. Although berries from the leaf removal treatment received more light than shaded fruits, malvidin-3-glucoside and total flavonol content was reduced compared with the treatment without leaf removal. This work reveals that flavonol-related gene expression responds rapidly to field changes in light levels, as shown by the treatment in which shaded fruits were exposed to light in the late stages of ripening. Taken together, this study establishes MYB-specific responsiveness for the effect of sun exposure and sugar transport on flavonoid synthesis. PMID:19129169

  4. EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors.

    Science.gov (United States)

    Zeng, Jiao-Ke; Li, Xian; Xu, Qian; Chen, Jian-Ye; Yin, Xue-Ren; Ferguson, Ian B; Chen, Kun-Song

    2015-12-01

    Lignin biosynthesis is regulated by many transcription factors, such as those of the MYB and NAC families. However, the roles of AP2/ERF transcription factors in lignin biosynthesis have been rarely investigated. Eighteen EjAP2/ERF genes were isolated from loquat fruit (Eriobotrya japonica), which undergoes postharvest lignification during low temperature storage. Among these, expression of EjAP2-1, a transcriptional repressor, was negatively correlated with fruit lignification. The dual-luciferase assay indicated that EjAP2-1 could trans-repress activities of promoters of lignin biosynthesis genes from both Arabidopsis and loquat. However, EjAP2-1 did not interact with the target promoters (Ej4CL1). Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated protein-protein interactions between EjAP2-1 and lignin biosynthesis-related EjMYB1 and EjMYB2. Furthermore, repression effects on the Ej4CL1 promoter were observed with the combination of EjAP2-1 and EjMYB1 or EjMYB2, while EjAP2-1 with the EAR motif mutated (mEjAP2-1) lost such repression, although mEjAP2-1 still interacted with EjMYB protein. Based on these results, it is proposed that EjAP2-1 is an indirect transcriptional repressor on lignin biosynthesis, and the repression effects were manifested by EAR motifs and were conducted via protein-protein interaction with EjMYBs. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Soybean GmMYB76,GmMYB92,and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants

    Institute of Scientific and Technical Information of China (English)

    Yong Liao; Hong-Feng Zou; Hui-Wen Wang; Wan-Ke Zhang; Biao Ma; Jin-Song Zhang; Shou-Yi Chen

    2008-01-01

    MYB-type transcription factors contain the conserved MYB DNA-binding domain of approximately 50 amino acids and are involved in the regulation of many aspects of plant growth,development,metabolism and stress responses.From soybean plants,we identified 156 GmMYB genes using our previously obtained 206 MYB unigenes,and 48 were found to have full-length open-reading frames.Expressions of all these identified genes were examined,and we found that expressions of 43 genes were changed upon treatment with ABA,salt,drought and/or cold stress.Three GmMYB genes,GmMYB76,GmMYB92 and GmMYB177,were chosen for further analysis.Using the yeast assay system,GmMYB76 and GmMYB92 were found to have transactivation activity and can form homodimers.GmMYBI77 did not appear to have transactivation activity but can form heterodimers with GmMYB76.Yeast onehybrid assay revealed that all the three GmMYBs could bind to cis-elements TAT AAC GGT TTT TT and CCG GAA AAAAGG AT,but with different affinity,and GmMYB92 could also bind to TCT CAC CTA CC.The transgenic Arabidopsis plants overexpressing GmMYB76 or GmMYB177 showed better performance than the GmMYB92-transgenic plants in salt and freezing tolerance.However,these transgenic plants exhibited reduced sensitivity to ABA treatment at germination stage in comparison with the wild-type plants.The three GmMYB genes differentially affected a subset of stress-responsive genes in addition to their regulation of a common subset of stress-responsive genes.These results indicate that the three GmMYB genes may play differential roles in stress tolerance,possibly through regulation of stress-responsive genes.

  6. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats.

    Directory of Open Access Journals (Sweden)

    Gracia Zabala

    Full Text Available We determined the molecular basis of three soybean lines that vary in seed coat color at the R locus which is thought to encode a MYB transcription factor. RM55-r(m is homozygous for a mutable allele (r(m that specifies black and brown striped seeds; RM30-R* is a stable black revertant isoline derived from the mutable line; and RM38-r has brown seed coats due to a recessive r allele shown to translate a truncated MYB protein. Using long range PCR, 454 sequencing of amplicons, and whole genome re-sequencing, we determined that the variegated RM55-r(m line had a 13 kb CACTA subfamily transposon insertion (designated TgmR* at a position 110 bp from the beginning of Intron2 of the R locus, Glyma09g36983. Although the MYB encoded by R was expressed at only very low levels in older seed coats of the black revertant RM30-R* line, it upregulated expression of anthocyanidin synthase genes (ANS2, ANS3 to promote the synthesis of anthocyanins. Surprisingly, the RM30-R* revertant also carried the 13 kb TgmR* insertion in Intron2. Using RNA-Seq, we showed that intron splicing was accurate, albeit at lower levels, despite the presence of the 13 kb TgmR* element. As determined by whole genome methylation sequencing, we demonstrate that the TgmR* sequence was relatively more methylated in RM30-R* than in the mutable RM55-r(m progenitor line. The stabilized and more methylated RM30-R* revertant line apparently lacks effective binding of a transposae to its subterminal repeats, thus allowing intron splicing to proceed resulting in sufficient MYB protein to stimulate anthocyanin production and thus black seed coats. In this regard, the TgmR* element in soybean resembles McClintock's Spm-suppressible and change-of-state alleles of maize. This comparison explains the opposite effects of the TgmR* element on intron splicing of the MYB gene in which it resides depending on the methylation state of the element.

  7. Evaluation of MYB Promoter Methylation in Salivary Adenoid Cystic Carcinoma

    Science.gov (United States)

    Shao, Chunbo; Bai, Weiliang; Junn, Jacqueline C.; Uemura, Mamoru; Hennessey, Patrick T.; Zaboli, David; Sidransky, David; Califano, Joseph A.; Ha, Patrick K.

    2011-01-01

    Summary The transcription factor MYB was recently proposed to be a promising oncogene candidate in salivary gland adenoid cystic carcinoma (ACC). However, the up-regulation of MYB in ACC could not be explained solely by deletion of its 3′ end. It is widely accepted that the promoter methylation status can regulate the transcription of genes, especially in human cancers. Therefore, it is important to know whether MYB promoter demethylation could explain the over-expression of MYB in ACC. By using the Methprimer program, we identified nine CpG islands in the promoter of MYB. All of these CpG islands were located within the −864 to +2,082 nt region relative to the transcription start site of MYB. We then used bisulfite genomic sequencing to evaluate the methylation levels of the CpG islands of MYB in 18 primary ACC tumors, 13 normal salivary gland tissues and nine cancer cell lines. Using cell lines, we also determined the relative MYB expression levels and correlated these with the methylation levels. With bisulfite genomic sequencing, we found no detectable methylation in the CpG islands of MYB in either ACC or normal salivary gland tissues. There was a variable degree of MYB expression in the cell lines tested, but none of these cell lines demonstrated promoter methylation. Promoter hypomethylation does not appear to explain the differential expression of MYB in ACC. An alternative mechanism needs to be proposed for the transcriptional control of MYB in ACC. PMID:21324728

  8. Analysis of interactions between heterologously produced bHLH and MYB proteins that regulate anthocyanin biosynthesis: quantitative interaction kinetics by Microscale Thermophoresis.

    Science.gov (United States)

    Nemie-Feyissa, Dugassa; Heidari, Behzad; Blaise, Mickael; Lillo, Cathrine

    2015-03-01

    The two Arabidopsis basic-helix-loop-helix transcription factors GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) are positive regulators of anthocyanin biosynthesis, and form protein complexes (MBW complexes) with various R2R3 MYB transcription factors and a WD40 repeat protein TRANSPARENT TESTA GLABROUS1 (TTG1). In earlier studies, GL3, in contrast to EGL3, was shown to be essential for accumulation of anthocyanins in response to nitrogen depletion. This could not be fully explained by the strong induction of GL3 in response to nitrogen depletion because the EGL3 transcripts were constitutively at a relatively high level and transcripts levels of the two genes were similar under nitrogen depletion. Here the GL3 and EGL3 proteins were characterized with respect to their affinities for PRODUCTION OF ANTHOCYANIN PIGMENT2 (PAP2), a R2R3-MYB which is induced by nitrogen depletion and is part of MBW complexes promoting anthocyanin synthesis. GL3 and EGL3 were also tested for their binding to MYBL2, a negative regulator of anthocyanin synthesis and MBW complexes. Using heterologously expressed proteins and Microscale Thermophoresis, GL3 showed binding constants (Kd) of 3.5±1.7 and 22.7±3.7 μM, whereas EGL3 showed binding constants of 7.5±2.3 and 8.9±1.4 μM for PAP2 and MYBL2, respectively. This implies that MYBL2 will not inhibit a MBW complex containing GL3 as easily as for a complex containing EGL3. In transgenic plants where EGL3 reaches high concentrations compared with MYBL2 the equilibrium is shifted and MYBL2 is not likely to be an efficient competitor, hence anthocyanin formation could be restored by either EGL3 or GL3 genes when overexpressed by help of the 35S promoter. The present work underpins that GL3 is essential for anthocyanin accumulation under nitrogen depletion not only due to transcriptional activation, but also because of binding properties to proteins promoting or inhibiting the activity of the MBW complex.

  9. (-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl): a novel mu-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties.

    Science.gov (United States)

    Tzschentke, Thomas M; Christoph, Thomas; Kögel, Babette; Schiene, Klaus; Hennies, Hagen-Heinrich; Englberger, Werner; Haurand, Michael; Jahnel, Ulrich; Cremers, Thomas I F H; Friderichs, Elmar; De Vry, Jean

    2007-10-01

    (-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl) is a novel micro-opioid receptor (MOR) agonist (Ki = 0.1 microM; relative efficacy compared with morphine 88% in a [35S]guanosine 5'-3-O-(thio)triphosphate binding assay) and NE reuptake inhibitor (Ki = 0.5 microM for synaptosomal reuptake inhibition). In vivo intracerebral microdialysis showed that tapentadol, in contrast to morphine, produces large increases in extracellular levels of NE (+450% at 10 mg/kg i.p.). Tapentadol exhibited analgesic effects in a wide range of animal models of acute and chronic pain [hot plate, tail-flick, writhing, Randall-Selitto, mustard oil colitis, chronic constriction injury (CCI), and spinal nerve ligation (SNL)], with ED50 values ranging from 8.2 to 13 mg/kg after i.p. administration in rats. Despite a 50-fold lower binding affinity to MOR, the analgesic potency of tapentadol was only two to three times lower than that of morphine, suggesting that the dual mode of action of tapentadol may result in an opiate-sparing effect. A role of NE in the analgesic efficacy of tapentadol was directly demonstrated in the SNL model, where the analgesic effect of tapentadol was strongly reduced by the alpha2-adrenoceptor antagonist yohimbine but only moderately attenuated by the MOR antagonist naloxone, whereas the opposite was seen for morphine. Tolerance development to the analgesic effect of tapentadol in the CCI model was twice as slow as that of morphine. It is suggested that the broad analgesic profile of tapentadol and its relative resistance to tolerance development may be due to a dual mode of action consisting of both MOR activation and NE reuptake inhibition.

  10. 柑橘MYB15基因的克隆与表达分析

    Institute of Scientific and Technical Information of China (English)

    郭文芳; 刘德春; 杨莉; 庄霞; 张涓涓; 王书胜; 刘勇

    2015-01-01

    采用电子克隆和RT-PCR方法从柚(Citrus maxima(Burm.)Merr.)、枳(Poncirus trifoliata(L.)Raf.)和柠檬(Citrus limon(L.)Burm.f.)实生苗中克隆了3个MYB蛋白基因,分别命名为CmMYB15、PtMYB15和ClMYB15;并用实时定量qRT-PCR技术检测了该基因在脱落酸(ABA)、干旱、低温和高盐胁迫处理下的时空表达。结果显示,CmMYB15、PtMYB15和ClMYB15的cDNA序列全长分别为994、992、988 bp,分别编码267、266、265个氨基酸,且编码的氨基酸序列N端均含有2个串联的不完全重复的MYB DNA-binding结构域,由此推测该3个基因均属于R2R3亚类;MYB15基因均能被ABA、干旱、低温和高盐胁迫诱导表达,且在柚、枳和柠檬中存在表达差异。本研究表明柚CmMYB15、枳PtMYB15和柠檬ClMYB15是MYB基因家族成员,可能在柑橘响应非生物胁迫过程中起到一定的作用。

  11. Cloning of HbMYB20 from Hevea brasiliensis and Its Regulation of Secondary Wall Development in Arabidopsis thaliana%橡胶树HbMYB20基因的克隆及其对拟南芥次生壁发育的调控

    Institute of Scientific and Technical Information of China (English)

    刘彤; 杨文凤; 校现周; 魏芳; 高宏华; 罗世巧; 吴明; 仇键

    2015-01-01

    toluidine blue,and used for statistical analysis on the cell wall thickness of interfascicular fiber,vessel and xylary fiber between the transgenic and wild-type A. thaliana. Finally,the expression level of the genes involved in lignin and cellulose synthesis were analyzed by quantitative real-time PCR.[Result]A MYB TF gene was cloned from H. brasiliensis and designated HbMYB20,which endowed with ORF of 927 bp,encoding 309aa protein. The analysis of amino acid sequence indicated that HbMYB20 belonged to G8 subgroup member of R2R3MYB transcription factor family,which had a high identity to AtMYB20/43 and AtMYB85/42. Gene expressions suggested that HbMYB20 had a higher expression in stems and xylem but less in latex. When overexpressing in A. thaliana,HbMYB20 was detected in three transgenic lines but not in wild-type plants. The transgenic A. thaliana showed obvious growth inhibition,smaller areas and less depth of lignin strain in the vessels and fiber compared to wild-type plants. The lignin contents of stem and cell wall thickness of interfascicular fiber,vessel and xylary fiber were significantly lower than those in the control. Furthermore,the genes expression of lignin biosynthetic genes ( 4CL1 and CCoAOMT ) and cellulose biosynthetic gene CesA8 were significantly repressed in transgenic plants.[Conclusion] The experimental data confirmed that HbMYB20,a MYB transcription factor G8 subgroup member from H. brasiliensis,which was highly-expressing in the stem and xylem. Functional analysis showed that the over-expression of HbMYB20 in A. thaliana has led to dwarfism in the transgenic plants,a significant thinning in vessels and fiber cell wall, an obvious decrease in lignin contents. And also,the expression inhibition of the genes related to lignin and cellulose biosynthesis were found. It is reasonable to infer that HbMYB20 plays a negative role in lignin and cellulose biosyntheses, indicating that it is a negative regulation factor for secondary wall development in H

  12. A Convenient Method for Synthesis of Novel Cyclic Ethers (1R, 2R,3R, 5S, 7S, 9R, 12R)-3-(t-Butyldimethylsilyl)oxy-7-methoxymethyloxy-2, 10-dimethyl-12-oxatricyclo [7.2.1.05,12] dodecane

    Institute of Scientific and Technical Information of China (English)

    Jie YAN; Min ZHU

    2005-01-01

    Novel cyclic esters (1R, 2R, 3R, 5S, 7S, 9R, 12R)-3-(t-butyldimethylsilyl)oxy-7-methoxymethyloxy-2, 10-dimethyl-12-oxatricyclo [7.2.1.05,12] dodecane were prepared when their precursor 1 was treated with SOCl2/pyridine. A plausible mechanism was hypothesized.

  13. Folding thermodynamics of c-Myb DNA-binding domain in correlation with its α-helical contents.

    Science.gov (United States)

    Inaba, Satomi; Fukada, Harumi; Oda, Masayuki

    2016-01-01

    The conformational and thermal stabilities of the minimum functional unit for c-Myb DNA-binding domain, tandem repeat 2 and 3 (R2R3), were analyzed under different pH conditions, ranging from 4.0 to 7.5, using circular dichroism and differential scanning calorimetry. Secondary structure analysis showed that the solution pH largely affects the conformational stability of the protein domain. Of all conditions analyzed, the α-helical content was maximal at pH 6.5, and the thermal stability was highest at pH 5.0. Thermodynamic parameters for thermal unfolding of R2R3 were determined using differential scanning calorimetry, and the origin of folding thermodynamics at the different pHs and its correlation with the α-helical content were further analyzed. It should be noted that the α-helical content correlates well with the enthalpy change in the pH range from 4.5 to 7.5, suggesting that the strength of hydrogen bonds and salt bridges needed for maintenance of helical structure is related to enthalpy in the native state. Under physiological pH conditions, c-Myb R2R3 exists in the enthalpically unstable but entropically stable state. Due to loss of rigid structure and high stability, the protein can now obtain structural flexibility, befitting its function.

  14. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis.

    Science.gov (United States)

    Nagaoka, Shuuichi; Takano, Tetsuo

    2003-10-01

    Regulating the intracellular Na+/K+ ratio is an essential process for salinity tolerance. The yeast mutant, can, which is deficient in calcineurin, can not grow on medium containing Na+ because it is unable to regulate the intracellular Na+/K+ ratio. Expression of the STO gene of Arabidopsis thaliana in the can mutant complements the salt-sensitive phenotype. A protein of Arabidopsis, an H-protein promoter binding factor (HPPBF-1), that binds to STO protein was isolated. HPPBF-1 cDNA has a sequence encoding a Myb DNA binding-motif and its gene expression is induced by salt stress. Furthermore, HPPBF-1 protein is localized in the nucleus. Although, the expression level of STO is not induced under salt-stress conditions, overexpression of STO in a transgenic Arabidopsis plant gave it a higher salt tolerance than was observed in the wild type. When STO transgenic plants and wild-type plants were subjected to salt stress, root growth was increased by 33-70% in the transgenic plants under salt stress. These results suggest that STO is involved in salt-stress responses in Arabidopsis.

  15. 柑橘MYB15基因的克隆与表达分析%Cloning and Expression Analysis of MYB15 Genes from Citrus

    Institute of Scientific and Technical Information of China (English)

    郭文芳; 刘德春; 杨莉; 庄霞; 张涓涓; 王书胜; 刘勇

    2015-01-01

    采用电子克隆和RT-PCR方法从柚(Citrus maxima(Burm.)Merr.)、枳(Poncirus trifoliata(L.)Raf.)和柠檬(Citrus limon(L.)Burm.f.)实生苗中克隆了3个MYB蛋白基因,分别命名为CmMYB 15、PtMYB 15和CIMYB15;并用实时定量qRT-PCR技术检测了该基因在脱落酸(ABA)、干旱、低温和高盐胁迫处理下的时空表达.结果显示,CmMYB15、PtMYB15和CIMYB 15的cDNA序列全长分别为994、992、988 bp,分别编码267、266、265个氨基酸,且编码的氨基酸序列N端均含有2个串联的不完全重复的MYB DNA-binding结构域,由此推测该3个基因均属于R2R3亚类;MYB15基因均能被ABA、干旱、低温和高盐胁迫诱导表达,且在柚、枳和柠檬中存在表达差异.本研究表明柚CmMYB 15、枳PtM YB15和柠檬CIMYB15是MYB基因家族成员,可能在柑橘响应非生物胁迫过程中起到一定的作用.

  16. A novel reverse-genetic approach (SIMF) identifies Mutator insertions in new Myb genes.

    Science.gov (United States)

    Rabinowicz, P D; Grotewold, E

    2000-11-01

    We have developed a new strategy designated SIMF (Systematic Insertional Mutagenesis of Families), to identify DNA insertions in many members of a gene family simultaneously. This method requires only a short amino acid sequence conserved in all members of the family to make a degenerate oligonucleotide, and a sequence from the end of the DNA insertion. The SIMF strategy was successfully applied to the large maize R2R3 Myb family of regulatory genes, and Mutator insertions in several novel Myb genes were identified. Application of this technique to identify insertions in other large gene families could significantly decrease the effort involved in screening at the same time for insertions in all members of groups of genes that share a limited sequence identity.

  17. FE, a phloem-specific Myb-related protein, promotes flowering through transcriptional activation of FLOWERING LOCUS T and FLOWERING LOCUS T INTERACTING PROTEIN 1.

    Science.gov (United States)

    Abe, Mitsutomo; Kaya, Hidetaka; Watanabe-Taneda, Ayako; Shibuta, Mio; Yamaguchi, Ayako; Sakamoto, Tomoaki; Kurata, Tetsuya; Ausín, Israel; Araki, Takashi; Alonso-Blanco, Carlos

    2015-09-01

    In many flowering plants, the transition to flowering is primarily affected by seasonal changes in day length (photoperiod). An inductive photoperiod promotes flowering via synthesis of a floral stimulus, called florigen. In Arabidopsis thaliana, the FLOWERING LOCUS T (FT) protein is an essential component of florigen, which is synthesized in leaf phloem companion cells and is transported through phloem tissue to the shoot apical meristem where floral morphogenesis is initiated. However, the molecular mechanism involved in the long-distance transport of FT protein remains elusive. In this study, we characterized the classic Arabidopsis mutant fe, which is involved in the photoperiodic induction of flowering, and showed that FE encodes a phloem-specific Myb-related protein that was previously reported as ALTERED PHLOEM DEVELOPMENT. Phenotypic analyses of the fe mutant showed that FT expression is reduced in leaf phloem companion cells. In addition, the transport of FT protein from leaves to the shoot apex is impaired in the fe mutant. Expression analyses further demonstrated that FE is also required for transcriptional activation of FLOWERING LOCUS T INTERACTING PROTEIN 1 (FTIP1), an essential regulator for selective trafficking of the FT protein from companion cells to sieve elements. These findings indicate that FE plays a dual role in the photoperiodic induction of flowering: as a transcriptional activator of FT on the one hand, and its transport machinery component, FTIP1, on the other hand. Thus, FE is likely to play a role in regulating FT by coordinating FT synthesis and FT transport in phloem companion cells.

  18. Expression and characterization of c-Myb in prenatal odontogenesis.

    Science.gov (United States)

    Matalová, Eva; Buchtová, Marcela; Tucker, Abigail S; Bender, Timothy P; Janečková, Eva; Lungová, Vlasta; Balková, Simona; Smarda, Jan

    2011-08-01

    The transcription factor c-Myb is involved in the control of cell proliferation, survival and differentiation. As these processes accompany the morphogenesis of developing teeth, this work investigates the possible role of c-Myb during odontogenesis. Analysis of the expression of c-Myb in the monophyodont mouse was followed by similar analysis in a diphyodont species, the pig, which has a dentition more closely resembling that of the human. The distribution of c-Myb was correlated with the pattern of proliferation and apoptosis and the tooth phenotype of c-Myb mutant mice was also assessed. In the mouse, c-Myb expression was detected throughout prenatal development of the first molar tooth. Negative temporospatial correlation was found between c-Myb expression and apoptosis, while c-Myb expression positively correlated with proliferation. c-Myb-positive cells, however, were more abundant than the proliferating cell nuclear antigen positive cells, suggesting other roles of c-Myb in odontogenesis. In the minipig, in contrast to the mouse, there was an asymmetrical arrangement of c-Myb positive cells, with a higher presence on the labial side of the tooth germ and dental lamina. A cluster of negative cells was situated in the mesenchyme close to the tooth bud. At later stages, the number of positive cells decreased and these cells were situated in the upper part of the dental papilla in the areas of future cusp formation. The expression of c-Myb in both species was strong in the odontoblasts and ameloblasts at the stage of dentin and enamel production suggesting a possible novel role of c-Myb during tooth mineralization. © 2011 The Authors. Development, Growth & Differentiation © 2011 Japanese Society of Developmental Biologists.

  19. Regulation of Cyst Wall Protein Promoters by Myb2 in Giardia lamblia*

    OpenAIRE

    2008-01-01

    Myb family transcription factors are important in regulating cell proliferation, differentiation, and cell cycle progression. Giardia lamblia differentiates into infectious cysts to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately induced. We have identified an encystation-induced Myb2 protein, which binds to the promoter regions of the cwp genes and myb2 itself in vitro. To elucidate the role of Myb2 in G. ...

  20. miR-204 Shifts the Epithelial to Mesenchymal Transition in Concert with the Transcription Factors RUNX2, ETS1, and cMYB in Prostate Cancer Cell Line Model

    Directory of Open Access Journals (Sweden)

    Krassimira Todorova

    2014-01-01

    Full Text Available Epithelial to mesenchymal transition is an essential step in advanced cancer development. Many master transcription factors shift their expression to drive this process, while noncoding RNAs families like miR-200 are found to restrict it. In this study we investigated how the tumor suppressor miR-204 and several transcription factors modulate main markers of mesenchymal transformation like E- and N-cadherin, SLUG, VEGF, and SOX-9 in prostate cancer cell line model (LNCaP, PC3, VCaP, and NCI-H660. We found that SLUG, E-cadherin, and N-cadherin are differentially modulated by miR-204, using miR-204 specific mimics and inhibitors and siRNA gene silencing (RUNX2, ETS-1, and cMYB. The genome perturbation associated TMPRSS2-ERG fusion coincided with shift from tumor-suppressor to tumor-promoting activity of this miRNA. The ability of miR-204 to suppress cancer cell viability and migration was lost in the fusion harboring cell lines. We found differential E-cadherin splicing corroborating to miR-204 modulatory effects. RUNX2, ETS1, and cMYB are involved in the regulation of E-cadherin, N-cadherin, and VEGFA expression. RUNX2 knockdown results in SOX9 downregulation, while ETS1 and cMYB silencing result in SOX9 upregulation in VCaP cells. Their expression was found to be also methylation dependent. Our study provides means for understanding cancer heterogeneity in regard to adapted therapeutic approaches development.

  1. Small-Molecule Disruption of the Myb/p300 Cooperation Targets Acute Myeloid Leukemia Cells.

    Science.gov (United States)

    Uttarkar, Sagar; Piontek, Therese; Dukare, Sandeep; Schomburg, Caroline; Schlenke, Peter; Berdel, Wolfgang E; Müller-Tidow, Carsten; Schmidt, Thomas J; Klempnauer, Karl-Heinz

    2016-12-01

    The transcription factor c-Myb is essential for the proliferation of hematopoietic cells and has been implicated in the development of leukemia and other human cancers. Pharmacologic inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. By using a Myb reporter cell line, we have identified plumbagin and several naphthoquinones as potent low-molecular weight Myb inhibitors. We demonstrate that these compounds inhibit c-Myb by binding to the c-Myb transactivation domain and disrupting the cooperation of c-Myb with the coactivator p300, a major driver of Myb activity. Naphthoquinone-induced inhibition of c-Myb suppresses Myb target gene expression and induces the differentiation of the myeloid leukemia cell line HL60. We demonstrate that murine and human primary acute myeloid leukemia cells are more sensitive to naphthoquinone-induced inhibition of clonogenic proliferation than normal hematopoietic progenitor cells. Overall, our work demonstrates for the first time the potential of naphthoquinones as small-molecule Myb inhibitors that may have therapeutic potential for the treatment of leukemia and other tumors driven by deregulated Myb. Mol Cancer Ther; 15(12); 2905-15. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production.

    Science.gov (United States)

    Liu, Guangyu; Thornburg, Robert W

    2012-05-01

    MYB transcription factors have important roles during floral organ development. In this study, we generated myb305 RNAi knockdown tobacco plants and studied the role of MYB305 in the growth of the floral nectary. We have previously shown the MYB305 regulates the expression of flavonoid metabolic genes as well as of nectar proteins (nectarins); however, the myb305 plants showed other floral phenotypes that we investigate in these studies. The nectaries of myb305 plants show juvenile character at late stages of development and secrete reduced levels of nectar. Because starch metabolism is intimately involved in nectar secretion and is strongly regulated during normal nectary development, we examined the accumulation of starch in the nectaries of the myb305 plants. The myb305 plants accumulated lower levels of starch in their nectaries than did wild-type plants. The reduced starch correlated with the reduced expression of the ATP-glucose pyrophosphorylase (small subunit) gene in nectaries of the myb305 plants during the starch biosynthetic phase. Expression of genes encoding several starch-degrading enzymes including β-amylase, isoamylase 3, and α-amylase was also reduced in the myb305 plants. In addition to regulating nectarin and flavonoid metabolic gene expression, these results suggest that MYB305 may also function in the tobacco nectary maturation program by controlling the expression of starch metabolic genes.

  3. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    Science.gov (United States)

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.

  4. MYB64 and MYB119 are required for cellularization and differentiation during female gametogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Rabiger, David S; Drews, Gary N

    2013-01-01

    In angiosperms, the egg cell forms within the multicellular, haploid female gametophyte. Female gametophyte and egg cell development occurs through a unique process in which a haploid spore initially undergoes several rounds of synchronous nuclear divisions without cytokinesis, resulting in a single cell containing multiple nuclei. The developing gametophyte then forms cell walls (cellularization) and the resulting cells differentiate to generate the egg cell and several accessory cells. The switch between free nuclear divisions and cellularization-differentiation occurs during developmental stage FG5 in Arabidopsis, and we refer to it as the FG5 transition. The molecular regulators that initiate the FG5 transition during female gametophyte development are unknown. In this study, we show using mutant analysis that two closely related MYB transcription factors, MYB64 and MYB119, act redundantly to promote this transition. MYB64 and MYB119 are expressed during the FG5 transition, and most myb64 myb119 double mutant gametophytes fail to initiate the FG5 transition, resulting in uncellularized gametophytes with supernumerary nuclei. Analysis of cell-specific markers in myb64 myb119 gametophytes that do cellularize suggests that gametophytic polarity and differentiation are also affected. We also show using multiple-mutant analysis that MYB119 expression is regulated by the histidine kinase CKI1, the primary activator of two-component signaling (TCS) during female gametophyte development. Our data establish a molecular pathway regulating the FG5 transition and implicates CKI1-dependent TCS in the promotion of cellularization, differentiation, and gamete specification during female gametogenesis.

  5. MYB64 and MYB119 are required for cellularization and differentiation during female gametogenesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    David S Rabiger

    Full Text Available In angiosperms, the egg cell forms within the multicellular, haploid female gametophyte. Female gametophyte and egg cell development occurs through a unique process in which a haploid spore initially undergoes several rounds of synchronous nuclear divisions without cytokinesis, resulting in a single cell containing multiple nuclei. The developing gametophyte then forms cell walls (cellularization and the resulting cells differentiate to generate the egg cell and several accessory cells. The switch between free nuclear divisions and cellularization-differentiation occurs during developmental stage FG5 in Arabidopsis, and we refer to it as the FG5 transition. The molecular regulators that initiate the FG5 transition during female gametophyte development are unknown. In this study, we show using mutant analysis that two closely related MYB transcription factors, MYB64 and MYB119, act redundantly to promote this transition. MYB64 and MYB119 are expressed during the FG5 transition, and most myb64 myb119 double mutant gametophytes fail to initiate the FG5 transition, resulting in uncellularized gametophytes with supernumerary nuclei. Analysis of cell-specific markers in myb64 myb119 gametophytes that do cellularize suggests that gametophytic polarity and differentiation are also affected. We also show using multiple-mutant analysis that MYB119 expression is regulated by the histidine kinase CKI1, the primary activator of two-component signaling (TCS during female gametophyte development. Our data establish a molecular pathway regulating the FG5 transition and implicates CKI1-dependent TCS in the promotion of cellularization, differentiation, and gamete specification during female gametogenesis.

  6. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription

    Directory of Open Access Journals (Sweden)

    Berendzen Kenneth W

    2012-08-01

    Full Text Available Abstract Background In higher plants, a diverse array of developmental and growth-related processes is regulated by the plant hormone auxin. Recent publications have proposed that besides the well-characterized Auxin Response Factors (ARFs that bind Auxin Response Elements (AuxREs, also members of the bZIP- and MYB-transcription factor (TF families participate in transcriptional control of auxin-regulated genes via bZIP Response Elements (ZREs or Myb Response Elements (MREs, respectively. Results Applying a novel bioinformatic algorithm, we demonstrate on a genome-wide scale that singular motifs or composite modules of AuxREs, ZREs, MREs but also of MYC2 related elements are significantly enriched in promoters of auxin-inducible genes. Despite considerable, species-specific differences in the genome structure in terms of the GC content, this enrichment is generally conserved in dicot (Arabidopsis thaliana and monocot (Oryza sativa model plants. Moreover, an enrichment of defined composite modules has been observed in selected auxin-related gene families. Consistently, a bipartite module, which encompasses a bZIP-associated G-box Related Element (GRE and an AuxRE motif, has been found to be highly enriched. Making use of transient reporter studies in protoplasts, these findings were experimentally confirmed, demonstrating that GREs functionally interact with AuxREs in regulating auxin-mediated transcription. Conclusions Using genome-wide bioinformatic analyses, evolutionary conserved motifs have been defined which potentially function as AuxRE-dependent coupling elements to establish auxin-specific expression patterns. Based on these findings, experimental approaches can be designed to broaden our understanding of combinatorial, auxin-controlled gene regulation.

  7. Main: MYB1LEPR [PLACE

    Lifescience Database Archive (English)

    Full Text Available MYB1LEPR S000443 28-Jan-2004 (last modified) kehi Tomato Pti4(ERF) regulates defenc...e-related gene expression via GCC box and non-GCC box cis elements (Myb1(GTTAGTT), G box (CACGTG)); Pti4; ER...F; PR; MYB; Arabidopsis thaliana; Lycopersicon esculentum (tomato); GTTAGTT ...

  8. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young

    2010-01-25

    Background: The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach.Results: Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters.Conclusion: Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. 2010 Yun et al; licensee BioMed Central Ltd.

  9. Early Evolution of Vertebrate Mybs: An Integrative Perspective Combining Synteny, Phylogenetic, and Gene Expression Analyses.

    Science.gov (United States)

    Campanini, Emeline B; Vandewege, Michael W; Pillai, Nisha E; Tay, Boon-Hui; Jones, Justin L; Venkatesh, Byrappa; Hoffmann, Federico G

    2015-10-15

    The genes in the Myb superfamily encode for three related transcription factors in most vertebrates, A-, B-, and c-Myb, with functionally distinct roles, whereas most invertebrates have a single Myb. B-Myb plays an essential role in cell division and cell cycle progression, c-Myb is involved in hematopoiesis, and A-Myb is involved in spermatogenesis and regulating expression of pachytene PIWI interacting RNAs, a class of small RNAs involved in posttranscriptional gene regulation and the maintenance of reproductive tissues. Comparisons between teleost fish and tetrapods suggest that the emergence and functional divergence of the Myb genes were linked to the two rounds of whole-genome duplication early in vertebrate evolution. We combined phylogenetic, synteny, structural, and gene expression analyses of the Myb paralogs from elephant shark and lampreys with data from 12 bony vertebrates to reconstruct the early evolution of vertebrate Mybs. Phylogenetic and synteny analyses suggest that the elephant shark and Japanese lamprey have copies of the A-, B-, and c-Myb genes, implying their origin could be traced back to the common ancestor of lampreys and gnathostomes. However, structural and gene expression analyses suggest that their functional roles diverged between gnathostomes and cyclostomes. In particular, we did not detect A-Myb expression in testis suggesting that the involvement of A-Myb in the pachytene PIWI interacting RNA pathway is probably a gnathostome-specific innovation. We speculate that the secondary loss of a central domain in lamprey A-Myb underlies the functional differences between the cyclostome and gnathostome A-Myb proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Cloning and Expression Analysis of ShMYB1 Related to the Trichome Initiation in Tomato (Solanum habrochaites)%番茄茸毛相关基因ShMYB1的克隆与表达分析

    Institute of Scientific and Technical Information of China (English)

    王涛涛; Maarten A.Jongsma; 余楚英; 李汉霞; 张俊红; 杨长宪; 叶志彪

    2011-01-01

    番茄茸毛具有多种生物学功能,为了探究番茄中控制茸毛的基因,本研究采用cDNA末端快速扩增技术(rapid amplification ofcDNA ends,RACE)从野生种多毛番茄(Solanum habrochaites)LA1777中,获得了一个与茸毛相关的R2R3 MYB Subgroup 9家族新成员EST241733的全长编码区cDNA序列,命名为ShMYBl.经生物信息学分析,克隆的ShMYBl基因长1 350 bp,编码338个氨基酸.该基因具有保守的R2R3MYB结构域和Subgroup 9特异motif序列.荧光定量PCR结果表明,ShMYBl基因在番茄叶和花中表达量高,在根、茎、果实中没有表达.在不同发育时期的叶片中表达量差异不大,但是在幼花蕾表达量最高,随花蕾的增大,表达量显著降低.在几个番茄茸毛突变体与对应的野生型中,这个基因表达量存在明显差异.推测该基因与番茄表皮茸毛发生和花发育有关.%The trichome has diverse biological functions in tomato, in order to explore the gene functions involved in trichome formation, a novel gene (named as ShMYB1) related trichome initiation was isolated from LA1777, using RACE (rapid amplification of cDNA ends) technology. The full-length sequence of ShMYB1 cDNA was 1 350 bp and encoded a protein of 338 amino acids. The ShMYB1 had a conserved R2R3 MYB domain and a specific subgroup 9 motif. The expression profiles of ShMYB1 were analyzed with Real-time PCR in different tissues and developmental stages, the results showed that the gene was expressed at a high level in leaves and flowers, but no expression was detected in roots, stems or fruits, and no significant differences at different stages of leaf development, but the highest expression occurred in young buds, gradually declined during bud development. Also significant differences of ShMYB1 expression were detected between several trichome mutants and their wild types. These results suggested that the ShMYB1 gene may be involved in the initiation of trichome and the development of flowers.

  11. Reference: ARELIKEGHPGDFR2 [PLACE

    Lifescience Database Archive (English)

    Full Text Available ndler VL, Grotewold E. Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1. J Biol Chem. 279: 48205-48213 (2004). PubMed: 15347654 ...

