WorldWideScience

Sample records for r2r3 myb transcription

  1. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica.

    Science.gov (United States)

    Feng, Kai; Xu, Zhi-Sheng; Que, Feng; Liu, Jie-Xia; Wang, Feng; Xiong, Ai-Sheng

    2018-02-01

    This study showed that an R2R3-MYB transcription factor, OjMYB1, is involved in anthocyanin biosynthesis and accumulation in Oenanthe javanica. Anthocyanins can be used as safe natural food colorants, obtained from many plants. R2R3-MYB transcription factors (TFs) play important roles in anthocyanins biosynthesis during plant development. Oenanthe javanica is a popular vegetable with high nutritional values and numerous medical functions. O. javanica has purple petioles that are mainly due to anthocyanins accumulation. In the present study, the gene encoding an R2R3-MYB TF, OjMYB1, was isolated from purple O. javanica. Sequencing results showed that OjMYB1 contained a 912-bp open reading frame encoding 303 amino acids. Sequence alignments revealed that OjMYB1 contained bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and ANDV motif ([A/G]NDV). Phylogenetic analysis indicated that the OjMYB1 classified into the anthocyanins biosynthesis clade. Subcellular localization assay showed that OjMYB1 was a nuclear protein in vivo. The heterologous expression of OjMYB1 in Arabidopsis could enhance the anthocyanins content and up-regulate the expression levels of the structural genes-related anthocyanins biosynthesis. Yeast two-hybrid assay indicated that OjMYB1 could interact with AtTT8 and AtEGL3 proteins. Enzymatic analysis revealed that overexpression of OjMYB1 gene up-regulated the enzyme activity of 3-O-glycosyltransferase encoded by AtUGT78D2 in transgenic Arabidopsis. Our results provided a comprehensive understanding of the structure and function of OjMYB1 TF in O. javanica.

  2. Interactions between the R2R3-MYB transcription factor, AtMYB61, and target DNA binding sites.

    Directory of Open Access Journals (Sweden)

    Michael B Prouse

    Full Text Available Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing. The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators.

  3. Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2016-10-01

    Full Text Available Anthocyanin accumulation is responsible for flower coloration in peach. Here, we report the identification and functional characterization of eight flavonoid-related R2R3-MYB transcription factors, designated PpMYB10.2, PpMYB9, PpMYBPA1, Peace, PpMYB17, PpMYB18, PpMYB19 and PpMYB20, respectively, in peach flower transcriptome. PpMYB10.2 and PpMYB9 are able to activate transcription of anthocyanin biosynthetic genes, whilst PpMYBPA1 and Peace have a strong activation on the promoters of proanthocyanin (PA biosynthetic genes. PpMYB17-20 show a strong repressive effect on transcription of flavonoid pathway genes such as DFR. These results indicate that anthocyanin accumulation in peach flower is coordinately regulated by a set of R2R3-MYB genes. In addition, PpMYB9 and PpMYB10.2 are closely related but separated into two groups, designated MYB9 and MYB10, respectively. PpMYB9 shows a strong activation on the PpUGT78A2 promoter, but with no effect on the promoter of PpUGT78B (commonly called PpUFGT in previous studies. In contrast, PpMYB10.2 is able to activate the PpUFGT promoter, but not for the PpUGT78A2 promoter. Unlike the MYB10 gene that is universally present in plants, the MYB9 gene is lost in most dicot species. Therefore, the PpMYB9 gene represents a novel group of anthocyanin-related MYB activators, which may have diverged in function from the MYB10 genes. Our study will aid in understanding the complex mechanism regulating floral pigmentation in peach and functional divergence of the R2R3-MYB gene family in plants.

  4. Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco

    Directory of Open Access Journals (Sweden)

    Muhammad Anwar

    2018-03-01

    Full Text Available R2R3 MYB transcription factors play key functions in the regulation of secondary metabolites. In the present study, a R2R3 MYB transcriptional factor NtMYB2 was identified from Chinese narcissus (Narcissus tazetta L. var. Chinensis Roem and functionally characterized. NtMYB2 belongs to subgroup 4 of the R2R3 MYB transcription factor family that are related to repressor MYBs involved in the regulation of anthocyanin and flavonoids. Transient expression confirmed that NtMYB2 strongly reduced the red pigmentation induced by MYB- anthocyanin activators in agro-infiltrated tobacco leaves. Ectopic expression of NtMYB2 in tobacco significantly reduced the pigmentation and altered the floral phenotypes in transgenic tobacco flowers. Gene expression analysis suggested that NtMYB2 repressed the transcript levels of structural genes involved in anthocyanin biosynthesis pathway, especially the UFGT gene. NtMYB2 gene is expressed in all examined narcissus tissues; the levels of transcription in petals and corona is higher than other tissues and the transcription level at the bud stage was highest. These results show that NtMYB2 is involved in the regulation of anthocyanin biosynthesis pathway and may act as a repressor by down regulating the transcripts of key enzyme genes in Chinese narcissus.

  5. Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco.

    Science.gov (United States)

    Anwar, Muhammad; Wang, Guiqing; Wu, Jiacheng; Waheed, Saquib; Allan, Andrew C; Zeng, Lihui

    2018-03-28

    R2R3 MYB transcription factors play key functions in the regulation of secondary metabolites. In the present study, a R2R3 MYB transcriptional factor NtMYB2 was identified from Chinese narcissus ( Narcissus tazetta L. var. Chinensis Roem) and functionally characterized. NtMYB2 belongs to subgroup 4 of the R2R3 MYB transcription factor family that are related to repressor MYBs involved in the regulation of anthocyanin and flavonoids. Transient expression confirmed that NtMYB2 strongly reduced the red pigmentation induced by MYB- anthocyanin activators in agro-infiltrated tobacco leaves. Ectopic expression of NtMYB2 in tobacco significantly reduced the pigmentation and altered the floral phenotypes in transgenic tobacco flowers. Gene expression analysis suggested that NtMYB2 repressed the transcript levels of structural genes involved in anthocyanin biosynthesis pathway, especially the UFGT gene. NtMYB2 gene is expressed in all examined narcissus tissues; the levels of transcription in petals and corona is higher than other tissues and the transcription level at the bud stage was highest. These results show that NtMYB2 is involved in the regulation of anthocyanin biosynthesis pathway and may act as a repressor by down regulating the transcripts of key enzyme genes in Chinese narcissus.

  6. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10.

    Science.gov (United States)

    Feng, Shouqian; Wang, Yanling; Yang, Song; Xu, Yuting; Chen, Xuesen

    2010-06-01

    Skin color is an important factor in pear breeding programs. The degree of red coloration is determined by the content and composition of anthocyanins. In plants, many MYB transcriptional factors are involved in regulating anthocyanin biosynthesis. In this study, a R2R3-MYB transcription factor gene, PyMYB10, was isolated from Asian pear (Pyrus pyrifolia) cv. 'Aoguan'. Sequence analysis suggested that the PyMYB10 gene was an ortholog of MdMYB10 gene, which regulates anthocyanin biosynthesis in red fleshed apple (Malus x domestica) cv. 'Red Field'. PyMYB10 was identified at the genomic level and had three exons, with its upstream sequence containing core sequences of cis-acting regulatory elements involved in light responsiveness. Fruit bagging showed that light could induce expression of PyMYB10 and anthocyanin biosynthesis. Quantitative real-time PCR revealed that PyMYB10 was predominantly expressed in pear skins, buds, and young leaves, and the level of transcription in buds was higher than in skin and young leaves. In ripening fruits, the transcription of PyMYB10 in the skin was positively correlated with genes in the anthocyanin pathway and with anthocyanin biosynthesis. In addition, the transcription of PyMYB10 and genes of anthocyanin biosynthesis were more abundant in red-skinned pear cultivars compared to blushed cultivars. Transgenic Arabidopsis plants overexpressing PyMYB10 exhibited ectopic pigmentation in immature seeds. The study suggested that PyMYB10 plays a role in regulating anthocyanin biosynthesis and the overexpression of PyMYB10 was sufficient to induce anthocyanin accumulation.

  7. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    Full Text Available Herba epimedii (Epimedium, a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1 from Epimedium sagittatum (Sieb. Et Zucc. Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR and anthocyanidin synthase (ANS. In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.

  8. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway.

    Science.gov (United States)

    Huang, Wenjun; Sun, Wei; Lv, Haiyan; Luo, Ming; Zeng, Shaohua; Pattanaik, Sitakanta; Yuan, Ling; Wang, Ying

    2013-01-01

    Herba epimedii (Epimedium), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs) have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1) from Epimedium sagittatum (Sieb. Et Zucc.) Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade) of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.

  9. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa).

    Science.gov (United States)

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun; Roh, Kyung-Hee

    2008-06-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches.

  10. Functional Characterization of a Novel R2R3-MYB Transcription Factor Modulating the Flavonoid Biosynthetic Pathway from Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2017-07-01

    Full Text Available Epimedium species have been widely used both as traditional Chinese medicinal plants and ornamental perennials. Both flavonols, acting as the major bioactive components (BCs and anthocyanins, predominantly contributing to the color diversity of Epimedium flowers belong to different classes of flavonoids. It is well-acknowledged that flavonoid biosynthetic pathway is predominantly regulated by R2R3-MYB transcription factor (TF as well as bHLH TF and WD40 protein at the transcriptional level. MYB TFs specifically regulating anthocyanin or flavonol biosynthetic pathway have been already isolated and functionally characterized from Epimedium sagittatum, but a R2R3-MYB TF involved in regulating both these two pathways has not been functionally characterized to date in Epimedium plants. In this study, we report the functional characterization of EsMYB9, a R2R3-MYB TF previously isolated from E. sagittatum. The previous study indicated that EsMYB9 belongs to a small subfamily of R2R3-MYB TFs containing grape VvMYB5a and VvMYB5b TFs, which regulate flavonoid biosynthetic pathway. The present studies show that overexpression of EsMYB9 in tobacco leads to increased transcript levels of flavonoid pathway genes and increased contents of anthocyanins and flavonols. Yeast two-hybrid assay indicates that the C-terminal region of EsMYB9 contributes to the autoactivation activity, and EsMYB9 interacts with EsTT8 or AtTT8 bHLH regulator. Transient reporter assay shows that EsMYB9 slightly activates the expression of EsCHS (chalcone synthase promoter in transiently transformed leaves of Nicotiana benthamiana, but the addition of AtTT8 or EsTT8 bHLH regulator strongly enhances the transcriptional activation of EsMYB9 against five promoters of the flavonoid pathway genes except EsFLS (flavonol synthase. In addition, co-transformation of EsMYB9 and EsTT8 in transiently transfected tobacco leaves strongly induces the expressions of flavonoid biosynthetic genes. The

  11. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae.

    Science.gov (United States)

    Lin-Wang, Kui; Bolitho, Karen; Grafton, Karryn; Kortstee, Anne; Karunairetnam, Sakuntala; McGhie, Tony K; Espley, Richard V; Hellens, Roger P; Allan, Andrew C

    2010-03-21

    The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  12. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae

    Directory of Open Access Journals (Sweden)

    McGhie Tony K

    2010-03-01

    Full Text Available Abstract Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry. Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  13. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    NARCIS (Netherlands)

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the

  14. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    OpenAIRE

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all th...

  15. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca

    Directory of Open Access Journals (Sweden)

    Grima-Pettenati Jacqueline

    2007-03-01

    Full Text Available Abstract Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences, and loblolly pine, Pinus taeda L. (five sequences. Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco.

  16. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function.

    Science.gov (United States)

    Soler, Marçal; Camargo, Eduardo Leal Oliveira; Carocha, Victor; Cassan-Wang, Hua; San Clemente, Hélène; Savelli, Bruno; Hefer, Charles A; Paiva, Jorge A Pinto; Myburg, Alexander A; Grima-Pettenati, Jacqueline

    2015-06-01

    The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  17. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean.

    Directory of Open Access Journals (Sweden)

    Shanshan Chu

    2017-05-01

    Full Text Available Isoflavones comprise a group of secondary metabolites produced almost exclusively by plants in the legume family, including soybean [Glycine max (L. Merr.]. They play vital roles in plant defense and have many beneficial effects on human health. Isoflavone content is a complex quantitative trait controlled by multiple genes, and the genetic mechanisms underlying isoflavone biosynthesis remain largely unknown. Via a genome-wide association study (GWAS, we identified 28 single nucleotide polymorphisms (SNPs that are significantly associated with isoflavone concentrations in soybean. One of these 28 SNPs was located in the 5'-untranslated region (5'-UTR of an R2R3-type MYB transcription factor, GmMYB29, and this gene was thus selected as a candidate gene for further analyses. A subcellular localization study confirmed that GmMYB29 was located in the nucleus. Transient reporter gene assays demonstrated that GmMYB29 activated the IFS2 (isoflavone synthase 2 and CHS8 (chalcone synthase 8 gene promoters. Overexpression and RNAi-mediated silencing of GmMYB29 in soybean hairy roots resulted in increased and decreased isoflavone content, respectively. Moreover, a candidate-gene association analysis revealed that 11 natural GmMYB29 polymorphisms were significantly associated with isoflavone contents, and regulation of GmMYB29 expression could partially contribute to the observed phenotypic variation. Taken together, these results provide important genetic insights into the molecular mechanisms underlying isoflavone biosynthesis in soybean.

  18. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1.

    Science.gov (United States)

    Lim, Sun-Hyung; Song, Ji-Hye; Kim, Da-Hye; Kim, Jae Kwang; Lee, Jong-Yeol; Kim, Young-Mi; Ha, Sun-Hwa

    2016-03-01

    RsMYB1, a MYB TF of red radish origin, was characterized as a positive regulator to transcriptionally activate the anthocyanin biosynthetic machinery by itself in Arabidopsis and tobacco plants. Anthocyanins, providing the bright red-orange to blue-violet colors, are flavonoid-derived pigments with strong antioxidant activity that have benefits for human health. We isolated RsMYB1, which encodes an R2R3-MYB transcription factor (TF), from red radish plants (Raphanus sativus L.) that accumulate high levels of anthocyanins. RsMYB1 shows higher expression in red radish than in common white radish, in both leaves and roots, at different growth stages. Consistent with RsMYB1 function as an anthocyanin-promoting TF, red radishes showed higher expression of all six anthocyanin biosynthetic and two anthocyanin regulatory genes. Transient expression of RsMYB1 in tobacco showed that RsMYB1 is a positive regulator of anthocyanin production with better efficiency than the basic helix-loop-helix (bHLH) TF gene B-Peru. Also, the synergistic effect of RsMYB1 with B-Peru was larger than the effect of the MYB TF gene mPAP1D with B-peru. Arabidopsis plants stably expressing RsMYB1 produced red pigmentation throughout the plant, accompanied by up-regulation of the six structural and two regulatory genes for anthocyanin production. This broad transcriptional activation of anthocyanin biosynthetic machinery in Arabidopsis included up-regulation of TRANSPARENT TESTA8, which encodes a bHLH TF. These results suggest that overexpression of RsMYB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1. In addition, RsMYB1-overexpressing Arabidopsis plants had a higher antioxidant capacity than did non-transgenic control plants. Taken together, RsMYB1 is an actively positive regulator for anthocyanins biosynthesis in radish plants and it might be one of the best targets for anthocyanin production by single gene

  19. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis

    Science.gov (United States)

    Schwinn, Kathy E.; Ngo, Hanh; Kenel, Fernand; Brummell, David A.; Albert, Nick W.; McCallum, John A.; Pither-Joyce, Meeghan; Crowhurst, Ross N.; Eady, Colin; Davies, Kevin M.

    2016-01-01

    Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species. PMID:28018399

  20. The onion (Allium cepa L. R2R3-MYB gene MYB1 regulates anthocyanin biosynthesis

    Directory of Open Access Journals (Sweden)

    Kathy Schwinn

    2016-12-01

    Full Text Available Bulb colour is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales. The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red, flavonols (pale yellow and chalcones (bright yellow. Flavonoid regulation is poorly characterised in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs that commonly activate anthocyanin (SG6, MYB1 or flavonol (SG7, MYB29 production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5. MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressd and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (A. sativum L. plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  1. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis.

    Science.gov (United States)

    Schwinn, Kathy E; Ngo, Hanh; Kenel, Fernand; Brummell, David A; Albert, Nick W; McCallum, John A; Pither-Joyce, Meeghan; Crowhurst, Ross N; Eady, Colin; Davies, Kevin M

    2016-01-01

    Bulb color is an important consumer trait for onion ( Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic ( Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum maju s of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  2. Genome-wide identification and characterization of R2R3MYB family in Rosaceae.

    Science.gov (United States)

    González, Máximo; Carrasco, Basilio; Salazar, Erika

    2016-09-01

    Transcription factors R2R3MYB family have been associated with the control of secondary metabolites, development of structures, cold tolerance and response to biotic and abiotic stress, among others. In recent years, genomes of Rosaceae botanical family are available. Although this information has been used to study the karyotype evolution of these species from an ancestral genome, there are no studies that treat the evolution and diversity of gene families present in these species or in the botanical family. Here we present the first comparative study of the R2R3MYB subfamily of transcription factors in three species of Rosaceae family (Malus domestica, Prunus persica and Fragaria vesca). We described 186, 98 and 86 non-redundant gene models for apple, peach and strawberry, respectively. In this research, we analyzed the intron-exon structure and genomic distribution of R2R3MYB families mentioned above. The phylogenetic comparisons revealed putative functions of some R2R3MYB transcription factors. This analysis found 44 functional subgroups, seven of which were unique for Rosaceae. In addition, our results showed a highly collinearity among some genes revealing the existence of conserved gene models between the three species studied. Although some gene models in these species have been validated under several approaches, more research in the Rosaceae family is necessary to determine gene expression patterns in specific tissues and development stages to facilitate understanding of the regulatory and biochemical mechanism in this botanical family.

  3. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus.

    Science.gov (United States)

    Hajiebrahimi, Ali; Owji, Hajar; Hemmati, Shiva

    2017-10-01

    R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. K n /K s values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.

  4. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease.

    Science.gov (United States)

    Liu, Xin; Yang, Lihua; Zhou, Xianyao; Zhou, Miaoping; Lu, Yan; Ma, Lingjian; Ma, Hongxiang; Zhang, Zengyan

    2013-05-01

    The disease take-all, caused by the fungus Gaeumannomyces graminis, is one of the most destructive root diseases of wheat worldwide. Breeding resistant cultivars is an effective way to protect wheat from take-all. However, little progress has been made in improving the disease resistance level in commercial wheat cultivars. MYB transcription factors play important roles in plant responses to environmental stresses. In this study, an R2R3-MYB gene in Thinopyrum intermedium, TiMYB2R-1, was cloned and characterized. The gene sequence includes two exons and an intron. The expression of TiMYB2R-1 was significantly induced following G. graminis infection. An in vitro DNA binding assay proved that TiMYB2R-1 protein could bind to the MYB-binding site cis-element ACI. Subcellular localization assays revealed that TiMYB2R-1 was localized in the nucleus. TiMYB2R-1 transgenic wheat plants were generated, characterized molecularly, and evaluated for take-all resistance. PCR and Southern blot analyses confirmed that TiMYB2R-1 was integrated into the genomes of three independent transgenic wheat lines by distinct patterns and the transgene was heritable. Reverse transcription-PCR and western blot analyses revealed that TiMYB2R-1 was highly expressed in the transgenic wheat lines. Based on disease response assessments for three successive generations, the significantly enhanced resistance to take-all was observed in the three TiMYB2R-1-overexpressing transgenic wheat lines. Furthermore, the transcript levels of at least six wheat defence-related genes were significantly elevated in the TiMYB2R-1 transgenic wheat lines. These results suggest that engineering and overexpression of TiMYB2R-1 may be used for improving take-all resistance of wheat and other cereal crops.

  5. Molecular characterization of the Jatropha curcas JcR1MYB1 gene encoding a putative R1-MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Hui-Liang Li

    2014-09-01

    Full Text Available The cDNA encoding the R1-MYB transcription factor, designated as JcR1MYB1, was isolated from Jatropha curcas using rapid amplification of cDNA ends. JcR1MYB1 contains a 951 bp open reading frame that encodes 316 amino acids. The deduced JcR1MYB1 protein was predicted to possess the conserved, 56-amino acid-long DNA-binding domain, which consists of a single helix-turn-helix module and usually occurs in R1-MYBs. JcR1MYB1 is a member of the R1-MYB transcription factor subfamily. A subcellular localization study confirmed the nuclear localization of JcR1MYB1. Expression analysis showed that JcR1MYB1 transcripts accumulated in various examined tissues, with high expression levels in the root and low levels in the stem. JcR1MYB1 transcription was up-regulated by polyethylene glycol, NaCl, and cold treatments, as well as by abscisic acid, jasmonic acid, and ethylene treatment. Analysis of transgenic tobacco plants over-expressing JcR1MYB1 indicates an inportant function for this gene in salt stress.

  6. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus).

    Science.gov (United States)

    Liu, Chaoyang; Xie, Tao; Chen, Chenjie; Luan, Aiping; Long, Jianmei; Li, Chuhao; Ding, Yaqi; He, Yehua

    2017-07-01

    The MYB proteins comprise one of the largest families of plant transcription factors, which are involved in various plant physiological and biochemical processes. Pineapple (Ananas comosus) is one of three most important tropical fruits worldwide. The completion of pineapple genome sequencing provides a great opportunity to investigate the organization and evolutionary traits of pineapple MYB genes at the genome-wide level. In the present study, a total of 94 pineapple R2R3-MYB genes were identified and further phylogenetically classified into 26 subfamilies, as supported by the conserved gene structures and motif composition. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of pineapple MYB gene family. Further comparative phylogenetic analysis suggested that there have been functional divergences of MYB gene family during plant evolution. RNA-seq data from different tissues and developmental stages revealed distinct temporal and spatial expression profiles of the AcMYB genes. Further quantitative expression analysis showed the specific expression patterns of the selected putative stress-related AcMYB genes in response to distinct abiotic stress and hormonal treatments. The comprehensive expression analysis of the pineapple MYB genes, especially the tissue-preferential and stress-responsive genes, could provide valuable clues for further function characterization. In this work, we systematically identified AcMYB genes by analyzing the pineapple genome sequence using a set of bioinformatics approaches. Our findings provide a global insight into the organization, phylogeny and expression patterns of the pineapple R2R3-MYB genes, and hence contribute to the greater understanding of their biological roles in pineapple.

  7. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast.

    Directory of Open Access Journals (Sweden)

    Zsolt Kelemen

    Full Text Available The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs. Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences.

  8. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor.

    Science.gov (United States)

    Niu, Shan-Shan; Xu, Chang-Jie; Zhang, Wang-Shu; Zhang, Bo; Li, Xian; Lin-Wang, Kui; Ferguson, Ian B; Allan, Andrew C; Chen, Kun-Song

    2010-03-01

    Chinese bayberry (Myrica rubra) is a fruit crop with cultivars producing fruit ranging from white (Shuijing, SJ) to red (Dongkui, DK) and dark red-purple (Biqi, BQ), as a result of different levels of anthocyanin accumulation. Genes encoding the anthocyanin biosynthesis enzymes chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDPglucose: flavonoid 3-O-glucosyltransferase (UFGT), as well as MrMYB1, a R2R3 MYB transcription factor homologous to known activators of anthocyanin biosynthesis, were isolated from ripe fruit of BQ. Differences in mRNA abundance of MrF3H, MrF3'H, MrDFR1, MrANS and MrUFGT were highly correlated with differential accumulation of anthocyanins between cultivars, suggesting coordinated regulation by transcription factors. The transcript level of MrMYB1 was strongly associated with the anthocyanin content in ripe fruit of the three cultivars, as well as different anthocyanin containing tissues of BQ fruit. Fruit bagging strongly inhibited anthocyanin accumulation in fruit as well as the expression of all anthocyanin biosynthetic genes and MrMYB1. Overexpression of MrMYB1 stimulated both anthocyanin accumulation and activated an Arabidopsis-DFR promoter in tobacco (Nicotiana tabacum). MrMYB1d, an allele with a 1 bp deletion at nucleotide 30 of coding sequence, was observed in SJ and DK fruit, suggesting that a nonsense mutation of the MYB1 protein may be responsible for no or low expression of MYB1 in the white and red fruit. These results show that coordinated expression of multiple biosynthetic genes is involved in anthocyanin accumulation in Chinese bayberry fruit, and this is regulated by MrMYB1.

  9. Multiple Copies of a Simple MYB-Binding Site Confers Trans-regulation by Specific Flavonoid-Related R2R3 MYBs in Diverse Species

    Directory of Open Access Journals (Sweden)

    Cyril Brendolise

    2017-10-01

    Full Text Available In apple, the MYB transcription factor MYB10 controls the accumulation of anthocyanins. MYB10 is able to auto-activate its expression by binding its own promoter at a specific motif, the R1 motif. In some apple accessions a natural mutation, termed R6, has more copies of this motif within the MYB10 promoter resulting in stronger auto-activation and elevated anthocyanins. Here we show that other anthocyanin-related MYBs selected from apple, pear, strawberry, petunia, kiwifruit and Arabidopsis are able to activate promoters containing the R6 motif. To examine the specificity of this motif, members of the R2R3 MYB family were screened against a promoter harboring the R6 mutation. Only MYBs from subgroups 5 and 6 activate expression by binding the R6 motif, with these MYBs sharing conserved residues in their R2R3 DNA binding domains. Insertion of the apple R6 motif into orthologous promoters of MYB10 in pear (PcMYB10 and Arabidopsis (AtMY75 elevated anthocyanin levels. Introduction of the R6 motif into the promoter region of an anthocyanin biosynthetic enzyme F3′5′H of kiwifruit imparts regulation by MYB10. This results in elevated levels of delphinidin in both tobacco and kiwifruit. Finally, an R6 motif inserted into the promoter the vitamin C biosynthesis gene GDP-L-Gal phosphorylase increases vitamin C content in a MYB10-dependent manner. This motif therefore provides a tool to re-engineer novel MYB-regulated responses in plants.

  10. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii

    Science.gov (United States)

    He, Qiuling; Jones, Don C.; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-01-01

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement. PMID:27009386

  11. A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional Chinese medicinal plant, Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2016-07-01

    Full Text Available Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from E. sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase and EsFLS (flavonol synthase, but not the promoters of EsDFRs (dihydroflavonol 4-reductase and EsANS (anthocyanidin synthase in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase, NtCHI (chalcone isomerase, NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived bioactive components in E

  12. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning.

    Science.gov (United States)

    Albert, Nick W; Lewis, David H; Zhang, Huaibi; Schwinn, Kathy E; Jameson, Paula E; Davies, Kevin M

    2011-03-01

    We present an investigation of anthocyanin regulation over the entire petunia plant, determining the mechanisms governing complex floral pigmentation patterning and environmentally induced vegetative anthocyanin synthesis. DEEP PURPLE (DPL) and PURPLE HAZE (PHZ) encode members of the R2R3-MYB transcription factor family that regulate anthocyanin synthesis in petunia, and control anthocyanin production in vegetative tissues and contribute to floral pigmentation. In addition to these two MYB factors, the basic helix-loop-helix (bHLH) factor ANTHOCYANIN1 (AN1) and WD-repeat protein AN11, are also essential for vegetative pigmentation. The induction of anthocyanins in vegetative tissues by high light was tightly correlated to the induction of transcripts for PHZ and AN1. Interestingly, transcripts for PhMYB27, a putative R2R3-MYB active repressor, were highly expressed during non-inductive shade conditions and repressed during high light. The competitive inhibitor PhMYBx (R3-MYB) was expressed under high light, which may provide feedback repression. In floral tissues DPL regulates vein-associated anthocyanin pigmentation in the flower tube, while PHZ determines light-induced anthocyanin accumulation on exposed petal surfaces (bud-blush). A model is presented suggesting how complex floral and vegetative pigmentation patterns are derived in petunia in terms of MYB, bHLH and WDR co-regulators. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  13. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Chu, Hyosub; Jeong, Jae Cheol; Kim, Wook-Jin; Chung, Dong Min; Jeon, Hyo Kon; Ahn, Young Ock; Kim, Sun Ha; Lee, Haeng-Soon; Kwak, Sang-Soo; Kim, Cha Young

    2013-06-01

    R2R3-type MYB transcription factors (TFs) play important roles in transcriptional regulation of anthocyanins. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that transient expression of IbMYB1a led to anthocyanin pigmentation in tobacco leaves. In this article, we generated transgenic Arabidopsis plants expressing the IbMYB1a gene under the control of CaMV 35S promoter, and the sweetpotato SPO and SWPA2 promoters. Overexpression of IbMYBa in transgenic Arabidopsis produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems and seeds. Reverse transcription-polymerase chain reaction analysis showed that IbMYB1a expression induced upregulation of several structural genes in the anthocyanin biosynthetic pathway, including 4CL, CHI, F3'H, DFR, AGT, AAT and GST. Furthermore, overexpression of IbMYB1a led to enhanced expression of the AtTT8 (bHLH) and PAP1/AtMYB75 genes. high-performance liquid chromatography analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in Arabidopsis, as occurs in the purple leaves of sweetpotato (cv. Sinzami). This result shows that the IbMYB1a TF is sufficient to induce anthocyanin accumulation in seedlings, leaves, stems and seeds of Arabidopsis plants. Copyright © Physiologia Plantarum 2012.

  14. A R2R3-MYB Gene LfMYB113 is Responsible for Autumn Leaf Coloration in Formosan sweet gum (Liquidambar formosana Hance).

    Science.gov (United States)

    Wen, Chi-Hsiang; Chu, Fang-Hua

    2017-03-01

    The regulation of autumn leaf coloration in deciduous trees has long been an enigma. Due to the fact that different coloration phenotypes may be considered when planting, more understanding of the regulation mechanism is needed. In this study, a R2R3-MYB transcription factor gene LfMYB113 was identified from a subtropical deciduous tree species Formosan sweet gum (Liquidambar formosana Hance). The expression patterns of LfMYB113 in four selected phenotypes were different and were positively correlated with leaf anthocyanin content. In a 35S::LfMYB113 transgenic Nicotiana tabacum plant, both the early and late genes in the anthocyanin biosynthetic pathway were shown to be up-regulated. It was also shown that LfMYB113 can activate the promoter sequence of LfDFR1 and LfDFR2. Transient overexpression of LfMYB113 in Nicotiana benthamiana showed strong anthocyanin accumulation and pre-senescence; the latter was confirmed by up-regulation of senescence-associated genes. In addition, the activation of proLfSGR::YFP by LfMYB113 in transient experiments indicated that LfMYB113 may have a role in regulation of Chl degradation. To our knowledge, this is the first time a R2R3-MYB transcription factor has been functionally identified as one of the key regulators of autumn leaf coloration and autumn leaf senescence. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok; Hyun, Wooyoung; Nguyen, Hoai Nguyen; Jeong, Chanyoung; Xiong, Liming; Hong, Sukwhan; Lee, Hojoung

    2014-01-01

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  16. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok

    2014-08-27

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  17. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU).

    Science.gov (United States)

    Reddy, Vaishnavi Amarr; Wang, Qian; Dhar, Niha; Kumar, Nadimuthu; Venkatesh, Prasanna Nori; Rajan, Chakravarthy; Panicker, Deepa; Sridhar, Vishweshwaran; Mao, Hui-Zhu; Sarojam, Rajani

    2017-09-01

    Many aromatic plants, such as spearmint, produce valuable essential oils in specialized structures called peltate glandular trichomes (PGTs). Understanding the regulatory mechanisms behind the production of these important secondary metabolites will help design new approaches to engineer them. Here, we identified a PGT-specific R2R3-MYB gene, MsMYB, from comparative RNA-Seq data of spearmint and functionally characterized it. Analysis of MsMYB-RNAi transgenic lines showed increased levels of monoterpenes, and MsMYB-overexpressing lines exhibited decreased levels of monoterpenes. These results suggest that MsMYB is a novel negative regulator of monoterpene biosynthesis. Ectopic expression of MsMYB, in sweet basil and tobacco, perturbed sesquiterpene- and diterpene-derived metabolite production. In addition, we found that MsMYB binds to cis-elements of MsGPPS.LSU and suppresses its expression. Phylogenetic analysis placed MsMYB in subgroup 7 of R2R3-MYBs whose members govern phenylpropanoid pathway and are regulated by miR858. Analysis of transgenic lines showed that MsMYB is more specific to terpene biosynthesis as it did not affect metabolites derived from phenylpropanoid pathway. Further, our results indicate that MsMYB is probably not regulated by miR858, like other members of subgroup 7. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hamama Islam Butt

    Full Text Available Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.

  19. Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Qinlong Zhu

    Full Text Available Proanthocyanidins (PAs play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides, to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1 and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR and late anthocyanin structural genes (NtDFR and NtANS, but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering.

  20. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Heterologous expression of gentian MYB1R transcription factors suppresses anthocyanin pigmentation in tobacco flowers.

    Science.gov (United States)

    Nakatsuka, Takashi; Yamada, Eri; Saito, Misa; Fujita, Kohei; Nishihara, Masahiro

    2013-12-01

    Single-repeat MYB transcription factors, GtMYB1R1 and GtMYB1R9 , were isolated from gentian. Overexpression of these genes reduced anthocyanin accumulation in tobacco flowers, demonstrating their applicability to modification of flower color. RNA interference (RNAi) has recently been used to successfully modify flower color intensity in several plant species. In most floricultural plants, this technique requires prior isolation of target flavonoid biosynthetic genes from the same or closely related species. To overcome this limitation, we developed a simple and efficient method for reducing floral anthocyanin accumulation based on genetic engineering using novel transcription factor genes isolated from Japanese gentians. We identified two single-repeat MYB genes--GtMYB1R and GtMYB1R9--predominantly expressed in gentian petals. Transgenic tobacco plants expressing these genes were produced, and their flowers were analyzed for flavonoid components and expression of flavonoid biosynthetic genes. Transgenic tobacco plants expressing GtMYB1R1 or GtMYB1R9 exhibited significant reductions in floral anthocyanin accumulation, resulting in white-flowered phenotypes. Expression levels of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) genes were preferentially suppressed in these transgenic tobacco flowers. A yeast two-hybrid assay demonstrated that both GtMYB1R1 and GtMYB1R9 proteins interacted with the GtbHLH1 protein, previously identified as an anthocyanin biosynthesis regulator in gentian flowers. In addition, a transient expression assay indicated that activation of the gentian GtDFR promoter by the GtMYB3-GtbHLH1 complex was partly canceled by addition of GtMYB1R1 or GtMYB1R9. These results suggest that GtMYB1R1 and GtMYB1R9 act as antagonistic transcription factors of anthocyanin biosynthesis in gentian flowers. These genes should consequently be useful for manipulating anthocyanin accumulation via genetic engineering in

  2. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar.

    Science.gov (United States)

    Cho, Jin-Seong; Nguyen, Van Phap; Jeon, Hyung-Woo; Kim, Min-Ha; Eom, Seok Hyun; Lim, You Jin; Kim, Won-Chan; Park, Eung-Jun; Choi, Young-Im; Ko, Jae-Heung

    2016-09-01

    Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120

  3. Ectopic Expression of the Grape Hyacinth (Muscari armeniacum R2R3-MYB Transcription Factor Gene, MaAN2, Induces Anthocyanin Accumulation in Tobacco

    Directory of Open Access Journals (Sweden)

    Kaili Chen

    2017-06-01

    Full Text Available Anthocyanins are responsible for the different colors of ornamental plants. Grape hyacinth (Muscari armeniacum, a monocot plant with bulbous flowers, is popular for its fascinating blue color. In the present study, we functionally characterized an R2R3-MYB transcription factor gene MaAN2 from M. armeniacum. Our results indicated that MaAN2 participates in controlling anthocyanin biosynthesis. Sequence alignment and phylogenetic analysis suggested that MaAN2 belonged to the R2R3-MYB family AN2 subgroup. The anthocyanin accumulation of grape hyacinth flowers was positively correlated with the expression of MaAN2. And the transcriptional expression of MaAN2 was also consistent with that of M. armeniacum dihydroflavonol 4-reductase (MaDFR and M. armeniacum anthocyanidin synthase (MaANS in flowers. A dual luciferase transient expression assay indicated that when MaAN2 was co-inflitrated with Arabidopsis thaliana TRANSPARENT TESTA8 (AtTT8, it strongly activated the promoters of MaDFR and MaANS, but not the promoters of M. armeniacum chalcone synthase (MaCHS, M. armeniacum chalcone isomerase (MaCHI, and M. armeniacum flavanone 3-hydroxylase (MaF3H. Bimolecular fluorescence complementation assay confirmed that MaAN2 interacted with AtTT8 in vivo. The ectopic expression of MaAN2 in Nicotiana tabacum resulted in obvious red coloration of the leaves and much redder flowers. Almost all anthocyanin biosynthetic genes were remarkably upregulated in the leaves and flowers of the transgenic tobacco, and NtAn1a and NtAn1b (two basic helix–loop–helix anthocyanin regulatory genes were highly expressed in the transformed leaves, compared to the empty vector transformants. Collectively, our results suggest that MaAN2 plays a role in anthocyanin biosynthesis.

  4. dsRNA silencing of an R2R3-MYB transcription factor affects flower cell shape in a Dendrobium hybrid.

    Science.gov (United States)

    Lau, Su-Ee; Schwarzacher, Trude; Othman, Rofina Yasmin; Harikrishna, Jennifer Ann

    2015-08-11

    The R2R3-MYB genes regulate pigmentation and morphogenesis of flowers, including flower and cell shape, and therefore have importance in the development of new varieties of orchids. However, new variety development is limited by the long breeding time required in orchids. In this study, we identified a cDNA, DhMYB1, that is expressed during flower development in a hybrid orchid, Dendrobium hybrida (Dendrobium bobby messina X Dendrobium chao phraya) then used the direct application of dsRNA to observe the effect of gene silencing on flower phenotype and floral epidermal cell shape. Flower bud development in the Dendrobium hybrid was characterised into seven stages and the time of meiosis was determined as between stages 3 to 5 when the bud is approximately half of the mature size. Scanning electron microscopy characterisation of adaxial epidermal cells of the flower perianth, showed that the petals and sepals each are divided into two distinct domains based on cell shape and size, while the labellum comprises seven domains. Thirty-two partial cDNA fragments representing R2R3-MYB gene sequences were isolated from D. hybrida. Phylogenetic analysis revealed that nine of the translated sequences were clustered with MYB sequences that are known to be involved in cell shape development and from these, DhMYB1 was selected for full length cDNA cloning and functional study. Direct application of a 430 bp dsRNA from the 3' region of DhMYB1 to emerging orchid flower buds reduced expression of DhMYB1 RNA compared with untreated control. Scanning electron microscopy of adaxial epidermal cells within domain one of the labellum of flowers treated with DhMYB1 dsRNA showed flattened epidermal cells whilst those of control flowers were conical. DhMYB1 is expressed throughout flower bud development and is involved in the development of the conical cell shape of the epidermal cells of the Dendrobium hybrida flower labellum. The direct application of dsRNA changed the phenotype of

  5. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development.

    Science.gov (United States)

    Vimolmangkang, Sornkanok; Han, Yuepeng; Wei, Guochao; Korban, Schuyler S

    2013-11-07

    Red coloration of fruit is an important trait in apple, and it is mainly attributed to the accumulation of anthocyanins, a class of plant flavonoid metabolites. Anthocyanin biosynthesis is genetically determined by structural and regulatory genes. Plant tissue pigmentation patterns are mainly controlled by expression profiles of regulatory genes. Among these regulatory genes are MYB transcription factors (TFs), wherein the class of two-repeats (R2R3) is deemed the largest, and these are associated with the anthocyanin biosynthesis pathway. Although three MdMYB genes, almost identical in nucleotide sequences, have been identified in apple, it is likely that there are other R2R3 MYB TFs that are present in the apple genome that are also involved in the regulation of coloration of red color pigmentation of the skin of apple fruits. In this study, a novel R2R3 MYB gene has been isolated and characterized in apple. This MYB gene is closely related to the Arabidopsis thaliana AtMYB3, and has been designated as MdMYB3. This TF belongs to the subgroup 4 R2R3 family of plant MYB transcription factors. This apple MdMYB3 gene is mapped onto linkage group 15 of the integrated apple genetic map. Transcripts of MdMYB3 are detected in all analyzed tissues including leaves, flowers, and fruits. However, transcripts of MdMYB3 are higher in excocarp of red-skinned apple cultivars than that in yellowish-green skinned apple cultivars. When this gene is ectopically expressed in Nicotiana tabacum cv. Petite Havana SR1, flowers of transgenic tobacco lines carrying MdMYB3 have exhibited increased pigmentation and accumulate higher levels of anthocyanins and flavonols than wild-type flowers. Overexpression of MdMYB3 has resulted in transcriptional activation of several flavonoid pathway genes, including CHS, CHI, UFGT, and FLS. Moreover, peduncles of flowers and styles of pistils of transgenic plants overexpressing MdMYB3 are longer than those of wild-type plants, thus suggesting that this

  6. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates.

    Directory of Open Access Journals (Sweden)

    Ida Elken Sønderby

    Full Text Available BACKGROUND: Glucosinolates are natural metabolites in the order Brassicales that defend plants against both herbivores and pathogens and can attract specialized insects. Knowledge about the genes controlling glucosinolate regulation is limited. Here, we identify three R2R3 MYB transcription factors regulating aliphatic glucosinolate biosynthesis in Arabidopsis by combining several systems biology tools. METHODOLOGY/PRINCIPAL FINDINGS: MYB28 was identified as a candidate regulator of aliphatic glucosinolates based on its co-localization within a genomic region controlling variation both in aliphatic glucosinolate content (metabolite QTL and in transcript level for genes involved in the biosynthesis of aliphatic glucosinolates (expression QTL, as well as its co-expression with genes in aliphatic glucosinolate biosynthesis. A phylogenetic analysis with the R2R3 motif of MYB28 showed that it and two homologues, MYB29 and MYB76, were members of an Arabidopsis-specific clade that included three characterized regulators of indole glucosinolates. Over-expression of the individual MYB genes showed that they all had the capacity to increase the production of aliphatic glucosinolates in leaves and seeds and induce gene expression of aliphatic biosynthetic genes within leaves. Analysis of leaves and seeds of single knockout mutants showed that mutants of MYB29 and MYB76 have reductions in only short-chained aliphatic glucosinolates whereas a mutant in MYB28 has reductions in both short- and long-chained aliphatic glucosinolates. Furthermore, analysis of a double knockout in MYB28 and MYB29 identified an emergent property of the system since the absence of aliphatic glucosinolates in these plants could not be predicted by the chemotype of the single knockouts. CONCLUSIONS/SIGNIFICANCE: It seems that these cruciferous-specific MYB regulatory genes have evolved both overlapping and specific regulatory capacities. This provides a unique system within which to

  7. A Wheat R2R3-type MYB Transcription Factor TaODORANT1 Positively Regulates Drought and Salt Stress Responses in Transgenic Tobacco Plants

    Directory of Open Access Journals (Sweden)

    Qiuhui Wei

    2017-08-01

    Full Text Available MYB transcription factors play important roles in plant responses to biotic and abiotic stress. In this study, TaODORANT1, a R2R3-MYB gene, was cloned from wheat (Triticum aestivum L.. TaODORANT1 was localized in the nucleus and functioned as a transcriptional activator. TaODORANT1 was up-regulated in wheat under PEG6000, NaCl, ABA, and H2O2 treatments. TaODORANT1-overexpressing transgenic tobacco plants exhibited higher relative water content and lower water loss rate under drought stress, as well as lower Na+ accumulation in leaves under salt stress. The transgenic plants showed higher CAT activity but lower ion leakage, H2O2 and malondialdehyde contents under drought and salt stresses. Besides, the transgenic plants also exhibited higher SOD activity under drought stress. Our results also revealed that TaODORANT1 overexpression up-regulated the expression of several ROS- and stress-related genes in response to both drought and salt stresses, thus enhancing transgenic tobacco plants tolerance. Our studies demonstrate that TaODORANT1 positively regulates plant tolerance to drought and salt stresses.

  8. Metabolic and molecular analyses of white mutant Vaccinium berries show down-regulation of MYBPA1-type R2R3 MYB regulatory factor.

    Science.gov (United States)

    Primetta, Anja K; Karppinen, Katja; Riihinen, Kaisu R; Jaakola, Laura

    2015-09-01

    MYBPA1-type R2R3 MYB transcription factor shows down-regulation in white mutant berries of Vaccinium uliginosum deficient in anthocyanins but not proanthocyanidins suggesting a role in the regulation of anthocyanin biosynthesis. Berries of the genus Vaccinium are among the best natural sources of flavonoids. In this study, the expression of structural and regulatory flavonoid biosynthetic genes and the accumulation of flavonoids in white mutant and blue-colored wild-type bog bilberry (V. uliginosum) fruits were measured at different stages of berry development. In contrast to high contents of anthocyanins in ripe blue-colored berries, only traces were detected by HPLC-ESI-MS in ripe white mutant berries. However, similar profile and high levels of flavonol glycosides and proanthocyanidins were quantified in both ripe white and ripe wild-type berries. Analysis with qRT-PCR showed strong down-regulation of structural genes chalcone synthase (VuCHS), dihydroflavonol 4-reductase (VuDFR) and anthocyanidin synthase (VuANS) as well as MYBPA1-type transcription factor VuMYBPA1 in white berries during ripening compared to wild-type berries. The profiles of transcript accumulation of chalcone isomerase (VuCHI), anthocyanidin reductase (VuANR), leucoanthocyanidin reductase (VuLAR) and flavonoid 3'5' hydroxylase (VuF3'5'H) were more similar between the white and the wild-type berries during fruit development, while expression of UDP-glucose: flavonoid 3-O-glucosyltransferase (VuUFGT) showed similar trend but fourfold lower level in white mutant. VuMYBPA1, the R2R3 MYB family member, is a homologue of VmMYB2 of V. myrtillus and VcMYBPA1 of V. corymbosum and belongs to MYBPA1-type MYB family which members are shown in some species to be related with proanthocyanidin biosynthesis in fruits. Our results combined with earlier data of the role of VmMYB2 in white mutant berries of V. myrtillus suggest that the regulation of anthocyanin biosynthesis in Vaccinium species could differ

  9. A single amino acid change within the R2 domain of the VvMYB5b transcription factor modulates affinity for protein partners and target promoters selectivity

    Directory of Open Access Journals (Sweden)

    Granier Thierry

    2011-08-01

    Full Text Available Abstract Background Flavonoid pathway is spatially and temporally controlled during plant development and the transcriptional regulation of the structural genes is mostly orchestrated by a ternary protein complex that involves three classes of transcription factors (R2-R3-MYB, bHLH and WDR. In grapevine (Vitis vinifera L., several MYB transcription factors have been identified but the interactions with their putative bHLH partners to regulate specific branches of the flavonoid pathway are still poorly understood. Results In this work, we describe the effects of a single amino acid substitution (R69L located in the R2 domain of VvMYB5b and predicted to affect the formation of a salt bridge within the protein. The activity of the mutated protein (name VvMYB5bL, the native protein being referred as VvMYB5bR was assessed in different in vivo systems: yeast, grape cell suspensions, and tobacco. In the first two systems, VvMYB5bL exhibited a modified trans-activation capability. Moreover, using yeast two-hybrid assay, we demonstrated that modification of VvMYB5b transcriptional properties impaired its ability to correctly interact with VvMYC1, a grape bHLH protein. These results were further substantiated by overexpression of VvMYB5bR and VvMYB5bL genes in tobacco. Flowers from 35S::VvMYB5bL transgenic plants showed a distinct phenotype in comparison with 35S::VvMYB5bR and the control plants. Finally, significant differences in transcript abundance of flavonoid metabolism genes were observed along with variations in pigments accumulation. Conclusions Taken together, our findings indicate that VvMYB5bL is still able to bind DNA but the structural consequences linked to the mutation affect the capacity of the protein to activate the transcription of some flavonoid genes by modifying the interaction with its co-partner(s. In addition, this study underlines the importance of an internal salt bridge for protein conformation and thus for the establishment

  10. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Science.gov (United States)

    Matus, José Tomás; Aquea, Felipe; Arce-Johnson, Patricio

    2008-01-01

    Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions. PMID:18647406

  11. The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine1

    Science.gov (United States)

    Cavallini, Erika; Matus, José Tomás; Finezzo, Laura; Zenoni, Sara; Loyola, Rodrigo; Guzzo, Flavia; Schlechter, Rudolf; Ageorges, Agnès; Arce-Johnson, Patricio

    2015-01-01

    Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of

  12. Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Gan Lijun

    2011-12-01

    Full Text Available Abstract Background Single-repeat R3 MYB transcription factors (single-repeat MYBs play important roles in controlling trichome patterning in Arabidopsis. It was proposed that single-repeat MYBs negatively regulate trichome formation by competing with GLABRA1 (GL1 for binding GLABRA3/ENHANCER OF GLABRA3 (GL3/EGL3, thus inhibiting the formation of activator complex TTG1(TRANSPARENT TESTA GLABRA1-GL3/EGL3-GL1 that is required for the activation of GLABRA2 (GL2, whose product is a positive regulator of trichome formation. Previously we identified a novel single-repeat MYB transcription factor, TRICHOMELESS1 (TCL1, which negatively regulates trichome formation on the inflorescence stems and pedicels by directly suppressing the expression of GL1. Results We analyzed here the role of TRICHOMELESS2 (TCL2, a previously-uncharacterized single-repeat MYB transcription factor in trichome patterning in Arabidopsis. We showed that TCL2 is closely related to TCL1, and like TCL1 and other single-repeat MYBs, TCL2 interacts with GL3. Overexpression of TCL2 conferred glabrous phenotype while knockdown of TCL2 via RNAi induced ectopic trichome formation on the inflorescence stems and pedicels, a phenotype that was previously observed in tcl1 mutants. These results suggested that TCL2 may have overlapping function with TCL1 in controlling trichome formation on inflorescences. On the other hand, although the transcription of TCL2, like TCL1, is not controlled by the activator complex formed by GL1 and GL3, and TCL2 and TCL1 proteins are more than 80% identical at the amino acid level, the expression of TCL2 under the control of TCL1 promoter only partially recovered the mutant phenotype of tcl1, implying that TCL2 and TCL1 are not fully functional equivalent. Conclusions TCL2 function redundantly with TCL1 in controlling trichome formation on inflorescences, but they are not fully functional equivalent. Transcription of TCL2 is not controlled by activator complex

  13. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    International Nuclear Information System (INIS)

    Zhai, Hong; Bai, Xi; Zhu, Yanming; Li, Yong; Cai, Hua; Ji, Wei; Ji, Zuojun; Liu, Xiaofei; Liu, Xin; Li, Jing

    2010-01-01

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven β-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  14. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Directory of Open Access Journals (Sweden)

    Arce-Johnson Patricio

    2008-07-01

    Full Text Available Abstract Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions.

  15. Comparative transcriptome analysis of oil palm flowers reveals an EAR-motif-containing R2R3-MYB that modulates phenylpropene biosynthesis.

    Science.gov (United States)

    Li, Ran; Reddy, Vaishnavi Amarr; Jin, Jingjing; Rajan, Chakaravarthy; Wang, Qian; Yue, Genhua; Lim, Chin Huat; Chua, Nam-Hai; Ye, Jian; Sarojam, Rajani

    2017-11-23

    Oil palm is the most productive oil crop and the efficiency of pollination has a direct impact on the yield of oil. Pollination by wind can occur but maximal pollination is mediated by the weevil E. kamerunicus. These weevils complete their life cycle by feeding on male flowers. Attraction of weevils to oil palm flowers is due to the emission of methylchavicol by both male and female flowers. In search for male flowers, the weevils visit female flowers by accident due to methylchavicol fragrance and deposit pollen. Given the importance of methylchavicol emission on pollination, we performed comparative transcriptome analysis of oil palm flowers and leaves to identify candidate genes involved in methylchavicol production in flowers. RNA sequencing (RNA-Seq) of male open flowers, female open flowers and leaves was performed using Illumina HiSeq 2000 platform. Analysis of the transcriptome data revealed that the transcripts of methylchavicol biosynthesis genes were strongly up-regulated whereas transcripts encoding genes involved in lignin production such as, caffeic acid O-methyltransferase (COMT) and Ferulate-5-hydroxylase (F5H) were found to be suppressed in oil palm flowers. Among the transcripts encoding transcription factors, an EAR-motif-containing R2R3-MYB transcription factor (EgMYB4) was found to be enriched in oil palm flowers. We determined that EgMYB4 can suppress the expression of a monolignol pathway gene, EgCOMT, in vivo by binding to the AC elements present in the promoter region. EgMYB4 was further functionally characterized in sweet basil which also produces phenylpropenes like oil palm. Transgenic sweet basil plants showed significant reduction in lignin content but produced more phenylpropenes. Our results suggest that EgMYB4 possibly restrains lignin biosynthesis in oil palm flowers thus allowing enhanced carbon flux into the phenylpropene pathway. This study augments our understanding of the diverse roles that EAR-motif-containing MYBs play to

  16. Identification of transcription factors ZmMYB111and ZmMYB148 involved in phenylpropanoid metabolism

    Directory of Open Access Journals (Sweden)

    Junjie eZhang

    2016-02-01

    Full Text Available Maize is the leading crop worldwide in terms of both planting area and total yields, but environmental stresses cause significant losses in productivity. Phenylpropanoid compounds play an important role in plant stress resistance; however, the mechanism of their synthesis is not fully understood, especially in regard to the expression and regulation of key genes. Phenylalanine ammonia-lyase (PAL is the first key enzyme involved in phenylpropanoid metabolism, and it has a significant effect on the synthesis of important phenylpropanoid compounds. According to the results of sequence alignments and functional prediction, we selected two conserved R2R3-MYB transcription factors as candidate genes for the regulation of phenylpropanoid metabolism. The two candidate R2R3-MYB genes, which we named ZmMYB111and ZmMYB148, were cloned, and then their structural characteristics and phylogenetic placement were predicted and analyzed. In addition, a series of evaluations were performed, including expression profiles, subcellular localization, transcription activation, protein-DNA interaction, and transient expression in maize endosperm. Our results indicated that both ZmMYB111 and ZmMYB148 are indeed R2R3-MYB transcription factors and that they may play a regulatory role in PAL gene expression.

  17. A chimeric repressor of petunia PH4 R2R3-MYB family transcription factor generates margined flowers in torenia.

    Science.gov (United States)

    Kasajima, Ichiro; Sasaki, Katsutomo

    2016-05-03

    The development of new phenotypes is key to the commercial development of the main floricultural species and cultivars. Important new phenotypes include features such as multiple-flowers, color variations, increased flower size, new petal shapes, variegation and distinctive petal margin colourations. Although their commercial use is not yet common, the transgenic technologies provide a potentially rapid means of generating interesting new phenotypes. In this report, we construct 5 vectors which we expected to change the color of the flower anthocyanins, from purple to blue, regulating vacuolar pH. When these constructs were transformed into purple torenia, we unexpectedly recovered some genotypes having slightly margined petals. These transgenic lines expressed a chimeric repressor of the petunia PhPH4 gene under the control of Cauliflower mosaic virus 35 S RNA promoter. PhPH4 is an R2R3-type MYB transcription factor. The transgenic lines lacked pigmentation in the petal margin cells both on the adaxial and abaxial surfaces. Expressions of Flavanone 3-hydroxylase (F3H), Flavonoid 3'-hydroxylase (F3'H) and Flavonoid 3'5'-hydroxylase (F3'5'H) genes were reduced in the margins of these transgenic lines, suggesting an inhibitory effect of PhPH4 repressor on anthocyanin synthesis.

  18. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis.

    Science.gov (United States)

    Zhu, Hui-Fen; Fitzsimmons, Karen; Khandelwal, Abha; Kranz, Robert G

    2009-07-01

    Single-repeat R3 MYB transcription factors like CPC (CAPRICE) are known to play roles in developmental processes such as root hair differentiation and trichome initiation. However, none of the six Arabidopsis single-repeat R3 MYB members has been reported to regulate flavonoid biosynthesis. We show here that CPC is a negative regulator of anthocyanin biosynthesis. In the process of using CPC to test GAL4-dependent driver lines, we observed a repression of anthocyanin synthesis upon GAL4-mediated CPC overexpression. We demonstrated that this is not due to an increase in nutrient uptake because of more root hairs. Rather, CPC expression level tightly controls anthocyanin accumulation. Microarray analysis on the whole genome showed that, of 37 000 features tested, 85 genes are repressed greater than three-fold by CPC overexpression. Of these 85, seven are late anthocyanin biosynthesis genes. Also, anthocyanin synthesis genes were shown to be down-regulated in 35S::CPC overexpression plants. Transient expression results suggest that CPC competes with the R2R3-MYB transcription factor PAP1/2, which is an activator of anthocyanin biosynthesis genes. This report adds anthocyanin biosynthesis to the set of programs that are under CPC control, indicating that this regulator is not only for developmental programs (e.g. root hairs, trichomes), but can influence anthocyanin pigment synthesis.

  19. A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Li, Meng-Jun; Qiao, Yu; Li, Ya-Qing; Shi, Zhan-Liang; Zhang, Nan; Bi, Cai-Li; Guo, Jin-Kao

    2016-11-01

    We isolated the TaMYBsm1 genes, encoding R2R3-type MYB proteins in common wheat, aimed to uncover the possible molecular mechanisms related to drought response. The TaMYBsm1 genes, TaMYBsm1-A, TaMYBsm1-B and TaMYBsm1-D, were isolated and analyzed from the common wheat cultivar Shimai 15. Their expression patterns under PEG 6000 and mannitol were monitored by semi-quantitative RT-PCR and β-glucuronidase (Gus) assay. The function of TaMYBsm1-D under drought stress in transgenic Arabidopsis plants was investigated, and the germination rate, water loss rate, as well as the proline and malondialdehyde (MDA) content were compared with that in wild type (WT) plants. The expression of three downstream genes (DREB2A, P5CS1 and RD29A) in TaMYBsm1-D transgenic plants was analyzed. The R2R3-MYB domains of the MYBsm1 proteins were highly conserved in plants. In addition, the TaMYBsm1 proteins were targeted to the nucleus and contained transcriptional activation domains (TADs). Gus assay and semi-quantitative RT-PCR analysis demonstrated that the TaMYBsm1 genes were up-regulated when the wheat was treated by PEG and mannitol. Compared with WT plants, the germination rates were much higher, but the water loss rates were much lower in TaMYBsm1-D overexpression plants. TaMYBsm1-D transgenic plants showed distinct higher proline contents but a lower MDA content than the WT plants. The three downstream genes were highly expressed in TaMYBsm1-D transgenic plants. We concluded from these results that TaMYBsm1 genes play an important role in plant drought stress tolerance through up-regulation of DREB2A, P5CS1 and RD29A. The increase of proline content and decrease of MDA content may also be involved in the drought response.

  20. Primary root growth in Arabidopsis thaliana is inhibited by the miR159 mediated repression of MYB33, MYB65 and MYB101.

    Science.gov (United States)

    Xue, Tao; Liu, Zhenhua; Dai, Xuehuan; Xiang, Fengning

    2017-09-01

    Organ growth is a fundamental developmental process basing on cell proliferation and differentiation. The growth of the plant root is sustained by the activity of the root meristem, a process controlled in part by various transcription factors. Here, the miR159 has been identified as a post transcriptional repressor of root growth, on the basis that the mir159ab double mutant developed a larger meristem than did the wild type, and that it formed longer roots. In the mutant, the abundance of MYB33, MYB65 and MYB101 transcript was substantially increased. When MYB33, MYB65 and MYB101 were replaced by the miR159-resistant forms mMYB33, mMYB65 and mMYB101 respectively, the root meristem was similarly enlarged and the growth of the primary root enhanced. MYB65 activity promoted cell division in the root meristem by accelerating the cell cycle. The data suggest that miR159 acts as a key repressor of the primary root's growth, acting through its repression of MYB65 and consequent blocking of the cell cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.

    Science.gov (United States)

    Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An

    2017-02-01

    Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling

  2. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato.

    Science.gov (United States)

    Meng, Xia; Wang, Jie-Ru; Wang, Guo-Dong; Liang, Xiao-Qing; Li, Xiao-Dong; Meng, Qing-Wei

    2015-03-01

    LeAN2 is an anthocyanin-associated R2R3-MYB transcription factor, but little is known about its function in imparting thermo-tolerance to higher plants. To examine the function of LeAN2 in the regulation of heat stress in tomato, LeAN2 was isolated and transgenic tomato plants were obtained. Overexpression of LeAN2 under the control of the CaMV35S promoter in tomato induced the up-regulation of several structural genes in the anthocyanin biosynthetic pathway as well as anthocyanin accumulation in transgenic tomato plants. Transgenic tomato plants showed enhanced tolerance to heat stress by maintaining higher fresh weight (FW), net photosynthetic rate (Pn) and maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with wild-type (WT) plants. Furthermore, transgenic plants showed higher non-enzymatic antioxidant activity, lower levels of reactive oxygen species (ROS), and higher contents of D1 protein than that in WT plants under heat stress. These results indicate that LeAN2 had an important function in heat stress resistance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.

    Directory of Open Access Journals (Sweden)

    Matoušek Jaroslav

    2012-02-01

    Full Text Available Abstract Background Lupulin glands of hop produce a specific metabolome including hop bitter acids valuable for the brewing process and prenylflavonoids with promising health-beneficial activities. The detailed analysis of the transcription factor (TF-mediated regulation of the oligofamily of one of the key enzymes, i.e., chalcone synthase CHS_H1 that efficiently catalyzes the production of naringenin chalcone, a direct precursor of prenylflavonoids in hop, constitutes an important part of the dissection of the biosynthetic pathways leading to the accumulation of these compounds. Results Homologues of flavonoid-regulating TFs HlMyb2 (M2, HlbHLH2 (B2 and HlWDR1 (W1 from hop were cloned using a lupulin gland-specific cDNA library from the hop variety Osvald's 72. Using a "combinatorial" transient GUS expression system it was shown that these unique lupulin-gland-associated TFs significantly activated the promoter (P of chs_H1 in ternary combinations of B2, W1 and either M2 or the previously characterized HlMyb3 (M3. The promoter activation was strongly dependent on the Myb-P binding box TCCTACC having a core sequence CCWACC positioned on its 5' end region and it seems that the complexity of the promoter plays an important role. M2B2W1-mediated activation significantly exceeded the strength of expression of native chs_H1 gene driven by the 35S promoter of CaMV, while M3B2W1 resulted in 30% of the 35S:chs_H1 expression level, as quantified by real-time PCR. Another newly cloned hop TF, HlMyb7, containing a transcriptional repressor-like motif pdLNLD/ELxiG/S (PDLNLELRIS, was identified as an efficient inhibitor of chs_H1-activating TFs. Comparative analyses of hop and A. thaliana TFs revealed a complex activation of Pchs_H1 and Pchs4 in combinatorial or independent manners. Conclusions This study on the sequences and functions of various lupulin gland-specific transcription factors provides insight into the complex character of the regulation of the

  4. Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans.

    Science.gov (United States)

    Xiang, Qijun; Judelson, Howard S

    2014-01-01

    Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision.

  5. Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans.

    Directory of Open Access Journals (Sweden)

    Qijun Xiang

    Full Text Available Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision.

  6. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  7. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    Science.gov (United States)

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers. © 2014 Scandinavian Plant Physiology Society.

  8. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2017-09-01

    Full Text Available MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit.

  9. Identification and Characterization of the Diverse Stress-Responsive R2R3-RMYB Transcription Factor from Hibiscus sabdariffa L.

    Science.gov (United States)

    Mohamed, Bahaeldeen Babikar; Aftab, Beenish; Sarwar, Muhammad Bilal; Ahmad, Zarnab; Hassan, Sameera; Husnain, Tayyab

    2017-01-01

    Various regulatory proteins play a fundamental role to manage the healthy plant growth under stress conditions. Differential display reverse transcriptase PCR and random amplification of cDNA ends (RACE) was used to explore the osmotic stress-responsive transcripts. We identified and characterized the salt stress-responsive R2R3 type RMYB transcription factor from Hibiscus sabdariffa which has an open reading frame of 690 bp, encoding 229 long chain amino acids. In silico analysis confirmed the conserved R2 and R3 domain as well as an NLS-1 localization site. The deduced amino acids of RMYB shared 83, 81, 80, 79, 72, 71, and 66% homology with Arabidopsis thaliana, Glycine max, Oryza sativa, Zea maize, Malus domestica, Populus tremula × Populus alba, and Medicago sativa specific MYB family, respectively. We observed the gene upregulation in stem, leaf, and root tissue in response to abiotic stress. Furthermore, RMYB gene was cloned into plant expression vector under CaMV35S promoter and transformed to Gossypium hirsutum: a local cotton cultivar. Overexpression of RMYB was observed in transgenic plants under abiotic stresses which further suggests its regulatory role in response to stressful conditions. The RMYB transcription factor-overexpressing in transgenic cotton plants may be used as potential agent for the development of stress tolerant crop cultivars. PMID:29181384

  10. TaMYB13-1, a R2R3 MYB transcription factor, regulates the fructan synthetic pathway and contributes to enhanced fructan accumulation in bread wheat

    Science.gov (United States)

    Kooiker, Maarten; Drenth, Janneke; Glassop, Donna; McIntyre, C. Lynne; Xue, Gang-Ping

    2013-01-01

    Fructans are the major component of temporary carbon reserve in the stem of temperate cereals, which is used for grain filling. Three families of fructosyltransferases are directly involved in fructan synthesis in the vacuole of Triticum aestivum. The regulatory network of the fructan synthetic pathway is largely unknown. Recently, a sucrose-upregulated wheat MYB transcription factor (TaMYB13-1) was shown to be capable of activating the promoter activities of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in transient transactivation assays. This work investigated TaMYB13-1 target genes and their influence on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression resulted in upregulation of all three families of fructosyltransferases including fructan:fructan 1-fructosyltransferase (1-FFT). A γ-vacuolar processing enzyme (γ-VPE1), potentially involved in processing the maturation of fructosyltransferases in the vacuole, was also upregulated by TaMYB13-1 overexpression. Multiple TaMYB13 DNA-binding motifs were identified in the Ta1-FFT1 and Taγ-VPE1 promoters and were bound strongly by TaMYB13-1. The expression profiles of these target genes and TaMYB13-1 were highly correlated in recombinant inbred lines and during stem development as well as the transgenic and non-transgenic wheat dataset, further supporting a direct regulation of these genes by TaMYB13-1. TaMYB13-1 overexpression in wheat led to enhanced fructan accumulation in the leaves and stems and also increased spike weight and grain weight per spike in transgenic plants under water-limited conditions. These data suggest that TaMYB13-1 plays an important role in coordinated upregulation of genes necessary for fructan synthesis and can be used as a molecular tool to improve the high fructan trait. PMID:23873993

  11. Three R2R3 MYB transcription factor genes from Capsicum annuum ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... between plants and microbes, and in male fertility of some species .... (Gerbera hybrid, CAD87010), AmROSEA1 (Antirrhinum majus,ABB83826), ..... MYB26 results in male sterility due to non-dehiscent anthers. Plant J.

  12. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia.

    Science.gov (United States)

    Spitzer-Rimon, Ben; Farhi, Moran; Albo, Boaz; Cna'ani, Alon; Ben Zvi, Michal Moyal; Masci, Tania; Edelbaum, Orit; Yu, Yixun; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander

    2012-12-01

    Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB-like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI's wide-ranging involvement in the production of floral volatiles.

  13. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    Science.gov (United States)

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.

    Science.gov (United States)

    Qin, Yuxiang; Wang, Mengcheng; Tian, Yanchen; He, Wenxing; Han, Lu; Xia, Guangmin

    2012-06-01

    Salt and drought stresses often adversely affect plant growth and productivity, MYB transcription factors have been shown to participate in the response to these stresses. Here we identified a new R2R3-type MYB transcription factor gene TaMYB33 from wheat (Triticum aestivum). TaMYB33 was induced by NaCl, PEG and ABA treatments, and its promoter sequence contains putative ABRE, MYB and other abiotic stress related cis-elements. Ectopic over-expression of TaMYB33 in Arabidopsis thaliana remarkably enhanced its tolerance to drought and NaCl stresses, but not to LiCl and KCl treatments. The expressions of AtP5CS and AtZAT12 which mirror the activities of proline and ascorbate peroxidase synthesis respectively were induced in TaMYB33 over-expression lines, indicating TaMYB33 promotes the ability for osmotic pressure balance-reconstruction and reactive oxidative species (ROS) scavenging. The up-regulation of AtAAO3 along with down-regulation of AtABF3, AtABI1 in TaMYB33 over-expression lines indicated that ABA synthesis was elevated while its signaling was restricted. These results suggest that TaMYB33 enhances salt and drought tolerance partially through superior ability for osmotic balance reconstruction and ROS detoxification.

  15. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots.

    Science.gov (United States)

    Xu, Zhi-Sheng; Feng, Kai; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2017-03-27

    Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic analysis, DcMYB6 was grouped into an anthocyanin biosynthesis-related MYB clade. Sequence analyses revealed that DcMYB6 contained the conserved bHLH-interaction motif and two atypical motifs of anthocyanin regulators. The expression pattern of DcMYB6 was correlated with anthocyanin production. DcMYB6 transcripts were detected at high levels in three purple carrot cultivars but at much lower levels in six non-purple carrot cultivars. Overexpression of DcMYB6 in Arabidopsis led to enhanced anthocyanin accumulation in both vegetative and reproductive tissues and upregulated transcript levels of all seven tested anthocyanin-related structural genes. Together, these results show that DcMYB6 is involved in regulating anthocyanin biosynthesis in purple carrots. Our results provide new insights into the regulation of anthocyanin synthesis in purple carrot cultivars.

  16. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple

    OpenAIRE

    Tian, Ji; Zhang, Jie; Han, Zhen-yun; Song, Ting-ting; Li, Jin-yan; Wang, Ya-ru; Yao, Yun-cong

    2017-01-01

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to th...

  17. Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R.

    Directory of Open Access Journals (Sweden)

    Lulu Farhana

    Full Text Available MicroRNAs have been implicated in many critical cellular processes including apoptosis. We have previously found that apoptosis in pancreatic cancer cells was induced by adamantyl retinoid-related (ARR molecule 3-Cl-AHPC. Here we report that 3-Cl-AHPC-dependent apoptosis involves regulating a number of microRNAs including miR-150* and miR-630. 3-Cl-AHPC stimulated miR-150* expression and caused decreased expression of c-Myb and IGF-1R in the pancreatic cancer cells. 3-Cl-AHPC-mediated reduction of c-Myb resulted in diminished binding of c-Myb with IGF-1R and Bcl-2 promoters, thereby causing repression of their transcription and protein expression. Over-expression of miR-150* also resulted in diminished levels of c-Myb and Bcl-2 proteins. Furthermore, the addition of the miRNA inhibitor 2'-O-methylated miR-150 blocked 3-Cl-AHPC-mediated increase in miR-150* levels and abrogated loss of c-Myb protein. Knockdown of c-Myb in PANC-1 cells resulted in enhanced apoptosis both in the presence or absence of 3-Cl-AHPC confirming the anti-apoptotic property of c-Myb. Overexpression of miR-630 also induced apoptosis in the pancreatic cancer cells and inhibited target protein IGF-1R mRNA and protein expression. Together these results implicate key roles for miR-150* and miR-630 and their targeting of IGF-1R to promote apoptosis in pancreatic cancer cells.

  18. [MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress].

    Science.gov (United States)

    Ding, Qing Qian; Wang, Xiao Ting; Hu, Li Qin; Qi, Xin; Ge, Lin Hao; Xu, Wei Ya; Xu, Zhao Shi; Zhou, Yong Bin; Jia, Guan Qing; Diao, Xian Min; Min, Dong Hong; Ma, You Zhi; Chen, Ming

    2018-04-20

    Myeloblastosis (MYB) transcription factors are one of the largest families of transcription factors in higher plants. They play an important role in plant development, defense response processes, and non-biological stresses, i.e., drought stress. Foxtail millet (Setaria italica L.), originated in China, is resistant to drought and low nutrition stresses and has been regarded as an ideal material for studying abiotic stress resistance in monocotyledon. In this study, we ran a transcription profile analysis of zheng 204 under low-nitrogen conditions and identified a MYB-like transcription factor SiMYB42, which was up-regulated under low-nitrogen stress. Phylogenetic tree analysis showed that SiMYB42 belongs to R2R3-MYB subfamily and has two MYB conserved domains. Expression pattern analysis showed that SiMYB42 was significantly up-regulated under various stress conditions, including low-nitrogen stress, high salt, drought and ABA conditions. The results of subcellular localization, quantitative real-time PCR and transcriptional activation analysis indicated that SiMYB42 protein localizes to the nucleus and cell membrane of plant cells, mainly expressed in the leaf or root of foxtail millet, and has transcription activation activity. Functional analysis showed that there was no significant difference between transgenic SiMYB42 Arabidopsis and wild-type (WT) Arabidopsis under normal conditions; however, under low-nitrogen condition, the root length, surface area and seedling fresh weight in transgenic SiMYB42 Arabidopsis, were significantly higher than their counterparts in WT. These results suggest that SiMYB42 transgenic plants exhibit higher tolerance to low-nitrogen stress. Expression levels of nitrate transporters genes NRT2.1, NRT2.4 and NRT2.5, which are the transcriptional targets of SiMYB42, were higher in transgenic SiMYB42 Arabidopsis plants than those in WT; the promoter regions of NRT2.1, NRT2.4 and NRT2.5 all have MYB binding sites. These results indicate

  19. Functional Characterization of Tea (Camellia sinensis MYB4a Transcription Factor Using an Integrative Approach

    Directory of Open Access Journals (Sweden)

    Mingzhuo Li

    2017-06-01

    Full Text Available Green tea (Camellia sinensis, Cs abundantly produces a diverse array of phenylpropanoid compounds benefiting human health. To date, the regulation of the phenylpropanoid biosynthesis in tea remains to be investigated. Here, we report a cDNA isolated from leaf tissues, which encodes a R2R3-MYB transcription factor. Amino acid sequence alignment and phylogenetic analysis indicate that it is a member of the MYB4-subgroup and named as CsMYB4a. Transcriptional and metabolic analyses show that the expression profile of CsMYB4a is negatively correlated to the accumulation of six flavan-3-ols and other phenolic acids. GFP fusion analysis shows CsMYB4a’s localization in the nucleus. Promoters of five tea phenylpropanoid pathway genes are isolated and characterized to contain four types of AC-elements, which are targets of MYB4 members. Interaction of CsMYB4a and five promoters shows that CsMYB4a decreases all five promoters’ activity. To further characterize its function, CsMYB4a is overexpressed in tobacco plants. The resulting transgenic plants show dwarf, shrinking and yellowish leaf, and early senescence phenotypes. A further genome-wide transcriptomic analysis reveals that the expression levels of 20 tobacco genes involved in the shikimate and the phenylpropanoid pathways are significantly downregulated in transgenic tobacco plants. UPLC-MS and HPLC based metabolic profiling reveals significant reduction of total lignin content, rutin, chlorogenic acid, and phenylalanine in CsMYB4a transgenic tobacco plants. Promoter sequence analysis of the 20 tobacco genes characterizes four types of AC-elements. Further CsMYB4a-AC element and CsMYB4a-promoter interaction analyses indicate that the negative regulation of CsMYB4a on the shikimate and phenylpropanoid pathways in tobacco is via reducing promoter activity. Taken together, all data indicate that CsMYB4a negatively regulates the phenylpropanoid and shikimate pathways.Highlight: A tea (Camellia

  20. The FOUR LIPS and MYB88 transcription factor genes are widely expressed in Arabidopsis thaliana during development.

    Science.gov (United States)

    Lei, Qin; Lee, EunKyoung; Keerthisinghe, Sandra; Lai, Lien; Li, Meng; Lucas, Jessica R; Wen, Xiaohong; Ren, Xiaolin; Sack, Fred D

    2015-09-01

    The FOUR LIPS (FLP) and MYB88 transcription factors, which are closely related in structure and function, control the development of stomata, as well as entry into megasporogenesis in Arabidopsis thaliana. However, other locations where these transcription factors are expressed are poorly described. Documenting additional locations where these genes are expressed might define new functions for these genes. Expression patterns were examined throughout vegetative and reproductive development. The expression from two transcriptional-reporter fusions were visualized with either β-glucuronidase (GUS) or green fluorescence protein (GFP). Both flp and myb88 genes were expressed in many, previously unreported locations, consistent with the possibility of additional functions for FLP and MYB88. Moreover, expression domains especially of FLP display sharp cutoffs or boundaries. In addition to stomatal and reproductive development, FLP and MYB88, which are R2R3 MYB transcription factor genes, are expressed in many locations in cells, tissues, and organs. © 2015 Botanical Society of America.

  1. Genome-Wide Classification and Evolutionary and Expression Analyses of Citrus MYB Transcription Factor Families in Sweet Orange

    Science.gov (United States)

    Hou, Xiao-Jin; Li, Si-Bei; Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi

    2014-01-01

    MYB family genes are widely distributed in plants and comprise one of the largest transcription factors involved in various developmental processes and defense responses of plants. To date, few MYB genes and little expression profiling have been reported for citrus. Here, we describe and classify 177 members of the sweet orange MYB gene (CsMYB) family in terms of their genomic gene structures and similarity to their putative Arabidopsis orthologs. According to these analyses, these CsMYBs were categorized into four groups (4R-MYB, 3R-MYB, 2R-MYB and 1R-MYB). Gene structure analysis revealed that 1R-MYB genes possess relatively more introns as compared with 2R-MYB genes. Investigation of their chromosomal localizations revealed that these CsMYBs are distributed across nine chromosomes. Sweet orange includes a relatively small number of MYB genes compared with the 198 members in Arabidopsis, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative studies of CsMYBs and Arabidopsis showed that CsMYBs had fewer gene duplication events. Expression analysis revealed that the MYB gene family has a wide expression profile in sweet orange development and plays important roles in development and stress responses. In addition, 337 new putative microsatellites with flanking sequences sufficient for primer design were also identified from the 177 CsMYBs. These results provide a useful reference for the selection of candidate MYB genes for cloning and further functional analysis forcitrus. PMID:25375352

  2. CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis.

    Science.gov (United States)

    Jiang, Xiaolan; Huang, Keyi; Zheng, Guangshun; Hou, Hua; Wang, Peiqiang; Jiang, Han; Zhao, Xuecheng; Li, Mingzhuo; Zhang, Shuxiang; Liu, Yajun; Gao, Liping; Zhao, Lei; Xia, Tao

    2018-05-01

    Tea is one of the most widely consumed nonalcoholic beverages worldwide. Polyphenols are nutritional compounds present in the leaves of tea plants. Although numerous genes are functionally characterized to encode enzymes that catalyze the formation of diverse polyphenolic metabolites, transcriptional regulation of those different pathways such as late steps of the proanthcoyanidin (PA) pathway remains unclear. In this study, using different tea transcriptome databases, we screened at least 140 R2R3-MYB transcription factors (TFs) and grouped them according to the basic function domains of the R2R3 MYB TF superfamily. Among 140 R2R3 TFs, CsMYB5a and CsMYB5e were chosen for analysis because they may be involved in PA biosynthesis regulation. CsMYB5a-overexpressing tobacco plants exhibited downregulated anthocyanin accumulation but a high polymeric PA content in the flowers. Overexpression of CsMYB5e in tobacco plants did not change the anthocyanin content but increased the dimethylaminocinnamaldehyde-stained PA content. RNA-seq and qRT-PCR analyses revealed that genes related to PA and anthocyanin biosynthesis pathways were markedly upregulated in both CsMYB5a- and CsMYB5e-overexpressing flowers. Three UGTs and four GSTs were identified as involved in PA and anthocyanin glycosylation and transportation in transgenic plants. These results provide new insights into the regulation of PA and anthocyanin biosynthesis in Camellia sinensis. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A Myb transcription factor of Phytophthora sojae, regulated by MAP kinase PsSAK1, is required for zoospore development.

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    Full Text Available PsSAK1, a mitogen-activated protein (MAP kinase from Phytophthora sojae, plays an important role in host infection and zoospore viability. However, the downstream mechanism of PsSAK1 remains unclear. In this study, the 3'-tag digital gene expression (DGE profiling method was applied to sequence the global transcriptional sequence of PsSAK1-silenced mutants during the cysts stage and 1.5 h after inoculation onto susceptible soybean leaf tissues. Compared with the gene expression levels of the recipient P. sojae strain, several candidates of Myb family were differentially expressed (up or down in response to the loss of PsSAK1, including of a R2R3-type Myb transcription factor, PsMYB1. qRT-PCR indicated that the transcriptional level of PsMYB1 decreased due to PsSAK1 silencing. The transcriptional level of PsMYB1 increased during sporulating hyphae, in germinated cysts, and early infection. Silencing of PsMYB1 results in three phenotypes: a no cleavage of the cytoplasm into uninucleate zoospores or release of normal zoospores, b direct germination of sporangia, and c afunction in zoospore-mediated plant infection. Our data indicate that the PsMYB1 transcription factor functions downstream of MAP kinase PsSAK1 and is required for zoospore development of P. sojae.

  4. Over-expression of the transcription factor HlMYB3 in transgenic hop (Humulus lupulus L. cv. Tettnanger) modulates the expression of genes involved in the biosynthesis of flavonoids and phloroglucinols

    Czech Academy of Sciences Publication Activity Database

    Gatica-Arias, A.; Stanke, M.; Häntzschel, K.R.; Matoušek, Jaroslav; Weber, G.

    2013-01-01

    Roč. 113, č. 2 (2013), s. 279-289 ISSN 0167-6857 R&D Projects: GA ČR GA521/08/0740 Institutional support: RVO:60077344 Keywords : Hop * R2R3 MYB transcription factors * Genetic transformation * Flavonoid biosynthesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.612, year: 2013

  5. PH4 of petunia is an R2R3-MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop transcription factors of the anthocyanin pathway.

    NARCIS (Netherlands)

    Quattrocchio, F.M.; Verweij, C.W.; Kroon, A.R.; Spelt, C.E.; Mol, J.N.M.; Koes, R.E.

    2006-01-01

    The Petunia hybrids genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color,

  6. PH4 of petunia is an R2R3-MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop-Helix transcription factors of the anthocyanin pathway.

    NARCIS (Netherlands)

    Quattrocchio, F.M.; Verweij, C.W.; Spelt, C.E.; Mol, J.N.M.; Koes, R.E.

    2007-01-01

    The Petunia hybrids genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color,

  7. Genomic Survey and Expression Profiling of the MYB Gene Family in Watermelon

    Directory of Open Access Journals (Sweden)

    Qing XU

    2018-01-01

    Full Text Available Myeloblastosis (MYB proteins constitute one of the largest transcription factor (TF families in plants. They are functionally diverse in regulating plant development, metabolism, and multiple stress responses. However, the function of watermelon MYB proteins remains elusive to date. Here, a genome-wide identification of watermelon MYB TFs was performed by bioinformatics analysis. A total of 162 MYB genes were identified from watermelon (ClaMYB. A comprehensive overview of the ClaMYB genes was undertaken, including the gene structures, chromosomal distribution, gene duplication, conserved protein motif, and phylogenetic relationship. According to the analyses, the watermelon MYB genes were categorized into three groups (R1R2R3-MYB, R2R3-MYB, and MYB-related. Amino acid alignments for all MYB motifs of ClaMYBs demonstrated high conservation. Investigation of their chromosomal localization revealed that these ClaMYB genes distributed across the 11 watermelon chromosomes. Gene duplication analyses showed that tandem duplication events contributed predominantly to the expansion of the MYB gene family in the watermelon genome. Phylogenetic comparison of the ClaMYB proteins with Arabidopsis MYB proteins revealed that watermelon MYB proteins underwent a more diverse evolution after divergence from Arabidopsis. Some watermelon MYBs were found to cluster into the functional clades of Arabidopsis MYB proteins. Expression analysis under different stress conditions identified a group of watermelon MYB proteins implicated in the plant stress responses. The comprehensive investigation of watermelon MYB genes in this study provides a useful reference for future cloning and functional analysis of watermelon MYB proteins. Keywords: watermelon, MYB transcription factor, abiotic stress, phylogenetic analysis

  8. Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia.

    Science.gov (United States)

    Boase, Murray R; Brendolise, Cyril; Wang, Lei; Ngo, Hahn; Espley, Richard V; Hellens, Roger P; Schwinn, Kathy E; Davies, Kevin M; Albert, Nick W

    2015-10-01

    The Md - MYB10 R6 gene from apple is capable of self-regulating in heterologous host species and enhancing anthocyanin pigmentation, but the activity of MYB10 is dependent on endogenous protein partners. Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10 R6 , are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10 R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10 R6 transgene (MYB10-R6 pro :MYB10:MYB10 term ) activated anthocyanin synthesis when transiently expressed in Antirrhinum rosea (dorsea) petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10 R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of 'Mitchell' petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10 R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10 R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.

  9. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple.

    Science.gov (United States)

    Tian, Ji; Zhang, Jie; Han, Zhen-Yun; Song, Ting-Ting; Li, Jin-Yan; Wang, Ya-Ru; Yao, Yun-Cong

    2017-03-03

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression.

  10. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries.

    Science.gov (United States)

    Deluc, Laurent; Bogs, Jochen; Walker, Amanda R; Ferrier, Thilia; Decendit, Alain; Merillon, Jean-Michel; Robinson, Simon P; Barrieu, François

    2008-08-01

    Among the dramatic changes occurring during grape berry (Vitis vinifera) development, those affecting the flavonoid pathway have provoked a number of investigations in the last 10 years. In addition to producing several compounds involved in the protection of the berry and the dissemination of the seeds, final products of this pathway also play a critical role in berry and wine quality. In this article, we describe the cloning and functional characterization of VvMYB5b, a cDNA isolated from a grape berry (V. vinifera 'Cabernet Sauvignon') library. VvMYB5b encodes a protein belonging to the R2R3-MYB family of transcription factors and displays significant similarity with VvMYB5a, another MYB factor recently shown to regulate flavonoid synthesis in grapevine. The ability of VvMYB5a and VvMYB5b to activate the grapevine promoters of several structural genes of the flavonoid pathway was confirmed by transient expression of the corresponding cDNAs in grape cells. Overexpression of VvMYB5b in tobacco (Nicotiana tabacum) leads to an up-regulation of genes encoding enzymes of the flavonoid pathway and results in the accumulation of anthocyanin- and proanthocyanidin-derived compounds. The ability of VvMYB5b to regulate particularly the anthocyanin and the proanthocyanidin pathways is discussed in relation to other recently characterized MYB transcription factors in grapevine. Taken together, data presented in this article give insight into the transcriptional mechanisms associated with the regulation of the flavonoid pathway throughout grape berry development.

  11. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots

    OpenAIRE

    Xu, Zhi-Sheng; Feng, Kai; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2017-01-01

    Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic an...

  12. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding.

    Science.gov (United States)

    Lin, Jeng-Shane; Lin, Chih-Ching; Lin, Hsin-Hung; Chen, Yu-Chi; Jeng, Shih-Tong

    2012-10-01

    MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  13. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.

    Directory of Open Access Journals (Sweden)

    Shan-Shan Sun

    2016-09-01

    Full Text Available The lotus (Nelumbonaceae: Nelumbo Adans. is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten. with red flowers and the American lotus (N. lutea Willd. with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1 were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus.

  14. Genome-Wide Identification, Evolution and Functional Divergence of MYB Transcription Factors in Chinese White Pear (Pyrus bretschneideri).

    Science.gov (United States)

    Li, Xiaolong; Xue, Cheng; Li, Jiaming; Qiao, Xin; Li, Leiting; Yu, Li'ang; Huang, Yuhua; Wu, Jun

    2016-04-01

    The MYB superfamily is large and functionally diverse in plants. To date, MYB family genes have not yet been identified in Chinese white pear (Pyrus bretschneideri), and their functions remain unclear. In this study, we identified 231 genes as candidate MYB genes and divided them into four subfamilies. The R2R3-MYB (PbrMYB) family shared an R2R3 domain with 104 amino acid residues, including five conserved tryptophan residues. The Pbr MYB family was divided into 37 functional subgroups including 33 subgroups which contained both MYB genes of Rosaceae plants and AtMYB genes, and four subgroups which included only Rosaceae MYB genes or AtMYB genes. PbrMYB genes with similar functions clustered into the same subgroup, indicating functional conservation. We also found that whole-genome duplication (WGD) and dispersed duplications played critical roles in the expansion of the MYB family. The 87 Pbr MYB duplicated gene pairs dated back to the two WGD events. Purifying selection was the primary force driving Pbr MYB gene evolution. The 15 gene pairs presented 1-7 codon sites under positive selection. A total of 147 expressed genes were identified from RNA-sequencing data of fruit, and six Pbr MYB members in subgroup C1 were identified as important candidate genes in the regulation of lignin synthesis by quantitative real-time PCR analysis. Further correlation analysis revealed that six PbrMYBs were significantly correlated with five structural gene families (F5H, HCT, CCR, POD and C3'H) in the lignin pathway. The phylogenetic, evolution and expression analyses of the MYB gene family in Chinese white pear establish a solid foundation for future comprehensive functional analysis of Pbr MYB genes. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Genome-wide analysis of the MYB gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Zhou, Changpin; Chen, Yanbo; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2015-11-01

    The MYB proteins comprise one of the largest transcription factor families in plants, and play key roles in regulatory networks controlling development, metabolism, and stress responses. A total of 125 MYB genes (JcMYB) have been identified in the physic nut (Jatropha curcas L.) genome, including 120 2R-type MYB, 4 3R-MYB, and 1 4R-MYB genes. Based on exon-intron arrangement of MYBs from both lower (Physcomitrella patens) and higher (physic nut, Arabidopsis, and rice) plants, we can classify plant MYB genes into ten groups (MI-X), except for MIX genes which are nonexistent in higher plants. We also observed that MVIII genes may be one of the most ancient MYB types which consist of both R2R3- and 3R-MYB genes. Most MYB genes (76.8% in physic nut) belong to the MI group which can be divided into 34 subgroups. The JcMYB genes were nonrandomly distributed on its 11 linkage groups (LGs). The expansion of MYB genes across several subgroups was observed and resulted from genome triplication of ancient dicotyledons and from both ancient and recent tandem duplication events in the physic nut genome. The expression patterns of several MYB duplicates in the physic nut showed differences in four tissues (root, stem, leaf, and seed), and 34 MYB genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots based on the data analysis of digital gene expression tags. Overexpression of the JcMYB001 gene in Arabidopsis increased its sensitivity to drought and salinity stresses. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development

    KAUST Repository

    Park, Myoungryoul

    2010-09-28

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  17. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development.

    Science.gov (United States)

    Park, Myoung-Ryoul; Yun, Kil-Young; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Wijaya, Edward; Bajic, Vladimir B; Yun, Song-Joong; De Los Reyes, Benildo G

    2010-12-01

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  18. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    Science.gov (United States)

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  19. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    Full Text Available We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum.

  20. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles

    NARCIS (Netherlands)

    Medina-Puche, L.; Molina-Hidalgo, F.J.; Boersma, M.; Schuurink, R.C.; López-Vidriero, I.; Solano, R.; Franco-Zorrilla, J.M.; Caballero, J.L.; Blanco-Portales, R.; Muñoz-Blanco, J.

    2015-01-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria x ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and

  1. The oncoprotein v-Myb activates transcription of Gremlin 2 during in vitro differentiation of the chicken neural crest to melanoblasts

    Czech Academy of Sciences Publication Activity Database

    Starostová, Michaela; Čermák, Vladimír; Dvořáková, Marta; Karafiát, Vít; Kosla, Jan; Dvořák, Michal

    2014-01-01

    Roč. 540, č. 1 (2014), s. 122-129 ISSN 0378-1119 R&D Projects: GA AV ČR KAN200520801 Institutional support: RVO:68378050 Keywords : Melanocyte development * Tamoxifen-inducible v-Myb * v-Myb-dependent genes * PRDC * KRT19 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.138, year: 2014

  2. A Novel TetR Family Transcriptional Regulator, CalR3, Negatively Controls Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882

    Directory of Open Access Journals (Sweden)

    Lixia Gou

    2017-11-01

    Full Text Available Calcimycin is a unique ionophoric antibiotic that is widely used in biochemical and pharmaceutical applications, but the genetic basis underlying the regulatory mechanisms of calcimycin biosynthesis are unclear. Here, we identified the calR3 gene, which encodes a novel TetR family transcriptional regulator and exerts a negative effect on calcimycin biosynthesis. Disruption of calR3 in Streptomyces chartreusis NRRL 3882 led to significantly increased calcimycin and its intermediate cezomycin. Gene expression analysis showed that the transcription of calR3 and its adjacent calT gene were dramatically enhanced (30- and 171-fold, respectively in GLX26 (ΔcalR3 mutants compared with the wild-type strains. Two CalR3-binding sites within the bidirectional calR3-calT promoter region were identified using a DNase I footprinting assay, indicating that CalR3 directly repressed the transcription of its own gene and the calT gene. In vitro electrophoretic mobility shift assays suggested that both calcimycin and cezomycin can act as CalR3 ligands to induce CalR3 to dissociate from its binding sites. These findings indicate negative feedback for the regulation of CalR3 in calcimycin biosynthesis and suggest that calcimycin production can be improved by manipulating its biosynthetic machinery.

  3. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals.

    Science.gov (United States)

    Li, Chonghui; Qiu, Jian; Ding, Ling; Huang, Mingzhong; Huang, Surong; Yang, Guangsui; Yin, Junmei

    2017-03-01

    Dendrobium hybrids orchid are popular throughout the world. They have various floral color and pigmentation patterns that are mainly caused by anthocyanins. It is well established that anthocyanin biosynthesis is regulated by the interplay between MYB and bHLH transcription factors (TF) in most plants. In this study, we identified one R2R3-MYB gene, DhMYB2, and one bHLH gene, DhbHLH1, from a Dendrobium hybrid. Their expression profiles were related to anthocyanin pigmentation in Dendrobium petals. Transient over-expression of these two TF genes showed that both DhMYB2 and DhbHLH1 resulted in anthocyanin production in white petals. The interaction between the two TFs was observed in vitro. In different Dendrobium hybrids petals with various pigmentations, DhMYB2 and DhbHLH1 were co-expressed with DhDFR and DhANS, which are regarded as potential regulatory targets of the two TFs. In flowers with distinct purple lips but white or yellow petals/sepals, the expression of DhbHLH1 was only related to anthocyanin accumulation in the lips. Taken together, DhMYB2 interacted with DhbHLH1 to regulate anthocyanin production in Dendrobium hybrid petals. DhbHLH1 was also responsible for the distinct anthocyanin pigmentation in lip tissues. The functional characterization of DhMYB2 and DhbHLH1 will improve understanding of anthocyanin biosynthesis modulation in Dendrobium orchids. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Mets, E; Van der Meulen, J; Van Peer, G; Boice, M; Mestdagh, P; Van de Walle, I; Lammens, T; Goossens, S; De Moerloose, B; Benoit, Y; Van Roy, N; Clappier, E; Poppe, B; Vandesompele, J; Wendel, H-G; Taghon, T; Rondou, P; Soulier, J; Van Vlierberghe, P; Speleman, F

    2015-04-01

    The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3'untranslated region-microRNA (miRNA) library screen and identified 33 putative MYB-targeting miRNAs. Subsequently, transcriptome data from two independent T-ALL cohorts and different subsets of normal T-cells were used to select miRNAs with relevance in the context of normal and malignant T-cell transformation. Hereby, miR-193b-3p was identified as a novel bona fide tumor-suppressor miRNA that targets MYB during malignant T-cell transformation thereby offering an entry point for efficient MYB targeting-oriented therapies for human T-ALL.

  5. LcMYB1 Is a Key Determinant of Differential Anthocyanin Accumulation among Genotypes, Tissues, Developmental Phases and ABA and Light Stimuli in Litchi chinensis

    OpenAIRE

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription level...

  6. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor.

    Science.gov (United States)

    Cheng, Yu-Jie; Kim, Myoung-Duck; Deng, Xi-Ping; Kwak, Sang-Soo; Chen, Wei

    2013-12-01

    IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

  7. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds.

    Science.gov (United States)

    Yan, Fan; Di, Shaokang; Takahashi, Ryoji

    2015-08-01

    The R gene of soybean, presumably encoding a MYB transcription factor, controls seed coat color. The gene consists of multiple alleles, R (black), r-m (black spots and (or) concentric streaks on brown seed), and r (brown seed). This study was conducted to determine the structure of the MYB transcription factor gene in a near-isogenic line (NIL) having r-m allele. PCR amplification of a fragment of the candidate gene Glyma.09G235100 generated a fragment of about 1 kb in the soybean cultivar Clark, whereas a fragment of about 14 kb in addition to fragments of 1 and 1.4 kb were produced in L72-2040, a Clark 63 NIL with the r-m allele. Clark 63 is a NIL of Clark with the rxp and Rps1 alleles. A DNA fragment of 13 060 bp was inserted in the intron of Glyma.09G235100 in L72-2040. The fragment had the CACTA motif at both ends, imperfect terminal inverted repeats (TIR), inverse repetition of short sequence motifs close to the 5' and 3' ends, and a duplication of three nucleotides at the site of integration, indicating that it belongs to a CACTA-superfamily transposable element. We designated the element as Tgm11. Overall nucleotide sequence, motifs of TIR, and subterminal repeats were similar to those of Tgm1 and Tgs1, suggesting that these elements comprise a family.

  8. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia

    OpenAIRE

    Mets, E; Van der Meulen, J; Van Peer, G; Boice, M; Mestdagh, P; Van de Walle, I; Lammens, T; Goossens, S; De Moerloose, B; Benoit, Y; Van Roy, N; Clappier, E; Poppe, B; Vandesompele, J; Wendel, H-G

    2014-01-01

    The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3′untranslated region–microRNA (miRNA) library screen and identified 33 p...

  9. PhMYB4 fine-tunes the floral volatile signature of Petunia x hybrida through PhC4H.

    Science.gov (United States)

    Colquhoun, Thomas A; Kim, Joo Young; Wedde, Ashlyn E; Levin, Laura A; Schmitt, Kyle C; Schuurink, Robert C; Clark, David G

    2011-01-01

    In Petunia × hybrida cv 'Mitchell Diploid' (MD), floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis is controlled spatially, developmentally, and daily at molecular, metabolic, and biochemical levels. Multiple genes have been shown to encode proteins that either directly catalyse a biochemical reaction yielding FVBP compounds or are involved in metabolite flux prior to the formation of FVBP compounds. It was hypothesized that multiple transcription factors are involved in the precise regulation of all necessary genes, resulting in the specific volatile signature of MD flowers. After acquiring all available petunia transcript sequences with homology to Arabidopsis thaliana R2R3-MYB transcription factors, PhMYB4 (named for its close identity to AtMYB4) was identified, cloned, and characterized. PhMYB4 transcripts accumulate to relatively high levels in floral tissues at anthesis and throughout open flower stages, which coincides with the spatial and developmental distribution of FVBP production and emission. Upon RNAi suppression of PhMYB4 (ir-PhMYB4) both petunia cinnamate-4-hydroxylase (PhC4H1 and PhC4H2) gene transcript levels were significantly increased. In addition, ir-PhMYB4 plants emit higher levels of FVBP compounds derived from p-coumaric acid (isoeugenol and eugenol) compared with MD. Together, these results indicate that PhMYB4 functions in the repression of C4H transcription, indirectly controlling the balance of FVBP production in petunia floral tissue (i.e. fine-tunes).

  10. Functional diversification of grapevine MYB5a and MYB5b in the control of flavonoid biosynthesis in a petunia anthocyanin regulatory mutant.

    Science.gov (United States)

    Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Guzzo, Flavia; Zamboni, Anita; Avesani, Linda; Tornielli, Giovanni Battista

    2014-03-01

    Flavonoids play a key role in grapevine physiology and also contribute substantially to the quality of berries and wines. VvMYB5a and VvMYB5b are R2R3-MYB transcription factors previously proposed to control the spatiotemporal expression of flavonoid structural genes during berry development. We investigated the functions of these two proteins in detail by heterologous expression in a petunia an2 mutant, which has negligible anthocyanin levels in the petals because it lacks the MYB protein PhAN2. We also expressed VvMYBA1, the grapevine ortholog of petunia PhAN2, in the same genetic background. The anthocyanin profiles induced by expressing these transgenes in the petals revealed that VvMYBA1 is the functional ortholog of PhAN2 and that, unlike VvMYB5a, VvMYB5b can partially complement the an2 mutation. Transcriptomic analysis of petals by microarray hybridization and quantitative PCR confirmed that VvMYB5b up-regulates a subset of anthocyanin structural genes, whereas VvMYB5a has a more limited impact on the expression of genes related to anthocyanin biosynthesis. Furthermore, we identified additional specific and common targets of these two regulators, related to vacuolar acidification and membrane remodeling. Taken together, these data provide insight into the role of VvMYB5a and VvMYB5b in flavonoid biosynthesis and provide evidence for additional regulatory roles in distinct pathways.

  11. The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system.

    Science.gov (United States)

    Kim, Cha Young; Ahn, Young Ock; Kim, Sun Ha; Kim, Yun-Hee; Lee, Haeng-Soon; Catanach, Andrew S; Jacobs, Jeanne M E; Conner, Anthony J; Kwak, Sang-Soo

    2010-07-01

    MYB transcription factors play important roles in transcriptional regulation of many secondary metabolites including anthocyanins. We cloned the R2R3-MYB type IbMYB1 complementary DNAs from the purple-fleshed sweet potato (Ipomoea batatas L. cv Sinzami) and investigated the expression patterns of IbMYB1 gene with IbMYB1a and IbMYB1b splice variants in leaf and root tissues of various sweet potato cultivars by reverse transcription-polymerase chain reaction. The transcripts of IbMYB1 were predominantly expressed in the purple-fleshed storage roots and they were also detectable in the leaf tissues accumulating anthocyanin pigments. In addition, transcript levels of IbMYB1 gene were up-regulated by treatment with methyl jasmonate or salicylic acid in leaf and root tissues of cv. White Star. To set up the intragenic vector system in sweet potato, we first evaluated the utilization of the IbMYB1 gene as a visible selectable marker. The IbMYB1a was transiently expressed in tobacco leaves under the control of a constitutive cauliflower mosaic virus 35S promoter, a root-specific and sucrose-inducible sporamin promoter, and an oxidative stress-inducible sweet potato anionic peroxidase2 promoter. We also showed that overexpression of IbMYB1a induced massive anthocyanin pigmentation in tobacco leaves and up-regulated the transcript levels of the structural genes in anthocyanin biosynthetic pathway. Furthermore, high-performance liquid chromatography analysis revealed that the expression of IbMYB1a led to production of cyanidin as a major core molecule of anthocyanidins in tobacco leaves. These results suggest that the IbMYB1 gene can be applicable to a visible marker for sweet potato transformation with intragenic vectors, as well as the production of anthocyanin as important nutritive value in other plant species.

  12. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8

    Czech Academy of Sciences Publication Activity Database

    Uličná, Lívia; Kalendová, Alžběta; Kalasová, Ilona; Vacík, Tomáš; Hozák, Pavel

    2018-01-01

    Roč. 1863, č. 3 (2018), s. 266-275 ISSN 1388-1981 R&D Projects: GA ČR GA15-08738S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LM2015062 Institutional support: RVO:68378050 Keywords : pip2 * phf8 * rDNA transcription * H3K9me2 * Nucleus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.547, year: 2016

  13. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes.

    Science.gov (United States)

    Yoshida, Kazuko; Ma, Dawei; Constabel, C Peter

    2015-03-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8

    Czech Academy of Sciences Publication Activity Database

    Uličná, Lívia; Kalendová, Alžběta; Kalasová, Ilona; Vacík, Tomáš; Hozák, Pavel

    2018-01-01

    Roč. 1863, č. 3 (2018), s. 266-275 ISSN 1388-1981 R&D Projects: GA ČR GA15-08738S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LM2015062 Institutional support: RVO:68378050 Keywords : PIP2 * PHF8 * rDNA transcription * H3K9me2 * Nucleus Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 5.547, year: 2016

  15. A dominant negative mutant of an Arabidopsis R2R3 Myb (AtMyb90) blocks flower pigment production in tobacco

    Science.gov (United States)

    A spontaneous mutation converted a hyper-pigmented (anthocyanins), CaMV-35S-pro::AtMYB90 containing, transgenic tobacco line into one displaying wild-type pigmentation in all tissues except for flower petals, which, counter-intuitively, showed anthocyanin levels dramatically below wild-type in the p...

  16. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus

    International Nuclear Information System (INIS)

    D'Costa, Susan M.; Antczak, James B.; Pickup, David J.; Condit, Richard C.

    2004-01-01

    Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor

  17. QsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber.

    Science.gov (United States)

    Almeida, Tânia; Pinto, Glória; Correia, Barbara; Santos, Conceição; Gonçalves, Sónia

    2013-12-01

    Cork oak is an economically important forest species showing a great tolerance to high temperatures and shortage of water. However, the mechanisms underlying this plasticity are still poorly understood. Among the stress regulators, transcription factors (TFs) are especially important since they can control a wide range of stress-inducible genes, which make them powerful targets for genetic engineering of stress tolerance. Here we evaluated the influence of increasing temperatures (up to 55 °C) or drought (18% field capacity, FC) on the expression profile of an R2R3-MYB transcription factor of cork oak, the QsMYB1. QsMYB1 was previously identified as being preferentially expressed in cork tissues and as having an associated alternative splicing mechanism, which results in two different transcripts (QsMYB1.1 and QsMYB1.2). Expression analysis by reverse transcription quantitative PCR (RT-qPCR) revealed that increasing temperatures led to a gradual down-regulation of QsMYB1 transcripts with more effect on QsMYB1.1 abundance. On the other hand, under drought condition, expression of QsMYB1 variants, mainly the QsMYB1.2, was transiently up-regulated shortly after the stress imposition. Recovery from each stress has also resulted in a differential response by both QsMYB1 transcripts. Several physiological and biochemical parameters (plant water status, chlorophyll fluorescence, lipid peroxidation and proline content) were determined in order to monitor the plant performance under stress and recovery. In conclusion, this report provides the first evidence that QsMYB1 TF may have a putative function in the regulatory network of cork oak response to heat and drought stresses and during plant recovery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela N; Payne, Mark J; Guiltinan, Mark J

    2015-06-25

    The flavan-3-ols catechin and epicatechin, and their polymerized oligomers, the proanthocyanidins (PAs, also called condensed tannins), accumulate to levels of up to 15 % of the total weight of dry seeds of Theobroma cacao L. These compounds have been associated with several health benefits in humans. They also play important roles in pest and disease defense throughout the plant. In Arabidopsis, the R2R3 type MYB transcription factor TT2 regulates the major genes leading to the synthesis of PA. To explore the transcriptional regulation of the PA synthesis pathway in cacao, we isolated and characterized an R2R3 type MYB transcription factor MYBPA from cacao. We examined the spatial and temporal gene expression patterns of the Tc-MYBPA gene and found it to be developmentally expressed in a manner consistent with its involvement in PAs and anthocyanin synthesis. Functional complementation of an Arabidopsis tt2 mutant with Tc-MYBPA suggested that it can functionally substitute the Arabidopsis TT2 gene. Interestingly, in addition to PA accumulation in seeds of the Tc-MYBPA expressing plants, we also observed an obvious increase of anthocyanidin accumulation in hypocotyls. We observed that overexpression of the Tc-MYBPA gene resulted in increased expression of several key genes encoding the major structural enzymes of the PA and anthocyanidin pathway, including DFR (dihydroflavanol reductase), LDOX (leucoanthocyanidin dioxygenase) and BAN (ANR, anthocyanidin reductase). We conclude that the Tc-MYBPA gene that encodes an R2R3 type MYB transcription factor is an Arabidopsis TT2 like transcription factor, and may be involved in the regulation of both anthocyanin and PA synthesis in cacao. This research may provide molecular tools for breeding of cacao varieties with improved disease resistance and enhanced flavonoid profiles for nutritional and pharmaceutical applications.

  19. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-05-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)-based SCF(COI1) complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation.

  20. Mouse Incisor Stem Cell Niche and Myb Transcription Factors

    Czech Academy of Sciences Publication Activity Database

    Švandová, Eva; Veselá, Barbora; Šmarda, J.; Hampl, A.; Radlanski, R.J.; Matalová, Eva

    2015-01-01

    Roč. 44, č. 5 (2015), s. 338-344 ISSN 0340-2096 R&D Projects: GA ČR GAP304/11/1418; GA ČR GCP302/12/J059 Institutional support: RVO:67985904 Keywords : c-Myb * stem cell niches Subject RIV: EA - Cell Biology Impact factor: 0.615, year: 2015

  1. DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter

    Directory of Open Access Journals (Sweden)

    Cominelli Eleonora

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated that the Arabidopsis thaliana AtMYB60 protein is an R2R3MYB transcription factor required for stomatal opening. AtMYB60 is specifically expressed in guard cells and down-regulated at the transcriptional levels by the phytohormone ABA. Results To investigate the molecular mechanisms governing AtMYB60 expression, its promoter was dissected through deletion and mutagenesis analyses. By studying different versions of AtMYB60 promoter::GUS reporter fusions in transgenic plants we were able to demonstrate a modular organization for the AtMYB60 promoter. Particularly we defined: a minimal promoter sufficient to confer guard cell-specific activity to the reporter gene; the distinct roles of different DOF-binding sites organised in a cluster in the minimal promoter in determining guard cell-specific expression; the promoter regions responsible for the enhancement of activity in guard cells; a promoter region responsible for the negative transcriptional regulation by ABA. Moreover from the analysis of single and multiple mutants we could rule out the involvement of a group of DOF proteins, known as CDFs, already characterised for their involvement in flowering time, in the regulation of AtMYB60 expression. Conclusions These findings shed light on the regulation of gene expression in guard cells and provide new promoter modules as useful tools for manipulating gene expression in guard cells, both for physiological studies and future biotechnological applications.

  2. miR-25-3p, Positively Regulated by Transcription Factor AP-2α, Regulates the Metabolism of C2C12 Cells by Targeting Akt1

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2018-03-01

    Full Text Available miR-25, a member of the miR-106b-25 cluster, has been reported as playing an important role in many biological processes by numerous studies, while the role of miR-25 in metabolism and its transcriptional regulation mechanism remain unclear. In this study, gain-of-function and loss-of-function assays demonstrated that miR-25-3p positively regulated the metabolism of C2C12 cells by attenuating phosphoinositide 3-kinase (PI3K gene expression and triglyceride (TG content, and enhancing the content of adenosine triphosphate (ATP and reactive oxygen species (ROS. Furthermore, the results from bioinformatics analysis, dual luciferase assay, site-directed mutagenesis, qRT-PCR, and Western blotting demonstrated that miR-25-3p directly targeted the AKT serine/threonine kinase 1 (Akt1 3′ untranslated region (3′UTR. The core promoter of miR-25-3p was identified, and the transcription factor activator protein-2α (AP-2α significantly increased the expression of mature miR-25-3p by binding to its core promoter in vivo, as indicated by the chromatin immunoprecipitation (ChIP assay, and AP-2α binding also downregulated the expression of Akt1. Taken together, our findings suggest that miR-25-3p, positively regulated by the transcription factor AP-2α, enhances C2C12 cell metabolism by targeting the Akt1 gene.