  12. Overexpression of SbMyb60 in Sorghum bicolor impacts both primary and secondary metabolism.

    Science.gov (United States)

    Scully, Erin D; Gries, Tammy; Palmer, Nathan A; Sarath, Gautam; Funnell-Harris, Deanna L; Baird, Lisa; Twigg, Paul; Seravalli, Javier; Clemente, Thomas E; Sattler, Scott E

    2017-09-25

    Few transcription factors have been identified in C4 grasses that either positively or negatively regulate monolignol biosynthesis. Previously, the overexpression of SbMyb60 in sorghum (Sorghum bicolor) has been shown to induce monolignol biosynthesis, which leads to elevated lignin deposition and altered cell wall composition. To determine how SbMyb60 overexpression impacts other metabolic pathways, RNA-Seq and metabolite profiling were performed on stalks and leaves. 35S::SbMyb60 was associated with the transcriptional activation of genes involved in aromatic amino acid, S-adenosyl methionine (SAM) and folate biosynthetic pathways. The high coexpression values between SbMyb60 and genes assigned to these pathways indicate that SbMyb60 may directly induce their expression. In addition, 35S::SbMyb60 altered the expression of genes involved in nitrogen (N) assimilation and carbon (C) metabolism, which may redirect C and N towards monolignol biosynthesis. Genes linked to UDP-sugar biosynthesis and cellulose synthesis were also induced, which is consistent with the observed increase in cellulose deposition in the internodes of 35S::SbMyb60 plants. However, SbMyb60 showed low coexpression values with these genes and is not likely to be a direct regulator of cell wall polysaccharide biosynthesis. These findings indicate that SbMyb60 can activate pathways beyond monolignol biosynthesis, including those that synthesize the substrates and cofactors required for lignin biosynthesis. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower.

    Science.gov (United States)

    Chiu, Li-Wei; Li, Li

    2012-10-01

    Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue-specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network of anthocyanin biosynthesis, we investigated the interaction among cauliflower MYB-bHLH-WD40 network proteins and examined the interplay of BoMYB2 with various bHLH transcription factors in planta. Yeast two-hybrid studies revealed that cauliflower BoMYBs along with the other regulators formed the MYB-bHLH-WD40 complexes and BobHLH1 acted as a bridge between BoMYB and BoWD40-1 proteins. Different BoMYBs exhibited different binding activity to BobHLH1. Examination of the BoMYB2 transgenic lines in Arabidopsis bHLH mutant backgrounds demonstrated that TT8, EGL3, and GL3 were all involved in the BoMYB2-mediated anthocyanin biosynthesis. Expression of BoMYB2 in Arabidopsis caused up-regulation of AtTT8 and AtEGL3 as well as a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase. Taken together, our results show that MYB-bHLH-WD40 network transcription factors regulated the bHLH gene expression, which may represent a critical feature in the control of anthocyanin biosynthesis. BoMYB2 together with various BobHLHs specifically regulated the late anthocyanin biosynthetic pathway genes for anthocyanin biosynthesis. Our findings provide additional information for the complicated regulatory network of anthocyanin biosynthesis and the transcriptional regulation of transcription factors in vegetable crops.

  14. Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xingchun Wang; Qi-Wen Niu; Chong Teng; Chao Li; Jinye Mu; Nam-Hai Chua; Jianru Zuo

    2009-01-01

    Formation of somatic embryos from non-germline cells is unique to higher plants and can be manipulated in a variety of species. Previous studies revealed that overexpression of several Arabidopsis genes, including WUSCHEL (WUS)/PLANT GROWTH ACTIVATOR6 (PGA6), BABY BOOM, LEAFY COTYLEDON1 (LEC1), and LEC2, is able to cause vegetative-to-embryonic transition or the formation of somatic embryos. Here, we report that a gain-offunction mutation in the Arabidopsis PGA37 gene, encoding the MYBI18 transcription factor, induced vegetative-toembryonic transition, the formation of somatic embryos from root explants, and an elevated LEC1 expression level.Double mutant analysis showed that WUS was not required for induction of somatic embryos by PGA37/MYB118.Iin addition, overexpression ofMYB115, a homolog of PGA37/MYB118, caused apga37-1ike phenotype. A mybll8 myb115 double mutant did not show apparent developmental abnormalities. Collectively, these results suggest that PGA37/MYB118 and MYB115 promote vegetative-to-embryonic transition, through a signaling pathway independent of WUS.

  15. (1R,2R)-2-((R)-3-(苄氧基)吡咯烷基)环己醇的合成研究%Study on the Synthesis of (1R,2R)-2-((R)-3-(Benzyloxy)Pyrrolidin-1-yl)Cyclohexanol

    Institute of Scientific and Technical Information of China (English)

    叶海伟; 俞传明; 钟为慧; 苏为科

    2014-01-01

    An improved synthetic technology was developed for the preparation of (1R,2R)-2-((R)-3-(benzyloxy)pyrrolidin-1-yl)cyclohexanol (RRR-2) which is a key intermediate in the synthesis of Vernakalant (1). (R)-3-Hydroxypyrrolidine (3) was used as the raw material that first went through an amino group selective protection and deprotection reaction, which was then followed by a ring-opening reaction with epoxy cyclohexane to prepare diastereoisomer-2. The target compound RRR-2 (optical pure) were obtained after separation with a total yield of 38% (literatures yield was 15%). Moreover, the isomer SSR-2 recovered from reaction liquids was further studied. SSR-2 was reacted via SN2 substitution with PPh3Cl2/TEA (molar ratio=1:2.1:2.5) under acetonitrile reflux, and followed by hydrolysis to prepare the diastereoisomer-2 with 75%yield. The structures of the intermediates and the product were confirmed by NMR, MS and chiral HPLC. The advantages of the present procedure include mild reaction condition, satisfactory yields, easy operation and reusability of the isomer SSR-2. Therefore it may be promising for industrial application.%报道了一种维纳卡兰关键中间体(1R,2R)-2-((R)-3-(苄氧基)吡咯烷基)环己醇(RRR-2)的合成方法。以(R)-3-羟基吡咯烷(3)为原料,先经氨基选择性保护和脱保护反应,再与环氧环己烷开环反应制得混旋体2,最后经化学拆分制得光学纯的目标产物RRR-2,总收率达38%(文献收率15%);同时研究了将拆分母液中异构体SSR-2转化为混旋体2的有效方法,即异构体SSR-2与二氯三苯基膦/三乙胺体系(摩尔比=1:2.1:2.5)在回流的乙腈中发生S N 2取代反应,然后直接水解可重新制到混旋体2,收率为75%。中间体及产物的结构经核磁共振、质谱和手性液相确证。该法反应条件温和,收率良好,操作简便,异构体SSR-2可再生利用,原料成本较低,具有工业化应用前景。

  16. MYB is a novel regulator of pancreatic tumour growth and metastasis.

    Science.gov (United States)

    Srivastava, Sanjeev K; Bhardwaj, Arun; Arora, Sumit; Singh, Seema; Azim, Shafquat; Tyagi, Nikhil; Carter, James E; Wang, Bin; Singh, Ajay P

    2015-12-22

    MYB encodes for a transcription factor regulating the expression of a wide array of genes involved in cellular functions. It is reported to be amplified in a sub-set of pancreatic cancer (PC) cases; however, its pathobiological association has remained unclear thus far. Expression of MYB and other cellular proteins was analysed by immunoblot or qRT-PCR analyses. MYB was stably overexpressed in non-expressing (BxPC3) and silenced in highly expressing (MiaPaCa and Panc1) PC cells. Effect on growth was analysed by automated cell counting at 24-h interval. Cell-cycle progression and apoptotic indices of PC cells with altered MYB expression were measured through flow cytometry upon staining with respective biomarkers. Cell motility/invasion was examined in a Boyden's chamber assay using non-coated or Matrigel-coated membranes. Effect on tumorigenicity and metastatic potential was examined by non-invasive imaging and through end-point measurements of luciferase-tagged MYB-altered PC implanted in the pancreas of nude mice. MYB was aberrantly expressed in all malignant cases of pancreas, whereas remained undetectable in normal pancreas. All the tested established PC cell lines except BxPC3 also exhibited MYB expression. Forced expression of MYB in BxPC3 cells promoted their growth, cell-cycle progression, survival and malignant behaviour, whereas its silencing in MiaPaCa and Panc1 cells produced converse effects. More importantly, ectopic MYB expression was sufficient to confer tumorigenic and metastatic capabilities to non-tumorigenic BxPC3 cells, while its silencing resulted in significant loss of the same in MYB-overexpressing cells as demonstrated in orthotopic mouse model. We also identified several MYB-regulated genes in PC cells that might potentially mediate its effect on tumour growth and metastasis. MYB is aberrantly overexpressed in PC cells and acts as a key determinant of pancreatic tumour growth and metastasis.

  17. Expression Differences of Pigment Structural Genes and Transcription Factors Explain Flesh Coloration in Three Contrasting Kiwifruit Cultivars

    Directory of Open Access Journals (Sweden)

    Yanfei Liu

    2017-09-01

    Full Text Available Fruits of kiwifruit cultivars (Actinidia chinensis and A. deliciosa generally have green or yellow flesh when ripe. A small number of genotypes have red flesh but this coloration is usually restricted to the inner pericarp. Three kiwifruit cultivars having red (‘Hongyang’, or yellow (‘Jinnong-2’, or green (‘Hayward’ flesh were investigated for their color characteristics and pigment contents during development and ripening. The results show the yellow of the ‘Jinnong-2’ fruit is due to the combined effects of chlorophyll degradation and of beta-carotene accumulation. The red inner pericarps of ‘Hongyang’ fruit are due to anthocyanin accumulation. Expression differences of the pathway genes in the inner pericarps of the three different kiwifruits suggest that stay-green (SGR controls the degradation of chlorophylls, while lycopene beta-cyclase (LCY-β controls the biosynthesis of beta-carotene. The abundance of anthocyanin in the inner pericarps of the ‘Hongyang’ fruit is the results of high expressions of UDP flavonoid glycosyltransferases (UFGT. At the same time, expressions of anthocyanin transcription factors show that AcMYBF110 expression parallels changes in anthocyanin concentration, so seems to be a key R2R3 MYB, regulating anthocyanin biosynthesis. Further, transient color assays reveal that AcMYBF110 can autonomously induce anthocyanin accumulation in Nicotiana tabacum leaves by activating the transcription of dihydroflavonol 4-reductase (NtDFR, anthocyanidin synthase (NtANS and NtUFGT. For basic helix-loop-helix proteins (bHLHs and WD-repeat proteins (WD40s, expression differences show these may depend on AcMYBF110 forming a MYB-bHLH-WD40 complex to regulate anthocyanin biosynthesis, instead of it having a direct involvement.

  18. Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer.

    Science.gov (United States)

    Azim, Shafquat; Zubair, Haseeb; Srivastava, Sanjeev K; Bhardwaj, Arun; Zubair, Asif; Ahmad, Aamir; Singh, Seema; Khushman, Moh'd; Singh, Ajay P

    2016-06-29

    We have recently demonstrated that the transcription factor MYB can modulate several cancer-associated phenotypes in pancreatic cancer. In order to understand the molecular basis of these MYB-associated changes, we conducted deep-sequencing of transcriptome of MYB-overexpressing and -silenced pancreatic cancer cells, followed by in silico pathway analysis. We identified significant modulation of 774 genes upon MYB-silencing (p networks by in silico analysis. Further analyses placed genes in our RNA sequencing-generated dataset to several canonical signalling pathways, such as cell-cycle control, DNA-damage and -repair responses, p53 and HIF1α. Importantly, we observed downregulation of the pancreatic adenocarcinoma signaling pathway in MYB-silenced pancreatic cancer cells exhibiting suppression of EGFR and NF-κB. Decreased expression of EGFR and RELA was validated by both qPCR and immunoblotting and they were both shown to be under direct transcriptional control of MYB. These observations were further confirmed in a converse approach wherein MYB was overexpressed ectopically in a MYB-null pancreatic cancer cell line. Our findings thus suggest that MYB potentially regulates growth and genomic stability of pancreatic cancer cells via targeting complex gene networks and signaling pathways. Further in-depth functional studies are warranted to fully understand MYB signaling in pancreatic cancer.

  19. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Maier, Alexander; Schrader, Andrea; Kokkelink, Leonie; Falke, Christian; Welter, Bastian; Iniesto, Elisa; Rubio, Vicente; Uhrig, Joachim F; Hülskamp, Martin; Hoecker, Ute

    2013-05-01

    Anthocyanins are natural pigments that accumulate only in light-grown and not in dark-grown Arabidopsis plants. Repression of anthocyanin accumulation in darkness requires the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) ubiquitin ligase, as cop1 and spa mutants produce anthocyanins also in the dark. Here, we show that COP1 and SPA proteins interact with the myeloblastosis (MYB) transcription factors PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP)1 and PAP2, two members of a small protein family that is required for anthocyanin accumulation and for the expression of structural genes in the anthocyanin biosynthesis pathway. The increased anthocyanin levels in cop1 mutants requires the PAP1 gene family, indicating that COP1 functions upstream of the PAP1 gene family. PAP1 and PAP2 proteins are degraded in the dark and this degradation is dependent on the proteasome and on COP1. Hence, the light requirement for anthocyanin biosynthesis results, at least in part, from the light-mediated stabilization of PAP1 and PAP2. Consistent with this conclusion, moderate overexpression of PAP1 leads to an increase in anthocyanin levels only in the light and not in darkness. Here we show that SPA genes are also required for reducing PAP1 and PAP2 transcript levels in dark-grown seedlings. Taken together, these results indicate that the COP1/SPA complex affects PAP1 and PAP2 both transcriptionally and post-translationally. Thus, our findings have identified mechanisms via which the COP1/SPA complex controls anthocyanin levels in Arabidopsis that may be useful for applications in biotechnology directed towards increasing anthocyanin content in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  20. TaLHY, a 1R-MYB Transcription Factor, Plays an Important Role in Disease Resistance against Stripe Rust Fungus and Ear Heading in Wheat.

    Directory of Open Access Journals (Sweden)

    Zijin Zhang

    Full Text Available LHY (late elongated hypocotyl is an important gene that regulates and controls biological rhythms in plants. Additionally, LHY is highly expressed in the SSH (suppression subtractive hybridization cDNA library-induced stripe rust pathogen (CYR32 in our previous research. To identify the function of the LHY gene in disease resistance against stripe rust, we used RACE-PCR technology to clone TaLHY in the wheat variety Chuannong19. The cDNA of TaLHY is 3085 bp long with an open reading frame of 1947 bp. TaLHY is speculated to encode a 70.3 kDa protein of 648 amino acids , which has one typical plant MYB-DNA binding domain; additionally, phylogenetic tree shows that TaLHY has the highest homology with LHY of Brachypodium distachyon(BdLHY-like. Quantitative fluorescence PCR indicates that TaLHY has higher expression in the leaf, ear and stem of wheat but lower expression in the root. Infestation of CYR32 can result in up-regulated expression of TaLHY, peaking at 72 h. Using VIGS (virus-induced gene silencing technology to disease-resistant wheat in the fourth leaf stage, plants with silenced TaLHY cannot complete their heading stage. Through the compatible interaction with the stripe rust physiological race CYR32, Chuannong 19 loses its immune capability toward the stripe rust pathogen, indicating that TaLHY may regulate and participate in the heading of wheat, as well as the defense responses against stripe rust infection.

  1. Metabolic engineering of apple by overexpression of the MdMyb10 gene

    Directory of Open Access Journals (Sweden)

    Khaled A.L. Rihani

    2017-06-01

    In the present study, the flavonoid pathway was successfully modified in apple by overexpressing the MdMyb10 transcription factor to validate the hypothesis of increased effect on plant disease resistance.

  2. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    Science.gov (United States)

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of

  3. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling.

    Science.gov (United States)

    Persak, Helene; Pitzschke, Andrea

    2013-01-01

    Abiotic stress poses a huge, ever-increasing problem to plants and agriculture. The dissection of signalling pathways mediating stress tolerance is a prerequisite to develop more resistant plant species. Mitogen-activated protein kinase (MAPK) cascades are universal signalling modules. In Arabidopsis, the MAPK MPK3 and its upstream regulator MAPK kinase MKK4 initiate the adaptation response to numerous abiotic and biotic stresses. Yet, molecular steps directly linked with MKK4-MPK3 activation are largely unknown. Starting with a yeast-two-hybrid screen for interacting partners of MKK4, we identified a transcription factor, MYB44. MYB44 is controlled at multiple levels by and strongly inter-connected with MAPK signalling. As we had shown earlier, stress-induced expression of the MYB44 gene is regulated by a MPK3-targeted bZIP transcription factor VIP1. At the protein level, MYB44 interacts with MPK3 in vivo. MYB44 is phosphorylated by MPK3 in vitro at a single residue, Ser145. Although replacement of Ser145 by a non-phosphorylatable (S145A) or phosphomimetic (S145D) residue did not alter MYB44 subcellular localisation, dimerization behaviour nor DNA-binding characteristics, abiotic stress tolerance tests in stable transgenic Arabidopsis plants clearly related S145 phosphorylation to MYB44 function: Compared to Arabidopsis wild type plants, MYB44 overexpressing lines exhibit an enhanced tolerance to osmotic stress and are slightly more sensitive to abscisic acid. Interestingly, overexpression of the S145A variant revealed that impaired phosphorylation does not render the MYB44 protein non-functional. Instead, S145A lines are highly sensitive to abiotic stress, and thereby remarkably similar to mpk3-deficient plants. Its in vivo interaction with the nuclear sub-pools of both MPK3 and MKK4 renders MYB44 the first plant transcription factor to have a second function as putative MAPK cascade scaffolding protein.

  4. c-Myb knockdown increases the neomycin-induced damage to hair-cell-like HEI-OC1 cells in vitro

    OpenAIRE

    Xiaoyu Yu; Wenwen Liu; Zhaomin Fan; Fuping Qian; Daogong Zhang; Yuechen Han; Lei Xu; Gaoying Sun; Jieyu Qi; Shasha Zhang; Mingliang Tang; Jianfeng Li; Renjie Chai; Haibo Wang

    2017-01-01

    c-Myb is a transcription factor that plays a key role in cell proliferation, differentiation, and apoptosis. It has been reported that c-Myb is expressed within the chicken otic placode, but whether c-Myb exists in the mammalian cochlea, and how it exerts its effects, has not been explored yet. Here, we investigated the expression of c-Myb in the postnatal mouse cochlea and HEI-OC1 cells and found that c-Myb was expressed in the hair cells (HCs) of mouse cochlea as well as in cultured HEI-OC1...

  5. The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98.

    Science.gov (United States)

    Punwani, Jayson A; Rabiger, David S; Lloyd, Alan; Drews, Gary N

    2008-08-01

    The female gametophyte contains two synergid cells that play a role in many steps of the angiosperm reproductive process, including pollen tube guidance. At their micropylar poles, the synergid cells have a thickened and elaborated cell wall: the filiform apparatus that is thought to play a role in the secretion of the pollen tube attractant(s). MYB98 regulates an important subcircuit of the synergid gene regulatory network (GRN) that functions to activate the expression of genes required for pollen tube guidance and filiform apparatus formation. The MYB98 subcircuit comprises at least 83 downstream genes, including 48 genes within four gene families (CRP810, CRP3700, CRP3730 and CRP3740) that encode Cys-rich proteins. We show that the 11 CRP3700 genes, which include DD11 and DD18, are regulated by a common cis-element, GTAACNT, and that a multimer of this sequence confers MYB98-dependent synergid expression. The GTAACNT element contains the MYB98-binding site identified in vitro, suggesting that the 11 CRP3700 genes are direct targets of MYB98. We also show that five of the CRP810 genes, which include DD2, lack a functional GTAACNT element, suggesting that they are not directly regulated by MYB98. In addition, we show that the five CRP810 genes are regulated by the cis-element AACGT, and that a multimer of this sequence confers synergid expression. Together, these results suggest that the MYB98 branch of the synergid GRN is multi-tiered and, therefore, contains at least one additional downstream transcription factor.

  6. c-Myb knockdown increases the neomycin-induced damage to hair-cell-like HEI-OC1 cells in vitro.

    Science.gov (United States)

    Yu, Xiaoyu; Liu, Wenwen; Fan, Zhaomin; Qian, Fuping; Zhang, Daogong; Han, Yuechen; Xu, Lei; Sun, Gaoying; Qi, Jieyu; Zhang, Shasha; Tang, Mingliang; Li, Jianfeng; Chai, Renjie; Wang, Haibo

    2017-01-23

    c-Myb is a transcription factor that plays a key role in cell proliferation, differentiation, and apoptosis. It has been reported that c-Myb is expressed within the chicken otic placode, but whether c-Myb exists in the mammalian cochlea, and how it exerts its effects, has not been explored yet. Here, we investigated the expression of c-Myb in the postnatal mouse cochlea and HEI-OC1 cells and found that c-Myb was expressed in the hair cells (HCs) of mouse cochlea as well as in cultured HEI-OC1 cells. Next, we demonstrated that c-Myb expression was decreased in response to neomycin treatment in both cochlear HCs and HEI-OC1 cells, suggesting an otoprotective role for c-Myb. We then knocked down c-Myb expression with shRNA transfection in HEI-OC1 cells and found that c-Myb knockdown decreased cell viability, increased expression of pro-apoptotic factors, and enhanced cell apoptosis after neomycin insult. Mechanistic studies revealed that c-Myb knockdown increased cellular levels of reactive oxygen species and decreased Bcl-2 expression, both of which are likely to be responsible for the increased sensitivity of c-Myb knockdown cells to neomycin. This study provides evidence that c-Myb might serve as a new target for the prevention of aminoglycoside-induced HC loss.

  7. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor.

    Science.gov (United States)

    Abuqamar, Synan; Luo, Hongli; Laluk, Kristin; Mickelbart, Michael V; Mengiste, Tesfaye

    2009-04-01

    Plants deploy diverse molecular and cellular mechanisms to survive in stressful environments. The tomato (Solanum lycopersicum) abscisic acid-induced myb1 (SlAIM1) gene encoding an R2R3MYB transcription factor is induced by pathogens, plant hormones, salinity and oxidative stress, suggesting a function in pathogen and abiotic stress responses. Tomato SlAIM1 RNA interference (RNAi) plants with reduced SlAIM1 gene expression show an increased susceptibility to the necrotrophic fungus Botrytis cinerea, and increased sensitivity to salt and oxidative stress. Ectopic expression of SlAIM1 is sufficient for tolerance to high salinity and oxidative stress. These responses correlate with reduced sensitivity to abscisic acid (ABA) in the SlAIM1 RNAi, but increased sensitivity in the overexpression plants, suggesting SlAIM1-mediated ABA responses are required to integrate tomato responses to biotic and abiotic stresses. Interestingly, when exposed to high root-zone salinity levels, SlAIM1 RNAi plants accumulate more Na(+), whereas the overexpression lines accumulate less Na(+) relative to wild-type plants, suggesting that SlAIM1 regulates ion fluxes. Transmembrane ion flux is a hallmark of early responses to abiotic stress and pathogen infection preceding hypersensitive cell death and necrosis. Misregulation of ion fluxes can result in impaired plant tolerance to necrotrophic infection or abiotic stress. Our data reveal a previously uncharacterized connection between ABA, Na(+) homeostasis, oxidative stress and pathogen response, and shed light on the genetic control of crosstalk between plant responses to pathogens and abiotic stress. Together, our data suggest SlAIM1 integrates plant responses to pathogens and abiotic stresses by modulating responses to ABA.

  8. 苹果MdMYB121基因异位表达提高烟草的抗逆性%Ectopic Expression of MdMYB121 Gene Enhances Tolerance to Abiotic Stresses in Tobacco

    Institute of Scientific and Technical Information of China (English)

    曹忠慧; 王荣凯; 郝玉金

    2013-01-01

    苹果MdMYB121(序列号MDP0000196982)蛋白具有典型的R2R3MYB结构域,半定量RT-PCR检测发现,MdMYB1 21表达能被多种非生物胁迫和逆境相关激素不同程度地诱导.采用RT-PCR技术克隆出该基因的全长eDNA,构建其表达载体并侵染烟草,获得转基因植株.表型分析发现,与野生型对照相比,转基因烟草的种子萌发对盐胁迫不敏感,幼苗的抗盐性也得到明显提高;相对于野生型幼苗,转基因幼苗生长对水杨酸(SA)处理不敏感,根和茎较长,侧根更多.转基因烟草植株对高盐、干旱和低温的抗性比野生型对照明显提高.表明MdMYB121能够响应非生物胁迫,在植物抵抗非生物胁迫中具有重要功能.%Apple MdMYB121 (sequence ID MDP0000196982) protein has typical R2R3MYB domains.Semi-quantitative RT-PCR analysis showed that MdMYB121 gene was induced by various abiotic stresses and stress-related hormones to different extents.The full-cDNA of MdMYB121 gene was amplified with RT-PCR and inserted downstream Cauliflower mosaic virus 35S CaMV promoter into an expression vector pBI121.Subsequently,it was genetically transformed into tobacco.Three transgenic tobacco lines were used for further investigation.The result showed that the seed germination and seedling growth of transgenic lines were more insensitive to high salinity than the WT control.In addition,the growth of transgenic seedlings was also less insensitive to salicylic acid (SA) than the WT control,as indicated with longer roots,hypocotyls,and more lateral roots in transgenic lines than WT.Finally,abiotic stresses tolerance assays were conducted for transgenic plants in soil.The result showed that transgenic plants were more tolerant to high salinity,drought and cold than the WT control.Therefore,MdMYB121 is induced by multiple abiotic stresses,and is involved in the responses to and the fight against abiotic stresses.

  9. Analysis list: Myb [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Myb Blood,Gonad + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Myb.1.tsv http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Myb.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-...u/mm9/target/Myb.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Myb.Blood.tsv,http://dbarchive.b...iosciencedbc.jp/kyushu-u/mm9/colo/Myb.Gonad.tsv http://dbarchive.biosciencedbc.jp.../kyushu-u/mm9/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Gonad.gml ...

  10. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    O'Rourke John P

    2011-01-01

    Full Text Available Abstract Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer

  11. RFX2 is a candidate downstream amplifier of A-MYB regulation in mouse spermatogenesis

    Directory of Open Access Journals (Sweden)

    Kistler Malathi K

    2009-12-01

    Full Text Available Abstract Background Mammalian spermatogenesis involves formation of haploid cells from the male germline and then a complex morphological transformation to generate motile sperm. Focusing on meiotic prophase, some tissue-specific transcription factors are known (A-MYB or suspected (RFX2 to play important roles in modulating gene expression in pachytene spermatocytes. The current work was initiated to identify both downstream and upstream regulatory connections for Rfx2. Results Searches of pachytene up-regulated genes identified high affinity RFX binding sites (X boxes in promoter regions of several new genes: Adam5, Pdcl2, and Spag6. We confirmed a strong promoter-region X-box for Alf, a germ cell-specific variant of general transcription factor TFIIA. Using Alf as an example of a target gene, we showed that its promoter is stimulated by RFX2 in transfected cells and used ChIP analysis to show that the promoter is occupied by RFX2 in vivo. Turning to upstream regulation of the Rfx2 promoter, we identified a cluster of three binding sites (MBS for the MYB family of transcription factors. Because testis is one of the few sites of A-myb expression, and because spermatogenesis arrests in pachytene in A-myb knockout mice, the MBS cluster implicates Rfx2 as an A-myb target. Electrophoretic gel-shift, ChIP, and co-transfection assays all support a role for these MYB sites in Rfx2 expression. Further, Rfx2 expression was virtually eliminated in A-myb knockout testes. Immunohistology on testis sections showed that A-MYB expression is up-regulated only after pachytene spermatocytes have clearly moved away from the tubule wall, which correlates with onset of RFX2 expression, whereas B-MYB expression, by contrast, is prevalent only in earlier spermatocytes and spermatogonia. Conclusion With an expanding list of likely target genes, RFX2 is potentially an important transcriptional regulator in pachytene spermatocytes. Rfx2 itself is a good candidate to be

  12. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defences in Arabidopsis.

    Science.gov (United States)

    Lü, B-B; Li, X-J; Sun, W-W; Li, L; Gao, R; Zhu, Q; Tian, S-M; Fu, M-Q; Yu, H-L; Tang, X-M; Zhang, C-L; Dong, H-S

    2013-09-01

    Recently we showed that the transcription activator AtMYB44 regulates expression of EIN2, a gene essential for ethylene signalling and insect resistance, in Arabidopsis thaliana (Arabidopsis). To link the transactivation with insect resistance, we investigated the wild-type and atmyb44 mutant plants, genetically Complemented atmyb44 (Catmyb44) and AtMYB44-Overexpression Transgenic Arabidopsis (MYB44OTA). We found that AtMYB44 played a critical role in Arabidopsis resistance to the phloem-feeding generalist green peach aphid (Myzus persicae Sulzer) and leaf-chewing specialist caterpillar diamondback moth (Plutella xylostella L.). AtMYB44 was required not only for the development of constitutive resistance but also for the induction of resistance by both herbivorous insects. Levels of constitutive and herbivore-induced resistance were consistent with corresponding amounts of the AtMYB44 protein constitutively produced in MYB44OTA and induced by herbivory in Catmyb44. In both cases, AtMYB44 promoted EIN2 expression to a greater extent in MYB44OTA than in Catmyb44. However, AtMYB44-promoted EIN2 expression was arrested with reduced resistance levels in the EIN2-deficient Arabidopsis mutant ein2-1 and the MYB44OTA ein2-1 hybrid. In the different plant genotypes, only MYB44OTA constitutively displayed phloem-based defences, which are specific to phloem-feeding insects, and robust expression of genes involved in the biosynthesis of glucosinolates, which are the secondary plant metabolites known as deterrents to generalist herbivores. Phloem-based defences and glucosinolate-related gene expression were not detected in ein2-1 and MYB44OTA ein2-1. These results establish a genetic connection between the regulatory role of AtMYB44 in EIN2 expression and the development of Arabidopsis resistance to insects.

  13. The Petal-Specific InMYB1 Promoter Functions by Recognizing Petaloid Cells.

    Science.gov (United States)

    Azuma, Mirai; Mitsuda, Nobutaka; Goto, Koji; Oshima, Yoshimi; Ohme-Takagi, Masaru; Otagaki, Shungo; Matsumoto, Shogo; Shiratake, Katsuhiro

    2016-03-01

    The InMYB1 gene in Japanese morning glory (Ipomoea nil) is a member of the MYB transcription factor family. The promoter of InMYB1 has been reported to induce petal-specific gene expression in Arabidopsis and Eustoma, and has the same function in several other dicotyledonous plants. Most flowers consist of sepals, petals, stamens and a carpel, whose identity establishment is explained by the ABC model. The establishment of the identity of petals is determined by the expression of class A and B genes in whorl 2. The aim of this study was to clarify whether the InMYB1 promoter functions by recognizing whorl position or petal identity by examining its activity in various mutant and transgenic Arabidopsis thaliana plants in which genes related to the ABC model have been modified. In plants defective in class C gene function, the InMYB1 promoter functioned not only in petals generated in whorl 2 but also in petaloid organs generated in whorl 3; while in the plants defective in class B gene function, the InMYB1 promoter did not function in the sepaloid organs generated in whorl 2. Plants overexpressing class A, B and E genes set flowers with petaloid sepals in whorl 1, i.e. the lateral parts were white and looked like petals, while the central parts were green and looked like sepals. The InMYB1 promoter functioned in the lateral white parts but not in the central green parts. These results show that the InMYB1 promoter functions by recognizing petal identity at the cellular level rather than the whorl position. The petal-specific function of the InMYB1 promoter could be used as a marker to identify petaloid cells.

  14. Characterization of a Cotton Fiber Gene Promoter

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cotton fibers are unicellular trichomes derived from outer integument cells of the ovule.Our previously study showed that cotton R2R3 MYB transcript factor GaMYB2 could complement the Arabidopsis trichome mutant of glabra1(gl1),suggesting that cotton fiber initiation and Arabidopsis leaf

  15. The Myb domain of LUX ARRHYTHMO in complex with DNA: expression, purification and crystallization.

    Science.gov (United States)

    Silva, Catarina S; Lai, Xuelei; Nanao, Max; Zubieta, Chloe

    2016-05-01

    LUX ARRHYTHMO (LUX) is a Myb-domain transcription factor that plays an important role in regulating the circadian clock. Lux mutations cause severe clock defects and arrhythmia in constant light and dark. In order to examine the molecular mechanisms underlying the function of LUX, the DNA-binding Myb domain was cloned, expressed and purified. The DNA-binding activity of the Myb domain was confirmed using electrophoretic mobility shift assays (EMSAs), demonstrating that the LUX Myb domain is able to bind to DNA with nanomolar affinity. In order to investigate the specificity determinants of protein-DNA interactions, the protein was co-crystallized with a 10-mer cognate DNA. Initial crystallization results for the selenomethionine-derivatized protein and data-set collection statistics are reported. Data collection was performed using the MeshAndCollect workflow available at the ESRF.

  16. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    Cells respond to DNA damage by activating cell cycle checkpoints to delay proliferation and facilitate DNA repair. Here, to uncover new checkpoint regulators, we perform RNA interference screening targeting genes involved in ubiquitylation processes. We show that the F-box protein cyclin F plays...... an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  17. Heterologous expression of IbMYB1a by different promoters exhibits different patterns of anthocyanin accumulation in tobacco.

    Science.gov (United States)

    An, Chul Han; Lee, Ki-Won; Lee, Sang-Hoon; Jeong, Yu Jeong; Woo, Su Gyoung; Chun, Hyokon; Park, Youn-Il; Kwak, Sang-Soo; Kim, Cha Young

    2015-04-01

    We previously reported that the transient and stable expression of IbMYB1a produced anthocyanin pigmentation in tobacco leaves and transgenic Arabidopsis plants, respectively. To further determine the effects of different promoters on the expression of IbMYB1a and anthocyanin production, we generated and characterized stably transformed tobacco (Nicotiana tabacum SR1) plants expressing IbMYB1a under the control of three different promoters. We compared the differences in anthocyanin accumulation patterns and phenotypic features of the leaves of these transgenic tobacco plants during growth. Expression of IbMYB1a under the control of these three different promoters led to a remarkable variation in anthocyanin pigmentation in tobacco leaves. The anthocyanin contents of the leaves of the SPO-IbMYB1a-OX (SPO-M) line were higher than those of the SWPA2-IbMYB1a-OX (SPA-M) and 35S-IbMYB1a-OX (35S-M) lines. High levels of anthocyanin pigments negatively affected plant growth in the SPO-M lines, resulting delayed growth and, occasionally, a stunted phenotype. Furthermore, HPLC analysis revealed that transcriptional regulation of IbMYB1a led to the production of cyanidin-based anthocyanins in the tobacco plants. In addition, RT-PCR analysis revealed that IbMYB1a expression induced the up-regulation of several structural genes in the anthocyanin biosynthetic pathway, including DFR and ANS. Differential expression levels of IbMYB1a under the control of different promoters were highly correlated with the expression levels of the structural genes, thereby affecting anthocyanin production levels. These results indicate that IbMYB1a positively controls the expression of multiple anthocyanin biosynthetic genes and anthocyanin accumulation in heterologous tobacco plants.

  18. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots.

    Science.gov (United States)

    Zamioudis, Christos; Hanson, Johannes; Pieterse, Corné M J

    2014-10-01

    Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditions of iron deficiency. Here, we investigated the role of MYB72 in both processes. To identify MYB72 target genes, we analyzed the root transcriptomes of wild-type Col-0, mutant myb72 and complemented 35S:FLAG-MYB72/myb72 plants in response to ISR-inducing Pseudomonas fluorescens WCS417. Five WCS417-inducible genes were misregulated in myb72 and complemented in 35S:FLAG-MYB72/myb72. Amongst these, we uncovered β-glucosidase BGLU42 as a novel component of the ISR signaling pathway. Overexpression of BGLU42 resulted in constitutive disease resistance, whereas the bglu42 mutant was defective in ISR. Furthermore, we found 195 genes to be constitutively upregulated in MYB72-overexpressing roots in the absence of WCS417. Many of these encode enzymes involved in the production of iron-mobilizing phenolic metabolites under conditions of iron deficiency. We provide evidence that BGLU42 is required for their release into the rhizosphere. Together, this work highlights a thus far unidentified link between the ability of beneficial rhizobacteria to stimulate systemic immunity and mechanisms induced by iron deficiency in host plants.

  19. Characterization of Members of the MYB Gene Family Expressed in Cotton Ovules%棉花胚珠中表达的MYB基因家族的特征

    Institute of Scientific and Technical Information of China (English)

    Xiao-e LIANG; Jin-feng SUO; Yong-biao XUE

    2002-01-01

    @@ The Myb family of proteins is a group of functionally diverse transcriptional activators found in both plants and animals that is characterized by a conserved DNA binding domain of approximately 50 amino acids. In plants, Myb proteins are involved in control of numerous biosynthetic and differentiation pathways including anthocyanin and flavonoid production and trichome differentiation.

  20. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 in Arabidopsis roots during onset of induced systemic resistance and iron deficiency responses

    NARCIS (Netherlands)

    Zamioudis, C.; Korteland, J.; Van Pelt, J.A.; Van Hamersveld, M.; Dombrowski, N.; Bai, Y.; Hanson, J.; Van Verk, M.C.; Ling, H.-Q.; Schulze-Lefert, P.; Pieterse, C.M.J.