  3. NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes TRY and TCL1.

    Science.gov (United States)

    Tian, Hainan; Wang, Xianling; Guo, Hongyan; Cheng, Yuxin; Hou, Chunjiang; Chen, Jin-Gui; Wang, Shucai

    2017-08-01

    The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis ( Arabidopsis thaliana ). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant ( ntl8-1D ). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8 Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON ( TRY ) and TRICHOMELESS1 ( TCL1 ) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1 , in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1 . © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in Chili pepper leaves

    Directory of Open Access Journals (Sweden)

    zhen ezhang

    2015-07-01

    Full Text Available The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3’5’H, DFR, ANS, UFGT, ANP and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

  5. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey

    Directory of Open Access Journals (Sweden)

    Ling Yin

    2017-06-01

    Full Text Available Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28 was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey. Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate

  6. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju

    2017-01-01

    Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28 , the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology ( BoaMYB28 ) was identified in Chinese kale ( Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in

  7. The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana[C][W

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-01-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)–based SCFCOI1 complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation. PMID:21551388

  8. The purple cauliflower arises from activation of a MYB transcription factor.

    Science.gov (United States)

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L; Li, Li

    2010-11-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal.

  9. The R2R3-MYB–Like Regulatory Factor EOBI, Acting Downstream of EOBII, Regulates Scent Production by Activating ODO1 and Structural Scent-Related Genes in Petunia[C][W

    Science.gov (United States)

    Spitzer-Rimon, Ben; Farhi, Moran; Albo, Boaz; Cna’ani, Alon; Ben Zvi, Michal Moyal; Masci, Tania; Edelbaum, Orit; Yu, Yixun; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander

    2012-01-01

    Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB–like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI’s wide-ranging involvement in the production of floral volatiles. PMID:23275577

  10. TAS1R3 and UCN2 Transcript Levels in Blood Cells Are Associated With Sugary and Fatty Food Consumption in Children.

    Science.gov (United States)

    Priego, T; Sánchez, J; Picó, C; Ahrens, W; De Henauw, S; Kourides, Y; Lissner, L; Molnár, D; Moreno, L A; Russo, P; Siani, A; Veidebaum, T; Palou, A

    2015-09-01

    New types of dietary exposure biomarkers are needed to implement effective strategies for obesity prevention in children. Of special interest are biomarkers of consumption of food rich in simple sugars and fat because their intake has been associated with obesity development. Peripheral blood cells (PBCs) represent a promising new tool for identifying novel, transcript-based biomarkers. This study aimed to study potential associations between the transcripts of taste receptor type 1 member 3 (TAS1R3) and urocortin II (UCN2) genes in PBCs and the frequency of sugary and fatty food consumption in children. Four hundred sixty-three children from the IDEFICS cohort were selected to include a similar number of boys and girls, both normal-weight and overweight, belonging to eight European countries. Anthropometric parameters (measured at baseline and in a subset of 193 children after 2 years), food consumption frequency and transcript levels of TAS1R3 and UCN2 genes in PBCs were measured. Children with low-frequency consumption of sugary foods displayed higher TAS1R3 expression levels with respect to those with intermediate or high frequency. In turn, children with high-frequency consumption of fatty foods showed lower UCN2 expression levels with respect to those with low or intermediate frequency. Moreover, transcripts of TAS1R3 were related with body mass index and fat-mass changes after a 2-year follow-up period, with low expression levels of this gene being related with increased fat accumulation over time. The transcripts of TAS1R3 and UCN2 in PBCs may be considered potential biomarkers of consumption of sugary and fatty food, respectively, to complement data of food-intake questionnaires.

  11. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Directory of Open Access Journals (Sweden)

    Biao Lai

    Full Text Available The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  12. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Science.gov (United States)

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  13. Large-scale transcriptional profiling of lignified tissues in Tectona grandis.

    Science.gov (United States)

    Galeano, Esteban; Vasconcelos, Tarcísio Sales; Vidal, Mabel; Mejia-Guerra, Maria Katherine; Carrer, Helaine

    2015-09-15

    Currently, Tectona grandis is one of the most valuable trees in the world and no transcript dataset related to secondary xylem is available. Considering how important the secondary xylem and sapwood transition from young to mature trees is, little is known about the expression differences between those successional processes and which transcription factors could regulate lignin biosynthesis in this tropical tree. Although MYB transcription factors are one of the largest superfamilies in plants related to secondary metabolism, it has not yet been characterized in teak. These results will open new perspectives for studies of diversity, ecology, breeding and genomic programs aiming to understand deeply the biology of this species. We present a widely expressed gene catalog for T. grandis using Illumina technology and the de novo assembly. A total of 462,260 transcripts were obtained, with 1,502 and 931 genes differentially expressed for stem and branch secondary xylem, respectively, during age transition. Analysis of stem and branch secondary xylem indicates substantial similarity in gene ontologies including carbohydrate enzymes, response to stress, protein binding, and allowed us to find transcription factors and heat-shock proteins differentially expressed. TgMYB1 displays a MYB domain and a predicted coiled-coil (CC) domain, while TgMYB2, TgMYB3 and TgMYB4 showed R2R3-MYB domain and grouped with MYBs from several gymnosperms and flowering plants. TgMYB1, TgMYB4 and TgCES presented higher expression in mature secondary xylem, in contrast with TgMYB2, TgHsp1, TgHsp2, TgHsp3, and TgBi whose expression is higher in young lignified tissues. TgMYB3 is expressed at lower level in secondary xylem. Expression patterns of MYB transcription factors and heat-shock proteins in lignified tissues are dissimilar when tree development was evaluated, obtaining more expression of TgMYB1 and TgMYB4 in lignified tissues of 60-year-old trees, and more expression in TgHsp1, TgHsp2, Tg

  14. Partial synthesis of (3R,6'R)-alpha-cryptoxanthin and (3R)-beta-cryptoxanthin from (3R,3'R,6'R)-lutein.

    Science.gov (United States)

    Khachik, Frederick; Chang, An-Ni; Gana, Audry; Mazzola, Eugene

    2007-02-01

    (3R,3'R,6'R)-Lutein (1), (3R,3'R)-zeaxanthin (2), (3R,6'R)-alpha-cryptoxanthin (3), and (3R)-beta-cryptoxanthin (4) are among dietary hydroxycarotenoids that have been identified in human serum, milk, and ocular tissues. While 1 containing 6% of 2 is commercially available, industrial production of optically active 3 and 4 has not yet been accomplished. Several processes have been developed that transform 1 into 3, 4, and minor quantities of (3R,5'RS,6'R)-3',4'-didehydro-5',6'-dihydro-beta,beta-caroten-3-ol (5) (a regioisomer of 3). In one process, lutein (1) was cleanly deoxygenated to 3 in the presence of trifluoroacetic acid (TFA) and Me3N.BH3 in CH2Cl2 at ambient temperature in nearly 90% yield. Reaction of lutein (1) with a Lewis acid (AlCl3, ZnBr2, ZnI2) and a hydride donor (Me3N.BH3, Na[BH3(OCOCF3)], NaCNBH3) in solvents such as CH2Cl2, THF, and TBME produced similar results. In a two-step process, high-temperature acid-catalyzed dehydration of 1 (propanol/water/acid, 90 degrees C) gave a mixture of anhydroluteins 6, 7, and 8 in 86% yield. In the second step, these dehydration products underwent ionic hydrogenation with TFA/Me3N.BH3 in CH2Cl2 to afford a mixture of 3 and 4 in nearly 80% yield that contained only 1% of 5.

  15. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula.

    Science.gov (United States)

    Jun, Ji Hyung; Liu, Chenggang; Xiao, Xirong; Dixon, Richard A

    2015-10-01

    Accumulation of anthocyanins and proanthocyanidins (PAs) is limited to specific cell types and developmental stages, but little is known about how antagonistically acting transcriptional regulators work together to determine temporal and spatial patterning of pigmentation at the cellular level, especially for PAs. Here, we characterize MYB2, a transcriptional repressor regulating both anthocyanin and PA biosynthesis in the model legume Medicago truncatula. MYB2 was strongly upregulated by MYB5, a major regulator of PA biosynthesis in M. truncatula and a component of MYB-basic helix loop helix-WD40 (MBW) activator complexes. Overexpression of MYB2 abolished anthocyanin and PA accumulation in M. truncatula hairy roots and Arabidopsis thaliana seeds, respectively. Anthocyanin deposition was expanded in myb2 mutant seedlings and flowers accompanied by increased anthocyanin content. PA mainly accumulated in the epidermal layer derived from the outer integument in the M. truncatula seed coat, starting from the hilum area. The area of PA accumulation and ANTHOCYANIDIN REDUCTASE expression was expanded into the seed body at the early stage of seed development in the myb2 mutant. Genetic, biochemical, and cell biological evidence suggests that MYB2 functions as part of a multidimensional regulatory network to define the temporal and spatial pattern of anthocyanin and PA accumulation linked to developmental processes. © 2015 American Society of Plant Biologists. All rights reserved.

  16. Inhibition of Mef2a Enhances Neovascularization via Post-transcriptional Regulation of 14q32 MicroRNAs miR-329 and miR-494

    Directory of Open Access Journals (Sweden)

    Sabine M.J. Welten

    2017-06-01

    Full Text Available Improving the efficacy of neovascularization is a promising strategy to restore perfusion of ischemic tissues in patients with peripheral arterial disease. The 14q32 microRNA cluster is highly involved in neovascularization. The Mef2a transcription factor has been shown to induce transcription of the microRNAs within this cluster. We inhibited expression of Mef2a using gene-silencing oligonucleotides (GSOs in an in vivo hind limb ischemia model. Treatment with GSO-Mef2a clearly improved blood flow recovery within 3 days (44% recovery versus 25% recovery in control and persisted until 14 days after ischemia induction (80% recovery versus 60% recovery in control. Animals treated with GSO-Mef2a showed increased arteriogenesis and angiogenesis in the relevant muscle tissues. Inhibition of Mef2a decreased expression of 14q32 microRNAs miR-329 (p = 0.026 and miR-494 (trend, p = 0.06, but not of other 14q32 microRNAs, nor of 14q32 microRNA precursors. Because Mef2a did not influence 14q32 microRNA transcription, we hypothesized it functions as an RNA-binding protein that influences processing of 14q32 microRNA miR-329 and miR-494. Mef2A immunoprecipitation followed by RNA isolation and rt/qPCR confirmed direct binding of MEF2A to pri-miR-494, supporting this hypothesis. Our study demonstrates a novel function for Mef2a in post-ischemic neovascularization via post-transcriptional regulation of 14q32 microRNAs miR-329 and miR-494.

  17. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula[OPEN

    Science.gov (United States)

    2015-01-01

    Accumulation of anthocyanins and proanthocyanidins (PAs) is limited to specific cell types and developmental stages, but little is known about how antagonistically acting transcriptional regulators work together to determine temporal and spatial patterning of pigmentation at the cellular level, especially for PAs. Here, we characterize MYB2, a transcriptional repressor regulating both anthocyanin and PA biosynthesis in the model legume Medicago truncatula. MYB2 was strongly upregulated by MYB5, a major regulator of PA biosynthesis in M. truncatula and a component of MYB-basic helix loop helix-WD40 (MBW) activator complexes. Overexpression of MYB2 abolished anthocyanin and PA accumulation in M. truncatula hairy roots and Arabidopsis thaliana seeds, respectively. Anthocyanin deposition was expanded in myb2 mutant seedlings and flowers accompanied by increased anthocyanin content. PA mainly accumulated in the epidermal layer derived from the outer integument in the M. truncatula seed coat, starting from the hilum area. The area of PA accumulation and ANTHOCYANIDIN REDUCTASE expression was expanded into the seed body at the early stage of seed development in the myb2 mutant. Genetic, biochemical, and cell biological evidence suggests that MYB2 functions as part of a multidimensional regulatory network to define the temporal and spatial pattern of anthocyanin and PA accumulation linked to developmental processes. PMID:26410301

  18. The A-myb transcription factor in neoplastic and normal B cells.

    Science.gov (United States)

    Golay, J; Facchinetti, V; Ying, G; Introna, M

    1997-07-01

    The myb family of transcription factors has been strongly implicated in the regulation of cell growth and differentiation in the haematopoietic system. The v-myb oncogene, carried by avian defective retroviruses, causes leukaemias in the chicken and transforms haematopoietic cells in vitro. Its normal cellular equivalent c-myb, has been shown to promote the proliferation and block the differentiation of haematopoietic cells in several experimental models and is required for fetal haematopoiesis. Two other members of the family have been cloned more recently, A-myb and B-myb, which show sequence homology with c-myb in several domains, of which the DNA binding domain as well as other regulatory domains. Both have been shown to be transcription factors. B-myb is also involved in the control of proliferation and differentiation, but, unlike c-myb, it is expressed in many cell types. The third member of the family, A-myb, shows the most restricted pattern of expression, suggesting a very specific role for this transcription factor. A-myb is expressed in a subpopulation of normal B lymphocytes activated in vivo and localised in the germinal center of peripheral lymphoid organs and is not detected at significant levels in all other mature or immature haematopoietic populations studied, including bone marrow cells, T lymphocytes, granulocytes, monocytes, either at rest or after in vitro activation. These studies indicate that A-myb plays a role during a narrow window of normal B cell differentiation. A-myb expression has also been studied in a wide range of neoplastic B cells, representing the whole spectrum of B cell differentiation. A-myb is strongly expressed in Burkitt's lymphomas (BL) and slg+ B-acute lymphoblastic leukaemias (B-ALL) and not in all other leukaemias/lymphomas tested, with the exception of a subset of CLL (about 25% of cases). It is intriguing that the A-myb genome has been localised relatively close to the c-myc gene on chromosome 8, suggesting that

  19. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2

    Energy Technology Data Exchange (ETDEWEB)

    Simion, Alexandru; Laudadio, Ilaria; Prevot, Pierre-Paul; Raynaud, Peggy; Lemaigre, Frederic P. [Universite catholique de Louvain, de Duve Institute, 75 Avenue Hippocrate 7529, B-1200 Brussels (Belgium); Jacquemin, Patrick, E-mail: patrick.jacquemin@uclouvain.be [Universite catholique de Louvain, de Duve Institute, 75 Avenue Hippocrate 7529, B-1200 Brussels (Belgium)

    2010-01-01

    MicroRNAs are small, non-coding RNAs that posttranscriptionally regulate gene expression mainly by binding to the 3'UTR of their target mRNAs. Recent data revealed that microRNAs have an important role in pancreas and liver development and physiology. Using cloning and microarray profiling approaches, we show that a unique repertoire of microRNAs is expressed at the onset of liver and pancreas organogenesis, and in pancreas and liver at key stages of cell fate determination. Among the microRNAs that are expressed at these stages, miR-495 and miR-218 were predicted to, respectively, target the Onecut (OC) transcription factors Hepatocyte Nuclear Factor-6 (HNF-6/OC-1) and OC-2, two important regulators of liver and pancreas development. MiR-495 and miR-218 are dynamically expressed in developing liver and pancreas, and by transient transfection, we show that they target HNF-6 and OC-2 3'UTRs. Moreover, when overexpressed in cultured cells, miR-495 and miR-218 decrease the endogenous levels of HNF-6 and OC-2 mRNA. These results indicate that the expression of regulators of liver and pancreas development is modulated by microRNAs. They also suggest a developmental role for miR-495 and miR-218.

  20. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2

    International Nuclear Information System (INIS)

    Simion, Alexandru; Laudadio, Ilaria; Prevot, Pierre-Paul; Raynaud, Peggy; Lemaigre, Frederic P.; Jacquemin, Patrick

    2010-01-01

    MicroRNAs are small, non-coding RNAs that posttranscriptionally regulate gene expression mainly by binding to the 3'UTR of their target mRNAs. Recent data revealed that microRNAs have an important role in pancreas and liver development and physiology. Using cloning and microarray profiling approaches, we show that a unique repertoire of microRNAs is expressed at the onset of liver and pancreas organogenesis, and in pancreas and liver at key stages of cell fate determination. Among the microRNAs that are expressed at these stages, miR-495 and miR-218 were predicted to, respectively, target the Onecut (OC) transcription factors Hepatocyte Nuclear Factor-6 (HNF-6/OC-1) and OC-2, two important regulators of liver and pancreas development. MiR-495 and miR-218 are dynamically expressed in developing liver and pancreas, and by transient transfection, we show that they target HNF-6 and OC-2 3'UTRs. Moreover, when overexpressed in cultured cells, miR-495 and miR-218 decrease the endogenous levels of HNF-6 and OC-2 mRNA. These results indicate that the expression of regulators of liver and pancreas development is modulated by microRNAs. They also suggest a developmental role for miR-495 and miR-218.

  1. An efficient conversion of (3R,3'R,6'R)-lutein to (3R,3'S,6'R)-lutein (3'-epilutein) and (3R,3'R)-zeaxanthin.

    Science.gov (United States)

    Khachik, Frederick

    2003-01-01

    Two dietary carotenoids, (3R,3'R,6'R)-lutein (1) and (3R,3'R)-zeaxanthin (2), and their metabolite (3R,3'S,6'R)-lutein (3'-epilutein) (3) accumulate in human serum, milk, and ocular tissues. There is increasing evidence that compounds 1 and 2 play an important role in the prevention of age-related macular degeneration. Therefore, the availability of these carotenoids for metabolic studies and clinical trials is essential. Compound 1 is isolated from extracts of marigold flowers (Tagete erecta) and is commercially available, whereas 2 is only accessible by a lengthy total synthesis, and a viable method for synthesis of 3 has not yet been developed. This report describes an efficient conversion of technical grade 1 to 2 via 3. Acid-catalyzed epimerization of 1 yields an equimolar mixture of diastereomers 1 and 3. The mixture was separated by enzyme-mediated acylation with lipase AK from Pseudomonas fluorescens that preferentially esterified 3 and after alkaline hydrolysis yielded this carotenoid in 90% diastereomeric excess (de). Compound 3 was also separated from 1 in 56-88% de by solvent extraction and low-temperature crystallization, Soxhlet extraction, or supercritical fluid extraction. Base-catalyzed isomerization of 3 gave 2 in excellent yield, providing a convenient alternative to the total synthesis of this important dietary carotenoid.

  2. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling.

    Science.gov (United States)

    Shim, Jae Sung; Jung, Choonkyun; Lee, Sangjoon; Min, Kyunghun; Lee, Yin-Won; Choi, Yeonhee; Lee, Jong Seob; Song, Jong Tae; Kim, Ju-Kon; Choi, Yang Do

    2013-02-01

    The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. β-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  3. Arabidopsis MYB68 in development and responses to environmental cues

    DEFF Research Database (Denmark)

    Feng, Caiping; Andreasson, E.; Maslak, A.

    2004-01-01

    The Arabidopsis MYB68 gene encodes a MYB family protein with N-terminal R2R3 DNA-binding domains. Analyses of MYB68 expression by RNA blot and a transposant gene-trap MYB68::GUS reporter indicated that MYB68 is expressed specifically in root pericycle cells. Root cultures of the myb68 mutant......, caused by the gene trap insertion in the first MYB68 exon, produced increased biomass and lignin levels compared to wild type. Under high temperature regimes, MYB68::GUS activity was elevated in roots, while vegetative growth of myb68 mutants was reduced compared to wild type. These data suggest that MYB...

  4. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy.

    Science.gov (United States)

    Lee, Hong Gil; Lee, Kyounghee; Seo, Pil Joon

    2015-03-01

    Seed dormancy facilitates to endure environmental disadvantages by confining embryonic growth until the seeds encounter favorable environmental conditions for germination. Abscisic acid (ABA) and gibberellic acid (GA) play a pivotal role in the determination of the seed dormancy state. ABA establishes seed dormancy, while GA triggers seed germination. Here, we demonstrate that MYB96 contributes to the fine-tuning of seed dormancy regulation through the coordination of ABA and GA metabolism. The MYB96-deficient myb96-1 seeds germinated earlier than wild-type seeds, whereas delayed germination was observed in the activation-tagging myb96-1D seeds. The differences in germination rate disappeared after stratification or after-ripening. The MYB96 transcription factor positively regulates ABA biosynthesis genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE 2 (NCED2), NCED5, NCED6, and NCED9, and also affects GA biosynthetic genes GA3ox1 and GA20ox1. Notably, MYB96 directly binds to the promoters of NCED2 and NCED6, primarily modulating ABA biosynthesis, which subsequently influences GA metabolism. In agreement with this, hyperdormancy of myb96-1D seeds was recovered by an ABA biosynthesis inhibitor fluridone, while hypodormancy of myb96-1 seeds was suppressed by a GA biosynthesis inhibitor paclobutrazol (PAC). Taken together, the metabolic balance of ABA and GA underlies MYB96 control of primary seed dormancy.

  5. (1R,2R,3R,4R,5S-2,3-Bis[(2S′-2-acetoxy-2-phenylacetoxy]-4-azido-1-[(2,4-dinitrophenylhydrazonomethyl]bicyclo[3.1.0]hexane

    Directory of Open Access Journals (Sweden)

    Robert McDonald

    2008-02-01

    Full Text Available In the title compound, C38H29N7O12, the five-membered ring adopts an envelope conformation in which the `flap' is cis to the cyclopropane group. This conformation is similar to those of other bicyclo[3.1.0]hexane analogues for which crystal structures have been reported. The absolute configuration of the stereogenic centers on the cyclopentane ring, as determined by comparison with the known configurations of the stereogenic centers in the (2S-2-acetoxy-2-phenylacetoxy groups, is 1(R, 2(R, 3(R, 4(R and 5(S. An intramolecular N—H...O hydrogen bond is present.

  6. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Kocábek, Tomáš; Patzak, J.; Füssy, Zoltán; Procházková, Jitka; Heyerick, A.

    2012-01-01

    Roč. 12, č. 27 (2012), s. 1471-2229 ISSN 1471-2229 R&D Projects: GA ČR GA521/08/0740; GA MZe QH81052 Institutional research plan: CEZ:AV0Z50510513 Keywords : transcription factor * protein complexes * transient expression assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.354, year: 2012

  7. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower.

    Science.gov (United States)

    Chiu, Li-Wei; Li, Li

    2012-10-01

    Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue-specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network of anthocyanin biosynthesis, we investigated the interaction among cauliflower MYB-bHLH-WD40 network proteins and examined the interplay of BoMYB2 with various bHLH transcription factors in planta. Yeast two-hybrid studies revealed that cauliflower BoMYBs along with the other regulators formed the MYB-bHLH-WD40 complexes and BobHLH1 acted as a bridge between BoMYB and BoWD40-1 proteins. Different BoMYBs exhibited different binding activity to BobHLH1. Examination of the BoMYB2 transgenic lines in Arabidopsis bHLH mutant backgrounds demonstrated that TT8, EGL3, and GL3 were all involved in the BoMYB2-mediated anthocyanin biosynthesis. Expression of BoMYB2 in Arabidopsis caused up-regulation of AtTT8 and AtEGL3 as well as a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase. Taken together, our results show that MYB-bHLH-WD40 network transcription factors regulated the bHLH gene expression, which may represent a critical feature in the control of anthocyanin biosynthesis. BoMYB2 together with various BobHLHs specifically regulated the late anthocyanin biosynthetic pathway genes for anthocyanin biosynthesis. Our findings provide additional information for the complicated regulatory network of anthocyanin biosynthesis and the transcriptional regulation of transcription factors in vegetable crops.

  8. Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination.

    Directory of Open Access Journals (Sweden)

    Alison E Ringel

    Full Text Available Sir2 is an NAD(+-dependent histone deacetylase required to mediate transcriptional silencing and suppress rDNA recombination in budding yeast. We previously identified Tdh3, a glyceraldehyde 3-phosphate dehydrogenase (GAPDH, as a high expression suppressor of the lethality caused by Sir2 overexpression in yeast cells. Here we show that Tdh3 interacts with Sir2, localizes to silent chromatin in a Sir2-dependent manner, and promotes normal silencing at the telomere and rDNA. Characterization of specific TDH3 alleles suggests that Tdh3's influence on silencing requires nuclear localization but does not correlate with its catalytic activity. Interestingly, a genetic assay suggests that Tdh3, an NAD(+-binding protein, influences nuclear NAD(+ levels; we speculate that Tdh3 links nuclear Sir2 with NAD(+ from the cytoplasm.

  9. Synthesis of carbasugars from aldonolactones, part III - A study on the allylic substitution of (1R,5R,8R)- and (1R,5R,8S)-8-hydroxy-2-oxabicyclo[3.3.0]oct-6-en-3-one derivatives - Preparation of (1S,2R,3R)-9-[2-hydroxy-3-(2-hydroxyethyl)cyclopent-4-en-1-yl]-9H-adenine

    DEFF Research Database (Denmark)

    Johansen, Steen Karsk; Lundt, Inge

    2001-01-01

    The palladium-catalyzed substitution of acylated (1R,5R,8R)- and (1R,SR,8S)-8-hydroxy-2-oxabicyclo[3.3.0] ones has been studied using a number of C- and N-nucleophiles, In all cases, the exo derivatives (8R) were found to be more reactive than the corresponding endo derivatives (8S). The reaction...... with these nucleophiles. Additionally, Mitsunobu substitution of (1R,5R,8R)-8-hydroxy-2-oxabicyclo[3.3.0]oct-B-en-3-one (3) with 6-chloropurine, followed by reduction of the lactone moiety and treatment with Liquid ammonia, gave the carbocyclic nucleoside (1S,2R,3R)-9-[2-hydroxy-3-(2-hydroxyethyl)cyclopent-4-en-1-yl]-9H...

  10. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco.

    Science.gov (United States)

    Aharoni, A; De Vos, C H; Wein, M; Sun, Z; Greco, R; Kroon, A; Mol, J N; O'Connell, A P

    2001-11-01

    Fruit ripening is characterized by dramatic changes in gene expression, enzymatic activities and metabolism. Although the process of ripening has been studied extensively, we still lack valuable information on how the numerous metabolic pathways are regulated and co-ordinated. In this paper we describe the characterization of FaMYB1, a ripening regulated strawberry gene member of the MYB family of transcription factors. Flowers of transgenic tobacco lines overexpressing FaMYB1 showed a severe reduction in pigmentation. A reduction in the level of cyanidin 3-rutinoside (an anthocyanin) and of quercetin-glycosides (flavonols) was observed. Expression of late flavonoid biosynthesis genes and their enzyme activities were adversely affected by FaMYB1 overexpression. Two-hybrid assays in yeast showed that FaMYB1 could interact with other known anthocyanin regulators, but it does not act as a transcriptional activator. Interestingly, the C-terminus of FaMYB1 contains the motif pdLNL(D)/(E)Lxi(G)/S. This motif is contained in a region recently proposed to be involved in the repression of transcription by AtMYB4, an Arabidopsis MYB protein. Our results suggest that FaMYB1 may play a key role in regulating the biosynthesis of anthocyanins and flavonols in strawberry. It may act to repress transcription in order to balance the levels of anthocyanin pigments produced at the latter stages of strawberry fruit maturation, and/or to regulate metabolite levels in various branches of the flavonoid biosynthetic pathway.

  11. Preliminary structural studies of the transcriptional regulator CmeR from Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chih-Chia [Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Shi, Feng [Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 (United States); Gu, Ruoyu; Li, Ming [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); McDermott, Gerry [Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143 (United States); Yu, Edward W., E-mail: ewyu@iastate.edu [Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Zhang, Qijing [Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 (United States); Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States)

    2007-01-01

    The transcriptional regulator CmeR from C. jejuni has been purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.2 Å. In Campylobacter jejuni, a Gram-negative bacterial pathogen causing gastroenteritis in humans, the CmeR regulatory protein controls transcription of the multidrug transporter gene operon cmeABC. CmeR belongs to the TetR family of transcriptional regulators. The 210-residue CmeR consists of two functional motifs: an N-terminal DNA-binding domain and a C-terminal ligand-binding domain. It is predicted that the DNA-binding domain interacts directly with target promoters, while the C-terminal motif interacts with inducing ligands (such as bile salts). As an initial step towards confirming this structural model, recombinant CmeR protein containing a 6×His tag at the N-terminus was crystallized. Crystals of ligand-free CmeR belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 37.4, b = 57.6, c = 93.3 Å. Diffraction was observed to at least 2.2 Å at 100 K. Analysis of the detailed CmeR structure is currently in progress.

  12. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  13. Downregulation of rRNA transcription triggers cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yuki Hayashi

    Full Text Available Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  14. The Purple Cauliflower Arises from Activation of a MYB Transcription Factor1[W][OA

    Science.gov (United States)

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L.; Li, Li

    2010-01-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3’-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal. PMID:20855520

  15. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.

    Science.gov (United States)

    Gonzalez, Antonio; Zhao, Mingzhe; Leavitt, John M; Lloyd, Alan M

    2008-03-01

    In all higher plants studied to date, the anthocyanin pigment pathway is regulated by a suite of transcription factors that include Myb, bHLH and WD-repeat proteins. However, in Arabidopsis thaliana, the Myb regulators remain to be conclusively identified, and little is known about anthocyanin pathway regulation by TTG1-dependent transcriptional complexes. Previous overexpression of the PAP1 Myb suggested that genes from the entire phenylpropanoid pathway are targets of regulation by Myb/bHLH/WD-repeat complexes in Arabidopsis, in contrast to other plants. Here we demonstrate that overexpression of Myb113 or Myb114 results in substantial increases in pigment production similar to those previously seen as a result of over-expression of PAP1, and pigment production in these overexpressors remains TTG1- and bHLH-dependent. Also, plants harboring an RNAi construct targeting PAP1 and three Myb candidates (PAP2, Myb113 and Myb114) showed downregulated Myb gene expression and obvious anthocyanin deficiencies. Correlated with these anthocyanin deficiencies is downregulation of the same late anthocyanin structural genes that are downregulated in ttg1 and bHLH anthocyanin mutants. Expression studies using GL3:GR and TTG1:GR fusions revealed direct regulation of the late biosynthetic genes only. Functional diversification between GL3 and EGL3 with regard to activation of gene targets was revealed by GL3:GR studies in single and double bHLH mutant seedlings. Expression profiles for Myb and bHLH regulators are also presented in the context of pigment production in young seedlings.

  16. Antisense myb inhibition of purified erythroid progenitors in development and differentiation is linked to cycling activity and expression of DNA polymerase alpha

    International Nuclear Information System (INIS)

    Valtieri, M.; Venturelli, D.; Care, A.; Fossati, C.; Pelosi, E.; Labbaye, C.; Mattia, G.; Gewirtz, A.M.; Calabretta, B.; Peschle, C.

    1991-01-01

    These studies aimed to determine the expression and functional role of c-myb in erythroid progenitors with different cycling activities. In the first series of experiments the erythroid burst-forming unit (BFU-E) and colony-forming unit (CFU-E) populations from adult peripheral blood (PB), bone marrow (BM), and embryonic-fetal liver (FL) were treated with either c-myb antisense oligomers or 3H-thymidine (3H-TdR). A direct correlation was always observed between the inhibitory effect of anti-myb oligomers and the level of cycling activity. Thus, the inhibitory effect of antisense c-myb on the number of BFU-E colonies was 28.3% +/- 15.8% in PB, 53.4% +/- 9.3% in BM, and 68.2% +/- 24.5% in FL. Both adult and embryonic CFU-E were markedly inhibited. Using purified PB progenitors, we observed a similar pattern, although with slightly lower inhibitory effects. In the 3H-TdR suicide assay the killing index of BFU-E was 8.9% +/- 4.2% in PB, 29.4% +/- 6.5% in BM, and 40.1% +/- 9.6% in FL. The values for adult and embryonic CFU-E were 55.7% +/- 7.9% and 60.98% +/- 6.6%, respectively. We then investigated the kinetics of c-myb mRNA level during the erythroid differentiation of purified adult PB and FL BFU-E, as evaluated in liquid-phase culture by reverse transcription-polymerase chain reaction. Adult erythroid precursors showed a gradual increase of c-myb mRNA from day 4 through day 8 of culture and a sharp decrease at later times, whereas the expression of c-myb mRNA and protein in differentiation embryonic precursors peaked 2 days earlier. In both cases, c-myb mRNA level peaked at the CFU-E stage of differentiation. Finally, highly purified adult PB BFU-E were stimulated into cycling by a 3-day treatment with interleukin-3 in liquid phase: both the sensitivity to c-myb antisense oligomers and the 3H-TdR suicide index showed a gradual, strictly parallel increase

  17. Transcriptional repressor role of PocR on the 1,3-propanediol biosynthetic pathway by Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-06-01

    The regulatory role of a transcriptional regulator (PocR) in the 1,3-propanediol biosynthetic pathway of Lactobacillus panis PM1 contributes to the optimization of 1,3-propanediol production by this strain, which potentially will lead to 1,3-propanediol manufacturing efficiencies. Lactobacillus panis PM1 can utilize a 1,3-propanediol (1,3-PDO) biosynthetic pathway, consisting of diol dehydratase (PduCDE) and 1,3-PDO dehydrogenase, as a NADH recycling system, to survive under various environmental conditions. In this study, we identified a key transcriptional repressor (PocR) which was annotated as a transcriptional factor of AraC family as part of the 1,3-PDO biosynthetic pathway of L. panis PM1. The over-expression of the PocR gene resulted in the significant repression (81 %) of pduC (PduCDE large subunit) transcription, and subsequently, the decreased activity of PduCDE by 22 %. As a result of the regulation of PduCDE, production of both 3-hydroxypropionaldehyde and 1,3-PDO in the PocR over-expressing strain were significantly decreased by 40 % relative to the control strain. These results clearly demonstrate the transcriptional repressor role of PocR in the 1,3-PDO biosynthetic pathway.

  18. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    Science.gov (United States)

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. WRKY2/34–VQ20 Modules in Arabidopsis thaliana Negatively Regulate Expression of a Trio of Related MYB Transcription Factors During Pollen Development

    Directory of Open Access Journals (Sweden)

    Rihua Lei

    2018-03-01

    Full Text Available Male gametogenesis in plants is tightly controlled and involves the complex and precise regulation of transcriptional reprogramming. Interactions between WRKY proteins and VQ motif-containing proteins are required to control these complicated transcriptional networks. However, our understanding of the mechanisms by which these complexes affect downstream gene expression is quite limited. In this study, we found that WRKY2 and WKRY34 repress MYB97, MYB101, and MYB120 expression during male gametogenesis. MYB expression was up-regulated in the wrky2-1 wrky34-1 vq20-1 triple mutant during male gametogenesis. The expression levels of six potential targets of the three MYBs increased the most in the wrky2-1 wrky34-1 vq20-1 triple mutant, followed by the wrky2-1 wrky34-1 double mutant, compared with in wild-type. Yeast one-hybrid and dual luciferase reporter assays indicated that WRKY2 and WRKY34 recognized the MYB97 promoter by binding to its W-boxes. MYB97 overexpression caused defects in pollen germination and pollen tube length, which impacted male fertility. Thus, WRKY2/34–VQ20 complexes appear to negatively regulate the expression of certain MYBs during plant male gametogenesis.

  20. The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Henning eFrerigmann

    2015-08-01

    Full Text Available The indolic phytoalexin camalexin is a crucial defence metabolite in the model plant Arabidopsis. Indolic phytoalexins and glucosinolates appear to have a common evolutionary origin and are interconnected on the biosynthetic level: a key intermediate in the biosynthesis of camalexin, indole-3-acetaldoxime (IAOx, is also required for the biosynthesis of indolic glucosinolates and is under tight control by the transcription factors MYB34, MYB51 and MYB122. The abundance of camalexin was strongly reduced in myb34/51 and myb51/122 double and in triple myb mutant, suggesting that these transcription factors are important in camalexin biosynthesis. Furthermore, expression of MYB51 and MYB122 was significantly increased by biotic and abiotic camalexin-inducing agents. Feeding of the triple myb34/51/122 mutant with IAOx or indole-3-acetonitrile largely restored camalexin biosynthesis. Conversely, tryptophan could not complement the low camalexin phenotype of this mutant, which supports a role for the three MYB factors in camalexin biosynthesis upstream of IAOx. Consistently expression of the camalexin biosynthesis genes CYP71B15/PAD3 and CYP71A13 was not negatively affected in the triple myb mutant and the MYBs could not activate pCYP71B15::uidA expression in trans-activation assays with cultured Arabidopsis cells. In conclusion, this study reveals the importance of MYB factors regulating the generation of IAOx as precursor of camalexin.

  1. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor).

    Science.gov (United States)

    Zhang, Bin; Hu, Zongli; Zhang, Yanjie; Li, Yali; Zhou, Shuang; Chen, Guoping

    2012-02-01

    The purple kale (Brassica Oleracea var. acephala f. tricolor) is a mutation in kales, giving the mutant phenotype of brilliant purple color in the interior. Total anthocyanin analysis showed that the amount of anthocyanins in the purple kale was up to 1.73 mg g(-1) while no anthocyanin was detected in the white kale. To elucidate the molecular mechanism of the anthocyanin biosynthesis in the purple kale, we analyzed the expression of structural genes and some transcription factors associated with anthocyanin biosynthesis in the purple cultivar "Red Dove" and the white cultivar "White Dove". The result showed that nearly all the anthocyanin biosynthetic genes showed higher expression levels in the purple cultivar than in the white cultivar, especially for DFR and ANS, they were barely detected in the white cultivar. Interestingly, the fact that a R2R3 MYB transcription factor named BoPAP1 was extremely up-regulated in the purple kale and induced by low temperature attracted our attention. Further sequence analysis showed that BoPAP1 shared high similarity with AtPAP1 and BoMYB1. In addition, the anthocyanin accumulation in the purple kale is strongly induced by the low temperature stress. The total anthocyanin contents in the purple kale under low temperature were about 50-fold higher than the plants grown in the greenhouse. The expression of anthocyanin biosynthetic genes C4H, F3H, DFR, ANS and UFGT were all enhanced under the low temperature. These evidences strongly suggest that BoPAP1 may play an important role in activating the anthocyanin structural genes for the abundant anthocyanin accumulation in the purple kale.

  2. Steviamine, a new class of indolizidine alkaloid [(1R,2S,3R,5R,8aR-3-hydroxymethyl-5-methyloctahydroindolizine-1,2-diol hydrobromide

    Directory of Open Access Journals (Sweden)

    Amber L. Thompson

    2009-11-01

    Full Text Available X-ray crystallographic analysis of the title hydrobromide salt, C10H20N+·Br−, of (1R,2S,3R,5R,8aR-3-hydroxymethyl-5-methyloctahydroindolizine-1,2-diol defines the absolute and relative stereochemistry at the five chiral centres in steviamine, a new class of polyhydroxylated indolizidine alkaloid isolated from Stevia rebaudiana (Asteraceae leaves. In the crystal structure, molecules are linked by intermolecular O—H...Br and N—H...Br hydrogen bonds, forming double chains around the twofold screw axes along the b-axis direction. Intramolecular O—H...O interactions occur.

  3. Transcriptional regulation of miR-146b by C/EBPβ LAP2 in esophageal cancer cells

    International Nuclear Information System (INIS)

    Li, Junxia; Shan, Fabo; Xiong, Gang; Wang, Ju-Ming; Wang, Wen-Lin; Xu, Xueqing; Bai, Yun

    2014-01-01

    Highlights: • MiR-146b promotes esophageal cancer cell proliferation. • MiR-146b inhibits esophageal cancer cell apoptosis. • C/EBPβ directly binds to miR-146b promoter conserved region. • MiR-146b is up-regulated by C/EBPβ LAP2 transcriptional activation. - Abstract: Recent clinical study indicated that up-regulation of miR-146b was associated with poor overall survival of patients in esophageal squamous cell carcinoma. However, the underlying mechanism of miR-146b dysregulation remains to be explored. Here we report that miR-146b promotes cell proliferation and inhibits cell apoptosis in esophageal cancer cell lines. Mechanismly, two C/EBPβ binding motifs are located in the miR-146b promoter conserved region. Among the three isoforms of C/EBPβ, C/EBPβ LAP2 positively regulated miR-146b expression and increases miR-146b levels in a dose-dependent manner through transcription activation of miR-146b gene. Together, these results suggest a miR-146b regulatory mechanism involving C/EBPβ, which may contribute to the up-regulation of miR-146b in esophageal squamous cell carcinoma

  4. Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Helene Persak

    2014-02-01

    Full Text Available In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance—the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.

  5. Resolution of 1-n-butyl-3-methyl-3-phospholene 1-oxide with TADDOL derivatives and calcium salts of O,O'-Dibenzoyl-(2R,3R)- or O,O'-di-p-toluoyl-(2R,3R)-tartaric acid.

    Science.gov (United States)

    Bagi, Péter; Fekete, András; Kállay, Mihály; Hessz, Dóra; Kubinyi, Miklós; Holczbauer, Tamás; Czugler, Mátyás; Fogassy, Elemér; Keglevich, György

    2014-03-01

    The resolution methods applying (-)-(4R,5R)-4,5-bis(diphenylhydroxymethyl)-2,2-dimethyldioxolane ("TADDOL"), (-)-(2R,3R)-α,α,α',α'-tetraphenyl-1,4-dioxaspiro[4.5]decan-2,3-dimethanol ("spiro-TADDOL"), as well as the acidic and neutral Ca(2+) salts of (-)-O,O'-dibenzoyl- and (-)-O,O'-di-p-toluoyl-(2R,3R)-tartaric acid were extended for the preparation of 1-n-butyl-3-methyl-3-phospholene 1-oxide in optically active form. In one case, the intermediate diastereomeric complex could be identified by single-crystal X-ray analysis. The absolute P-configuration of the enantiomers of the phospholene oxide was also determined by comparing the experimentally obtained and calculated CD spectra. © 2014 Wiley Periodicals, Inc.

  6. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6.

    Science.gov (United States)

    Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui

    2013-10-01

    (2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P222₁, with unit-cell parameters a=88.35, b=128.73, c=131.03 Å.

  7. The MIEL1 E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Stems.

    Science.gov (United States)

    Lee, Hong Gil; Kim, Juyoung; Suh, Mi Chung; Seo, Pil Joon

    2017-07-01

    Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease.

    Science.gov (United States)

    Zhang, Qiulei; Li, Yang; Zhang, Yi; Wu, Chuanbao; Wang, Shengnan; Hao, Li; Wang, Shengyuan; Li, Tianzhong

    2017-01-01

    MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple ( Malus × domestica ). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1 , and MdPR10-2 . In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26 . In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.

  9. LnqR, a TetR-family transcriptional regulator, positively regulates lacticin Q production in Lactococcus lactis QU 5.

    Science.gov (United States)

    Iwatani, Shun; Ishibashi, Naoki; Flores, Floirendo P; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2016-09-01

    Lacticin Q is an unmodified leaderless bacteriocin produced by Lactococcus lactis QU 5. It has been revealed that the production and self-immunity of lacticin Q are facilitated by a gene cluster lnqQBCDEF The gene for a putative TetR-family transcriptional regulator, termed lnqR, was found nearby the lnqQBCDEF cluster, but its involvement in lacticin Q biosynthesis remained unknown. In this study, we created an LnqR-overexpressing QU 5 recombinant by using lactococcal constitutive promoter P32 The recombinant QU 5 showed enhanced production of and self-immunity to lacticin Q. RT-PCR analysis has revealed that an overexpression of LnqR increases the amounts of lnqQBCDEF transcripts, and these six genes are transcribed as an operon in a single transcriptional unit. Interestingly, LnqR expression and thus lacticin Q production by L. lactis QU 5 was found temperature dependent, while LnzR, an LnqR-homologue, in L. lactis QU 14 was expressed in a similar but not identical manner to LnqR, resulting in dissimilar bacteriocin productivities by these strains. This report demonstrates LnqR as the first TetR-family transcriptional regulator involved in LAB bacteriocin biosynthesis and that, as an exceptional case of TetR-family regulators, LnqR positively regulates the transcription of these biosynthetic genes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Two showy traits, scent emission and pigmentation, are finely coregulated by the MYB transcription factor PH4 in petunia flowers.

    Science.gov (United States)

    Cna'ani, Alon; Spitzer-Rimon, Ben; Ravid, Jasmin; Farhi, Moran; Masci, Tania; Aravena-Calvo, Javiera; Ovadis, Marianna; Vainstein, Alexander

    2015-11-01

    The mechanism underlying the emission of phenylpropanoid volatiles is poorly understood. Here, we reveal the involvement of PH4, a petunia MYB-R2R3 transcription factor previously studied for its role in vacuolar acidification, in floral volatile emission. We used the virus-induced gene silencing (VIGS) approach to knock down PH4 expression in petunia, measured volatile emission and internal pool sizes by GC-MS, and analyzed transcript abundances of scent-related phenylpropanoid genes in flowers. Silencing of PH4 resulted in a marked decrease in floral phenylpropanoid volatile emission, with a concurrent increase in internal pool levels. Expression of scent-related phenylpropanoid genes was not affected. To identify putative scent-related targets of PH4, we silenced PH5, a tonoplast-localized H(+) -ATPase that maintains vacuolar pH homeostasis. Suppression of PH5 did not yield the reduced-emission phenotype, suggesting that PH4 does not operate in the context of floral scent through regulation of vacuolar pH. We conclude that PH4 is a key floral regulator that integrates volatile production and emission processes and interconnects two essential floral traits - color and scent. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Antiausterity activity of arctigenin enantiomers: importance of (2R,3R)-absolute configuration.

    Science.gov (United States)

    Awale, Suresh; Kato, Mamoru; Dibwe, Dya Fita; Li, Feng; Miyoshi, Chika; Esumi, Hiroyasu; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2014-01-01

    From a MeOH extract of powdered roots of Wikstroemia indica, six dibenzyl-gamma-butyrolactone-type lignans with (2S,3S)-absolute configuration [(+)-arctigenin (1), (+)-matairesinol (2), (+)-trachelogenin (3), (+)-nortrachelogenin (4), (+)-hinokinin (5), and (+)-kusunokinin (6)] were isolated, whereas three dibenzyl-gamma-butyrolactone-type lignans with (2R,3R)-absolute configuration [(-)-arctigenin (1*), (-)-matairesinol (2*), (-)-trachelogenin (3*)] were isolated from Trachelospermum asiaticum. The in vitro preferential cytotoxic activity of the nine compounds was evaluated against human pancreatic PANC-1 cancer cells in nutrient-deprived medium (NDM), but none of the six lignans (1-6) with (2S,3S)-absolute configuration showed preferential cytotoxicity. On the other hand, three lignans (1*-3*) with (2R,3R)-absolute configuration exhibited preferential cytotoxicity in a concentration-dependent manner with PC50 values of 0.54, 6.82, and 5.85 microM, respectively. Furthermore, the effect of (-)- and (+)-arctigenin was evaluated against the activation of Akt, which is a key process in the tolerance to nutrition starvation. Interestingly, only (-)-arctigenin (1*) strongly suppressed the activation of Akt. These results indicate that the (2R,3R)-absolute configuration of (-)-enantiomers should be required for the preferential cytotoxicity through the inhibition of Akt activation.

  12. RFX2 is a candidate downstream amplifier of A-MYB regulation in mouse spermatogenesis

    Directory of Open Access Journals (Sweden)

    Kistler Malathi K

    2009-12-01

    Full Text Available Abstract Background Mammalian spermatogenesis involves formation of haploid cells from the male germline and then a complex morphological transformation to generate motile sperm. Focusing on meiotic prophase, some tissue-specific transcription factors are known (A-MYB or suspected (RFX2 to play important roles in modulating gene expression in pachytene spermatocytes. The current work was initiated to identify both downstream and upstream regulatory connections for Rfx2. Results Searches of pachytene up-regulated genes identified high affinity RFX binding sites (X boxes in promoter regions of several new genes: Adam5, Pdcl2, and Spag6. We confirmed a strong promoter-region X-box for Alf, a germ cell-specific variant of general transcription factor TFIIA. Using Alf as an example of a target gene, we showed that its promoter is stimulated by RFX2 in transfected cells and used ChIP analysis to show that the promoter is occupied by RFX2 in vivo. Turning to upstream regulation of the Rfx2 promoter, we identified a cluster of three binding sites (MBS for the MYB family of transcription factors. Because testis is one of the few sites of A-myb expression, and because spermatogenesis arrests in pachytene in A-myb knockout mice, the MBS cluster implicates Rfx2 as an A-myb target. Electrophoretic gel-shift, ChIP, and co-transfection assays all support a role for these MYB sites in Rfx2 expression. Further, Rfx2 expression was virtually eliminated in A-myb knockout testes. Immunohistology on testis sections showed that A-MYB expression is up-regulated only after pachytene spermatocytes have clearly moved away from the tubule wall, which correlates with onset of RFX2 expression, whereas B-MYB expression, by contrast, is prevalent only in earlier spermatocytes and spermatogonia. Conclusion With an expanding list of likely target genes, RFX2 is potentially an important transcriptional regulator in pachytene spermatocytes. Rfx2 itself is a good candidate to be

  13. R-loops in bacterial transcription: their causes and consequences.

    Science.gov (United States)

    Gowrishankar, J; Leela, J Krishna; Anupama, K

    2013-01-01

    Nascent untranslated transcripts in bacteria are prone to generating RNA-DNA hybrids (R-loops); Rho-dependent transcription termination acts to reduce their prevalence. Here we discuss the mechanisms of R-loop formation and growth inhibition in bacteria.

  14. The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster.

    Directory of Open Access Journals (Sweden)

    Nicholas P Tucker

    Full Text Available The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity.

  15. Mybs in mouse hair follicle development

    Czech Academy of Sciences Publication Activity Database

    Veselá, Barbora; Švandová, Eva; Šmarda, J.; Matalová, Eva

    2014-01-01

    Roč. 46, č. 5 (2014), s. 352-355 ISSN 0040-8166 R&D Projects: GA ČR GCP302/12/J059 Institutional support: RVO:67985904 Keywords : hair follicle * stem cells * c-Myb * B-Myb * development Subject RIV: EA - Cell Biology Impact factor: 1.252, year: 2014

  16. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  17. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2014-07-01

    Full Text Available Long noncoding RNAs (lncRNAs are emerging as new players in gene regulation, but whether lncRNAs operate in the processing of miRNA primary transcript is unclear. Also, whether lncRNAs are involved in the regulation of the mitochondrial network remains to be elucidated. Here, we report that a long noncoding RNA, named mitochondrial dynamic related lncRNA (MDRL, affects the processing of miR-484 primary transcript in nucleus and regulates the mitochondrial network by targeting miR-361 and miR-484. The results showed that miR-361 that predominantly located in nucleus can directly bind to primary transcript of miR-484 (pri-miR-484 and prevent its processing by Drosha into pre-miR-484. miR-361 is able to regulate mitochondrial fission and apoptosis by regulating miR-484 levels. In exploring the underlying molecular mechanism by which miR-361 is regulated, we identified MDRL and demonstrated that it could directly bind to miR-361 and downregulate its expression levels, which promotes the processing of pri-miR-484. MDRL inhibits mitochondrial fission and apoptosis by downregulating miR-361, which in turn relieves inhibition of miR-484 processing by miR-361. Our present study reveals a novel regulating model of mitochondrial fission program which is composed of MDRL, miR-361 and miR-484. Our work not only expands the function of the lncRNA pathway in gene regulation but also establishes a new mechanism for controlling miRNA expression.

  18. The Effect of Common Inversion Polymorphisms In(2L)t and In(3R)Mo on Patterns of Transcriptional Variation in Drosophila melanogaster.

    Science.gov (United States)

    Lavington, Erik; Kern, Andrew D

    2017-11-06

    Chromosomal inversions are a ubiquitous feature of genetic variation. Theoretical models describe several mechanisms by which inversions can drive adaptation and be maintained as polymorphisms. While inversions have been shown previously to be under selection, or contain genetic variation under selection, the specific phenotypic consequences of inversions leading to their maintenance remain unclear. Here we use genomic sequence and expression data from the Drosophila Genetic Reference Panel (DGRP) to explore the effects of two cosmopolitan inversions, In ( 2L ) t and In ( 3R ) Mo , on patterns of transcriptional variation. We demonstrate that each inversion has a significant effect on transcript abundance for hundreds of genes across the genome. Inversion-affected loci (IAL) appear both within inversions as well as on unlinked chromosomes. Importantly, IAL do not appear to be influenced by the previously reported genome-wide expression correlation structure. We found that five genes involved with sterol uptake, four of which are Niemann-Pick Type 2 orthologs, are upregulated in flies with In ( 3R ) Mo but do not have SNPs in linkage disequilibrium (LD) with the inversion. We speculate that this upregulation is driven by genetic variation in mod ( mdg4 ) that is in LD with In ( 3R ) Mo We find that there is little evidence for a regional or position effect of inversions on gene expression at the chromosomal level, but do find evidence for the distal breakpoint of In ( 3R ) Mo interrupting one gene and possibly disassociating the two flanking genes from regulatory elements. Copyright © 2017 Lavington and Kern.

  19. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells.

    Science.gov (United States)

    Zhan, Ming; Riordon, Daniel R; Yan, Bin; Tarasova, Yelena S; Bruweleit, Sarah; Tarasov, Kirill V; Li, Ronald A; Wersto, Robert P; Boheler, Kenneth R

    2012-01-01

    Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.

  20. Crystal structure of (1S,3R,8R,9R-2,2-dichloro-3,7,7-trimethyl-10-methylenetricyclo[6.4.0.01,3]dodecan-9-ol

    Directory of Open Access Journals (Sweden)

    Ahmed Benzalim

    2016-08-01

    Full Text Available The title compound, C16H24Cl2O, was synthesized by treating (1S,3R,8S,9R,10S-2,2-dichloro-3,7,7,10-tetramethyl-9,10-epoxytricyclo[6.4.0.01,3]dodecane with a concentrated solution of hydrobromic acid. It is built up from three fused rings: a cycloheptane ring, a cyclohexyl ring bearing alkene and hydroxy substituents, and a cyclopropane ring bearing two chlorine atoms. The asymmetric unit contains two molecules linked by an O—H...O hydrogen bond. In the crystal, further O—H...O hydrogen bonds build up an R44(8 cyclic tetramer. One of the molecules presents disorder that affects the seven-membered ring. In both molecules, the six-membered rings display a chair conformation, whereas the seven-membered rings display conformations intermediate between boat and twist-boat for the non-disordered molecule and either a chair or boat and twist-boat for the disordered molecule owing to the disorder. The absolute configuration for both molecules is 1S,3R,8R,9R and was deduced from the chemical pathway and further confirmed by the X-ray structural analysis.

  1. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity.

    Science.gov (United States)

    Park, Sung-Chul; Kim, Yun-Hee; Kim, Sun Ha; Jeong, Yu Jeong; Kim, Cha Young; Lee, Joon Seol; Bae, Ji-Yeong; Ahn, Mi-Jeong; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2015-04-01

    The R2R3-type protein IbMYB1 is a key regulator of anthocyanin biosynthesis in the storage roots of sweet potato [Ipomoea batatas (L.) Lam]. Previously, we demonstrated that IbMYB1 expression stimulated anthocyanin pigmentation in tobacco leaves and Arabidopsis. Here, we generated dual-pigmented transgenic sweet potato plants that accumulated high levels of both anthocyanins and carotenoids in a single sweet potato storage root. An orange-fleshed cultivar with high carotenoid levels was transformed with the IbMYB1 gene under the control of either the storage root-specific sporamin 1 (SPO1) promoter or the oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The SPO1-MYB transgenic lines exhibited higher anthocyanin levels in storage roots than empty vector control (EV) or SWPA2-MYB plants, but carotenoid content was unchanged. SWPA2-MYB transgenic lines exhibited higher levels of both anthocyanin and carotenoids than EV plants. Analysis of hydrolyzed anthocyanin extracts indicated that cyanidin and peonidin predominated in both overexpression lines. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that IbMYB1 expression in both IbMYB1 transgenic lines strongly induced the upregulation of several genes in the anthocyanin biosynthetic pathway, whereas the expression of carotenoid biosynthetic pathway genes varied between transgenic lines. Increased anthocyanin levels in transgenic plants also promoted the elevation of proanthocyanidin and total phenolic levels in fresh storage roots. Consequently, all IbMYB1 transgenic plants displayed much higher antioxidant activities than EV plants. In field cultivations, storage root yields varied between the transgenic lines. Taken together, our results indicate that overexpression of IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced antioxidant capacity. © 2014 Scandinavian Plant Physiology Society.

  2. lncRNA-Induced Nucleosome Repositioning Reinforces Transcriptional Repression of rRNA Genes upon Hypotonic Stress

    Directory of Open Access Journals (Sweden)

    Zhongliang Zhao

    2016-03-01

    Full Text Available The activity of rRNA genes (rDNA is regulated by pathways that target the transcription machinery or alter the epigenetic state of rDNA. Previous work has established that downregulation of rRNA synthesis in quiescent cells is accompanied by upregulation of PAPAS, a long noncoding RNA (lncRNA that recruits the histone methyltransferase Suv4-20h2 to rDNA, thus triggering trimethylation of H4K20 (H4K20me3 and chromatin compaction. Here, we show that upregulation of PAPAS in response to hypoosmotic stress does not increase H4K20me3 because of Nedd4-dependent ubiquitinylation and proteasomal degradation of Suv4-20h2. Loss of Suv4-20h2 enables PAPAS to interact with CHD4, a subunit of the chromatin remodeling complex NuRD, which shifts the promoter-bound nucleosome into the transcriptional “off” position. Thus, PAPAS exerts a “stress-tailored” dual function in rDNA silencing, facilitating either Suv4-20h2-dependent chromatin compaction or NuRD-dependent changes in nucleosome positioning.

  3. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Teresa eDocimo

    2016-01-01

    Full Text Available Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena fruits. Chlorogenic acid (CGA accounts for 70 to 90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena.Higher contents of CGA, Delphinidin 3-rutinoside and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group 6 MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties.In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation.Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9 resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of

  4. Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene.

    Science.gov (United States)

    Broxson, Christopher; Beckett, Joshua; Tornaletti, Silvia

    2011-05-17

    Non canonical DNA structures correspond to genomic regions particularly susceptible to genetic instability. The transcription process facilitates formation of these structures and plays a major role in generating the instability associated with these genomic sites. However, little is known about how non canonical structures are processed when encountered by an elongating RNA polymerase. Here we have studied the behavior of T7 RNA polymerase (T7RNAP) when encountering a G quadruplex forming-(GGA)(4) repeat located in the human c-myb proto-oncogene. To make direct correlations between formation of the structure and effects on transcription, we have taken advantage of the ability of the T7 polymerase to transcribe single-stranded substrates and of G4 DNA to form in single-stranded G-rich sequences in the presence of potassium ions. Under physiological KCl concentrations, we found that T7 RNAP transcription was arrested at two sites that mapped to the c-myb (GGA)(4) repeat sequence. The extent of arrest did not change with time, indicating that the c-myb repeat represented an absolute block and not a transient pause to T7 RNAP. Consistent with G4 DNA formation, arrest was not observed in the absence of KCl or in the presence of LiCl. Furthermore, mutations in the c-myb (GGA)(4) repeat, expected to prevent transition to G4, also eliminated the transcription block. We show T7 RNAP arrest at the c-myb repeat in double-stranded DNA under conditions mimicking the cellular concentration of biomolecules and potassium ions, suggesting that the G4 structure formed in the c-myb repeat may represent a transcription roadblock in vivo. Our results support a mechanism of transcription-coupled DNA repair initiated by arrest of transcription at G4 structures.

  5. Dual Regulation of Bacillus subtilis kinB Gene Encoding a Sporulation Trigger by SinR through Transcription Repression and Positive Stringent Transcription Control.

    Science.gov (United States)

    Fujita, Yasutaro; Ogura, Mitsuo; Nii, Satomi; Hirooka, Kazutake

    2017-01-01

    It is known that transcription of kinB encoding a trigger for Bacillus subtilis sporulation is under repression by SinR, a master repressor of biofilm formation, and under positive stringent transcription control depending on the adenine species at the transcription initiation nucleotide (nt). Deletion and base substitution analyses of the kinB promoter (P kinB ) region using lacZ fusions indicated that either a 5-nt deletion (Δ5, nt -61/-57, +1 is the transcription initiation nt) or the substitution of G at nt -45 with A (G-45A) relieved kinB repression. Thus, we found a pair of SinR-binding consensus sequences (GTTCTYT; Y is T or C) in an inverted orientation (SinR-1) between nt -57/-42, which is most likely a SinR-binding site for kinB repression. This relief from SinR repression likely requires SinI, an antagonist of SinR. Surprisingly, we found that SinR is essential for positive stringent transcription control of P kinB . Electrophoretic mobility shift assay (EMSA) analysis indicated that SinR bound not only to SinR-1 but also to SinR-2 (nt -29/-8) consisting of another pair of SinR consensus sequences in a tandem repeat arrangement; the two sequences partially overlap the '-35' and '-10' regions of P kinB . Introduction of base substitutions (T-27C C-26T) in the upstream consensus sequence of SinR-2 affected positive stringent transcription control of P kinB , suggesting that SinR binding to SinR-2 likely causes this positive control. EMSA also implied that RNA polymerase and SinR are possibly bound together to SinR-2 to form a transcription initiation complex for kinB transcription. Thus, it was suggested in this work that derepression of kinB from SinR repression by SinI induced by Spo0A∼P and occurrence of SinR-dependent positive stringent transcription control of kinB might induce effective sporulation cooperatively, implying an intimate interplay by stringent response, sporulation, and biofilm formation.

  6. Amino methylation of 2-R-6-R_1-imidazo-[2.1-B]-1.3.4-thiadiazole

    International Nuclear Information System (INIS)

    Saidov, D.K.; Rakhmonov, R.O.; Khodzhiboev, Yu.; Kukaniev, M.A.; Bandaev, S.

    2015-01-01

    Present article is devoted to amino methylation of 2-R-6-R_1-imidazo-[2.1-B]-1.3.4-thiadiazole. The reaction of new modifications of derivatives of imidazo-[2.1-B]-1.3.4-thiadiazoles-2-bromine-6-p-bromophenyl and 2-alkyl alkylene sulfonyl-6-phenyl imidazo--[2.1-B]-1.3.4-thiadiazole on Mannich with secondary and heterocyclic amines was studied.

  7. Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae.

    Science.gov (United States)

    Noguchi, Yuji; Sano, Motoaki; Kanamaru, Kyoko; Ko, Taro; Takeuchi, Michio; Kato, Masashi; Kobayashi, Tetsuo

    2009-11-01

    XlnR is a Zn(II)2Cys6 transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus. Overexpression of the aoxlnR gene in Aspergillus oryzae (A. oryzae xlnR gene) resulted in elevated xylanolytic and cellulolytic activities in the culture supernatant, in which nearly 40 secreted proteins were detected by two-dimensional electrophoresis. DNA microarray analysis to identify the transcriptional targets of AoXlnR led to the identification of 75 genes that showed more than fivefold increase in their expression in the AoXlnR overproducer than in the disruptant. Of these, 32 genes were predicted to encode a glycoside hydrolase, highlighting the biotechnological importance of AoXlnR in biomass degradation. The 75 genes included the genes previously identified as AoXlnR targets (xynF1, xynF3, xynG2, xylA, celA, celB, celC, and celD). Thirty-six genes were predicted to be extracellular, which was consistent with the number of proteins secreted, and 61 genes possessed putative XlnR-binding sites (5'-GGCTAA-3', 5'-GGCTAG-3', and 5'-GGCTGA-3') in their promoter regions. Functional annotation of the genes revealed that AoXlnR regulated the expression of hydrolytic genes for degradation of beta-1,4-xylan, arabinoxylan, cellulose, and xyloglucan and of catabolic genes for the conversion of D-xylose to xylulose-5-phosphate. In addition, genes encoding glucose-6-phosphate 1-dehydrogenase and L-arabinitol-4- dehydrogenase involved in D-glucose and L-arabinose catabolism also appeared to be targets of AoXlnR.

  8. R-ChIP Using Inactive RNase H Reveals Dynamic Coupling of R-loops with Transcriptional Pausing at Gene Promoters.

    Science.gov (United States)

    Chen, Liang; Chen, Jia-Yu; Zhang, Xuan; Gu, Ying; Xiao, Rui; Shao, Changwei; Tang, Peng; Qian, Hao; Luo, Daji; Li, Hairi; Zhou, Yu; Zhang, Dong-Er; Fu, Xiang-Dong

    2017-11-16

    R-loop, a three-stranded RNA/DNA structure, has been linked to induced genome instability and regulated gene expression. To enable precision analysis of R-loops in vivo, we develop an RNase-H-based approach; this reveals predominant R-loop formation near gene promoters with strong G/C skew and propensity to form G-quadruplex in non-template DNA, corroborating with all biochemically established properties of R-loops. Transcription perturbation experiments further indicate that R-loop induction correlates to transcriptional pausing. Interestingly, we note that most mapped R-loops are each linked to a nearby free RNA end; by using a ribozyme to co-transcriptionally cleave nascent RNA, we demonstrate that such a free RNA end coupled with a G/C-skewed sequence is necessary and sufficient to induce R-loop. These findings provide a topological solution for RNA invasion into duplex DNA and suggest an order for R-loop initiation and elongation in an opposite direction to that previously proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Identification of the subunit of cAMP receptor protein (CRP) that functionally interacts with CytR in CRP-CytR-mediated transcriptional repression

    DEFF Research Database (Denmark)

    Meibom, K L; Kallipolitis, B H; Ebright, R H

    2000-01-01

    At promoters of the Escherichia coli CytR regulon, the cAMP receptor protein (CRP) interacts with the repressor CytR to form transcriptionally inactive CRP-CytR-promoter or (CRP)(2)-CytR-promoter complexes. Here, using "oriented heterodimer" analysis, we show that only one subunit of the CRP dimer......, the subunit proximal to CytR, functionally interacts with CytR in CRP-CytR-promoter and (CRP)(2)-CytR-promoter complexes. Our results provide information about the architecture of CRP-CytR-promoter and (CRP)(2)-CytR-promoter complexes and rule out the proposal that masking of activating region 2 of CRP...

  10. miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana.

    Science.gov (United States)

    Li, Lihong; Yi, Huilan; Xue, Meizhao; Yi, Min

    2017-11-01

    Sulfur dioxide (SO 2 ) is a common air pollutant that has adverse effects on plants. MicroRNAs (miRNAs) are small noncoding RNA that play critical roles in plant development and stress response. In this study, we found that two miRNAs, miR398 and miR395, were differentially expressed in Arabidopsis shoots under SO 2 stress. The expression of miR398 was down-regulated, and the transcript levels of its target genes, Cu/Zn superoxide dismutases (CSD1 and CSD2), were increased during SO 2 exposure. The activity of superoxide dismutase (SOD), one of the major antioxidant enzymes, was enhanced with the increase in the CSD transcript level, suggesting an important role of miR398 in response to SO 2 -induced oxidative stress. Meanwhile, the expression of miR395 was increased, and the transcript levels of its target genes, ATP sulfurylases (APS3 and APS4) and a low-affinity sulfate transporter (SULTR2;1), were decreased in Arabidopsis shoots, showing that miR395 played important roles in the regulation of sulfate assimilation and translocation during SO 2 exposure. The content of glutathione (GSH), an important sulfur-containing antioxidant, was enhanced with the changes in sulfur metabolism in Arabidopsis shoots under SO 2 stress. These results showed that both miR398 and miR395 were involved in protecting plants from oxidative damage during SO 2 exposure. Many stress-responsive cis-elements were found in the promoter regions of MIR398 and MIR395, suggesting that these miRNAs might respond to various environmental conditions, including SO 2 stress. Overall, our study provides an insight into the regulatory roles of miRNAs in response to SO 2 stress in plants, and highlights the molecular mechanisms of plant adaptation to environmental stress.

  11. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples.

    Science.gov (United States)

    An, Xiu-Hong; Tian, Yi; Chen, Ke-Qin; Liu, Xiao-Juan; Liu, Dan-Dan; Xie, Xing-Bin; Cheng, Cun-Gang; Cong, Pei-Hua; Hao, Yu-Jin

    2015-04-01

    Anthocyanin and proanthocyanidin (PA) are important secondary metabolites and beneficial to human health. Their biosynthesis is induced by jasmonate (JA) treatment and regulated by MYB transcription factors (TFs). However, which and how MYB TFs regulate this process is largely unknown in apple. In this study, MdMYB9 and MdMYB11 which were induced by methyl jasmonate (MeJA) were functionally characterized. Overexpression of MdMYB9 or MdMYB11 promoted not only anthocyanin but also PA accumulation in apple calluses, and the accumulation was further enhanced by MeJA. Subsequently, yeast two-hybrid, pull-down and bimolecular fluorescence complementation assays showed that both MYB proteins interact with MdbHLH3. Moreover, Jasmonate ZIM-domain (MdJAZ) proteins interact with MdbHLH3. Furthermore, chromatin immunoprecipitation-quantitative PCR and yeast one-hybrid assays demonstrated that both MdMYB9 and MdMYB11 bind to the promoters of ANS, ANR and LAR, whereas MdbHLH3 is recruited to the promoters of MdMYB9 and MdMYB11 and regulates their transcription. In addition, transient expression assays indicated that overexpression of MdJAZ2 inhibits the recruitment of MdbHLH3 to the promoters of MdMYB9 and MdMYB11. Our findings provide new insight into the mechanism of how MeJA regulates anthocyanin and PA accumulation in apple. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. DNA binding-independent transcriptional activation of the vascular endothelial growth factor gene (VEGF) by the Myb oncoprotein

    International Nuclear Information System (INIS)

    Lutwyche, Jodi K.; Keough, Rebecca A.; Hunter, Julie; Coles, Leeanne S.; Gonda, Thomas J.

    2006-01-01

    Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor

  13. GlnR-Mediated Regulation of ectABCD Transcription Expands the Role of the GlnR Regulon to Osmotic Stress Management.

    Science.gov (United States)

    Shao, ZhiHui; Deng, WanXin; Li, ShiYuan; He, JuanMei; Ren, ShuangXi; Huang, WeiRen; Lu, YinHua; Zhao, GuoPing; Cai, ZhiMing; Wang, Jin

    2015-10-01

    Ectoine and hydroxyectoine are excellent compatible solutes for bacteria to deal with environmental osmotic stress and temperature damages. The biosynthesis cluster of ectoine and hydroxyectoine is widespread among microorganisms, and its expression is activated by high salinity and temperature changes. So far, little is known about the mechanism of the regulation of the transcription of ect genes and only two MarR family regulators (EctR1 in methylobacteria and the EctR1-related regulator CosR in Vibrio cholerae) have been found to negatively regulate the expression of ect genes. Here, we characterize GlnR, the global regulator for nitrogen metabolism in actinomycetes, as a negative regulator for the transcription of ectoine/hydroxyectoine biosynthetic genes (ect operon) in Streptomyces coelicolor. The physiological role of this transcriptional repression by GlnR is proposed to protect the intracellular glutamate pool, which acts as a key nitrogen donor for both the nitrogen metabolism and the ectoine/hydroxyectoine biosynthesis. High salinity is deleterious, and cells must evolve sophisticated mechanisms to cope with this osmotic stress. Although production of ectoine and hydroxyectoine is one of the most frequently adopted strategies, the in-depth mechanism of regulation of their biosynthesis is less understood. So far, only two MarR family negative regulators, EctR1 and CosR, have been identified in methylobacteria and Vibrio, respectively. Here, our work demonstrates that GlnR, the global regulator for nitrogen metabolism, is a negative transcriptional regulator for ect genes in Streptomyces coelicolor. Moreover, a close relationship is found between nitrogen metabolism and osmotic resistance, and GlnR-mediated regulation of ect transcription is proposed to protect the intracellular glutamate pool. Meanwhile, the work reveals the multiple roles of GlnR in bacterial physiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation

    Directory of Open Access Journals (Sweden)

    Biao eLai

    2016-02-01

    Full Text Available Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2 and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, And this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

  15. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  16. Situational Awareness: Regulation of the Myb Transcription Factor in Differentiation, the Cell Cycle and Oncogenesis

    Energy Technology Data Exchange (ETDEWEB)

    George, Olivia L.; Ness, Scott A., E-mail: sness@salud.unm.edu [Department of Internal Medicine, Section of Molecular Medicine, University of New Mexico Health Sciences Center, MSC07 4025-CRF 121, 1 University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-02

    This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.

  17. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple.

    Science.gov (United States)

    Tian, Ji; Peng, Zhen; Zhang, Jie; Song, Tingting; Wan, Huihua; Zhang, Meiling; Yao, Yuncong

    2015-09-01

    The ever-red leaf trait, which is important for breeding ornamental and higher anthocyanin plants, rarely appears in Malus families, but little is known about the regulation of anthocyanin biosynthesis involved in the red leaves. In our study, HPLC analysis showed that the anthocyanin concentration in ever-red leaves, especially cyanidin, was significantly higher than that in evergreen leaves. The transcript level of McMYB10 was significantly correlated with anthocyanin synthesis between the 'Royalty' and evergreen leaf 'Flame' cultivars during leaf development. We also found the ever-red leaf colour cultivar 'Royalty' contained the known R6 : McMYB10 sequence, but was not in the evergreen leaf colour cultivar 'Flame', which have been reported in apple fruit. The distinction in promoter region maybe is the main reason why higher expression level of McMYB10 in red foliage crabapple cultivar. Furthermore, McMYB10 promoted anthocyanin biosynthesis in crabapple leaves and callus at low temperatures and during long-day treatments. Both heterologous expression in tobacco (Nicotiana tabacum) and Arabidopsis pap1 mutant, and homologous expression in crabapple and apple suggested that McMYB10 could promote anthocyanins synthesis and enhanced anthocyanin accumulation in plants. Interestingly, electrophoretic mobility shift assays, coupled with yeast one-hybrid analysis, revealed that McMYB10 positively regulates McF3'H via directly binding to AACCTAAC and TATCCAACC motifs in the promoter. To sum up, our results demonstrated that McMYB10 plays an important role in ever-red leaf coloration, by positively regulating McF3'H in crabapple. Therefore, our work provides new perspectives for ornamental fruit tree breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3.

    Science.gov (United States)

    Qiu, Yu-Ying; Zhang, Ying-Wei; Qian, Xiu-Fen; Bian, Tao

    2017-01-01

    Asthma is tightly related to the imbalance of Th1/Th2 cells, and Runx3 plays a pivotal role in the differentiation of T helper cells. The present study aimed to investigate dysregulated microRNAs that may target Runx3 in CD4 + T cells from asthmatic patients and reveal Runx3 function in Th1/Th2 balance regulation. We detected the levels of Th1- and Th2-related cytokines by ELISA and analyzed the differentiation marker gene of T helper cells by qRT-PCR. Results indicated that an imbalance of Th1/Th2 cells was present in our asthmatic subject. Runx3 expression was reduced in the CD4 + T cells from asthmatic patients. Overexpression of Runx3 could restore the Th1/Th2 balance. After performing microRNA microarray assay, we found a series of microRNAs that were considerably altered in the CD4 + T cells from asthmatic patients. Among these upregulated microRNAs, eight microRNAs that may target Runx3 were selected by bioinformatics prediction. Five microRNAs, namely miR-371, miR-138, miR-544, miR-145, and miR-214, were confirmed by qRT-PCR and selected as candidate microRNAs. Luciferase reporter assay showed that these five microRNAs could directly target the 3'-UTR of Runx3. However, only simultaneous inhibition of these five microRNAs could alter the expression of Runx3. Most importantly, only simultaneous inhibition could improve the Th1/Th2 balance. Thus, we suggest that miR-371, miR-138, miR-544, miR-145, and miR-214 can modulate the Th1/Th2 balance in asthma by regulating Runx3 in a combinatorial manner.

  19. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng; Wu, Dingguo; You, Yu; Sun, Jing; Lu, Lele; Tan, Jiaxing; Bie, Ping, E-mail: bieping2010@163.com

    2015-08-15

    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment. - Highlights: • miR-208-3p was highly expressed and directly repressed the expression of ARID2 in HCC. • miR-208-3p contributed to HCC cell progression both in vitro and in vivo. • Over-expression of ARID2 inhibited the HCC cell proliferation and invasion. • Restoration of ARID2 partly reversed the the effect of miR-208-3p down-regulation on HCC cells. • Newly regulatory pathway: miR-208-3p mediated the repression of ARID2 by TGFβ1 in HCC cells.

  20. Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3.

    Science.gov (United States)

    Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko

    2014-01-01

    The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.

  1. Total synthesis of (3S, 5R, 3'S, 5'R)-capsorubin

    International Nuclear Information System (INIS)

    Frederico, Daniel; Constantino, Mauricio G.; Donate, Paulo M.

    2009-01-01

    The total synthesis of enantiomerically enriched (3S, 5R, 3'S, 5'R)-capsorubin (1) by aldol condensation of (1R, 4S)-1-(4-hydroxy-1,2,2-trimethyl-cyclopentyl)ethanone (2a) and crocetindial (3) is described. An alternative, short eight-step synthesis of the optically active compound 2a (ee 89%) is also reported. (author)

  2. The Polycistronic miR166k-166h Positively Regulates Rice Immunity via Post-transcriptional Control of EIN2

    Directory of Open Access Journals (Sweden)

    Raquel Salvador-Guirao

    2018-03-01

    Full Text Available MicroRNAs (miRNAs are small RNAs acting as regulators of gene expression at the post-transcriptional level. In plants, most miRNAs are generated from independent transcriptional units, and only a few polycistronic miRNAs have been described. miR166 is a conserved miRNA in plants targeting the HD-ZIP III transcription factor genes. Here, we show that a polycistronic miRNA comprising two miR166 family members, miR166k and miR166h, functions as a positive regulator of rice immunity. Rice plants with activated MIR166k-166h expression showed enhanced resistance to infection by the fungal pathogens Magnaporthe oryzae and Fusarium fujikuroi, the causal agents of the rice blast and bakanae disease, respectively. Disease resistance in rice plants with activated MIR166k-166h expression was associated with a stronger expression of defense responses during pathogen infection. Stronger induction of MIR166k-166h expression occurred in resistant but not susceptible rice cultivars. Notably, the ethylene-insensitive 2 (EIN2 gene was identified as a novel target gene for miR166k. The regulatory role of the miR166h-166k polycistron on the newly identified target gene results from the activity of the miR166k-5p specie generated from the miR166k-166h precursor. Collectively, our findings support a role for miR166k-5p in rice immunity by controlling EIN2 expression. Because rice blast is one of the most destructive diseases of cultivated rice worldwide, unraveling miR166k-166h-mediated mechanisms underlying blast resistance could ultimately help in designing appropriate strategies for rice protection.

  3. Functional Characterization of NAC and MYB Transcription Factors Involved in Regulation of Biomass Production in Switchgrass (Panicum virgatum.

    Directory of Open Access Journals (Sweden)

    Ruiqin Zhong

    Full Text Available Switchgrass is a promising biofuel feedstock due to its high biomass production and low agronomic input requirements. Because the bulk of switchgrass biomass used for biofuel production is lignocellulosic secondary walls, studies on secondary wall biosynthesis and its transcriptional regulation are imperative for designing strategies for genetic improvement of biomass production in switchgrass. Here, we report the identification and functional characterization of a group of switchgrass transcription factors, including several NACs (PvSWNs and a MYB (PvMYB46A, for their involvement in regulating secondary wall biosynthesis. PvSWNs and PvMYB46A were found to be highly expressed in stems and their expression was closely associated with sclerenchyma cells. Overexpression of PvSWNs and PvMYB46A in Arabidopsis was shown to result in activation of the biosynthetic genes for cellulose, xylan and lignin and ectopic deposition of secondary walls in normally parenchymatous cells. Transactivation and complementation studies demonstrated that PvSWNs were able to activate the SNBE-driven GUS reporter gene and effectively rescue the secondary wall defects in the Arabidopsis snd1 nst1 double mutant, indicating that they are functional orthologs of Arabidopsis SWNs. Furthermore, we showed that PvMYB46A could activate the SMRE-driven GUS reporter gene and complement the Arabidopsis myb46 myb83 double mutant, suggesting that it is a functional ortholog of Arabidopsis MYB46/MYB83. Together, these results indicate that PvSWNs and PvMYB46A are transcriptional switches involved in regulating secondary wall biosynthesis, which provides molecular tools for genetic manipulation of biomass production in switchgrass.

  4. X-ray crystal structures of the pheromone-binding domains of two quorum-hindered transcription factors, YenR of Yersinia enterocolitica and CepR2 of Burkholderia cenocepacia: KIM et al.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngchang [Midwest Center for Structural Genomics, Biosciences, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne Illinois 60439; Chhor, Gekleng [Midwest Center for Structural Genomics, Biosciences, Argonne National Laboratory, Argonne Illinois 60439; Tsai, Ching-Sung [Department of Microbiology, Cornell University, Ithaca New York 14853; Fox, Gabriel [Department of Microbiology, Cornell University, Ithaca New York 14853; Chen, Chia-Sui [Department of Microbiology, Cornell University, Ithaca New York 14853; Winans, Nathan J. [Department of Microbiology, Cornell University, Ithaca New York 14853; Jedrzejczak, Robert [Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne Illinois 60439; Joachimiak, Andrzej [Midwest Center for Structural Genomics, Biosciences, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne Illinois 60439; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago Illinois 60637; Winans, Stephen C. [Department of Microbiology, Cornell University, Ithaca New York 14853

    2017-07-24

    The ability of LuxR-type proteins to regulate transcription is controlled by bacterial pheromones, N-acylhomoserine lactones (AHLs). Most LuxR-family proteins require their cognate AHLs for activity, and some of them require AHLs for folding and stability, and for protease-resistance. However, a few members of this family are able to fold, dimerize, bind DNA, and regulate transcription in the absence of AHLs; moreover, these proteins are antagonized by their cognate AHLs. One such protein is YenR of Yersinia enterocolitica, which is antagonized by N-3-oxohexanoyl-l-homoserine lactone (OHHL). This pheromone is produced by the OHHL synthase, a product of the adjacent yenI gene. Another example is CepR2 of Burkholderia cenocepacia, which is antagonized by N-octanoyl-l-homoserine lactone (OHL), whose synthesis is directed by the cepI gene of the same bacterium. Here, we describe the high-resolution crystal structures of the AHL binding domains of YenR and CepR2. YenR was crystallized in the presence and absence of OHHL. While this ligand does not cause large scale changes in the YenR structure, it does alter the orientation of several highly conserved YenR residues within and near the pheromone-binding pocket, which in turn caused a significant movement of a surface-exposed loop.

  5. Identification of Arabidopsis MYB56 as a novel substrate for CRL3(BPM) E3 ligases.

    Science.gov (United States)

    Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo

    2015-02-01

    Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work, MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies have indicated that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling flowering time in plants. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  6. Transcriptional Mechanisms Controlling miR-375 Gene Expression in the Pancreas

    Directory of Open Access Journals (Sweden)

    Tali Avnit-Sagi

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that play an important role in mediating a broad and expanding range of biological activities. miR-375 is expressed selectively in the pancreas. We have previously shown that selective expression of miR-375 in pancreatic beta cells is controlled by transcriptional mechanisms operating through a TATA box-containing promoter. Expression of miR-375 has been reported in non-beta cells within the endocrine pancreas, and indeed inactivation of miR-375 leads to perturbation in cell mass and number of both alpha and beta cells. Consistent with its expression throughout the endocrine pancreas, we now show that the promoter of the miR-375 gene shows selective activity in pancreatic endocrine alpha cells, comparable to that observed in beta cells. We previously identified a novel negative regulatory element located downstream of the miR-375 gene transcription start site. By generating luciferase reporter genes, we now show that the sequence is functional also when positioned upstream of a heterologous promoter, thus proving that the repressor effect is mediated at least in part at the level of transcription. Further characterization of the transcriptional control mechanism regulating expression of miR-375 and other pancreatic miRNAs will contribute to a better understanding of pancreas development and function.

  7. Expression and characterization of c-Myb in prenatal odontogenesis

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Buchtová, Marcela; Tucker, A. S.; Bender, T. P.; Janečková, Eva; Lungová, V.; Balková, Simona; Šmarda, J.

    2011-01-01

    Roč. 53, č. 6 (2011), s. 793-803 ISSN 0012-1592 R&D Projects: GA AV ČR KJB500450802; GA ČR GAP304/11/1418; GA ČR(CZ) GP304/08/P289; GA ČR GC524/08/J032 Institutional research plan: CEZ:AV0Z50450515 Keywords : morphogenesis * mouse * Myb Subject RIV: FF - HEENT, Dentistry Impact factor: 2.210, year: 2011

  8. Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella.

    Science.gov (United States)

    Etebari, K; Afrad, M H; Tang, B; Silva, R; Furlong, M J; Asgari, S

    2018-03-24

    The diamondback moth, Plutella xylostella, has developed extremely high levels of resistance to chlorantraniliprole and other classes of insecticides in the field. As microRNAs (miRNAs) play important roles in various biological processes through gene regulation, we examined the miRNA profile of P. xylostella in response to chlorantraniliprole exposure. RNA sequencing analysis showed that insecticide treatment caused significant changes in the abundance of some miRNAs. Increasing exposure time and insecticide concentration induced more dysregulated miRNAs in P. xylostella larvae. We also screened potential target genes for some of the differentially expressed miRNAs (such as miR-2b-3p, miR-14b-5p and let-7-5p), which may play important roles in insecticide resistance development. Exposure of P. xylostella larvae to chlorantraniliprole caused considerable overexpression in the transcript levels of potential target genes cytochrome P450 9f2 (CYP9F2) and 307a1 (CYP307a1). Application of miR-2b-3p and miR-14b-5p mimics significantly suppressed the relative transcript levels of CYP9F2 and CYP307a1, respectively, in a P. xylostella cell line. Furthermore, enrichment of P. xylostella diet with miR-2b-3p mimics significantly increased mortality in deltamethrin-resistant larvae when exposed to deltamethrin. The results suggest that miR-2b-3p may suppress CYP9F2 transcript levels in P. xylostella and consequently inhibit larval detoxification pathways. The findings provide an insight into possible role of miRNAs in regulation of metabolic resistance of insects to insecticides. © 2018 The Royal Entomological Society.

  9. Coordinated transcriptional regulation of two key genes in the lignin branch pathway--CAD and CCR--is mediated through MYB- binding sites.

    Science.gov (United States)

    Rahantamalala, Anjanirina; Rech, Philippe; Martinez, Yves; Chaubet-Gigot, Nicole; Grima-Pettenati, Jacqueline; Pacquit, Valérie

    2010-06-28

    Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the final steps in the biosynthesis of monolignols, the monomeric units of the phenolic lignin polymers which confer rigidity, imperviousness and resistance to biodegradation to cell walls. We have previously shown that the Eucalyptus gunnii CCR and CAD2 promoters direct similar expression patterns in vascular tissues suggesting that monolignol production is controlled, at least in part, by the coordinated transcriptional regulation of these two genes. Although consensus motifs for MYB transcription factors occur in most gene promoters of the whole phenylpropanoid pathway, functional evidence for their contribution to promoter activity has only been demonstrated for a few of them. Here, in the lignin-specific branch, we studied the functional role of MYB elements as well as other cis-elements identified in the regulatory regions of EgCAD2 and EgCCR promoters, in the transcriptional activity of these gene promoters. By using promoter deletion analysis and in vivo footprinting, we identified an 80 bp regulatory region in the Eucalyptus gunnii EgCAD2 promoter that contains two MYB elements, each arranged in a distinct module with newly identified cis-elements. A directed mutagenesis approach was used to introduce block mutations in all putative cis-elements of the EgCAD2 promoter and in those of the 50 bp regulatory region previously delineated in the EgCCR promoter. We showed that the conserved MYB elements in EgCAD2 and EgCCR promoters are crucial both for the formation of DNA-protein complexes in EMSA experiments and for the transcriptional activation of EgCAD2 and EgCCR promoters in vascular tissues in planta. In addition, a new regulatory cis-element that modulates the balance between two DNA-protein complexes in vitro was found to be important for EgCAD2 expression in the cambial zone. Our assignment of functional roles to the identified cis-elements clearly demonstrates the

  10. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress.

    Science.gov (United States)

    Lotkowska, Magda E; Tohge, Takayuki; Fernie, Alisdair R; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-11-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. The Copper Homeostasis Transcription Factor CopR Is Involved in H2O2 Stress in Lactobacillus plantarum CAUH2

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Transcriptional factors (TFs play important roles in the responses to oxidative, acid, and other environmental stresses in Gram-positive bacteria, but the regulatory mechanism of TFs involved in oxidative stress remains unknown in lactic acid bacteria. In the present work, homologous overexpression strains with 43 TFs were constructed in the Lactobacillus plantarum CAUH2 parent strain. The strain overexpressing CopR displayed the highest sensitivity and a 110-fold decrease in survival rate under H2O2 challenge. The importance of CopR in the response to H2O2 stress was further confirmed by a 10.8-fold increase in the survival of a copR insertion mutant. In silico analysis of the genes flanking copR revealed putative CopR-binding “cop box” sequences in the promoter region of the adjacent gene copB encoding a Cu2+-exporting ATPase. Electrophoretic mobility shift assay (EMSA analysis demonstrated the specific binding of CopR with copB in vitro, suggesting copB is a target gene of CopR in L. plantarum. The role of CopB involved in oxidative stress was verified by the significantly decreased survival in the copB mutant. Furthermore, a growth defect in copper-containing medium demonstrated that CopB functions as an export ATPase for copper ions. Furthermore, EMSAs revealed that CopR functions as a regulator that negatively regulates copB gene and Cu2+ serves as inducer of CopR to activate the expression of CopB in response to H2O2 stress in L. plantarum CAUH2. Our findings indicated that CopR plays an important role in enhancing oxidative resistance by regulating copB to modulate copper homeostasis.

  12. Crystal structure of 2-amino-4-methyl-pyridin-1-ium (2R,3R)-3-carb-oxy-2,3-di-hydroxy-propano-ate monohydrate.

    Science.gov (United States)

    Jovita, J V; Sathya, S; Usha, G; Vasanthi, R; Ramanand, A

    2014-09-01

    The title mol-ecular salt, C6H9N2 (+)·C4H5O6 (-)·H2O, crystallized with two 2-amino-4-methyl-pyridin-1-ium cations, two l-(+)-tartaric acid monoanions [systematic name: (2R,3R)-3-carb-oxy-2,3-di-hydroxy-propano-ate] and two water mol-ecules in the asymmetric unit. In the crystal, the cations, anions and water mol-ecules are linked via a number of O-H⋯O and N-H⋯O hydrogen bonds, and a C-H⋯O hydrogen bond, forming a three-dimensional structure.

  13. -5p and -3p strands of miR-145 and miR-140 during mesenchymal stem cell chondrogenic differentiation.

    Science.gov (United States)

    Kenyon, Jonathan D; Sergeeva, Olga; Somoza, Rodrigo A; Li, Ming; Caplan, Arnold I; Khalil, Ahmad M; Lee, Zhenghong

    2018-04-20

    The chondrogenic differentiation of mesenchymal stem cells (MSCs) is mediated by transcription factors and small non-coding RNAs such as micro-RNAs (miRNAs). Each miRNA is initially transcribed as a long transcript, which matures to produce -5p and -3p strands. It is widely believed that the mature and functional miRNA from any given pre-miRNA, usually the -5p strand, is functional, while the opposing -3p strand is degraded. However, recent cartilage literature started to show functional -3p stands for a few miRNAs. This study aimed at examining both -5p and -3p strands of two key miRNAs miR-140 and miR-145 that are known to be involved in the chondrogenic differentiation of MSCs. The level (copy number) of both -5p and -3p strands of miR-145 and miR-140 along the timeline of MSC chondrogenic differentiation was determined by PCR. The gene expression profiles of several genes related to MSC chondrogenesis were compared with these miRNA profiles along the same timeline. While miR-145-3p is declining in step with miR-145-5p in pellet cultures during the process, the -3p strand is only 1% - 2% of the total miR-145 products. In contrast, the mature -3p and -5p products of miR-140 are found to increase with near equal molar expression throughout chondrogenic differentiation. Numerous genes are expressed by cartilage progenitor cells during development. One such target gene, Sox9 is a regulatory target of the dominant miR-145-5p, consistent with the data. Further experimental validations are warranted to confirm that ACAN, FOXO1 and RUNX3 as direct targets of miR-145-5p in the context of MSC chondrogenesis. Similarly, TRSP1 and ACAN are worth further validation as direct targets of miR-145-3p. For miR-140, SOX4 shall be further validated as a direct target of miR-140-5p while KLF4, PTHLH, and WNT5A can be validated as direct targets of miR-140-3p.

  14. Identification of Arabidopsis MYB56 as a novel substrate for CRL3BPM E3 ligases.

    Science.gov (United States)

    Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo

    2014-10-24

    Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies pointed out that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling the flowering time point in plants. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  15. A concise route to branched erythrono-gamma-lactones. Synthesis of the leaf-closing substance potassium (+/-)-(2R,3R)-2,3,4-trihydroxy-2-methylbutanoate

    DEFF Research Database (Denmark)

    Pedersen, Daniel Sejer; Robinson, Tony V; Taylor, Dennis K

    2009-01-01

    -94% yield), including the natural plant lactone (+/-)-2-C-d-methylerythrono-1,4-lactone 1. The latter compound was treated with aqueous potassium hydroxide to afford potassium (+/-)-(2R,3R)-2,3,4-trihydroxy-2-methylbutanoate 2, which is a leaf-closing substance of Leucaena leucocephalam....

  16. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... transcriptional networks by integrating exogenous and endogenous stimuli and regulating gene expression accordingly. Regulation of transcription factors and their activation is thus highly important to modulate the transcriptional programs and increase fitness of the plant in a given environment. Plant metabolism....... The biosynthetic machinery of GLS is governed by interplay of six MYB and three bHLH transcription factors. MYB28, MYB29 and MYB76 regulate methionine-derived GLS, and MYB51, MYB34 and MYB122 regulate tryptophan-derived GLS. The three bHLH transcription factors MYC2, MYC3 and MYC4 physically interact with all six...

  17. Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis.

    Science.gov (United States)

    Baskar, Venkidasamy; Park, Se Won

    2015-07-01

    Glucosinolates (GSL) are one of the major secondary metabolites of the Brassicaceae family. In the present study, we aim at characterizing the multiple paralogs of aliphatic GSL regulators, such as BrMYB28 and BrMYB29 genes in Brassica rapa ssp. pekinensis, by quantitative real-time PCR (qRT-PCR) analysis in different tissues and at various developmental stages. An overlapping gene expression pattern between the BrMYBs as well as their downstream genes (DSGs) was found at different developmental stages. Among the BrMYB28 and BrMYB29 paralogous genes, the BrMYB28.3 and BrMYB29.1 genes were dominantly expressed in most of the developmental stages, compared to the other paralogs of the BrMYB genes. Furthermore, the differential expression pattern of the BrMYBs was observed under various stress treatments. Interestingly, BrMYB28.2 showed the least expression in most developmental stages, while its expression was remarkably high in different stress conditions. More specifically, the BrMYB28.2, BrMYB28.3, and BrMYB29.1 genes were highly responsive to various abiotic and biotic stresses, further indicating their possible role in stress tolerance. Moreover, the in silico cis motif analysis in the upstream regulatory regions of BrMYBs showed the presence of various putative stress-specific motifs, which further indicated their responsiveness to biotic and abiotic stresses. These observations suggest that the dominantly expressed BrMYBs, both in different developmental stages and under various stress treatments (BrMYB28.3 and BrMYB29.1), may be potential candidate genes for altering the GSL level through genetic modification studies in B. rapa ssp. pekinensis. Copyright © 2015. Published by Elsevier SAS.

  18. The Mycobacterium tuberculosis transcriptional repressor EthR is negatively regulated by Serine/Threonine phosphorylation.

    Science.gov (United States)

    Leiba, Jade; Carrère-Kremer, Séverine; Blondiaux, Nicolas; Dimala, Martin Moune; Wohlkönig, Alexandre; Baulard, Alain; Kremer, Laurent; Molle, Virginie

    2014-04-18

    Recent efforts have underlined the role of Serine/Threonine Protein Kinases (STPKs) in growth, pathogenesis and cell wall metabolism in mycobacteria. Herein, we demonstrated that the Mycobacterium tuberculosis EthR, a transcriptional repressor that regulates the activation process of the antitubercular drug ethionamide (ETH) is a specific substrate of the mycobacterial kinase PknF. ETH is a prodrug that must undergo bioactivation by the monooxygenease EthA to exert its antimycobacterial activity and previous studies reported that EthR represses transcription of ethA by binding to the ethA-ethR intergenic region. Mass spectrometry analyses and site-directed mutagenesis identified a set of four phosphoacceptors, namely Thr2, Thr3, Ser4 and Ser7. This was further supported by the complete loss of PknF-dependent phosphorylation of a phosphoablative EthR mutant protein. Importantly, a phosphomimetic version of EthR, in which all phosphosites were replaced by Asp residues, exhibited markedly decreased DNA-binding activity compared with the wild-type protein. Together, these findings are the first demonstration of EthR phosphorylation and indicate that phosphorylation negatively affects its DNA-binding activity, which may impact ETH resistance levels in M. tb. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition

    NARCIS (Netherlands)

    Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J. M.; Thunnissen, Andy-Mark W. H.

    2009-01-01

    LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here,

  20. Tyms double (2R) and triple repeat (3R) confers risk for human oral squamous cell carcinoma.

    Science.gov (United States)

    Bezerra, Alexandre Medeiros; Sant'Ana, Thalita Araújo; Gomes, Adriana Vieira; de Lacerda Vidal, Aurora Karla; Muniz, Maria Tereza Cartaxo

    2014-12-01

    The oral cancer is responsible for approximately 3 % of cases of cancer in Brazil. Epidemiological studies have associated low folate intake with an increased risk of epithelial cancers, including oral cancer. Folic acid has a key role in DNA synthesis, repair, methylation and this is the basis of explanations for a putative role for folic acid in cancer prevention. The role of folic acid in carcinogenesis may be modulated by polymorphism C677T in MTHFR and tandem repeats 2R/3R in the promoter site of TYMS gene that are related to decreased enzymatic activity and quantity and availability of the enzyme, respectively. These events cause a decrease in the synthesis, repair and DNA methylation, which can lead to a disruption in the expression of tumor suppressor genes as TP53. The objective of this study was investigate the distribution of polymorphisms C677T and tandem repeats 2R/3R associated with the development of oral squamous cell carcinoma (OSCC). 53 paraffin-embedded samples from patients who underwent surgery but are no longer at the institution and 43 samples collected by method of oral exfoliation by cytobrush were selected. 132 healthy subjects were selected by specialists at the dental clinics of the Faculdade de Odontologia de Pernambuco-FOP. The MTHFR genotyping was performed by PCR-RFLP, and the TYMS genotyping was performed by conventional PCR. Fisher's Exact test at significant level of 5 %. Odds ratios (ORs) and 95 % confidence intervals (CIs) were used to measure the strength of association between genotype frequency and OSCC development. The results were statistically significant for the tandem repeats of the TYMS gene (p = 0.015). The TYMS 2R3R genotype was significantly associated with the development of OSCC (OR = 3.582; 95 % CI 1.240-10.348; p = 0.0262) and also the genotype 3R3R (OR = 3.553; 95 % CI 1.293-9.760; p = 0.0345). When analyzed together, the TYMS 2R3R + 3R3R genotypes also showed association (OR = 3.518; 95 % CI 11.188-10.348; p

  1. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae

    NARCIS (Netherlands)

    Onkokesung, N.; Reichelt, M.; Doorn, van A.; Schuurink, R.C.; Loon, van J.J.A.; Dicke, M.

    2014-01-01

    Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin

  2. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation.

    Directory of Open Access Journals (Sweden)

    Ruiqin Zhong

    Full Text Available Wood is mainly composed of secondary walls, which constitute the most abundant stored carbon produced by vascular plants. Understanding the molecular mechanisms controlling secondary wall deposition during wood formation is not only an important issue in plant biology but also critical for providing molecular tools to custom-design wood composition suited for diverse end uses. Past molecular and genetic studies have revealed a transcriptional network encompassing a group of wood-associated NAC and MYB transcription factors that are involved in the regulation of the secondary wall biosynthetic program during wood formation in poplar trees. Here, we report the functional characterization of poplar orthologs of MYB46 and MYB83 that are known to be master switches of secondary wall biosynthesis in Arabidopsis. In addition to the two previously-described PtrMYB3 and PtrMYB20, two other MYBs, PtrMYB2 and PtrMYB21, were shown to be MYB46/MYB83 orthologs by complementation and overexpression studies in Arabidopsis. The functional roles of these PtrMYBs in regulating secondary wall biosynthesis were further demonstrated in transgenic poplar plants showing an ectopic deposition of secondary walls in PtrMYB overexpressors and a reduction of secondary wall thickening in their dominant repressors. Furthermore, PtrMYB2/3/20/21 together with two other tree MYBs, the Eucalyptus EgMYB2 and the pine PtMYB4, were shown to differentially bind to and activate the eight variants of the 7-bp SMRE consensus sequence, composed of ACC(A/TA(A/C(T/C. Together, our results indicate that the tree MYBs, PtrMYB2/3/20/21, EgMYB2 and PtMYB4, are master transcriptional switches that activate the SMRE sites in the promoters of target genes and thereby regulate secondary wall biosynthesis during wood formation.

  3. Crystallization and preliminary X-ray analysis of the TetR-like efflux pump regulator SimR

    International Nuclear Information System (INIS)

    Le, Tung B. K.; Stevenson, Clare E. M.; Buttner, Mark J.; Lawson, David M.

    2011-01-01

    Crystals of SimR, a TetR-like efflux pump repressor from S. antibioticus, were obtained and X-ray data were recorded to a resolution of 2.3 Å. Crystals of SimR were grown by vapour diffusion. The protein crystallized with trigonal symmetry and X-ray data were recorded to a resolution of 2.3 Å from a single crystal at the synchrotron. SimR belongs to the TetR family of bacterial transcriptional regulators. In the absence of the antibiotic simocyclinone, SimR represses the transcription of a divergently transcribed gene encoding the simocyclinone efflux pump SimX in Streptomyces antibioticus by binding to operators in the simR–simX intergenic region. Simocyclinone binding causes SimR to dissociate from its operators, leading to expression of the SimX efflux pump. Thus, SimR represents an intimate link between the biosynthesis of simocyclinone and its export, which may also provide the mechanism of self-resistance to the antibiotic in the producer strain

  4. (E-2-((4R,5R-5-((Benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4-ylbut-2-ene-1,4-diol

    Directory of Open Access Journals (Sweden)

    Carlos R. Carreras

    2010-04-01

    Full Text Available The synthesis of (E-2-((4R,5R-5-((benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4-ylbut-2-ene-1,4-diol by a one-step reduction of the appropriate 2-substituted butenolide is reported. Product characterization was carried out by IR, 1H NMR, 13C NMR, MS, elemental analysis and optical rotation.

  5. Simple synthesis of graphene nanocomposites MgO-rGO and Fe2O3-rGO for multifunctional applications

    Science.gov (United States)

    Abdel-Aal, Seham K.; Ionov, Andrey; Mozhchil, R. N.; Naqvi, Alim H.

    2018-05-01

    Hummer's method was used to prepare graphene oxide (GO) by chemical exfoliation of graphite. Simple precipitation method was used for the preparation of hybrid nanocomposites MgO-rGO and Fe2O3-rGO. A 0.3 Molar of corresponding metal nitrate solution and GO solution are used for the preparation process. XRD, FT-IR, and XPS were used to characterize the prepared nanocomposites. The reduction of GO into reduced rGO in the formed nanocomposites was confirmed. Morphological characterization showed the formation of needle-shaped nanocrystals of MgO successfully grown on graphene nanosheet with average crystallite size 8.4 nm. Hematite nanocomposite Fe2O3-rGO forms rod-shaped crystals with average crystallite size 27.5 nm. The saturation magnetization observed for Fe2O3-rGO is less than reported value for the pure Fe2O3 nanoparticles. Thermal properties of as-prepared hybrid nanocomposites MgO-rGO and Fe2O3-rGO showed thermal stability of the prepared nanocomposite over long range of temperature.

  6. Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters.

    Directory of Open Access Journals (Sweden)

    Jessica Marinello

    Full Text Available Topoisomerase I-DNA-cleavage complexes (Top1cc stabilized by camptothecin (CPT have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5'-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning.

  7. Phase relations in the pseudobinary systems RAO3-R2Ti2O7 (R: rare earth element and Y, A: Fe, Ga, Al, Cr and Mn) and syntheses of new compounds R(A1-xTix)O3+x/2 (2/3≤x≤3/4) at elevated temperatures in air

    Science.gov (United States)

    Brown, Francisco; Jacobo-Herrera, Ivan; Alvarez-Montaño, Victor; Kimizuka, Noboru; Kurashina, Keiji; Michiue, Yuichi; Matsuo, Yoji; Mori, Shigeo; Ikeda, Naoshi; Medrano, Felipe

    2017-07-01

    Phase relations in the pseudo-binary systems RFeO3-R2Ti2O7 (R: Lu, Ho and Dy), RGaO3-R2Ti2O7 (R: Lu and Er), LuAlO3-Lu2Ti2O7 and RAO3-R2Ti2O7 (R: Lu and Yb. A: Cr and Mn) at elevated temperatures in air were determined by means of a classic quenching method. There exist Lu(Fe1-xTix)O3+x/2, R(Ga1-xTix)O3+x/2 (R: Lu and Er) and Lu(Al1-xTix)O3+x/2 (2/3≤ x≤3/4) having the Yb(Fe1-xTix)O3+x/2-type of crystal structure (x=0.72, space group: R3m, a(Å)=17.9773 and c(Å)=16.978 as a hexagonal setting) in these pseudo binary systems. Eighteen compounds R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) were newly synthesized and their lattice constants as a hexagonal setting were measured by means of the X-ray powder diffraction method. The R occupies the octahedral site and both A and Ti does the trigonalbipyramidal one in these compounds. Relation between lattice constants for the rhombic R(A1-xTix)O3+x/2 and the monoclinic In(A1-xTix)O3+x/2 are as follows, ah≈5 x bm, ch≈3 x cm x sin β and am=31/2 x bm, where ah and ch are the lattice constants as a hexagonal setting for R(A1-xTix)O3+x/2 and am, bm, cm and β are those of the monoclinic In(A1-xTix)O3+x/2. Crystal structural relationships among α-InGaO3 (hexagonal, high pressure form, space group: P63/mmc), InGaO3 (rhombic, hypothetical), (RAO3)n(BO)m and RAO3(ZnO)m (R: Lu-Ho, Y and In, A: Fe, Ga, and Al, B: divalent cation element, m, n: natural number), the orthorhombic-and monoclinic In(A1-xTix)O3+x/2 (A: Fe, Ga, Al, Cr and Mn) and the hexagonal-and rhombic R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) are schematically presented. We concluded that the crystal structures of both the α-InGaO3 (high pressure form, hexagonal, space group: P63/mmc) and the hypothetical InGaO3 (rhombic) are the key structures for constructing the crystal structures of these compounds having the cations with CN=5.

  8. Synthesis of (R,S)-[2,3-13C2]-1-(1'-methyl-2'-pyrrolidinyl)propan-2-one; {(R,S)-[2',3'-13C2]hygrinePound right bracePound

    International Nuclear Information System (INIS)

    Abraham, T.W.; Leete, Edward

    1996-01-01

    2-Ethoxy-1-methyl-5-pyrrolidinone (1) was reacted with ethyl [3,4- 13 C 2 ]-acetoacetate (2) in the presence of TiCl 4 to give ethyl [3,4- 13 C 2 ]-2-(1'-methyl-5'-oxo-2'-pyrrolidinyl)-3-oxobutanoate (3) in 85% yield. Decarboethoxylation of ethyl [3,4- 13 C 2 ]-2-(1'-methyl-5'-oxo-2'-pyrrolidinyl)-3-oxobutan-oate (3) was accomplished using NaCl and H 2 O in DMSO to give (R,S)-[2,3- 13 C 2 ]-1-(1'-methyl-5'-oxo-2'-pyrrolidinyl)propan-2-o ne (4) in 91% yield. Protection of the ketone as a ketal (ethylene glycol, H + ), followed by reduction of the amide to the amine using LiAlH 4 and subsequent deprotection of the ketal gave (R,S)-[2,3- 13 C 2 ]-1-(1'-methyl-2'-pyrrolidinyl)propan-2-one ((R,s)-[2', 3'- 13 C 2 ]Hygrine) (8) in 78% yield. (61% overall yield from ethyl [3,4- 13 C 2 ]acetoacetate). (Author)

  9. Neutron scattering study on R2PdSi3 (R=Ho,Er,Tm) compounds

    International Nuclear Information System (INIS)

    Tang, Fei

    2010-01-01

    Previous studies on the family of inter-metallic rare-earth compounds R 2 PdSi 3 revealed multifaceted magnetic properties, for instance, spin-glass like behavior. Experimental observations include: Signs of a crystallographic superstructure, complicated magnetic structures both in zero field and in applied magnetic fields as well as a generic phase in applied fields for compounds in the series with the heavy rare-earths R=Gd, Tb, Dy, Ho, Er and Tm. This thesis expands the studies on the magnetic properties of R 2 PdSi 3 employing mainly neutron scattering on single crystals with the focus on the compounds with R=Ho, Er and Tm. A detailed analysis of the crystallographic superstructure using modulation wave approach and group theory is presented. The resulting structure implies the existence of two different rare-earth sites with reduced symmetry and an arrangement of the different sites according to sequences as determined by the superstructure. It is shown that the reduced symmetry of the rare-earth sites is explicitly observed in the energy spectra of inelastic neutron scattering. The results on the magnetic structures and excitations are shown and discussed in the framework of the superstructure model. Specifically the generic phase in applied fields is interpreted as a direct consequence of the crystallographic superstructure. It is rather unusual that a crystallographic superstructure is playing such a decisive, and through the field dependence also tunable role in determining the magnetic properties as observed in R 2 PdSi 3 . The mediating interactions between the crystallographic part and the magnetic part of the system are discussed. (orig.)

  10. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM.

    Science.gov (United States)

    Dai, Dong-Wei; Lu, Qiong; Wang, Lai-Xing; Zhao, Wen-Yuan; Cao, Yi-Qun; Li, Ya-Nan; Han, Guo-Sheng; Liu, Jian-Min; Yue, Zhi-Jian

    2013-10-14

    MiR-106a is frequently down-regulated in various types of human cancer. However the underlying mechanism of miR-106a involved in glioma remains elusive. The association of miR-106a with glioma grade and patient survival was analyzed. The biological function and target of miR-106a were determined by bioinformatic analysis and cell experiments (Western blot, luciferase reporter, cell cycle, ntracellular ATP production and glucose uptake assay). Finally, rescue expression of its target SLC2A3 was used to test the role of SLC2A3 in miR-106a-mediated cell glycolysis and proliferation. Here we showed that miR-106a was a tumor suppressor miRNA was involved in GBM cell glucose uptake and proliferation. Decreased miR-106a in GBM tissues and conferred a poor survival of GBM patients. SLC2A3 was identified as a core target of miR-106a in GBM cells. Inhibition of SLC2A3 by miR-106a attenuated cell proliferation and inhibited glucose uptake. In addition, for each biological process we identified ontology-associated transcripts that significantly correlated with SLC2A3 expression. Finally, the expression of SLC2A3 largely abrogated miR-106a-mediated cell proliferation and glucose uptake in GBM cells. Taken together, miR-106a and SLC2A3 could be potential therapeutic approaches for GBM.