    2015-01-01

    In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synth

  1. MYB elongation is regulated by the nucleic acid binding of NFκB p50 to the intronic stem-loop region.

    Directory of Open Access Journals (Sweden)

    Lloyd A Pereira

    Full Text Available MYB transcriptional elongation is regulated by an attenuator sequence within intron 1 that has been proposed to encode a RNA stem loop (SLR followed by a polyU tract. We report that NFκBp50 can bind the SLR polyU RNA and promote MYB transcriptional elongation together with NFκBp65. We identified a conserved lysine-rich motif within the Rel homology domain (RHD of NFκBp50, mutation of which abrogated the interaction of NFκBp50 with the SLR polyU and impaired NFκBp50 mediated MYB elongation. We observed that the TAR RNA-binding region of Tat is homologous to the NFκBp50 RHD lysine-rich motif, a finding consistent with HIV Tat acting as an effector of MYB transcriptional elongation in an SLR dependent manner. Furthermore, we identify the DNA binding activity of NFκBp50 as a key component required for the SLR polyU mediated regulation of MYB. Collectively these results suggest that the MYB SLR polyU provides a platform for proteins to regulate MYB and reveals novel nucleic acid binding properties of NFκBp50 required for MYB regulation.

  2. Duplication and maintenance of the Myb genes of vertebrate animals

    Directory of Open Access Journals (Sweden)

    Colin J. Davidson

    2012-11-01

    Gene duplication is an important means of generating new genes. The major mechanisms by which duplicated genes are preserved in the face of purifying selection are thought to be neofunctionalization, subfunctionalization, and increased gene dosage. However, very few duplicated gene families in vertebrate species have been analyzed by functional tests in vivo. We have therefore examined the three vertebrate Myb genes (c-Myb, A-Myb, and B-Myb by cytogenetic map analysis, by sequence analysis, and by ectopic expression in Drosophila. We provide evidence that the vertebrate Myb genes arose by two rounds of regional genomic duplication. We found that ubiquitous expression of c-Myb and A-Myb, but not of B-Myb or Drosophila Myb, was lethal in Drosophila. Expression of any of these genes during early larval eye development was well tolerated. However, expression of c-Myb and A-Myb, but not of B-Myb or Drosophila Myb, during late larval eye development caused drastic alterations in adult eye morphology. Mosaic analysis implied that this eye phenotype was cell-autonomous. Interestingly, some of the eye phenotypes caused by the retroviral v-Myb oncogene and the normal c-Myb proto-oncogene from which v-Myb arose were quite distinct. Finally, we found that post-translational modifications of c-Myb by the GSK-3 protein kinase and by the Ubc9 SUMO-conjugating enzyme that normally occur in vertebrate cells can modify the eye phenotype caused by c-Myb in Drosophila. These results support a model in which the three Myb genes of vertebrates arose by two sequential duplications. The first duplication was followed by a subfunctionalization of gene expression, then neofunctionalization of protein function to yield a c/A-Myb progenitor. The duplication of this progenitor was followed by subfunctionalization of gene expression to give rise to tissue-specific c-Myb and A-Myb genes.

  3. Experimental and molecular dynamics studies showed that CBP KIX mutation affects the stability of CBP:c-Myb complex.

    Science.gov (United States)

    Odoux, Anne; Jindal, Darren; Tamas, Tamara C; Lim, Benjamin W H; Pollard, Drake; Xu, Wu

    2016-06-01

    The coactivators CBP (CREBBP) and its paralog p300 (EP300), two conserved multi-domain proteins in eukaryotic organisms, regulate gene expression in part by binding DNA-binding transcription factors. It was previously reported that the CBP/p300 KIX domain mutant (Y650A, A654Q, and Y658A) altered both c-Myb-dependent gene activation and repression, and that mice with these three point mutations had reduced numbers of platelets, B cells, T cells, and red blood cells. Here, our transient transfection assays demonstrated that mouse embryonic fibroblast cells containing the same mutations in the KIX domain and without a wild-type allele of either CBP or p300, showed decreased c-Myb-mediated transcription. Dr. Wright's group solved a 3-D structure of the mouse CBP:c-Myb complex using NMR. To take advantage of the experimental structure and function data and improved theoretical calculation methods, we performed MD simulations of CBP KIX, CBP KIX with the mutations, and c-Myb, as well as binding energy analysis for both the wild-type and mutant complexes. The binding between CBP and c-Myb is mainly mediated by a shallow hydrophobic groove in the center where the side-chain of Leu302 of c-Myb plays an essential role and two salt bridges at the two ends. We found that the KIX mutations slightly decreased stability of the CBP:c-Myb complex as demonstrated by higher binding energy calculated using either MM/PBSA or MM/GBSA methods. More specifically, the KIX mutations affected the two salt bridges between CBP and c-Myb (CBP-R646 and c-Myb-E306; CBP-E665 and c-Myb-R294). Our studies also revealed differing dynamics of the hydrogen bonds between CBP-R646 and c-Myb-E306 and between CBP-E665 and c-Myb-R294 caused by the CBP KIX mutations. In the wild-type CBP:c-Myb complex, both of the hydrogen bonds stayed relatively stable. In contrast, in the mutant CBP:c-Myb complex, hydrogen bonds between R646 and E306 showed an increasing trend followed by a decreasing trend, and hydrogen

  4. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses.

    Science.gov (United States)

    Zamioudis, Christos; Korteland, Jolanda; Van Pelt, Johan A; van Hamersveld, Muriël; Dombrowski, Nina; Bai, Yang; Hanson, Johannes; Van Verk, Marcel C; Ling, Hong-Qing; Schulze-Lefert, Paul; Pieterse, Corné M J

    2015-10-01

    In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synthesis and excretion of iron-mobilizing phenolic compounds in the rhizosphere, a process that is involved in both iron acquisition and ISR signaling. Here, we show that volatile organic compounds (VOCs) from ISR-inducing Pseudomonas bacteria are important elicitors of MYB72. In response to VOC treatment, MYB72 is co-expressed with the iron uptake-related genes FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER 1 (IRT1) in a manner that is dependent on FER-LIKE IRON DEFICIENCY TRANSCRIPTION FACTOR (FIT), indicating that MYB72 is an intrinsic part of the plant's iron-acquisition response that is typically activated upon iron starvation. However, VOC-induced MYB72 expression is activated independently of iron availability in the root vicinity. Moreover, rhizobacterial VOC-mediated induction of MYB72 requires photosynthesis-related signals, while iron deficiency in the rhizosphere activates MYB72 in the absence of shoot-derived signals. Together, these results show that the ISR- and iron acquisition-related transcription factor MYB72 in Arabidopsis roots is activated by rhizobacterial volatiles and photosynthesis-related signals, and enhances the iron-acquisition capacity of roots independently of the iron availability in the rhizosphere. This work highlights the role of MYB72 in plant processes by which root microbiota simultaneously stimulate systemic immunity and activate the iron-uptake machinery in their host plants.

  5. Overexpression of SbMyb60 in sorghum bicolor impacts both primary and secondary metabolism

    Science.gov (United States)

    Few transcription factors have been identified in C4 grasses that either positively or negatively regulate monolignol biosynthesis. Previously, overexpression of SbMyb60 in sorghum (Sorghum bicolor (L.) Moench) was shown to induce monolignol synthesis, which led to elevated lignin deposition and al...

  6. A putative MYB35 ortholog is a candidate for the sex-determining genes in Asparagus officinalis.

    Science.gov (United States)

    Tsugama, Daisuke; Matsuyama, Kohei; Ide, Mayui; Hayashi, Masato; Fujino, Kaien; Masuda, Kiyoshi

    2017-02-08

    Asparagus officinalis (garden asparagus) is a dioecious perennial crop. For agricultural production of A. officinalis, male plants have advantages over female plants. The dioecism of A. officinalis is determined by the single dominant masculinizing M locus, which is involved in tapetal cell development in stamens, but thus far no specific M locus genes have been identified. We re-analyzed previously published RNA-Seq data for the A. officinalis transcriptome, cloned some genes, and discovered that a putative ortholog of MYB35, which is indispensable for tapetal cell development in Arabidopsis thaliana, is absent in the genome of female plants in A. officinalis. In a reverse transcription-PCR analysis, this gene (AoMYB35) exhibited strong expression in stamens in male flowers at an early developmental stage. In an in situ hybridization analysis, AoMYB35 mRNA was detected in tapetal cells in young male flowers. GFP-fused AoMYB35 was detected in the nucleus when expressed in onion epidermal cells. These results suggest that AoMYB35 is a male-specific gene encoding a putative transcription factor that acts in tapetal cells at an early stage of flower development in A. officinalis. Together, the results support the idea that AoMYB35 is a candidate for one of the M locus genes in A. officinalis.

  7. Identification of Arabidopsis MYB56 as a novel substrate for CRL3(BPM) E3 ligases.

    Science.gov (United States)

    Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo

    2015-02-01

    Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work, MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies have indicated that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling flowering time in plants. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  8. Interaction of the transactivation domain of B-Myb with the TAZ2 domain of the coactivator p300: molecular features and properties of the complex.

    Directory of Open Access Journals (Sweden)

    Ojore Oka

    Full Text Available The transcription factor B-Myb is a key regulator of the cell cycle in vertebrates, with activation of transcription involving the recognition of specific DNA target sites and the recruitment of functional partner proteins, including the coactivators p300 and CBP. Here we report the results of detailed studies of the interaction between the transactivation domain of B-Myb (B-Myb TAD and the TAZ2 domain of p300. The B-Myb TAD was characterized using circular dichroism, fluorescence and NMR spectroscopy, which revealed that the isolated domain exists as a random coil polypeptide. Pull-down and spectroscopic experiments clearly showed that the B-Myb TAD binds to p300 TAZ2 to form a moderately tight (K(d ~1.0-10 µM complex, which results in at least partial folding of the B-Myb TAD. Significant changes in NMR spectra of p300 TAZ2 suggest that the B-Myb TAD binds to a relatively large patch on the surface of the domain (~1200 Å(2. The apparent B-Myb TAD binding site on p300 TAZ2 shows striking similarity to the surface of CBP TAZ2 involved in binding to the transactivation domain of the transcription factor signal transducer and activator of transcription 1 (STAT1, which suggests that the structure of the B-Myb TAD-p300 TAZ2 complex may share many features with that reported for STAT1 TAD-p300 TAZ2.

  9. The VviMYB80 Gene is Abnormally Expressed in Vitis vinifera L. cv. 'Zhong Shan Hong' and its Expression in Tobacco Driven by the 35S Promoter Causes Male Sterility.

    Science.gov (United States)

    Zheng, Huan; Yu, Xiaojuan; Yuan, Yue; Zhang, Yaguang; Zhang, Zhen; Zhang, Jiyu; Zhang, Meng; Ji, Chenfei; Liu, Qian; Tao, Jianmin

    2016-03-01

    Anther development is a very precise and complicated process. In Arabidopsis, the AtMYB80 transcription factor regulates genes involved in pollen development and controls the timing of tapetal programmed cell death (PCD). In this study, we isolated and characterized cDNA for VviMYB80 expressed in flower buds of male-sterile Vitis vinifera L. cv. 'Zhong Shan Hong', a late-maturing cultivar derived from self-progeny of cv. 'Wink'. VviMYB80 belongs to the MYB80 subfamily and clusters with AtMYB35/TDF1 in a distinct clade. We found that in flower buds, expression of the VviMYB80 gene in cv. 'Zhong Shan Hong' sharply increased at the tetrad stage, resulting in a higher and earlier transcript level than that found in cv. 'Wink'. Expression of the VviMYB80 gene, driven by the 35S promoter, caused pleiotropic effects on the stamens, including smaller and shriveled anthers, delayed dehiscence, fewer seeds, shorter anther filaments, distorted pollen shape and a lack of cytoplasm, with the tapetum exhibiting hypertrophy in transformed tobacco. These results suggest that VviMYB80 may play an important role in stamen development and that expression of VviMYB80 driven by the 35S promoter in tobacco induces male sterility. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2017-09-01

    Full Text Available MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit.

  11. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb.

    Science.gov (United States)

    Chen, Zeyu; Stelekati, Erietta; Kurachi, Makoto; Yu, Sixiang; Cai, Zhangying; Manne, Sasikanth; Khan, Omar; Yang, Xiaolu; Wherry, E John

    2017-09-12

    MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples.

    Science.gov (United States)

    Hu, Da-Gang; Sun, Cui-Hui; Ma, Qi-Jun; You, Chun-Xiang; Cheng, Lailiang; Hao, Yu-Jin

    2016-03-01

    Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H(+)-pumping activities of vacuolar H(+)-ATPase (VHA) and/or vacuolar H(+)-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H(+)-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants.

  13. Conformational control of the binding of the transactivation domain of the MLL protein and c-Myb to the KIX domain of CREB.

    Directory of Open Access Journals (Sweden)

    Elif Nihal Korkmaz

    Full Text Available The KIX domain of CBP is a transcriptional coactivator. Concomitant binding to the activation domain of proto-oncogene protein c-Myb and the transactivation domain of the trithorax group protein mixed lineage leukemia (MLL transcription factor lead to the biologically active ternary MLL∶KIX∶c-Myb complex which plays a role in Pol II-mediated transcription. The binding of the activation domain of MLL to KIX enhances c-Myb binding. Here we carried out molecular dynamics (MD simulations for the MLL∶KIX∶c-Myb ternary complex, its binary components and KIX with the goal of providing a mechanistic explanation for the experimental observations. The dynamic behavior revealed that the MLL binding site is allosterically coupled to the c-Myb binding site. MLL binding redistributes the conformational ensemble of KIX, leading to higher populations of states which favor c-Myb binding. The key element in the allosteric communication pathways is the KIX loop, which acts as a control mechanism to enhance subsequent binding events. We tested this conclusion by in silico mutations of loop residues in the KIX∶MLL complex and by comparing wild type and mutant dynamics through MD simulations. The loop assumed MLL binding conformation similar to that observed in the KIX∶c-Myb state which disfavors the allosteric network. The coupling with c-Myb binding site faded, abolishing the positive cooperativity observed in the presence of MLL. Our major conclusion is that by eliciting a loop-mediated allosteric switch between the different states following the binding events, transcriptional activation can be regulated. The KIX system presents an example how nature makes use of conformational control in higher level regulation of transcriptional activity and thus cellular events.

  14. Apple skin patterning is associated with differential expression of MYB10

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2011-05-01

    Full Text Available Abstract Background Some apple (Malus × domestica Borkh. varieties have attractive striping patterns, a quality attribute that is important for determining apple fruit market acceptance. Most apple cultivars (e.g. 'Royal Gala' produce fruit with a defined fruit pigment pattern, but in the case of 'Honeycrisp' apple, trees can produce fruits of two different kinds: striped and blushed. The causes of this phenomenon are unknown. Results Here we show that striped areas of 'Honeycrisp' and 'Royal Gala' are due to sectorial increases in anthocyanin concentration. Transcript levels of the major biosynthetic genes and MYB10, a transcription factor that upregulates apple anthocyanin production, correlated with increased anthocyanin concentration in stripes. However, nucleotide changes in the promoter and coding sequence of MYB10 do not correlate with skin pattern in 'Honeycrisp' and other cultivars differing in peel pigmentation patterns. A survey of methylation levels throughout the coding region of MYB10 and a 2.5 Kb region 5' of the ATG translation start site indicated that an area 900 bp long, starting 1400 bp upstream of the translation start site, is highly methylated. Cytosine methylation was present in all three contexts, with higher methylation levels observed for CHH and CHG (where H is A, C or T than for CG. Comparisons of methylation levels of the MYB10 promoter in 'Honeycrisp' red and green stripes indicated that they correlate with peel phenotypes, with an enrichment of methylation observed in green stripes. Conclusions Differences in anthocyanin levels between red and green stripes can be explained by differential transcript accumulation of MYB10. Different levels of MYB10 transcript in red versus green stripes are inversely associated with methylation levels in the promoter region. Although observed methylation differences are modest, trends are consistent across years and differences are statistically significant. Methylation may be

  15. The chicken miR-150 targets the avian orthologue of the functional zebrafish MYB 3'UTR target site

    Directory of Open Access Journals (Sweden)

    Guillon-Munos Audrey

    2010-09-01

    Full Text Available Abstract Background The c-myb proto-oncogene is the founding member of a family of transcription factors involved principally in haematopoiesis, in diverse organisms, from zebrafish to mammals. Its deregulation has been implicated in human leukaemogenesis and other cancers. The expression of c-myb is tightly regulated by post-transcriptional mechanisms involving microRNAs. MicroRNAs are small, highly conserved non-coding RNAs that inhibit translation and decrease mRNA stability by binding to regulatory motifs mostly located in the 3'UTR of target mRNAs conserved throughout evolution. MYB is an evolutionarily conserved miR-150 target experimentally validated in mice, humans and zebrafish. However, the functional miR-150 sites of humans and mice are orthologous, whereas that of zebrafish is different. Results We identified the avian mature miRNA-150-5P, Gallus gallus gga-miR-150 from chicken leukocyte small-RNA libraries and showed that, as expected, the gga-miR-150 sequence was highly conserved, including the seed region sequence present in the other miR-150 sequences listed in miRBase. Reporter assays showed that gga-miR-150 acted on the avian MYB 3'UTR and identified the avian MYB target site involved in gga-miR-150 binding. A comparative in silico analysis of the miR-150 target sites of MYB 3'UTRs from different species led to the identification of a single set of putative target sites in amphibians and zebrafish, whereas two sets of putative target sites were identified in chicken and mammals. However, only the target site present in the chicken MYB 3'UTR that was identical to that in zebrafish was functional, despite the additional presence of mammalian target sites in chicken. This specific miR-150 site usage was not cell-type specific and persisted when the chicken c-myb 3'UTR was used in the cell system to identify mammalian target sites, showing that this miR-150 target site usage was intrinsic to the chicken c-myb 3'UTR. Conclusion Our

  16. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses

    OpenAIRE

    Zamioudis, Christos; Korteland, Jolanda; van Pelt, Johan A.; van Hamersveld, Muriël; Dombrowski, Nina; Bai, Yang; Hanson, Johannes; van Verk, Marcel C.; Ling, Hong-Qing; Schulze-Lefert, Paul; Pieterse, Corné M. J.

    2015-01-01

    In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synthesis and excretion of iron-mobilizing phenolic compounds in the rhizosphere, a process that is involved in both iron acquisition and ISR signaling. Here, we show that volatile organic compounds (VO...

  17. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri.

    Science.gov (United States)

    Oshima, Yoshimi; Shikata, Masahito; Koyama, Tomotsugu; Ohtsubo, Norihiro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2013-05-01

    The waxy plant cuticle protects cells from dehydration, repels pathogen attack, and prevents organ fusion during development. The transcription factor WAX INDUCER1/SHINE1 (WIN1/SHN1) regulates the biosynthesis of waxy substances in Arabidopsis thaliana. Here, we show that the MIXTA-like MYB transcription factors MYB106 and MYB16, which regulate epidermal cell morphology, also regulate cuticle development coordinately with WIN1/SHN1 in Arabidopsis and Torenia fournieri. Expression of a MYB106 chimeric repressor fusion (35S:MYB106-SRDX) and knockout/down of MYB106 and MYB16 induced cuticle deficiencies characterized by organ adhesion and reduction of epicuticular wax crystals and cutin nanoridges. A similar organ fusion phenotype was produced by expression of a WIN1/SHN1 chimeric repressor. Conversely, the dominant active form of MYB106 (35S:MYB106-VP16) induced ectopic production of cutin nanoridges and increased expression of WIN1/SHN1 and wax biosynthetic genes. Microarray experiments revealed that MYB106 and WIN1/SHN1 regulate similar sets of genes, predominantly those involved in wax and cutin biosynthesis. Furthermore, WIN1/SHN1 expression was induced by MYB106-VP16 and repressed by MYB106-SRDX. These results indicate that the regulatory cascade of MIXTA-like proteins and WIN1/SHN1 coordinately regulate cutin biosynthesis and wax accumulation. This study reveals an additional key aspect of MIXTA-like protein function and suggests a unique relationship between cuticle development and epidermal cell differentiation.

  18. Tripartite interactions between Wnt signaling, Notch and Myb for stem/progenitor cell functions during intestinal tumorigenesis

    Directory of Open Access Journals (Sweden)

    Markus Germann

    2014-11-01

    Full Text Available Deletion studies confirm Wnt, Notch and Myb transcriptional pathway engagement in intestinal tumorigenesis. Nevertheless, their contrasting and combined roles when activated have not been elucidated. This is important as these pathways are not ablated but rather are aberrantly activated during carcinogenesis. Using ApcMin/+ mice as a source of organoids we documented their transition, on a clone-by-clone basis, to cyst-like spheres with constitutively activated Wnt pathway, increased self-renewal and growth and reduced differentiation. We then looked at this transition when Myb and/or Notch1 are activated. Activated Notch promoted cyst-like organoids. Conversely growth and propagation of cyst-like, but not normal organoids were Notch-independent. Activated Myb promoted normal, but not cyst-like organoids. Interestingly the Wnt, Notch and Myb pathways were all involved in regulating the expression of the intestinal stem cell (ISC gene Lgr5 in organoids, while ISC gene and Notch target Olfm4 was dominantly repressed by Wnt. These findings parallel mouse intestinal adenoma formation where Notch promoted the initiation, but not growth, of Wnt-driven Olfm4-repressed colon tumors. Also Myb was essential for colon tumor initiation and collateral mouse pathologies. These data reveal the complex interplay and hierarchy of transcriptional networks that operate in ISCs and uncover a shift in pathway-dependencies during tumor initiation.

  19. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes.

    Science.gov (United States)

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.

  20. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L. MYB10 and bHLH Genes.

    Directory of Open Access Journals (Sweden)

    Pavel Starkevič

    Full Text Available Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.

  1. Transcription Factors in Xylem Development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sederoff, Ronald; Whetten, Ross; O' Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  2. Transcription Factors in Xylem Development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sederoff, Ronald; Whetten, Ross; O' Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  3. Gene-Transformation-Induced Changes in Chemical Functional Group Features and Molecular Structure Conformation in Alfalfa Plants Co-Expressing Lc-bHLH and C1-MYB Transcriptive Flavanoid Regulatory Genes: Effects of Single-Gene and Two-Gene Insertion

    Directory of Open Access Journals (Sweden)

    Ravindra G. Heendeniya

    2017-03-01

    Full Text Available Alfalfa (Medicago sativa L. genotypes transformed with Lc-bHLH and Lc transcription genes were developed with the intention of stimulating proanthocyanidin synthesis in the aerial parts of the plant. To our knowledge, there are no studies on the effect of single-gene and two-gene transformation on chemical functional groups and molecular structure changes in these plants. The objective of this study was to use advanced molecular spectroscopy with multivariate chemometrics to determine chemical functional group intensity and molecular structure changes in alfalfa plants when co-expressing Lc-bHLH and C1-MYB transcriptive flavanoid regulatory genes in comparison with non-transgenic (NT and AC Grazeland (ACGL genotypes. The results showed that compared to NT genotype, the presence of double genes (Lc and C1 increased ratios of both the area and peak height of protein structural Amide I/II and the height ratio of α-helix to β-sheet. In carbohydrate-related spectral analysis, the double gene-transformed alfalfa genotypes exhibited lower peak heights at 1370, 1240, 1153, and 1020 cm−1 compared to the NT genotype. Furthermore, the effect of double gene transformation on carbohydrate molecular structure was clearly revealed in the principal component analysis of the spectra. In conclusion, single or double transformation of Lc and C1 genes resulted in changing functional groups and molecular structure related to proteins and carbohydrates compared to the NT alfalfa genotype. The current study provided molecular structural information on the transgenic alfalfa plants and provided an insight into the impact of transgenes on protein and carbohydrate properties and their molecular structure’s changes.

  4. A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis.

    Science.gov (United States)

    Yan, Yuanyuan; Shen, Lisha; Chen, Ying; Bao, Shengjie; Thong, Zhonghui; Yu, Hao

    2014-08-25

    Plants adjust the timing of the transition to flowering to ensure their reproductive success in changing environments. Temperature and light are major environmental signals that affect flowering time through converging on the transcriptional regulation of FLOWERING LOCUS T (FT) encoding the florigen in Arabidopsis. Here, we show that a MYB transcription factor EARLY FLOWERING MYB PROTEIN (EFM) plays an important role in directly repressing FT expression in the leaf vasculature. EFM mediates the effect of ambient temperature on flowering and is directly promoted by another major FT repressor, SHORT VEGETATIVE PHASE. EFM interacts with an H3K36me2 demethylase JMJ30, which forms a negative feedback regulatory loop with the light-responsive circadian clock, to specifically demethylate an active mark H3K36me2 at FT. Our results suggest that EFM is an important convergence point that mediates plant responses to temperature and light to determine the timing of reproduction.

  5. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types.

    Science.gov (United States)

    Kosma, Dylan K; Murmu, Jhadeswar; Razeq, Fakhria M; Santos, Patricia; Bourgault, Richard; Molina, Isabel; Rowland, Owen

    2014-10-01

    Suberin is a lipid and phenolic cell wall heteropolymer found in the roots and other organs of all vascular plants. Suberin plays a critical role in plant water relations and in protecting plants from biotic and abiotic stresses. Here we describe a transcription factor, AtMYB41 (At4g28110), that can activate the steps necessary for aliphatic suberin synthesis and deposition of cell wall-associated suberin-like lamellae in both Arabidopsis thaliana and Nicotiana benthamiana. Overexpression of AtMYB41 increased the abundance of suberin biosynthetic gene transcripts by orders of magnitude and resulted in the accumulation of up to 22 times more suberin-type than cutin-type aliphatic monomers in leaves. Overexpression of AtMYB41 also resulted in elevated amounts of monolignols in leaves and an increase in the accumulation of phenylpropanoid and lignin biosynthetic gene transcripts. Surprisingly, ultrastructural data indicated that overexpression led to the formation of suberin-like lamellae in both epidermal and mesophyll cells of leaves. We further implicate AtMYB41 in the production of aliphatic suberin under abiotic stress conditions. These results provide insight into the molecular-genetic mechanisms of the biosynthesis and deposition of a ubiquitous cell wall-associated plant structure and will serve as a basis for discovering the transcriptional network behind one of the most abundant lipid-based polymers in nature.

  6. Regulation of FeLV-945 by c-Myb binding and CBP recruitment to the LTR

    Directory of Open Access Journals (Sweden)

    Finstad Samantha L

    2004-09-01

    Full Text Available Abstract Background Feline leukemia virus (FeLV induces degenerative, proliferative and malignant hematologic disorders in its natural host, the domestic cat. FeLV-945 is a viral variant identified as predominant in a cohort of naturally infected animals. FeLV-945 contains a unique sequence motif in the long terminal repeat (LTR comprised of a single copy of transcriptional enhancer followed by a 21-bp sequence triplicated in tandem. The LTR is precisely conserved among independent cases of multicentric lymphoma, myeloproliferative disease and anemia in animals from the cohort. The 21-bp triplication was previously shown to act as a transcriptional enhancer preferentially in hematopoietic cells and to confer a replicative advantage. The objective of the present study was to examine the molecular mechanism by which the 21-bp triplication exerts its influence and the selective advantage responsible for its precise conservation. Results Potential binding sites for the transcription factor, c-Myb, were identified across the repeat junctions of the 21-bp triplication. Such sites would not occur in the absence of the repeat; thus, a requirement for c-Myb binding to the repeat junctions of the triplication would exert a selective pressure to conserve its sequence precisely. Electrophoretic mobility shift assays demonstrated specific binding of c-Myb to the 21-bp triplication. Reporter gene assays showed that the triplication-containing LTR is responsive to c-Myb, and that responsiveness requires the presence of both c-Myb binding sites. Results further indicated that c-Myb in complex with the 21-bp triplication recruits the transcriptional co-activator, CBP, a regulator of normal hematopoiesis. FeLV-945 replication was shown to be positively regulated by CBP in a manner dependent on the presence of the 21-bp triplication. Conclusion Binding sites for c-Myb across the repeat junctions of the 21-bp triplication may account for its precise conservation in

  7. 转录因子c-myb及肝脏激活蛋白对α1(Ⅰ)胶原基因在肝星状细胞中表达的调控作用%Regulation of transcription factors c-myb and liver activator protein on expression ofα1(I) collagen gene in activated hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    刘小菁

    2000-01-01

    目的:了解激活的HSC中c-myb及肝脏组织特异的转录因子—肝脏激活蛋白(liver activator protein,LAP)在α1(Ⅰ)基因表达调控中的作用。 方法:采用链霉蛋白酶,胶原酶原位灌注、Nycodenz密度梯度离心分离大鼠HSC,并进行体外培养使之激活。构建含人α1(Ⅰ)胶原基因启动子片段(-804~+1452或-804~+222碱基)的荧光素酶报告基因质粒。用构建的报告基因质粒与c-myb和(或)LAP表达质粒一起,用阳离子脂质体介导的方法,瞬时共转染激活的HSC。 结果:瞬时共转染LAP表达质粒可明显增强含α1(Ⅰ)基因第一内含子片段的荧光素酶报告基因(PGL3-col)及不含α1(Ⅰ)基因第一内含子的报告基因[PGL3-col(△intron)]报告基因在HSC中的表达[荧光素酶活性分别为每毫克蛋白(587±62)U对(315±45)U及(326±52)U对(220±70)U,t值分别为10.4和3.6,两者P值均小于0.05]。C-myb对这两个报告基因均无反式激活作用。但共转染c-myb及LAP表达质粒,却使PGL3-col报告基因在HSC中的表达增强近3倍[每毫克蛋白(1261±130)U对(315±45)U,t=20.6,P<0.01=,而共转染反义c-myb及LAP表达质粒,却抑制了LAP对α1(Ⅰ)基因启动子的反式激活作用[每毫克蛋白(334±29)U对(315± 45)U,t=1.06,P>0.05]。C-myb的这种作用只在 PGL3-col质粒中观察到。 结论:C-myb在α1(Ⅰ)基因转录调控中起重要作用,而此作用由转录因子LAP及α1(Ⅰ)基因第一内含子中的调控元件介导。%Objective: To elucidate the role of two transcription factors, c-myb and liver activator protein (LAP, a member of the C/EBP family) in the expression of α1(Ⅰ) collagen gene in activated hepatic stellate cells (HSCs). Methods: Rat HSCs were prepared from SD rats by in situ perfusion and single-step density Nycodenz gradient. Two chimeric luciferase reporter gene plasmids containing

  8. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits.

    Science.gov (United States)

    Schaart, Jan G; Dubos, Christian; Romero De La Fuente, Irene; van Houwelingen, Adèle M M L; de Vos, Ric C H; Jonker, Harry H; Xu, Wenjia; Routaboul, Jean-Marc; Lepiniec, Loïc; Bovy, Arnaud G

    2013-01-01

    Strawberry (Fragaria × ananassa) fruits contain high concentrations of flavonoids. In unripe strawberries, the flavonoids are mainly represented by proanthocyanidins (PAs), while in ripe fruits the red-coloured anthocyanins also accumulate. Most of the structural genes leading to PA biosynthesis in strawberry have been characterized, but no information is available on their transcriptional regulation. In Arabidopsis thaliana the expression of the PA biosynthetic genes is specifically induced by a ternary protein complex, composed of AtTT2 (AtMYB123), AtTT8 (AtbHLH042) and AtTTG1 (WD40-repeat protein). A strategy combining yeast-two-hybrid screening and agglomerative hierarchical clustering of transcriptomic and metabolomic data was undertaken to identify strawberry PA regulators. Among the candidate genes isolated, four were similar to AtTT2, AtTT8 and AtTTG1 (FaMYB9/FaMYB11, FabHLH3 and FaTTG1, respectively) and two encode putative negative regulators (FaMYB5 and FabHLH3∆). Interestingly, FaMYB9/FaMYB11, FabHLH3 and FaTTG1 were found to complement the tt2-1, tt8-3 and ttg1-1 transparent testa mutants, respectively. In addition, they interacted in yeast and activated the Arabidopsis BANYULS (anthocyanidin reductase) gene promoter when coexpressed in Physcomitrella patens protoplasts. Taken together, these results demonstrated that FaMYB9/FaMYB11, FabHLH3 and FaTTG1 are the respective functional homologues of AtTT2, AtTT8 and AtTTG1, providing new tools for modifying PA content and strawberry fruit quality.

  9. Soybean cyclophilin GmCYP1 interacts with an isoflavonoid regulator GmMYB176

    Science.gov (United States)

    Mainali, Hemanta Raj; Vadivel, Arun Kumaran Anguraj; Li, Xuyan; Gijzen, Mark; Dhaubhadel, Sangeeta

    2017-01-01

    Cyclophilins (CYPs) belong to the immunophilin superfamily with peptidyl-prolyl cis-trans isomerase (PPIase) activity. They catalyze the interconversion of the cis- and trans-rotamers of the peptidyl-prolyl amide bond of peptides. A yeast-two-hybrid screening using the isoflavonoid regulator GmMYB176 as bait identified GmCYP1 as one of the interacting proteins in soybean embryos. GmCYP1 localizes both in the nucleus and cytoplasm, and interacts in planta with GmMYB176, in the nucleus, and with SGF14l (a soybean 14-3-3 protein) in the nucleus and the cytoplasm. GmCYP1 contains a single cyclophilin-like domain and displays a high sequence identity with other plant CYPs that are known to have stress-specific function. Tissue-specific expression of GmCYP1 revealed higher expression in developing seeds compared to other vegetative tissues, suggesting their seed-specific role. Furthermore, GmCYP1 transcript level was reduced in response to stress. Since isoflavonoids are involved in plant stress resistance against biotic and abiotic factors, the interaction of GmCYP1 with the isoflavonoid regulators GmMYB176 and 14-3-3 protein suggests its role in defense in soybean. PMID:28074922

  10. Factor Analysis of MYB Gene Expression and Flavonoid Affecting Petal Color in Three Crabapple Cultivars

    Science.gov (United States)

    Zhang, Jie; Liu, Yingying; Bu, YuFen; Zhang, Xi; Yao, Yuncong

    2017-01-01

    Flavonoid biosynthesis has received much attention concerning the structural genes and expression of the associated transcription factors (TFs). In the present study, we examined the gene expression patterns for petals of three colors using a statistical method. Factor analysis was successfully used to examine the expression patterns most present during regulation. The first expression patterns in the white and red petals were clearly demonstrated and have revealed different mechanisms of producing the proper components, whereas that in the pink petals was more complex, requiring factor analysis to supplement the other results. Combining the results of the correlation analysis between TFs and structural genes, the effects of each TF on the main expression pattern in each cultivar were determined. Moreover, McMYB10 was implicated in the regulation of the gene expression pattern in red petals, and McMYB5 was implicated in the maintenance of the balance of the pigment components and proanthocyanin (PA) production in cooperation with McMYB4 to generate pigmentation in the pink petals.

  11. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots

    NARCIS (Netherlands)

    Zamioudis, Christos; Hanson, Johannes; Pieterse, Corné M J

    2014-01-01

    Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditi

  12. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple.

    Science.gov (United States)

    Tian, Ji; Peng, Zhen; Zhang, Jie; Song, Tingting; Wan, Huihua; Zhang, Meiling; Yao, Yuncong

    2015-09-01

    The ever-red leaf trait, which is important for breeding ornamental and higher anthocyanin plants, rarely appears in Malus families, but little is known about the regulation of anthocyanin biosynthesis involved in the red leaves. In our study, HPLC analysis showed that the anthocyanin concentration in ever-red leaves, especially cyanidin, was significantly higher than that in evergreen leaves. The transcript level of McMYB10 was significantly correlated with anthocyanin synthesis between the 'Royalty' and evergreen leaf 'Flame' cultivars during leaf development. We also found the ever-red leaf colour cultivar 'Royalty' contained the known R6 : McMYB10 sequence, but was not in the evergreen leaf colour cultivar 'Flame', which have been reported in apple fruit. The distinction in promoter region maybe is the main reason why higher expression level of McMYB10 in red foliage crabapple cultivar. Furthermore, McMYB10 promoted anthocyanin biosynthesis in crabapple leaves and callus at low temperatures and during long-day treatments. Both heterologous expression in tobacco (Nicotiana tabacum) and Arabidopsis pap1 mutant, and homologous expression in crabapple and apple suggested that McMYB10 could promote anthocyanins synthesis and enhanced anthocyanin accumulation in plants. Interestingly, electrophoretic mobility shift assays, coupled with yeast one-hybrid analysis, revealed that McMYB10 positively regulates McF3'H via directly binding to AACCTAAC and TATCCAACC motifs in the promoter. To sum up, our results demonstrated that McMYB10 plays an important role in ever-red leaf coloration, by positively regulating McF3'H in crabapple. Therefore, our work provides new perspectives for ornamental fruit tree breeding.

  13. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Lahortiga, Idoya; De Keersmaecker, Kim; Van Vlierberghe, Pieter; Graux, Carlos; Cauwelier, Barbara; Lambert, Frederic; Mentens, Nicole; Beverloo, H Berna; Pieters, Rob; Speleman, Frank; Odero, Maria D; Bauters, Marijke; Froyen, Guy; Marynen, Peter; Vandenberghe, Peter; Wlodarska, Iwona; Meijerink, Jules P P; Cools, Jan

    2007-05-01

    We identified a duplication of the MYB oncogene in 8.4% of individuals with T cell acute lymphoblastic leukemia (T-ALL) and in five T-ALL cell lines. The duplication is associated with a threefold increase in MYB expression, and knockdown of MYB expression initiates T cell differentiation. Our results identify duplication of MYB as an oncogenic event and suggest that MYB could be a therapeutic target in human T-ALL.

  14. c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses

    Directory of Open Access Journals (Sweden)

    Dana Piovesan

    2017-04-01

    Full Text Available Humoral immune responses are tailored to the invading pathogen through regulation of key transcription factors and their networks. This is critical to establishing effective antibody-mediated responses, yet it is unknown how B cells integrate pathogen-induced signals to drive or suppress transcriptional programs specialized for each class of pathogen. Here, we detail the key role of the transcription factor c-Myb in regulating the T-bet-mediated anti-viral program. Deletion of c-Myb in mature B cells significantly increased serum IgG2c and CXCR3 expression by upregulating T-bet, normally suppressed during Th2-cell-mediated responses. Enhanced expression of T-bet resulted in aberrant plasma cell differentiation within the germinal center, mediated by CXCR3 expression. These findings identify a dual role for c-Myb in limiting inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Identifying such intrinsic regulators of specialized antibody responses can assist in vaccine design and therapeutic intervention in B-cell-mediated immune disorders.