  11. The β-1,3-glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ha, Cheol Woong; Kim, Kwantae; Chang, Yeon Ji; Kim, Bongkeun; Huh, Won-Ki

    2014-07-01

    In Saccharomyces cerevisiae, the stability of highly repetitive rDNA array is maintained through transcriptional silencing. Recently, a β-1,3-glucanosyltransferase Gas1 has been shown to play a significant role in the regulation of transcriptional silencing in S. cerevisiae. Here, we show that the gas1Δ mutation increases rDNA silencing in a Sir2-dependent manner. Remarkably, the gas1Δ mutation induces nuclear localization of Msn2/4 and stimulates the expression of PNC1, a gene encoding a nicotinamidase that functions as a Sir2 activator. The lack of enzymatic activity of Gas1 or treatment with a cell wall-damaging agent, Congo red, exhibits effects similar to those of the gas1Δ mutation. Furthermore, the loss of Gas1 or Congo red treatment lowers the cAMP-dependent protein kinase (PKA) activity in a cell wall integrity MAP kinase Slt2-dependent manner. Collectively, our results suggest that the dysfunction of Gas1 plays a positive role in the maintenance of rDNA integrity by decreasing PKA activity and inducing the accumulation of Msn2/4 in the nucleus. It seems that nuclear-localized Msn2/4 stimulate the expression of Pnc1, thereby enhancing the association of Sir2 with rDNA and promoting rDNA stability. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses

    Directory of Open Access Journals (Sweden)

    Dana Piovesan

    2017-04-01

    Full Text Available Summary: Humoral immune responses are tailored to the invading pathogen through regulation of key transcription factors and their networks. This is critical to establishing effective antibody-mediated responses, yet it is unknown how B cells integrate pathogen-induced signals to drive or suppress transcriptional programs specialized for each class of pathogen. Here, we detail the key role of the transcription factor c-Myb in regulating the T-bet-mediated anti-viral program. Deletion of c-Myb in mature B cells significantly increased serum IgG2c and CXCR3 expression by upregulating T-bet, normally suppressed during Th2-cell-mediated responses. Enhanced expression of T-bet resulted in aberrant plasma cell differentiation within the germinal center, mediated by CXCR3 expression. These findings identify a dual role for c-Myb in limiting inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Identifying such intrinsic regulators of specialized antibody responses can assist in vaccine design and therapeutic intervention in B-cell-mediated immune disorders. : Piovesan et al. examine how B cells establish transcriptional programs that result in tailored responses to invading pathogens. The authors find that the transcription factor c-Myb represses the T-bet-mediated anti-viral program in B cells. c-Myb limits inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Keywords: B cells, c-Myb, T-bet, immunoglobulin, CXCR3, plasma cell, germinal center

  13. Research on the Solid State Fermentation of Jerusalem Artichoke Pomace for Producing R,R-2,3-Butanediol by Paenibacillus polymyxa ZJ-9.

    Science.gov (United States)

    Cao, Can; Zhang, Li; Gao, Jian; Xu, Hong; Xue, Feng; Huang, Weiwei; Li, Yan

    2017-06-01

    R,R-2,3-butanediol (R,R-2,3-BD) was produced by Paenibacillus polymyxa ZJ-9, which was capable of utilizing inulin without previous hydrolysis. The Jerusalem artichoke pomace (JAP) derived from the conversion of Jerusalem artichoke powder into inulin extract, which was usually used for biorefinery by submerged fermentation (SMF), was utilized in solid state fermentation (SSF) to produce R,R-2,3-BD. In this study, the fermentation parameters of SSF were optimized and determined in flasks. A novel bioreactor was designed and assembled for the laboratory scale-up of SSF, with a maximum yield of R,R-2,3-BD (67.90 g/kg (JAP)). This result is a 36.3% improvement compared with the flasks. Based on the same bath of Jerusalem artichoke powder, the total output of R,R-2,3-BD increased by 38.8% for the SSF of JAP combined with the SMF of inulin extraction. Overall, the utilization of JAP for R,R-2,3-BD production was beneficial to the comprehensive utilization of Jerusalem artichoke tuber.

  14. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor.

    Science.gov (United States)

    Fernandez-Moreno, Josefina-Patricia; Tzfadia, Oren; Forment, Javier; Presa, Silvia; Rogachev, Ilana; Meir, Sagit; Orzaez, Diego; Aharoni, Aspah; Granell, Antonio

    2016-07-01

    The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Fucose-Mediated Transcriptional Activation of the fcs Operon by FcsR in Streptococcus pneumoniae.

    Science.gov (United States)

    Manzoor, Irfan; Shafeeq, Sulman; Afzal, Muhammad; Kuipers, Oscar P

    2015-01-01

    In this study, we explore the impact of fucose on the transcriptome of S. pneumoniae D39. The expression of various genes and operons, including the fucose uptake PTS and utilization operon (fcs operon) was altered in the presence of fucose. By means of quantitative RT-PCR and β-galactosidase analysis, we demonstrate the role of the transcriptional regulator FcsR, present upstream of the fcs operon, as a transcriptional activator of the fcs operon. We also predict a 19-bp putative FcsR regulatory site (5'-ATTTGAACATTATTCAAGT-3') in the promoter region of the fcs operon. The functionality of this predicted FcsR regulatory site was further confirmed by promoter-truncation experiments, where deletion of half of the FscR regulatory site or full deletion led to the abolition of expression of the fcs operon. © 2015 S. Karger AG, Basel.

  16. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    Science.gov (United States)

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  17. miR-320a regulates cell proliferation and apoptosis in multiple myeloma by targeting pre-B-cell leukemia transcription factor 3

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yinghao [Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou, 215006 (China); Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province (China); Wu, Depei, E-mail: wudepei@medmail.com.cn [Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou, 215006 (China); Wang, Jishi, E-mail: lgylhlyh@aliyun.com [Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province (China); Li, Yan; Chai, Xiao; Kang, Qian [Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province (China)

    2016-05-13

    Aberrant expression of microRNAs (miRNAs) is implicated in cancer development and progression. While miR-320a is reported to be deregulated in many malignancy types, its biological role in multiple myeloma (MM) remains unclear. Here, we observed reduced expression of miR-320a in MM samples and cell lines. Ectopic expression of miR-320a dramatically suppressed cell viability and clonogenicity and induced apoptosis in vitro. Mechanistic investigation led to the identification of Pre-B-cellleukemia transcription factor 3 (PBX3) as a novel and direct downstream target of miR-320a. Interestingly, reintroduction of PBX3 abrogated miR-320a-induced MM cell growth inhibition and apoptosis. In a mouse xenograft model, miR-320a overexpression inhibited tumorigenicity and promoted apoptosis. Our findings collectively indicate that miR-320a inhibits cell proliferation and induces apoptosis in MM cells by directly targeting PBX3, supporting its utility as a novel and potential therapeutic agent for miRNA-based MM therapy. -- Highlights: •Expression of miR-320a in MM cell induces apoptosis in vitro. •miR-320a represses PBX3 via targeting specific sequences in the 3′UTR region. •Exogenous expression of PBX3 reverses the effects of miR-320a in inhibiting MM cell growth and promoting apoptosis. •Overexpression of miR-320a inhibits tumor growth and increases apoptosis in vivo.

  18. Interaction of the transactivation domain of B-Myb with the TAZ2 domain of the coactivator p300: molecular features and properties of the complex.

    Directory of Open Access Journals (Sweden)

    Ojore Oka

    Full Text Available The transcription factor B-Myb is a key regulator of the cell cycle in vertebrates, with activation of transcription involving the recognition of specific DNA target sites and the recruitment of functional partner proteins, including the coactivators p300 and CBP. Here we report the results of detailed studies of the interaction between the transactivation domain of B-Myb (B-Myb TAD and the TAZ2 domain of p300. The B-Myb TAD was characterized using circular dichroism, fluorescence and NMR spectroscopy, which revealed that the isolated domain exists as a random coil polypeptide. Pull-down and spectroscopic experiments clearly showed that the B-Myb TAD binds to p300 TAZ2 to form a moderately tight (K(d ~1.0-10 µM complex, which results in at least partial folding of the B-Myb TAD. Significant changes in NMR spectra of p300 TAZ2 suggest that the B-Myb TAD binds to a relatively large patch on the surface of the domain (~1200 Å(2. The apparent B-Myb TAD binding site on p300 TAZ2 shows striking similarity to the surface of CBP TAZ2 involved in binding to the transactivation domain of the transcription factor signal transducer and activator of transcription 1 (STAT1, which suggests that the structure of the B-Myb TAD-p300 TAZ2 complex may share many features with that reported for STAT1 TAD-p300 TAZ2.

  19. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time.

    Science.gov (United States)

    Wu, Rongmei; Wang, Tianchi; McGie, Tony; Voogd, Charlotte; Allan, Andrew C; Hellens, Roger P; Varkonyi-Gasic, Erika

    2014-09-01

    SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Diverse Genetic Regulon of the Virulence-Associated Transcriptional Regulator MucR in Brucella abortus 2308

    Science.gov (United States)

    Caswell, Clayton C.; Elhassanny, Ahmed E. M.; Planchin, Emilie E.; Roux, Christelle M.; Weeks-Gorospe, Jenni N.; Ficht, Thomas A.; Dunman, Paul M.

    2013-01-01

    The Ros-type regulator MucR is one of the few transcriptional regulators that have been linked to virulence in Brucella. Here, we show that a Brucella abortus in-frame mucR deletion strain exhibits a pronounced growth defect during in vitro cultivation and, more importantly, that the mucR mutant is attenuated in cultured macrophages and in mice. The genetic basis for the attenuation of Brucella mucR mutants has not been defined previously, but in the present study the genes regulated by MucR in B. abortus have been elucidated using microarray analysis and real-time reverse transcription-PCR (RT-PCR). In B. abortus 2308, MucR regulates a wide variety of genes whose products may function in establishing and maintaining cell envelope integrity, polysaccharide biosynthesis, iron homeostasis, genome plasticity, and transcriptional regulation. Particularly notable among the MucR-regulated genes identified is arsR6 (nolR), which encodes a transcriptional regulator previously linked to virulence in Brucella melitensis 16 M. Importantly, electrophoretic mobility shift assays (EMSAs) determined that a recombinant MucR protein binds directly to the promoter regions of several genes repressed by MucR (including arsR6 [nolR]), and in Brucella, as in other alphaproteobacteria, MucR binds to its own promoter to repress expression of the gene that encodes it. Overall, these studies have uncovered the diverse genetic regulon of MucR in Brucella, and in doing so this work has begun to define the MucR-controlled genetic circuitry whose misregulation contributes to the virulence defect of Brucella mucR mutants. PMID:23319565

  1. HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inae; Hur, Jung; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2015-01-30

    Highlights: • Wnt signaling as well as β-catenin overexpression enhance HuR cytoplasmic export. • HuR overexpression promotes cytoplasmic localization of β-catenin from the perinuclear fraction. • Wnt/β-catenin-mediated transcriptional activity is repressesed by HuR. - Abstract: β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved in tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells.

  2. HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin

    International Nuclear Information System (INIS)

    Kim, Inae; Hur, Jung; Jeong, Sunjoo

    2015-01-01

    Highlights: • Wnt signaling as well as β-catenin overexpression enhance HuR cytoplasmic export. • HuR overexpression promotes cytoplasmic localization of β-catenin from the perinuclear fraction. • Wnt/β-catenin-mediated transcriptional activity is repressesed by HuR. - Abstract: β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved in tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells

  3. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.

    Science.gov (United States)

    Hamperl, Stephan; Bocek, Michael J; Saldivar, Joshua C; Swigut, Tomek; Cimprich, Karlene A

    2017-08-10

    Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Electronic, elastic and optical properties of divalent (R+2X) and trivalent (R+3X) rare earth monochalcogenides

    Science.gov (United States)

    Kumar, V.; Chandra, S.; Singh, J. K.

    2017-08-01

    Based on plasma oscillations theory of solids, simple relations have been proposed for the calculation of bond length, specific gravity, homopolar energy gap, heteropolar energy gap, average energy gap, crystal ionicity, bulk modulus, electronic polarizability and dielectric constant of rare earth divalent R+2X and trivalent R+3X monochalcogenides. The specific gravity of nine R+2X, twenty R+3X, and bulk modulus of twenty R+3X monochalcogenides have been calculated for the first time. The calculated values of all parameters are compared with the available experimental and the reported values. A fairly good agreement has been obtained between them. The average percentage deviation of two parameters: bulk modulus and electronic polarizability for which experimental data are known, have also been calculated and found to be better than the earlier correlations.

  5. Role of c-Myb in chondrogenesis.

    Science.gov (United States)

    Oralová, V; Matalová, E; Janečková, E; Drobná Krejčí, E; Knopfová, L; Šnajdr, P; Tucker, A S; Veselá, I; Šmarda, J; Buchtová, M

    2015-07-01

    The Myb locus encodes the c-Myb transcription factor involved in controlling a broad variety of cellular processes. Recently, it has been shown that c-Myb may play a specific role in hard tissue formation; however, all of these results were gathered from an analysis of intramembranous ossification. To investigate a possible role of c-Myb in endochondral ossification, we carried out our study on the long bones of mouse limbs during embryonic development. Firstly, the c-myb expression pattern was analyzed by in situ hybridization during endochondral ossification of long bones. c-myb positive areas were found in proliferating as well as hypertrophic zones of the growth plate. At early embryonic stages, localized expression was also observed in the perichondrium and interdigital areas. The c-Myb protein was found in proliferating chondrocytes and in the perichondrium of the forelimb bones (E14.5-E17.5). Furthermore, protein was detected in pre-hypertrophic as well as hypertrophic chondrocytes. Gain-of-function and loss-of-function approaches were used to test the effect of altered c-myb expression on chondrogenesis in micromass cultures established from forelimb buds of mouse embryos. A loss-of-function approach using c-myb specific siRNA decreased nodule formation, as well as downregulated the level of Sox9 expression, a major marker of chondrogenesis. Transient c-myb overexpression markedly increased the formation of cartilage nodules and the production of extracellular matrix as detected by intense staining with Alcian blue. Moreover, the expression of early chondrogenic genes such as Sox9, Col2a1 and activity of a Col2-LUC reporter were increased in the cells overexpressing c-myb while late chondrogenic markers such as Col10a1 and Mmp13 were not significantly changed or were downregulated. Taken together, the results of this study demonstrate that the c-Myb transcription factor is involved in the regulation and promotion of endochondral bone formation. Copyright

  6. Crystallization and preliminary crystal structure analysis of the ligand-binding domain of PqsR (MvfR), the Pseudomonas quinolone signal (PQS) responsive quorum-sensing transcription factor of Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Xu, Ningna; Yu, Shen; Moniot, Sébastien; Weyand, Michael; Blankenfeldt, Wulf

    2012-01-01

    The ligand-binding domain of the transcription factor PqsR from P. aeruginosa has been crystallized and initial phases have been obtained using SAD data from seleno-l-methionine-labelled crystals. The opportunistic bacterial pathogen Pseudomonas aeruginosa employs three transcriptional regulators, LasR, RhlR and PqsR, to control the transcription of a large subset of its genes in a cell-density-dependent process known as quorum sensing. Here, the recombinant production, crystallization and structure solution of the ligand-binding domain of PqsR (MvfR), the LysR-type transcription factor that responds to the Pseudomonas quinolone signal (PQS), a quinolone-based quorum-sensing signal that is unique to P. aeruginosa and possibly a small number of other bacteria, is reported. PqsR regulates the expression of many virulence genes and may therefore be an interesting drug target. The ligand-binding domain (residues 91–319) was produced as a fusion with SUMO, and hexagonal-shaped crystals of purified PqsR-91–319 were obtained using the vapour-diffusion method. Crystallization in the presence of a PQS precursor allowed data collection to 3.25 Å resolution on a synchrotron beamline, and initial phases have been obtained using single-wavelength anomalous diffraction data from seleno-l-methionine-labelled crystals, revealing the space group to be P6 5 22, with unit-cell parameters a = b = 116–120, c = 115–117 Å

  7. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae.

    Science.gov (United States)

    Onkokesung, Nawaporn; Reichelt, Michael; van Doorn, Arjen; Schuurink, Robert C; van Loon, Joop J A; Dicke, Marcel

    2014-05-01

    Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin and flavonol levels which enhances plant resistance to generalist caterpillars. However, how these metabolites affect specialist herbivores has remained unknown. Performance of a specialist aphid (Brevicoryne brassicae) was unaffected after feeding on oxMYB75 plants, whereas a specialist caterpillar (Pieris brassicae) gained significantly higher body mass when feeding on this plant. An increase in anthocyanin and total flavonol glycoside levels correlated negatively with the body mass of caterpillars fed on oxMYB75 plants. However, a significant reduction of kaempferol-3,7-dirhamnoside (KRR) corresponded to an increased susceptibility of oxMYB75 plants to caterpillar feeding. Pieris brassicae caterpillars also grew less on an artificial diet containing KRR or on oxMYB75 plants that were exogenously treated with KRR, supporting KRR's function in direct defence against this specialist caterpillar. The results show that enhancing the activity of the anthocyanin pathway in oxMYB75 plants results in re-channelling of quercetin/kaempferol metabolites which has a negative effect on the accumulation of KRR, a novel defensive metabolite against a specialist caterpillar.

  8. Energy transfer in LaF3: R3+, Pr3+ (where R = Nd, Dy)

    International Nuclear Information System (INIS)

    Reddy, B.R.; Venkateswarlu, P.

    1982-01-01

    Fluorescence is observed for 1 D 2 levels of Pr 3+ on exciting the higher lying level 3 P 0 in doubly doped systems LaF 3 : R 3+ , Pr 3+ (R = Nd or Dy) but not in LaF 3 :Pr 3+ . From the recorded excitation spectra, and the measured decay times, it has been found that the drain mechanism of population to 1 D 2 levels is caused in doubly doped systems by ion-pair relaxation between Pr 3+ ( 3 P 0 -- 1 D 2 ) and Nd 3+ (Z-X) or Dy 3+ (Z-Y) ions

  9. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis

    DEFF Research Database (Denmark)

    Kandasamy, Vijayalakshmi; Liu, Jianming; Dantoft, Shruti Harnal

    2016-01-01

    -BDO) and (2R,3R)-butanediol (R-BDO). Efficient production of (3R)-acetoin was accomplished using a strain where the competing lactate, acetate and ethanol forming pathways had been blocked. By introducing different alcohol dehydrogenases into this strain, either EcBDH from Enterobacter cloacae or SadB from......The potential that lies in harnessing the chemical synthesis capabilities inherent in living organisms is immense. Here we demonstrate how the biosynthetic machinery of Lactococcus lactis, can be diverted to make (3R)-acetoin and the derived 2,3-butanediol isomers meso-(2,3)-butanediol (m...... Achromobacter xylosooxidans, it was possible to achieve high-yield production of m-BDO or R-BDO respectively. To achieve biosustainable production of these chemicals from dairy waste, we transformed the above strains with the lactose plasmid pLP712. This enabled efficient production of (3R)-acetoin, m-BDO and R...

  10. Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains

    International Nuclear Information System (INIS)

    Zheng, Meiying; Cooper, David R.; Grossoehme, Nickolas E.; Yu, Minmin; Hung, Li-Wei; Cieslik, Marcin; Derewenda, Urszula; Lesley, Scott A.; Wilson, Ian A.; Giedroc, David P.; Derewenda, Zygmunt S.

    2009-01-01

    Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged-helix DNA-binding domains and diverse C-terminal regulatory domains which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all-α-helical regulatory domains classified into two related Pfam families: FadR-C and FCD. Only two crystal structures of FadR-family members, those of Escherichia coli FadR protein and LldR from Corynebacterium glutamicum, have been described to date in the literature. Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The FCD domain is similar to that of the LldR regulator and contains a buried metal-binding site. Using atomic absorption spectroscopy and Trp fluorescence, it is shown that the recombinant protein contains bound Ni 2+ ions but that it is able to bind Zn 2+ with K d < 70 nM. It is concluded that Zn 2+ is the likely physiological metal and that it may perform either structural or regulatory roles or both. Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors

  11. Crystal structures of two transcriptional regulators from Bacillus cereus define the conserved structural features of a PadR subfamily.

    Directory of Open Access Journals (Sweden)

    Guntur Fibriansah

    Full Text Available PadR-like transcriptional regulators form a structurally-related family of proteins that control the expression of genes associated with detoxification, virulence and multi-drug resistance in bacteria. Only a few members of this family have been studied by genetic, biochemical and biophysical methods, and their structure/function relationships are still largely undefined. Here, we report the crystal structures of two PadR-like proteins from Bacillus cereus, which we named bcPadR1 and bcPadR2 (products of gene loci BC4206 and BCE3449 in strains ATCC 14579 and ATCC 10987, respectively. BC4206, together with its neighboring gene BC4207, was previously shown to become significantly upregulated in presence of the bacteriocin AS-48. DNA mobility shift assays reveal that bcPadR1 binds to a 250 bp intergenic region containing the putative BC4206-BC4207 promoter sequence, while in-situ expression of bcPadR1 decreases bacteriocin tolerance, together suggesting a role for bcPadR1 as repressor of BC4206-BC4207 transcription. The function of bcPadR2 (48% identical in sequence to bcPadR1 is unknown, but the location of its gene just upstream from genes encoding a putative antibiotic ABC efflux pump, suggests a role in regulating antibiotic resistance. The bcPadR proteins are structurally similar to LmrR, a PadR-like transcription regulator in Lactococcus lactis that controls expression of a multidrug ABC transporter via a mechanism of multidrug binding and induction. Together these proteins define a subfamily of conserved, relatively small PadR proteins characterized by a single C-terminal helix for dimerization. Unlike LmrR, bcPadR1 and bcPadR2 lack a central pore for ligand binding, making it unclear whether the transcriptional regulatory roles of bcPadR1 and bcPadR2 involve direct ligand recognition and induction.

  12. Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer.

    Science.gov (United States)

    Karahan, Gurbet; Sayar, Nilufer; Gozum, Gokcen; Bozkurt, Betul; Konu, Ozlen; Yulug, Isik G

    2015-06-01

    Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45 S rDNA promoter. However, the DNA methylation state of the 45 S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18 S, 28 S, 5.8 S and 45 S external transcribed spacer (45 S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45 S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation

  13. The Odorant ( R)-Citronellal Attenuates Caffeine Bitterness by Inhibiting the Bitter Receptors TAS2R43 and TAS2R46.

    Science.gov (United States)

    Suess, Barbara; Brockhoff, Anne; Meyerhof, Wolfgang; Hofmann, Thomas

    2018-03-14

    Sensory studies showed the volatile fraction of lemon grass and its main constituent, the odor-active citronellal, to significantly decrease the perceived bitterness of a black tea infusion as well as caffeine solutions. Seven citronellal-related derivatives were synthesized and shown to inhibit the perceived bitterness of caffeine in a structure-dependent manner. The aldehyde function at carbon 1, the ( R)-configuration of the methyl-branched carbon 3, and a hydrophobic carbon chain were found to favor the bitter inhibitory activity of citronellal; for example, even low concentrations of 25 ppm were observed to reduce bitterness perception of caffeine solution (6 mmol/L) by 32%, whereas ( R)-citronellic acid (100 pm) showed a reduction of only 21% and ( R)-citronellol (100 pm) was completely inactive. Cell-based functional experiments, conducted with the human bitter taste receptors TAS2R7, TAS2R10, TAS2R14, TAS2R43, and TAS2R46 reported to be sensitive to caffeine, revealed ( R)-citronellal to completely block caffeine-induced calcium signals in TAS2R43-expressing cells, and, to a lesser extent, in TAS2R46-expressing cells. Stimulation of TAS2R43-expressing cells with structurally different bitter agonists identified ( R)-citronellal as a general allosteric inhibitor of TAS2R43. Further structure/activity studies indicated 3-methyl-branched aliphatic aldehydes with a carbon chain of ≥4 C atoms as best TAS2R43 antagonists. Whereas odor-taste interactions have been mainly interpreted in the literature to be caused by a central neuronal integration of odors and tastes, rather than by peripheral events at the level of reception, the findings of this study open up a new dimension regarding the interaction of the two chemical senses.

  14. Syntheses of 24R,25-dihydroxy-[6,19,19-3H]vitamin D3 and 24R,25-dihydroxy-[6,19,19-2H]vitamin D3

    International Nuclear Information System (INIS)

    Yamada, S.; Shimizu, M.; Fukushima, K.; Niimura, K.; Maeda, Y.

    1989-01-01

    24R,25-Dihydroxy-[6,19,19-3H]vitamin D3 with a specific activity of 54 Ci/mmol and 24R,25-dihydroxy-[6,19,19-2H]vitamin D3 with 2.6 deuterium atoms/mol were synthesized in four steps starting from 24R,25-Dihydroxyvitamin D3 via its sulfur dioxide adduct

  15. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.

    Science.gov (United States)

    Sakurai, Shunya; Shimizu, Toshiyuki; Ohto, Umeharu

    2017-10-27

    2,3,7,8-Tetrachlorodibenzo- p -dioxin and related compounds are extraordinarily potent environmental toxic pollutants. Most of the 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix (bHLH) Per-ARNT-Sim (PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, because of the lack of structural information. Here, we determined the structure of the AhRR-ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR-ARNT and AhR-ARNT were similar in the bHLH-PAS-A region, whereas the PAS-B of ARNT in the AhRR-ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA and further suggested the existence of an AhRR-ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system.

    Science.gov (United States)

    D'Souza, Alicia D; Belotserkovskii, Boris P; Hanawalt, Philip C

    2018-02-01

    The selective inhibition of transcription of a chosen gene by an artificial agent has numerous applications. Usually, these agents are designed to bind a specific nucleotide sequence in the promoter or within the transcribed region of the chosen gene. However, since optimal binding sites might not exist within the gene, it is of interest to explore the possibility of transcription inhibition when the agent is designed to bind at other locations. One of these possibilities arises when an additional transcription initiation site (e.g. secondary promoter) is present upstream from the primary promoter of the target gene. In this case, transcription inhibition might be achieved by inducing the formation of an RNA-DNA hybrid (R-loop) upon transcription from the secondary promoter. The R-loop could extend into the region of the primary promoter, to interfere with promoter recognition by RNA polymerase and thereby inhibit transcription. As a sequence-specific R-loop-inducing agent, a peptide nucleic acid (PNA) could be designed to facilitate R-loop formation by sequestering the non-template DNA strand. To investigate this mode for transcription inhibition, we have employed a model system in which a PNA binding site is localized between the T3 and T7 phage RNA polymerase promoters, which respectively assume the roles of primary and secondary promoters. In accord with our model, we have demonstrated that with PNA-bound DNA substrates, transcription from the T7 promoter reduces transcription from the T3 promoter by 30-fold, while in the absence of PNA binding there is no significant effect of T7 transcription upon T3 transcription. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Localisation of relaxin peptides in the brain: comparative mapping of relaxin-R2 and the novel relaxin-R3 gene expression

    International Nuclear Information System (INIS)

    Burazin, T.C.D.; Macris, M.; Gundlach, A.L.; Tregear, G.W.

    2002-01-01

    Full text: Relaxin is a peptide hormone with known actions in the female reproductive tract that has also been identified in brain. Until recently, only one relaxin gene has been described in the rat and mouse. However, we have recently identified a new member of the relaxin gene family, relaxin gene-3, expressed in human, mouse and rat. Using [ 35 S]-labelled oligonucleotide probes and in situ hybridisation histochemistry, the current studies describe the distribution of mRNA encoding rat relaxin gene-1 (R1) and rat relaxin gene-3 (R3) in the adult rat brain. R1 mRNA was detected in several regions including the anterior olfactory nucleus, tenia tecta, orbital, frontal and piriform cortices, and in lower abundance in the hippocampus. In contrast, highly abundant expression of R3 mRNA was more restricted being present in the pars ventromedialis subdivision of the dorsal tegmental nucleus (vmDTg), with some low level expression in the hippocampus. Autoradiographic visualisation of [ 33 P]-labelled human relaxin binding sites revealed the presence of putative relaxin receptors in the DTg centralis and vmDTg, as well as in several forebrain areas previously identified. Studies are currently underway to investigate the activity-dependent regulation and developmental expression of relaxin transcripts, including the possible co-localisation of R3 mRNA with neurotransmitters such as GABA and 5- HT, and other peptides. These studies are consistent with an important role for these novel relaxin peptides in the rat central nervous system. Copyright (2002) Australian Neuroscience Society

  18. An .I.ex vivo ./I.model to study v-Myb-induced leukemogenicity

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Marta; Králová, Jarmila; Karafiát, Vít; Bartůněk, Petr; Dvořák, Michal

    2001-01-01

    Roč. 27, č. 2 (2001), s. 437-445 ISSN 1079-9796 R&D Projects: GA ČR GV301/98/K042; GA ČR GA204/00/0554; GA AV ČR IPP2052002 Grant - others:HHMI(US) 75195-540401 Institutional research plan: CEZ:AV0Z5052915 Keywords : v-Myb oncoprotein * PEST domain * leucine zipper Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.703, year: 2001

  19. The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rui Xiang

    2012-02-01

    Full Text Available MicroRNAs (miRNAs have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92 cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2 is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3’ untranslated regions (3’UTR of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3’UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3’UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.

  20. The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes.

    Science.gov (United States)

    Xiang, Rui; Lei, Han; Chen, Mianzhi; Li, Qinwei; Sun, Huan; Ai, Jianzhong; Chen, Tielin; Wang, Honglian; Fang, Yin; Zhou, Qin

    2012-02-01

    MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3' untranslated regions (3'UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3'UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3'UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.

  1. Crystal structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Meiying; Cooper, David; Grossoehmerb, Nickolas; Yu, Minmin; Hung, Li-Wei; Cieslik, Murcin; Derewendaro, Urszula; Lesley, Scott; Wilson, Ian; Giedrocb, David; Derewenda, Zygmunt

    2009-06-06

    The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged helix (WH) DNA-binding domains and diverse C-terminal, regulatory domains, which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all a-helical regulatory domains classified into two related Pfam families: FadR{_}C and FCD. Only two crystal structures of the FadR family members, i.e. the E. coli FadR protein and the LldR from C. glutamicum, have been described to date in literature. Here we describe the crystal structure of TM0439, a GntR regulator with an FCD domain, found in the Thermotoga maritima genome. The FCD domain is similar to that of the LldR regulator, and contains a buried metal binding site. Using atomic absorption spectroscopy and Trp fluorescence, we show that the recombinant protein contains bound Ni{sup 2+} ions, but it is able to bind Zn{sup 2+} with K{sub D} < 70 nM . We conclude that Zn{sup 2+} is the likely physiological metal, where it may perform either or both structural and regulatory roles. Finally, we compare the TM0439 structure to two other FadR family structures recently deposited by Structural Genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors.

  2. Anomalous magnetoresistance in antiferromagnetic polycrystalline materials R2Ni3Si5 (R=rare earth)

    International Nuclear Information System (INIS)

    Mazumdar, C.; Nigam, A.K.; Nagarajan, R.; Gupta, L.C.; Chandra, G.; Padalia, B.D.; Godart, C.; Vijayaraghaven, R.

    1997-01-01

    Magnetoresistance (MR) studies on polycrystalline R 2 Ni 3 Si 5 , (R=Y, rare earth) which order antiferromagnetically at low temperatures, are reported here. MR of the Nd, Sm, and Tb members of the series exhibit positive giant magnetoresistance, largest among polycrystalline materials (85%, 75%, and 58% for Tb 2 Ni 3 Si 5 , Sm 2 Ni 3 Si 5 , and Nd 2 Ni 3 Si 5 , respectively, at 4.4 K in a field of 45 kG). These materials have, to the best of our knowledge, the largest positive GMR reported ever for any bulk polycrystalline compounds. The magnitude of MR does not correlate with the rare earth magnetic moments. We believe that the structure of these materials, which can be considered as a naturally occurring multilayer of wavy planes of rare earth atoms separated by Ni endash Si network, plays a role. The isothermal MR of other members of this series (R=Pr,Dy,Ho) exhibits a maximum and a minimum, below their respective T N close-quote s. We interpret these in terms of a metamagnetic transition and short-range ferromagnetic correlations. The short-range ferromagnetic correlations seem to be dominant in the temperature region just above T N . copyright 1997 American Institute of Physics

  3. miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax (Linum usitatissimum L.).

    Science.gov (United States)

    Dmitriev, Alexey A; Kudryavtseva, Anna V; Bolsheva, Nadezhda L; Zyablitsin, Alexander V; Rozhmina, Tatiana A; Kishlyan, Natalya V; Krasnov, George S; Speranskaya, Anna S; Krinitsina, Anastasia A; Sadritdinova, Asiya F; Snezhkina, Anastasiya V; Fedorova, Maria S; Yurkevich, Olga Yu; Muravenko, Olga V; Belenikin, Maxim S; Melnikova, Nataliya V

    2017-01-01

    Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax ( Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl 3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390-TAS3 and GRF5, and miR393-AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants.

  4. GlnR-Mediated Regulation of ectABCD Transcription Expands the Role of the GlnR Regulon to Osmotic Stress Management

    OpenAIRE

    Shao, ZhiHui; Deng, WanXin; Li, ShiYuan; He, JuanMei; Ren, ShuangXi; Huang, WeiRen; Lu, YinHua; Zhao, GuoPing; Cai, ZhiMing; Wang, Jin

    2015-01-01

    Ectoine and hydroxyectoine are excellent compatible solutes for bacteria to deal with environmental osmotic stress and temperature damages. The biosynthesis cluster of ectoine and hydroxyectoine is widespread among microorganisms, and its expression is activated by high salinity and temperature changes. So far, little is known about the mechanism of the regulation of the transcription of ect genes and only two MarR family regulators (EctR1 in methylobacteria and the EctR1-related regulator Co...

  5. Production of R,R-2,3-butanediol of ultra-high optical purity from Paenibacillus polymyxa ZJ-9 using homologous recombination.

    Science.gov (United States)

    Zhang, Li; Cao, Can; Jiang, Ruifan; Xu, Hong; Xue, Feng; Huang, Weiwei; Ni, Hao; Gao, Jian

    2018-08-01

    The present study describes the use of metabolic engineering to achieve the production of R,R-2,3-butanediol (R,R-2,3-BD) of ultra-high optical purity (>99.99%). To this end, the diacetyl reductase (DAR) gene (dud A) of Paenibacillus polymyxa ZJ-9 was knocked out via homologous recombination between the genome and the previously constructed targeting vector pRN5101-L'C in a process based on homologous single-crossover. PCR verification confirmed the successful isolation of the dud A gene disruption mutant P. polymyxa ZJ-9-△dud A. Moreover, fermentation results indicated that the optical purity of R,R-2,3-BD increased from about 98% to over 99.99%, with a titer of 21.62 g/L in Erlenmeyer flasks. The latter was further increased to 25.88 g/L by fed-batch fermentation in a 5-L bioreactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The Agrobacterium tumefaciens Transcription Factor BlcR Is Regulated via Oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yi; Fiscus, Valena; Meng, Wuyi; Zheng, Zhida; Zhang, Lian-Hui; Fuqua, Clay; Chen, Lingling (IMCB-Singapore); (Indiana)

    2012-02-08

    The Agrobacterium tumefaciens BlcR is a member of the emerging isocitrate lyase transcription regulators that negatively regulates metabolism of {gamma}-butyrolactone, and its repressing function is relieved by succinate semialdehyde (SSA). Our crystal structure showed that BlcR folded into the DNA- and SSA-binding domains and dimerized via the DNA-binding domains. Mutational analysis identified residues, including Phe{sup 147}, that are important for SSA association; BlcR{sup F147A} existed as tetramer. Two BlcR dimers bound to target DNA and in a cooperative manner, and the distance between the two BlcR-binding sequences in DNA was critical for BlcR-DNA association. Tetrameric BlcR{sup F147A} retained DNA binding activity, and importantly, this activity was not affected by the distance separating the BlcR-binding sequences in DNA. SSA did not dissociate tetrameric BlcR{sup F147A} or BlcR{sup F147A}-DNA. As well as in the SSA-binding site, Phe{sup 147} is located in a structurally flexible loop that may be involved in BlcR oligomerization. We propose that SSA regulates BlcR DNA-binding function via oligomerization.

  7. Involvement of AMPA receptor GluR2 and GluR3 trafficking in trigeminal spinal subnucleus caudalis and C1/C2 neurons in acute-facial inflammatory pain.

    Directory of Open Access Journals (Sweden)

    Makiko Miyamoto

    Full Text Available To evaluate the involvement of trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR GluR2 and GluR3 subunits in an acute inflammatory orofacial pain, we analyzed nocifensive behavior, phosphorylated extracellular signal-regulated kinase (pERK and Fos expression in Vi/Vc, Vc and C1/C2 in GluR2 delta7 knock-in (KI, GluR3 delta7 KI mice and wild-type mice. We also studied Vc neuronal activity to address the hypothesis that trafficking of GluR2 and GluR3 subunits plays an important role in Vi/Vc, Vc and C1/C2 neuronal activity associated with orofacial inflammation in these mice. Late nocifensive behavior was significantly depressed in GluR2 delta7 KI and GluR3 delta7 KI mice. In addition, the number of pERK-immunoreactive (IR cells was significantly decreased bilaterally in the Vi/Vc, Vc and C1/C2 in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice at 40 min after formalin injection, and was also significantly smaller in GluR3 delta7 KI compared to GluR2 delta7 KI mice. The number of Fos protein-IR cells in the ipsilateral Vi/Vc, Vc and C1/C2 was also significantly smaller in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice 40 min after formalin injection. Nociceptive neurons functionally identified as wide dynamic range neurons in the Vc, where pERK- and Fos protein-IR cell expression was prominent, showed significantly lower spontaneous activity in GluR2 delta7 KI and GluR3 delta7 KI mice than wild-type mice following formalin injection. These findings suggest that GluR2 and GluR3 trafficking is involved in the enhancement of Vi/Vc, Vc and C1/C2 nociceptive neuronal excitabilities at 16-60 min following formalin injection, resulting in orofacial inflammatory pain.

  8. Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters.

    Science.gov (United States)

    Grunseich, Christopher; Wang, Isabel X; Watts, Jason A; Burdick, Joshua T; Guber, Robert D; Zhu, Zhengwei; Bruzel, Alan; Lanman, Tyler; Chen, Kelian; Schindler, Alice B; Edwards, Nancy; Ray-Chaudhury, Abhik; Yao, Jianhua; Lehky, Tanya; Piszczek, Grzegorz; Crain, Barbara; Fischbeck, Kenneth H; Cheung, Vivian G

    2018-02-01

    R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition.

    Science.gov (United States)

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-08-11

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 ( GluR2 ) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2 . This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT.

  10. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition

    Science.gov (United States)

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-01-01

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 (GluR2) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2. This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT. PMID:28800112

  11. Identification and molecular characterization of MYB Transcription Factor Superfamily in C4 model plant foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Khandelwal, Rohit; Yadav, Chandra Bhan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj

    2014-01-01

    MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L.) is a model crop for investigating systems biology of millets and bioenergy grasses. Further, the crop is also known for its potential abiotic stress-tolerance. In this context, a comprehensive genome-wide survey was conducted and 209 MYB protein-encoding genes were identified in foxtail millet. All 209 S. italica MYB (SiMYB) genes were physically mapped onto nine chromosomes of foxtail millet. Gene duplication study showed that segmental- and tandem-duplication have occurred in genome resulting in expansion of this gene family. The protein domain investigation classified SiMYB proteins into three classes according to number of MYB repeats present. The phylogenetic analysis categorized SiMYBs into ten groups (I-X). SiMYB-based comparative mapping revealed a maximum orthology between foxtail millet and sorghum, followed by maize, rice and Brachypodium. Heat map analysis showed tissue-specific expression pattern of predominant SiMYB genes. Expression profiling of candidate MYB genes against abiotic stresses and hormone treatments using qRT-PCR revealed specific and/or overlapping expression patterns of SiMYBs. Taken together, the present study provides a foundation for evolutionary and functional characterization of MYB TFs in foxtail millet to dissect their functions in response to environmental stimuli.

  12. Identification and molecular characterization of MYB Transcription Factor Superfamily in C4 model plant foxtail millet (Setaria italica L..

    Directory of Open Access Journals (Sweden)

    Mehanathan Muthamilarasan

    Full Text Available MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L. is a model crop for investigating systems biology of millets and bioenergy grasses. Further, the crop is also known for its potential abiotic stress-tolerance. In this context, a comprehensive genome-wide survey was conducted and 209 MYB protein-encoding genes were identified in foxtail millet. All 209 S. italica MYB (SiMYB genes were physically mapped onto nine chromosomes of foxtail millet. Gene duplication study showed that segmental- and tandem-duplication have occurred in genome resulting in expansion of this gene family. The protein domain investigation classified SiMYB proteins into three classes according to number of MYB repeats present. The phylogenetic analysis categorized SiMYBs into ten groups (I-X. SiMYB-based comparative mapping revealed a maximum orthology between foxtail millet and sorghum, followed by maize, rice and Brachypodium. Heat map analysis showed tissue-specific expression pattern of predominant SiMYB genes. Expression profiling of candidate MYB genes against abiotic stresses and hormone treatments using qRT-PCR revealed specific and/or overlapping expression patterns of SiMYBs. Taken together, the present study provides a foundation for evolutionary and functional characterization of MYB TFs in foxtail millet to dissect their functions in response to environmental stimuli.

  13. MYB Transcription Factors in Chinese Pear (Pyrus bretschneideri Rehd.: Genome-Wide Identification, Classification and Expression Profiling during Fruit Development

    Directory of Open Access Journals (Sweden)

    Yun Peng eCao

    2016-04-01

    Full Text Available The MYB family is one of the largest families of transcription factors in plants. Although some MYBs have been reported to play roles in secondary metabolism, no comprehensive study of the MYB family in Chinese pear (Pyrus bretschneideri Rehd. has been reported. In the present study, we performed genome-wide analysis of MYB genes in Chinese pear, designated as PbMYBs, including analyses of their phylogenic relationships, structures, chromosomal locations, promoter regions, GO annotations and collinearity. A total of 129 PbMYB genes were identified in the pear genome and were divided into 31 subgroups based on phylogenetic analysis. These PbMYBs were unevenly distributed among 16 chromosomes (total of 17 chromosomes. The occurrence of gene duplication events indicated that whole-genome duplication and segmental duplication likely played key roles in expansion of the PbMYB gene family. Ka/Ks analysis suggested that the duplicated PbMYBs mainly experienced purifying selection with restrictive functional divergence after the duplication events. Interspecies microsynteny analysis revealed maximum orthology between pear and peach, followed by plum and strawberry. Subsequently, the expression patterns of 20 PbMYB genes that may be involved in lignin biosynthesis according to their phylogenetic relationships were examined throughout fruit development. Among the twenty genes examined, PbMYB25 and PbMYB52 exhibited expression patterns consistent with the typical variations in the lignin content previously reported. Moreover, sub-cellular localization analysis revealed that two proteins PbMYB25 and PbMYB52 were localized to the nucleus. All together, PbMYB25 and PbMYB52 were inferred to be candidate genes involved in the regulation of lignin biosynthesis during the development of pear fruit. This study provides useful information for further functional analysis of the MYB gene family in pear.

  14. microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PIK3R2-PI3K/Akt signalling pathway.

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Zongqi; Zhang, David Y; Zhu, Jianbing; Zhang, Tiantian; Wang, Changqian

    2013-01-01

    Endothelial progenitor cells (EPCs) are capable of proliferating and differentiating into mature endothelial cells, and they have been considered as potential candidates for coronary heart disease therapy. However, the transition of EPCs to mesenchymal cells is not fully understood. This study aimed to explore the role of microRNA 126 (miR-126) in the endothelial-to-mesenchymal transition (EndMT) induced by transforming growth factor beta 1 (TGFβ1). EndMT of rat bone marrow-derived EPCs was induced by TGFβ1 (5 ng/mL) for 7 days. miR-126 expression was depressed in the process of EPC EndMT. The luciferase reporter assay showed that the PI3K regulatory subunit p85 beta (PIK3R2) was a direct target of miR-126 in EPCs. Overexpression of miR-126 by a lentiviral vector (lenti-miR-126) was found to downregulate the mRNA expression of mesenchymal cell markers (α-SMA, sm22-a, and myocardin) and to maintain the mRNA expression of progenitor cell markers (CD34, CD133). In the cellular process of EndMT, there was an increase in the protein expression of PIK3R2 and the nuclear transcription factors FoxO3 and Smad4; PI3K and phosphor-Akt expression decreased, a change that was reversed markedly by overexpression of miR-126. Furthermore, knockdown of PIK3R2 gene expression level showed reversed morphological changes of the EPCs treated with TGFβ1, thereby giving the evidence that PIK3R2 is the target gene of miR-126 during EndMT process. These results show that miR-126 targets PIK3R2 to inhibit EPC EndMT and that this process involves regulation of the PI3K/Akt signalling pathway. miR-126 has the potential to be used as a biomarker for the early diagnosis of intimal hyperplasia in cardiovascular disease and can even be a therapeutic tool for treating cardiovascular diseases mediated by the EndMT process.

  15. Neutron scattering study on R{sub 2}PdSi{sub 3} (R=Ho,Er,Tm) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fei

    2010-12-14

    Previous studies on the family of inter-metallic rare-earth compounds R{sub 2}PdSi{sub 3} revealed multifaceted magnetic properties, for instance, spin-glass like behavior. Experimental observations include: Signs of a crystallographic superstructure, complicated magnetic structures both in zero field and in applied magnetic fields as well as a generic phase in applied fields for compounds in the series with the heavy rare-earths R=Gd, Tb, Dy, Ho, Er and Tm. This thesis expands the studies on the magnetic properties of R{sub 2}PdSi{sub 3} employing mainly neutron scattering on single crystals with the focus on the compounds with R=Ho, Er and Tm. A detailed analysis of the crystallographic superstructure using modulation wave approach and group theory is presented. The resulting structure implies the existence of two different rare-earth sites with reduced symmetry and an arrangement of the different sites according to sequences as determined by the superstructure. It is shown that the reduced symmetry of the rare-earth sites is explicitly observed in the energy spectra of inelastic neutron scattering. The results on the magnetic structures and excitations are shown and discussed in the framework of the superstructure model. Specifically the generic phase in applied fields is interpreted as a direct consequence of the crystallographic superstructure. It is rather unusual that a crystallographic superstructure is playing such a decisive, and through the field dependence also tunable role in determining the magnetic properties as observed in R{sub 2}PdSi{sub 3}. The mediating interactions between the crystallographic part and the magnetic part of the system are discussed. (orig.)

  16. Introducing the "TCDD-inducible AhR-Nrf2 gene battery".

    Science.gov (United States)

    Yeager, Ronnie L; Reisman, Scott A; Aleksunes, Lauren M; Klaassen, Curtis D

    2009-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces genes via the transcription factor aryl hydrocarbon receptor (AhR), including Cyp1a1, NAD(P)H:quinone oxidoreductase 1 (Nqo1), UDP-glucuronosyltransferase 1a6 (Ugt1a6), and glutathione S-transferase a1 (Gsta1). These genes are referred to as the "AhR gene battery." However, Nqo1 is also considered a prototypical target gene of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). In mice, TCDD induction of Nrf2 and Nrf2 target, Nqo1, is dependent on AhR, and thus TCDD induction of drug-processing genes may be routed through an AhR-Nrf2 sequence. There has been speculation that Nrf2 may be involved in the TCDD induction of drug-processing genes; however, the data are not definitive. Therefore, to address whether TCDD induction of Nqo1, Ugts, and Gsts is dependent on Nrf2, we conducted the definitive experiment by administering TCDD (50 mug/kg, ip) to Nrf2-null and wild-type (WT) mice and collecting livers 24 h later to quantify the mRNA of drug-processing genes. TCDD induction of Cyp1a1 and Ugt1a1 was similar in WT and Nrf2-null mice, whereas TCDD induction of Ugt1a5 and 1a9 was blunted in Nrf2-null mice. TCDD induced Nqo1, Ugt1a6, 2b34, 2b35, 2b36, UDP-glucuronic acid-synthesizing gene UDP-glucose dehydrogenase, and Gsta1, m1, m2, m3, m6, p2, t2, and microsomal Gst1 in WT mice but not in Nrf2-null mice. Therefore, the present study demonstrates the novel finding that Nrf2 is required for TCDD induction of classical AhR battery genes Nqo1, Ugt1a6, and Gsta1, as well as most Ugt and Gst isoforms in livers of mice.

  17. MicroRNA and cellular targets profiling reveal miR-217 and miR-576-3p as proviral factors during Oropouche infection.

    Directory of Open Access Journals (Sweden)

    Victor Emmanuel Viana Geddes

    2018-05-01

    Full Text Available Oropouche Virus is the etiological agent of an arbovirus febrile disease that affects thousands of people and is widespread throughout Central and South American countries. Although isolated in 1950's, still there is scarce information regarding the virus biology and its prevalence is likely underestimated. In order to identify and elucidate interactions with host cells factors and increase the understanding about the Oropouche Virus biology, we performed microRNA (miRNA and target genes screening in human hepatocarcinoma cell line HuH-7. Cellular miRNAs are short non-coding RNAs that regulates gene expression post-transcriptionally and play key roles in several steps of viral infections. The large scale RT-qPCR based screening found 13 differentially expressed miRNAs in Oropouche infected cells. Further validation confirmed that miR-217 and miR-576-3p were 5.5 fold up-regulated at early stages of virus infection (6 hours post-infection. Using bioinformatics and pathway enrichment analysis, we predicted the cellular targets genes for miR-217 and miR-576-3p. Differential expression analysis of RNA from 95 selected targets revealed genes involved in innate immunity modulation, viral release and neurological disorder outcomes. Further analysis revealed the gene of decapping protein 2 (DCP2, a previous known restriction factor for bunyaviruses transcription, as a miR-217 candidate target that is progressively down-regulated during Oropouche infection. Our analysis also showed that activators genes involved in innate immune response through IFN-β pathway, as STING (Stimulator of Interferon Genes and TRAF3 (TNF-Receptor Associated Factor 3, were down-regulated as the infection progress. Inhibition of miR-217 or miR-576-3p restricts OROV replication, decreasing viral RNA (up to 8.3 fold and virus titer (3 fold. Finally, we showed that virus escape IFN-β mediated immune response increasing the levels of cellular miR-576-3p resulting in a decreasing of

  18. TCDD-induced transcriptional profiles in different mouse strains that have an identical AhR genotype

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qing; Suzuki, Junko S.; Tohyama, Chiharu; Ohsako, Seiichiroh [Environmental Health Sciences Division, National Institute for Environmental Studies, Onogawa, Tsukuba (Japan); Takei, Teiji [Environmental Health and Safety Division, Ministry of the Environment, Kasumigaseki, Tokyo (Japan); Lin, Tinmin; Peterson, R.E. [Wisconsin Univ., Wisconsin, MA (United States). School of Pharmacy and Molecular and Environmental Toxicology Center

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that is known to cause hepatotoxicity, teratogenicity and carcinogenicity. A characteristic feature in the toxicity of TCDD is exceptionally large differences in susceptibility among animal species or even strains belonging to the same species. These strain differences in susceptibility to TCDD have now been elucidated to be due to the difference in ligand binding affinity or transcriptional activity of the aryl hydrocarbon receptor (AhR). Actually the C57BL/6 type AhR (AhR{sup b}) showed 6-fold higher ligand binding affinity than the DBA/2 type AhR (AhR{sup d}). The H/W rat AhR has a C-terminal truncation of the transactivating domain compared to the L-E rat AhR. On the other hand, there is considerable species variability in response sensitivity to TCDD that cannot be ascribed simply to polymorphisms of the AhR gene. A non-AhR gene susceptibility loci for hepatic porphyria has been observed in mice treated with iron compounds prior to TCDD injection by using a quantitative trait locus analysis of an F2 intercross between susceptible C57BL/6 and resistant DBA/2 stains. In the rat, a gene B with Han/Wistar type AhR is likely to be involved in resistance to TCDD lethality. These observations suggest that other modulating genes, so-called ''modifier genes'', have profound effects on the AhR-mediated gene expression phenotype. Based on the nucleotide sequence of the AhR coding region, the BALB/c, CBA/J, and C3H/He mouse strains are clustered together on a single branch. In the present study, we try to confirm the existence of modifiers by using microarray analysis to examine hepatic gene expression after TCDD exposure in BALB/c, CBA/J, and C3H/He mice. To recognize the existence of a modifier besides the AhR, it is a prerequisite experimental condition that the analyzed strains have an identical AhR genotype. Therefore, we selected BALB/c, CBA/J, and C3H/He mice as the model

  19. CMYB1 Encoding a MYB Transcriptional Activator Is Involved in Abiotic Stress and Circadian Rhythm in Rice

    Directory of Open Access Journals (Sweden)

    Min Duan

    2014-01-01

    Full Text Available Through analysis of cold-induced transcriptome, a novel gene encoding a putative MYB transcription factor was isolated and designated Cold induced MYB 1 (CMYB1. Tissue-specific gene expression analysis revealed that CMYB1 was highly expressed in rice stems and nodes. qRT-PCR assay indicated that CMYB1 was dramatically induced by cold stress (>100-folds and induced by exogenous ABA and osmotic stress. Interestingly, CMYB1 showed rhythmic expression profile in rice leaves at different developmental stages. Subcellular localization assay suggested that CMYB1-GFP (green fluorescent protein fusion protein was localized in the nuclei. Moreover, CMYB1 exhibited the transcriptional activation activity when transiently expressed in rice protoplast cells. Taken together, CMYB1 probably functions as a transcriptional activator in mediating stress and rhythm responsive gene expression in rice.

  20. Enterovirus 71 antagonizes the antiviral activity of host STAT3 and IL-6R with partial dependence on virus-induced miR-124.

    Science.gov (United States)

    Chang, Zhangmei; Wang, Yan; Bian, Liang; Liu, Qingqing; Long, Jian-Er

    2017-12-01

    Enterovirus 71 (EV71) has caused major outbreaks of hand, foot and mouth disease. EV71 infections increase the production of many host cytokines and pro-inflammatory factors, including interleukin (IL)-6, IL-10 and COX-2. Some of these molecules could stimulate the signal transducer and activator of transcription 3 (STAT3), which plays a key role in regulating host immune responses and several viral diseases. However, the role of STAT3 in EV71 infection remains unknown. This study found that the phosphorylation levels of STAT3 (p Y705 -STAT3) are closely related to EV71 infection. Further experiments revealed that STAT3 exerts an anti-EV71 activity. However, the antiviral activity of STAT3 is partially antagonized by EV71-induced miR-124, which directly targets STAT3 mRNA. Similarly, IL-6R, the α-subunit of the IL-6 receptor complex, exhibits anti-EV71 activity and is directly targeted by the virus-induced miR-124. These results indicate that EV71 can evade host IL-6R- and STAT3-mediated antiviral activities by EV71-induced miR-124. This suggests that controlling miR-124 and the downstream targets, IL-6R and STAT3, might benefit the antiviral treatment of EV71 infection.

  1. SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation

    DEFF Research Database (Denmark)

    Wainwright, Elanor N; Jorgensen, Joan S; Kim, Youngha

    2013-01-01

    MicroRNAs are important regulators of developmental gene expression, but their contribution to fetal gonad development is not well understood. We have identified the evolutionarily conserved gonadal microRNAs miR-202-5p and miR-202-3p as having a potential role in regulating mouse embryonic gonad....... Expression of the primary transcript of miR-202-5p/3p remained low in XY gonads in a conditional Sox9-null mouse model, suggesting that pri-miR-202 transcription is downstream of SOX9, a transcription factor that is both necessary and sufficient for male sex determination. We identified the pri-miR-202...

  2. GATA-1 and c-myb crosstalk during red blood cell differentiation through GATA-1 binding sites in the c-myb promoter

    Czech Academy of Sciences Publication Activity Database

    Bartůněk, Petr; Králová, Jarmila; Blendiger, G.; Dvořák, Michal; Zenke, M.

    2003-01-01

    Roč. 22, č. 13 (2003), s. 1927-1935 ISSN 0950-9232 R&D Projects: GA ČR GV301/98/K042 Institutional research plan: CEZ:AV0Z5052915 Keywords : GATA-1 * c-myb * erythropoiesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.495, year: 2003

  3. A role of c-Myb in ossification

    Czech Academy of Sciences Publication Activity Database

    Oralová, Veronika; Matalová, Eva; Knopfová, L.; Švandová, Eva; Šmarda, J.; Buchtová, Marcela

    2015-01-01

    Roč. 159, Suppl 1 (2015), S30-S31 ISSN 1213-8118. [Morphology 2015. International Congress of the Czech Anatomical Society /49./. Lojda Symposium on Histochemistry /52./. 06.09.2015-08.09.2015, Olomouc] R&D Projects: GA ČR GB14-37368G Institutional support: RVO:67985904 Keywords : c-Myb Subject RIV: EA - Cell Biology

  4. Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7

    Science.gov (United States)

    Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim

    2016-12-01

    We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.

  5. spliceR

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Porse, Bo Torben; Sandelin, Albin

    2014-01-01

    RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternative splicing...

  6. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription

    Science.gov (United States)

    Kang, Jian; Kusnadi, Eric P.; Ogden, Allison J.; Hicks, Rodney J.; Bammert, Lukas; Kutay, Ulrike; Hung, Sandy; Sanij, Elaine; Hannan, Ross D.; Hannan, Katherine M.; Pearson, Richard B.

    2016-01-01

    Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer. PMID:27385002

  7. Laser-diode-excited blue upconversion in Tm3+/Yb3+ -codoped TeO2-Ga2O3-R2O (R=Li, Na, K) glasses.

    Science.gov (United States)

    Zhao, Chun; Zhang, Qinyuan; Yang, Gangfeng; Jiang, Zhonghong

    2008-01-01

    This paper reports on intense blue upconversion in Tm(3+)/Yb(3+) codoped TeO(2)-Ga(2)O(3)-R(2)O(R=Li, Na, K) glasses upon excitation with commercial available laser diode (LD). Effects of alkali ions on the Raman spectra, thermal stability and spectroscopic properties of the tellurite-gallium glasses have also been investigated. Energy transfer and the involved upconversion mechanisms have been discussed. Intense blue upconversion emission centered at 476 nm along with a weak red emission at 650 nm has been observed upon excitation of 977 nm LD, assigned to the transitions of 1G4-->3H6, and 1G4-->3H4 and/or 3F(2,3)-->3H6 of Tm(3+), respectively. The blue upconversion intensity has a cubelike dependence on incident pump laser power, indicating a three-photon process. However, a quadratic dependence of the 476 nm upconversion intensity on the incident pump laser power has been observed when samples under excitation of 808 nm LD due to a two-photon absorption process. Enhanced upconversion luminescence have been observed with replacing K(+) for Na(+) and Li(+).

  8. NEW DERIVATIVES OF 2-R1-N-(5-R-1,3,4-THIADIAZOL-2-YL-BENZOLSULFONAMIDES: SYNTHESIS, PHYSICOCHEMICAL PROPERTIES AND BIOLOGICAL ACTIVITY PREDICTION

    Directory of Open Access Journals (Sweden)

    Sych I.V.

    2015-12-01

    Full Text Available Introduction: The analysis of modern literature, including overseas one, showed that a lot of the scientific researches is devoted to finding and creating biologically active compounds on base 1,3,4-thiadiazole. Derivatives of 1,3,4-thiadiazole are the large group of heterocyclic compounds with high rates of antimicrobial, antituberculosis, antidiabetic, antineoplastic and anticonvulsant activity. Material and methods: The purpose of this study was the expansion of sulfone derivatives substituted nitrogen-containing heterocyclic systems through the synthesis of 2-R1-N (5-R-1,3,4-thiadiazol-2-ilbenzolsulfonamides and prediction their pharmacological activity for future planning pharmacological screening. Synthesis of semi-products 2-amino-5-R-1,3,4-thiadiazoles was carried out by cyclization thiosemicarbazide and substituted derivatives of carboxylic acids in the presence of concentrated sulfuric acid. The synthesis of target compounds 2-R1-N(5-R-1,3,4-thiadiazol-2-ylbenzolsulfon-amides was carried out by N-acylation of 2-amino-5R-1,3,4-thiadiazole substituted benzolsul-fochlorides in the presence of anhydrous pyridine. The reaction proceeds by the classic SN2-mechanism. The resulting compounds are white crystalline substances, soluble in alcohol, chloroform and acetone, difficult to dissolve in water. Yields of obtained compounds was satisfactory (76-84%. The purity of the obtained compounds was determined by TLC. The structure of the obtained compounds was proved by elemental analysis, IR methods and 1H NMR spectroscopy. NMR 1H spectra were recorded at Bruker WM spectrometer (200 MHz; solvent DMSO-d6; chemical shifts were in ppm, internal standard (TMS (tetramethylsilane was used. The prognosis of biological activity for obtained compounds were carried out using the program PASS (Prediction of Activity Spectra for Substances in order to plan the further pharmacological screening. The program PASS predicts more than 500 kinds of biological

  9. Variable transcriptional responsiveness of the P2X3 receptor gene during CFA-induced inflammatory hyperalgesia.

    Science.gov (United States)

    Nuñez-Badinez, Paulina; Sepúlveda, Hugo; Diaz, Emilio; Greffrath, Wolfgang; Treede, Rolf-Detlef; Stehberg, Jimmy; Montecino, Martin; van Zundert, Brigitte

    2018-05-01

    The purinergic receptor P2X3 (P2X3-R) plays important roles in molecular pathways of pain, and reduction of its activity or expression effectively reduces chronic inflammatory and neuropathic pain sensation. Inflammation, nerve injury, and cancer-induced pain can increase P2X3-R mRNA and/or protein levels in dorsal root ganglia (DRG). However, P2X3-R expression is unaltered or even reduced in other pain studies. The reasons for these discrepancies are unknown and might depend on the applied traumatic intervention or on intrinsic factors such as age, gender, genetic background, and/or epigenetics. In this study, we sought to get insights into the molecular mechanisms responsible for inflammatory hyperalgesia by determining P2X3-R expression in DRG neurons of juvenile male rats that received a Complete Freund's Adjuvant (CFA) bilateral paw injection. We demonstrate that all CFA-treated rats showed inflammatory hyperalgesia, however, only a fraction (14-20%) displayed increased P2X3-R mRNA levels, reproducible across both sides. Immunostaining assays did not reveal significant increases in the percentage of P2X3-positive neurons, indicating that increased P2X3-R at DRG somas is not critical for inducing inflammatory hyperalgesia in CFA-treated rats. Chromatin immunoprecipitation (ChIP) assays showed a correlated (R 2  = 0.671) enrichment of the transcription factor Runx1 and the epigenetic active mark histone H3 acetylation (H3Ac) at the P2X3-R gene promoter in a fraction of the CFA-treated rats. These results suggest that animal-specific increases in P2X3-R mRNA levels are likely associated with the genetic/epigenetic context of the P2X3-R locus that controls P2X3-R gene transcription by recruiting Runx1 and epigenetic co-regulators that mediate histone acetylation. © 2017 Wiley Periodicals, Inc.

  10. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.

    Science.gov (United States)

    Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J M; Thunnissen, Andy-Mark W H

    2009-01-21

    LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with Hoechst 33342 and daunomycin. LmrR shows a common topology containing a typical beta-winged helix-turn-helix domain with an additional C-terminal helix involved in dimerization. Its dimeric organization is highly unusual with a flat-shaped hydrophobic pore at the dimer centre serving as a multidrug-binding site. The drugs bind in a similar manner with their aromatic rings sandwiched in between the indole groups of two dimer-related tryptophan residues. Multidrug recognition is facilitated by conformational plasticity and the absence of drug-specific hydrogen bonds. Combined analyses using site-directed mutagenesis, fluorescence-based drug binding and protein-DNA gel shift assays reveal an allosteric coupling between the multidrug- and DNA-binding sites of LmrR that most likely has a function in the induction mechanism.

  11. MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway.

    Science.gov (United States)

    Lozano, Jesus; Montañez, Raúl; Belles, Xavier

    2015-03-24

    In 2009 we reported that depletion of Dicer-1, the enzyme that catalyzes the final step of miRNA biosynthesis, prevents metamorphosis in Blattella germanica. However, the precise regulatory roles of miRNAs in the process have remained elusive. In the present work, we have observed that Dicer-1 depletion results in an increase of mRNA levels of Krüppel homolog 1 (Kr-h1), a juvenile hormone-dependent transcription factor that represses metamorphosis, and that depletion of Kr-h1 expression in Dicer-1 knockdown individuals rescues metamorphosis. We have also found that the 3'UTR of Kr-h1 mRNA contains a functional binding site for miR-2 family miRNAs (for miR-2, miR-13a, and miR-13b). These data suggest that metamorphosis impairment caused by Dicer-1 and miRNA depletion is due to a deregulation of Kr-h1 expression and that this deregulation is derived from a deficiency of miR-2 miRNAs. We corroborated this by treating the last nymphal instar of B. germanica with an miR-2 inhibitor, which impaired metamorphosis, and by treating Dicer-1-depleted individuals with an miR-2 mimic to allow nymphal-to-adult metamorphosis to proceed. Taken together, the data indicate that miR-2 miRNAs scavenge Kr-h1 transcripts when the transition from nymph to adult should be taking place, thus crucially contributing to the correct culmination of metamorphosis.

  12. microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PIK3R2-PI3K/Akt signalling pathway.

    Directory of Open Access Journals (Sweden)

    Junfeng Zhang

    Full Text Available AIMS: Endothelial progenitor cells (EPCs are capable of proliferating and differentiating into mature endothelial cells, and they have been considered as potential candidates for coronary heart disease therapy. However, the transition of EPCs to mesenchymal cells is not fully understood. This study aimed to explore the role of microRNA 126 (miR-126 in the endothelial-to-mesenchymal transition (EndMT induced by transforming growth factor beta 1 (TGFβ1. METHODS AND RESULTS: EndMT of rat bone marrow-derived EPCs was induced by TGFβ1 (5 ng/mL for 7 days. miR-126 expression was depressed in the process of EPC EndMT. The luciferase reporter assay showed that the PI3K regulatory subunit p85 beta (PIK3R2 was a direct target of miR-126 in EPCs. Overexpression of miR-126 by a lentiviral vector (lenti-miR-126 was found to downregulate the mRNA expression of mesenchymal cell markers (α-SMA, sm22-a, and myocardin and to maintain the mRNA expression of progenitor cell markers (CD34, CD133. In the cellular process of EndMT, there was an increase in the protein expression of PIK3R2 and the nuclear transcription factors FoxO3 and Smad4; PI3K and phosphor-Akt expression decreased, a change that was reversed markedly by overexpression of miR-126. Furthermore, knockdown of PIK3R2 gene expression level showed reversed morphological changes of the EPCs treated with TGFβ1, thereby giving the evidence that PIK3R2 is the target gene of miR-126 during EndMT process. CONCLUSIONS: These results show that miR-126 targets PIK3R2 to inhibit EPC EndMT and that this process involves regulation of the PI3K/Akt signalling pathway. miR-126 has the potential to be used as a biomarker for the early diagnosis of intimal hyperplasia in cardiovascular disease and can even be a therapeutic tool for treating cardiovascular diseases mediated by the EndMT process.

  13. Primary amino acid derivatives: substitution of the 4'-N'-benzylamide site in (R)-N'-benzyl 2-amino-3-methylbutanamide, (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide, and (R)-N'-benzyl 2-amino-3-methoxypropionamide provides potent anticonvulsants with pain-attenuating properties.

    Science.gov (United States)

    King, Amber M; Salomé, Christophe; Salomé-Grosjean, Elise; De Ryck, Marc; Kaminski, Rafal; Valade, Anne; Stables, James P; Kohn, Harold

    2011-10-13

    Recently, we reported that select N'-benzyl 2-substituted 2-amino acetamides (primary amino acid derivatives (PAADs)) exhibited pronounced activities in established whole animal anticonvulsant (i.e., maximal electroshock seizure (MES)) and neuropathic pain (i.e., formalin) models. The anticonvulsant activities of C(2)-hydrocarbon N'-benzyl 2-amino acetamides (MES ED(50) = 13-21 mg/kg) exceeded those of phenobarbital (ED(50) = 22 mg/kg). Two additional studies defining the structure-activity relationship of PAADs are presented in this issue of the journal. In this study, we demonstrated that the anticonvulsant activities of (R)-N'-benzyl 2-amino-3-methylbutanamide and (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide were sensitive to substituents at the 4'-N'-benzylamide site; electron-withdrawing groups retained activity, electron-donating groups led to a loss of activity, and incorporating either a 3-fluorobenzyloxy or 3-fluorophenoxymethyl group using a rationally designed multiple ligand approach improved activity. Additionally, we showed that substituents at the 4'-N'-benzylamide site of (R)-N'-benzyl 2-amino-3-methoxypropionamide also improved anticonvulsant activity, with the 3-fluorophenoxymethyl group providing the largest (∼4-fold) increase in activity (ED(50) = 8.9 mg/kg), a value that surpassed phenytoin (ED(50) = 9.5 mg/kg). Collectively, the pharmacological findings provided new information that C(2)-hydrocarbon PAADs represent a novel class of anticonvulsants.

  14. 78 FR 56921 - South Bay Salt Pond Restoration Project, Phase 2 (Ponds R3, R4, R5, S5, A1, A2W, A8, A8S, A19...

    Science.gov (United States)

    2013-09-16

    ...-F2013227943] South Bay Salt Pond Restoration Project, Phase 2 (Ponds R3, R4, R5, S5, A1, A2W, A8, A8S, A19... South Bay Salt Pond Restoration Project and consists of restoring and enhancing over 2,000 acres of... Pollution Control Plant located at 700 Los Esteros Road, San Jose, California. The details of the public...

  15. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development.

    Science.gov (United States)

    Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette

    2012-07-01

    Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  16. Ultrastructural and autoradiographic studies of nucleolar development and rDNA transcription in preimplantation mouse embryos

    Energy Technology Data Exchange (ETDEWEB)

    Geuskens, M.; Alexandre, H. (Universite Libre de Bruxelles (Belgium). Dep. de Biologie Moleculaire)

    1984-06-01

    The development of the nucleoli and the sites of rDNA transcription have been studies by high-resolution autoradiography during the cleavage stages of mouse embryos. The appearance of fibrillar centres at the periphery of the fibrillar primary nucleoli has been observed at the 4-cell stage. Several fibrillar centres interconnected by electron-dense fibrillar strands, form a reticulated region around the fibrillar mass at the 6- to 8-cell stage. After a 10 min pulse with (/sup 3/H)uridine, only this peripheral network is labelled. At the late morula and at the blastocyst stage, the fibrillar component (nucleolonema) of the reticulated nucleoli is labelled after 10 min (/sup 3/H)uridine incorporation. When the embryos are reincubated for 2 h in cold medium, the label is localized mainly in the granular component. Fibrillar centres are not labelled. Autoradiograms of in vitro developed embryos pulsed for 2 h with (/sup 3/H)uridine confirm that the central fibrillar core of the nucleoli of 6- to 8-cell embryos is never labelled. Thus, the fibrillar constituent of this core is not homologous to the fibrillar component of the nucleoli of later stage embryos, which is the site of active rDNA transcription. An interpretation of nucleologenesis during early mouse embryogenesis is proposed.

  17. Ultrastructural and autoradiographic studies of nucleolar development and rDNA transcription in preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Geuskens, M.; Alexandre, H.

    1984-01-01

    The development of the nucleoli and the sites of rDNA transcription have been studies by high-resolution autoradiography during the cleavage stages of mouse embryos. The appearance of fibrillar centres at the periphery of the fibrillar primary nucleoli has been observed at the 4-cell stage. Several fibrillar centres interconnected by electron-dense fibrillar strands, form a reticulated region around the fibrillar mass at the 6- to 8-cell stage. After a 10 min pulse with ( 3 H)uridine, only this peripheral network is labelled. At the late morula and at the blastocyst stage, the fibrillar component (nucleolonema) of the reticulated nucleoli is labelled after 10 min ( 3 H)uridine incorporation. When the embryos are reincubated for 2 h in cold medium, the label is localized mainly in the granular component. Fibrillar centres are not labelled. Autoradiograms of in vitro developed embryos pulsed for 2 h with ( 3 H)uridine confirm that the central fibrillar core of the nucleoli of 6- to 8-cell embryos is never labelled. Thus, the fibrillar constituent of this core is not homologous to the fibrillar component of the nucleoli of later stage embryos, which is the site of active rDNA transcription. An interpretation of nucleologenesis during early mouse embryogenesis is proposed. (author)

  18. TAL effectors and the executor R genes.

    Science.gov (United States)

    Zhang, Junli; Yin, Zhongchao; White, Frank

    2015-01-01

    Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized-recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

  19. TAL effectors and the executor R genes

    Directory of Open Access Journals (Sweden)

    Junli eZhang

    2015-08-01

    Full Text Available Transcription activation-like (TAL effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R genes have been characterized - recessive, dominant non-transcriptional and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

  20. The Expression of c-Myb Correlates with the Levels of Rhabdomyosarcoma-specific Marker Myogenin

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Petr; Zíková, Martina; Bartůněk, Petr; Štěrba, J.; Strnad, Hynek; Křen, L.; Sedláček, Radislav

    2015-01-01

    Roč. 5, Oct 14 (2015) ISSN 2045-2322 R&D Projects: GA ČR GAP305/10/2133; GA ČR GAP301/12/1478; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : c-Myb * Rhabdomyosarcomas * C2C12 myoblast cell line * myogenin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2015

  1. Liquid viscosity of low-GWP refrigerant mixtures (R32 + R1234yf) and (R125 + R1234yf)

    International Nuclear Information System (INIS)

    Dang, Yagu; Kamiaka, Takumi; Dang, Chaobin; Hihara, Eiji

    2015-01-01

    Highlights: • We measured liquid viscosity of low GWP refrigerant R1234yf binary mixtures. • Viscosity of R1234yf mixtures were correlated with the roughness hard-sphere method. • Viscosity of R1234yf mixtures were correlated with the Grunberg and Nissan method. - Abstract: In this work, the viscosity of R1234yf, (R32 + R1234yf), and (R125 + R1234yf) in one-phase liquid was measured. The combined expanded uncertainty of viscosity measurement apparatus of confidence of 0.95 (k = 2) is about 2.0%. The measurements of mixtures containing (30.0, 50.0, and 70.0) wt% R32 or R125 were carried out between T = (283.0 and 323.0) K (at intervals of T = 5 K) and P = (1.58 and 2.74) MPa, with a moving piston viscometer (VISCOpro 1600, accuracy ±1.0%) and a Coriolis flowmeter (Ultramass MKII, accuracy ±0.001 g/ml). The measured data were correlated with a hard-sphere (RSH) method and the Grunberg and Nissan method. The average absolute deviations are (2.2 and 3.3)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by RSH method, (2.8 and 1.3)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by Grunberg and Nissan method, while (3.5 and 2.4)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by RefProp V9.1, respectively

  2. Lack of Antidepressant Effects of (2R,6R)-Hydroxynorketamine in a Rat Learned Helplessness Model: Comparison with (R)-Ketamine.

    Science.gov (United States)

    Shirayama, Yukihiko; Hashimoto, Kenji

    2018-01-01

    (R)-Ketamine exhibits rapid and sustained antidepressant effects in animal models of depression. It is stereoselectively metabolized to (R)-norketamine and subsequently to (2R,6R)-hydroxynorketamine in the liver. The metabolism of ketamine to hydroxynorketamine was recently demonstrated to be essential for ketamine's antidepressant actions. However, no study has compared the antidepressant effects of these 3 compounds in animal models of depression. The effects of a single i.p. injection of (R)-ketamine, (R)-norketamine, and (2R,6R)-hydroxynorketamine in a rat learned helplessness model were examined. A single dose of (R)-ketamine (20 mg/kg) showed an antidepressant effect in the rat learned helplessness model. In contrast, neither (R)-norketamine (20 mg/kg) nor (2R,6R)-hydroxynorketamine (20 and 40 mg/kg) did so. Unlike (R)-ketamine, its metabolite (2R,6R)-hydroxynorketamine did not show antidepressant actions in the rat learned helplessness model. Therefore, it is unlikely that the metabolism of ketamine to hydroxynorketamine is essential for ketamine's antidepressant actions. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  3. A GntR-type transcriptional repressor controls sialic acid utilization in Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Egan, Muireann; O'Connell Motherway, Mary; van Sinderen, Douwe

    2015-02-01

    Bifidobacterium breve strains are numerically prevalent among the gut microbiota of healthy, breast-fed infants. The metabolism of sialic acid, a ubiquitous monosaccharide in the infant and adult gut, by B. breve UCC2003 is dependent on a large gene cluster, designated the nan/nag cluster. This study describes the transcriptional regulation of the nan/nag cluster and thus sialic acid metabolism in B. breve UCC2003. Insertion mutagenesis and transcriptome analysis revealed that the nan/nag cluster is regulated by a GntR family transcriptional repressor, designated NanR. Crude cell extract of Escherichia coli EC101 in which the nanR gene had been cloned and overexpressed was shown to bind to two promoter regions within this cluster, each of which containing an imperfect inverted repeat that is believed to act as the NanR operator sequence. Formation of the DNA-NanR complex is prevented in the presence of sialic acid, which we had previously shown to induce transcription of this gene cluster. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Retinoic acid enhances differentiation of v-myb-transformed monoblasts induced by okadaic acid

    Czech Academy of Sciences Publication Activity Database

    Beneš, P.; Macečková, V.; Zatloukalová, Jiřina; Kovářová, L.; Šmardová, J.; Šmarda, J.

    2007-01-01

    Roč. 31, č. 10 (2007), s. 1421-1431 ISSN 0145-2126 Grant - others:GA ČR(CZ) GP301/03/D022; GA ČR(CZ) GA301/06/0036 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : v-myb * monoblast * macrophage Subject RIV: BO - Biophysics Impact factor: 2.561, year: 2007

  5. Isothermal (vapour + liquid) equilibrium for the binary {l_brace}1,1,2,2-tetrafluoroethane (R134) + propane (R290){r_brace} and {l_brace}1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xueqiang [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Gong Maoqiong, E-mail: gongmq@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Liu Junsheng [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Wu Jianfeng, E-mail: jfwu@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China)

    2010-09-15

    (Vapour + liquid) equilibrium (VLE) data for the binary systems of {l_brace}1,1,2,2-tetrafluoroethane (R134) + propane (R290){r_brace} and {l_brace}1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a){r_brace} were measured with a recirculation method at the temperatures ranging from (263.15 to 278.15) K and (268.15 to 288.15) K, respectively. All of the data were correlated by the Peng-Robinson (PR) equation of state (EoS) with the Huron-Vidal (HV) mixing rules utilizing the non-random two-liquid (NRTL) activity coefficient model. Good agreement can be found between the experimental data and the correlated results. Azeotropic behaviour can be found at the measured temperature ranges for these two mixtures.

  6. Crystal structures of the transcriptional repressor RolR reveals a novel recognition mechanism between inducer and regulator.

    Directory of Open Access Journals (Sweden)

    De-Feng Li

    Full Text Available Many members of the TetR family control the transcription of genes involved in multidrug resistance and pathogenicity. RolR (ResorcinolRegulator, the recently reported TetR-type regulator for aromatic catabolism from Corynebacterium glutamicum, distinguishes itself by low sequence similarities and different regulation from the previously known members of the TetR family. Here we report the crystal structures of RolR in its effector-bound (with resorcinol and aop- forms at 2.5 Å and 3.6 Å, respectively. The structure of resorcinol-RolR complex reveal that the hydrogen-bonded network mediated by the four-residue motif (Asp94- Arg145- Arg148- Asp149 with two water molecules and the hydrophobic interaction via five residues (Phe107, Leu111, Leu114, Leu142, and Phe172 are the key factors for the recognition and binding between the resorcinol and RolR molecules. The center-to-center separation of the recognition helices h3-h3' is decreased upon effector-binding from 34.9 Å to 30.4 Å. This structural change results in that RolR was unsuitable for DNA binding. Those observations are distinct from that in other TetR members. Structure-based mutagenesis on RolR was carried out and the results confirmed the critical roles of the above mentioned residues for effector-binding specificity and affinity. Similar sequence searches and sequence alignments identified 29 RolR homologues from GenBank, and all the above mentioned residues are highly conserved in the homologues. Based on these structural and other functional investigations, it is proposed that RolR may represent a new subfamily of TetR proteins that are invovled in aromatic degradation and sharing common recognition mode as for RolR.

  7. Synthesis of (R,S)-[2,3-{sup 13}C{sub 2}]-1-(1`-methyl-2`-pyrrolidinyl)propan-2-one; {l_brace}(R,S)-[2`,3`-{sup 13}C{sub 2}]hygrinePound right bracePound

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, T.W.; Leete, Edward [Minnesota Univ., Minneapolis, MN (United States). Dept. of Chemistry

    1996-05-01

    2-Ethoxy-1-methyl-5-pyrrolidinone (1) was reacted with ethyl [3,4-{sup 13}C{sub 2}]-acetoacetate (2) in the presence of TiCl{sub 4} to give ethyl [3,4-{sup 13}C{sub 2}]-2-(1`-methyl-5`-oxo-2`-pyrrolidinyl)-3-oxobutanoate (3) in 85% yield. Decarboethoxylation of ethyl [3,4-{sup 13}C{sub 2}]-2-(1`-methyl-5`-oxo-2`-pyrrolidinyl)-3-oxobutan-oate (3) was accomplished using NaCl and H{sub 2}O in DMSO to give (R,S)-[2,3-{sup 13}C{sub 2}]-1-(1`-methyl-5`-oxo-2`-pyrrolidinyl)propan-2-o ne (4) in 91% yield. Protection of the ketone as a ketal (ethylene glycol, H{sup +}), followed by reduction of the amide to the amine using LiAlH{sub 4} and subsequent deprotection of the ketal gave (R,S)-[2,3-{sup 13}C{sub 2}]-1-(1`-methyl-2`-pyrrolidinyl)propan-2-one ((R,s)-[2`, 3`-{sup 13}C{sub 2}]Hygrine) (8) in 78% yield. (61% overall yield from ethyl [3,4-{sup 13}C{sub 2}]acetoacetate). (Author).

  8. Detection of maltodextrin and its discrimination from sucrose are independent of the T1R2 + T1R3 heterodimer.

    Science.gov (United States)

    Smith, Kimberly R; Spector, Alan C

    2017-10-01

    Maltodextrins, such as Maltrin and Polycose, are glucose polymer mixtures of varying chain lengths that are palatable to rodents. Although glucose and other sugars activate the T1R2 + T1R3 "sweet" taste receptor, recent evidence from T1R2- or T1R3-knockout (KO) mice suggests that maltodextrins, despite their glucose polymer composition, activate a separate receptor mechanism to generate a taste percept qualitatively distinguishable from that of sweeteners. However, explicit discrimination of maltodextrins from prototypical sweeteners has not yet been psychophysically tested in any murine model. Therefore, mice lacking T1R2 + T1R3 and wild-type controls were tested in a two-response taste discrimination task to determine whether maltodextrins are 1 ) detectable when both receptor subunits are absent and 2 ) perceptually distinct from that of sucrose irrespective of viscosity, intensity, and hedonics. Most KO mice displayed similar Polycose sensitivity as controls. However, some KO mice were only sensitive to the higher Polycose concentrations, implicating potential allelic variation in the putative polysaccharide receptor or downstream pathways unmasked by the absence of T1R2 + T1R3. Varied Maltrin and sucrose concentrations of approximately matched viscosities were then presented to render the oral somatosensory features, intensity, and hedonic value of the solutions irrelevant. Although both genotypes competently discriminated Maltrin from sucrose, performance was apparently driven by the different orosensory percepts of the two stimuli in control mice and the presence of a Maltrin but not sucrose orosensory cue in KO mice. These data support the proposed presence of an orosensory receptor mechanism that gives rise to a qualitatively distinguishable sensation from that of sucrose. Copyright © 2017 the American Physiological Society.

  9. Mmu-miR-615-3p regulates lipoapoptosis by inhibiting C/EBP homologous protein.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Miyamoto

    Full Text Available Lipoapoptosis occurring due to an excess of saturated free fatty acids such as palmitate is a key pathogenic event in the initiation of nonalcoholic fatty liver disease. Palmitate loading of cells activates the endoplasmic reticulum stress response, including induction of the proapoptotic transcription factor C/EBP homologous protein (CHOP. Furthermore, the loss of microRNAs is implicated in regulating apoptosis under conditions of endoplasmic reticulum (ER stress. The aim of this study was to identify specific microRNAs regulating CHOP expression during palmitate-induced ER stress. Five microRNAs were repressed under palmitate-induced endoplasmic reticulum stress conditions in hepatocyte cell lines (miR-92b-3p, miR-328-3p, miR-484, miR-574-5p, and miR-615-3p. We identified miR-615-3p as a candidate microRNA which was repressed by palmitate treatment and regulated CHOP protein expression, by RNA sequencing and in silico analyses, respectively. There is a single miR-615-3p binding site in the 3'untranslated region (UTR of the Chop transcript. We characterized this as a functional binding site using a reporter gene-based assay. Augmentation of miR-615-3p levels, using a precursor molecule, repressed CHOP expression; and under these conditions palmitate- or tunicamycin-induced cell death were significantly reduced. Our results suggest that palmitate-induced apoptosis requires maximal expression of CHOP which is achieved via the downregulation of its repressive microRNA, miR-615-3p. We speculate that enhancement of miR-615-3p levels may be of therapeutic benefit by inhibiting palmitate-induced hepatocyte lipoapoptosis.

  10. p53 induces differentiation but not apoptosis of v-Myb-transformed monoblasts

    Czech Academy of Sciences Publication Activity Database

    Navrátilová, J.; Horváth, Viktor; Kozubík, Alois; Lojek, Antonín; Šmarda, J.

    2006-01-01

    Roč. 18, č. 1 (2006), S38-S38 ISSN 1107-3756. [The 11th World Congress on Advances in Oncology and 9th International Symposium on Molecular Medicine . 12.10.2006-14.10.2006, Hersonissos] R&D Projects: GA ČR(CZ) GA301/06/0036 Institutional research plan: CEZ:AV0Z50040507 Keywords : p53 * v-Myb * BM2 Subject RIV: BO - Biophysics

  11. miR-346 and miR-582-3p-regulated EG-VEGF expression and trophoblast invasion via matrix metalloproteinases 2 and 9.

    Science.gov (United States)

    Su, Mei-Tsz; Tsai, Pei-Yin; Tsai, Hui-Ling; Chen, Yi-Chi; Kuo, Pao-Lin

    2017-03-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an important regulator for embryo implantation and placental development, and is clinically associated with several obstetric disorders related to insufficient or inappropriate trophoblast invasion, such as recurrent abortion, preeclampsia, and intrauterine fetal growth restriction. This study was performed to identify the microRNAs targeting EG-VEGF, and evaluate the regulatory effect on trophoblast biology. miR-346 and miR-582-3p were initially identified via bioinformatic tools, and their specific binding sites on the EG-VEGF 3'UTR were further confirmed using dual luciferase and a co-transfection assays. miR-346 and miR-582-3p were demonstrated not only to suppress EG-VEGF expression, but also inhibit trophoblast invasion and migration in the JAR and HTR-8/SVneo cell lines. We further evaluated the effect of microRNAs in HTR-8/SVneo cells coexpressing EG-VEGF and miR-346 or miR-582-3p on matrix metalloproteinase (MMP 2 and MMP 9) and the tissue inhibitors of metalloproteinase (TIMP 1 and TIMP 2) using RT-PCR, western blotting and gelatin zymography. TIMP 1 and TIMP 2 were not affected by the two microRNAs, whereas the expressions and activities of MMP 2 and MMP 9 were significantly downregulated, which in turn inhibited the invasion ability of trophoblasts. In conclusion, miR-346 and miR-582-3p regulate EG-VEGF-induced trophoblast invasion through repressing MMP 2 and MMP 9, and may become novel diagnostic biomarkers or therapeutic targets for EG-VEGF-related obstetric disorders. © 2016 BioFactors, 43(2):210-219, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  12. Structure-activity relationship of daptomycin analogues with substitution at (2S, 3R) 3-methyl glutamic acid position.

    Science.gov (United States)

    Lin, Du'an; Lam, Hiu Yung; Han, Wenbo; Cotroneo, Nicole; Pandya, Bhaumik A; Li, Xuechen

    2017-02-01

    Daptomycin is a highly effective lipopeptide antibiotic against Gram-positive pathogens. The presence of (2S, 3R) 3-methyl glutamic acid (mGlu) in daptomycin has been found to be important to the antibacterial activity. However the role of (2S, 3R) mGlu is yet to be revealed. Herein, we reported the syntheses of three daptomycin analogues with (2S, 3R) mGlu substituted by (2S, 3R) methyl glutamine (mGln), dimethyl glutamic acid and (2S, 3R) ethyl glutamic acid (eGlu), respectively, and their antibacterial activities. The detailed synthesis of dimethyl glutamic acid was also reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. (2S,4R-2-[(1R-1-(4-Bromophenyl-2-nitroethyl]-4-ethylcyclohexanone

    Directory of Open Access Journals (Sweden)

    Chi-Xiao Zhang

    2013-02-01

    Full Text Available The crystal structure of the title compound, C16H20BrNO3, contains three chiral centers in the configuration 1R,2S,6R. The cyclohexane ring is in a chair conformation. In the crystal, molecules are linked by weak C—H...O interactions, forming chains along the a-axis direction.

  14. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription.

    Science.gov (United States)

    Xie, Qiu; Li, Caihua; Song, Xiaozhen; Wu, Lihua; Jiang, Qian; Qiu, Zhiyong; Cao, Haiyan; Yu, Kaihui; Wan, Chunlei; Li, Jianting; Yang, Feng; Huang, Zebing; Niu, Bo; Jiang, Zhengwen; Zhang, Ting

    2017-03-17

    The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Systematic study of photoluminescence upon band gap excitation in perovskite-type titanates R 1/2Na1/2TiO3:Pr (R=La, Gd, Lu, and Y)

    International Nuclear Information System (INIS)

    Inaguma, Yoshiyuki; Tsuchiya, Takeshi; Katsumata, Tetsuhiro

    2007-01-01

    Pr 3+ -doped perovskites R 1/2 Na 1/2 TiO 3 :Pr (R=La, Gd, Lu, and Y) were synthesized, and their structures, optical absorption and luminescent properties were investigated, and the relationship between structures and optical properties are discussed. Optical band gap of R 1/2 Na 1/2 TiO 3 increases in the order R=La, Gd, Y, and Lu, which is primarily due to a decrease in band width accompanied by a decrease in Ti-O-Ti bond angle. Intense red emission assigned to f-f transition of Pr 3+ from the excited 1 D 2 level to the ground 3 H 4 state upon the band gap photo-excitation (UV) was observed for all compounds. The wavelength of emission peaks was red-shifted in the order R=La, Gd, Y, and Lu, which originates from the increase in crystal field splitting of Pr 3+ . This is attributed to the decrease in inter-atomic distances of Pr-O together with the inter-atomic distances (R, Na)-O, i.e., increase in covalency between Pr and O. The results indicate that the luminescent properties in R 1/2 Na 1/2 TiO 3 :Pr are governed by the relative energy level between the ground and excited state of 4f 2 for Pr 3+ , and the conduction and valence band, which is primarily dependent on the structure, e.g., the tilt of TiO 6 octahedra and the Pr-Ti inter-atomic distance and the site symmetry of Pr ion. - Graphical abstract: The red intense emission assigned to f-f transition of Pr 3+ from the excited 1 D 2 level to the ground 3 H 4 state upon the band gap photo-excitation (UV) was observed upon the band gap photo-excitation in perovskites R 1/2 Na 1/2 TiO 3 :Pr(R=La, Gd, Lu, and Y). It was found that the systematic changes in their luminescent properties are strongly dependent on the structure

  16. Animal-specific C-terminal domain links myeloblastosis oncoprotein (Myb) to an ancient repressor complex

    Science.gov (United States)

    Andrejka, Laura; Wen, Hong; Ashton, Jonathan; Grant, Megan; Iori, Kevin; Wang, Amy; Manak, J. Robert; Lipsick, Joseph S.

    2011-01-01

    Members of the Myb oncoprotein and E2F-Rb tumor suppressor protein families are present within the same highly conserved multiprotein transcriptional repressor complex, named either as Myb and synthetic multivuval class B (Myb-MuvB) or as Drosophila Rb E2F and Myb-interacting proteins (dREAM). We now report that the animal-specific C terminus of Drosophila Myb but not the more highly conserved N-terminal DNA-binding domain is necessary and sufficient for (i) adult viability, (ii) proper localization to chromosomes in vivo, (iii) regulation of gene expression in vivo, and (iv) interaction with the highly conserved core of the MuvB/dREAM transcriptional repressor complex. In addition, we have identified a conserved peptide motif that is required for this interaction. Our results imply that an ancient function of Myb in regulating G2/M genes in both plants and animals appears to have been transferred from the DNA-binding domain to the animal-specific C-terminal domain. Increased expression of B-MYB/MYBL2, the human ortholog of Drosophila Myb, correlates with poor prognosis in human patients with breast cancer. Therefore, our results imply that the specific interaction of the C terminus of Myb with the MuvB/dREAM core complex may provide an attractive target for the development of cancer therapeutics. PMID:21969598

  17. The Melanocyte Fate in Neural Crest is Triggered by Myb Proteins through Activation of c-kit

    Czech Academy of Sciences Publication Activity Database

    Karafiát, Vít; Dvořáková, Marta; Pajer, Petr; Čermák, Vladimír; Dvořák, Michal

    2007-01-01

    Roč. 64, č. 21 (2007), s. 2975-2984 ISSN 1420-682X R&D Projects: GA MŠk(CZ) LC06061; GA ČR GA204/06/1728 Institutional research plan: CEZ:AV0Z50520514 Keywords : c-myb proto-oncogene * v-mybAMV oncogene * neural crest * cell fate determination * melanocytes * c-kit signal Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.239, year: 2007

  18. Synthesis, physical and chemical properties, antihypoxic activity of some 5-[((5-(adamantane-1-yl-4-R-4H-1,2,4-triazole-3-ylthiomethyl]-N-R1-1,3,4-thiadiazole-2-amines and 5-[((5-(adamantane-1-yl-4-R-4H-1,2,4-triazole-3-ylthiomethyl]-4-R1-4H-1,2,4-t

    Directory of Open Access Journals (Sweden)

    V. M. Odyntsova

    2018-03-01

    Full Text Available Today, an increase of natural and technogenic situations leads to the disorders of the central nervous system, functional-metabolic processes, vascular diseases, in particular, acute cerebral blood flow disorders. In addition, the changes occurring on the molecular and cellular levels are in the basis of the functional violations of individual systems and the organism as a whole. Hypoxia not only complicates the disease course, but in most cases, determines its outcome. The important role in the fight against hypoxia belongs to antioxidants, which improve the circulating oxygen utilization by the body, reduce its need for the organs and tissues, which is not only expedient but necessary for the treatment of many acute and chronic pathological processes. So, the frequency of the hypoxic states and a wide range of factors causing them determine the relevance of new ways and methods finding to overcome the oxygen deficiency. The aim of this work is the purposeful search of some 5-[((5-(adamantane-1-yl-4-R-4H-1,2,4-triazole-3-ylthiomethyl]-N-R1-1,3,4-thiadiazole-2-amines and 5-[((5-(adamantane-1-yl-4-R-4H-1,2,4-triazole-3-ylthiomethyl]-4-R1-4H-1,2,4-triazole-3-thiols, the study of their physical and chemical properties and pharmacological screening of the antihypoxic activity of the obtained compounds. Materials and methods. The study of physical and chemical properties was conducted on certified and licensed modern equipment. Antihypoxic activity was studied during the modeling process of hypoxia with hypercapnia. Mexidol was used as a comparison drug in studies at a dose of 100 mg/kg. Results. As the result of the study, it was found that the synthesized compounds and the comparison drug influenced on rats’ life span differently. Compounds, the antihypoxic activity of which exceeded control have been discovered, and others’ were at the level of Mexidol. A number of compounds showed a somewhat less activity in comparison with control, and two

  19. Synthesis of carbon-14 labelled cis-malonato [(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane] platinum(II) (SKI 2053R)

    International Nuclear Information System (INIS)

    Kim, Dae-Kee; Kim, Youngseok; Rim, Jonggill; Kim, Ganghyeok; Gam, Jongsik; Song, Sungkun; Yoo, Kwanghee; Kim, Key H.

    1994-01-01

    The synthesis of 14 C-labelled cis-malonato[(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolan e]platinum(II) from [1,4- 14 C] D-tartaric acid is described. The overall radiochemical yield of the product in a eight-step sequence was 23.8% and radiochemical purity was 98.5%. (author)

  20. SnoN/SKIL modulates proliferation through control of hsa-miR-720 transcription in esophageal cancer cells

    International Nuclear Information System (INIS)

    Shinozuka, Eriko; Miyashita, Masao; Mizuguchi, Yoshiaki; Akagi, Ichiro; Kikuchi, Kunio; Makino, Hiroshi; Matsutani, Takeshi; Hagiwara, Nobutoshi; Nomura, Tsutomu; Uchida, Eiji; Takizawa, Toshihiro

    2013-01-01

    Highlights: ► SnoN modulated miR-720, miR-1274A, and miR-1274B expression levels in TE-1 cells. ► miR-720 and miR-1274A suppressed the expression of target proteins p63 and ADAM9. ► Silencing of SnoN significantly upregulated cell proliferation in TE-1 cells. ► Esophageal cancer tissues have lower SnoN expression levels than normal tissues. ► Esophageal cancer tissues have higher miR-720 expression levels than normal tissues. -- Abstract: It is now evident that changes in microRNA are involved in cancer progression, but the mechanisms of transcriptional regulation of miRNAs remain unknown. Ski-related novel gene (SnoN/SKIL), a transcription co-factor, acts as a potential key regulator within a complex network of p53 transcriptional repressors. SnoN has pro- and anti-oncogenic functions in the regulation of cell proliferation, senescence, apoptosis, and differentiation. We characterized the roles of SnoN in miRNA transcriptional regulation and its effects on cell proliferation using esophageal squamous cell carcinoma (ESCC) cells. Silencing of SnoN altered a set of miRNA expression profiles in TE-1cells, and the expression levels of miR-720, miR-1274A, and miR-1274B were modulated by SnoN. The expression of these miRNAs resulted in changes to the target protein p63 and a disintegrin and metalloproteinase domain 9 (ADAM9). Furthermore, silencing of SnoN significantly upregulated cell proliferation in TE-1 cells, indicating a potential anti-oncogenic function. These results support our observation that cancer tissues have lower expression levels of SnoN, miR-720, and miR-1274A compared to adjacent normal tissues from ESCC patients. These data demonstrate a novel mechanism of miRNA regulation, leading to changes in cell proliferation.

  1. Identification and characterization of preferred DNA-binding sites for the Thermus thermophilus transcriptional regulator FadR.

    Directory of Open Access Journals (Sweden)

    Minwoo Lee

    Full Text Available One of the primary transcriptional regulators of fatty acid homeostasis in many prokaryotes is the protein FadR. To better understand its biological function in the extreme thermophile Thermus thermophilus HB8, we sought to first determine its preferred DNA-binding sequences in vitro using the combinatorial selection method Restriction Endonuclease Protection, Selection, and Amplification (REPSA and then use this information to bioinformatically identify potential regulated genes. REPSA determined a consensus FadR-binding sequence 5´-TTRNACYNRGTNYAA-3´, which was further characterized using quantitative electrophoretic mobility shift assays. With this information, a search of the T. thermophilus HB8 genome found multiple operons potentially regulated by FadR. Several of these were identified as encoding proteins involved in fatty acid biosynthesis and degradation; however, others were novel and not previously identified as targets of FadR. The role of FadR in regulating these genes was validated by physical and functional methods, as well as comparative genomic approaches to further characterize regulons in related organisms. Taken together, our study demonstrates that a systematic approach involving REPSA, biophysical characterization of protein-DNA binding, and bioinformatics can be used to postulate biological roles for potential transcriptional regulators.

  2. Xenosensor CAR mediates down-regulation of miR-122 and up-regulation of miR-122 targets in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Mostovich, Lyudmila A. [The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117 (Russian Federation); Pustylnyak, Yuliya A. [Novosibirsk State University, Pirogova str., 2, Novosibirsk 630090 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117 (Russian Federation); Novosibirsk State University, Pirogova str., 2, Novosibirsk 630090 (Russian Federation); The Institute International Tomography Center of the Russian Academy of Sciences, Institutskaya str. 3-A, Novosibirsk 630090 (Russian Federation)

    2015-10-01

    MiR-122 is a major hepatic microRNA, accounting for more than 70% of the total liver miRNA population. It has been shown that miR-122 is associated with liver diseases, including hepatocellular carcinoma. Mir-122 is an intergenic miRNA with its own promoter. Pri-miR-122 expression is regulated by liver-enriched transcription factors, mainly by HNF4α, which mediates the expression via the interaction with a specific DR1 site. It has been shown that phenobarbital-mediated activation of constitutive androstane receptor (CAR), xenobiotic nuclear receptor, is associated with a decrease in miR-122 in the liver. In the present study, we investigated HNF4α–CAR cross-talk in the regulation of miR-122 levels and promitogenic signalling in mouse livers. The level of miR-122 was significantly repressed by treatment with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is an agonist of mouse CAR. ChIP assays demonstrated that TCPOBOP-activated CAR inhibited HNF4α transactivation by competing with HNF4α for binding to the DR1 site in the pri-miR-122 promoter. Such transcription factor replacement was strongly correlated with miR-122 down-regulation. Additionally, the decrease in miR-122 levels produced by CAR activation is accompanied by an increase in mRNA and cellular protein levels of E2f1 and its accumulation on the target cMyc gene promoter. The increase in accumulation of E2f1 on the target cMyc gene promoter is accompanied by an increase in cMyc levels and transcriptional activity. Thus, our results provide evidence to support the conclusion that CAR activation decreases miR-122 levels through suppression of HNF4α transcriptional activity and indirectly regulates the promitogenic protein cMyc. HNF4α–CAR cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments. - Highlights: • CAR activation decreased the level of miR-122 in mouse livers. • CAR decreases

  3. Xenosensor CAR mediates down-regulation of miR-122 and up-regulation of miR-122 targets in the liver

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Mostovich, Lyudmila A.; Pustylnyak, Yuliya A.; Pustylnyak, Vladimir O.

    2015-01-01

    MiR-122 is a major hepatic microRNA, accounting for more than 70% of the total liver miRNA population. It has been shown that miR-122 is associated with liver diseases, including hepatocellular carcinoma. Mir-122 is an intergenic miRNA with its own promoter. Pri-miR-122 expression is regulated by liver-enriched transcription factors, mainly by HNF4α, which mediates the expression via the interaction with a specific DR1 site. It has been shown that phenobarbital-mediated activation of constitutive androstane receptor (CAR), xenobiotic nuclear receptor, is associated with a decrease in miR-122 in the liver. In the present study, we investigated HNF4α–CAR cross-talk in the regulation of miR-122 levels and promitogenic signalling in mouse livers. The level of miR-122 was significantly repressed by treatment with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is an agonist of mouse CAR. ChIP assays demonstrated that TCPOBOP-activated CAR inhibited HNF4α transactivation by competing with HNF4α for binding to the DR1 site in the pri-miR-122 promoter. Such transcription factor replacement was strongly correlated with miR-122 down-regulation. Additionally, the decrease in miR-122 levels produced by CAR activation is accompanied by an increase in mRNA and cellular protein levels of E2f1 and its accumulation on the target cMyc gene promoter. The increase in accumulation of E2f1 on the target cMyc gene promoter is accompanied by an increase in cMyc levels and transcriptional activity. Thus, our results provide evidence to support the conclusion that CAR activation decreases miR-122 levels through suppression of HNF4α transcriptional activity and indirectly regulates the promitogenic protein cMyc. HNF4α–CAR cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments. - Highlights: • CAR activation decreased the level of miR-122 in mouse livers. • CAR decreases

  4. Salinity inhibits post transcriptional processing of chloroplast 16S rRNA in shoot cultures of jojoba (Simmondsia chinesis).

    Science.gov (United States)

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2005-03-01

    Chloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing. A differentially expressed 680-bp cDNA, containing the 3' sequence of 16S rRNA, transcribed intergenic spacer, exon 1 and intron of tRNA(Ile), was isolated by differential display reverse transcriptase PCR from salt-grown jojoba (Simmondsia chinesis) shoot cultures. Northern blot analysis indicated that although most rRNA appears to be fully processed, partially processed chloroplast 16S rRNA accumulates in salt-grown cultures. Thus, salinity appears to decrease the processing of the rrn transcript. The possible effect of this decreased processing on physiological processes is, as yet, unknown.

  5. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis

    Directory of Open Access Journals (Sweden)

    Xing He

    2016-11-01

    Full Text Available Schistosomiasis is a chronic disease caused by the parasite of the Schistosoma genus and is characterized by egg-induced hepatic granulomas and fibrosis. Macrophages play a central role in schistosomiasis with several studies highlighting their differentiation into M2 cells involved in the survival of infected mice through limitation of immunopathology. However, little is known regarding the mechanisms of regulating macrophage differentiation. Here, we showed that the early stage of infection by Schistosoma japonicum induced expression of type 1 T-helper-cell (Th1 cytokine, interferon-γ (IFN-γ, leading to increase in M1 cells. However, the presence of liver-trapped eggs induced the expression of Th2 cytokines including interleukin-4 (IL-4, IL-10, and IL-13 that upregulated the transcription of miR-146b by activating signal transducer and activator of transcription 3/6 (STAT3/6 that bind to the promoter of the pre-miR-146b gene. We found that the miR-146a/b was significantly upregulated in macrophages during the progression of hepatic schistosomiasis. The elevated miR-146a/b inhibited the IFN-γ-induced differentiation of macrophages to M1 cells through targeting STAT1. Our data indicate the protective roles of miR-146a/b in hepatic schistosomiasis through regulating the differentiation of macrophages into M2 cells.

  6. Some thermoelectric properties of the light rare earth sesquiselenides (R2Se/sub 3-x/)

    International Nuclear Information System (INIS)

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1981-01-01

    Rare earth sesquiselenides of the Th 3 P 4 structure show variable electric properties over their homogeneity range, i.e., ranging from metallic (R 3 Se 4 ) to semimetallic (R 2 Se/sub 3-x/, where 0.14 > x > 0) to semiconducting (R 2 Se 3 ). The composition change is due to the formation of metal vacancies in the Th 3 P 4 structure with no vacancies at R 3 Se 4 and 4.75 at. % vacancies at R 2 Se 3 . The rare earth sesquiselenides are also refractory materials and therefore are of interest for high temperature thermoelectric applications. Preliminary results of thermoelectric power and electrical resistivity measurements on the light lanthanide sesquiselenides (La through Sm) are presented

  7. MiR-205-5p and miR-342-3p cooperate in the repression of the E2F1 transcription factor in the context of anticancer chemotherapy resistance

    Science.gov (United States)

    Lai, Xin; Gupta, Shailendra K; Schmitz, Ulf; Marquardt, Stephan; Knoll, Susanne; Spitschak, Alf; Wolkenhauer, Olaf; Pützer, Brigitte M; Vera, Julio

    2018-01-01

    High rates of lethal outcome in tumour metastasis are associated with the acquisition of invasiveness and chemoresistance. Several clinical studies indicate that E2F1 overexpression across high-grade tumours culminates in unfavourable prognosis and chemoresistance in patients. Thus, fine-tuning the expression of E2F1 could be a promising approach for treating patients showing chemoresistance. Methods: We integrated bioinformatics, structural and kinetic modelling, and experiments to study cooperative regulation of E2F1 by microRNA (miRNA) pairs in the context of anticancer chemotherapy resistance. Results: We showed that an enhanced E2F1 repression efficiency can be achieved in chemoresistant tumour cells through two cooperating miRNAs. Sequence and structural information were used to identify potential miRNA pairs that can form tertiary structures with E2F1 mRNA. We then employed molecular dynamics simulations to show that among the identified triplexes, miR-205-5p and miR-342-3p can form the most stable triplex with E2F1 mRNA. A mathematical model simulating the E2F1 regulation by the cooperative miRNAs predicted enhanced E2F1 repression, a feature that was verified by in vitro experiments. Finally, we integrated this cooperative miRNA regulation into a more comprehensive network to account for E2F1-related chemoresistance in tumour cells. The network model simulations and experimental data indicate the ability of enhanced expression of both miR-205-5p and miR-342-3p to decrease tumour chemoresistance by cooperatively repressing E2F1. Conclusions: Our results suggest that pairs of cooperating miRNAs could be used as potential RNA therapeutics to reduce E2F1-related chemoresistance. PMID:29464002

  8. OxyR of Haemophilus parasuis is a global transcriptional regulator important in oxidative stress resistance and growth.

    Science.gov (United States)

    Wen, Yongping; Wen, Yiping; Wen, Xintian; Cao, Sanjie; Huang, Xiaobo; Wu, Rui; Zhao, Qin; Liu, Mafeng; Huang, Yong; Yan, Qigui; Han, Xinfeng; Ma, Xiaoping; Dai, Ke; Ding, Lingqiang; Liu, Sitong; Yang, Jian

    2018-02-15

    Haemophilus parasuis is an opportunistic pathogen and the causative agent of Glässer's disease in swine. This disease has high morbidity and mortality rates in swine populations, and is responsible for major economic losses worldwide. Survival of H. parasuis within the host requires mechanisms for coping with oxidative stress conditions. In many bacteria, OxyR is known to mediate protection against oxidative stress; however, little is known about the role of OxyR in H. parasuis. In the current study, an oxyR mutant strain was constructed in H. parasuis strain SC1401 and designated H. parasuis SC1401∆oxyR. The oxyR mutant strain had a slower growth rate and impaired biofilm formation compared to the wild type strain. Complementation restored the growth-associated phenotypes to wild type levels. Oxidative stress susceptibility testing, using a range of concentrations of H 2 O 2 , indicated that H. parasuis SC1401∆oxyR was more sensitive to oxidative stress than the wild type strain. RNA sequencing transcriptome analysis comparing H. parasuis SC1401 with H. parasuis SC1401∆oxyR identified 466 differentially expressed genes. These genes were involved in a wide range of biological processes, including: oxidative stress, transcriptional regulation, and DNA replication, recombination, and repair. These findings provide a foundation for future research to examine the role of OxyR as a global transcriptional regulator and to better define its role in oxidative stress resistance in H. parasuis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Association of miR-548c-5p, miR-7-5p, miR-210-3p, miR-128-3p with recurrence in systemically untreated breast cancer

    DEFF Research Database (Denmark)

    Block, Ines; Burton, Mark; Sørensen, Kristina Pilekær

    2018-01-01

    . To validate their prognostic potential, we analyzed microRNA expression in an independent cohort (n = 110) using a pairmatched study design minimizing dependence of classical markers. The expression of hsa-miR-548c-5p was significantly associated with abridged disease-free survival (hazard ratio [HR]:1.96, p...... = 0.027). Contradicting published results, high hsa-miR516-3p expression was associated with favorable outcome (HR:0.29, p = 0.0068). The association is probably time-dependent indicating later relapse. Additionally, re-analysis of previously published expression data of two matching cohorts (n = 100......, n = 255) supports an association of hsa-miR-128-3p with shortened diseasefree survival (HR:2.48, p = 0.0033) and an upregulation of miR-7-5p (p = 0.0038; p = 0.039) and miR-210-3p (p = 0.031) in primary tumors of patients who experienced metastases. Further analysis may verify the prognostic...