  15. 圈4C 的(r1,r2,r3,r4)−冠的优美性%The gracefulness of the (r1, r2, r3, r4)−corona of the cycle 4C

    Institute of Scientific and Technical Information of China (English)

    吴跃生

    2012-01-01

      讨论了圈4C 的( r r 21,,, r r 43)−冠的优美性,用构造性的方法给出了圈4C 的( r r 21,,, r r 43)−冠的优美标号。证明了圈4C 的( r r 21,,, r r 43)−冠都是交错图。%  Discussed the gracefulness of the( r r 2 1 , , , r r 4 3 )−corona of the cycle 4C .The graceful labeling was given.Proved that the( r r 2 1 , , , r r 4 3 )−corona of the cycle 4C are graceful graph.

  16. Myb proteins inhibit fibroblast transformation by v-Rel

    Directory of Open Access Journals (Sweden)

    Lipsick Joseph S

    2006-11-01

    Full Text Available Abstract Genes that cause cancer have been divided into two general classes – oncogenes that act in a dominant fashion to transform normal cells into a malignant state, and tumor suppressor genes that act in a dominant fashion to prevent such transformation. In this report, we demonstrate that both the v-myb retroviral oncogene, which causes leukemic transformation of hematopoietic cells, and the c-myb proto-oncogene can also function as inhibitors of fibroblast transformation by the v-rel oncogene. These results imply that the myb genes can function either as oncogenes or as tumor suppressors in different cellular contexts.

  17. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma.

    Science.gov (United States)

    Persson, Marta; Andrén, Ywonne; Moskaluk, Christopher A; Frierson, Henry F; Cooke, Susanna L; Futreal, Philip Andrew; Kling, Teresia; Nelander, Sven; Nordkvist, Anders; Persson, Fredrik; Stenman, Göran

    2012-08-01

    Adenoid cystic carcinoma (ACC) of the head and neck is a malignant tumor with poor long-term prognosis. Besides the recently identified MYB-NFIB fusion oncogene generated by a t(6;9) translocation, little is known about other genetic alterations in ACC. Using high-resolution, array-based comparative genomic hybridization, and massively paired-end sequencing, we explored genomic alterations in 40 frozen ACCs. Eighty-six percent of the tumors expressed MYB-NFIB fusion transcripts and 97% overexpressed MYB mRNA, indicating that MYB activation is a hallmark of ACC. Thirty-five recurrent copy number alterations (CNAs) were detected, including losses involving 12q, 6q, 9p, 11q, 14q, 1p, and 5q and gains involving 1q, 9p, and 22q. Grade III tumors had on average a significantly higher number of CNAs/tumor compared to Grade I and II tumors (P = 0.007). Losses of 1p, 6q, and 15q were associated with high-grade tumors, whereas losses of 14q were exclusively seen in Grade I tumors. The t(6;9) rearrangements were associated with a complex pattern of breakpoints, deletions, insertions, inversions, and for 9p also gains. Analyses of fusion-negative ACCs using high-resolution arrays and massively paired-end sequencing revealed that MYB may also be deregulated by other mechanisms in addition to gene fusion. Our studies also identified several down-regulated candidate tumor suppressor genes (CTNNBIP1, CASP9, PRDM2, and SFN) in 1p36.33-p35.3 that may be of clinical significance in high-grade tumors. Further, studies of these and other potential target genes may lead to the identification of novel driver genes in ACC.

  18. Transcription Factor Families Regulate the Anthocyanin Biosynthetic Pathway in Capsicum

    Science.gov (United States)

    Anthocyanin structural gene transcription requires the expression of at least one member of each of three transcription factor families - MYC, MYB and WD40. These transcription factors form a complex that binds to structural gene promoters, thereby modulating gene expression. Capsicum annuum display...

  19. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    MYBs to activate transcription of GLS biosynthetic genes. A lot is known about transcriptional regulation of these nine GLS regulators. This thesis aimed at identifying regulatory mechanisms at the protein level, allowing rapid and specific regulation of transcription factors using GLS as a model....... The general introduction and the first chapter provide background on protein level regulation and underline the importance of these mechanisms in regulating transcription factors. The remaining chapters report the identification of multiple new regulators of MYB transcription factors, potentially involved...... in their regulation at multiple steps of their activation. Plant signaling in connection with transcription factor regulation is an exciting field, allowing research on multiple regulatory mechanisms. This thesis shed light on the importance of integrating all steps of transcription factor activation in a regulatory...

  20. Expression of WRKY and MYB genes during infection with powdery ...

    African Journals Online (AJOL)

    Moamar

    2012-06-12

    Jun 12, 2012 ... very likely encoding an important signaling component of leaf senescence and ... the two kinds of genes (WRKY and MYB) respond to the stress of powdery mildew ..... Signal perception and transduction in plant defense ...

  1. Reference: 581 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available oup of R2R3-MYB genes, do not form flavonols while the accumulation of anthocyanins is not affected. In deve...loping seedlings, MYB11, MYB12 and MYB111 act in an additive manner due to their diffe...R2R3-MYB subgroup 7 factors, including the UDP-glycosyltransferases UGT91A1 and UGT84A1, and we demonstrate ... in seedlings correlates with the expression domains of the different R2R3-MYB factors. Therefore, we refer ...to these genes as PFG1-3 for 'PRODUCTION OF FLAVONOL GLYCOSIDES'. Differential regulation of closely related

  2. GmMYB042基因对类黄酮生物合成的调控作用%Regulating Effects of GmMYB042 Gene on Flavonoid Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    杜海; 冉凤; 马珊珊; 柯蕴倬; 孙丽萍; 李加纳; 唐益雄

    2016-01-01

    MYB transcription factor is one of the largest transcription factor gene families in land plants, and is involved in a myriad of regulatory processes, such as secondary metabolism. In the present study, the expression profiles and function of GmMYB042 gene were systematically studied. In order to investigate the roles of the conserved amino acid motif PDLNLELTIS and a predicted zinc finger region at its C-terminal, a series of sequence deletions of these two regions were made by PCR method. Subsequently, the corresponding over-expression constructs of GmMYB042 gene and its mutants were made and transformed into tobacco NC89 with Agrobacterium LBA4404, respectively. Expression analyses revealed that GmMYB042 gene was expressed in nodule, root, stem, leaf, flower, pod, and seed of soybean, and with a relative higher expression level in stem, flower, and seed;its expression could be induced by PEG, high salt, low temperature, and UV-B radiation stresses. Over-expression analyses showed that the expressions of some enzyme genes in flavonoid biosynthesis pathway (including PAL, CHS, CHI, and FLS) were obviously increased in GmMYB042 transgenic lines, resulting in an increased content of the flavonoid compounds. Accordingly, the transcription levels of the corresponding enzyme genes involved in flavonoid biosynthesis pathway were decreased in the transgenic lines of GmMYB042 mutants, further supporting the conclusion of regulating role of GmMYB042 gene in tobacco fla-vonoid biosynthesis pathway.%MYB 类转录因子是植物中最大的转录因子基因家族之一,广泛参与植物生长发育全过程,对植物次生代谢等具有重要的调控作用。本研究对大豆GmMYB042基因的表达特性和功能进行了系统研究,针对该基因C端的保守氨基酸基序(PDLNLELTIS)和锌指结构进行了一系列的序列删除突变,并将各缺失突变体在烟草中进行了过表达,以验证目的基因及其特殊基序的功能。表

  3. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Kui eLin-Wang

    2014-11-01

    Full Text Available The woodland strawberry, Fragaria vesca is a model fruit for a number of rosaceous crops. We have engineered altered concentrations of anthocyanin in F. vesca, to determine the impact on plant growth and fruit quality. Anthocyanin concentrations were significantly increased by over-expression or decreased by knock-down of the R2R3 MYB activator, MYB10. In contrast, a potential bHLH partner for MYB10 (bHLH33 did not affect the anthocyanin pathway when knocked down using RNAi constructs. Metabolic analysis of fruits revealed that, of all the polyphenolics surveyed, only cyanidin and pelargonidin glucoside, and coumaryl hexose were significantly affected by over-expression and knock down of MYB10. Using the F. vesca genome sequence, members of the MYB, bHLH and WD40 families were examined. Global analysis of gene expression and targeted qPCR analysis of biosynthetic genes and regulators confirmed the effects of altering MYB10 expression, as well as the knock-down of bHLH33. Other members of the MYB transcription factor family were affected by the transgenes. Transient expression of strawberry genes in Nicotiana benthamiana revealed that MYB10 can auto-regulate itself, and potential repressors of MYB10. In tobacco, MYB10’s activation of biosynthetic steps is inhibited by the strawberry repressor MYB1.

  4. Genome-wide analysis of DWD proteins in soybean (Glycine max): Significance of Gm08DWD and GmMYB176 interaction in isoflavonoid biosynthesis.

    Science.gov (United States)

    Bian, Shaomin; Li, Xuyan; Mainali, Hemanta; Chen, Ling; Dhaubhadel, Sangeeta

    2017-01-01

    A subset of WD40 proteins with DWD motif has been proposed to serve as substrate receptor of DDB-CUL4-ROC1 complex, thereby getting involved in protein degradation via ubiquitination pathway. Here, we identified a total of 161 potential DWD proteins in soybean (Glycine max) by searching DWD motif against the genome-wide WD40 repeats, and classified them into 20 groups on the basis of their functional domains and annotations. These putative DWD genes in soybean displayed tissue-specific expression patterns, and their genome localization and analysis of evolutionary relationship identified 48 duplicated gene pairs within 161 GmDWDs. Among the 161 soybean DWD proteins, Gm08DWD was previously found to interact with an isoflavonoid regulator, GmMYB176. Therefore, Gm08DWD and its homologue Gm05DWD were further investigated. Expression profile of both genes in different soybean tissues revealed that Gm08DWD was expressed higher in embryo, while Gm05DWD exhibited maximum transcript accumulation in leaf. Our protein-protein interaction studies demonstrated that Gm08DWD interacts with GmMYB176. Although Gm08DWD was localized both in nucleus and cytoplasm, the resulting complex of Gm08DWD and GmMYB176 was mainly observed in the nucleus. This finding is consistent with the functional localization of CUL4-E3 ligase complex. In conclusion, the survey on soybean potential DWD protein is useful reference for the further functional investigation of their DDB1-binding ability. Based on the functional investigation of Gm08DWD, we speculate that protein-protein interaction between Gm08DWD and GmMYB176 may lead to the degradation of GmMYB176 through CUL4-DDB1complex.

  5. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) control tomato (Solanum lycopersicum) anthocyanin biosynthesis.

    Science.gov (United States)

    Wada, Takuji; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2014-01-01

    In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC) and the bHLH transcription factor GLABRA3 (GL3) are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC) and SlGL3 (GL3) into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation. CPC and GL3 are also known to be involved in anthocyanin biosynthesis. After transformation into tomato, 35S::CPC inhibited anthocyanin accumulation, whereas GL3::GL3 enhanced anthocyanin accumulation. Real-time reverse transcription PCR analyses showed that the expression of anthocyanin biosynthetic genes including Phe-ammonia lyase (PAL), the flavonoid pathway genes chalcone synthase (CHS), dihydroflavonol reductase (DFR), and anthocyanidin synthase (ANS) were repressed in 35S::CPC tomato. In contrast, the expression levels of PAL, CHS, DFR, and ANS were significantly higher in GL3::GL3 tomato compared with control plants. These results suggest that CPC and GL3 also influence anthocyanin pigment synthesis in tomato.

  6. c-Myb influences HIV type 1 gene expression and virus production.

    Science.gov (United States)

    Churchill, M J; Ramsay, R G; Rhodes, D I; Deacon, N J

    2001-11-01

    c-Myb is expressed in proliferating T cells. Fifteen c-Myb-binding sites can be identified in the HIV-1 long terminal repeat (LTR), suggesting that c-Myb may regulate HIV-1 gene expression and virus replication. Increasing the cellular levels of c-Myb by transient transfection of CEM cells resulted in a 10- to 20-fold activation of HIV-1 LTR-driven gene expression and mutation of one high-affinity Myb-binding site within the LTR reduced this activation by 60 to 70%. Conversely, inhibition of c-Myb expression in MT-2 cells by treatment with c-myb antisense oligonucleotides decreased HIV-1 replication by 85%, as measured by reverse transcriptase activity and cytopathic effects. The effect of c-myb antisense oligonucleotides on HIV-1 gene expression and virus particle production appeared to be independent of cell proliferation, but dependent on the presence of c-Myb activity mediated through the HIV-1 LTR. These data show that c-myb expression affects HIV-1 replication in CD4(+) T cells.

  7. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    Science.gov (United States)

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases.

  8. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism.

    Science.gov (United States)

    Bandopadhayay, Pratiti; Ramkissoon, Lori A; Jain, Payal; Bergthold, Guillaume; Wala, Jeremiah; Zeid, Rhamy; Schumacher, Steven E; Urbanski, Laura; O'Rourke, Ryan; Gibson, William J; Pelton, Kristine; Ramkissoon, Shakti H; Han, Harry J; Zhu, Yuankun; Choudhari, Namrata; Silva, Amanda; Boucher, Katie; Henn, Rosemary E; Kang, Yun Jee; Knoff, David; Paolella, Brenton R; Gladden-Young, Adrianne; Varlet, Pascale; Pages, Melanie; Horowitz, Peleg M; Federation, Alexander; Malkin, Hayley; Tracy, Adam A; Seepo, Sara; Ducar, Matthew; Van Hummelen, Paul; Santi, Mariarita; Buccoliero, Anna Maria; Scagnet, Mirko; Bowers, Daniel C; Giannini, Caterina; Puget, Stephanie; Hawkins, Cynthia; Tabori, Uri; Klekner, Almos; Bognar, Laszlo; Burger, Peter C; Eberhart, Charles; Rodriguez, Fausto J; Hill, D Ashley; Mueller, Sabine; Haas-Kogan, Daphne A; Phillips, Joanna J; Santagata, Sandro; Stiles, Charles D; Bradner, James E; Jabado, Nada; Goren, Alon; Grill, Jacques; Ligon, Azra H; Goumnerova, Liliana; Waanders, Angela J; Storm, Phillip B; Kieran, Mark W; Ligon, Keith L; Beroukhim, Rameen; Resnick, Adam C

    2016-03-01

    Angiocentric gliomas are pediatric low-grade gliomas (PLGGs) without known recurrent genetic drivers. We performed genomic analysis of new and published data from 249 PLGGs, including 19 angiocentric gliomas. We identified MYB-QKI fusions as a specific and single candidate driver event in angiocentric gliomas. In vitro and in vivo functional studies show that MYB-QKI rearrangements promote tumorigenesis through three mechanisms: MYB activation by truncation, enhancer translocation driving aberrant MYB-QKI expression and hemizygous loss of the tumor suppressor QKI. To our knowledge, this represents the first example of a single driver rearrangement simultaneously transforming cells via three genetic and epigenetic mechanisms in a tumor.

  9. Transcription factors that directly regulate the expression of CSLA9 encoding mannan synthase in Arabidopsis thaliana.

    Science.gov (United States)

    Kim, Won-Chan; Reca, Ida-Barbara; Kim, Yongsig; Park, Sunchung; Thomashow, Michael F; Keegstra, Kenneth; Han, Kyung-Hwan

    2014-03-01

    Mannans are hemicellulosic polysaccharides that have a structural role and serve as storage reserves during plant growth and development. Previous studies led to the conclusion that mannan synthase enzymes in several plant species are encoded by members of the cellulose synthase-like A (CSLA) gene family. Arabidopsis has nine members of the CSLA gene family. Earlier work has shown that CSLA9 is responsible for the majority of glucomannan synthesis in both primary and secondary cell walls of Arabidopsis inflorescence stems. Little is known about how expression of the CLSA9 gene is regulated. Sequence analysis of the CSLA9 promoter region revealed the presence of multiple copies of a cis-regulatory motif (M46RE) recognized by transcription factor MYB46, leading to the hypothesis that MYB46 (At5g12870) is a direct regulator of the mannan synthase CLSA9. We obtained several lines of experimental evidence in support of this hypothesis. First, the expression of CSLA9 was substantially upregulated by MYB46 overexpression. Second, electrophoretic mobility shift assay (EMSA) was used to demonstrate the direct binding of MYB46 to the promoter of CSLA9 in vitro. This interaction was further confirmed in vivo by a chromatin immunoprecipitation assay. Finally, over-expression of MYB46 resulted in a significant increase in mannan content. Considering the multifaceted nature of MYB46-mediated transcriptional regulation of secondary wall biosynthesis, we reasoned that additional transcription factors are involved in the CSLA9 regulation. This hypothesis was tested by carrying out yeast-one hybrid screening, which identified ANAC041 and bZIP1 as direct regulators of CSLA9. Transcriptional activation assays and EMSA were used to confirm the yeast-one hybrid results. Taken together, we report that transcription factors ANAC041, bZIP1 and MYB46 directly regulate the expression of CSLA9.

  10. Mapping a candidate gene (MdMYB10 for red flesh and foliage colour in apple

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2007-07-01

    Full Text Available Abstract Background Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. Results We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs and Single Nucleotide Polymorphisms (SNPs in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG 09 of the apple genome. Conclusion We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species.

  11. Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple

    Science.gov (United States)

    Chagné, David; Carlisle, Charmaine M; Blond, Céline; Volz, Richard K; Whitworth, Claire J; Oraguzie, Nnadozie C; Crowhurst, Ross N; Allan, Andrew C; Espley, Richard V; Hellens, Roger P; Gardiner, Susan E

    2007-01-01

    Background Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS) is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. Results We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs) in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG) 09 of the apple genome. Conclusion We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species. PMID:17608951

  12. Coordinate regulation of myelomonocytic phenotype by v-myb and v-myc.

    Science.gov (United States)

    Symonds, G; Klempnauer, K H; Snyder, M; Moscovici, G; Moscovici, C; Bishop, J M

    1986-01-01

    Both avian myeloblastosis virus (by the action of v-myb) and avian myelocytomatosis virus MC29 (by the action of v-myc) transform cells of the myelomonocytic lineage. Whereas avian myeloblastosis virus elicits a relatively immature phenotype, cells transformed by MC29 resemble mature macrophages. When cells previously transformed by v-myb were superinfected with MC29, their phenotype was rapidly altered to that of a more mature cell. These superinfected cells expressed both v-myb (at a level similar to that found before superinfection) and v-myc. It therefore appears that the expression of v-myc can elicit certain properties of a more differentiated phenotype. In addition, unlike cells transformed by v-myb alone, the cells expressing both v-myb and v-myc could not be induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate to differentiate to fully mature macrophages. Cells with a morphology similar to that of the superinfected cells were elicited by simultaneously infecting yolk sac macrophages with avian myeloblastosis virus and MC29. Such cells expressed both v-myb and v-myc. These results indicate that expression of v-myb and v-myc in infected cells coordinately regulates myelomonocytic phenotype and that the two viral oncogenes vary in their ability to interfere with tumor promoter-induced differentiation. Our findings also sustain previous suggestions that the oncogenes v-myb and v-myc may not transform target cells by simply blocking differentiation. Images PMID:3023905

  13. Extended C termini of CPC-LIKE MYB proteins confer functional diversity in Arabidopsis epidermal cell differentiation.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Wada, Takuji

    2017-07-01

    The CAPRICE (CPC) gene encodes a R3-type MYB transcription factor that promotes differentiation of root hair cells in Arabidopsis thaliana Here, we have compared the functions of five CPC-homologous genes for epidermal cell differentiation using CPC promoter-driven transgenic plants. Our results show that TRIPTYCHON (TRY) and ENHANCER OF TRY AND CPC2 (ETC2) were less effective in root hair cell differentiation and were unstable in root epidermal cells when compared with CPC, ETC1 or CPC LIKE MYB3 (CPL3). The deletion of the extended C-terminal domain of TRY and ETC2 enhanced protein stability and conferred the ability to induce root hair cell differentiation on them. Treatment with MG132, a proteasome inhibitor, also led to the accumulation of TRY, indicating that TRY proteolysis is mediated by the proteasome-dependent pathway. Our results indicate that the CPC family includes relatively stable (CPC, ETC1 and CPL3) and unstable (TRY and ETC2) proteins that might be degraded by the proteasome. Our findings provide new insights into the regulatory mechanism of CPC family proteins that mediate root hair cell differentiation and should be useful in understanding epidermal development. © 2017. Published by The Company of Biologists Ltd.

  14. Fbxw5 suppresses nuclear c-Myb activity via DDB1-Cul4-Rbx1 ligase-mediated sumoylation

    Energy Technology Data Exchange (ETDEWEB)

    Kanei-Ishii, Chie; Nomura, Teruaki; Egoh, Ayako [Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 (Japan); Ishii, Shunsuke, E-mail: sishii@rtc.riken.jp [Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 (Japan)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Fbxw5 enhances sumoylation of c-Myb. Black-Right-Pointing-Pointer The DDB1-Cul4A-Rbx1 complex mediates c-Myb sumoylation. Black-Right-Pointing-Pointer The Fbxw5-DDB1-Cul4A-Rdx1 complex is a dual SUMO/ubiquitin ligase. Black-Right-Pointing-Pointer Fbxw5 suppresses the c-Myb trans-activating capacity. -- Abstract: The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling. In this process, Fbxw7{alpha}, the F-box protein of the SCF complex, binds to c-Myb via its C-terminal WD40 domain, and induces the ubiquitination of c-Myb. Here, we report that Fbxw5, another F-box protein, enhances sumoylation of nuclear c-Myb. Fbxw5 enhanced c-Myb sumoylation via the DDB1-Cul4A-Rbx1 complex. Since the Fbxw5-DDB1-Cul4A-Rbx1 complex was shown to act as a ubiquitin ligase for tumor suppressor TSC2, our results suggest that this complex can function as a dual SUMO/ubiquitin ligase. Fbxw5, which is localized to both nucleus and cytosol, enhanced sumoylation of nuclear c-Myb and induced the localization of c-Myb to nuclear dot-like domains. Co-expression of Fbxw5 suppressed the trans-activation of c-myc promoter by wild-type c-Myb, but not by v-Myb, which lacks the sumoylation sites. These results suggest that multiple E3 ligases suppress c-Myb activity through sumoylation or ubiquitination, and that v-Myb is no longer subject to these negative regulations.

  15. 14-3-3 proteins act as scaffolds for GmMYB62 and GmMYB176 and regulate their intracellular localization in soybean

    OpenAIRE

    2012-01-01

    Isoflavonoids are plant natural compounds predominantly found in leguminous plant. They play important functions in both nitrogen fixation and stress resistance. Many clinical studies have linked dietary intake of isoflavonoids to human health benefits. Binding of 14-3-3 proteins to GmMYB176, an isoflavonoid regulator, modulates expression of key isoflavonoids gene expression and its biosynthesis. We have recently demonstrated that the interaction of 14-3-3 proteins with GmMYB176 regulates nu...

  16. Transcription Factor Substitution during the Evolution of Fungal Ribosome Regulation

    OpenAIRE

    Hogues, Hervé; Lavoie, Hugo; Sellam, Adnane; Mangos, Maria; Roemer, Terry; Purisima, Enrico; Nantel, André; Whiteway, Malcolm

    2008-01-01

    Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb domain protein Tbf1 working in conjunction with Cbf1. These two factors bind both the promoters of RP genes and the rDNA locus; Tbf1 acti...

  17. Enhanced disease resistance to Botrytis cinerea in myb46 Arabidopsis plants is associated to an early down-regulation of CesA genes.

    Science.gov (United States)

    Ramírez, Vicente; García-Andrade, Javier; Vera, Pablo

    2011-06-01

    The cell wall is a protective barrier of paramount importance for the survival of plant cells. Monitoring the integrity of cell wall allows plants to quickly activate defence pathways to minimize pathogen entry and reduce the spread of disease. Counterintuitively, however, pharmacological effects as well as genetic lesions that affect cellulose biosynthesis and content confer plants with enhanced resistance against necrotrophic fungi. This kind of pathogens target cellulose for degradation to facilitate penetration and to generate glucose units as a food source. Our results points towards the existence of a transcriptional reprogramming mechanism in genes encoding cellulose synthases (CesAs) that occurs very soon after Botrytis cinerea attack and that results in a temporarily shut down of some CesA genes. Interestingly, the observed coordinated down-regulation of CesA genes is more pronounced, and occurs earlier, in myb46 mutant plants. In the resistant myb46 plants, pathogen infection induces transient down-regulation of CesA genes that concurs with a selective transcriptional reprogramming in a set of genes encoding structural cell wall proteins and extracellular remodelling enzymes. Together with previous indications, our results favour the hypothesis that CesAs are part of a surveillance system of the cell wall integrity that senses the presence of a pathogen and transduces that signal into a rapid transcriptional reprogramming of the affected cell.

  18. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis.

    Science.gov (United States)

    Moreau, Fanny; Thévenon, Emmanuel; Blanvillain, Robert; Lopez-Vidriero, Irene; Franco-Zorrilla, Jose Manuel; Dumas, Renaud; Parcy, François; Morel, Patrice; Trehin, Christophe; Carles, Cristel C

    2016-04-01

    Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression. © 2016. Published by The Company of Biologists Ltd.

  19. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms.

    Science.gov (United States)

    Hazen, Samuel P; Schultz, Thomas F; Pruneda-Paz, Jose L; Borevitz, Justin O; Ecker, Joseph R; Kay, Steve A

    2005-07-19

    In higher plants, the circadian clock orchestrates fundamental processes such as light signaling and the transition to flowering. We isolated mutants of the circadian clock from an Arabidopsis thaliana mutagenized reporter line by screening for seedlings with long hypocotyl phenotypes and subsequently assaying for abnormal clock-regulated CAB2::LUC expression. This screen identified five mutant alleles of a clock gene, LUX ARRHYTHMO (LUX), that significantly affect amplitude and robustness of rhythms in both constant white light and dark conditions. In addition, the transition from vegetative to floral development is accelerated and hypocotyl elongation is accentuated in these mutants under light:dark cycles. We genetically mapped the mutations by bulk segregant analysis with high-density oligonucleotide array genotyping to a small putative Myb transcription factor related to other clock components and response regulators in Arabidopsis. The negative arm of the Arabidopsis circadian clock, CIRCADIAN CLOCK ASSOCIATED (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), is repressed in the lux mutants, whereas TIMING OF CAB2 EXPRESSION (TOC1) is activated. We demonstrate that CCA1 and LHY bind to the evening element motif in the LUX promoter, which strongly suggests that these proteins repress LUX expression, as they do TOC1. The data are also consistent with LUX being necessary for activation of CCA1 and LHY expression.

  20. (1R,2R,3R,4S,5S-3-Methyl-8-oxabicyclo[3.2.1]oct-6-ene-2,4-diyl diacetate

    Directory of Open Access Journals (Sweden)

    Viktor A. Tafeenko

    2011-08-01

    Full Text Available The molecule of the title compound, C12H16O5, has crystallographically imposed mirror symmetry with the mirror plane passing through the endocyclic O atom and the mid-point of the double bond. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming chains running along the a axis.

  1. In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis.

    Science.gov (United States)

    Vanhee, Stijn; De Mulder, Katrien; Van Caeneghem, Yasmine; Verstichel, Greet; Van Roy, Nadine; Menten, Björn; Velghe, Imke; Philippé, Jan; De Bleser, Dominique; Lambrecht, Bart N; Taghon, Tom; Leclercq, Georges; Kerre, Tessa; Vandekerckhove, Bart

    2015-02-01

    Although hematopoietic precursor activity can be generated in vitro from human embryonic stem cells, there is no solid evidence for the appearance of multipotent, self-renewing and transplantable hematopoietic stem cells. This could be due to short half-life of hematopoietic stem cells in culture or, alternatively, human embryonic stem cell-initiated hematopoiesis may be hematopoietic stem cell-independent, similar to yolk sac hematopoiesis, generating multipotent progenitors with limited expansion capacity. Since a MYB was reported to be an excellent marker for hematopoietic stem cell-dependent hematopoiesis, we generated a MYB-eGFP reporter human embryonic stem cell line to study formation of hematopoietic progenitor cells in vitro. We found CD34(+) hemogenic endothelial cells rounding up and developing into CD43(+) hematopoietic cells without expression of MYB-eGFP. MYB-eGFP(+) cells appeared relatively late in embryoid body cultures as CD34(+)CD43(+)CD45(-/lo) cells. These MYB-eGFP(+) cells were CD33 positive, proliferated in IL-3 containing media and hematopoietic differentiation was restricted to the granulocytic lineage. In agreement with data obtained on murine Myb(-/-) embryonic stem cells, bright eGFP expression was observed in a subpopulation of cells, during directed myeloid differentiation, which again belonged to the granulocytic lineage. In contrast, CD14(+) macrophage cells were consistently eGFP(-) and were derived from eGFP-precursors only. In summary, no evidence was obtained for in vitro generation of MYB(+) hematopoietic stem cells during embryoid body cultures. The observed MYB expression appeared late in culture and was confined to the granulocytic lineage.

  2. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96

    OpenAIRE

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regul...

  3. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana.

    Science.gov (United States)

    Yatusevich, Ruslan; Mugford, Sarah G; Matthewman, Colette; Gigolashvili, Tamara; Frerigmann, Henning; Delaney, Sean; Koprivova, Anna; Flügge, Ulf-Ingo; Kopriva, Stanislav

    2010-04-01

    Glucosinolates are plant secondary metabolites involved in responses to biotic stress. The final step of their synthesis is the transfer of a sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) onto a desulfo precursor. Thus, glucosinolate synthesis is linked to sulfate assimilation. The sulfate donor for this reaction is synthesized from sulfate in two steps catalyzed by ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate kinase (APK). Here we demonstrate that R2R3-MYB transcription factors, which are known to regulate both aliphatic and indolic glucosinolate biosynthesis in Arabidopsis thaliana, also control genes of primary sulfate metabolism. Using trans-activation assays we found that two isoforms of APK, APK1, and APK2, are regulated by both classes of glucosinolate MYB transcription factors; whereas two ATPS genes, ATPS1 and ATPS3, are differentially regulated by these two groups of MYB factors. In addition, we show that the adenosine 5'-phosphosulfate reductases APR1, APR2, and APR3, which participate in primary sulfate reduction, are also activated by the MYB factors. These observations were confirmed by analysis of transgenic lines with modulated expression levels of the glucosinolate MYB factors. The changes in transcript levels also affected enzyme activities, the thiol content and the sulfate reduction rate in some of the transgenic plants. Altogether the data revealed that the MYB transcription factors regulate genes of primary sulfate metabolism and that the genes involved in the synthesis of activated sulfate are part of the glucosinolate biosynthesis network.

  4. 甘蔗MYB2转录因子的电子克隆和生物信息学分析%Electronic cloning and characterization of MYB2 gene from Saccharum officinarum using bioinformatics tools

    Institute of Scientific and Technical Information of China (English)

    李国印; 阙友雄; 许莉萍; 郭晋隆; 闫学兵; 陈如凯

    2011-01-01

    用电子克隆方法获得甘蔗MYB2基因,采用生物信息学方法,对该基因编码蛋白从氨基酸组成、理化性质、跨膜结构域、疏水性/亲水性、亚细胞定位、高级结构及功能域等方面进行了预测和分析.结果表明:甘蔗MYB2基因全长991 bp,包含570 bp的ORF,编码189个氨基酸.甘蔗MYB2基因包含有MYB功能域,在序列组成、高级结构及活性位点等方面,与玉米等其它植物的MYB2基因具有高度的相似性.研究结果为该基因的实验克隆奠定基础.%An novel MYB2 gene from Saccharum officinarum was cloned in silico based on the EST seqences from Unigene of NCBL Some characters of the MYB2 encodes amino acid were analyzed and predicted by the tools of bioinformatics in the following aspects, including the compositon of amino acid sequence, hydrophobicity or hydrophilicity, secondary and tertiary structure of protein and funcion. Bioinformatical analysis showed that the full length of MYB2 gene from S. officinarum was 991 bp and it contained a complete ORF which encoded 189 amino acid. The MYB2 gene contained an typical MYB domain and was highly conservative compared with MYB2 from several different plant species in sequence compositon, advanced structure and activity sites. The results will provide the basis for MYB2 gene cloning in experiment.

  5. Transcription factors expressed in soybean roots under drought stress.

    Science.gov (United States)

    Pereira, S S; Guimarães, F C M; Carvalho, J F C; Stolf-Moreira, R; Oliveira, M C N; Rolla, A A P; Farias, J R B; Neumaier, N; Nepomuceno, A L

    2011-10-21

    To gain insight into stress-responsive gene regulation in soybean plants, we identified consensus sequences that could categorize the transcription factors MYBJ7, BZIP50, C2H2, and NAC2 as members of the gene families myb, bzip, c2h2, and nac, respectively. We also investigated the evolutionary relationship of these transcription factors and analyzed their expression levels under drought stress. The NCBI software was used to find the predicted amino acid sequences of the transcription factors, and the Clustal X software was used to align soybean and other plant species sequences. Phylogenetic trees were built using the Mega 4.1 software by neighbor joining and the degree of confidence test by Bootstrap. Expression level studies were carried out using hydroponic culture; the experiments were designed in completely randomized blocks with three repetitions. The blocks consisted of two genotypes, MG/BR46 Conquista (drought-tolerant) and BR16 (drought-sensitive) and the treatments consisted of increasingly long dehydration periods (0, 25, 50, 75, and 100 min). The transcription factors presented domains and/or conserved regions that characterized them as belonging to the bzip, c2h2, myb, and nac families. Based on the phylogenetic trees, it was found that the myb, bzip and nac genes are closely related to myb78, bzip48 and nac2 of soybean and that c2h2 is closely related to c2h2 of Brassica napus. Expression of all genes was in general increased under drought stress in both genotypes. Major differences between genotypes were due to the lowering of the expression of the mybj7 and c2h2 genes in the drought-tolerant variety at some times. Over-expression or silencing of some of these genes has the potential to increase stress tolerance.

  6. Effect of ischemic preconditioning on the expression of c-myb in the CA1 region of the gerbil hippocampus after ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Hui Young Lee

    2016-06-01

    Conclusion: Our results show that a lethal transient ischemia significantly decreased c-myb immunoreactivity in the SP of the CA1 region and that IPC well preserved c-myb immunoreactivity in the SP of the CA1 region. We suggest that the maintenance of c-myb might be related with IPC-mediated neuroprotection after a lethal ischemic insult.

  7. DEVELOPMENT OF MARKER-FREE TRANSGENIC POTATO WITH AtMYB12 GENE BY Cre/lox SITE-SPECIFIC RECOMBINATION SYSTEM%利用Cre/lox特异位点重组系统获得无选择标记转AtMYB12基因的马铃薯

    Institute of Scientific and Technical Information of China (English)

    马连杰; 刘海峰; 王志强; 代丽丽; 丁新华; 储昭辉

    2011-01-01

    类黄酮是植物产生的一类次级代谢产物的总称,长期食用含类黄酮的果实和蔬菜有易于人体健康,目前广泛种植的马铃薯品种中仅含有痕量的类黄酮。AtMYB12是拟南芥中鉴定的调控类黄酮生物合成的特异性转录因子,并在烟草和番茄中得到了功能验证。为了增加马铃薯中类黄酮的含量,本研究构建pX6-patatin::AtMYB12无选择标记载体,利用农杆菌转化法将AtMYB12基因转入马铃薯品种Desiree,并检测选择标记NPT II基因去除以及马铃薯块茎中类黄酮积累情况。结果显示,共得到28个阳性转基因株系。随机选择其中的2个株系进行雌二醇诱导,NPT II去除效率达到8.8%,转基因马铃薯块茎中芦丁的含量最高达到3.091mg/g DW,山奈酚芸香苷含量达到0.951mg/g DW,而对照马铃薯品种Desiree中芦丁和山奈酚芸香苷等类黄酮含量低于高效液相色谱检测限值。结果表明,AtMYB12基因也能在马铃薯中调控类黄酮的合成。%As a class of secondary metabolites in plants,flavonoids is good for human health when the fruits and vegetables containing this kind of substances are often consumed.However only trace amounts of flavonoids can be detected on current widely planted potato varieties.AtMYB12 was originally identified as a flavonoids-speciflc transcription factor in Arabidopsis thaliana,which has been confirmed to activate the flavonoids synthesis in tobacco and tomato.In order to increase the content of flavonoids in potato,we constructed the marker-free vector pX6-patatin: AtMYB12,then introduced it into the susceptible cultivar Desiree via Agrobacterium-mediated stem segment transformation.The results showed that 28 positive transgenic potato lines were acquired,and the deletion efficiency of NPTII in 2 marker-free lines was up to 8.8%.The content of rutin and kaempferol rutinoside was up to 3.091 and 0.951mg/g DW in transgenic potato tubers,respectively.It is suggested that AtMYB

  8. Complexity of the transcriptional network controlling secondary wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2014-12-01

    Secondary walls in the form of wood and fibers are the most abundant biomass produced by vascular plants, and are important raw materials for many industrial uses. Understanding how secondary walls are constructed is of significance in basic plant biology and also has far-reaching implications in genetic engineering of plant biomass better suited for various end uses, such as biofuel production. Secondary walls are composed of three major biopolymers, i.e., cellulose, hemicelluloses and lignin, the biosynthesis of which requires the coordinated transcriptional regulation of all their biosynthesis genes. Genomic and molecular studies have identified a number of transcription factors, whose expression is associated with secondary wall biosynthesis. We comprehensively review how these secondary wall-associated transcription factors function together to turn on the secondary wall biosynthetic program, which leads to secondary wall deposition in vascular plants. The transcriptional network regulating secondary wall biosynthesis employs a multi-leveled feed-forward loop regulatory structure, in which the top-level secondary wall NAC (NAM, ATAF1/2 and CUC2) master switches activate the second-level MYB master switches and they together induce the expression of downstream transcription factors and secondary wall biosynthesis genes. Secondary wall NAC master switches and secondary wall MYB master switches bind to and activate the SNBE (secondary wall NAC binding element) and SMRE (secondary wall MYB-responsive element) sites, respectively, in their target gene promoters. Further investigation of what and how developmental signals trigger the transcriptional network to regulate secondary wall biosynthesis and how different secondary wall-associated transcription factors function cooperatively in activating secondary wall biosynthetic pathways will lead to a better understanding of the molecular mechanisms underlying the transcriptional control of secondary wall biosynthesis.