  10. Insilico study of the A(2A)R-D (2)R kinetics and interfacial contact surface for heteromerization.

    Science.gov (United States)

    Prakash, Amresh; Luthra, Pratibha Mehta

    2012-10-01

    G-protein-coupled receptors (GPCRs) are cell surface receptors. The dynamic property of receptor-receptor interactions in GPCRs modulates the kinetics of G-protein signaling and stability. In the present work, the structural and dynamic study of A(2A)R-D(2)R interactions was carried to acquire the understanding of the A(2A)R-D(2)R receptor activation and deactivation process, facilitating the design of novel drugs and therapeutic target for Parkinson's disease. The structure-based features (Alpha, Beta, SurfAlpha, and SurfBeta; GapIndex, Leakiness and Gap Volume) and slow mode model (ENM) facilitated the prediction of kinetics (K (off), K (on), and K (d)) of A(2A)R-D(2)R interactions. The results demonstrated the correlation coefficient 0.294 for K (d) and K (on) and the correlation coefficient 0.635 for K (d) and K (off), and indicated stable interfacial contacts in the formation of heterodimer. The coulombic interaction involving the C-terminal tails of the A(2A)R and intracellular loops (ICLs) of D(2)R led to the formation of interfacial contacts between A(2A)R-D(2)R. The properties of structural dynamics, ENM and KFC server-based hot-spot analysis illustrated the stoichiometry of A(2A)R-D(2)R contact interfaces as dimer. The propensity of amino acid residues involved in A(2A)R-D(2)R interaction revealed the presence of positively (R, H and K) and negatively (E and D) charged structural motif of TMs and ICL3 of A(2A)R and D(2)R at interface of dimer contact. Essentially, in silico structural and dynamic study of A(2A)R-D(2)R interactions will provide the basic understanding of the A(2A)R-D(2)R interfacial contact surface for activation and deactivation processes, and could be used as constructive model to recognize the protein-protein interactions in receptor assimilations.

  11. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions

    Directory of Open Access Journals (Sweden)

    Kathy E Schwinn

    2014-11-01

    Full Text Available Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida] and Eustoma grandiflorum (lisianthus plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor (ROSEA1 that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related bHLH transcription factor transgene (LEAF COLOR, LC, which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1×35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment accumulation in the petal throat region, and the anthers changed from yellow to purple colour. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1×35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants.

  12. Superior thermoelectric response in the 3R phases of hydrated NaxRhO2

    KAUST Repository

    Saeed, Y.; Singh, Nirpendra; Schwingenschlö gl, Udo

    2014-01-01

    Density functional theory is used to investigate the thermoelectric properties of the 3R phases of NaxRhO2 for different Na vacancy configurations and concentrations. As compared to the analogous 2H phases, the modified stacking of the atomic layers in the 3R phases reduces the interlayer coupling. As a consequence, the 3R phases are found to be superior in the technologically relevant temperature range. The Rh d3z2-r2 orbitals still govern the valence band maxima and therefore determine the transport properties. A high figure of merit of 0.35 is achieved in hydrated Na0.83RhO2 at 580 K by water intercalation, which is 34% higher than in the non-hydrated phase.

  13. Superior thermoelectric response in the 3R phases of hydrated NaxRhO2

    KAUST Repository

    Saeed, Y.

    2014-03-17

    Density functional theory is used to investigate the thermoelectric properties of the 3R phases of NaxRhO2 for different Na vacancy configurations and concentrations. As compared to the analogous 2H phases, the modified stacking of the atomic layers in the 3R phases reduces the interlayer coupling. As a consequence, the 3R phases are found to be superior in the technologically relevant temperature range. The Rh d3z2-r2 orbitals still govern the valence band maxima and therefore determine the transport properties. A high figure of merit of 0.35 is achieved in hydrated Na0.83RhO2 at 580 K by water intercalation, which is 34% higher than in the non-hydrated phase.

  14. Transactivation mediated by B-Myb is dependent on TAF(II)250.

    Science.gov (United States)

    Bartusel, Thorsten; Klempnauer, Karl-Heinz

    2003-05-15

    B-Myb is a highly conserved member of the Myb family of transcription factors, which has been implicated in cell cycle regulation. B-Myb is expressed in most proliferating cells and its activity is highly regulated around the G1/S-phase border of the cell cycle. It is generally assumed that B-Myb regulates the expression of genes that are crucial for cell proliferation; however, the identity of these genes, the molecular mechanisms by which B-Myb stimulates their expression and the involvement of other proteins have not been sufficiently clarified. We have employed the hamster cell line ts13 as a tool to demonstrate a functional link between B-Myb and the coactivator TAF(II)250, a key component of the transcriptional machinery which itself is essential for cell proliferation. ts13 cells express a point-mutated version of TAF(II)250 whose intrinsic histone acetyl transferase activity is temperature sensitive. Transactivation of Myb-responsive reporter genes by B-Myb is temperature-dependent in ts13 cells but not in ts13 cells, which have been rescued by transfection with an expression vector for wild-type TAF(II)250. Furthermore, B-Myb and TAF(II)250 can be coprecipitated, suggesting that both proteins are present in a complex. The formation of this complex is dependent on the DNA-binding domain of B-Myb and not on its transactivation domain. Taken together, these observations provide the first evidence that the coactivator TAF(II)250 is involved in the activation of Myb responsive promoters by B-Myb. The finding that B-Myb transactivation is dependent on a key coactivator involved in cell cycle control is consistent with and strengthens the idea that B-Myb plays a crucial role as a transcription factor in proliferating cells.

  15. Initial mass function in R-associations CMaR1, Mon R1 and Mon R2 from radiodata

    International Nuclear Information System (INIS)

    Pyatunina, T.B.

    1985-01-01

    Results of search for compact radiosources in R-associations CMa R1 and Mon R1 carried out with the radiotelescope RATAN-600 at the 7.6-cm wavelength are given. The number of sources found in the association Mon R1 is approximately equal to the expected number of background extragalactic radiosources. In the association CMa R1 seven radiosources of small angular diameter with the flux greater than 30 mJy are found, two of which probably are background sources. A comparison of optical and radiodata on the association CMa R1 and previously published data on the association Mon R2 make it possible to estimate the initial mass function for associations under study: xi(M) infinity Msup(-2.7+-0.7) for stars with M approximately 10Msub(Sun)

  16. (R)-3-hydroxyhexan-2-one is a major pheromone component of Anelaphus inflaticollis (Coleoptera: Cerambycidae).

    Science.gov (United States)

    Ray, A M; Swift, I P; Moreira, J A; Millar, J G; Hanks, L M

    2009-10-01

    We report the identification and field bioassays of a major component of the male-produced aggregation pheromone of Anelaphus inflaticollis Chemsak, an uncommon desert cerambycine beetle. Male A. inflaticollis produced a sex-specific blend of components that included (R)-3-hydroxyhexan-2-one, (S)-2-hydroxyhexan-3-one, 2,3-hexanedione, and (2R,3R)- and (2R,3S)-2,3-hexanediols. Field trials with baited bucket traps determined that the reconstructed synthetic pheromone blend and (R)-3-hydroxyhexan-2-one alone attracted adult A. inflaticollis of both sexes, with significantly more beetles being attracted to the blend. We conclude that (R)-3-hydroxyhexan-2-one is a major pheromone component of A. inflaticollis, and our results suggest that one or more of the minor components may further increase attraction of conspecifics. Scanning electron microscopy showed that male A. inflaticollis have pores on the prothorax that are consistent in structure with sex-specific pheromone gland pores in related species. Males also displayed stereotyped calling behavior similar to that observed in other cerambycine species. This study represents the first report of volatile pheromones for a cerambycine species in the tribe Elaphidiini.

  17. Expression and distribution of PPP2R5C gene in leukemia

    Directory of Open Access Journals (Sweden)

    Li Bo

    2011-05-01

    Full Text Available Abstract Background Recently, we clarified at the molecular level novel chromosomal translocation t(14;14(q11;q32 in a case of Sézary syndrome, which caused a rearrangement from TRAJ7 to the PPP2R5C gene. PPP2R5C is one of the regulatory B subunits of protein phosphatase 2A (PP2A. It plays a crucial role in cell proliferation, differentiation, and transformation. To characterize the expression and distribution of five different transcript variants of the PPP2R5C gene in leukemia, we analyzed the expression level of PPP2R5C in peripheral blood mononuclear cells from 77 patients with de novo leukemia, 26 patients with leukemia in complete remission (CR, and 20 healthy individuals by real-time PCR and identified the different variants of PPP2R5C by RT-PCR. Findings Significantly higher expression of PPP2R5C was found in AML, CML, T-ALL, and B-CLL groups in comparison with healthy controls. High expression of PPP2R5C was detected in the B-ALL group; however, no significant difference was found compared with the healthy group. The expression level of PPP2R5C in the CML-CR group decreased significantly compared with that in the de novo CML group and was not significantly different from the level in the healthy group. By using different primer pairs that covered different exons, five transcript variants of PPP2R5C could be identified. All variants could be detected in healthy samples as well as in all the leukemia samples, and similar frequencies and distributions of PPP2R5C were indicated. Conclusions Overexpression of PPP2R5C in T-cell malignancy as well as in myeloid leukemia cells might relate to its proliferation and differentiation. Investigation of the effect of target inhibition of this gene might be beneficial to further characterization of molecular mechanisms and targeted therapy in leukemia.

  18. CASC2/miR-24/miR-221 modulates the TRAIL resistance of hepatocellular carcinoma cell through caspase-8/caspase-3.

    Science.gov (United States)

    Jin, Xiaoxin; Cai, Lifeng; Wang, Changfa; Deng, Xiaofeng; Yi, Shengen; Lei, Zhao; Xiao, Qiangsheng; Xu, Hongbo; Luo, Hongwu; Sun, Jichun

    2018-02-23

    Hepatocellular carcinoma is one of the most common solid tumors in the digestive system. The prognosis of patients with hepatocellular carcinoma is still poor due to the acquisition of multi-drug resistance. TNF Related Apoptosis Inducing Ligand (TRAIL), an attractive anticancer agent, exerts its effect of selectively inducing apoptosis in tumor cells through death receptors and the formation of the downstream death-inducing signaling complex, which activates apical caspases 3/8 and leads to apoptosis. However, hepatocellular carcinoma cells are resistant to TRAIL. Non-coding RNAs, including long non-coding RNAs (lncRNAs) and miRNAs have been regarded as major regulators of normal development and diseases, including cancers. Moreover, lncRNAs and miRNAs have been reported to be associated with multi-drug resistance. In the present study, we investigated the mechanism by which TRAIL resistance of hepatocellular carcinoma is affected from the view of non-coding RNA regulation. We selected and validated candidate miRNAs, miR-24 and miR-221, that regulated caspase 3/8 expression through direct targeting, and thereby affecting TRAIL-induced tumor cell apoptosis TRAIL resistance of hepatocellular carcinoma. In addition, we revealed that CASC2, a well-established tumor suppressive long non-coding RNA, could serve as a "Sponge" of miR-24 and miR-221, thus modulating TRAIL-induced tumor cell apoptosis TRAIL resistance of hepatocellular carcinoma. Taken together, we demonstrated a CASC2/miR-24/miR-221 axis, which can affect the TRAIL resistance of hepatocellular carcinoma through regulating caspase 3/8; through acting as a "Sponge" of miR-24 and miR-221, CASC2 may contribute to improving hepatocellular carcinoma TRAIL resistance, and finally promoting the treatment efficiency of TRAIL-based therapies.

  19. Preferential occupancy of R2 retroelements on the B chromosomes of the grasshopper Eyprepocnemis plorans.

    Directory of Open Access Journals (Sweden)

    Eugenia E Montiel

    Full Text Available R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements.

  20. Role of Caspase-3 Cleaved IP3R1 on Ca2+ Homeostasis and Developmental Competence of Mouse Oocytes and Eggs

    Science.gov (United States)

    Zhang, Nan; Fissore, Rafael. A.

    2014-01-01

    Apoptosis in most cell types is accompanied by altered Ca2+ homeostasis. During apoptosis, caspase-3 mediated cleavage of the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) generates a 95-kDa C-terminal fragment (C-IP3R1), which represents the channel domain of the receptor. Aged mouse eggs display abnormal Ca2+ homeostasis and express C-IP3R1, although whether or not C-IP3R1 expression contributes to Ca2+ misregulation or a decrease in developmental competency is unknown. We sought to answer these questions by injecting in mouse oocytes and eggs cRNAs encoding CIP3R1. We found that: 1) expression of C-IP3R1 in eggs lowered the Ca2+ content of the endoplasmic reticulum (ER), although, as C-IP3R1 is quickly degraded at this stage, its expression did not impair pre-implantation embryo development; 2) expression of CIP3R1 in eggs enhanced fragmentation associated with aging; 3) endogenous IP3R1 is required for aging associated apoptosis, as its down-regulation prevented fragmentation, and expression of C-IP3R1 in eggs with downregulated IP3R1 partly restored fragmentation; 4) C-IP3R1 expression in GV oocytes resulted in persistent levels of protein, which abolished the increase in the ER releasable Ca2+ pool that occurs during maturation, undermined the Ca2+ oscillatory ability of matured eggs and their activation potential. Collectively, this study supports a role for IP3R1 and C-IP3R1 in regulating Ca2+ homeostasis and the ER Ca2+ content during oocyte maturation. Nevertheless, the role of C-IP3R1 on Ca2+ homeostasis in aged eggs seems minor, as in MII eggs the majority of endogenous IP3R1 remains intact and C-IP3R1 undergoes rapid turnover. PMID:24692207

  1. Evaluation of role 2 (R2) medical resources in the Afghanistan combat theater: Initial review of the joint trauma system R2 registry.

    Science.gov (United States)

    Mann-Salinas, Elizabeth A; Le, Tuan D; Shackelford, Stacy A; Bailey, Jeffrey A; Stockinger, Zsolt T; Spott, Mary Ann; Wirt, Michael D; Rickard, Rory; Lane, Ian B; Hodgetts, Timothy; Cardin, Sylvain; Remick, Kyle N; Gross, Kirby R

    2016-11-01

    A Role 2 registry (R2R) was developed in 2008 by the US Joint Trauma System (JTS). The purpose of this project was to undertake a preliminary review of the R2R to understand combat trauma epidemiology and related interventions at these facilities to guide training and optimal use of forward surgical capability in the future. A retrospective review of available JTS R2R records; the registry is a convenience sample entered voluntarily by members of the R2 units. Patients were classified according to basic demographics, affiliation, region where treatment was provided, mechanism of injury, type of injury, time and method of transport from point of injury (POI) to R2 facility, interventions at R2, and survival. Analysis included trauma patients aged ≥18 years or older wounded in year 2008 to 2014, and treated in Afghanistan. A total of 15,404 patients wounded and treated in R2 were included in the R2R from February 2008 to September 2014; 12,849 patients met inclusion criteria. The predominant patient affiliations included US Forces, 4,676 (36.4%); Afghan Forces, 4,549 (35.4%); and Afghan civilians, 2,178 (17.0%). Overall, battle injuries predominated (9,792 [76.2%]). Type of injury included penetrating, 7,665 (59.7%); blunt, 4,026 (31.3%); and other, 633 (4.9%). Primary mechanism of injury included explosion, 5,320 (41.4%); gunshot wounds, 3,082 (24.0%); and crash, 1,209 (9.4%). Of 12,849 patients who arrived at R2, 167 (1.3%) were dead; of 12,682 patients who were alive upon arrival, 342 (2.7%) died at R2. This evaluation of the R2R describes the patient profiles of and common injuries treated in a sample of R2 facilities in Afghanistan. Ongoing and detailed analysis of R2R information may provide evidence-based guidance to military planners and medical leaders to best prepare teams and allocate R2 resources in future operations. Given the limitations of the data set, conclusions must be interpreted in context of other available data and analyses, not in isolation

  2. Building a SuAVE browse interface to R2R's Linked Data

    Science.gov (United States)

    Clark, D.; Stocks, K. I.; Arko, R. A.; Zaslavsky, I.; Whitenack, T.

    2017-12-01

    The Rolling Deck to Repository program (R2R) is creating and evaluating a new browse portal based on the SuAVE platform and the R2R linked data graph. R2R manages the underway sensor data collected by the fleet of US academic research vessels, and provides a discovery and access point to those data at its website, www.rvdata.us. R2R has a database-driven search interface, but seeks a more capable and extensible browse interface that could be built off of the substantial R2R linked data resources. R2R's Linked Data graph organizes its data holdings around key concepts (e.g. cruise, vessel, device type, operator, award, organization, publication), anchored by persistent identifiers where feasible. The "Survey Analysis via Visual Exploration" or SuAVE platform (suave.sdsc.edu) is a system for online publication, sharing, and analysis of images and metadata. It has been implemented as an interface to diverse data collections, but has not been driven off of linked data in the past. SuAVE supports several features of interest to R2R, including faceted searching, collaborative annotations, efficient subsetting, Google maps-like navigation over an image gallery, and several types of data analysis. Our initial SuAVE-based implementation was through a CSV export from the R2R PostGIS-enabled PostgreSQL database. This served to demonstrate the utility of SuAVE but was static and required reloading as R2R data holdings grew. We are now working to implement a SPARQL-based ("RDF Query Language") service that directly leverages the R2R Linked Data graph and offers the ability to subset and/or customize output.We will show examples of SuAVE faceted searches on R2R linked data concepts, and discuss our experience to date with this work in progress.

  3. (1R,6R,13R,18R-(Z,Z-1,18-Bis[(4R-2,2-dimethyl-1,3-dioxolan-4-yl]-3,16-dimethylene-8,20-diazadispiro[5.6.5.6]tetracosa-7,19-diene

    Directory of Open Access Journals (Sweden)

    Stéphanie M. Guéret

    2010-07-01

    Full Text Available The crystal structure of the title compound, C34H54N2O4, has been solved in order to prove the relative and absolute chirality of the newly-formed stereocentres which were established using an asymmetric Diels–Alder reaction at an earlier stage in the synthesis. This unprecedented stable dialdimine contains a 14-membered ring and was obtained as the minor diastereoisomer in the Diels–Alder reaction. The absolute stereochemistry of the stereocentres of the acetal functionality was known to be R based on the use of a chiral (R-trisubstituted dienophile derived from enantiopure (S-glyceraldehyde. The assignment of the configuration in the dienophile and the title di-aldimine differs from (S-glyceraldehyde due to a change in the priority order of the substituents. The crystal structure establishes the presence of six stereocentres all attributed to be R. The 14-membered ring contains two aldimine bonds [C—N = 1.258 (2 and 1.259 (2 Å]. It adopts a similar conformation to that proposed for trans–trans-cyclotetradeca-1,8-dienes.

  4. The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Flagella are surface structures critical for motility and virulence of many bacterial species. In Listeria monocytogenes, MogR tightly represses expression of flagellin (FlaA during extracellular growth at 37 degrees C and during intracellular infection. MogR is also required for full virulence in a murine model of infection. Using in vitro and in vivo infection models, we determined that the severe virulence defect of MogR-negative bacteria is due to overexpression of FlaA. Specifically, overproduction of FlaA in MogR-negative bacteria caused pleiotropic defects in bacterial division (chaining phenotype, intracellular spread, and virulence in mice. DNA binding and microarray analyses revealed that MogR represses transcription of all known flagellar motility genes by binding directly to a minimum of two TTTT-N(5-AAAA recognition sites positioned within promoter regions such that RNA polymerase binding is occluded. Analysis of MogR protein levels demonstrated that modulation of MogR repression activity confers the temperature-specificity to flagellar motility gene expression. Epistasis analysis revealed that MogR repression of transcription is antagonized in a temperature-dependent manner by the DegU response regulator and that DegU further regulates FlaA levels through a posttranscriptional mechanism. These studies provide the first known example to our knowledge of a transcriptional repressor functioning as a master regulator controlling nonhierarchal expression of flagellar motility genes.

  5. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple.

    Science.gov (United States)

    Zhou, Li-Jie; Li, Yuan-Yuan; Zhang, Rui-Fen; Zhang, Chun-Ling; Xie, Xing-Bin; Zhao, Cheng; Hao, Yu-Jin

    2017-10-01

    MdMYB1 acts as a crucial component of the MYB-bHLH-WD40 complex to regulate anthocyanin biosynthesis in red-skinned apples (Malus domestica), but little is known about its post-translational regulation. Here, a small ubiquitin-like modifier E3 ligase MdSIZ1 was screened out as an MdMYB1-interacting protein with a yeast two-hybridization approach. The interaction between MdSIZ1 and MdMYB1 was further verified with pull-down and CoIP assays. Furthermore, it was found that MdSIZ1 directly sumoylated MdMYB1 proteins in vivo and in vitro, especially under moderately low temperature (17 °C) conditions, and that this sumoylation was required for MdMYB1 protein stability. Moreover, the transcription level of MdSIZ1 gene was remarkably induced by low temperature and phosphorus deficiency, and MdSIZ1 overexpression exerted a large positive influence on anthocyanin accumulation and red fruit coloration, suggesting its important role in the regulation of anthocyanin biosynthesis under stress conditions. Our findings reveal an important role for a small ubiquitin-like modifier modification of MYB transcription factors in regulation of anthocyanin biosynthesis in plants. © 2017 John Wiley & Sons Ltd.

  6. R2R-printed inverted OPV modules - towards arbitrary patterned designs

    Science.gov (United States)

    Välimäki, M.; Apilo, P.; Po, R.; Jansson, E.; Bernardi, A.; Ylikunnari, M.; Vilkman, M.; Corso, G.; Puustinen, J.; Tuominen, J.; Hast, J.

    2015-05-01

    We describe the fabrication of roll-to-roll (R2R) printed organic photovoltaic (OPV) modules using gravure printing and rotary screen-printing processes. These two-dimensional printing techniques are differentiating factors from coated OPVs enabling the direct patterning of arbitrarily shaped and sized features into visual shapes and, increasing the freedom to connect the cells in modules. The inverted OPV structures comprise five layers that are either printed or patterned in an R2R printing process. We examined the rheological properties of the inks used and their relationship with the printability, the compatibility between the processed inks, and the morphology of the R2R-printed layers. We also evaluate the dimensional accuracy of the printed pattern, which is an important consideration in designing arbitrarily-shaped OPV structures. The photoactive layer and top electrode exhibited excellent cross-dimensional accuracy corresponding to the designed width. The transparent electron transport layer extended 300 µm beyond the designed values, whereas the hole transport layer shrank 100 µm. We also examined the repeatability of the R2R fabrication process when the active area of the module varied from 32.2 cm2 to 96.5 cm2. A thorough layer-by-layer optimization of the R2R printing processes resulted in realization of R2R-printed 96.5 cm2 sized modules with a maximum power conversion efficiency of 2.1% (mean 1.8%) processed with high functionality.

  7. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  8. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy.

    Science.gov (United States)

    Zanotti, Simona; Gibertini, Sara; Curcio, Maurizio; Savadori, Paolo; Pasanisi, Barbara; Morandi, Lucia; Cornelio, Ferdinando; Mantegazza, Renato; Mora, Marina

    2015-07-01

    Excessive extracellular matrix deposition progressively replacing muscle fibres is the endpoint of most severe muscle diseases. Recent data indicate major involvement of microRNAs in regulating pro- and anti-fibrotic genes. To investigate the roles of miR-21 and miR-29 in muscle fibrosis in Duchenne muscle dystrophy, we evaluated their expression in muscle biopsies from 14 patients, and in muscle-derived fibroblasts and myoblasts. In Duchenne muscle biopsies, miR-21 expression was significantly increased, and correlated directly with COL1A1 and COL6A1 transcript levels. MiR-21 expression was also significantly increased in Duchenne fibroblasts, more so after TGF-β1 treatment. In Duchenne fibroblasts the expression of miR-21 target transcripts PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SPRY-1 (Sprouty homolog 1) was significantly reduced; while collagen I and VI transcript levels and soluble collagen production were significantly increased. MiR-29a and miR-29c were significantly reduced in Duchenne muscle and myoblasts, and miR-29 target transcripts, COL3A1, FBN1 and YY1, significantly increased. MiR-21 silencing in mdx mice reduced fibrosis in the diaphragm muscle and in both Duchenne fibroblasts and mdx mice restored PTEN and SPRY-1 expression, and significantly reduced collagen I and VI expression; while miR-29 mimicking in Duchenne myoblasts significantly decreased miR-29 target transcripts. These findings indicate that miR-21 and miR-29 play opposing roles in Duchenne muscle fibrosis and suggest that pharmacological modulation of their expression has therapeutic potential for reducing fibrosis in this condition. Copyright © 2015. Published by Elsevier B.V.

  9. Reactions of R(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)]. A general and efficient entry to phosphanylphosphinidene complexes of platinum. Syntheses and structures of [(eta(2)-P=(i)Pr(2))Pt(p-Tol(3)P)(2)], [(eta(2)-P=(t)Bu(2))Pt(p-Tol(3)P)(2)], [{eta(2)-P=(N(i)Pr(2))(2)}Pt(p-Tol(3)P)(2)] and [{(Et(2)PhP)(2)Pt}(2)P(2)].

    Science.gov (United States)

    Domańska-Babul, Wioleta; Chojnacki, Jaroslaw; Matern, Eberhard; Pikies, Jerzy

    2009-01-07

    The reactions of lithium derivatives of diphosphanes R(2)P-P(SiMe(3))Li (R = (t)Bu, (i)Pr, Et(2)N and (i)Pr(2)N) with [(R'(3)P)(2)PtCl(2)] (R'(3)P = Et(3)P, Et(2)PhP, EtPh(2)P and p-Tol(3)P) proceed in a facile manner to afford side-on bonded phosphanylphosphinidene complexes of platinum [(eta(2)-P=R(2))Pt(PR'(3))(2)]. The related reactions of Ph(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)] did not yield [(eta(2)-P=PPh(2))Pt(PR'(3))(2)] and resulted mainly in the formation of [{(R'(3)P)(2)Pt}(2)P(2)], Ph(2)P-PLi-PPh(2), (Me(3)Si)(2)PLi and (Me(3)Si)(3)P. Crystallographic data are reported for the compounds [(eta(2)-P=R(2))Pt(p-Tol(3)P)(2)] (R = (t)Bu, (i)Pr, ((i)Pr(2)N)(2)P) and for [{(Et(2)PhP)(2)Pt}(2)P(2)].

  10. Development of the fast reactor group constant set JFS-3-J3.2R based on the JENDL-3.2

    CERN Document Server

    Chiba, G

    2002-01-01

    It is reported that the fast reactor group constant set JFS-3-J3.2 based on the newest evaluated nuclear data library JENDL3.2 has a serious error in the process of applying the weighting function. As the error affects greatly nuclear characteristics, and a corrected version of the reactor constant set, JFS-3-J3.2R, was developed, as well as lumped FP cross sections. The use of JFS-3-J3.2R improves the results of analyses especially on sample Doppler reactivity and reaction rate in the blanket region in comparison with those obtained using the JFS-3-J3.2.

  11. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro

    International Nuclear Information System (INIS)

    Lyu, Zhongshi; Mao, Zhaomin; Wang, Honglian; Fang, Yin; Chen, Tielin; Wan, Qianya; Wang, Ming; Wang, Nian; Xiao, Jiangming; Wei, Hongyuan; Li, Xun; Liu, Yi; Zhou, Qin

    2013-01-01

    Highlights: •We do bio-informatics websites to analysis of Six2 3′UTR. •MiR181b is a putative miRNA which can targets Six2 3′UTR. •MiR-181b binding site in the 3′UTR of Six2 is functional. •MiR-181b suppresses MK3 cells cell proliferation by targeting Six2. -- Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is to identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development. We initially analyzed the 3′UTR of Six2 and found 37 binding sites targeted by 50 putative miRNAs in the 3′UTR of Six2. Among the 50 miRNAs, miR-181b is the miRNAs predicted by the three used websites. In our study, the results of luciferase reporter assay, realtime-PCR and Western blot demonstrated that miR-181b directly targeted on the 3′UTR of Six2 and down-regulate the expression of Six2 at mRNA and protein levels. Furthermore, EdU proliferation assay along with the Six2 rescue strategy showed that miR-181b suppresses the proliferation of metanephric mesenchymal by targeting Six2 in part. In our research, we concluded that by targeting the transcription factor gene Six2, miR-181b inhibits the proliferation of metanephric mesenchymal cells in vitro and might play an important role in the formation of nephrons

  12. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Zhongshi; Mao, Zhaomin; Wang, Honglian; Fang, Yin; Chen, Tielin [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Wan, Qianya [The Undergraduates Class of 2011 entry, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Wang, Ming; Wang, Nian; Xiao, Jiangming; Wei, Hongyuan; Li, Xun; Liu, Yi [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Zhou, Qin, E-mail: zhouqin@cqmu.edu.cn [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2013-11-01

    Highlights: •We do bio-informatics websites to analysis of Six2 3′UTR. •MiR181b is a putative miRNA which can targets Six2 3′UTR. •MiR-181b binding site in the 3′UTR of Six2 is functional. •MiR-181b suppresses MK3 cells cell proliferation by targeting Six2. -- Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is to identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development. We initially analyzed the 3′UTR of Six2 and found 37 binding sites targeted by 50 putative miRNAs in the 3′UTR of Six2. Among the 50 miRNAs, miR-181b is the miRNAs predicted by the three used websites. In our study, the results of luciferase reporter assay, realtime-PCR and Western blot demonstrated that miR-181b directly targeted on the 3′UTR of Six2 and down-regulate the expression of Six2 at mRNA and protein levels. Furthermore, EdU proliferation assay along with the Six2 rescue strategy showed that miR-181b suppresses the proliferation of metanephric mesenchymal by targeting Six2 in part. In our research, we concluded that by targeting the transcription factor gene Six2, miR-181b inhibits the proliferation of metanephric mesenchymal cells in vitro and might play an important role in the formation of nephrons.

  13. Signatures of spin-orbital states of t2g 2 system in optical conductivity: R VO3 (R =Y and La)

    Science.gov (United States)

    Kim, Minjae

    2018-04-01

    We investigate signatures of the spin and orbital states of R VO3 (R =Y and La) in optical conductivity using density functional theory plus dynamical mean-field theory (DFT+DMFT). From the assignment of multiplet state configurations to optical transitions, the DFT+DMFT reproduces experimental temperature-dependent evolutions of optical conductivity for both YVO3 and LaVO3. We also show that the optical conductivity is a useful quantity to probe the evolution of the orbital state even in the absence of spin order. The result provides a reference to investigate the spin and orbital states of t2g 2 vanadate systems, which is an important issue for both fundamental physics on spin and orbital states and applications of vanadates by means of orbital state control.

  14. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1

    International Nuclear Information System (INIS)

    Lerner, Mikael; Harada, Masako; Loven, Jakob; Castro, Juan; Davis, Zadie; Oscier, David; Henriksson, Marie; Sangfelt, Olle; Grander, Dan; Corcoran, Martin M.

    2009-01-01

    The microRNAs miR-15a and miR-16-1 are downregulated in multiple tumor types and are frequently deleted in chronic lymphocytic leukemia (CLL), myeloma and mantle cell lymphoma. Despite their abundance in most cells the transcriptional regulation of miR-15a/16-1 remains unclear. Here we demonstrate that the putative tumor suppressor DLEU2 acts as a host gene of these microRNAs. Mature miR-15a/miR-16-1 are produced in a Drosha-dependent process from DLEU2 and binding of the Myc oncoprotein to two alterative DLEU2 promoters represses both the host gene transcript and levels of mature miR-15a/miR-16-1. In line with a functional role for DLEU2 in the expression of the microRNAs, the miR-15a/miR-16-1 locus is retained in four CLL cases that delete both promoters of this gene and expression analysis indicates that this leads to functional loss of mature miR-15a/16-1. We additionally show that DLEU2 negatively regulates the G1 Cyclins E1 and D1 through miR-15a/miR-16-1 and provide evidence that these oncoproteins are subject to miR-15a/miR-16-1-mediated repression under normal conditions. We also demonstrate that DLEU2 overexpression blocks cellular proliferation and inhibits the colony-forming ability of tumor cell lines in a miR-15a/miR-16-1-dependent way. Together the data illuminate how inactivation of DLEU2 promotes cell proliferation and tumor progression through functional loss of miR-15a/miR-16-1.

  15. Synthesis of New Chiral Amines with a Cyclic 1,2-Diacetal Skeleton Derived from (2R, 3R-(+-Tartaric Acid

    Directory of Open Access Journals (Sweden)

    Ana Maria Faísca Phillips

    2006-03-01

    Full Text Available The syntheses of new chiral cyclic 1,2-diacetals from (2R, 3R-( -tartaric acidare described. C2-symmetrical diamines were prepared via direct amidation of the tartrate orfrom the corresponding bismesylate via reaction with sodium azide. For C1-symmetricalcompounds, the Appel reaction was used to form the key intermediate, amonochlorocarbinol, from the diol. Some of the new chiral compounds, produced in good tohigh yields, may be potentially useful as asymmetric organocatalysts or as nitrogen andsulfur chelating ligands for asymmetric metal catalyzed reactions. Thus, a bis-N-methyl-methanamine derivative, used in substoichiometric amounts, was found to catalyze theenantioselective addition of cyclohexanone to (E-β-nitrostyrene with highdiastereoselectivity (syn / anti = 92:8, albeit giving moderate optical purity (syn: 30 %.

  16. Upregulation of miR-375 level ameliorates morphine analgesic tolerance in mouse dorsal root ganglia by inhibiting the JAK2/STAT3 pathway

    Directory of Open Access Journals (Sweden)

    Li HQ

    2017-05-01

    Full Text Available Haiqin Li, Rong Tao, Jing Wang, Lingjie Xia Department of Clinical Pain, The People’s Hospital of Henan Province, Zhengzhou, People’s Republic of China Abstract: Several lines of evidence indicate that microRNAs (miRNAs modulate tolerance to the analgesic effects of morphine via regulation of pain-related genes, making dysregulation of miRNA levels a clinical target for controlling opioid tolerance. However, the precise mechanisms by which miRNAs regulate opioid tolerance are unclear. In the present study, we noted that the miR-375 level was downregulated but the expression of Janus kinase 2 (JAK2 was upregulated in mouse dorsal root ganglia (DRG following chronic morphine treatment. The miR-375 levels and JAK2 expression were correlated with the progression of morphine tolerance, and upregulation of miR-375 level could significantly hinder morphine tolerance. This was ameliorated by JAK2 knockdown. Prolonged morphine exposure induced the expression of brain-derived neurotrophic factor (BDNF in a time-dependent manner in the DRG. This was regulated by the miR-375 and JAK2–signal transducer and activator of transcription 3 (STAT3 pathway, and inhibition of this pathway decreased BDNF production, and thus, attenuated morphine tolerance. More importantly, we found that miR-375 could target JAK2 and increase BDNF expression in a JAK2/STAT3 pathway-dependent manner. Keywords: morphine tolerance, miR-375, JAK2, BDNF

  17. SYNTHESIS AND CHARACTERIZATION OF (MU-5-C5ME5)2TI(R)CL (R = ME, ET, NORMAL-PR, CH=CH2, PH, O-NORMAL-PR) AND THEIR SALT METATHESIS REACTIONS - THERMAL-DECOMPOSITION PATHWAYS OF (MU-5-C5ME5)2TI(ME)R' (R' = ET, CH=CH2, PH, CH2PH)

    NARCIS (Netherlands)

    LUINSTRA, GA; TEUBEN, JH

    Complexes Cp*2Ti(R)Cl (Cp* = eta-5-C5Me5; R = Me (1), Et (2), n-Pr (3), CH=CH2 (4), Ph (5), O-n-Pr (6)) have been prepared by oxidation Of CP*2TiR with lead dichloride. Not every compound Cp*2Ti(R)Cl was accessible and for R = CH2CMe3 and CH2Ph reduction to Cp*2TiCl and R. was observed. Homolysis of

  18. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  19. Method of forming an oxide superconducting thin film having an R1A2C3 crystalline phase over an R2A1C1 crystalline phase

    International Nuclear Information System (INIS)

    Lelental, M.; Romanofsky, H.J.

    1992-01-01

    This patent describes a process which comprises forming a mixed rare earth alkaline earth copper oxide layer on a substrate and converting the mixed rare earth alkaline earth copper oxide layer to an electrically conductive layer. It comprises crystalline R 1 A 2 C 3 oxide phase by heating in the presence of oxygen, wherein rare earth and R is in each instance chosen from among yttrium, lanthanum, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium and alkaline earth and A is in each instance chosen from among calcium, strontium and barium, characterized in that a crystalline R 2 A 1 C 1 oxide phase is first formed as a layer on the substrate and the crystalline R 1 A 2 C 3 oxide phase is formed over the crystalline R 2 A 1 C 1 oxide phase by coating a mixed rare earth alkaline earth copper oxide on the crystalline R 2 A 1 C 1 oxide phase and heating the mixed rare earth alkaline earth copper oxide to a temperature of at least 1000 degrees C

  20. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    Directory of Open Access Journals (Sweden)

    Sang Woo Seo

    2015-08-01

    Full Text Available Three transcription factors (TFs, OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, and SoxS regulons in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 68 genes in 51 transcription units (TUs belong to these regulons. Among them, 48 genes showed more than 2-fold changes in expression level under single-TF-knockout conditions. This reconstruction expands the genome-wide roles of these factors to include direct activation of genes related to amino acid biosynthesis (methionine and aromatic amino acids, cell wall synthesis (lipid A biosynthesis and peptidoglycan growth, and divalent metal ion transport (Mn2+, Zn2+, and Mg2+. Investigating the co-regulation of these genes with other stress-response TFs reveals that they are independently regulated by stress-specific TFs.

  1. The pKR+ values of coordinated propargyl cations [Cp2Mo2(CO)4(μ-η2, η3-HC≡CCR1R2)]+

    International Nuclear Information System (INIS)

    Barinov, I.V.

    1998-01-01

    The pK R + values metal-stabilised carbocations [Cp 2 Mo 2 (CO) 4 (μ-η 2 , η 3 -HC≡CCR 1 R 2 )] + (R 1 = R 2 H, R 1 = H, R 2 = Me and R 1 = R 2 = Me) are measured in 50 % aqueous MeCN. Stability of the cations is increased on going from tertiary to primary carbocations [ru

  2. The PLA2R1-JAK2 pathway upregulates ERRα and its mitochondrial program to exert tumor-suppressive action.

    Science.gov (United States)

    Griveau, A; Devailly, G; Eberst, L; Navaratnam, N; Le Calvé, B; Ferrand, M; Faull, P; Augert, A; Dante, R; Vanacker, J M; Vindrieux, D; Bernard, D

    2016-09-22

    Little is known about the biological role of the phospholipase A2 receptor (PLA2R1) transmembrane protein. In recent years, PLA2R1 has been shown to have an important role in regulating tumor-suppressive responses via JAK2 activation, but the underlying mechanisms are largely undeciphered. In this study, we observed that PLA2R1 increases the mitochondrial content, judged by increased levels of numerous mitochondrial proteins, of the mitochondrial structural component cardiolipin, of the mitochondrial DNA content, and of the mitochondrial DNA replication and transcription factor TFAM. This effect of PLA2R1 relies on a transcriptional program controlled by the estrogen-related receptor alpha1 (ERRα) mitochondrial master regulator. Expression of ERRα and of its nucleus-encoded mitochondrial targets is upregulated upon PLA2R1 ectopic expression, and this effect is mediated by JAK2. Conversely, downregulation of PLA2R1 decreases the level of ERRα and of its nucleus-encoded mitochondrial targets. Finally, blocking the ERRα-controlled mitochondrial program largely inhibits the PLA2R1-induced tumor-suppressive response. Together, our data document ERRα and its mitochondrial program as downstream effectors of the PLA2R1-JAK2 pathway leading to oncosuppression.

  3. MiR-29c regulates the expression of miR-34c and miR-449a by targeting DNA methyltransferase 3a and 3b in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Niu, Man; Gao, Dan; Wen, Qiuyuan; Wei, Pingpin; Pan, Suming; Shuai, Cijun; Ma, Huiling; Xiang, Juanjuan; Li, Zheng; Fan, Songqing; Li, Guiyuan; Peng, Shuping

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is prevalent in South East Asia and Southern China particularly, despite the reported 5-year survival ratio is relative higher than other deadly cancers such as liver, renal, pancreas cancer, the lethality is characterized by high metastatic potential in the early stage and high recurrence rate after radiation treatment. MicroRNA-29c was found to be down-regulated in the serum as well as in the tissue of nasopharyngeal carcinoma tissue. In this study, we found accidentally that the transfection of pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a but doesn’t affect that of miR-222 using real-time quantitative PCR in nasopharyngeal carcinoma cell lines. To explore the molecular mechanism of the regulatory role, the cells are treated with 5-Aza-2-deoxycytidine (5-Aza-CdR) treatment and the level of miR-34c and miR-449a but not miR-222 accumulated by the treatment. DNA methyltransferase 3a, 3b were down-regulated by the 5-Aza-CdR treatment with western blot and real-time quantitative PCR. We found that pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a. We further found DNA methyltransferase 3a and 3b are the target gene of miR-29c. Restoration of miR-29c in NPC cells down-regulated DNA methyltransferase 3a, 3b, but not DNA methyltransferase T1. The regulation of miR-29c/DNMTs/miR-34c/449a is an important molecular axis of NPC development and targeting DNMTs or restoring of miR-29c might be a promising therapy strategy for the prevention of NPC

  4. Comparative genomics of CytR, an unusual member of the LacI family of transcription factors.

    Directory of Open Access Journals (Sweden)

    Natalia V Sernova

    Full Text Available CytR is a transcription regulator from the LacI family, present in some gamma-proteobacteria including Escherichia coli and known not only for its cellular role, control of transport and utilization of nucleosides, but for a number of unusual structural properties. The present study addressed three related problems: structure of CytR-binding sites and motifs, their evolutionary conservation, and identification of new members of the CytR regulon. While the majority of CytR-binding sites are imperfect inverted repeats situated between binding sites for another transcription factor, CRP, other architectures were observed, in particular, direct repeats. While the similarity between sites for different genes in one genome is rather low, and hence the consensus motif is weak, there is high conservation of orthologous sites in different genomes (mainly in the Enterobacteriales arguing for the presence of specific CytR-DNA contacts. On larger evolutionary distances candidate CytR sites may migrate but the approximate distance between flanking CRP sites tends to be conserved, which demonstrates that the overall structure of the CRP-CytR-DNA complex is gene-specific. The analysis yielded candidate CytR-binding sites for orthologs of known regulon members in less studied genomes of the Enterobacteriales and Vibrionales and identified a new candidate member of the CytR regulon, encoding a transporter named NupT (YcdZ.

  5. Crystallization and preliminary X-ray analysis of BigR, a transcription repressor from Xylella fastidiosa involved in biofilm formation

    International Nuclear Information System (INIS)

    Barbosa, Rosicler Lázaro; Rinaldi, Fábio Cupri; Guimarães, Beatriz Gomes; Benedetti, Celso Eduardo

    2007-01-01

    In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. BigR (biofilm growth-associated repressor) is a novel repressor protein that regulates the transcription of an operon implicated in biofilm growth in both Xylella fastidiosa and Agrobacterium tumefaciens. This protein binds to a palindromic TA-rich element located in the promoter of the BigR operon and strongly represses transcription of the operon. BigR contains a helix–turn–helix (HTH) domain that is found in some members of the ArsR/SmtB family of metal sensors, which control metal resistance in bacteria. Although functional studies have suggested that BigR does not act as a metal sensor, the presence of two cysteines and a methionine in its primary structure raised the possibility of BigR being a metal-ligand protein. In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from native and SeMet crystals to resolutions of 1.95 and 2.2 Å, respectively. Both crystals belong to space group P321 and contain one molecule per asymmetric unit

  6. Crystallization and preliminary X-ray analysis of BigR, a transcription repressor from Xylella fastidiosa involved in biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Rosicler Lázaro; Rinaldi, Fábio Cupri; Guimarães, Beatriz Gomes, E-mail: beatriz@lnls.br; Benedetti, Celso Eduardo, E-mail: beatriz@lnls.br [Center for Molecular and Structural Biology, Brazilian Synchrotron Light Laboratory, Campinas, SP, CP 6192, CEP 13083-970 (Brazil)

    2007-07-01

    In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. BigR (biofilm growth-associated repressor) is a novel repressor protein that regulates the transcription of an operon implicated in biofilm growth in both Xylella fastidiosa and Agrobacterium tumefaciens. This protein binds to a palindromic TA-rich element located in the promoter of the BigR operon and strongly represses transcription of the operon. BigR contains a helix–turn–helix (HTH) domain that is found in some members of the ArsR/SmtB family of metal sensors, which control metal resistance in bacteria. Although functional studies have suggested that BigR does not act as a metal sensor, the presence of two cysteines and a methionine in its primary structure raised the possibility of BigR being a metal-ligand protein. In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from native and SeMet crystals to resolutions of 1.95 and 2.2 Å, respectively. Both crystals belong to space group P321 and contain one molecule per asymmetric unit.

  7. N-Heterocyclic Carbene Coinage Metal Complexes of the Germanium-Rich Metalloid Clusters [Ge9R3]− and [Ge9RI2]2− with R = Si(iPr3 and RI = Si(TMS3

    Directory of Open Access Journals (Sweden)

    Felix S. Geitner

    2017-07-01

    Full Text Available We report on the synthesis of novel coinage metal NHC (N-heterocyclic carbene compounds of the germanium-rich metalloid clusters [Ge9R3]− and [Ge9RI2]2− with R = Si(iPr3 and RI = Si(TMS3. NHCDippCu{η3Ge9R3} with R = Si(iPr3 (1 represents a less bulky silyl group-substituted derivative of the known analogous compounds with R = Si(iBu3 or Si(TMS3. The coordination of the [NHCDippCu]+ moiety to the cluster unit occurs via one triangular face of the tri-capped trigonal prismatic [Ge9] cluster. Furthermore, a series of novel Zintl cluster coinage metal NHC compounds of the type (NHCM23Ge9RI2} (RI = Si(TMS3 M = Cu, Ag and Au; NHC = NHCDipp or NHCMes is presented. These novel compounds represent a new class of neutral dinuclear Zintl cluster coinage metal NHC compounds, which are obtained either by the stepwise reaction of a suspension of K12Ge17 with Si(TMS3Cl and the coinage metal carbene complexes NHCMCl (M = Cu, Ag, Au, or via a homogenous reaction using the preformed bis-silylated cluster K2[Ge9(Si(TMS32] and the corresponding NHCMCl (M = Cu, Ag, Au complex. The molecular structures of NHCDippCu{η3Ge9(Si(iPr33} (1 and (NHCDippCu23-Ge9(Si(TMS32} (2 were determined by single crystal X-ray diffraction methods. In 2, the coordination of the [NHCDippCu]+ moieties to the cluster unit takes place via both open triangular faces of the [Ge9] entity. Furthermore, all compounds were characterized by means of NMR spectroscopy (1H, 13C, 29Si and ESI-MS.

  8. Synthesis of new chiral amines with a cyclic 1,2-diacetal skeleton derived from (2R, 3R)-(+)-tartaric acid.

    Science.gov (United States)

    Barros, M Teresa; Phillips, Ana Maria Faísca

    2006-03-17

    The syntheses of new chiral cyclic 1,2-diacetals from (2R, 3R)-( )-tartaric acid are described. C(2)-symmetrical diamines were prepared via direct amidation of the tartrate or from the corresponding bismesylate via reaction with sodium azide. For C1-symmetrical compounds, the Appel reaction was used to form the key intermediate, a monochlorocarbinol, from the diol. Some of the new chiral compounds, produced in good to high yields, may be potentially useful as asymmetric organocatalysts or as nitrogen and sulfur chelating ligands for asymmetric metal catalyzed reactions. Thus, a bis-N-methyl-methanamine derivative, used in substoichiometric amounts, was found to catalyze the enantioselective addition of cyclohexanone to (E)-beta-nitrostyrene with high diastereoselectivity (syn / anti = 92:8), albeit giving moderate optical purity (syn: 30 %).

  9. R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd): Crystal structures with nets of Ir atoms

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Maksym [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str, 6, UA-79005 Lviv (Ukraine); Swiss Federal Laboratories for Materials Science and Technology (EMPA), Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Zaremba, Oksana; Gladyshevskii, Roman [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str, 6, UA-79005 Lviv (Ukraine); Hlukhyy, Viktor, E-mail: viktor.hlukhyy@lrz.tu-muenchen.de [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85747 Garching (Germany); Faessler, Thomas F. [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85747 Garching (Germany)

    2012-12-15

    The crystal structures of the new ternary compounds Sm{sub 4}Ir{sub 13}Ge{sub 9} and LaIr{sub 3}Ge{sub 2} were determined and refined on the basis of single-crystal X-ray diffraction data. They belong to the Ho{sub 4}Ir{sub 13}Ge{sub 9} (oP52, Pmmn) and CeCo{sub 3}B{sub 2} (hP5, P6/mmm) structure types, respectively. The formation of isotypic compounds R{sub 4}Ir{sub 13}Ge{sub 9} with R=La, Ce, Pr, Nd, and RIr{sub 3}Ge{sub 2} with R=Ce, Pr, Nd, was established by powder X-ray diffraction. The RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) compounds exist only in as-cast samples and decompose during annealing at 800 Degree-Sign C with the formation of R{sub 4}Ir{sub 13}Ge{sub 9}. The structure of Sm{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting, slightly puckered nets of Ir atoms (4{sup 4})(4{sup 3}.6){sub 2}(4.6{sup 2}){sub 2} and (4{sup 4}){sub 2}(4{sup 3}.6){sub 4}(4.6{sup 2}){sub 2} that are perpendicular to [0 1 1] as well as to [0 -1 1] and [0 0 1]. The Ir atoms are surrounded by Ge atoms that form tetrahedra or square pyramids (where the layers intersect). The Sm and additional Ir atoms (in trigonal-planar coordination) are situated in channels along [1 0 0] (short translation vector). In the structure of LaIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets (3.6.3.6) perpendicular to [0 0 1]. These nets alternate along the short translation vector with layers of La and Ge atoms. - Graphical abstract: The crystal structures contain the nets of Ir atoms as main structural motif: R{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting slightly puckered nets of Ir atoms, whereas in the structure of RIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets. Highlights: Black-Right-Pointing-Pointer The Ir-rich ternary germanides R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) have been synthesized. Black-Right-Pointing-Pointer The RIr{sub 3}Ge{sub 2} compounds exist only in as-cast samples and decompose during annealing at 800

  10. Synthesis and biological characterization of (3R,4R)-4-(2-(benzhydryloxy)ethyl)-1-((R)-2-hydroxy-2-phenylethyl)-piperidin-3-ol and its stereoisomers for activity toward monoamine transporters.

    Science.gov (United States)

    Kharkar, Prashant S; Batman, Angela M; Zhen, Juan; Beardsley, Patrick M; Reith, Maarten E A; Dutta, Aloke K

    2009-07-01

    A novel series of optically active molecules based on a 4-(2-(benzhydryloxy)ethyl)-1-((R)-2-hydroxy-2-phenylethyl)-piperidin-3-ol template were developed. Depending on stereochemistry, the compounds exhibit various degrees of affinity for three dopamine, serotonin, and norepinephrine transporters. These molecules have the potential for treating several neurological disorders such as drug abuse, depression, and attention deficit hyperactivity disorder.Herein we describe the synthesis and biological evaluation of a series of asymmetric 4-(2-(benzhydryloxy)ethyl)-1-((R)-2-hydroxy-2-phenylethyl)-piperidin-3-ol-based dihydroxy compounds in which the hydroxy groups are located on both the piperidine ring and the N-phenylethyl side chain. In vitro uptake inhibition data of these molecules indicate high affinity for the dopamine transporter (DAT) in addition to moderate to high affinity for the norepinephrine transporter (NET). Interestingly, compounds 9 b and 9 d exhibit affinities for all three monoamine transporters, with highest potency at DAT and NET, and moderate potency at the serotonin transporter (SERT) (K(i): 2.29, 78.4, and 155 nM for 9 b and 1.55, 14.1, and 259 nM for 9 d, respectively). Selected compounds 9 a, 9 d, and 9 d' were tested for their locomotor activity effects in mice and for their ability to occasion the cocaine-discriminative stimulus in rats. These test compounds generally exhibit a much longer duration of action than cocaine for elevating locomotor activity, and completely generalize the cocaine-discriminative stimulus in a dose-dependent manner.

  11. Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (solanum lycopersicum) fruit peel

    OpenAIRE

    Wada, Takuji; Onishi, Mio; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2015-01-01

    In Arabidopsis thaliana, the R3-type MYB transcription factor CAPRICE (CPC) and bHLH transcription factor GLABRA3 (GL3) cooperatively regulate epidermal cell differentiation. CPC and GL3 are involved in root-hair differentiation, trichome initiation and anthocyanin biosynthesis in Arabidopsis epidermal cells. Previously, we showed that CPC and GL3 also influence anthocyanin accumulation in tomato. Introduction of 35S::CPC into tomato significantly inhibits anthocyanin accumulation in cotyledo...

  12. Uranium metalla-allenes with carbene imido R_2C=U"I"V=NR' units (R=Ph_2PNSiMe_3; R'=CPh_3): alkali-metal-mediated push-pull effects with an amido auxiliary

    International Nuclear Information System (INIS)

    Lu, Erli; Tuna, Floriana; Kaltsoyannis, Nikolas; Liddle, Stephen T.; Lewis, William

    2016-01-01

    We report uranium(IV)-carbene-imido-amide metalla-allene complexes [U(BIPM"T"M"S)(NCPh_3)(NHCPh_3)(M)] (BIPM"T"M"S=C(PPh_2NSiMe_3)_2; M=Li or K) that can be described as R_2C=U=NR' push-pull metalla-allene units, as organometallic counterparts of the well-known push-pull organic allenes. The solid-state structures reveal that the R_2C=U=NR' units adopt highly unusual cis-arrangements, which are also reproduced by gas-phase theoretical studies conducted without the alkali metals to remove their potential structure-directing roles. Computational studies confirm the double-bond nature of the U=NR' and U=CR_2 interactions, the latter increasingly attenuated by potassium then lithium when compared to the hypothetical alkali-metal-free anion. Combined experimental and theoretical data show that the push-pull effect induced by the alkali metal cations and amide auxiliary gives a fundamental and tunable structural influence over the C=U"I"V=N units. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Synthesis of (3R)-3-(4-fluorophenylsulfonamido)-1,2,3,4-tetra-hydro-9-[4-3H] carbazolepropanoic acid

    International Nuclear Information System (INIS)

    Pleiss, Ulrich; Radtke, Martin; Schmitt, Peter

    1990-01-01

    (3R)-3-(4-Fluorophenylsulfonamido)-1,2,3,4-tetrahydro-9-[4- 3 H]carbazolepropanoic acid ( [ 3 H]BAY u 3405) (5) was synthesized by catalytic reduction of (3R)-3-(4-fluorophenylsulfonamido)-4-oxo-1,2,3,4-tetrahydro-9-carbazolepropanoic acid (4) with tritium. The precursor (4) was prepared by esterification and following oxidation of BAY u 3405 with 2,3-dichloro-5,6-dicyano-p-benzoquinone. 3 H NMR analysis of the final product showed the formation of [4α- 3 H]BAY us 3405 and [4β- 3 H]BAY u 3405 in a ratio of 1:1. (author)

  14. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice.