  9. Reference: MYCCONSENSUSAT [PLACE

    Lifescience Database Archive (English)

    Full Text Available MYCCONSENSUSAT Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B. Differential combinatorial intera...ctions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors contro

  10. Reference: EBOXBNNAPA [PLACE

    Lifescience Database Archive (English)

    Full Text Available EBOXBNNAPA Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B. Differential combinatorial interactio...ns of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control li

  11. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants.

    Science.gov (United States)

    Wang, Fang; Chen, Hao-Wei; Li, Qing-Tian; Wei, Wei; Li, Wei; Zhang, Wan-Ke; Ma, Biao; Bi, Ying-Dong; Lai, Yong-Cai; Liu, Xin-Lei; Man, Wei-Qun; Zhang, Jin-Song; Chen, Shou-Yi

    2015-07-01

    Soybean (Glycine max) is an important crop for oil and protein resources worldwide. The molecular mechanism of the abiotic stress response in soybean is largely unclear. We previously identified multiple stress-responsive WRKY genes from soybean. Here, we further characterized the roles of one of these genes, GmWRKY27, in abiotic stress tolerance using a transgenic hairy root assay. GmWRKY27 expression was increased by various abiotic stresses. Over-expression and RNAi analysis demonstrated that GmWRKY27 improves salt and drought tolerance in transgenic soybean hairy roots. Measurement of physiological parameters, including reactive oxygen species and proline contents, supported this conclusion. GmWRKY27 inhibits expression of a downstream gene GmNAC29 by binding to the W-boxes in its promoter region. The GmNAC29 is a negative factor of stress tolerance as indicated by the performance of transgenic hairy roots under stress. GmWRKY27 interacts with GmMYB174, which also suppresses GmNAC29 expression and enhances drought stress tolerance. The GmWRKY27 and GmMYB174 may have evolved to bind to neighbouring cis elements in the GmNAC29 promoter to co-reduce promoter activity and gene expression. Our study discloses a valuable mechanism in soybean for regulation of the stress response by two associated transcription factors. Manipulation of these genes should facilitate improvements in stress tolerance in soybean and other crops.

  12. A subset of prostatic basal cell carcinomas harbor the MYB rearrangement of adenoid cystic carcinoma.

    Science.gov (United States)

    Bishop, Justin A; Yonescu, Raluca; Epstein, Jonathan I; Westra, William H

    2015-08-01

    Adenoid cystic carcinoma (ACC) is a basaloid tumor consisting of myoepithelial and ductal cells typically arranged in a cribriform pattern. Adenoid cystic carcinoma is generally regarded as a form of salivary gland carcinoma, but it can arise from sites unassociated with salivary tissue. A rare form of prostate carcinoma exhibits ACC-like features; it is no longer regarded as a true ACC but rather as prostatic basal cell carcinoma (PBCC) and within the spectrum of basaloid prostatic proliferations. True ACCs often harbor MYB translocations resulting in the MYB-NFIB fusion protein. MYB analysis could clarify the true nature of prostatic carcinomas that exhibit ACC features and thus help refine the classification of prostatic basaloid proliferations. Twelve PBCCs were identified from the pathology consultation files of Johns Hopkins Hospital. The histopathologic features were reviewed, and break-apart fluorescence in situ hybridization for MYB was performed. All 12 cases exhibited prominent basaloid histology. Four were purely solid, 7 exhibited a cribriform pattern reminiscent of salivary ACC, and 1 had a mixed pattern. The MYB rearrangement was detected in 2 (29%) of 7 ACC-like carcinomas but in none (0%) of the 5 PBCCs with a prominent solid pattern. True ACCs can arise in the prostate as is evidenced by the presence of the characteristic MYB rearrangement. When dealing with malignant basaloid proliferations in the prostate, recommendations to consolidate ACCs with other tumor types may need to be reassessed, particularly in light of the rapidly advancing field of biologic therapy where the identification of tumor-specific genetic alterations presents novel therapeutic targets.

  13. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.

    Science.gov (United States)

    Lewis, Daniel R; Ramirez, Melissa V; Miller, Nathan D; Vallabhaneni, Prashanthi; Ray, W Keith; Helm, Richard F; Winkel, Brenda S J; Muday, Gloria K

    2011-05-01

    Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.

  14. A non canonical subtilase attenuates the transcriptional activation of defence responses in Arabidopsis thaliana

    Science.gov (United States)

    Serrano, Irene; Buscaill, Pierre; Audran, Corinne; Pouzet, Cécile; Jauneau, Alain; Rivas, Susana

    2016-01-01

    Proteases play crucial physiological functions in all organisms by controlling the lifetime of proteins. Here, we identified an atypical protease of the subtilase family [SBT5.2(b)] that attenuates the transcriptional activation of plant defence independently of its protease activity. The SBT5.2 gene produces two distinct transcripts encoding a canonical secreted subtilase [SBT5.2(a)] and an intracellular protein [SBT5.2(b)]. Concomitant to SBT5.2(a) downregulation, SBT5.2(b) expression is induced after bacterial inoculation. SBT5.2(b) localizes to endosomes where it interacts with and retains the defence-related transcription factor MYB30. Nuclear exclusion of MYB30 results in its reduced transcriptional activation and, thus, suppressed resistance. sbt5.2 mutants, with abolished SBT5.2(a) and SBT5.2(b) expression, display enhanced defence that is suppressed in a myb30 mutant background. Moreover, overexpression of SBT5.2(b), but not SBT5.2(a), in sbt5.2 plants reverts the phenotypes displayed by sbt5.2 mutants. Overall, we uncover a regulatory mode of the transcriptional activation of defence responses previously undescribed in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.19755.001 PMID:27685353

  15. A systematic survey in Arabidopsis thaliana of transcription factors that modulate circadian parameters

    Directory of Open Access Journals (Sweden)

    Merkle Thomas

    2008-04-01

    Full Text Available Abstract Background Plant circadian systems regulate various biological processes in harmony with daily environmental changes. In Arabidopsis thaliana, the underlying clock mechanism is comprised of multiple integrated transcriptional feedbacks, which collectively lead to global patterns of rhythmic gene expression. The transcriptional networks are essential within the clock itself and in its output pathway. Results Here, to expand understanding of transcriptional networks within and associated to the clock, we performed both an in silico analysis of transcript rhythmicity of transcription factor genes, and a pilot assessment of functional phenomics on the MYB, bHLH, and bZIP families. In our in silico analysis, we defined which members of these families express a circadian waveform of transcript abundance. Up to 20% of these families were over-represented as clock-controlled genes. To detect members that contribute to proper oscillator function, we systematically measured rhythmic growth via an imaging system in hundreds of misexpression lines targeting members of the transcription-factor families. Three transcription factors were found that conferred aberrant circadian rhythms when misexpressed: MYB3R2, bHLH69, and bHLH92. Conclusion Transcript abundance of many transcription factors in Arabidopsis oscillates in a circadian manner. Further, a developed pipeline assessed phenotypic contribution of a panel of transcriptional regulators in the circadian system.

  16. Constitutive Activation of an Anthocyanin Regulatory Gene PcMYB10.6 Is Related to Red Coloration in Purple-Foliage Plum.

    Directory of Open Access Journals (Sweden)

    Chao Gu

    Full Text Available Cherry plum is a popular ornamental tree worldwide and most cultivars are selected for purple foliage. Here, we report the investigation of molecular mechanism underlying red pigmentation in purple-leaf plum 'Ziyeli' (Prunus cerasifera Ehrhar f. atropurpurea (Jacq. Rehd., which shows red color pigmentation in fruit (flesh and skin and foliage. Six anthocyanin-activating MYB genes, designated PcMYB10.1 to PcMYB10.6, were isolated based on RNA-Seq data from leaves of cv. Ziyeli. Of these PcMYB10 genes, five (PcMYB10.1 through PcMYB10.5 show distinct spatial and temporal expression patterns, while the PcMYB10.6 gene is highly expressed in all the purple-coloured organs of cv. Ziyeli. Constitutive activation of PcMYB10.6 is closely related to red pigmentation in the leaf, fruit (flesh and skin, and sepal. However, the PcMYB10.6 activation cannot induce red pigmentation in the petal of cv. Ziyeli during late stages of flower development due to due to a lack of expression of PcUFGT. The inhibition of red pigmentation in the petal of cherry plum could be attributed to the high-level expression of PcANR that directs anthocyanidin flux to proanthocyanidin biosynthesis. In addition, PcMYB10.2 is highly expressed in fruit and sepal, but its expression cannot induce red pigmentation. This suggests the PcMYB10 gene family in cherry plum may have diverged in function and PcMYB10.2 plays little role in the regulation of red pigmentation. Our study provides for the first time an example of constitutive activation of an anthocyanin-activating MYB gene in Prunus although its underlying mechanism remains unclear.

  17. Regulation of ecmF gene expression and genetic hierarchy among STATa, CudA, and MybC on several prestalk A-specific gene expressions in Dictyostelium.

    Science.gov (United States)

    Saga, Yukika; Inamura, Tomoka; Shimada, Nao; Kawata, Takefumi

    2016-05-01

    STATa, a Dictyostelium homologue of metazoan signal transducer and activator of transcription, is important for the organizer function in the tip region of the migrating Dictyostelium slug. We previously showed that ecmF gene expression depends on STATa in prestalk A (pstA) cells, where STATa is activated. Deletion and site-directed mutagenesis analysis of the ecmF/lacZ fusion gene in wild-type and STATa null strains identified an imperfect inverted repeat sequence, ACAAATANTATTTGT, as a STATa-responsive element. An upstream sequence element was required for efficient expression in the rear region of pstA zone; an element downstream of the inverted repeat was necessary for sufficient prestalk expression during culmination. Band shift analyses using purified STATa protein detected no sequence-specific binding to those ecmF elements. The only verified upregulated target gene of STATa is cudA gene; CudA directly activates expL7 gene expression in prestalk cells. However, ecmF gene expression was almost unaffected in a cudA null mutant. Several previously reported putative STATa target genes were also expressed in cudA null mutant but were downregulated in STATa null mutant. Moreover, mybC, which encodes another transcription factor, belonged to this category, and ecmF expression was downregulated in a mybC null mutant. These findings demonstrate the existence of a genetic hierarchy for pstA-specific genes, which can be classified into two distinct STATa downstream pathways, CudA dependent and independent. The ecmF expression is indirectly upregulated by STATa in a CudA-independent activation manner but dependent on MybC, whose expression is positively regulated by STATa. © 2016 Japanese Society of Developmental Biologists.

  18. MicroRNA-503 represses epithelial-mesenchymal transition and inhibits metastasis of osteosarcoma by targeting c-myb.

    Science.gov (United States)

    Guo, Xinzhen; Zhang, Jie; Pang, Jianfeng; He, Sheng; Li, Guojun; Chong, Yang; Li, Chao; Jiao, Zhijian; Zhang, Shiqian; Shao, Ming

    2016-07-01

    Deregulated expression of miRNAs contributes to the development of osteosarcoma. Our previous study has showed that miR-503 was downregulated in osteosarcoma tissues. However, the mechanism of the miR-503 in osteosarcoma development still remains largely undefined. In our study, we found that miR-503 overexpression suppressed cell invasion and migration and inhibited epithelial-to-mesenchymal transition (EMT) of MG-63. Furthermore, we identified that c-myb, an oncogene, was a direct target of miR-503. Moreover, overexpression of c-myb could rescue miR-503-suppressed invasion and EMT. The expression of c-myb was upregulated in osteosarcoma cell lines. Therefore, we conclude that high miR-503 expression suppressed osteosarcoma cell mobility and EMT through targeting c-myb, and this may serve as a therapeutic target.

  19. Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis

    Indian Academy of Sciences (India)

    Ruoxue Liu; Beibei Lü; Xiaomeng Wang; Chunling Zhang; Shuping Zhang; Jun Qian; Lei Chen; Haojie Shi; Hansong Dong

    2010-09-01

    The harpin protein HrpNEa induces Arabidopsis resistance to the green peach aphid by activating the ethylene signalling pathway and by recruiting EIN2, an essential regulator of ethylene signalling, for a defence response in the plant. We investigated 37 ethylene-inducible Arabidopsis transcription factor genes for their effects on the activation of ethylene signalling and insect defence. Twenty-eight of the 37 genes responded to both ethylene and HrpNEa, and showed either increased or inhibited transcription, while 18 genes showed increased transcription not only by ethylene but also by HrpNEa. In response to HrpNEa, transcription levels of 22 genes increased, with AtMYB44 being the most inducible, six genes had decreased transcript levels, and nine remained unchanged. When Arabidopsis mutants previously generated by mutagenicity at the 37 genes were surveyed, 24 mutants were similar to the wild type plant while four mutants were more resistant and nine mutants were more susceptible than wild type to aphid infestation. Aphid-susceptible mutants showed a greater susceptibility for atmyb15, atmyb38 and atmyb44, which were generated previously by T-DNA insertion into the exon region of AtMYB15 and the promoter regions of AtMYB38 and AtMYB44. The atmyb44 mutant was the most susceptible to aphid infestation and most compromised in induced resistance. Resistance accompanied the expression of PDF1.2, an ethylene signalling marker gene that requires EIN2 for transcription in wild type but not in atmyb15, atmyb38, and atmyb44, suggesting a disruption of ethylene signalling in the mutants. However, only atmyb44 incurred an abrogation in induced EIN2 expression, suggesting a close relationship between AtMYB44 and EIN2.

  20. The world according to GARP transcription factors.

    Science.gov (United States)

    Safi, Alaeddine; Medici, Anna; Szponarski, Wojciech; Ruffel, Sandrine; Lacombe, Benoît; Krouk, Gabriel

    2017-10-01

    Plant specific GARP transcription factor family (made of ARR-B and G2-like) contains genes with very diverse in planta functions: nutrient sensing, root and shoot development, floral transition, chloroplast development, circadian clock oscillation maintenance, hormonal transport and signaling. In this work we review: first, their structural but distant relationships with MYB transcription factors, second, their role in planta, third, the diversity of their Cis-regulatory elements, fourth, their potential protein partners. We conclude that the GARP family may hold keys to understand the interactions between nutritional signaling pathways (nitrogen and phosphate at least) and development. Understanding how plant nutrition and development are coordinated is central to understand how to adapt plants to an ever-changing environment. Consequently GARPs are likely to attract increasing research attentions, as they are likely at the crossroads of these fundamental processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate.

    Science.gov (United States)

    Zhao, Xueqing; Yuan, Zhaohe; Feng, Lijuan; Fang, Yanming

    2015-07-01

    Exterior fruit color is an important trait for the evaluation of pomegranate fruit quality, but the molecular mechanism underlying the variation in color between red- and white-fruited pomegranate is poorly understood. In this study, full-length cDNA clones encoding enzymes involved in anthocyanin biosynthesis-such as chalcone synthase, chalcone isomerase, flavanone 3-hydoxylase, dihydroflavonol 4-reductase, anthocyanidin synthase (ANS), UDP-glucose-flavonoid 3-O-glucosyltransferase, and the R2R3 MYB transcription factor PgMYB-were isolated from fruit peels. In addition, transcript levels of anthocyanin biosynthetic genes were quantitatively measured by real-time PCR in red and white fruits. In both cultivars, two expression peaks for structural genes were detected during fruit development, whereas only one peak was observed-during early development-for PgMYB. While PgMYB is important for flavonoid biosynthesis, other transcription factors appear to also be necessary for the regulation of anthocyanin biosynthesis. No anthocyanins were detected in the white cultivar. Peels of white fruits contained transcripts of all identified genes except for PgANS, suggesting that the lack of PgANS expression may be the main factor responsible for the absence of anthocyanins in white pomegranate. PgANS may be the key gene involved in anthocyanin biosynthesis in pomegranate fruit.

  2. KSHV miRNAs Decrease Expression of Lytic Genes in Latently Infected PEL and Endothelial Cells by Targeting Host Transcription Factors

    Directory of Open Access Journals (Sweden)

    Karlie Plaisance-Bonstaff

    2014-10-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV microRNAs are encoded in the latency-associated region. Knockdown of KSHV miR-K12-3 and miR-K12-11 increased expression of lytic genes in BC-3 cells, and increased virus production from latently infected BCBL-1 cells. Furthermore, iSLK cells infected with miR-K12-3 and miR-K12-11 deletion mutant viruses displayed increased spontaneous reactivation and were more sensitive to inducers of reactivation than cells infected with wild type KSHV. Predicted binding sites for miR-K12-3 and miR-K12-11 were found in the 3’UTRs of the cellular transcription factors MYB, Ets-1, and C/EBPα, which activate RTA, the KSHV replication and transcription activator. Targeting of MYB by miR-K12-11 was confirmed by cloning the MYB 3’UTR downstream from the luciferase reporter. Knockdown of miR‑K12-11 resulted in increased levels of MYB transcript, and knockdown of miR-K12-3 increased both C/EBPα and Ets-1 transcripts. Thus, miR-K12-11 and miR-K12-3 contribute to maintenance of latency by decreasing RTA expression indirectly, presumably via down‑regulation of MYB, C/EBPα and Ets-1, and possibly other host transcription factors.

  3. A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach.

    Directory of Open Access Journals (Sweden)

    Elisa Vendramin

    Full Text Available Nectarines play a key role in peach industry; the fuzzless skin has implications for consumer acceptance. The peach/nectarine (G/g trait was described as monogenic and previously mapped on chromosome 5. Here, the position of the G locus was delimited within a 1.1 cM interval (635 kb based on linkage analysis of an F2 progeny from the cross 'Contender' (C, peach x 'Ambra' (A, nectarine. Careful inspection of the genes annotated in the corresponding genomic sequence (Peach v1.0, coupled with variant discovery, led to the identification of MYB gene PpeMYB25 as a candidate for trichome formation on fruit skin. Analysis of genomic re-sequencing data from five peach/nectarine accessions pointed to the insertion of a LTR retroelement in exon 3 of the PpeMYB25 gene as the cause of the recessive glabrous phenotype. A functional marker (indelG developed on the LTR insertion cosegregated with the trait in the CxA F2 progeny and was validated on a broad panel of genotypes, including all known putative donors of the nectarine trait. This marker was shown to efficiently discriminate between peach and nectarine plants, indicating that a unique mutational event gave rise to the nectarine trait and providing a useful diagnostic tool for early seedling selection in peach breeding programs.

  4. RUNX1 is required for oncogenic Myb and Myc enhancer activity in T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Choi, AHyun; Illendula, Anuradha; Pulikkan, John A; Roderick, Justine E; Tesell, Jessica; Yu, Jun; Hermance, Nicole; Zhu, Lihua Julie; Castilla, Lucio H; Bushweller, John H; Kelliher, Michelle A

    2017-08-08

    The gene encoding the RUNX1 transcription factor is mutated in a subset of T cell acute lymphoblastic leukemia (T-ALL) patients and RUNX1 mutations are associated with a poor prognosis. These mutations cluster in the DNA binding Runt domain, are thought to represent loss-of-function mutations, indicating that RUNX1 suppresses T cell transformation. RUNX1 has been proposed to have tumor suppressor roles in TLX1/3 transformed human T-ALL cell lines and NOTCH1 T-ALL mouse models. Yet retroviral insertional mutagenesis screens identify RUNX genes as collaborating oncogenes in MYC-driven leukemia mouse models. To elucidate RUNX1 function(s) in leukemogenesis, we generated Tal1/Lmo2/Rosa26-CreER(T2)Runx1(f/f) mice and examined leukemia progression in the presence of vehicle or tamoxifen. We found that Runx1 deletion inhibits mouse leukemic growth in vivo and that RUNX silencing in human T-ALL cells triggers apoptosis. We demonstrate that a small molecule inhibitor, designed to interfere with CBFβ binding to RUNX proteins, impairs the growth of human T-ALL cell lines and primary patient samples. We demonstrate that a RUNX1 deficiency alters the expression of a crucial subset of TAL1- and NOTCH1-regulated genes including the MYB and MYC oncogenes, respectively. These studies provide genetic and pharmacologic evidence that RUNX1 has oncogenic roles and reveal RUNX1 as a novel therapeutic target in T-ALL. Copyright © 2017 American Society of Hematology.

  5. HrpNEa -induced deterrent effect on phloem feeding of the green peach aphid Myzus persicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana

    Indian Academy of Sciences (India)

    Beibei Lü; Weiwei Sun; Shuping Zhang; Chunling Zhang; Jun Qian; Xiaomeng Wang; Rong Gao; Hansong Dong

    2011-03-01

    In Arabidopsis thaliana (Arabidopsis) treated with the harpin protein HrpNEa, resistance to the green peach aphid Myzus persicae, a generalist phloem-feeding insect, develops with induced expression of the AtMYB44 gene. Special GLUCAN SYNTHESIS-LIKE (GSL) genes and -1,3-glucan callose play an important role in plant defence responses to attacks by phloem-feeding insects. Here we report that AtGLS5 and AtMYB44 are both required for HrpNEa-induced repression of M. persicae feeding from the phloem of Arabidopsis leaves. In 24 h successive surveys on large-scale aphid populations, the proportion of feeding aphids was much smaller in HrpNEa-treated plants than in control plants, and aphids preferred to feed from the 37 tested atgsl mutants rather than the wild-type plant. The atgsl mutants were generated previously by mutagenesis in 12 identified AtGSL genes (AtGSL1 through AtGSL12); in the 24 h survey, both atgsl5 and atgsl6 tolerated aphid feeding, and atgsl5 was the most tolerant. Consistently, atgsl5 was also most inhibitive to the deterrent effect of HrpNEa on the phloem-feeding activity of aphids as monitored by the electrical penetration graph technique. These results suggested an important role of the AtGSL5 gene in the effect of HrpNEa. In response to HrpNEa, AtGSL5 expression and callose deposition were induced in the wild-type plant but not in atgsl5. In response to HrpNEa, moreover, the AtMYB44 gene known to be required for repression of aphid reproduction on the plant was also required for repression of the phloem-feeding activity. Small amounts of the AtGSL5 transcript and callose deposition were detected in the atmyb44 mutant, as in atgsl5. Both mutants performed similarly in tolerating the phloem-feeding activity and impairing the deterrent effect of HrpNEa, suggesting that AtGSL5 and AtMYB44 both contributed to the effect.

  6. 转录因子对木质素生物合成调控的研究进展%Advances in Research of the Regulation of Transcription Factors of Lignin Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    郭光艳; 柏峰; 刘伟; 秘彩莉

    2015-01-01

    Lignin is an important component of secondary cell wall in vascular plants and has important biological functions. Lignin, cellulose and hemicellulose are crosslinked in the cell wall and provide mechanical support for the plant cells and tissues. The hydrophobic property of lignin makes it impermeable to water, which facilitates the long-distance transport of water and nutrients in plant. Lignin and cellulose are natural physical barriers to various pathogens, which improve the defensive ability against biotic and abiotic stresses. While lignin also has some negative effects on the productive practice, e.g., in pulp and paper industry, many chemicals must be used to remove lignin, which increases the cost of pulping and pollution to the environment. High lignin content in the forage decreases the digestibility of livestocks and affect the nutritive value of forages. Higher lignin content also has a negative effect on the fermentation efficiency of biomass energy. Therefore, it is of great significance to improve the lignin degradability by genetic engineering. In higher plants, lignin can be synthesized by phenylpropanoid pathway and specific lignin biosynthesis pathway. Previous research has shown that NAC, MYB and WRKY transcription factors involved in the regulation of lignin biosynthesis pathway. In Arabidopsis, MYB26 can activate the transcription of NST1/NST2; WRKY12 can bind to the promoter region of NST2 and regulate its expression negatively. SND1 (NST3) and NST1 function redundantly in the regulation of secondary wall synthesis in fibers; NST1 and NST2 are redundant in regulating secondary wall thickening in anther walls; VND6 and VND7 mainly involved in xylem vessel differentiation. All these NAC transcription factors can bind to the downstream MYB transcription factors such as MYB83, MYB46 as well as (or) MYB58, MYB63, MYB85 and MYB103 to regulate lignin biosynthesis positively, whereas MYB75 regulates the lignin biosynthesis negatively. Most of the

  7. Effects of c-myb antisense RNA on TGF-β1 and α1-I collagen expression in cultured hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Hui-Hui Ma; Ji-Lu Yao; Gang Li; Chun-Lan Yao; Xue-Juan Chen; Shao-Ji Yang

    2004-01-01

    AIM: To investigate the effects of c-myb antisense RNA on cell proliferation and the expression of c-myb, TGF-β1 and α1-I collagen in cultured hepatic stellate cells (HSC) from rats.METHODS: Recombinant retroviral vector of c-myb antisense gene (pDOR-myb) was constructed, and then transfected into retroviral package cell line PA317 by means of DOTAP.The pseudoviruses produced from the resistant PA317 cells were selected with G418 to infect HSCs isolated from rat livers. The cell proliferation was measured by 3-[4, 5-Dimethylthiazolzyl]-2, 5-diphenyl tetrazo-dium bromide (MTT) method.The expression of c-myb, α1-I collagen and TGF-β1 mRNA, and c-myb protein in HSCs was detected with semi-quantitive reverse transeription-polymerase chain reaction (RT-PCR) and Western-blot respectively.RESULTS: HSCs from rats were isolated successfully with the viability >98%. In the pDOR-myb infected HSCs, the cmyb protein expression, cell proliferation,and α1-I collagen and TGF-β1 mRNA expression were repressed significantly compared with their corresponding control groups (P<0.01).CONCLUSION: c-myb plays a key role in activation and proliferation of HSC. c-myb antisense RNA can inhibit cell proliferation, α1-I collagen and TGF-β1 mRNA expression,suggesting that inhibition of c-myb gene expression might be a potential way for the treatment of liver fibrosis.

  8. Genome-wide Transcription Factor Gene Prediction and their Expressional Tissue-Specificities in Maize

    Institute of Scientific and Technical Information of China (English)

    Yi Jiang; Biao Zeng; Hainan Zhao; Mei Zhang; Shaojun Xie; Jinsheng Lai

    2012-01-01

    Transcription factors (TFs) are important regulators of gene expression.To better understand TFencoding genes in maize (Zea mays L.),a genome-wide TF prediction was performed using the updated B73 reference genome.A total of 2 298 TF genes were identified,which can be classified into 56 families.The largest family,known as the MYB superfamily,comprises 322 MYB and MYB-related TF genes.The expression patterns of 2014 (87.64%) TF genes were examined using RNA-seq data,which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root,shoot,leaf,ear,tassel and kernel).Similarly,98 kernel-specific TF genes were further analyzed,and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage,while 69 of the genes were expressed in the late kernel developmental stage.Identification of these TFs,particularly the tissue-specific ones,provides important information for the understanding of development and transcriptional regulation of maize.

  9. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sitakanta ePattanaik

    2014-06-01

    Full Text Available Trichomes are specialized epidermal cells located on aerial parts of plants and are associated with a wide array of biological processes. Trichomes protect plants from adverse conditions including UV light and herbivore attack and are also an important source of a number of phytochemicals. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study molecular mechanism of cell differentiation and pattern formation in plants. The emerging picture suggests that the developmental process is controlled by a transcriptional network involving three major groups of transcription factors: the R2R3 MYB, basic helix-loop-helix (bHLH and WD40 repeat (WDR protein. These regulatory proteins form a trimeric activator complex that positively regulates trichome development. The single repeat R3 MYBs act as negative regulators of trichome development. They compete with the R2R3 MYBs to bind the bHLH factor and form a repressor complex. In addition to activator-repressor mechanism, a depletion mechanism may operate in parallel during trichome development. In this mechanism, the bHLH factor traps the WDR protein which results in depletion of WDR protein in neighboring cells. Consequently, the cells with high levels of bHLH and WDR proteins are developed into trichomes. A group of C2H2 zinc finger TFs has also been implicated in trichome development. Phytohormones, including gibberellins and jasmonic acid, play significant roles in this developmental process. Recently, microRNAs have been shown to be involved in trichome development. Furthermore, it has been demonstrated that the activities of the key regulatory proteins involved in trichome development are controlled by the 26S/ubiquitin proteasome system (UPS, highlighting the complexity of the regulatory network controlling this developmental process. To complement several excellent recent relevant reviews, this review focuses on the transcriptional network and hormonal interplay

  10. A petal-specific InMYB1 promoter from Japanese morning glory: a useful tool for molecular breeding of floricultural crops.

    Science.gov (United States)

    Azuma, Mirai; Morimoto, Reina; Hirose, Mana; Morita, Yasumasa; Hoshino, Atsushi; Iida, Shigeru; Oshima, Yoshimi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Shiratake, Katsuhiro

    2016-01-01

    Production of novel transgenic floricultural crops with altered petal properties requires transgenes that confer a useful trait and petal-specific promoters. Several promoters have been shown to control transgenes in petals. However, all suffer from inherent drawbacks such as low petal specificity and restricted activity during the flowering stage. In addition, the promoters were not examined for their ability to confer petal-specific expression in a wide range of plant species. Here, we report the promoter of InMYB1 from Japanese morning glory as a novel petal-specific promoter for molecular breeding of floricultural crops. First, we produced stable InMYB1_1kb::GUS transgenic Arabidopsis and Eustoma plants and characterized spatial and temporal expression patterns under the control of the InMYB1 promoter by histochemical β-glucuronidase (GUS) staining. GUS staining patterns were observed only in petals. This result showed that the InMYB1 promoter functions as a petal-specific promoter. Second, we transiently introduced the InMYB1_1 kb::GUS construct into Eustoma, chrysanthemum, carnation, Japanese gentian, stock, rose, dendrobium and lily petals by particle bombardment. GUS staining spots were observed in Eustoma, chrysanthemum, carnation, Japanese gentian and stock. These results showed that the InMYB1 promoter functions in most dicots. Third, to show the InMYB1 promoter utility in molecular breeding, a MIXTA-like gene function was suppressed or enhanced under the control of InMYB1 promoter in Arabidopsis. The transgenic plant showed a conspicuous morphological change only in the form of wrinkled petals. Based on these results, the InMYB1 promoter can be used as a petal-specific promoter in molecular breeding of floricultural crops.

  11. Los factores de transcripción tipo Myb, una familia de reguladores de la diferenciación celular conservada en los organismos eucariontes

    OpenAIRE

    Jenny Arratia; Jesús Aguirre

    2013-01-01

    La familia de proteínas Myb, ubicua en los eucariontes, se caracteriza por la presencia de un dominio de unión al ADN característico denominado dominio Myb. Éste consiste en una secuencia de aminoácidos conservados (50-53 aminoácidos) que puede estar repetida entre dos (dominio mínimo de unión al ADN) y hasta cuatro veces en la misma proteína. En las plantas, la familia Myb es muy numerosa, mientras que en los animales sólo se encuentran tres miembros, y en otros eucariontes se ha identificad...

  12. Transformation-defective mutant of avian myeloblastosis virus that is temperature sensitive for production of transforming protein p45v-myb.

    Science.gov (United States)

    Moscovici, M G; Klempnauer, K H; Symonds, G; Bishop, J M; Moscovici, C

    1985-01-01

    We have characterized a mutant of avian myeloblastosis virus (strain GA907/7) that shows a reduced capacity to transform myelomonocytic cells at the nonpermissive temperature. Myeloblasts transformed by this mutant suffer a substantial decrease in the amount of the transforming protein p45v-myb when shifted from the permissive to the nonpermissive temperature. We presume that the 5- to 10-fold decrease in the amount of p45v-myb causes the loss of the transformed phenotype. The decrease is due to a reduction in the level of v-myb mRNA. Mutant GA907/7 thus provides genetic evidence that p45v-myb is the transforming protein of avian myeloblastosis virus and apparently represents an unusual defect in the production or stability of mRNA. Images PMID:3018515

  13. The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Xiong, Shuang-Xi; Lu, Jie-Yang; Lou, Yue; Teng, Xiao-Dong; Gu, Jing-Nan; Zhang, Cheng; Shi, Qiang-Sheng; Yang, Zhong-Nan; Zhu, Jun

    2016-12-01

    The sexine layer of pollen grain is mainly composed of sporopollenins. The sporophytic secretory tapetum is required for the biosynthesis of sporopollenin. Although several enzymes involved in sporopollenin biosynthesis have been reported, the regulatory mechanism of these enzymes in tapetal layer remains elusive. ABORTED MICROSPORES (AMS) and MALE STERILE 188/MYB103/MYB80 (MS188/MYB103/MYB80) are two tapetal cell-specific transcription factors required for pollen wall formation. AMS functions upstream of MS188. Here we report that AMS and MS188 target the CYP703A2 gene, which is involved in sporopollenin biosynthesis. We found that AMS and MS188 were localized in tapetum while CYP703A2 was localized in both tapetum and locule. Chromatin immunoprecipitation (ChIP) showed that MS188 directly bound to the promoter of CYP703A2 and luciferase-inducible assay showed that MS188 activated the expression of CYP703A2. Yeast two-hybrid and electrophoretic mobility shift assays (EMSAs) further demonstrated that MS188 complexed with AMS. The expression of CYP703A2 could be partially restored by the elevated levels of MS188 in the ams mutant. Therefore, our data reveal that MS188 coordinates with AMS to activate CYP703A2 in sporopollenin biosynthesis of plant tapetum.

  14. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.

    Science.gov (United States)

    Li, Ting; Jia, Kun-Peng; Lian, Hong-Li; Yang, Xu; Li, Ling; Yang, Hong-Quan

    2014-11-07

    Anthocyanins are critical for plants. It is shown that the expression of genes encoding the key enzymes such as dihydroflavonol 4-reductase (DFR), UDP-Glc: flavonoid 3-O-glucosyltransferase (UF3GT), and leucoanthocyanidin dioxygenase (LDOX) in anthocyanin biosynthesis pathway is regulated by MYB75, a R2R3 MYB transcription factor. The production of anthocyanin is known to be promoted by jasmonic acid (JA) in light but not in darkness. The photoreceptors cryptochrome 1 (CRY1), phytochrome B (phyB), and phytochrome A (phyA) are also shown to mediate light promotion of anthocyanin accumulation, respectively, whereas their downstream factor COP1, a master negative regulator of photomorphogensis, represses anthocyanin accumulation. However, whether JA coordinates with photoreceptors in the regulation of anthocyanin accumulation is unknown. Here, we show that under far-red light, JA promotes anthocyanin accumulation in a phyA signaling pathway-dependent manner. The phyA mutant is hyposensitive to jasmonic acid analog methyl jasmonic acid (MeJA) under far-red light. The dominant mutant of MYB75, pap1-D, accumulates significantly higher levels of anthocyanin than wild type under far-red light, whereas knockdown of MYBs (MYB75, MYB90, MYB113, and MYB114) through RNAi significantly reduces MeJA promotion of anthocyanin accumulation. The phyA pap1-D double mutant shows reduced responsiveness to MeJA, similar to phyA mutant under far-red light. In darkness, a mutant allele of cop1, cop1-4, shows enhanced responsiveness to MeJA, but pap1-D mutant is barely responsive to MeJA. Upon MeJA application, the cop1-4 pap1-D double mutant accumulates considerably higher levels of anthocyanin than cop1-4 in darkness. Protein studies indicate that MYB75 protein is stabilized by white light and far-red light. Further gene expression studies suggest that MeJA promotes the expression of DFR, UF3GT, and LDOX genes in a phyA- and MYB75-dependent manner under far-red light. Our findings suggest

  15. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors.

    Science.gov (United States)

    Ge, Ying; Li, Yong; Lv, De-Kang; Bai, Xi; Ji, Wei; Cai, Hua; Wang, Ao-Xue; Zhu, Yan-Ming

    2011-06-01

    Transcriptome of Glycine soja leaf tissue during a detailed time course formed a foundation for examining transcriptional processes during NaHCO(3) stress treatment. Of a total of 2,310 detected differentially expressed genes, 1,664 genes were upregulated and 1,704 genes were downregulated at various time points. The number of stress-regulated genes increased dramatically after a 6-h stress treatment. GO category gene enrichment analysis revealed that most of the differentially expressed genes were involved in cell structure, protein synthesis, energy, and secondary metabolism. Another enrichment test revealed that the response of G. soja to NaHCO(3) highlights specific transcription factors, such as the C2C2-CO-like, MYB-related, WRKY, GARP-G2-like, and ZIM families. Co-expressed genes were clustered into ten classes (P < 0.001). Intriguingly, one cluster of 188 genes displayed a unique expression pattern that increases at an early stage (0.5 and 3 h), followed by a decrease from 6 to 12 h. This group was enriched in regulation of transcription components, including AP2-EREBP, bHLH, MYB/MYB-related, C2C2-CO-like, C2C2-DOF, C2C2, C3H, and GARP-G2-like transcription factors. Analysis of the 1-kb upstream regions of transcripts displaying similar changes in abundance identified 19 conserved motifs, potential binding sites for transcription factors. The appearance of ABA-responsive elements in the upstream of co-expression genes reveals that ABA-mediated signaling participates in the signal transduction in alkaline response.

  16. Transcriptional activation of a MYB gene controls the tissue-specific anthocyanin accumulation in a purple cauliflower mutant

    Science.gov (United States)

    Flavonoids such as anthocyanins possess significant health benefits to humans and play important physiological roles in plants. An interesting Purple gene mutation in cauliflower confers an abnormal pattern of anthocyanin accumulation, giving intense purple color in very young leaves, curds, and see...

  17. Fruit-Surface Flavonoid Accumulation in Tomato Is Controlled by a SlMYB12-Regulated Transcriptional Network

    NARCIS (Netherlands)

    Adato, A.; Mandel, T.; Mintz-Orion, S.; Venger, I.; Levy, D.; Yativ, M.; Dominguez, E.; Wang, Z.; Vos, de C.H.; Jetter, R.; Schreiber, L.; Heredia, A.; Rogachev, I.; Aharoni, A.

    2009-01-01

    The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive org

  18. Berry skin development in Norton grape: Distinct patterns of transcriptional regulation and flavonoid biosynthesis

    Directory of Open Access Journals (Sweden)

    Yu Oliver

    2011-01-01

    Full Text Available Abstract Background The complex and dynamic changes during grape berry development have been studied in Vitis vinifera, but little is known about these processes in other Vitis species. The grape variety 'Norton', with a major portion of its genome derived from Vitis aestivalis, maintains high levels of malic acid and phenolic acids in the ripening berries in comparison with V. vinifera varieties such as Cabernet Sauvignon. Furthermore, Norton berries develop a remarkably high level of resistance to most fungal pathogens while Cabernet Sauvignon berries remain susceptible to those pathogens. The distinct characteristics of Norton and Cabernet Sauvignon merit a comprehensive analysis of transcriptional regulation and metabolite pathways. Results A microarray study was conducted on transcriptome changes of Norton berry skin during the period of 37 to 127 days after bloom, which represents berry developmental phases from herbaceous growth to full ripeness. Samples of six berry developmental stages were collected. Analysis of the microarray data revealed that a total of 3,352 probe sets exhibited significant differences at transcript levels, with two-fold changes between at least two developmental stages. Expression profiles of defense-related genes showed a dynamic modulation of nucleotide-binding site-leucine-rich repeat (NBS-LRR resistance genes and pathogenesis-related (PR genes during berry development. Transcript levels of PR-1 in Norton berry skin clearly increased during the ripening phase. As in other grapevines, genes of the phenylpropanoid pathway were up-regulated in Norton as the berry developed. The most noticeable was the steady increase of transcript levels of stilbene synthase genes. Transcriptional patterns of six MYB transcription factors and eleven structural genes of the flavonoid pathway and profiles of anthocyanins and proanthocyanidins (PAs during berry skin development were analyzed comparatively in Norton and Cabernet

  19. 甘蓝型油菜MYB4基因反义植物表达载体的构建%Construction of Antisense Plant Expressing Vector of MYB4 Gene of Brassica napus

    Institute of Scientific and Technical Information of China (English)

    尹锐; 柴友荣

    2013-01-01

    将甘蓝型油菜(Brassica napusL.)MYB4基因家族共保守的467 bp反义片段构建到中间栽体pCambia2301G中,替换GUS基因,由CaMV35S启动子驱动,形成了反义植物表达载体,命名为pCambi-a2301G-MYB4A,并转化到根癌农杆菌(Agrobacterium tumefaciens)LBA4404中形成工程菌株,为进一步研究甘蓝型油菜MY B4基因家族的功能奠定基础.

  20. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines

    Directory of Open Access Journals (Sweden)

    Castellarin Simone D

    2007-08-01

    Full Text Available Abstract Background Fruit coloration of red-skinned grapevines is mainly due to anthocyanin pigments. We analysed a panel of nine cultivars that included extreme phenotypes for berry colour, ranging from green (absence of anthocyanins to red, purple, violet and blue. Expression of six genes of the anthocyanin pathway coding for flavanone-hydroxylase (F3H, flavonoid 3'-hydroxylase (F3'H, flavonoid 3',5'-hydroxylase (F3'5'H, UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT, glutathione-S-transferase (GST, O-methyltransferase (OMT and four transcription factors (MybA, MybB, MybC, MybD was analysed by quantitative RT-PCR at four developmental stages from before the onset of ripening until full maturity and compared to anthocyanin metabolites. Results Total anthocyanin content at full maturity correlated well with the cumulative expression of F3H, UFGT and GST throughout ripening. Transcripts of the last two genes were absent in the green-skinned cultivar 'Sauvignonasse', also known as 'Tocai friulano', and were at least 10-fold less abundant in pale red cultivars, such as 'Pinot gris' and 'Gewürztraminer', compared to fully coloured cultivars. Predominance of tri-hydroxylated anthocyanins (delphinidin, petunidin and malvidin in cultivars bearing dark berries with violet and blue hue was associated with higher ratios of F3'5'H/F3'H transcription, compared to red-skinned cultivars. Higher levels of OMT transcripts were observed in berries of cultivars that accumulated methoxylated forms of anthocyanins more abundantly than non-methoxylated forms. Conclusion Colour variation of the grape berry conforms to a peculiar pattern of genotype-specific expression of the whole set of anthocyanin genes in a direct transcript-metabolite-phenotype relationship. Cumulative mRNA levels of the structural genes and their relative abundance throughout ripening explained per se the final phenotype for anthocyanin content, anthocyanin composition, colour intensity

  1. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca.

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    Full Text Available Fragaria vesca (2n = 2x = 14, the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb. It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW and red (Ruegen, RG fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2% had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs, including MYB (putative MYB86 and MYB39, WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca.

  2. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca.

    Science.gov (United States)

    Zhang, Yuchao; Li, Weijia; Dou, Yujuan; Zhang, Junxiang; Jiang, Guihua; Miao, Lixiang; Han, Guofen; Liu, Yuexue; Li, He; Zhang, Zhihong

    2015-01-01

    Fragaria vesca (2n = 2x = 14), the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb). It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW) and red (Ruegen, RG) fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2%) had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs), including MYB (putative MYB86 and MYB39), WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca.

  3. Transcriptional changes during neuronal death and replacement in the olfactory epithelium.

    Science.gov (United States)

    Shetty, Ranjit S; Bose, Soma C; Nickell, Melissa D; McIntyre, Jeremy C; Hardin, Debra H; Harris, Andrew M; McClintock, Timothy S

    2005-12-01

    The olfactory epithelium has the unusual ability to replace its neurons.We forced replacement of mouse olfactory sensory neurons by bulbectomy. Microarray, bioinformatics, and in situ hybridization techniques detected a rapid shift in favor of pro-apoptotic proteins, a progressive immune response by macrophages and dendritic cells, and identified or predicted 439 mRNAs enriched in olfactory sensory neurons, including gene silencing factors and sperm flagellar proteins. Transcripts encoding cell cycle regulators, axonogenesis proteins, and transcription factors and signaling proteins that promote proliferation and differentiation were increased at 5-7 days after bulbectomy and were expressed by basal progenitor cells or immature neurons. The transcription factors included Nhlhl, Hes6, Lmycl, c-Myc, Mxd4, Idl,Nmycl, Cited2, c-Myb, Mybll, Tead2, Dpl, Gata2, Lmol, and Soxll. The data reveal significant similarities with embryonic neurogenesis and make several mechanistic predictions, including the roles of the transcription factors in the olfactory sensory neuron lineage.

  4. Emerging Functions of Transcription Factors in Malaria Parasite

    Directory of Open Access Journals (Sweden)

    Renu Tuteja

    2011-01-01

    Full Text Available Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  5. MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation.

    Science.gov (United States)

    Sheehan, Hester; Moser, Michel; Klahre, Ulrich; Esfeld, Korinna; Dell'Olivo, Alexandre; Mandel, Therese; Metzger, Sabine; Vandenbussche, Michiel; Freitas, Loreta; Kuhlemeier, Cris

    2016-02-01

    Adaptations to new pollinators involve multiple floral traits, each requiring coordinated changes in multiple genes. Despite this genetic complexity, shifts in pollination syndromes have happened frequently during angiosperm evolution. Here we study the genetic basis of floral UV absorbance, a key trait for attracting nocturnal pollinators. In Petunia, mutations in a single gene, MYB-FL, explain two transitions in UV absorbance. A gain of UV absorbance in the transition from bee to moth pollination was determined by a cis-regulatory mutation, whereas a frameshift mutation caused subsequent loss of UV absorbance during the transition from moth to hummingbird pollination. The functional differences in MYB-FL provide insight into the process of speciation and clarify phylogenetic relationships between nascent species.

  6. Synthesis of c-Myb Protein(38-89)-NH2 Using a Partially Protected Peptide Thioester

    Institute of Scientific and Technical Information of China (English)

    张若蘅; 徐筱杰; 唐有祺; Hironobo Hojo; Saburo Aimoto

    1994-01-01

    The method of selective modification of eysteine SH group with 4-methylbenzylchloride isdeveloped,c-Myb protein (38-89)-NH2 is synthesized by using a partially protected peptide thioester.The4-methylbenzyl (MeBzl) protecting group of cysteine in the building block is stable during the segment cou-pling.The method can be used in the chemical synthesis of some protein containing cysteine.

  7. Identification of Anthocyanin Composition and Functional Analysis of an Anthocyanin Activator in Solanum nigrum Fruits

    Directory of Open Access Journals (Sweden)

    Shaoli Wang

    2017-05-01

    Full Text Available Solanum nigrum fruits have been conventionally used in beverages due to their nutritional substances such as minerals, vitamins, amino acids, proteins, sugars, polyphenols, and anthocyanins. The characterization of components and regulatory mechanism of anthocyanins in S. nigrum fruits have rarely been reported. In this study, we determined that the peel and flesh of S. nigrum fruits shared similar HPLC profiles but different contents and total antioxidant activities for anthocyanins. After an efficient purification method, mainly including extraction with pH 1.0 distilled water and then desorption with pH 1.0 95% ethanol after a DM-130 resin adsorption step to obtain more pure anthocyanin extracts, the purity of anthocyanins extracted from S. nigrum fruits reached 56.1%. Moreover, eight anthocyanins from S. nigrum fruit were identified with HPLC-MS/MS for the first time. A typical R2R3-MYB transcription factor gene, SnMYB, was also cloned for the first time by rapid amplification of cDNA ends (RACE-PCR from S. nigrum. Moreover, the contents of anthocyanins were shown to correlate well (r = 0.93 with the expression levels of SnMYB gene during the fruit’s developmental stages. Most significantly, SnMYB gene successfully produced high anthocyanin content (1.03 mg/g when SnMYB gene was transiently expressed in tobacco leaves. Taken together, S. nigrum fruits are a promising resource for anthocyanin extraction, and SnMYB gene is an activator that positively regulates anthocyanin biosynthesis in S. nigrum.

  8. Transcription factories

    Science.gov (United States)

    Rieder, Dietmar; Trajanoski, Zlatko; McNally, James G.

    2012-01-01

    There is considerable evidence that transcription does not occur homogeneously or diffusely throughout the nucleus, but rather at a number of specialized, discrete sites termed transcription factories. The factories are composed of ~4–30 RNA polymerase molecules, and are associated with many other molecules involved in transcriptional activation and mRNA processing. Some data suggest that the polymerase molecules within a factory remain stationary relative to the transcribed DNA, which is thought to be reeled through the factory site. There is also some evidence that transcription factories could help organize chromatin and nuclear structure, contributing to both the formation of chromatin loops and the clustering of active and co-regulated genes. PMID:23109938

  9. A putative transcription factor MYT1 is required for female fertility in the ascomycete Gibberella zeae.

    Directory of Open Access Journals (Sweden)

    Yang Lin

    Full Text Available Gibberella zeae is an important pathogen of major cereal crops. The fungus produces ascospores that forcibly discharge from mature fruiting bodies, which serve as the primary inocula for disease epidemics. In this study, we characterized an insertional mutant Z39P105 with a defect in sexual development and identified a gene encoding a putative transcription factor designated as MYT1. This gene contains a Myb DNA-binding domain and is conserved in the subphylum Pezizomycotina of Ascomycota. The MYT1 protein fused with green fluorescence protein localized in nuclei, which supports its role as a transcriptional regulator. The MYT1 deletion mutant showed similar phenotypes to the wild-type strain in vegetative growth, conidia production and germination, virulence, and mycotoxin production, but had defect in female fertility. A mutant overexpressing MYT1 showed earlier germination, faster mycelia growth, and reduced mycotoxin production compared to the wild-type strain, suggesting that improper MYT1 expression affects the expression of genes involved in the cell cycle and secondary metabolite production. This study is the first to characterize a transcription factor containing a Myb DNA-binding domain that is specific to sexual development in G. zeae.

  10. B-Myb Induces APOBEC3B Expression Leading to Somatic Mutation in Multiple Cancers

    Science.gov (United States)

    Chou, Wen-Cheng; Chen, Wei-Ting; Hsiung, Chia-Ni; Hu, Ling-Yueh; Yu, Jyh-Cherng; Hsu, Huan-Ming; Shen, Chen-Yang

    2017-01-01

    The key signature of cancer genomes is the accumulation of DNA mutations, the most abundant of which is the cytosine-to-thymine (C-to-T) transition that results from cytosine deamination. Analysis of The Cancer Genome Atlas (TCGA) database has demonstrated that this transition is caused mainly by upregulation of the cytosine deaminase APOBEC3B (A3B), but the mechanism has not been completely characterized. We found that B-Myb (encoded by MYBL2) binds the A3B promoter, causing transactivation, and this is responsible for the C-to-T transitions and DNA hypermutation in breast cancer cells. Analysis of TCGA database yielded similar results, supporting that MYBL2 and A3B are upregulated and putatively promote C-to-T transitions in multiple cancer types. Moreover, blockade of EGF receptor with afatinib attenuated B-Myb–A3B signaling, suggesting a clinically relevant means of suppressing mutagenesis. Our results suggest that B-Myb–A3B contributes to DNA damage and could be targeted by inhibiting EGF receptor. PMID:28276478

  11. In Silico Identification of Co-transcribed Core Cell Cycle Regulators and Transcription Factors in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Regulatory networks involving transcription factors and core cell cycle regulators are expected to play crucial roles in plant growth and development. In this report, we describe the identification of two groups of co-transcribed core cell cycle regulators and transcription factors via a two-step in silico screening. The core cell cycle regulators include TARDY ASYNCHRONOUS MEIOSIS (CYCA1;2), CYCB1;1, CYCB2;1, CDKB1;2, and CDKB2;2 while the transcription factors include CURLY LEAF, AINTEGUMENTA, a MYB protein, two Forkhead-associated domain proteins, and a SCARECROW family protein. Promoter analysis revealed a potential web of cross- and self-regulations among the identified proteins. Because one criterion for screening for these genes is that they are predominantly transcribed in young organs but not in mature organs, these genes are likely to be particularly involved in Arabidopsis organ growth.

  12. 大豆MYB基因GmMYBJ7的克隆及表达分析%Cloning and Characterization of the MYB Gene GmMYBJ7 from Soybean

    Institute of Scientific and Technical Information of China (English)

    杨文杰; 吴燕民; 唐益雄

    2011-01-01

    The MYB proteins play an important role in plant, which involved in the regulation of the process of metabolism and development extensively. The function of MYB transcription factor gene GmMYBJ7,which was isolated from soybean using the method of RACE-PCR,was to be clarified preliminarily in this paper. The expression pattern of GmMYBJ7 in different organs was studied using Northen blot. The results showed that the expression of GmMYBJ7 was detected in the leaves and stems. The transcriptional activation ability of GmMYBJ7 protein was confirmed by the yeast system with p-galactosidase activity of 24. 31 U. Semi-quantitative RT-PCR analysis indicated that GmMYBJ7 may also repress the expression of some flavonoid biosynthetic genes, such as PAL ( Phenylalanine ammonia lyase) , C4H( cinnamate-4-hydroxylase) ,4CL(4-coumaroyl-CoA ligase) , CHS( Chalcone Synthase) ,CHI ( chalcone isomerase) and F3 H ( flavanone 3-hydroxylase) , which is considered to be related to flavonoid biosynthesis in paint.%MYB蛋白是植物体中一类重要的转录因子,广泛参与植物生理代谢和发育过程的调节.本研究对利用RACE-PCR分离克隆的MYB转录因子基因GmMYBJ7的功能进行了初步研究.Norhern杂交对GmMYBJ7在不同组织中的表达情况进行了检测,结果只在茎、叶中检测到了GmMYBJ7的表达;酵母表达结果显示,GmMYBJ7具有明显的转录激活功能,β-半乳糖苷酶活性为24.31 U;半定量RT-PCR检测显示,在表达GmMYBJ7的转化烟草中,类黄酮代谢途径中的苯丙氨酸氨基裂解酶(PAL)、肉桂酸-4-羟化酶(C4H)、4-香豆酰辅酶A连接酶(4CL)、查尔酮合成酶(CHS)、黄烷酮-3-羟化酶(F3H)等关键酶的表达显著降低,结果表明,GmMYBJ7可能参与植物类黄酮合成的调控.

  13. Transcription elongation

    Science.gov (United States)

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity. PMID:25764114

  14. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    Directory of Open Access Journals (Sweden)

    Steven Grant Hussey

    2013-08-01

    Full Text Available The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

  15. The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Directory of Open Access Journals (Sweden)

    Halsey Christina

    2012-08-01

    Full Text Available Abstract Background Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL where GATA1FL mutations are an essential driver for disease pathogenesis. Methods Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. Results We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. Conclusions These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL.

  16. Main: ARELIKEGHPGDFR2 [PLACE

    Lifescience Database Archive (English)

    Full Text Available ARELIKEGHPGDFR2 S000437 28-November-2004 (last modified) kehi Sequence highly similar to ARE...ck and Chandler 1998); Binding site of R2R3-type MYB factor, GMYB 10 of G. hybrida; anthocyanina; ARE; DRF;

  17. Possible Involvement of MYB44-Mediated Stomatal Regulation in Systemic Resistance Induced by Penicillium simplicissimum GP17-2 in Arabidopsis.

    Science.gov (United States)

    Hieno, Ayaka; Naznin, Hushna Ara; Hyakumachi, Mitsuro; Higuchi-Takeuchi, Mieko; Matsui, Minami; Yamamoto, Yoshiharu Y

    2016-06-25

    The plant growth-promoting fungus (PGPF), Penicillium simplicissimum GP17-2 (GP17-2), induces systemic resistance against Pseudomonas syringae pv. tomato DC3000 (Pst) in Arabidopsis thaliana. The molecular mechanisms underlying induced systemic resistance (ISR) by GP17-2 were investigated in the present study. Microscopic observations revealed that stomatal reopening by Pst was restricted by elicitation with the culture filtrate (CF) from GP17-2. A gene expression analysis of MYB44, which enhances abscisic acid signaling and consequently closes stomata, revealed that the gene was activated by CF. CF-elicited myb44 mutant plants failed to restrict stomatal reopening and showed lower resistance to Pst than wild-type plants. These results indicate that stomatal resistance by GP17-2 is mediated by the gene activation of MYB44. We herein revealed that the MYB44-mediated prevention of penetration through the stomata is one of the components responsible for GP17-2-elicited ISR.

  18. Possible Involvement of MYB44-Mediated Stomatal Regulation in Systemic Resistance Induced by Penicillium simplicissimum GP17-2 in Arabidopsis

    Science.gov (United States)

    Hieno, Ayaka; Naznin, Hushna Ara; Hyakumachi, Mitsuro; Higuchi-Takeuchi, Mieko; Matsui, Minami; Yamamoto, Yoshiharu Y.

    2016-01-01

    The plant growth-promoting fungus (PGPF), Penicillium simplicissimum GP17-2 (GP17-2), induces systemic resistance against Pseudomonas syringae pv. tomato DC3000 (Pst) in Arabidopsis thaliana. The molecular mechanisms underlying induced systemic resistance (ISR) by GP17-2 were investigated in the present study. Microscopic observations revealed that stomatal reopening by Pst was restricted by elicitation with the culture filtrate (CF) from GP17-2. A gene expression analysis of MYB44, which enhances abscisic acid signaling and consequently closes stomata, revealed that the gene was activated by CF. CF-elicited myb44 mutant plants failed to restrict stomatal reopening and showed lower resistance to Pst than wild-type plants. These results indicate that stomatal resistance by GP17-2 is mediated by the gene activation of MYB44. We herein revealed that the MYB44-mediated prevention of penetration through the stomata is one of the components responsible for GP17-2-elicited ISR. PMID:27301421

  19. Gene expression and yeast two-hybrid studies of transcription factors mediating drought stress response in root tissues of chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available Drought stress has been one of the serious constraints affecting chickpea productivity to a great extent. Genomic assisted breeding in chickpea has been effective in providing a yield advantage of up to 24 %, thus having a potential to accelerate breeding precisely and efficiently. In order to do so, understanding the molecular mechanisms for drought tolerance and identification of candidate genes are crucial. Transcription factors (TFs have important roles in the regulation of plant stress related genes. In this context, quantitative real time-PCR (qRT-PCR was used to study the differential gene expression of selected TFs, identified from large-scale gene expression analysis, in contrasting drought responsive genotypes. Root tissues of ICC 4958 (tolerant, ICC 1882 (sensitive, JG 11 (elite and JG 11+ (introgression line were used for the study. Subsequently, a candidate single repeat MYB gene (1R-MYB that was remarkably induced in the drought tolerant genotypes under drought stress was cloned and subjected to Y2H analysis by screening a root cDNA library. The protein-protein interaction study identified three interacting peptides, a galactinol-sucrose galactosyltransferase 2, a CBL (Calcineurin B-like-interacting serine/threonine-protein kinase 25 and an ABA responsive 17-like, which were confirmed by the co-transformation of candidate plasmids in yeast. These findings provide preliminary insights into the ability of 1R-MYB TF to co-regulate drought tolerance mechanism in chickpea roots.

  20. Conjugated agent insulin-antisense-c-myb-PS-ODN enhances the inhibitory effect on proliferation of rat aortic artery smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM:Vascular smooth muscle cell (SMC) proliferation and migration from the arterial wall media into the intima are believed to play a critical role in the pathogenesis of restenosis. Several studies have demonstrated that phosphothioate (PS) oligodeoxynucleotides targeted against genes involved in SMC proliferation inhibits in vitro SMC proliferation and migration. However, the therapeutic effect of antisense ODN on the individual who receives the treatment of delivery of the agent depends on the efficacy of this agent in great degree. We investigated the inhibition effect of a novel agent, insulin-antisense-c-myb-PS-ODN on SMC proliferation in vitro. METHODS:The rat aortic artery SMCs were cultured in Dulbecco's modified Eagel's medium. The passage 8 to 13 were used as the experiment. Cell surface receptor binding assay was quantified through counting gamma particles emitted from 125    I labeled insulin. SMC rapid proliferation was brought by stimulation of high concentration of fetal bovine serum (FBS). The novel agent of insulin conjugated to the antisense-c-myb-PS-ODN was obtained via incubation of both in condition of certain reagents, pH, temperature, and ion concentration. The characterization and purification of the agent was performed through HPLC. Inhibition of SMC proliferation was reflected by incorporation rate of trillium labeled thymidine deoxyribonucleotide.RESULTS:The binding efficacy of insulin to the receptor was remarkably increased in SMC cultured in supplement of 20% FBS. The inhibition effect of conjugator insulin-c-myb-antisense-PS-ODN was stronger than that of the simple c-myb-antisense-PS-ODN. The inhibition rate of conjugator and simple form on SMC proliferation were 48.34% and 29.54%, respectively. CONCLUSION:The binding efficacy and specificity of c-myb-antisense-PS-ODN to SMC may be enhanced by the insulin receptor mediation through the insulin-insulin receptor interaction. The insulin-receptor targeted method may be a

  1. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism.

    Science.gov (United States)

    Payyavula, Raja S; Singh, Rajesh K; Navarre, Duroy A

    2013-11-01

    Much remains unknown about how transcription factors and sugars regulate phenylpropanoid metabolism in tuber crops like potato (Solanum tuberosum). Based on phylogeny and protein similarity to known regulators of phenylpropanoid metabolism, 15 transcription factors were selected and their expression was compared in white, yellow, red, and purple genotypes with contrasting phenolic and anthocyanin profiles. Red and purple genotypes had increased phenylalanine ammonia lyase (PAL) enzyme activity, markedly higher levels of phenylpropanoids, and elevated expression of most phenylpropanoid structural genes, including a novel anthocyanin O-methyltransferase. The transcription factors Anthocyanin1 (StAN1), basic Helix Loop Helix1 (StbHLH1), and StWD40 were more strongly expressed in red and purple potatoes. Expression of 12 other transcription factors was not associated with phenylpropanoid content, except for StMYB12B, which showed a negative relationship. Increased expression of AN1, bHLH1, and WD40 was also associated with environmentally mediated increases in tuber phenylpropanoids. Treatment of potato plantlets with sucrose induced hydroxycinnamic acids, flavonols, anthocyanins, structural genes, AN1, bHLH1, WD40, and genes encoding the sucrose-hydrolysing enzymes SUSY1, SUSY4, and INV2. Transient expression of StAN1 in tobacco leaves induced bHLH1, structural genes, SUSY1, SUSY4, and INV1, and increased phenylpropanoid amounts. StAN1 infiltration into tobacco leaves decreased sucrose and glucose concentrations. In silico promoter analysis revealed the presence of MYB and bHLH regulatory elements on sucrolytic gene promoters and sucrose-responsive elements on the AN1 promoter. These findings reveal an interesting dynamic between AN1, sucrose, and sucrose metabolic genes in modulating potato phenylpropanoids.

  2. MicroRNA828负调控缺磷胁迫诱导的番茄花青素生物合成%Negative Regulation of Anthocyanin Biosynthesis in Tomato by MicroRNA828 Under Phosphate Deficiency

    Institute of Scientific and Technical Information of China (English)

    贾小云; 刘慧; 沈洁; 李芳; 丁娜; 孙岩; 高昌勇; 李润植

    2015-01-01

    Tom and LA1996 tomato seedlings were analyzed. The expression of miR828 in different tissues/organs of tomato (AC) was analyzed by qRT-PCR. Wild-type and miR828 overexpressed transgenic tomatoes were cultured under normal phosphate (KH2PO4 3.4 g·L-1) and phosphate deficiency (KCl 1.86 g·L-1) for 15 d. The phenotypic changes and the expression of miR828, SlMyb7-like (SGN-U320618), several anthocyanin biosynthetic genes as well as the anthocyanin content were detected.[Result]SlMyb7-like was validated to be a direct target of miR828. Protein sequence analysis showed that the SlMYB7-like protein shares the highest homology with theArabidopsis subgroup 4 MYB7 (AtMYB7), and Snapdragon MYB330, having more than 80% sequence similarity. Phylogenetic analysis grouped SlMYB7-like in a clade with AtMYB7 and AmMYB330. SlMYB7-like contains the conserved amino acid motif ([D/E]LX2[R/K]X3LX6L X3R/DLIVRLHSLLGNRWSLIAGR), a signature feature common to subgroup 6 R2R3 MYBs (AtMYB75/90/113) that are involved in anthocyanin biosynthesis. The highest abundance of miR828 was detected in MicroTom seedlings, where the transcript of its target gene (SlMyb7-like) was accumulated the lowest. The expression of miR828 in different tissues of tomato tested was very low with relatively higher levels in buds, flowers and green fruits. Under the normal phosphate condition, the expression of anthocyanin biosynthetic genes in the miR828 over-expressed tomatoes decreased by 30%-60% and the content of anthocyanin decreased by 40%. Phosphate deficiency induced both the expression of miR828 andSlMyb7-like. The expression ofSlMyb7-like, anthocyanin biosynthetic genes and the content of anthocyanin in the miR828 overexpressed tomatoes were lower than that in control plants under phosphate deficiency. The above data suggest that miR828 negatively regulates the anthocyanin biosynthesis in tomato under phosphate deficiency.[Conclusion]SlMyb7-like is a direct target gene of miR828. Both the expressions of miR828

  3. MdCOP1 Ubiquitin E3 Ligases Interact with MdMYB1 to Regulate Light-Induced Anthocyanin Biosynthesis and Red Fruit Coloration in Apple1[W][OA

    Science.gov (United States)

    Li, Yuan-Yuan; Mao, Ke; Zhao, Cheng; Zhao, Xian-Yan; Zhang, Hua-Lei; Shu, Huai-Rui; Hao, Yu-Jin

    2012-01-01

    MdMYB1 is a crucial regulator of light-induced anthocyanin biosynthesis and fruit coloration in apple (Malus domestica). In this study, it was found that MdMYB1 protein accumulated in the light but degraded via a ubiquitin-dependent pathway in the dark. Subsequently, the MdCOP1-1 and MdCOP1-2 genes were isolated from apple fruit peel and were functionally characterized in the Arabidopsis (Arabidopsis thaliana) cop1-4 mutant. Yeast (Saccharomyces cerevisiae) two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that MdMYB1 interacts with the MdCOP1 proteins. Furthermore, in vitro and in vivo experiments indicated that MdCOP1s are necessary for the ubiquitination and degradation of MdMYB1 protein in the dark and are therefore involved in the light-controlled stability of the MdMYB1 protein. Finally, a viral vector-based transformation approach demonstrated that MdCOP1s negatively regulate the peel coloration of apple fruits by modulating the degradation of the MdMYB1 protein. Our findings provide new insight into the mechanism by which light controls anthocyanin accumulation and red fruit coloration in apple and even other plant species. PMID:22855936

  4. The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes.

    Science.gov (United States)

    Morf, Laura; Spycher, Cornelia; Rehrauer, Hubert; Fournier, Catharine Aquino; Morrison, Hilary G; Hehl, Adrian B

    2010-10-01

    The protozoan parasite Giardia lamblia undergoes stage differentiation in the small intestine of the host to an environmentally resistant and infectious cyst. Encystation involves the secretion of an extracellular matrix comprised of cyst wall proteins (CWPs) and a β(1-3)-GalNAc homopolymer. Upon the induction of encystation, genes coding for CWPs are switched on, and mRNAs coding for a Myb transcription factor and enzymes involved in cyst wall glycan synthesis are upregulated. Encystation in vitro is triggered by several protocols, which call for changes in bile concentrations or availability of lipids, and elevated pH. However, the conditions for induction are not standardized and we predicted significant protocol-specific side effects. This makes reliable identification of encystation factors difficult. Here, we exploited the possibility of inducing encystation with two different protocols, which we show to be equally effective, for a comparative mRNA profile analysis. The standard encystation protocol induced a bipartite transcriptional response with surprisingly minor involvement of stress genes. A comparative analysis revealed a core set of only 18 encystation genes and showed that a majority of genes was indeed upregulated as a side effect of inducing conditions. We also established a Myb binding sequence as a signature motif in encystation promoters, suggesting coordinated regulation of these factors.

  5. vsiRNAs derived from the miRNA-generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Puccinia striiformis f. sp. tritici through the regulation of taMyb3 expression.

    Science.gov (United States)

    Feng, Hao; Zhang, Qiong; Li, Huayi; Wang, Xiaojie; Wang, Xiaodong; Duan, Xiaoyuan; Wang, Bing; Kang, Zhensheng

    2013-07-01

    Plants live in a complex environment, exposed to stresses, such as unsuitable climates, pests and pathogenic microorganisms. Pathogens are one of the most serious factors that threaten plant growth. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases worldwide. Virus-induced gene silencing (VIGS) is a popular tool for the functional analysis of wheat genes, generating abundant small RNAs (sRNAs). sRNAs are key components in gene regulatory networks, silencing corresponding genes at the post-transcriptional level. In this study, we transduced pri-tae-miR159a into plant tissues using the barley stripe mosaic virus (BSMV) system, and demonstrated that vsiRNAs were generated from the same miRNAs generating sites of pri-tae-miR159a, with the function of Dicer RNase III-like classes of endonucleases (DCL4). In addition, the accumulation of vsiRNAs in wheat leaves challenged with Pst Chinese yellow rust 23 (CYR23), resulted in a resistant phenotype, and in the compatible interaction, the sporation of Pst was limited. Whereas, infection with a control construct had no effect on the resistance or susceptibility. The results of the histological observation also supported these phenotype changes. Interestingly, vsiRNAs were also involved in the interactions between wheat and Pst through the tae-miR159-mediated regulation of taMyb3 expression. Moreover, these results also supported the speculation that vsiRNAs were generated from the same sites of pri-tae-miR159a. These studies indicated that vsiRNAs from miRNAs generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Pst through the regulation of taMyb3 expression.

  6. Existence of HbF Enhancer Haplotypes at HBS1L-MYB Intergenic Region in Transfusion-Dependent Saudi β-Thalassemia Patients

    Directory of Open Access Journals (Sweden)

    Cyril Cyrus

    2017-01-01

    Full Text Available Background and Objectives. β-Thalassemia and sickle cell disease are genetic disorders characterized by reduced and abnormal β-globin chain production, respectively. The elevation of fetal hemoglobin (HbF can ameliorate the severity of these disorders. In sickle cell disease patients, the HbF level elevation is associated with three quantitative trait loci (QTLs, BCL11A, HBG2 promoter, and HBS1L-MYB intergenic region. This study elucidates the existence of the variants in these three QTLs to determine their association with HbF levels of transfusion-dependent Saudi β-thalassemia patients. Materials and Methods. A total of 174 transfusion-dependent β-thalassemia patients and 164 healthy controls from Eastern Province of Saudi Arabia were genotyped for fourteen single nucleotide polymorphisms (SNPs from the three QTL regions using TaqMan assay on real-time PCR. Results. Genotype analysis revealed that six alleles of HBS1L-MYB QTL (rs9376090C p=0.0009, rs9399137C p=0.008, rs4895441G p=0.004, rs9389269C p=0.008, rs9402686A p=0.008, and rs9494142C p=0.002 were predominantly associated with β-thalassemia. In addition, haplotype analysis revealed that haplotypes of HBS1L-MYB (GCCGCAC p=0.022 and HBG2 (GTT p=0.009 were also predominantly associated with β-thalassemia. Furthermore, the HBS1L-MYB region also exhibited association with the high HbF cohort. Conclusion. The stimulation of HbF gene expression may provide alternative therapies for the amelioration of the disease severity of β-thalassemia.

  7. Existence of HbF Enhancer Haplotypes at HBS1L-MYB Intergenic Region in Transfusion-Dependent Saudi β-Thalassemia Patients.

    Science.gov (United States)

    Cyrus, Cyril; Vatte, Chittibabu; Borgio, J Francis; Al-Rubaish, Abdullah; Chathoth, Shahanas; Nasserullah, Zaki A; Jarrash, Sana Al; Sulaiman, Ahmed; Qutub, Hatem; Alsaleem, Hassan; Alzahrani, Alhusain J; Steinberg, Martin H; Ali, Amein K Al

    2017-01-01

    Background and Objectives. β-Thalassemia and sickle cell disease are genetic disorders characterized by reduced and abnormal β-globin chain production, respectively. The elevation of fetal hemoglobin (HbF) can ameliorate the severity of these disorders. In sickle cell disease patients, the HbF level elevation is associated with three quantitative trait loci (QTLs), BCL11A, HBG2 promoter, and HBS1L-MYB intergenic region. This study elucidates the existence of the variants in these three QTLs to determine their association with HbF levels of transfusion-dependent Saudi β-thalassemia patients. Materials and Methods. A total of 174 transfusion-dependent β-thalassemia patients and 164 healthy controls from Eastern Province of Saudi Arabia were genotyped for fourteen single nucleotide polymorphisms (SNPs) from the three QTL regions using TaqMan assay on real-time PCR. Results. Genotype analysis revealed that six alleles of HBS1L-MYB QTL (rs9376090C p = 0.0009, rs9399137C p = 0.008, rs4895441G p = 0.004, rs9389269C p = 0.008, rs9402686A p = 0.008, and rs9494142C p = 0.002) were predominantly associated with β-thalassemia. In addition, haplotype analysis revealed that haplotypes of HBS1L-MYB (GCCGCAC p = 0.022) and HBG2 (GTT p = 0.009) were also predominantly associated with β-thalassemia. Furthermore, the HBS1L-MYB region also exhibited association with the high HbF cohort. Conclusion. The stimulation of HbF gene expression may provide alternative therapies for the amelioration of the disease severity of β-thalassemia.

  8. Existence of HbF Enhancer Haplotypes at HBS1L-MYB Intergenic Region in Transfusion-Dependent Saudi β-Thalassemia Patients

    Science.gov (United States)

    Vatte, Chittibabu; Borgio, J. Francis; Al-Rubaish, Abdullah; Nasserullah, Zaki A.; Jarrash, Sana Al; Sulaiman, Ahmed; Qutub, Hatem; Alsaleem, Hassan; Alzahrani, Alhusain J.; Steinberg, Martin H.

    2017-01-01

    Background and Objectives. β-Thalassemia and sickle cell disease are genetic disorders characterized by reduced and abnormal β-globin chain production, respectively. The elevation of fetal hemoglobin (HbF) can ameliorate the severity of these disorders. In sickle cell disease patients, the HbF level elevation is associated with three quantitative trait loci (QTLs), BCL11A, HBG2 promoter, and HBS1L-MYB intergenic region. This study elucidates the existence of the variants in these three QTLs to determine their association with HbF levels of transfusion-dependent Saudi β-thalassemia patients. Materials and Methods. A total of 174 transfusion-dependent β-thalassemia patients and 164 healthy controls from Eastern Province of Saudi Arabia were genotyped for fourteen single nucleotide polymorphisms (SNPs) from the three QTL regions using TaqMan assay on real-time PCR. Results. Genotype analysis revealed that six alleles of HBS1L-MYB QTL (rs9376090C p = 0.0009, rs9399137C p = 0.008, rs4895441G p = 0.004, rs9389269C p = 0.008, rs9402686A p = 0.008, and rs9494142C p = 0.002) were predominantly associated with β-thalassemia. In addition, haplotype analysis revealed that haplotypes of HBS1L-MYB (GCCGCAC p = 0.022) and HBG2 (GTT p = 0.009) were also predominantly associated with β-thalassemia. Furthermore, the HBS1L-MYB region also exhibited association with the high HbF cohort. Conclusion. The stimulation of HbF gene expression may provide alternative therapies for the amelioration of the disease severity of β-thalassemia. PMID:28280727

  9. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type.

    Science.gov (United States)

    Wu, Juxun; Fu, Lili; Yi, Hualin

    2016-01-01

    Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key roles in plant development and ripening by temporarily and spatially regulating the transcription of their target genes. In this study, a total of 159 TFs were identified from a spontaneous late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type counterpart ('Fengjie 72-1', WT) along the ripening period via the Transcription Factor Prediction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT and WT; 92 and 120 differentially expressed TFs were identified in WT and MT, respectively. The Venn diagram analysis showed that 16 differentially expressed TFs were identified between MT and WT and during the ripening of WT and MT. These TFs were primarily assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the number of TFs of the ERF family was the greatest between MT and WT. According to the results of the WGCNA analysis, a weighted correlation network analysis tool, several important TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were identified, such as RD26, NTT, GATA7 and MYB21/62/77. Hierarchical cluster analysis and the expression analysis conducted at five fruit ripening stages further validated the pivotal TFs that potentially function during orange fruit development and ripening.

  10. Reversible Histone Acetylation Involved in Transcriptional Regulation of WT1 Gene

    Institute of Scientific and Technical Information of China (English)

    Yangguang SHAO; Jun LU; Cao CHENG; Liguo CUI; Guoping ZHANG; Baiqu HUANG

    2007-01-01

    To validate the involvement of reversible histone acetylation in the transcriptional regulation of human Wilms' tumor 1 gene (WT1), we analyzed the roles of histone deacetylases (HDACs) and histone acetyltransferase in this epigenetic process. Of the six HDACs (HDAC1-6) examined, HDAC4 and HDAC5 were found to have significant repressing effects on the activity of the WT1 reporter gene, as revealed by luciferase reporter assays and quantitative real-time reverse transcription-polymerase chain reaction assays.Luciferase reporter assays showed that the histone acetyltransferase p300 was able to counteract the HDAC4/HDAC5-mediated repression and that p300/CBP synergized with transcription factors Sp1, c-Myb, and Ets-1 in activation of the WT1 reporter. Chromatin immunoprecipitation experiments showed that p300 promotes the acetylation level of histone H3 at the WT1 intronic enhancer. Based on these data, we proposed a hypothetical model for the involvement of reversible histone acetylation in transcriptional regulation of the WT1 gene. This study provides further insight into the mechanisms of transcriptional regulation of the WT1 gene and WT1-associated diseases treatment.

  11. Low Temperature Stress Induced Changes in Biochemical Parameters, Protein Banding Pattern and Expression of Zat12 and Myb Genes in Rice Seedling

    Directory of Open Access Journals (Sweden)

    Salma Perveen

    2013-11-01

    Full Text Available Low temperature stress is one of the main abiotic factors that reduce the productivity of many crops in hilly areas around the world. In this study, rice seedling were exposed to low temperature stress (control, 0°C, -2°C, -4°C and -6°C for 2 hr to observe its effect on two rice varieties (Basmati-385 and Shaheen Basmati through ion and proline contents, photosynthetic pigments, total protein content, protein banding pattern and expression of Zat12 and Myb genes. Resulted showed different patterns of accumulation of Na+ K+ and Ca+2 ions with the decrease in temperature in both varieties. Proline accumulation was gradually increased in both varieties with the decrease in temperature. Photosynthetic pigments (Chlorophyll (Chl a, b and carotene were negatively affected by low temperature stress in both varieties, however, carotene content was much affected than Chl a and b. Nonsignificant variation in protein contents was observed at all levels of low temperature, but the effects of low temperature stress on protein banding pattern of Basmti-385 and Shaheen Basmati were different at different treatments. RT-PCR results indicated that ZAT12 was upregulated by short term low temperature stress while OsMYB show slight upregulation at -2°C as compared to the other treatments. This study identified that ZAT12 and OsMYB function as a positive regulator to mediate tolerance of rice seedlings at low temperature stress.

  12. In silico analysis of transcription factor binding sites in promoters of germin-like protein genes in rice

    Directory of Open Access Journals (Sweden)

    Ilyas Muhammad

    2016-01-01

    Full Text Available Germins (GERs and germin-like proteins (GLPs play important roles in responses to various stresses; however, their function is still not fully understood. Significant insight into their function can be obtained by analyzing their promoters. In the present study, the 5' upstream promoters (1000 bp of 43 Asian rice (Oryza sativa var. Japonica GLP genes were retrieved from the Plant Ensemble, based on the Rice Annotation Project database (RAP-DB. Phylogenetic analysis via MEGA6 showed a narrow genetic background (0.2% with a Tajima neutrality value (π of 0.69. Overall, 4234 transcription factor (TF binding sites (TFBSs were found on chromosomes 1, 2, 3, 4, 5, 8, 9, 11 and 12 via “MatInspector” from 90 different TF families using a total of 444 families. Common TFs and DiAlign analyses showed that arabidopsis homeobox protein (AHBP, MYB-like proteins (MYBL and vertebrate TATA-box-binding protein (VTBP were the most abundant, common and evolutionarily conserved elements in the upstream region from 0 to -800. Finding their mutual interaction via Farmworker analysis uncovered three new cisregulatory modules (VTBP_VTBP, MYBS_MYBS, and AHBP_VTBP, which appear to be decisive for OsGLP regulation. In silico functional analysis via ModelInspector revealed 77 cis-regulatory modules, each comprised of two elements, among which DOFF_OPAQ_03 and GTBX_MYCL_01 were the most frequent and mostly found on chromosome 8 and 12, indicating that the combinatorial interaction of these elements has a fundamental role in various biological processes. The study revealed the importance of these elements in regulating OsGLP expression that will help in predicting the role of these genes in various stresses, and can have application in biotechnology.

  13. Role of TRIPTYCHON in trichome patterning in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hülskamp Martin

    2011-09-01

    Full Text Available Abstract Background Trichome patterning in Arabidopsis thaliana is governed by three types of activators, R2R3MYB, bHLH and WD40 proteins, and six R3MYB inhibitors. Among the inhibitors TRIPTYCHON (TRY seems to fulfill a special function. Its corresponding mutants produce trichome clusters whereas all other inhibitors are involved in trichome density regulation. Results To better understand the role of TRY in trichome patterning we analyzed its transcriptional regulation. A promoter analysis identified the relevant regulatory region for trichome patterning. This essential region contains a fragment required for a double negative feedback loop such that it mediates the repression of TRY/CPC auto-repression. By transforming single cells of pTRY:GUS lines with p35S:GL1, p35S:GL3 and p35S:TTG1 in the presence or absence of p35S:TRY or p35S:CPC we demonstrate that TRY and CPC can suppress the TRY expression without the transcriptional down regulation of the activators. We further show by promoter/CDS swapping experiments for the R3MYB inhibitors TRY and CPC that the TRY protein has specific properties relevant in the context of both, cluster formation and trichome density. Conclusions Our identification of a TRY promoter fragment mediating a double negative feedback loop reveals new insight in the regulatory network of the trichome patterning machinery. In addition we show that the auto-repression by TRY can occur without a transcriptional down regulation of the activators, suggesting that the differential complex formation model has a biological significance. Finally we show that the unique role of TRY among the inhibitors is a property of the TRY protein.

  14. Insight into the role of anthocyanin biosynthesis-related genes in Medicago truncatula mutants impaired in pigmentation in leaves.

    Science.gov (United States)

    Carletti, Giorgia; Lucini, Luigi; Busconi, Matteo; Marocco, Adriano; Bernardi, Jamila

    2013-09-01

    Flavonoids are the most common antioxidant compounds produced in plants. In this study, two wild types and two independent mutants of Medicago truncatula with altered anthocyanin content in leaves were characterized at the phenotype, metabolite profile, gene structure and transcript levels. Flavonoid profiles showed conserved levels of dihydroflavonols, leucoanthocyanidins and flavonols, while anthocyanidin, anthocyanin and isoflavone levels were lower in the mutants (up to 90% less) compared with the wild types. Genes encoding key enzymes of the anthocyanin pathway and transcriptional factors were analyzed by RT-PCR. Genes involved in the later steps of the anthocyanin pathway (dihydrokaempferol reductase 2, UDP-glucose:anthocyanin 3-O-glucosyltransferase and glutathione S-transferase) were found under-expressed in both mutants. Dihydrokaempferol reductase 1 was downregulated two-fold in the anthocyanin-less mutant while the UDP-glucose:anthocyanin 5-O-glucosyltransferase was strongly repressed only in the mutant with low pigmentation, suggesting a different regulation in the two genotypes. The common feature was that the first enzymes of the flavonoid biosynthesis pathway were not altered in rate of expression. A very high reduction in transcript accumulation was also found for two homologous R2R3 MYB genes, namely MtMYBA and AN2, suggesting that these genes have a role in anthocyanin accumulation in leaves. More evidence was found on analyzing their nucleotide sequence: several SNPs, insertions and deletions in the coding and non-coding regions of both MYB genes were found between mutants and wild types that could influence anthocyanin biosynthesis. Moreover, a subfamily of eight MYB genes with a high homology to MtMYBA was discovered in tandem on chromosome 5 of M. truncatula.

  15. Boosting transcription by transcription: enhancer-associated transcripts.

    Science.gov (United States)

    Darrow, Emily M; Chadwick, Brian P

    2013-12-01

    Enhancers are traditionally viewed as DNA sequences located some distance from a promoter that act in cis and in an orientation-independent fashion to increase utilization of specific promoters and thereby regulate gene expression. Much progress has been made over the last decade toward understanding how these distant elements interact with target promoters, but how transcription is enhanced remains an object of active inquiry. Recent reports convey the prevalence and diversity of enhancer transcription and transcripts and support both as key factors with mechanistically distinct, but not mutually exclusive roles in enhancer function. Decoupling the causes and effects of transcription on the local chromatin landscape and understanding the role of enhancer transcripts in the context of long-range interactions are challenges that require additional attention. In this review, we focus on the possible functions of enhancer transcription by highlighting several recent enhancer RNA papers and, within the context of other enhancer studies, speculate on the role of enhancer transcription in regulating differential gene expression.

  16. Transcriptional profiles of hybrid Eucalyptus genotypes with contrasting lignin content reveal that monolignol biosynthesis-related genes regulate wood composition

    Directory of Open Access Journals (Sweden)

    Tomotaka eShinya

    2016-04-01

    Full Text Available Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected three-year old hybrid Eucalyptus (Eucalyptus urophylla x E. grandis genotypes (AM063 and AM380 that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0% and 48.2%, -cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA and sucrose synthase (SUSY were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase (UGP and xyloglucan endotransglucoxylase (XTH than those in AM380. Most monolignol biosynthesis- related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase (PAL, cinnamate-4-hydroxylase (C4H and 4-coumarate-CoA ligase (4CL. Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents

  17. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages.

    Science.gov (United States)

    Hoeffel, Guillaume; Chen, Jinmiao; Lavin, Yonit; Low, Donovan; Almeida, Francisca F; See, Peter; Beaudin, Anna E; Lum, Josephine; Low, Ivy; Forsberg, E Camilla; Poidinger, Michael; Zolezzi, Francesca; Larbi, Anis; Ng, Lai Guan; Chan, Jerry K Y; Greter, Melanie; Becher, Burkhard; Samokhvalov, Igor M; Merad, Miriam; Ginhoux, Florent

    2015-04-21

    Although classified as hematopoietic cells, tissue-resident macrophages (MFs) arise from embryonic precursors that seed the tissues prior to birth to generate a self-renewing population, which is maintained independently of adult hematopoiesis. Here we reveal the identity of these embryonic precursors using an in utero MF-depletion strategy and fate-mapping of yolk sac (YS) and fetal liver (FL) hematopoiesis. We show that YS MFs are the main precursors of microglia, while most other MFs derive from fetal monocytes (MOs). Both YS MFs and fetal MOs arise from erythro-myeloid progenitors (EMPs) generated in the YS. In the YS, EMPs gave rise to MFs without monocytic intermediates, while EMP seeding the FL upon the establishment of blood circulation acquired c-Myb expression and gave rise to fetal MOs that then seeded embryonic tissues and differentiated into MFs. Thus, adult tissue-resident MFs established from hematopoietic stem cell-independent embryonic precursors arise from two distinct developmental programs.

  18. Early transcriptional response of soybean contrasting accessions to root dehydration.

    Directory of Open Access Journals (Sweden)

    José Ribamar Costa Ferreira Neto

    Full Text Available Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance. The survey uncovered 120,770 unique transcripts expressed by the contrasting accessions. Of these, 57,610 aligned with known cDNA sequences, allowing the annotation of 32,373 unitags. A total of 1,127 unitags were up-regulated only in the tolerant accession, whereas 1,557 were up-regulated in both as compared to their controls. An expression profile concerning the most representative Gene Ontology (GO categories for the tolerant accession revealed the expression "protein binding" as the most represented for "Molecular Function", whereas CDPK and CBL were the most up-regulated protein families in this category. Furthermore, particular genes expressed different isoforms according to the accession, showing the potential to operate in the distinction of physiological behaviors. Besides, heat maps comprising GO categories related to abiotic stress response and the unitags regulation observed in the expression contrasts covering tolerant and sensitive accessions, revealed the unitags potential for plant breeding. Candidate genes related to "hormone response" (LOX, ERF1b, XET, "water response" (PUB, BMY, "salt stress response" (WRKY, MYB and "oxidative stress response" (PER figured among the most promising molecular targets. Additionally, nine transcripts (HMGR, XET, WRKY20, RAP2-4, EREBP, NAC3, PER, GPX5 and BMY validated by RT-qPCR (four different time points confirmed their differential expression and pointed that already after 25 minutes a transcriptional reorganization started in response to the new condition, with important

  19. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit colour

    NARCIS (Netherlands)

    Ballester, A.R.; Molthoff, J.W.; Vos, de C.H.; Lintel Hekkert, B.; Orzaez, D.; Fernandez-Moreno, J.P.; Tripodi, S.; Grandillo, S.; Martin, C.; Heldens, J.; Ykema, M.; Granell, A.; Bovy, A.G.

    2010-01-01

    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines h

  20. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit colour

    NARCIS (Netherlands)

    Ballester, A.R.; Molthoff, J.W.; Vos, de C.H.; Lintel Hekkert, B.; Orzaez, D.; Fernandez-Moreno, J.P.; Tripodi, S.; Grandillo, S.; Martin, C.; Heldens, J.; Ykema, M.; Granell, A.; Bovy, A.G.

    2010-01-01

    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines

  1. Transcription in archaea

    Science.gov (United States)

    Kyrpides, N. C.; Ouzounis, C. A.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.

  2. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color.

    Science.gov (United States)

    Motamayor, Juan C; Mockaitis, Keithanne; Schmutz, Jeremy; Haiminen, Niina; Livingstone, Donald; Cornejo, Omar; Findley, Seth D; Zheng, Ping; Utro, Filippo; Royaert, Stefan; Saski, Christopher; Jenkins, Jerry; Podicheti, Ram; Zhao, Meixia; Scheffler, Brian E; Stack, Joseph C; Feltus, Frank A; Mustiga, Guiliana M; Amores, Freddy; Phillips, Wilbert; Marelli, Jean Philippe; May, Gregory D; Shapiro, Howard; Ma, Jianxin; Bustamante, Carlos D; Schnell, Raymond J; Main, Dorrie; Gilbert, Don; Parida, Laxmi; Kuhn, David N

    2013-06-03

    Theobroma cacao L. cultivar Matina 1-6 belongs to the most cultivated cacao type. The availability of its genome sequence and methods for identifying genes responsible for important cacao traits will aid cacao researchers and breeders. We describe the sequencing and assembly of the genome of Theobroma cacao L. cultivar Matina 1-6. The genome of the Matina 1-6 cultivar is 445 Mbp, which is significantly larger than a sequenced Criollo cultivar, and more typical of other cultivars. The chromosome-scale assembly, version 1.1, contains 711 scaffolds covering 346.0 Mbp, with a contig N50 of 84.4 kbp, a scaffold N50 of 34.4 Mbp, and an evidence-based gene set of 29,408 loci. Version 1.1 has 10x the scaffold N50 and 4x the contig N50 as Criollo, and includes 111 Mb more anchored sequence. The version 1.1 assembly has 4.4% gap sequence, while Criollo has 10.9%. Through a combination of haplotype, association mapping and gene expression analyses, we leverage this robust reference genome to identify a promising candidate gene responsible for pod color variation. We demonstrate that green/red pod color in cacao is likely regulated by the R2R3 MYB transcription factor TcMYB113, homologs of which determine pigmentation in Rosaceae, Solanaceae, and Brassicaceae. One SNP within the target site for a highly conserved trans-acting siRNA in dicots, found within TcMYB113, seems to affect transcript levels of this gene and therefore pod color variation. We report a high-quality sequence and annotation of Theobroma cacao L. and demonstrate its utility in identifying candidate genes regulating traits.

  3. UPF1, a conserved nonsense-mediated mRNA decay factor, regulates cyst wall protein transcripts in Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Yi-Hsiu Chen

    Full Text Available The Giardia lamblia cyst wall is required for survival outside the host and infection. Three cyst wall protein (cwp genes identified to date are highly up-regulated during encystation. However, little is known of the molecular mechanisms governing their gene regulation. Messenger RNAs containing premature stop codons are rapidly degraded by a nonsense-mediated mRNA decay (NMD system to avoid production of non-functional proteins. In addition to RNA surveillance, NMD also regulates thousands of naturally occurring transcripts through a variety of mechanisms. It is interesting to know the NMD pathway in the primitive eukaryotes. Previously, we have found that the giardial homologue of a conserved NMD factor, UPF1, may be functionally conserved and involved in NMD and in preventing nonsense suppression. In this study, we tested the hypothesis that NMD factors can regulate some naturally occurring transcripts in G. lamblia. We found that overexpression of UPF1 resulted in a significant decrease of the levels of CWP1 and cyst formation and of the endogenous cwp1-3, and myb2 mRNA levels and stability. This indicates that NMD could contribute to the regulation of the cwp1-3 and myb2 transcripts, which are key to G. lamblia differentiation into cyst. Interestingly, we also found that UPF1 may be involved in regulation of eight other endogenous genes, including up-regulation of the translation elongation factor gene, whose product increases translation which is required for NMD. Our results indicate that NMD factor could contribute to the regulation of not only nonsense containing mRNAs, but also mRNAs of the key encystation-induced genes and other endogenous genes in the early-diverging eukaryote, G. lamblia.

  4. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology.

    Science.gov (United States)

    Qaddoumi, Ibrahim; Orisme, Wilda; Wen, Ji; Santiago, Teresa; Gupta, Kirti; Dalton, James D; Tang, Bo; Haupfear, Kelly; Punchihewa, Chandanamali; Easton, John; Mulder, Heather; Boggs, Kristy; Shao, Ying; Rusch, Michael; Becksfort, Jared; Gupta, Pankaj; Wang, Shuoguo; Lee, Ryan P; Brat, Daniel; Peter Collins, V; Dahiya, Sonika; George, David; Konomos, William; Kurian, Kathreena M; McFadden, Kathryn; Serafini, Luciano Neder; Nickols, Hilary; Perry, Arie; Shurtleff, Sheila; Gajjar, Amar; Boop, Fredrick A; Klimo, Paul D; Mardis, Elaine R; Wilson, Richard K; Baker, Suzanne J; Zhang, Jinghui; Wu, Gang; Downing, James R; Tatevossian, Ruth G; Ellison, David W

    2016-06-01

    Low-grade neuroepithelial tumors (LGNTs) are diverse CNS tumors presenting in children and young adults, often with a history of epilepsy. While the genetic profiles of common LGNTs, such as the pilocytic astrocytoma and 'adult-type' diffuse gliomas, are largely established, those of uncommon LGNTs remain to be defined. In this study, we have used massively parallel sequencing and various targeted molecular genetic approaches to study alterations in 91 LGNTs, mostly from children but including young adult patients. These tumors comprise dysembryoplastic neuroepithelial tumors (DNETs; n = 22), diffuse oligodendroglial tumors (d-OTs; n = 20), diffuse astrocytomas (DAs; n = 17), angiocentric gliomas (n = 15), and gangliogliomas (n = 17). Most LGNTs (84 %) analyzed by whole-genome sequencing (WGS) were characterized by a single driver genetic alteration. Alterations of FGFR1 occurred frequently in LGNTs composed of oligodendrocyte-like cells, being present in 82 % of DNETs and 40 % of d-OTs. In contrast, a MYB-QKI fusion characterized almost all angiocentric gliomas (87 %), and MYB fusion genes were the most common genetic alteration in DAs (41 %). A BRAF:p.V600E mutation was present in 35 % of gangliogliomas and 18 % of DAs. Pathogenic alterations in FGFR1/2/3, BRAF, or MYB/MYBL1 occurred in 78 % of the series. Adult-type d-OTs with an IDH1/2 mutation occurred in four adolescents, the youngest aged 15 years at biopsy. Despite a detailed analysis, novel genetic alterations were limited to two fusion genes, EWSR1-PATZ1 and SLMAP-NTRK2, both in gangliogliomas. Alterations in BRAF, FGFR1, or MYB account for most pathogenic alterations in LGNTs, including pilocytic astrocytomas, and alignment of these genetic alterations and cytologic features across LGNTs has diagnostic implications. Additionally, therapeutic options based upon targeting the effects of these alterations are already in clinical trials.

  5. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean.

    Directory of Open Access Journals (Sweden)

    Yuguang Song

    Full Text Available Epigenetic modification contributes to the regulation of gene expression and plant development under salinity stress. Here we describe the identification of 49 soybean transcription factors by microarray analysis as being inducible by salinity stress. A semi-quantitative RT-PCR-based expression assay confirmed the salinity stress inducibility of 45 of these 49 transcription factors, and showed that ten of them were up-regulated when seedlings were exposed to the demethylation agent 5-aza-2-deoxycytidine. Salinity stress was shown to affect the methylation status of four of these ten transcription factors (one MYB, one b-ZIP and two AP2/DREB family members using a combination of bisulfite sequencing and DNA methylation-sensitive DNA gel blot analysis. ChIP analysis indicated that the activation of three of the four DNA methylated transcription factors was correlated with an increased level of histone H3K4 trimethylation and H3K9 acetylation, and/or a reduced level of H3K9 demethylation in various parts of the promoter or coding regions. Our results suggest a critical role for some transcription factors' activation/repression by DNA methylation and/or histone modifications in soybean tolerance to salinity stress.

  6. Isolation and characterization of flower-specific transcripts in Acacia mangium.

    Science.gov (United States)

    Wang, Xing Jun; Cao, Xiang Ling; Hong, Yan

    2005-02-01

    Acacia mangium Willd. is a legume tree species native to subtropical and tropical regions of Asia and Australia. Many features of its flower development are common to other legume tree species. To identify genes involved in its floral development, we constructed a subtractive flower cDNA library against vegetative tissues. The 1123 expressed sequence tags (ESTs) represented 576 unique genes. Macroarray analysis further identified 147 of these genes as specific to the early, late or whole flowering process. Eight percent of these flower-specific genes encode MADS-domain-containing transcription factors and MYB proteins. Four percent encode other transcription factors and 10% encode regulatory proteins such as G proteins, kinases and phosphatases. Flower-specific transcripts for gibberellic acid (GA) synthesis and GA-induced proteins, as well as other stress- and pathogenesis-related genes (9%), implicate their involvement in A. mangium flower development. Eighteen percent of the flower-specific genes encode hypothetical proteins and 18% encode proteins of unknown functions. The RNA blot hybridization confirmed and detailed the expression patterns of selected genes. Functions of the A. mangium flower-specific genes are discussed based on comparison with their Arabidopsis homologues, most of which have been implicated in Arabidopsis floral development. Our work suggests general conservation of floral development in A. mangium and Arabidopsis. Further characterization of the conserved and different flower-specific genes will delineate the flowering process of this important legume tree species and facilitate genetic modification of its reproduction.

  7. Transcription Factors Expressed in Lateral Organ Boundaries: Identification of Downstream Targets

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Patricia S

    2010-07-12

    The processes of lateral organ initiation and patterning are central to the generation of mature plant form. Characterization of the molecular mechanisms underlying these processes is essential to our understanding of plant development. Communication between the shoot apical meristem and initiating organ primordia is important both for functioning of the meristem and for proper organ patterning, and very little is known about this process. In particular, the boundary between meristem and leaf is emerging as a critical region that is important for SAM maintenance and regulation of organogenesis. The goal of this project was to characterize three boundary-expressed genes that encode predicted transcription factors. Specifically, we have studied LATERAL ORGAN BOUNDARIES (LOB), LATERAL ORGAN FUSION1 (LOF1), and LATERAL ORGAN FUSION2 (LOF2). LOB encodes the founding member of the LOB-DOMAIN (LBD) plant-specific DNA binding transcription factor family and LOF1 and LOF2 encode paralogous MYB-domain transcription factors. We characterized the genetic relationship between these three genes and other boundary and meristem genes. We also used an ectopic inducible expression system to identify direct targets of LOB.

  8. Dissecting the Transcriptional Response to Elicitors in Vitis vinifera Cells

    Science.gov (United States)

    Belchí-Navarro, Sarai; Bru, Roque; Martínez-Zapater, José M.; Lijavetzky, Diego; Pedreño, María A.

    2014-01-01

    The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production. PMID:25314001

  9. Transcriptional Responses to Gibberellin and Abscisic Acid in Barley Aleurone

    Institute of Scientific and Technical Information of China (English)

    Kegui Chen; Yong-Qiang Charles An

    2006-01-01

    Cereal aleurone has been established as a model system to investigate giberrellin (GA) and abscisic acid (ABA) responses. Using Barley 1 GeneChip, we examined the mRNA accumulation of over 22 000 genes in de-embryonated barley aleurone treated with GA and ABA. We observed that 1328 genes had more than a threefold change in response to GA treatment, whereas 206 genes had a more than threefold change in response to ABA treatment. Interestingly, approximately 2.5-fold more genes were up-regulated than downregulated by ABA. Eighty-three genes were differentially regulated by both GA and ABA. Most of the genes were subject to antagonistic regulation by ABA and GA, particularly for genes related to seed maturation and germination, such as genes encoding late embryogenesis abundant proteins and storage mobilization enzymes. This supports the antagonistic roles of GA and ABA in seed maturation and seed germination.Interestingly, we observed that a significant percentage of the genes were coordinately regulated by both GA and ABA. Some GA-responsive genes encoded proteins involved in ethylene, jasmonate, brassinosteroid and auxin metabolic and signaling transduction pathways, suggesting their potential interaction with the GA response. We also identified a group of transcription factor genes, such as MYB and Homeobox genes, that were differentially regulated by GA. In addition, a number of GA- and/or ABA-responsive genes encoded components potentially involved in GA and ABA signal transduction pathway. Overall, the present study provides a comprehensive and global view of transcript expression accompanying the GA and ABA response in barley aleurone and identifies a group of genes with potential regulatory functions in GA- and ABA-signaling pathways for future functional validation.

  10. Mapping Yeast Transcriptional Networks

    OpenAIRE

    Hughes, Timothy R; de Boer, Carl G.

    2013-01-01

    The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face....

  11. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13.

    Science.gov (United States)

    Sankaran, Vijay G; Menne, Tobias F; Šćepanović, Danilo; Vergilio, Jo-Anne; Ji, Peng; Kim, Jinkuk; Thiru, Prathapan; Orkin, Stuart H; Lander, Eric S; Lodish, Harvey F

    2011-01-25

    Many human aneuploidy syndromes have unique phenotypic consequences, but in most instances it is unclear whether these phenotypes are attributable to alterations in the dosage of specific genes. In human trisomy 13, there is delayed switching and persistence of fetal hemoglobin (HbF) and elevation of embryonic hemoglobin in newborns. Using partial trisomy cases, we mapped this trait to chromosomal band 13q14; by examining the genes in this region, two microRNAs, miR-15a and -16-1, appear as top candidates for the elevated HbF levels. Indeed, increased expression of these microRNAs in primary human erythroid progenitor cells results in elevated fetal and embryonic hemoglobin gene expression. Moreover, we show that a direct target of these microRNAs, MYB, plays an important role in silencing the fetal and embryonic hemoglobin genes. Thus we demonstrate how the developmental regulation of a clinically important human trait can be better understood through the genetic and functional study of aneuploidy syndromes and suggest that miR-15a, -16-1, and MYB may be important therapeutic targets to increase HbF levels in patients with sickle cell disease and β-thalassemia.

  12. A Nonnatural Transcriptional Coactivator

    Science.gov (United States)

    Nyanguile, Origene; Uesugi, Motonari; Austin, David J.; Verdine, Gregory L.

    1997-12-01

    In eukaryotes, sequence-specific DNA-binding proteins activate gene expression by recruiting the transcriptional apparatus and chromatin remodeling proteins to the promoter through protein-protein contacts. In many instances, the connection between DNA-binding proteins and the transcriptional apparatus is established through the intermediacy of adapter proteins known as coactivators. Here we describe synthetic molecules with low molecular weight that act as transcriptional coactivators. We demonstrate that a completely nonnatural activation domain in one such molecule is capable of stimulating transcription in vitro and in vivo. The present strategy provides a means of gaining external control over gene activation through intervention using small molecules.

  13. Massively Systematic Transcript End Readout (MASTER): Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields

    Science.gov (United States)

    Vvedenskaya, Irina O.; Zhang, Yuanchao; Goldman, Seth R.; Valenti, Anna; Visone, Valeria; Taylor, Deanne M.; Ebright, Richard H.; Nickels, Bryce E.

    2015-01-01

    SUMMARY We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 47 (~16,000) bar-coded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields ("massively systematic transcript end readout," MASTER). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo, we define the TSS-region DNA-sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield, and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching"). PMID:26626484

  14. Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields.

    Science.gov (United States)

    Vvedenskaya, Irina O; Zhang, Yuanchao; Goldman, Seth R; Valenti, Anna; Visone, Valeria; Taylor, Deanne M; Ebright, Richard H; Nickels, Bryce E

    2015-12-17

    We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 4(7) (∼ 16,000) barcoded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields (massively systematic transcript end readout, "MASTER"). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo; we define the TSS-region DNA sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield; and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching").

  15. NMR studies of the R2 repeat and related peptide fragments of the DNA binding domain of c-Myb. New light on the structure and folding of R2.

    Science.gov (United States)

    Ségalas, I.; Desjardins, S.; Oulyadi, H.; Prigent, Y.; Tribouillard, S.; Bernardi, E.; Schoofs, A. R.; Davoust1, D.; Toma, F.

    1999-10-01

    The solution structure of the R2 repeat of the DNA binding domain of the protooncogene c-Myb contains a N-terminal structural motif comprising two antiparallel helices. The motif is stabilized by interactions involving conserved residues. The recognition region in C-terminal position is flexible. This structure differs from that of R2 of another c-Myb protein. La structure en solution de la répétition R2 du domaine de liaison à l'ADN du protooncogène c-Myb possède un motif à deux hélices antiparallèles dans la moitié N-terminale, stabilisé par des interactions entre résidus conservés. La région de reconnaissance à l'ADN en position C-terminale est flexible. Cette structure diffère de celle montrée pour la répétition R2 d'une autre protéine c-Myb.

  16. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.).

    Science.gov (United States)

    Shen, Xinjie; Zhao, Kai; Liu, Linlin; Zhang, Kaichun; Yuan, Huazhao; Liao, Xiong; Wang, Qi; Guo, Xinwei; Li, Fang; Li, Tianhong

    2014-05-01

    The MYB transcription factors and plant hormone ABA have been suggested to play a role in fruit anthocyanin biosynthesis, but supporting genetic evidence has been lacking in sweet cherry. The present study describes the first functional characterization of an R2R3-MYB transcription factor, PacMYBA, from red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Transient promoter assays demonstrated that PacMYBA physically interacted with several anthocyanin-related basic helix-loop-helix (bHLH) transcription factors to activate the promoters of PacDFR, PacANS and PacUFGT, which are thought to be involved in anthocyanin biosynthesis. Furthermore, the immature seeds of transgenic Arabidopsis plants overexpressing PacMYBA exhibited ectopic pigmentation. Silencing of PacMYBA, using a Tobacco rattle virus (TRV)-induced gene silencing technique, resulted in sweet cherry fruit that lacked red pigment. ABA treatment significantly induced anthocyanin accumulation, while treatment with the ABA biosynthesis inhibitor nordihydroguaiaretic acid (NDGA) blocked anthocyanin production. PacMYBA expression peaked after 2 h of pre-incubation in ABA and was 15.2-fold higher than that of sweet cherries treated with NDGA. The colorless phenotype was also observed in the fruits silenced in PacNCED1, which encodes a key enzyme in the ABA biosynthesis pathway. The endogenous ABA content as well as the transcript levels of six structural genes and PacMYBA in PacNCED1-RNAi (RNA interference) fruit were significantly lower than in the TRV vector control fruit. These results suggest that PacMYBA plays an important role in ABA-regulated anthocyanin biosynthesis and ABA is a signal molecule that promotes red-colored sweet cherry fruit accumulating anthocyanin.

  17. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  18. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein codi...

  19. Mechanical Properties of Transcription

    Science.gov (United States)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  20. Association of variants at BCL11A and HBS1L-MYB with hemoglobin F and hospitalization rates among sickle cell patients in Cameroon.

    Directory of Open Access Journals (Sweden)

    Ambroise Wonkam

    Full Text Available BACKGROUND: Genetic variation at loci influencing adult levels of HbF have been shown to modify the clinical course of sickle cell disease (SCD. Data on this important aspect of SCD have not yet been reported from West Africa. We investigated the relationship between HbF levels and the relevant genetic loci in 610 patients with SCD (98% HbSS homozygotes from Cameroon, and compared the results to a well-characterized African-American cohort. METHODS AND FINDINGS: Socio-demographic and clinical features were collected and medical records reviewed. Only patients >5 years old, who had not received a blood transfusion or treatment with hydroxyurea were included. Hemoglobin electrophoresis and a full blood count were conducted upon arrival at the hospital. RFLP-PCR was used to describe the HBB gene haplotypes. SNaPshot PCR, Capillary electrophoresis and cycle sequencing were used for the genotyping of 10 selected SNPs. Genetic analysis was performed with PLINK software and statistical models in the statistical package R. Allele frequencies of relevant variants at BCL11A were similar to those detected in African Americans; although the relationships with Hb F were significant (p <.001, they explained substantially less of the variance in HbF than was observed among African Americans (∼ 2% vs 10%. SNPs in HBS1L-MYB region (HMIP likewise had a significant impact on HbF, however, we did not find an association between HbF and the variations in HBB cluster and OR51B5/6 locus on chromosome 11p, due in part to the virtual absence of the Senegal and Indian Arab haplotypes. We also found evidence that selected SNPs in HBS1L-MYB region (HMIP and BCL11A affect both other hematological indices and rates of hospitalization. CONCLUSIONS: This study has confirmed the associations of SNPs in BCL11A and HBS1L-MYB and fetal haemoglobin in Cameroonian SCA patients; hematological indices and hospitalization rates were also associated with specific allelic variants.

  1. (1R,2R,3S,6aS,7R,8R,9S,12aS-1,2,3,7,8,9-Hexahydroxyperhydrodipyrido[1,2-a:1′,2′-d]pyrazine-6,12-dione

    Directory of Open Access Journals (Sweden)

    S. F. Jenkinson

    2010-04-01

    Full Text Available The crystal structure of the title compound, C12H18N2O8, exists as O—H...O hydrogen-bonded layers of molecules running parallel to the ab plane. Each molecule is a donor and acceptor for six hydrogen bonds. The absolute stereochemistry was determined by the use of d-glucuronolactone as the starting material.

  2. Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants.

    Science.gov (United States)

    Bond, Donna M; Albert, Nick W; Lee, Robyn H; Gillard, Gareth B; Brown, Chris M; Hellens, Roger P; Macknight, Richard C

    2016-01-01

    Transcription factors (TFs) coordinate precise gene expression patterns that give rise to distinct phenotypic outputs. The identification of genes and transcriptional networks regulated by a TF often requires stable transformation and expression changes in plant cells. However, the production of stable transformants can be slow and laborious with no guarantee of success. Furthermore, transgenic plants overexpressing a TF of interest can present pleiotropic phenotypes and/or result in a high number of indirect gene expression changes. Therefore, fast, efficient, high-throughput methods for assaying TF function are needed. Agroinfiltration is a simple plant biology method that allows transient gene expression. It is a rapid and powerful tool for the functional characterisation of TF genes in planta. High throughput RNA sequencing is now a widely used method for analysing gene expression profiles (transcriptomes). By coupling TF agroinfiltration with RNA sequencing (named here as Infiltration-RNAseq), gene expression networks and gene function can be identified within a few weeks rather than many months. As a proof of concept, we agroinfiltrated Medicago truncatula leaves with M. truncatula LEGUME ANTHOCYANIN PRODUCITION 1 (MtLAP1), a MYB transcription factor involved in the regulation of the anthocyanin pathway, and assessed the resulting transcriptome. Leaves infiltrated with MtLAP1 turned red indicating the production of anthocyanin pigment. Consistent with this, genes encoding enzymes in the anthocyanin biosynthetic pathway, and known transcriptional activators and repressors of the anthocyanin biosynthetic pathway, were upregulated. A novel observation was the induction of a R3-MYB transcriptional repressor that likely provides transcriptional feedback inhibition to prevent the deleterious effects of excess anthocyanins on photosynthesis. Infiltration-RNAseq is a fast and convenient method for profiling TF-mediated gene expression changes. We utilised this method

  3. DNA supercoiling during transcription.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle D

    2016-11-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  4. DNA supercoiling during transcription

    Science.gov (United States)

    Ma, Jie; Wang, Michelle D.

    2017-01-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  5. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress.

    Directory of Open Access Journals (Sweden)

    Yin-Huan Wu

    Full Text Available Salt stress has some remarkable influence on chrysanthemum growth and productivity. To understand the molecular mechanisms associated with salt stress and identify genes of potential importance in cultivated chrysanthemum, we carried out transcriptome sequencing of chrysanthemum. Two cDNA libraries were generated from the control and salt-treated samples (Sample_0510_control and Sample_0510_treat of leaves. By using the Illumina Solexa RNA sequencing technology, 94 million high quality sequencing reads and 161,522 unigenes were generated and then we annotated unigenes through comparing these sequences to diverse protein databases. A total of 126,646 differentially expressed transcripts (DETs were identified in leaf. Plant hormones, amino acid metabolism, photosynthesis and secondary metabolism were all changed under salt stress after the complete list of GO term and KEGG enrichment analysis. The hormone biosynthesis changing and oxidative hurt decreasing appeared to be significantly related to salt tolerance of chrysanthemum. Important protein kinases and major transcription factor families involved in abiotic stress were differentially expressed, such as MAPKs, CDPKs, MYB, WRKY, AP2 and HD-zip. In general, these results can help us to confirm the molecular regulation mechanism and also provide us a comprehensive resource of chrysanthemum under salt stress.

  6. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element.

    Science.gov (United States)

    Müller, Gerd A; Wintsche, Axel; Stangner, Konstanze; Prohaska, Sonja J; Stadler, Peter F; Engeland, Kurt

    2014-01-01

    The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2.

    Science.gov (United States)

    Yang, I-Ping; Tsai, Hsiang-Lin; Huang, Ching-Wen; Lu, Chien-Yu; Miao, Zhi-Feng; Chang, Se-Fen; Juo, Suh-Hang Hank; Wang, Jaw-Yuan

    2016-04-05

    The high prevalence of type 2 diabetes mellitus in colorectal cancer patients is a crucial public health issue worldwide. The deregulation of microRNAs has been shown to be associated with the progression of CRC; however, the effects of high blood sugar levels on miR deregulation and, in turn, CRC remain unexplored. In this study, 520 CRC patients were classified into two groups according to their blood sugar levels (≧110 or <110 mg/dL). Clinicopathologic features, clinical outcomes, and serum miR-16 levels of the two groups were then analyzed, while cell cycles, cell proliferation, migration, and cellular miR-16 expression were investigated via D-(+)-glucose administration. Additionally, the target genes of miR-16 were identified. Through multivariate analysis, both the disease-free survival and overall survival of the CRC patients were found to be associated with the UICC stage, perineural invasion, and blood glucose levels (P < 0.05). Serum miR-16 levels were significantly lower in the high blood glucose patients than in the normal blood glucose patients (P = 0.0329). With D-(+)-glucose administration, the proliferation and migration of CRC cells in vitro increased remarkably (P < 0.05), while their accumulation in the G1 phase decreased significantly. Cellular miR-16 expression was suppressed by D-(+)-glucose administration. The expression levels of two target genes, Myb and VEGFR2, were affected significantly by miR-16, while glucose administration inhibited miR-16 expression and enhanced tumor cell proliferation and migration. Hyperglycemia can impact the clinical outcomes of CRC patients, likely by inhibiting miR-16 expression and the expression of its downstream genes Myb and VEGFR2.

  8. Increased transcription of the c-myc oncogene in two methylcholanthrene-induced quail fibroblastic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Saule, S.; Martin, P.; Gegonne, A.; Begue, A.; Lagrou, C.; Stehelin, D.

    1984-12-01

    The expression of three c-onc genes (c-erb, c-myc, c-myb) was investigated in five cell lines established from fibrosarcomas induced with 20-methylcholanthrene (MCA) of Japanese quails. These cell lines showed low levels of the three c-onc genes, with the exception of two cell lines that accumulated moderate (MCAQ 1-4) and large amounts (MCAQ 3-5) of c-myc RNA. Molecular cloning and restriction endonuclease analyses indicated that expression of c-myc in these two cell lines were not associated with detectable rearrangements in the c-myc locus, that the size of the c-myc transcript (2.7 kb) in MCAQ 3-5 was similar to that of the normal c-myc messenger RNAs (mRNA) and that the transcriptional activatin observed in MCAQ 3-5 was not mediated by the LTR (long terminal repeat) of a proximate ALV (avian leukosis virus) provirus. Finally, when analyzed with the restriction enzymes Msp I and Hpa II, the c-myc locus of MCAQ 3-5 and MCAQ 1-4 was found hypomethylated as compared with that of the other cell lines tested that show low levels of c-myc transcripts. Results suggest that one of the ways methylcholanthrene could mediate transformation is by inducing an abnormal regulation of the c-myc gene.

  9. Smad transcription factors.

    Science.gov (United States)

    Massagué, Joan; Seoane, Joan; Wotton, David

    2005-12-01

    Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.

  10. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.

    Science.gov (United States)

    Li, Penghui; Chen, Beibei; Zhang, Gaoyang; Chen, Longxiang; Dong, Qiang; Wen, Jiangqi; Mysore, Kirankumar S; Zhao, Jian

    2016-05-01

    The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula.

  11. The transcription factor encyclopedia.

    Science.gov (United States)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  12. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written......ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  13. Senescence-associated Barley NAC (NAM, ATAF1,2, CUC) Transcription Factor Interacts with Radical-induced Cell Death 1 through a Disordered Regulatory Domain

    DEFF Research Database (Denmark)

    Kjærsgaard, Trine; Jensen, Michael Krogh; Wagner, Michael

    2011-01-01

    as a transcriptional activator suggesting that an involvement of HvNAC013 and HvNAC005 in senescence will be different. HvNAC013 interacted with barley radical-induced cell death 1 (RCD1) via the very C-terminal part of its TRD, outside of the region containing the LP motif. No significant secondary structure...... was induced in the HvNAC013 TRD upon interaction with RCD1. RCD1 also interacted with regions dominated by intrinsic disorder in TFs of the MYB and basic helix-loop-helix families. We propose that RCD1 is a regulatory protein capable of interacting with many different TFs by exploiting their intrinsic...

  14. Rhythm quantization for transcription

    NARCIS (Netherlands)

    Cemgil, A.T.; Desain, P.W.M.; Kappen, H.J.

    1999-01-01

    Automatic Music Transcription is the extraction of an acceptable notation from performed music. One important task in this problem is rhythm quantization which refers to categorization of note durations. Although quantization of a pure mechanical performance is rather straightforward, the task becom

  15. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any a

  16. Mapping yeast transcriptional networks.

    Science.gov (United States)

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  17. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any

  18. Transcription Dynamics in Living Cells.

    Science.gov (United States)

    Lenstra, Tineke L; Rodriguez, Joseph; Chen, Huimin; Larson, Daniel R

    2016-07-01

    The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

  19. The PLZF-like protein TRA-4 cooperates with the Gli-like transcription factor TRA-1 to promote female development in C. elegans.

    Science.gov (United States)

    Grote, Phillip; Conradt, Barbara

    2006-10-01

    The Gli-like transcription factor TRA-1 of C. elegans promotes female development by repressing the transcription of male-specific genes. We have found that tra-1 interacts with tra-4, a previously uncharacterized gene that encodes a protein similar to the human proto-oncoprotein and transcriptional repressor PLZF. In this context, the TRA-4 protein functions with NASP-1, a C. elegans homolog of the mammalian histone chaperone NASP, and the histone deacetylase HDA-1. We also found that tra-4 is a member of the synMuv B group of genes, many of which encode homologs of components of the Drosophila Myb-Muv B transcriptional repressor complex, and that several synMuv B genes also promote female development. Based on these results, we propose that male-specific genes are repressed in C. elegans hermaphrodites by the combined action of TRA-1/Gli, a complex composed of TRA-4/PLZF-like, NASP, and HDA-1/HDAC, and synMuv B proteins. Similar interactions may function in sex determination and developmental regulation in other species.

  20. Conserved hemopoietic transcription factor Cg-SCL delineates hematopoiesis of Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Song, Xiaorui; Wang, Hao; Chen, Hao; Sun, Mingzhe; Liang, Zhongxiu; Wang, Lingling; Song, Linsheng

    2016-04-01

    Hemocytes are the effective immunocytes in bivalves, which have been reported to be derived from stem-like cells in gill epithelium of oyster. In the present work, a conserved haematopoietic transcription factor Tal-1/Scl (Stem Cell Leukemia) was identified in Pacific oyster (Cg-SCL), and it was evolutionarily close to the orthologs in deuterostomes. Cg-SCL was highly distributed in the hemocytes as well as gill and mantle. The hemocyte specific genes Integrin, EcSOD and haematopoietic transcription factors GATA3, C-Myb, c-kit, were down-regulated when Cg-SCL was interfered by dsRNA. During the larval developmental stages, the mRNA transcripts of Cg-SCL gradually increased after fertilization and peaked at early trochophore larvae stage (10 hpf, hours post fertilization), then sharply decreased in late trochophore larvae stage (15 hpf) before resuming in umbo larvae (120 hpf). Whole-mount immunofluorescence assay further revealed that the immunoreactivity of Cg-SCL appeared in blastula larvae with two approximate symmetric spots, and this expression pattern lasted in gastrula larvae. By trochophore, the immunoreactivity formed a ring around the dorsal region and then separated into two remarkable spots at the dorsal side in D-veliger larvae. After bacterial challenge, the mRNA expression levels of Cg-SCL were significantly up-regulated in the D-veliger and umbo larvae, indicating the available hematopoietic regulation in oyster larvae. These results demonstrated that Cg-SCL could be used as haematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster, which occurred early in blastula stage and maintained until D-veliger larvae.

  1. Non-transcriptional regulatory processes shape transcriptional network dynamics

    OpenAIRE

    Ray, J. Christian J; Tabor, Jeffrey J.; Igoshin, Oleg A.

    2011-01-01

    Information about the extra- or intracellular environment is often captured as biochemical signals propagating through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programs in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. In many cases, the dynamical performance of transcriptional re...

  2. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from 'negative noodles' to ID...... them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions...

  3. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...... topoisomerase-DNA cleavage complex. The second study is an investigation of how topoisomerases influence gene regulation by keeping the genome in an optimal topological state....

  4. SNFing HIV transcription

    Directory of Open Access Journals (Sweden)

    Bukrinsky Michael

    2006-08-01

    Full Text Available Abstract The SWI/SNF chromatin remodeling complex is an essential regulator of transcription of cellular genes. HIV-1 infection induces exit of a core component of SWI/SNF, Ini1, into the cytoplasm and its association with the viral pre-integration complex. Several recent papers published in EMBO Journal, Journal of Biological Chemistry, and Retrovirology provide new information regarding possible functions of Ini1 and SWI/SNF in HIV life cycle. It appears that Ini1 has an inhibitory effect on pre-integration steps of HIV replication, but also contributes to stimulation of Tat-mediated transcription. This stimulation involves displacement of the nucleosome positioned at the HIV promoter.

  5. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    RNA); and ii) translation, in which the mRNA is translated into a protein. This thesis focus on the ¿rst of these steps, transcription, and speci¿cally the initiation of this. Simpli¿ed, initiation is preceded by the binding of several proteins, known as transcription factors (TFs), to DNA. This takes place......The myriad of cells in the human body are all made from the same blueprint: the human genome. At the heart of this diversity lies the concept of gene regulation, the process in which it is decided which genes are used where and when. Genes do not function as on/off buttons, but more like a volume...... control spanning the range from completely muted to cranked up to maximum. The volume, in this case, is the production rate of proteins. This production is the result of a two step procedure: i) transcription, in which a small part of DNA from the genome (a gene) is transcribed into an RNA molecule (an m...

  6. Identification and Characterization of Maize salmon silks Genes Involved in Insecticidal Maysin Biosynthesis[OPEN

    Science.gov (United States)

    Falcone-Ferreyra, María Lorena; Rodríguez, Eduardo; Engelmeier, Jacob; Grotewold, Erich

    2016-01-01

    The century-old maize (Zea mays) salmon silks mutation has been linked to the absence of maysin. Maysin is a C-glycosyl flavone that, when present in silks, confers natural resistance to the maize earworm (Helicoverpa zea), which is one of the most damaging pests of maize in America. Previous genetic analyses predicted Pericarp Color1 (P1; R2R3-MYB transcription factor) to be epistatic to the sm mutation. Subsequent studies identified two loci as being capable of conferring salmon silks phenotypes, salmon silks1 (sm1) and sm2. Benefitting from available sm1 and sm2 mapping information and from knowledge of the genes regulated by P1, we describe here the molecular identification of the Sm1 and Sm2 gene products. Sm2 encodes a rhamnosyl transferase (UGT91L1) that uses isoorientin and UDP-rhamnose as substrates and converts them to rhamnosylisoorientin. Sm1 encodes a multidomain UDP-rhamnose synthase (RHS1) that converts UDP-glucose into UDP-l-rhamnose. Here, we demonstrate that RHS1 shows unexpected substrate plasticity in converting the glucose moiety in rhamnosylisoorientin to 4-keto-6-deoxy glucose, resulting in maysin. Both Sm1 and Sm2 are direct targets of P1, as demonstrated by chromatin immunoprecipitation experiments. The molecular characterization of Sm1 and Sm2 described here completes the maysin biosynthetic pathway, providing powerful tools for engineering tolerance to maize earworm in maize and other plants. PMID:27221383

  7. Analysis of the P1 promoter in response to UV-B radiation in allelic variants of high-altitude maize

    Directory of Open Access Journals (Sweden)

    Rius Sebastián

    2012-06-01

    Full Text Available Abstract Background Plants living at high altitudes are typically exposed to elevated UV-B radiation, and harbor mechanisms to prevent the induced damage, such as the accumulation of UV-absorbing compounds. The maize R2R3-MYB transcription factor P1 controls the accumulation of several UV-B absorbing phenolics by activating a subset of flavonoid biosynthetic genes in leaves of maize landraces adapted to high altitudes. Results Here, we studied the UV-B regulation of P1 in maize leaves of high altitude landraces, and we investigated how UV-B regulates P1binding to the CHS promoter in both low and high altitude lines. In addition, we analyzed whether the expansion in the P1 expression domain between these maize landraces and inbred lines is associated to changes in the molecular structure of the proximal promoter, distal enhancer and first intron of P1. Finally, using transient expression experiments in protoplasts from various maize genotypes, we investigated whether the different expression patterns of P1 in the high altitude landraces could be attributed to trans- or cis-acting elements. Conclusions Together, our results demonstrate that, although differences in cis-acting elements exist between the different lines under study, the different patterns of P1 expression are largely a consequence of effects in trans.

  8. Bimolecular fluorescence complementation as a tool to study interactions of regulatory proteins in plant protoplasts.

    Science.gov (United States)

    Pattanaik, Sitakanta; Werkman, Joshua R; Yuan, Ling

    2011-01-01

    Protein-protein interactions are an important aspect of the gene regulation process. The expression of a gene in response to certain stimuli, within a specific cell type or at a particular developmental stage, involves a complex network of interactions between different regulatory proteins and the cis-regulatory elements present in the promoter of the gene. A number of methods have been developed to study protein-protein interactions in vitro and in vivo in plant cells, one of which is bimolecular fluorescence complementation (BiFC). BiFC is a relatively simple technique based upon the reconstitution of a fluorescent protein. The interacting protein complex can be visualized directly in a living plant cell when two non-fluorescent fragments, of an otherwise fluorescent protein, are fused to proteins found within that complex. Interaction of tagged proteins brings the two non-fluorescent fragments into close proximity and reconstitutes the fluorescent protein. In addition, the subcellular location of an interacting protein complex in the cell can be simultaneously determined. Using this approach, we have successfully demonstrated a protein-protein interaction between a R2R3 MYB and a basic helix-loop-helix MYC transcription factor related to flavonoid biosynthetic pathway in tobacco protoplasts.

  9. Analysis of the P1 promoter in response to UV-B radiation in allelic variants of high-altitude maize.

    Science.gov (United States)

    Rius, Sebastián Pablo; Grotewold, Erich; Casati, Paula

    2012-06-15

    Plants living at high altitudes are typically exposed to elevated UV-B radiation, and harbor mechanisms to prevent the induced damage, such as the accumulation of UV-absorbing compounds. The maize R2R3-MYB transcription factor P1 controls the accumulation of several UV-B absorbing phenolics by activating a subset of flavonoid biosynthetic genes in leaves of maize landraces adapted to high altitudes. Here, we studied the UV-B regulation of P1 in maize leaves of high altitude landraces, and we investigated how UV-B regulates P1 binding to the CHS promoter in both low and high altitude lines. In addition, we analyzed whether the expansion in the P1 expression domain between these maize landraces and inbred lines is associated to changes in the molecular structure of the proximal promoter, distal enhancer and first intron of P1. Finally, using transient expression experiments in protoplasts from various maize genotypes, we investigated whether the different expression patterns of P1 in the high altitude landraces could be attributed to trans- or cis-acting elements. Together, our results demonstrate that, although differences in cis-acting elements exist between the different lines under study, the different patterns of P1 expression are largely a consequence of effects in trans.

  10. Non-transcriptional regulatory processes shape transcriptional network dynamics.

    Science.gov (United States)

    Ray, J Christian J; Tabor, Jeffrey J; Igoshin, Oleg A

    2011-10-11

    Information about the extra- or intracellular environment is often captured as biochemical signals that propagate through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programmes in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. Cellular response dynamics are ultimately determined by interactions between transcriptional and non-transcriptional networks, with dramatic implications for physiology and evolution. Here, we provide an overview of non-transcriptional interactions that can affect the performance of natural and synthetic bacterial regulatory networks.

  11. Expression analysis of transcription factors from the interaction between cacao and Moniliophthora perniciosa (Tricholomataceae).

    Science.gov (United States)

    Lopes, M A; Hora, B T; Dias, C V; Santos, G C; Gramacho, K P; Cascardo, J C M; Gesteira, A S; Micheli, F

    2010-07-06

    Cacao (Theobroma cacao) is one of the most important tropical crops; however, production is threatened by numerous pathogens, including the hemibiotrophic fungus Moniliophthora perniciosa, which causes witches' broom disease. To understand the mechanisms that lead to the development of this disease in cacao, we focused our attention on cacao transcription factors (TFs), which act as master regulators of cellular processes and are important for the fine-tuning of plant defense responses. We developed a macroarray with 88 TF cDNA from previously obtained cacao-M. perniciosa interaction libraries. Seventy-two TFs were found differentially expressed between the susceptible (Catongo) and resistant (TSH1188) genotypes and/or during the disease time course--from 24 h to 30 days after infection. Most of the differentially expressed TFs belonged to the bZIP, MYB and WRKY families and presented opposite expression patterns in susceptible and resistant cacao-M. perniciosa interactions (i.e., up-regulated in Catongo and down-regulated in TSH1188). The results of the macroarray were confirmed for bZIP and WRKY TFs by real-time PCR. These differentially expressed TFs are good candidates for subsequent functional analysis as well as for plant engineering. Some of these TFs could also be localized on the cacao reference map related to witches' broom resistance, facilitating the breeding and selection of resistant cacao trees.

  12. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology

    Directory of Open Access Journals (Sweden)

    Hongyan eWang

    2016-02-01

    Full Text Available Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions.

  13. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    Science.gov (United States)

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  14. A Potential Structural Switch for Regulating DNA-Binding by TEAD Transcription Factors.

    Science.gov (United States)

    Lee, Dong-Sun; Vonrhein, Clemens; Albarado, Diana; Raman, C S; Veeraraghavan, Sudha

    2016-06-19

    TEA domain (TEAD) transcription factors are essential for the normal development of eukaryotes and are the downstream effectors of the Hippo tumor suppressor pathway. Whereas our earlier work established the three-dimensional structure of the highly conserved DNA-binding domain using solution NMR spectroscopy, the structural basis for regulating the DNA-binding activity remains unknown. Here, we present the X-ray crystallographic structure and activity of a TEAD mutant containing a truncated L1 loop, ΔL1 TEAD DBD. Unexpectedly, the three-dimensional structure of the ΔL1 TEAD DBD reveals a helix-swapped homodimer wherein helix 1 is swapped between monomers. Furthermore, each three-helix bundle in the domain-swapped dimer is a structural homolog of MYB-like domains. Our investigations of the DNA-binding activity reveal that although the formation of the three-helix bundle by the ΔL1 TEAD DBD is sufficient for binding to an isolated M-CAT-like DNA element, multimeric forms are deficient for cooperative binding to tandemly duplicated elements, indicating that the L1 loop contributes to the DNA-binding activity of TEAD. These results suggest that switching between monomeric and domain-swapped forms may regulate DNA selectivity of TEAD proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Transcription factor families in Arabidopsis: major progress and outstanding issues for future research.

    Science.gov (United States)

    Qu, Li-Jia; Zhu, Yu-Xian

    2006-10-01

    Transcription factors (TFs) are a group of proteins that control cellular processes by regulating the expression of downstream target genes. Recent progress has been made in the cloning and characterization of Arabidopsis TFs on the genome scale, especially on the cloning of open reading frames (ORFs), sequence analysis and the expression profiling of different TF families. Huge difference in numbers of subfamily members were found for Arabidopsis MYB, C2H2 (Zn), C3H-type 1 (Zn), C3H-type 2 (Zn) TFs by independent research groups, mainly because of differences in bioinformatic search stringency. However, the Arabidopsis and rice genomes contain very different numbers of TFs in the WRKY, NAC, bZIP, MADS, ALFIN-like, GRAS and C2C2 (Zn)-dof families, indicating a possible divergence of biological functions from dicots to monocots. TFs have also been found to play key roles in the biosynthesis and signaling of plant hormones, in cell growth and differentiation, and in photomorphogenesis.

  16. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae).

    Science.gov (United States)

    Zhou, Xiu-Ren; Wang, Yin-Zheng; Smith, James F; Chen, Rujin

    2008-01-01

    The shift from zygomorphy to actinomorphy has been intensively studied in molecular genetic model organisms. However, it is still a key challenge to explain the great morphological diversity of derived actinomorphy in angiosperms, since different underlying mechanisms may be responsible for similar external morphologies. Bournea (Gesneriaceae) is of particular interest in addressing this question, as it is a representative of primarily derived actinomorphy characteristic of a unique developmental transition from zygomorphy to actinomorphic flowers at anthesis. Using RNA in situ hybridization, the expression patterns were investigated of three different Bournea orthologues of TCP and MYB genes that have been shown to control floral symmetry in model species. Here, it is shown that the initial zygomorphic pattern in Bournea is likely a residual zygomorphy resulting from conserved expression of the adaxial (dorsal) identity gene BlCYC1. As a key novel event, the late downregulation of BlCYC1 and BlRAD and the correlative changes in the late specific expression of the abaxial (ventral) identity gene BlDIV should be responsible for the origin of the derived actinomorphy in Bournea. These results further indicate that there might be diverse pathways in the origin and evolution of derived actinomorphy through modifications of pre-existing zygomorphic developmental programs under dynamics of regulatory networks.

  17. An expression analysis of 57 transcription factors derived from ESTs of developing seeds in Maize (Zea mays).

    Science.gov (United States)

    Wang, Guifeng; Wang, Hui; Zhu, Jia; Zhang, Jing; Zhang, Xiaowei; Wang, Fei; Tang, Yuanping; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2010-06-01

    Maize seeds are an important source of food, animal feed, and industrial raw materials. To understand global gene expression and regulation during maize seed development, a normalized cDNA library, covering most of the developmental stages of maize seeds, was constructed. Sequencing analysis of 10,848 randomly selected clones identified 6,630 unique ESTs. Among them, 57 putative transcription factors (TFs) were identified. The TFs belong to seven different super-families, specifically 17 Zinc-finger, 13 bZIP, 8 bHLH, 6 MADS, 7 MYB, 3 Homedomain, and 3 AP2/EREBP. The spatial and temporal expression of the TFs was analyzed by semi-quantitative RT-PCR with representative tissue types and seeds at different developmental stages, revealing their diverse expression patterns and expression levels. One-third (19) of the maize TFs was found their putative orthologs in Arabidopsis. Similar expression patterns were observed in both maize and Arabidopsis for the majority of orthologous pairs (15 out of 19), suggesting their conserved functions during seed development. In conclusion, the systematic analysis of maize seed TFs has provided valuable insight into transcriptional regulation during maize seed development.

  18. Gradual reduction in rRNA transcription triggers p53 acetylation and apoptosis via MYBBP1A.

    Science.gov (United States)

    Kumazawa, Takuya; Nishimura, Kazuho; Katagiri, Naohiro; Hashimoto, Sayaka; Hayashi, Yuki; Kimura, Keiji

    2015-06-05

    The nucleolus, whose primary function is ribosome biogenesis, plays an essential role in p53 activation. Ribosome biogenesis is inhibited in response to cellular stress and several nucleolar proteins translocate from the nucleolus to the nucleoplasm, where they activate p53. In this study, we analysed precisely how impaired ribosome biogenesis regulates the activation of p53 by depleting nucleolar factors involved in rRNA transcription or rRNA processing. Nucleolar RNA content decreased when rRNA transcription was inhibited. In parallel with the reduced levels of nucleolar RNA content, the nucleolar protein Myb-binding protein 1 A (MYBBP1A) translocated to the nucleoplasm and increased p53 acetylation. The acetylated p53 enhanced p21 and BAX expression and induced apoptosis. In contrast, when rRNA processing was inhibited, MYBBP1A remained in the nucleolus and nonacetylated p53 accumulated, causing cell cycle arrest at the G1 phase by inducing p21 but not BAX. We propose that the nucleolus functions as a stress sensor to modulate p53 protein levels and its acetylation status, determining cell fate between cell cycle arrest and apoptosis by regulating MYBBP1A translocation.

  19. Regulated assembly of transcription factors and control of transcription initiation.

    Science.gov (United States)

    Beckett, D

    2001-11-30

    Proteins that function in regulation of transcription initiation are typically homo or hetero-oligomeric. Results of recent biophysical studies of transcription regulators indicate that the assembly of these proteins is often subject to regulation. This regulation of assembly dictates the frequency of transcription initiation via its influence on the affinity of a transcription regulator for DNA and its affect on target site selection. Factors that modulate transcription factor assembly include binding of small molecules, post-translational modification, DNA binding and interactions with other proteins. Here, the results of recent structural and/or thermodynamic studies of a number of transcription regulators that are subject to regulated assembly are reviewed. The accumulated data indicate that this phenomenon is ubiquitous and that mechanisms utilized in eukaryotes and prokaryotes share common features. Copyright 2001 Academic Press.

  20. Functional redundancy of two Pax-like proteins in transcriptional activation of cyst wall protein genes in Giardia lamblia.

    Science.gov (United States)

    Chuang, Shen-Fung; Su, Li-Hsin; Cho, Chao-Cheng; Pan, Yu-Jiao; Sun, Chin-Hung

    2012-01-01

    The protozoan Giardia lamblia differentiates from a pathogenic trophozoite into an infectious cyst to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately induced. Pax family transcription factors are involved in a variety of developmental processes in animals. Nine Pax proteins have been found to play an important role in tissue and organ development in humans. To understand the progression from primitive to more complex eukaryotic cells, we tried to identify putative pax genes in the G. lamblia genome and found two genes, pax1 and pax2, with limited similarity. We found that Pax1 may transactivate the encystation-induced cwp genes and interact with AT-rich initiatior elements that are essential for promoter activity and transcription start site selection. In this study, we further characterized Pax2 and found that, like Pax1, Pax2 was present in Giardia nuclei and it may specifically bind to the AT-rich initiator elements of the encystation-induced cwp1-3 and myb2 genes. Interestingly, overexpression of Pax2 increased the cwp1-3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of nuclear localization, DNA-binding activity, and transactivation activity of Pax2. These results are similar to those found in the previous Pax1 study. In addition, the profiles of gene expression in the Pax2 and Pax1 overexpressing cells significantly overlap in the same direction and ERK1 associated complexes may phosphorylate Pax2 and Pax1, suggesting that Pax2 and Pax1 may be downstream components of a MAPK/ERK1 signaling pathway. Our results reveal functional redundancy between Pax2 and Pax1 in up-regulation of the key encystation-induced genes. These results illustrate functional redundancy of a gene family can occur in order to increase maintenance of important gene function in the protozoan organism G. lamblia.

  1. Functional redundancy of two Pax-like proteins in transcriptional activation of cyst wall protein genes in Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Shen-Fung Chuang

    Full Text Available The protozoan Giardia lamblia differentiates from a pathogenic trophozoite into an infectious cyst to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs are coordinately induced. Pax family transcription factors are involved in a variety of developmental processes in animals. Nine Pax proteins have been found to play an important role in tissue and organ development in humans. To understand the progression from primitive to more complex eukaryotic cells, we tried to identify putative pax genes in the G. lamblia genome and found two genes, pax1 and pax2, with limited similarity. We found that Pax1 may transactivate the encystation-induced cwp genes and interact with AT-rich initiatior elements that are essential for promoter activity and transcription start site selection. In this study, we further characterized Pax2 and found that, like Pax1, Pax2 was present in Giardia nuclei and it may specifically bind to the AT-rich initiator elements of the encystation-induced cwp1-3 and myb2 genes. Interestingly, overexpression of Pax2 increased the cwp1-3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of nuclear localization, DNA-binding activity, and transactivation activity of Pax2. These results are similar to those found in the previous Pax1 study. In addition, the profiles of gene expression in the Pax2 and Pax1 overexpressing cells significantly overlap in the same direction and ERK1 associated complexes may phosphorylate Pax2 and Pax1, suggesting that Pax2 and Pax1 may be downstream components of a MAPK/ERK1 signaling pathway. Our results reveal functional redundancy between Pax2 and Pax1 in up-regulation of the key encystation-induced genes. These results illustrate functional redundancy of a gene family can occur in order to increase maintenance of important gene function in the protozoan

  2. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease.

    Science.gov (United States)

    Lettre, Guillaume; Sankaran, Vijay G; Bezerra, Marcos André C; Araújo, Aderson S; Uda, Manuela; Sanna, Serena; Cao, Antonio; Schlessinger, David; Costa, Fernando F; Hirschhorn, Joel N; Orkin, Stuart H

    2008-08-19

    Sickle cell disease (SCD) is a debilitating monogenic blood disorder with a highly variable phenotype characterized by severe pain crises, acute clinical events, and early mortality. Interindividual variation in fetal hemoglobin (HbF) expression is a known and potentially heritable modifier of SCD severity. High HbF levels are correlated with reduced morbidity and mortality. Common single nucleotide polymorphisms (SNPs) at the BCL11A and HBS1L-MYB loci have been implicated previously in HbF level variation in nonanemic European populations. We recently demonstrated an association between a BCL11A SNP and HbF levels in one SCD cohort [Uda M, et al. (2008) Proc Natl Acad Sci USA 105:1620-1625]. Here, we genotyped additional BCL11A SNPs, HBS1L-MYB SNPs, and an SNP upstream of (G)gamma-globin (HBG2; the XmnI polymorphism), in two independent SCD cohorts: the African American Cooperative Study of Sickle Cell Disease (CSSCD) and an SCD cohort from Brazil. We studied the effect of these SNPs on HbF levels and on a measure of SCD-related morbidity (pain crisis rate). We strongly replicated the association between these SNPs and HbF level variation (in the CSSCD, P values range from 0.04 to 2 x 10(-42)). Together, common SNPs at the BCL11A, HBS1L-MYB, and beta-globin (HBB) loci account for >20% of the variation in HbF levels in SCD patients. We also have shown that HbF-associated SNPs associate with pain crisis rate in SCD patients. These results provide a clear example of inherited common sequence variants modifying the severity of a monogenic disease.

  3. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    . Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t......RNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal...

  4. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...

  5. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...

  6. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  7. DNA topology and transcription.

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions.

  8. Reference genes for high-throughput quantitative reverse transcription-PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions.

    Science.gov (United States)

    Cassan-Wang, Hua; Soler, Marçal; Yu, Hong; Camargo, Eduardo Leal O; Carocha, Victor; Ladouce, Nathalie; Savelli, Bruno; Paiva, Jorge A P; Leplé, Jean-Charles; Grima-Pettenati, Jacqueline

    2012-12-01

    Interest in the genomics of Eucalyptus has skyrocketed thanks to the recent sequencing of the genome of Eucalyptus grandis and to a growing number of large-scale transcriptomic studies. Quantitative reverse transcription-PCR (RT-PCR) is the method of choice for gene expression analysis and can now also be used as a high-throughput method. The selection of appropriate internal controls is becoming of utmost importance to ensure accurate expression results in Eucalyptus. To this end, we selected 21 candidate reference genes and used high-throughput microfluidic dynamic arrays to assess their expression among a large panel of developmental and environmental conditions with a special focus on wood-forming tissues. We analyzed the expression stability of these genes by using three distinct statistical algorithms (geNorm, NormFinder and ΔCt), and used principal component analysis to compare methods and rankings. We showed that the most stable genes identified depended not only on the panel of biological samples considered but also on the statistical method used. We then developed a comprehensive integration of the rankings generated by the three methods and identified the optimal reference genes for 17 distinct experimental sets covering 13 organs and tissues, as well as various developmental and environmental conditions. The expression patterns of Eucalyptus master genes EgMYB1 and EgMYB2 experimentally validated our selection. Our findings provide an important resource for the selection of appropriate reference genes for accurate and reliable normalization of gene expression data in the organs and tissues of Eucalyptus trees grown in a range of conditions including abiotic stresses.

  9. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    A post-transcriptional operon is a set of monocistronic mRNAs encoding functionally related proteins that are co-regulated by a group of RNA-binding proteins and/or small non-coding RNAs so that protein expression is coordinated at the post-transcriptional level. The post-transcriptional operon...... model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...

  10. Promoter-mediated transcriptional dynamics.

    Science.gov (United States)

    Zhang, Jiajun; Zhou, Tianshou

    2014-01-21

    Genes in eukaryotic cells are typically regulated by complex promoters containing multiple binding sites for a variety of transcription factors, but how promoter dynamics affect transcriptional dynamics has remained poorly understood. In this study, we analyze gene models at the transcriptional regulation level, which incorporate the complexity of promoter structure (PS) defined as transcriptional exits (i.e., ON states of the promoter) and the transition pattern (described by a matrix consisting of transition rates among promoter activity states). We show that multiple exits of transcription are the essential origin of generating multimodal distributions of mRNA, but promoters with the same transition pattern can lead to multimodality of different modes, depending on the regulation of transcriptional factors. In turn, for similar mRNA distributions in the models, the mean ON or OFF time distributions may exhibit different characteristics, thus providing the supplemental information on PS. In addition, we demonstrate that the transcriptional noise can be characterized by a nonlinear function of mean ON and OFF times. These results not only reveal essential characteristics of promoter-mediated transcriptional dynamics but also provide signatures useful for inferring PS based on characteristics of transcriptional outputs. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Mastering Transcription: Multiplexed Analysis of Transcription Start Site Sequences.

    Science.gov (United States)

    Hochschild, Ann

    2015-12-17

    In this issue of Molecular Cell, Vvedenskaya et al. (2015) describe a high-throughput sequencing-based methodology for the massively parallel analysis of transcription from a high-complexity barcoded template library both in vitro and in vivo, providing a powerful new tool for the study of transcription.

  12. Transcriptional and post-transcriptional profile of human chromosome 21.

    Science.gov (United States)

    Nikolaev, Sergey I; Deutsch, Samuel; Genolet, Raphael; Borel, Christelle; Parand, Leila; Ucla, Catherine; Schütz, Frederic; Duriaux Sail, Genevieve; Dupré, Yann; Jaquier-Gubler, Pascale; Araud, Tanguy; Conne, Beatrice; Descombes, Patrick; Vassalli, Jean-Dominique; Curran, Joseph; Antonarakis, Stylianos E

    2009-08-01

    Recent studies have demonstrated extensive transcriptional activity across the human genome, a substantial fraction of which is not associated with any functional annotation. However, very little is known regarding the post-transcriptional processes that operate within the different classes of RNA molecules. To characterize the post-transcriptional properties of expressed sequences from human chromosome 21 (HSA21), we separated RNA molecules from three cell lines (GM06990, HeLa S3, and SK-N-AS) according to their ribosome content by sucrose gradient fractionation. Polyribosomal-associated RNA and total RNA were subsequently hybridized to genomic tiling arrays. We found that approximately 50% of the transcriptional signals were located outside of annotated exons and were considered as TARs (transcriptionally active regions). Although TARs were observed among polysome-associated RNAs, RT-PCR and RACE experiments revealed that approximately 40% were likely to represent nonspecific cross-hybridization artifacts. Bioinformatics discrimination of TARs according to conservation and sequence complexity allowed us to identify a set of high-confidence TARs. This set of TARs was significantly depleted in the polysomes, suggesting that it was not likely to be involved in translation. Analysis of polysome representation of RefSeq exons showed that at least 15% of RefSeq transcripts undergo significant post-transcriptional regulation in at least two of the three cell lines tested. Among the regulated transcripts, enrichment analysis revealed an over-representation of genes involved in Alzheimer's disease (AD), including APP and the BACE1 protease that cleaves APP to produce the pathogenic beta 42 peptide. We demonstrate that the combination of RNA fractionation and tiling arrays is a powerful method to assess the transcriptional and post-transcriptional properties of genomic regions.

  13. Mechanosensitive mechanisms in transcriptional regulation.

    Science.gov (United States)

    Mammoto, Akiko; Mammoto, Tadanori; Ingber, Donald E

    2012-07-01

    Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, c