    Science.gov (United States)

    Glendinning, John I; Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F; Vasselli, Joseph R; Sclafani, Anthony

    2015-09-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. Copyright © 2015 the American Physiological Society.

  15. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor

    Directory of Open Access Journals (Sweden)

    Lin Hongxuan

    2009-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are endogenously expressed small RNAs with a length of about 21 nt. MiRNAs silence their target genes at the post-transcriptional level. In plants, miRNAs play various developmental and physiological roles by cleavaging mRNAs predominantly. Drought and high salinity are the most severe environmental abiotic stresses and cause crop losses all over the world. Results In this study, we identified miR-169g and miR-169n (o as high salinity-responsive miRNAs in rice. MiR-169n and miR169o were in a miRNA cluster with a distance of 3707 base pairs (bp. The high degree of conservation and close phylogenic distance of pre-miR-169n and pre-miR-169o indicated that they were derived from a very recent tandem duplication evolutionary event. The existence of a cis-acting abscisic acid responsive element (ABRE in the upstream region of miR-169n (o suggested that miR-169n (o may be regulated by ABA. In our previous study, we found that miR-169g was induced by the osmotic stress caused by drought via a dehydration-responsive element (DRE. Thus, our data showed that there were both overlapping and distinct responses of the miR-169 family to drought and salt stresses. We also showed that these miR-169 members selectively cleaved one of the NF-YA genes, Os03g29760, which is a CCAAT-box binding transcription factor and participates in transcriptional regulation of large number genes. Finally, we found one or more ath-miR-169 member that was also induced by high salinity. Conclusion We identified members of the miR-169 family as salt-induced miRNAs and analyzed their evolution, gene organization, expression, transcriptional regulation motif and target gene. Our data also indicated that the salt-induction of some miR-169 members was a general property in plants.

  16. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor.

    Science.gov (United States)

    Zhao, Botao; Ge, Liangfa; Liang, Ruqiang; Li, Wei; Ruan, Kangcheng; Lin, Hongxuan; Jin, Youxin

    2009-04-08

    MicroRNAs (miRNAs) are endogenously expressed small RNAs with a length of about 21 nt. MiRNAs silence their target genes at the post-transcriptional level. In plants, miRNAs play various developmental and physiological roles by cleavaging mRNAs predominantly. Drought and high salinity are the most severe environmental abiotic stresses and cause crop losses all over the world. In this study, we identified miR-169g and miR-169n (o) as high salinity-responsive miRNAs in rice. MiR-169n and miR169o were in a miRNA cluster with a distance of 3707 base pairs (bp). The high degree of conservation and close phylogenic distance of pre-miR-169n and pre-miR-169o indicated that they were derived from a very recent tandem duplication evolutionary event. The existence of a cis-acting abscisic acid responsive element (ABRE) in the upstream region of miR-169n (o) suggested that miR-169n (o) may be regulated by ABA. In our previous study, we found that miR-169g was induced by the osmotic stress caused by drought via a dehydration-responsive element (DRE). Thus, our data showed that there were both overlapping and distinct responses of the miR-169 family to drought and salt stresses. We also showed that these miR-169 members selectively cleaved one of the NF-YA genes, Os03g29760, which is a CCAAT-box binding transcription factor and participates in transcriptional regulation of large number genes. Finally, we found one or more ath-miR-169 member that was also induced by high salinity. We identified members of the miR-169 family as salt-induced miRNAs and analyzed their evolution, gene organization, expression, transcriptional regulation motif and target gene. Our data also indicated that the salt-induction of some miR-169 members was a general property in plants.

  17. Radio evidence for the initial stellar mass function in the R associations CMa R1, Mon R1, Mon R2

    International Nuclear Information System (INIS)

    Pyatunina, T.B.

    1985-01-01

    The R associations CMa R1 and Mon R1 have been searched for compact 7.6-cm sources with the RATAN-600 radio telescope. The Mon R1 region shows only about the expected number of background radio galaxies; in CMa R1 seven sources of small angular size with S> or =30 mJy have been found, two of them probably background objects. Comparison with optical data for CMa R1, together with previous RATAN-600 data for Mon R2, yields an initial mass function xi(M)proportionalM/sup -2.7plus-or-minus0.7/ for the rather massive (Mroughly-equal10 M/sub sun/) stars in these associations

  18. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p.

    Science.gov (United States)

    Cao, Jiaqing; Han, Xinyou; Qi, Xin; Jin, Xiangyun; Li, Xiaolin

    2017-10-01

    lncRNA-TUG1 (Taurine upregulated 1) is up-regulated and highly correlated with poor prognosis and disease status in osteosarcoma. TUG1 knockdown inhibits osteosarcoma cell proliferation, migration and invasion, and promotes apoptosis. However, its mechanism of action has not been well addressed. Growing evidence documented that lncRNA works as competing endogenous (ce)RNAs to modulate the expression and biological functions of miRNA. As a putative combining target of TUG1, miR-144-3p has been associated with the progress of osteosarcoma. To verify whether TUG1 functions through regulating miR-144-3p, the expression levels of TUG1 and miR-144-3p in osteosarcoma tissues and cell lines were determined. TUG1 was upregulated in osteosarcoma tissues and cell lines, and negatively correlated with miR-144-3p. TUG1 knockdown induced miR-144-3p expression in MG63 and U2OS cell lines. Results from dual luciferase reporter assay, RNA-binding protein immuno-precipitation (RIP) and applied biotin-avidin pull-down system confirmed TUG1 regulated miR-144-3p expression through direct binding. EZH2, a verified target of miR-144-3p was upregulated in osteosarcoma tissues and negatively correlated with miR-144-3p. EZH2 was negatively regulated by miR-144-3p and positively regulated by TUG1. Gain-and loss-of-function experiments were performed to analyze the role of TUG1, miR-144-3p and EZH2 in the migration and EMT of osteosarcoma cells. EZH2 over-expression partly abolished TUG1 knockdown or miR-144-3p overexpression induced inhibition of migration and EMT in osteosarcoma cells. In addition, TUG1 knockdown represses the activation of Wnt/β-catenin pathway, which was reversed by EZH2 over-expression. The activator of Wnt/β-catenin pathway LiCl could partially block the TUG1-knockdown induced osteosarcoma cell migration and EMT inhibition. In conclusion, our results showed that TUG1 plays an important role in osteosarcoma development through miRNA-144-3p/EZH2/Wnt/β-catenin pathway.

  19. Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon

    DEFF Research Database (Denmark)

    van Wezel, G P; Krab, I M; Douthwaite, S

    1994-01-01

    Transcription start sites and processing sites of the Streptomyces coelicolor A3(2) rrnA operon have been investigated by a combination of in vivo and in vitro transcription analyses. The data from these approaches are consistent with the existence of four in vivo transcription sites, corresponding...... to the promoters P1-P4. The transcription start sites are located at -597, -416, -334 and -254 relative to the start of the 16S rRNA gene. Two putative processing sites were identified, one of which is similar to a sequence reported earlier in S. coelicolor and other eubacteria. The P1 promoter is likely...... common to P2, P3 and P4 is not similar to any other known consensus promoter sequence. In fast-growing mycelium, P2 appears to be the most frequently used promoter. Transcription from all of the rrnA promoters decreased during the transition from exponential to stationary phase, although transcription...

  20. Hsa-miR-11181 regulates Wnt signaling pathway through targeting of APC2 transcripts in SW480 cell line.

    Science.gov (United States)

    Dokanehiifard, Sadat; Soltani, Bahram M

    2018-01-30

    Wnt signaling plays important roles in differentiation, morphogenesis and development. This signaling pathway is highly regulated at all levels and microRNAs are small noncoding RNAs regulating Wnt signaling. Here, we intended to investigate hsa-miR-11181 (a novel miRNA located in TrkC gene) effect on Wnt signaling pathway in SW480 cell line. TOP/FOP flash assay indicated up-regulation of Wnt signaling, following the overexpression of hsa-miR-11181, verified through RT-qPCR. Bioinformatics analysis predicted APC1, APC2 and Axin1 might be targeted by hsa-miR-11181. Then, RT-qPCR analysis indicated that APC2 and Axin1 have been significantly down-regulated following the hsa-miR-11181 overexpression. However dual luciferase assay analysis supported only APC2 3'-UTR is directly targeted by this miRNA. Then, treatment of SW480 cells with Wnt-inhibitory small molecules supported the effect of hsa-miR-11181 at the inhibitory complex level containing APC2 protein. Consistently, viability of SW480 cells overexpressing hsa-miR-11181 was significantly elevated, measured through MTT assay. Overall, these results suggest that hsa-miR-11181 may play a crucial role in Wnt signaling regulation and confirmed that APC2 3'-UTR is targeted by hsa-miR-11181 and propose the presence of its recognition sites in the promoter or coding regions of Axin1 gene. Copyright © 2017. Published by Elsevier B.V.

  1. Transcriptional switching by the MerR protein: Activation and repression mutants implicate distinct DNA and mercury(II) binding domains

    International Nuclear Information System (INIS)

    Shewchuk, L.M.; Helmann, J.D.; Ross, W.; Park, S.J.; Summers, A.O.; Walsh, C.T.

    1989-01-01

    Bacterial resistance to mercuric compounds is controlled by the MerR metalloregulatory protein. The MerR protein functions as both a transcriptional repressor and a mercuric ion dependent transcriptional activator. Chemical mutagenesis of the cloned merR structural gene has led to the identification of mutant proteins that are specifically deficient in transcriptional repression, activation, or both. Five mutant proteins have been overproduced, purified to homogeneity, and assayed for ability to dimerize, bind mer operator DNA, and bind mercuric ion. A mutation in the recognition helix of a proposed helix-turn-helix DNA binding motif (E22K) yields protein deficient in both activation and repression in vivo (a - r - ) and deficient in operator binding in vitro. In contrast, mutations in three of the four MerR cysteine residues are repression competent but activation deficient (a - r + ) in vivo. In vitro, the purified cysteine mutant proteins bind to the mer operator site with near wild-type affinity but are variable deficient in binding the in vivo inducer mercury(II) ion. A subset of the isolated proteins also appears compromised in their ability to form dimers at low protein concentrations. These data support a model in which DNA-bound MerR dimer binds one mercuric ion and transmits this occupancy information to a protein region involved in transcriptional activation

  2. Optically active antifungal azoles. XII. Synthesis and antifungal activity of the water-soluble prodrugs of 1-[(1R,2R)-2-(2,4-difluorophenyl)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-yl)propyl]-3-[4-(1H-1-tetrazolyl)phenyl]-2-imidazolidinone.

    Science.gov (United States)

    Ichikawa, T; Kitazaki, T; Matsushita, Y; Yamada, M; Hayashi, R; Yamaguchi, M; Kiyota, Y; Okonogi, K; Itoh, K

    2001-09-01

    1-[(1R,2R)-2-(2,4-Difluorophenyl)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-yl)propyl]-3-[4-(1H-1-tetrazolyl)phenyl]-2-imidazolidinone (1: TAK-456) was selected as a candidate for clinical trials, but since its water-solubility was insufficient for an injectable formulation, the quaternary triazolium salts 2 were designed as water-soluble prodrugs. Among the prodrugs prepared, 4-acetoxymethyl-1-[(2R,3R)-2-(2,4-difluorophenyl)-2-hydroxy-3-[2-oxo-3-[4-(1H-1-terazolyl)phenyl]-1-imidazolidinyl]butyl]-1H-1,2,4-triazolium chloride (2a: TAK-457) was selected as an injectable candidate for clinical trials based on the results of evaluations on solubility, stability, hemolytic effect and in vivo antifungal activities.

  3. Synthesis and Characterization of (η5-C5Me5)2Ti(R)Cl (R = Me, Et, n-Pr, CH=CH2, Ph, O-n-Pr) and Their Salt Metathesis Reactions. Thermal Decomposition Pathways of (η5-C5Me5)2Ti(Me)R' (R' = Et, CH=CH2, Ph, CH2Ph)

    NARCIS (Netherlands)

    Luinstra, Gerrit A.; Teuben, Jan H.

    1992-01-01

    Complexes Cp*2Ti(R)Cl (Cp* = η5-C5Me5; R = Me (1), Et (2), n-Pr (3), CH=CH2 (41, Ph (5), O-n-Pr (6)) have been prepared by oxidation of Cp*2TiR with lead dichloride. Not every compound Cp*2Ti(R)Cl was accessible and for R = CH2CMe3 and CH2Ph reduction to Cp*2TiCl and R· was observed. Homolysis of

  4. Total Synthesis of (R, R, R)-gamma-Tocopherol through Cu-Catalyzed Asymmetric 1,2-Addition

    NARCIS (Netherlands)

    Wu, Zhongtao; Harutyunyan, Syuzanna R.; Minnaard, Adriaan J.

    2014-01-01

    Based on the asymmetric copper-catalyzed 1,2-addition of Grignard reagents to ketones, (R,R,R)--tocopherol has been synthesized in 36% yield over 12 steps (longest linear sequence). The chiral center in the chroman ring was constructed with 73% ee by the 1,2-addition of a phytol-derived Grignard

  5. Epigenetic control of virulence gene expression in Pseudomonas aeruginosa by a LysR-type transcription regulator.

    Directory of Open Access Journals (Sweden)

    Keith H Turner

    2009-12-01

    Full Text Available Phenotypic variation within an isogenic bacterial population is thought to ensure the survival of a subset of cells in adverse conditions. The opportunistic pathogen Pseudomonas aeruginosa variably expresses several phenotypes, including antibiotic resistance, biofilm formation, and the production of CupA fimbriae. Here we describe a previously unidentified bistable switch in P. aeruginosa. This switch controls the expression of a diverse set of genes, including aprA, which encodes the secreted virulence factor alkaline protease. We present evidence that bistable expression of PA2432, herein named bexR (bistable expression regulator, which encodes a LysR-type transcription regulator, controls this switch. In particular, using DNA microarrays, quantitative RT-PCR analysis, chromatin immunoprecipitation, and reporter gene fusions, we identify genes directly under the control of BexR and show that these genes are bistably expressed. Furthermore, we show that bexR is itself bistably expressed and positively autoregulated. Finally, using single-cell analyses of a GFP reporter fusion, we present evidence that positive autoregulation of bexR is necessary for bistable expression of the BexR regulon. Our findings suggest that a positive feedback loop involving a LysR-type transcription regulator serves as the basis for an epigenetic switch that controls virulence gene expression in P. aeruginosa.

  6. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuqin [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China); Sun, Tao [Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002 (China); Wang, Xiaodong, E-mail: xdwang666@hotmail.com [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China)

    2013-07-05

    Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcription of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  7. Two DNA sites for MelR in the same orientation are sufficient for optimal MelR-dependent

    OpenAIRE

    Elrobh, M.; Webster, C.; Samarasinghe, S.; Durose, D.; Busby, S.

    2012-01-01

    The Escherichia coli melR gene encodes the MelR transcription factor that controls melibiose utilization. Expression of melR is autoregulated by MelR, which represses the melR promoter by binding to a target that overlaps the transcript start. Here, we show that MelR-dependent repression of the melR promoter can be enhanced by the presence of a second single DNA site for MelR located up to 250 base pairs upstream. Parallels with AraC-dependent repression at the araC–araBAD regulatory region a...

  8. The Involvement of miR-29b-3p in Arterial Calcification by Targeting Matrix Metalloproteinase-2

    Directory of Open Access Journals (Sweden)

    Wenhong Jiang

    2017-01-01

    Full Text Available Vascular calcification is a risk predictor and common pathological change in cardiovascular diseases that are associated with elastin degradation and phenotypic transformation of vascular smooth muscle cells via gelatinase matrix metalloproteinase-2 (MMP2. However, the mechanisms involved in this process remain unclear. In this study, we investigated the relationships between miR-29b-3p and MMP2, to confirm miR-29b-3p-mediated MMP2 expression at the posttranscriptional level in arterial calcification. In male Sprague Dawley rats, arterial calcification was induced by subcutaneous injection of a toxic dose of cholecalciferol. In vivo, the quantitative real-time polymerase chain reaction (qRT-PCR showed that MMP2 expression was upregulated in calcified arterial tissues, and miR-29b-3p expression was downregulated. There was a negative correlation between MMP2 mRNA expression and miR-29b-3p levels (P=0.0014, R2=0.481. Western blotting showed that MMP2 expression was significantly increased in rats treated with cholecalciferol. In vitro, overexpression of miR-29b-3p led to decreased MMP2 expression in rat vascular smooth muscle cells, while downregulation of miR-29b-3p expression led to increased MMP2 expression. Moreover, the luciferase reporter assay confirmed that MMP2 is the direct target of miR-29b-3p. Together, our results demonstrated that a role of miR-29b-3p in vascular calcification involves targeting MMP2.

  9. Crystal structure of (1S,3R,8R,10S-2,2-dichloro-10-hydroxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecan-9-one

    Directory of Open Access Journals (Sweden)

    Ahmed Benzalim

    2016-05-01

    Full Text Available The asymmetric unit of the title compound, C16H24Cl2O2, contains two independent molecules (A and B which are built from three fused rings, viz. a seven-membered heptane ring, a six-membered cyclohexyl ring bearing a ketone and an alcohol group, and a cyclopropane ring bearing two Cl atoms. In the crystal, the two molecules are linked via two O—H...O hydrogen bonds, forming an A–B dimer with an R22(10 ring motif. The A molecules of these dimers are linked via a C—H...O hydrogen bond, forming chains propagating along the a-axis direction. Both molecules have the same absolute configuration, i.e. 1S,3R,8R,10S, which is based on the synthetic pathway and further confirmed by resonant scattering [Flack parameter = 0.03 (5].

  10. Pharmacokinetics and metabolism of (R,R)-methoxyfenoterol in rat.

    Science.gov (United States)

    Siluk, D; Mager, D E; Kim, H S; Wang, Y; Furimsky, A M; Ta, A; Iyer, L V; Green, C E; Wainer, I W

    2010-03-01

    (R,R)-fenoterol (Fen), a beta(2)-adrenoceptor agonist, is under clinical investigation in the treatment of congestive heart disease. The pharmacokinetics and metabolism of the 4-methoxyphenyl derivative of (R,R)-Fen, (R,R)-MFen, have been determined following intravenous and oral administration to the rat and compared with corresponding results obtained with (R,R)-Fen. Results from the study suggest that (R,R)-MFen can offer pharmacokinetic and metabolic advantages in comparison to an earlier (R,R)-Fen. The oral administration revealed that the net exposure of (R,R)-MFen was about three-fold higher than that of (R,R)-Fen (7.2 versus 2.3 min x nmol ml(-1)), while intravenous administration proved that the clearance was significantly reduced, 48 versus 146 ml min(-1) kg(-1), the T(1/2) was significantly longer, 152.9 versus 108.9 min, and the area under the curve (AUC) was significantly increased, 300 versus 119 min x nmol ml(-1). (R,R)-MFen was primarily cleared by glucuronidation associated with significant presystemic glucuronidation of the compound. After intravenous and oral administration of (R,R)-MFen, (R,R)-Fen and (R,R)-Fen-G were detected in the urine samples indicating that (R,R)-MFen was O-demethylated and subsequently conjugated to (R,R)-Fen-G. The total (R,R)-Fen and (R,R)-Fen-G as a percentage of the dose after intravenous administration was 3.6%, while after oral administration was 0.3%, indicating that only a small fraction of the drug escaped presystemic glucuronidation and was available for O-demethylation. The glucuronidation pattern was confirmed by the results from in vitro studies where incubation of (R,R)-MFen with rat hepatocytes produced (R,R)-MFen-G, (R,R)-Fen and (R,R)-Fen-G, while incubation with rat intestinal microsomes only resulted in the formation of (R,R)-MFen-G.

  11. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Yih-Horng Shiao

    Full Text Available BACKGROUND: Ribosomal RNA (rRNA is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1 and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014. During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014. Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. CONCLUSIONS/SIGNIFICANCE: The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.

  12. Rolling Deck to Repository (R2R): Standards and Semantics for Open Access to Research Data

    Science.gov (United States)

    Arko, Robert; Carbotte, Suzanne; Chandler, Cynthia; Smith, Shawn; Stocks, Karen

    2015-04-01

    In recent years, a growing number of funding agencies and professional societies have issued policies calling for open access to research data. The Rolling Deck to Repository (R2R) program is working to ensure open access to the environmental sensor data routinely acquired by the U.S. academic research fleet. Currently 25 vessels deliver 7 terabytes of data to R2R each year, acquired from a suite of geophysical, oceanographic, meteorological, and navigational sensors on over 400 cruises worldwide. R2R is working to ensure these data are preserved in trusted repositories, discoverable via standard protocols, and adequately documented for reuse. R2R maintains a master catalog of cruises for the U.S. academic research fleet, currently holding essential documentation for over 3,800 expeditions including vessel and cruise identifiers, start/end dates and ports, project titles and funding awards, science parties, dataset inventories with instrument types and file formats, data quality assessments, and links to related content at other repositories. A Digital Object Identifier (DOI) is published for 1) each cruise, 2) each original field sensor dataset, 3) each post-field data product such as quality-controlled shiptrack navigation produced by the R2R program, and 4) each document such as a cruise report submitted by the science party. Scientists are linked to personal identifiers, such as the Open Researcher and Contributor ID (ORCID), where known. Using standard global identifiers such as DOIs and ORCIDs facilitates linking with journal publications and generation of citation metrics. Since its inception, the R2R program has worked in close collaboration with other data repositories in the development of shared semantics for oceanographic research. The R2R cruise catalog uses community-standard terms and definitions hosted by the NERC Vocabulary Server, and publishes ISO metadata records for each cruise that use community-standard profiles developed with the NOAA Data

  13. miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect

    Directory of Open Access Journals (Sweden)

    Liu W

    2018-03-01

    Full Text Available Wenpeng Liu,1,* Lei Kang,2,* Juqiang Han,3 Yadong Wang,1 Chuan Shen,1 Zhifeng Yan,4 Yanhong Tai,5 Caiyan Zhao1 1Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China; 2Department of Nuclear Medicine, Peking University First Hospital, Beijing, China; 3Institute of Liver Disease, Beijing Military General Hospital, Beijing, China; 4Department of Gynecology and Obstetrics, PLA General Hospital, Beijing, China; 5Department of Pathology, Hospital of PLA, Beijing, China *These authors contributed equally to this work Background: Insulin-like growth factor-1 receptor (IGF-1R is a well-studied oncogenic factor that promotes cell proliferation and energy metabolism and is overexpressed in numerous cancers including hepatocellular carcinoma (HCC. Aerobic glycolysis is a hallmark of cancer, and drugs targeting its regulators, including IGF-1R, are being developed. However, the mechanisms of IGF-1R inhibition and the physiological significance of the IGF-1R inhibitors in cancer cells are unclear. Materials and methods: Cell proliferation was evaluated by cell counting Kit-8 and colony formation assay. Western blot and real-time PCR were accordingly used to detect the relevant proteins, miRNA and gene expression. Luciferase reporter assays were used to illustrate the interaction between miR-342-3p and IGF-1R. The effect of miR-342-3p on glycolysis was determined by glucose uptake, ATP concentration, lactate generation, extracellular acidification rate and oxygen consumption rate assays. In vivo, subcutaneous tumor formation assay and PET were performed in nude mice. Results: In this study, we demonstrate that by directly targeting the 3’-UTR (3’-untranslated regions of IGF-1R, microRNA-342-3p (miR-342-3p suppresses IGF-1R-mediated PI3K/AKT/GLUT1 signaling pathway both in vitro and in vivo. Through suppression of IGF-1R, miR-342-3p dampens glycolysis by decreasing glucose uptake, lactate generation

  14. MicroRNA, miR-374b, directly targets Myf6 and negatively regulates C2C12 myoblasts differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan; Sun, Xiaorui; Xu, Dequan; Xiong, Yuanzhu; Zuo, Bo, E-mail: zuobo@mail.hzau.edu.cn

    2015-11-27

    Myogenesis is a complex process including myoblast proliferation, differentiation and myotube formation and is controlled by myogenic regulatory factors (MRFs), MyoD, MyoG, Myf5 and Myf6 (also known as MRF4). MicroRNA is a kind of ∼22 nt-long non-coding small RNAs, and act as key transcriptional or post-transcriptional regulators of gene expression. Identification of miRNAs involved in the regulation of muscle genes could improve our understanding of myogenesis process. In this study, we investigated the regulation of Myf6 gene by miRNAs. We showed that miR-374b specifically bound to the 3'untranslated region (UTR) of Myf6 and down-regulated the expression of Myf6 gene at both mRNA and protein level. Furthermore, miR-374b is ubiquitously expressed in the tissues of adult C57BL6 mouse, and the mRNA abundance increases first and then decreases during C2C12 myoblasts differentiation. Over-expression of miR-374b impaired C2C12 cell differentiation, while inhibiting miR-374b expression by 2′-O-methyl antisense oligonucleotides promoted C2C12 cell differentiation. Taken together, our findings identified miR-374b directly targets Myf6 and negatively regulates myogenesis. - Highlights: • MiR-374b directly targets 3′UTR of Myf6. • MiR-374b negatively regulates Myf6 in C2C12 cells. • MiR-374b abundance significiently changes during C2C12 cells differentiation. • MiR-374b negatively regulates C2C12 cells differentiation.

  15. Enhanced fullerene–Au(111 coupling in (23 × 23R30° superstructures with intermolecular interactions

    Directory of Open Access Journals (Sweden)

    Michael Paßens

    2015-06-01

    Full Text Available Disordered and uniform (23 × 23R30° superstructures of fullerenes on the Au(111 surface have been studied using scanning tunneling microscopy and spectroscopy. It is shown that the deposition and growth process of a fullerene monolayer on the Au(111 surface determine the resulting superstructure. The supply of thermal energy is of importance for the activation of a Au vacancy forming process and thus, one criterion for the selection of the respective superstructure. However, here it is depicted that a vacancy–adatom pair can be formed even at room temperature. This latter process results in C60 molecules that appear slightly more bright in scanning tunnelling microscopy images and are identified in disordered (23 x 23R30° superstructures based on a detailed structure analysis. In addition, these slightly more bright C60 molecules form uniform (23 x 23R30° superstructures, which exhibit intermolecular interactions, likely mediated by Au adatoms. Thus, vacancy–adatom pairs forming at room temperature directly affect the resulting C60 superstructure. Differential conductivity spectra reveal a lifting of the degeneracy of the LUMO and LUMO+1 orbitals in the uniform (23 x 23R30° superstructure and in addition, hybrid fullerene–Au(111 surface states suggest partly covalent interactions.

  16. The RNA binding protein HuR does not interact directly with HIV-1 reverse transcriptase and does not affect reverse transcription in vitro

    Directory of Open Access Journals (Sweden)

    Gronenborn Angela M

    2010-05-01

    Full Text Available Abstract Background Lemay et al recently reported that the RNA binding protein HuR directly interacts with the ribonuclease H (RNase H domain of HIV-1 reverse transcriptase (RT and influences the efficiency of viral reverse transcription (Lemay et al., 2008, Retrovirology 5:47. HuR is a member of the embryonic lethal abnormal vision protein family and contains 3 RNA recognition motifs (RRMs that bind AU-rich elements (AREs. To define the structural determinants of the HuR-RT interaction and to elucidate the mechanism(s by which HuR influences HIV-1 reverse transcription activity in vitro, we cloned and purified full-length HuR as well as three additional protein constructs that contained the N-terminal and internal RRMs, the internal and C-terminal RRMs, or the C-terminal RRM only. Results All four HuR proteins were purified and characterized by biophysical methods. They are well structured and exist as monomers in solution. No direct protein-protein interaction between HuR and HIV-1 RT was detected using NMR titrations with 15N labeled HuR variants or the 15N labeled RNase H domain of HIV-1 RT. Furthermore, HuR did not significantly affect the kinetics of HIV-1 reverse transcription in vitro, even on RNA templates that contain AREs. Conclusions Our results suggest that HuR does not impact HIV-1 replication through a direct protein-protein interaction with the viral RT.

  17. SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization.

    Science.gov (United States)

    Gougat, Jean; Ferrari, Bernard; Sarran, Lionel; Planchenault, Claudine; Poncelet, Martine; Maruani, Jeanne; Alonso, Richard; Cudennec, Annie; Croci, Tiziano; Guagnini, Fabio; Urban-Szabo, Katalin; Martinolle, Jean-Pierre; Soubrié, Philippe; Finance, Olivier; Le Fur, Gérard

    2004-05-01

    The biochemical and pharmacological properties of a novel non-peptide antagonist of the bradykinin (BK) B(1) receptor, SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride] were evaluated. SSR240612 inhibited the binding of [(3)H]Lys(0)-des-Arg(9)-BK to the B(1) receptor in human fibroblast MRC5 and to recombinant human B(1) receptor expressed in human embryonic kidney cells with inhibition constants (K(i)) of 0.48 and 0.73 nM, respectively. The compound selectivity for B(1) versus B(2) receptors was in the range of 500- to 1000-fold. SSR240612 inhibited Lys(0)-desAr(9)-BK (10 nM)-induced inositol monophosphate formation in human fibroblast MRC5, with an IC(50) of 1.9 nM. It also antagonized des-Arg(9)-BK-induced contractions of isolated rabbit aorta and mesenteric plexus of rat ileum with a pA(2) of 8.9 and 9.4, respectively. Antagonistic properties of SSR240612 were also demonstrated in vivo. SSR240612 inhibited des-Arg(9)-BK-induced paw edema in mice (3 and 10 mg/kg p.o. and 0.3 and 1 mg/kg i.p.). Moreover, SSR240612 reduced capsaicin-induced ear edema in mice (0.3, 3 and 30 mg/kg p.o.) and tissue destruction and neutrophil accumulation in the rat intestine following splanchnic artery occlusion/reperfusion (0.3 mg/kg i.v.). The compound also inhibited thermal hyperalgesia induced by UV irradiation (1 and 3 mg/kg p.o.) and the late phase of nociceptive response to formalin in rats (10 and 30 mg/kg p.o.). Finally, SSR240612 (20 and 30 mg/kg p.o.) prevented neuropathic thermal pain induced by sciatic nerve constriction in the rat. In conclusion, SSR240612 is a new, potent, and orally active specific non-peptide bradykinin B(1) receptor antagonist.

  18. circ-SHKBP1 Regulates the Angiogenesis of U87 Glioma-Exposed Endothelial Cells through miR-544a/FOXP1 and miR-379/FOXP2 Pathways

    Directory of Open Access Journals (Sweden)

    Qianru He

    2018-03-01

    Full Text Available Circular RNAs (circRNAs are a type of endogenous non-coding RNAs, which have been considered to mediate diverse tumorigenesis including angiogenesis. The present study aims to elucidate the potential role and molecular mechanism of circ-SHKBP1 in regulating the angiogenesis of U87 glioma-exposed endothelial cells (GECs. The expression of circ-SHKBP1, but not linear SHKBP1, was significantly upregulated in GECs compared with astrocyte-exposed endothelial cells (AECs. circ-SHKBP1 knockdown inhibited the viability, migration, and tube formation of GECs dramatically. The expressions of miR-379/miR-544a were downregulated in GECs, and circ-SHKBP1 functionally targeted miR-544a/miR-379 in an RNA-induced silencing complex (RISC manner. Dual-luciferase reporter assay demonstrated that forkhead box P1/P2 (FOXP1/FOXP2 were targets of miR-544a/miR-379. The expressions of FOXP1/FOXP2 were upregulated in GECs, and silencing of FOXP1/FOXP2 inhibited the viability, migration, and tube formation of GECs. Meanwhile, FOXP1/FOXP2 promoted angiogenic factor with G patch and FHA domains 1 (AGGF1 expression at the transcriptional level. Furthermore, knockdown of AGGF1 suppressed the viability, migration, and tube formation of GECs via phosphatidylinositol 3-kinase (PI3K/AKT and extracellular signal-regulated kinase (ERK1/2 pathways. Taken together, the present study demonstrated that circ-SHKBP1 regulated the angiogenesis of GECs through miR-544a/FOXP1 and miR-379/FOXP2 pathways, and these findings might provide a potential target and effective strategy for combined therapy of gliomas.

  19. An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Agnelli Luca

    2008-08-01

    Full Text Available Abstract Background The role of microRNAs (miRNAs in multiple myeloma (MM has yet to be fully elucidated. To identify miRNAs that are potentially deregulated in MM, we investigated those mapping within transcription units, based on evidence that intronic miRNAs are frequently coexpressed with their host genes. To this end, we monitored host transcript expression values in a panel of 20 human MM cell lines (HMCLs and focused on transcripts whose expression varied significantly across the dataset. Methods miRNA expression was quantified by Quantitative Real-Time PCR. Gene expression and genome profiling data were generated on Affymetrix oligonucleotide microarrays. Significant Analysis of Microarrays algorithm was used to investigate differentially expressed transcripts. Conventional statistics were used to test correlations for significance. Public libraries were queried to predict putative miRNA targets. Results We identified transcripts specific to six miRNA host genes (CCPG1, GULP1, EVL, TACSTD1, MEST, and TNIK whose average changes in expression varied at least 2-fold from the mean of the examined dataset. We evaluated the expression levels of the corresponding intronic miRNAs and identified a significant correlation between the expression levels of MEST, EVL, and GULP1 and those of the corresponding miRNAs miR-335, miR-342-3p, and miR-561, respectively. Genome-wide profiling of the 20 HMCLs indicated that the increased expression of the three host genes and their corresponding intronic miRNAs was not correlated with local copy number variations. Notably, miRNAs and their host genes were overexpressed in a fraction of primary tumors with respect to normal plasma cells; however, this finding was not correlated with known molecular myeloma groups. The predicted putative miRNA targets and the transcriptional profiles associated with the primary tumors suggest that MEST/miR-335 and EVL/miR-342-3p may play a role in plasma cell homing and

  20. Ginsenoside 25-OCH3-PPD promotes activity of LXRs to ameliorate P2X7R-mediated NLRP3 inflammasome in the development of hepatic fibrosis.

    Science.gov (United States)

    Han, Xin; Song, Jian; Lian, Li-Hua; Yao, You-Li; Shao, Dan-Yang; Fan, Ying; Hou, Li-Shuang; Wang, Ge; Zheng, Shuang; Wu, Yan-Ling; Nan, Ji-Xing

    2018-06-22

    Ginseng is widely used in energy drinks, dietary supplements and herbal medicines, and its pharmacological actions are related with energy metabolism. As an important modulating energy metabolism pathway, liver X receptors (LXRs) can promote the resolving of hepatic fibrosis and inflammation. The present study aims to evaluate the regulation of 25-OCH3-PPD, a ginsenoside isolated from Panax ginseng, against hepatic fibrosis and inflammation in thioacetamide (TAA)-stimulated mice by activating LXRs pathway. 25-OCH3-PPD decreases serum ALT/AST levels and improves the histological pathology of liver in TAA-induced mice; attenuates transcripts of pro-fibrogenic markers associated with hepatic stellate cell activation; attenuates the levels of pro-Inflammatory cytokines and blocks apoptosis happened in liver; inhibits NLRP3 inflammasome by affecting P2X7R activation; regulates PI3K/Akt and LKB1/AMPK-SIRT1. 25-OCH3-PPD also facilitates LX25Rs and FXR activities decreased by TAA stimulation. 25-OCH3-PPD also decreases α-SMA via regulation of LXRs and P2X7R-NLRP3 in vitro. Our data suggest the possibility that 25-OCH3-PPD promotes activity of LXRs to ameliorate P2X7R-mediated NLRP3 inflammasome in the development of hepatic fibrosis.

  1. Overexpression of herbaceous peony miR156e-3p improves anthocyanin accumulation in transgenic Arabidopsis thaliana lateral branches.

    Science.gov (United States)

    Zhao, Daqiu; Xia, Xing; Wei, Mengran; Sun, Jing; Meng, Jiasong; Tao, Jun

    2017-12-01

    microRNAs (miRNAs) play critical regulatory roles in plant growth and development. In the present study, the function of herbaceous peony ( Paeonia lactiflora Pall.) miR156e-3p in the regulation of color formation has been investigated. Firstly, P. lactiflora miR156e-3p precursor sequence (pre-miR156e-3p) was isolated. Subsequently, the overexpression vector of pre-miR156e-3p was constructed and transformed into Arabidopsis thaliana . Moreover, the medium screening, GUS staining, polymerase chain reaction (PCR) of the GUS region and real-time quantitative PCR (qRT-PCR) of miR156e-3p all confirmed that the purpose gene had been successfully transferred into Arabidopsis plants and expressed, which resulted in apparent purple lateral branches. And this change in color was caused by the improved anthocyanin accumulation. In addition, expression analysis had shown that the level of miR156e-3p transcript was increased, while transcription level of target gene squamosa promoter binding protein-like gene ( SPL1 ), encoding SPL transcription factor that negatively regulated anthocyanin accumulation, was repressed in miR156e-3p-overexpressing transgenic plants, and its downstream gene dihydroflavonol 4-reductase gene ( DFR ) that was directly involved in anthocyanin biosynthesis was strongly expressed, which resulted in anthocyanin accumulation of Arabidopsis lateral branches. These findings would improve the understanding of miRNAs regulation of color formation in P. lactiflora .

  2. Analytical computation of thermodynamic performance parameters of actual vapour compression refrigeration system with R22, R32, R134a, R152a, R290 and R1270

    Directory of Open Access Journals (Sweden)

    Vali Shaik Sharmas

    2018-01-01

    Full Text Available The present work focuses on analytical computation of thermodynamic performance of actual vapour compression refrigeration system by using six pure refrigerants. The refrigerants are namely R22, R32, R134a, R152a, R290 and R1270 respectively. A MATLAB code is developed to compute the thermodynamic performance parameters of actual vapour compression system such as refrigeration effect, compressor work, COP, power per ton of refrigeration, compressor discharge temperature and volumetric refrigeration capacity at condensing and evaporating temperatures of 54.4oC and 7.2oC respectively. Analytical results exhibited that COP of both R32 and R134a are 15.95% and 11.71% higher among the six investigated refrigerants. However R32 and R134a cannot be replaced directly into R22 system. This is due to their higher compressor discharge temperature and poor volumetric capacity respectively. The discharge temperature of both R1270 and R290 are lower than R22 by 20-26oC. Volumetric refrigeration capacity of R1270 (3197 kJ/m3 is very close to that of volumetric capacity of R22 (3251 kJ/m3. Both R1270 and R290 shows good miscibility with R22 mineral oil. Overall R1270 would be a suitable ecofriendly refrigerant to replace R22 from the stand point of ODP, GWP, volumetric capacity, discharge temperature and miscibility with mineral oil although its COP is lower.

  3. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells

    International Nuclear Information System (INIS)

    Gong, Ai-Yu; Eischeid, Alex N; Xiao, Jing; Zhao, Jian; Chen, Dongqing; Wang, Zhao-Yi; Young, Charles YF; Chen, Xian-Ming

    2012-01-01

    Androgen receptor (AR) signalling is critical to the initiation and progression of prostate cancer (PCa). Transcriptional activity of AR involves chromatin recruitment of co-activators, including the p300/CBP-associated factor (PCAF). Distinct miRNA expression profiles have been identified in PCa cells during the development and progression of the disease. Whether miRNAs regulate PCAF expression in PCa cells to regulate AR transcriptional activity is still unclear. Expression of PCAF was investigated in several PCa cell lines by qRT-PCR, Western blot, and immunocytochemistry. The effects of PCAF expression on AR-regulated transcriptional activity and cell growth in PCa cells were determined by chromatin immunoprecipitation, reporter gene construct analysis, and MTS assay. Targeting of PCAF by miR-17-5p was evaluated using the luciferase reporter assay. PCAF was upregulated in several PCa cell lines. Upregulation of PCAF promoted AR transcriptional activation and cell growth in cultured PCa cells. Expression of PCAF in PCa cells was associated with the downregulation of miR-17-5p. Targeting of the 3’-untranslated region of PCAF mRNA by miR-17-5p caused translational suppression and RNA degradation, and, consequently, modulation of AR transcriptional activity in PCa cells. PCAF is upregulated in cultured PCa cells, and upregulation of PCAF is associated with the downregulation of miR-17-5p. Targeting of PCAF by miR-17-5p modulates AR transcriptional activity and cell growth in cultured PCa cells

  4. Overexpression of MYB115, AAD2, or AAD3 in Arabidopsis thaliana seeds yields contrasting omega-7 contents

    Science.gov (United States)

    To, Alexandra; Barthole, Guillaume; Lepiniec, Loïc

    2018-01-01

    Omega-7 monoenoic fatty acids (ω-7 FAs) are increasingly exploited both for their positive effects on health and for their industrial potential. Some plant species produce fruits or seeds with high amounts of ω-7 FAs. However, the low yields and poor agronomic properties of these plants preclude their commercial use. As an alternative, the metabolic engineering of oilseed crops for sustainable ω-7 FA production has been proposed. Two palmitoyl-ACP desaturases (PADs) catalyzing ω-7 FA biosynthesis were recently identified and characterized in Arabidopsis thaliana, together with MYB115 and MYB118, two transcription factors that positively control the expression of the corresponding PAD genes. In the present research, we examine the biotechnological potential of these new actors of ω-7 metabolism for the metabolic engineering of plant-based production of ω-7 FAs. We placed the PAD and MYB115 coding sequences under the control of a promoter strongly induced in seeds and evaluated these different constructs in A. thaliana. Seeds were obtained that exhibit ω-7 FA contents ranging from 10 to >50% of the total FAs, and these major compositional changes have no detrimental effect on seed germination. PMID:29381741

  5. Some remarks on the space R2(E

    Directory of Open Access Journals (Sweden)

    Claes Fernström

    1983-01-01

    Full Text Available Let E be a compact subset of the complex plane. We denote by R(E the algebra consisting of the rational functions with poles off E. The closure of R(E in Lp(E, 1≤p1, as a necessary and sufficient condition for R2(E≠L2(E. We also construct a compact set E such that R2(E has an isolated bounded point evaluation. In section 3 we examine the smoothness properties of functions in R2(E at those points which admit bounded point evaluations.

  6. The Pseudomonas transcriptional regulator AlgR controls LipA expression via the noncoding RNA RsmZ in Pseudomonas protegens Pf-5.

    Science.gov (United States)

    Li, Menggang; Yan, Jinyong; Yan, Yunjun

    2017-05-20

    Pseudomonas lipases are well studied enzymes. However, few studies have been conducted to explore the mechanism underlying the regulation of lipases expression. AlgR, a global regulator, controls the expression of multiple genes, regulates bacterial peristalsis, and participates in the regulation of quorum-sensing (QS) system, and so on. In this study, the effect of AlgR on lipase expression was investigated by knocking out the algR and rsmZ genes or overexpressing them. It is found out that AlgR can regulate the expression of lipA at both transcriptional and translational levels, but the transcriptional level was dominant. AlgR is also able to regulate the expression of rsmX/rsmY/rsmZ. Additionally, using algR/rsmZ double gene knock-out, it showed that AlgR could directly bind to the promoter sequence of rsmZ to regulate lipA activity. In conclusion, this study for the first time indicates that AlgR directly binds to rsmZ to regulates the expression of lipA via regulating transcription of rsmZ, and mainly regulates the expression of lipA at transcriptional level in P. protegens Pf-5. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma.

    Science.gov (United States)

    Komabayashi, Yuki; Kishibe, Kan; Nagato, Toshihiro; Ueda, Seigo; Takahara, Miki; Harabuchi, Yasuaki

    2014-01-01

    Nasal NK/T-cell lymphoma (NNKTL) is an Epstein-Barr virus (EBV)-associated malignancy and has distinct clinical and histological features. However, its genetic features are hitherto unclear. MicroRNAs (miRNAs) play a crucial role in the pathogenesis of several malignancies via regulating gene expression. In this study, we investigated whether the specific microRNAs were related to the tumor behaviors in NNKTL. MiRNA array and Quantitative RT-PCR analyses revealed that miR-15a was expressed at a much lower level in NNKTL cells (SNK-1, SNK-6, and SNT-8) than in normal peripheral NK cells and EBV-negative NK cell line KHYG-1. Quantitative PCR and western blot analyses showed that the expression of MYB and cyclin D1, which are validated targets of miR-15a, was higher in NNKTL cells. Transfection of NNKTL cells (SNK-6 and SNT-8) with a miR-15a precursor decreased MYB and cyclin D1 levels, thereby blocking G1/S transition and cell proliferation. Knockdown of EBV-encoded latent membrane protein 1 (LMP1) significantly increased miR-15a expression in SNK-6 cells. In NNKTL tissues, we found that reduced miR-15a expression, which correlated with MYB and cyclin D1 expression, was associated with poor prognosis of NNKTL patients. These data suggest that downregulation of miR-15a, possibly due to LMP1, implicates in the pathogenesis of NNKTL by inducing cell proliferation via MYB and cyclin D1. Thus, miR-15a could be a potential target for antitumor therapy and a prognostic predictor for NNKTL. Copyright © 2013 Wiley Periodicals, Inc.

  8. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions

    Science.gov (United States)

    Schwinn, Kathy E.; Boase, Murray R.; Bradley, J. Marie; Lewis, David H.; Deroles, Simon C.; Martin, Cathie R.; Davies, Kevin M.

    2014-01-01

    Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor [TF; ROSEA1 (ROS1)] that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related basic helix-loop-helix TF transgene (LEAF COLOR, LC), which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high-light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1 × 35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment in the petal throat region, and the anthers changed from yellow to purple pigmentation. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1 × 35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants. PMID:25414715

  9. Differential effects of v-Jun and c-Jun proteins on v-myb-transformed monoblasts

    Czech Academy of Sciences Publication Activity Database

    Ševčíková, S.; Souček, Karel; Kubala, Lukáš; Bryja, Vítězslav; Šmarda, J.

    2002-01-01

    Roč. 59, č. 10 (2002), s. 1690-1705 ISSN 1420-682X R&D Projects: GA ČR GA301/01/0040 Institutional research plan: CEZ:AV0Z5004920 Keywords : v-myb * Jun * differentiation Subject RIV: BO - Biophysics Impact factor: 5.259, year: 2002

  10. Localization of c-MYB in differentiated cells during postnatal molar and alveolar bone development

    Czech Academy of Sciences Publication Activity Database

    Lungová, Vlasta; Buchtová, Marcela; Janečková, Eva; Tucker, A.S.; Knopfová, L.; Šmarda, J.; Matalová, Eva

    2012-01-01

    Roč. 120, č. 6 (2012), 495-504 ISSN 0909-8836 R&D Projects: GA ČR GCP302/12/J059 Institutional research plan: CEZ:AV0Z50450515 Keywords : c-myb * tooth * postnatal Subject RIV: FF - HEENT, Dentistry Impact factor: 1.420, year: 2012

  11. Mainstream Smoke Chemistry and in Vitro and In Vivo Toxicity of the Reference Cigarettes 3R4F and 2R4F

    Directory of Open Access Journals (Sweden)

    Roemer E

    2014-12-01

    Full Text Available A new reference cigarette, the 3R4F, has been developed to replace the depleting supply of the 2R4F cigarette. The present study was designed to compare mainstream smoke chemistry and toxicity of the two reference cigarettes under the International Organization for Standardization (ISO machine smoking conditions, and to further compare mainstream smoke chemistry and toxicological activity of the 3R4F cigarette by two different smoking regimens, i.e., the machine smoking conditions specified by ISO and the Health Canada intensive (HCI smoking conditions.

  12. Genetic evidence suggests that GIS functions downstream of TCL1 to regulate trichome formation in Arabidopsis.

    Science.gov (United States)

    Zhang, Na; Yang, Li; Luo, Sha; Wang, Xutong; Wang, Wei; Cheng, Yuxin; Tian, Hainan; Zheng, Kaijie; Cai, Ling; Wang, Shucai

    2018-04-13

    Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.

  13. MiR-519d-3p suppresses invasion and migration of trophoblast cells via targeting MMP-2.

    Directory of Open Access Journals (Sweden)

    Jie Ding

    Full Text Available Our study was approved by the Medical Ethics Committee of Tang Du Hospital, Fourth Military Medical University and complied strictly with national ethical guidelines. Preeclampsia (PE is a specific clinical disorder characterized by gestational hypertension and proteinuria and is a leading cause of maternal and perinatal mortality worldwide. The miR-519d-3p is upregulated in the maternal plasma of patients with PE which indicates a possible association between this microRNA and the pathogenesis of PE. No studies to date have addressed the effect of miR-519d-3p on the invasion and migration of trophoblast cells. In our study, we found that miR-519d-3p expression was elevated in placental samples from patients with PE. In vitro, overexpression of miR-519d-3p significantly inhibited trophoblast cell migration and invasion, whereas transfection of a miR-519d-3p inhibitor enhanced trophoblast cell migration and invasion. Luciferase assays confirmed that matrix metalloproteinase-2 (MMP-2 is a direct target of miR-519d-3p. Quantitative real-time PCR and western blot assays showed that overexpression of miR-519d-3p downregulated MMP-2 mRNA and protein expression. Knockdown of MMP-2 using a siRNA attenuated the increased trophoblast migration and invasion promoted by the miR-519d-3p inhibitor. In placentas from patients with PE or normal pregnancies, a negative correlation between the expression of MMP-2 and miR-519d-3p was observed using the Pearson correlation and linear regression analysis. Our present findings suggest that upregulation of miR-519d-3p may contribute to the development of PE by inhibiting trophoblast cell migration and invasion via targeting MMP-2; miR-519d-3p may represent a potential predictive and therapeutic target for PE.

  14. Production of (R)-3-hydroxybutyric acid by Arxula adeninivorans.

    Science.gov (United States)

    Biernacki, Mateusz; Riechen, Jan; Hähnel, Urs; Roick, Thomas; Baronian, Kim; Bode, Rüdiger; Kunze, Gotthard

    2017-12-01

    (R)-3-hydroxybutyric acid can be used in industrial and health applications. The synthesis pathway comprises two enzymes, β-ketothiolase and acetoacetyl-CoA reductase which convert cytoplasmic acetyl-CoA to (R)-3-hydroxybutyric acid [(R)-3-HB] which is released into the culture medium. In the present study we used the non-conventional yeast, Arxula adeninivorans, for the synthesis enantiopure (R)-3-HB. To establish optimal production, we investigated three different endogenous yeast thiolases (Akat1p, Akat2p, Akat4p) and three bacterial thiolases (atoBp, thlp, phaAp) in combination with an enantiospecific reductase (phaBp) from Cupriavidus necator H16 and endogenous yeast reductases (Atpk2p, Afox2p). We found that Arxula is able to release (R)-3-HB used an existing secretion system negating the need to engineer membrane transport. Overexpression of thl and phaB genes in organisms cultured in a shaking flask resulted in 4.84 g L -1 (R)-3-HB, at a rate of 0.023 g L -1  h -1 over 214 h. Fed-batch culturing with glucose as a carbon source did not improve the yield, but a similar level was reached with a shorter incubation period [3.78 g L -1 of (R)-3-HB at 89 h] and the rate of production was doubled to 0.043 g L -1  h -1 which is higher than any levels in yeast reported to date. The secreted (R)-3-HB was 99.9% pure. This is the first evidence of enantiopure (R)-3-HB synthesis using yeast as a production host and glucose as a carbon source.

  15. DNA-Binding Properties of African Swine Fever Virus pA104R, a Histone-Like Protein Involved in Viral Replication and Transcription.

    Science.gov (United States)

    Frouco, Gonçalo; Freitas, Ferdinando B; Coelho, João; Leitão, Alexandre; Martins, Carlos; Ferreira, Fernando

    2017-06-15

    African swine fever virus (ASFV) codes for a putative histone-like protein (pA104R) with extensive sequence homology to bacterial proteins that are implicated in genome replication and packaging. Functional characterization of purified recombinant pA104R revealed that it binds to single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) over a wide range of temperatures, pH values, and salt concentrations and in an ATP-independent manner, with an estimated binding site size of about 14 to 16 nucleotides. Using site-directed mutagenesis, the arginine located in pA104R's DNA-binding domain, at position 69, was found to be relevant for efficient DNA-binding activity. Together, pA104R and ASFV topoisomerase II (pP1192R) display DNA-supercoiling activity, although none of the proteins by themselves do, indicating that the two cooperate in this process. In ASFV-infected cells, A104R transcripts were detected from 2 h postinfection (hpi) onward, reaching a maximum concentration around 16 hpi. pA104R was detected from 12 hpi onward, localizing with viral DNA replication sites and being found exclusively in the Triton-insoluble fraction. Small interfering RNA (siRNA) knockdown experiments revealed that pA104R plays a critical role in viral DNA replication and gene expression, with transfected cells showing lower viral progeny numbers (up to a reduction of 82.0%), lower copy numbers of viral genomes (-78.3%), and reduced transcription of a late viral gene (-47.6%). Taken together, our results strongly suggest that pA104R participates in the modulation of viral DNA topology, probably being involved in viral DNA replication, transcription, and packaging, emphasizing that ASFV mutants lacking the A104R gene could be used as a strategy to develop a vaccine against ASFV. IMPORTANCE Recently reintroduced in Europe, African swine fever virus (ASFV) causes a fatal disease in domestic pigs, causing high economic losses in affected countries, as no vaccine or treatment is currently

  16. Synthesis of (R)-5-(Di[2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one-([3H]U-86170) and (R)-5-([2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo(4,5,1-ij) quinolin-2(1H)-one ([3H]U-91356)

    International Nuclear Information System (INIS)

    Moon, M.W.; Hsi, R.S.P.

    1992-01-01

    (R)-5-(diallylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (12b) was prepared in 9% overall yield from 3-aminoquinoline. Reaction of 12b in ethyl acetate with tritium gas in presence of a 5% platinum on carbon catalyst afforded a mixture of (R)-5-(di[2,3- 3 H 2 ]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]-quinolin-2(1H)-one ([ 3 H]U-86170, 69 Ci/mmol) and (R)-5-([2,3- 3 H 2 ]-propylamino)5,6-dihydro-4H-imidazo-[4,5,1-ij]quinolin-2(1H)-one ( [ 3 H]U-91356, 34 Ci/mmol) which was separated by preparative reverse-phase chromatography. U-86170 and U-91356 are potent dopamine D2 agonists. The labelled compounds are useful for drug disposition studies. [ 3 H]U-86170 is also useful as a dopamine D2 agonist radioligand for receptor binding studies. (author)

  17. Spin reorientation phenomena in (R{sub 1-x}R`{sub x}){sub 2}Co{sub 14}B (R = La, R` = Dy and Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Myojin, T. [Takamatsu Nat. Coll. of Technol. (Japan); Ohno, T. [Tokushima Univ. (Japan). Faculty of Engineering; Mizuno, K. [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Tsujimura, A. [Faculty of Engineering, Tokushima Bunri Univ., Kagawa Shido (Japan); Kojima, K. [Hiroshima Univ. (Japan). Faculty of Integrated Arts and Sciences

    1997-07-01

    The variations of magnetization with temperature in (La{sub 1-x}R`{sub x}){sub 2}Co{sub 14}B (R` = Dy and Ho) have been measured to determine spin reorientation temperature T{sub SR} of these compounds. The phase diagrams of spin arrangement thus obtained indicate monotonous increase in T{sub SR} with R` concentration x. Also, T{sub SR}`s of R{sub 2}Co{sub 14}B(R = Tb, Dy and Ho) are found to vary linearly with the Stevens factor {alpha} of R. (orig.). 4 refs.

  18. Multicenter R2* mapping in the healthy brain

    DEFF Research Database (Denmark)

    Ropele, Stefan; Wattjes, Mike P; Langkammer, Christian

    2014-01-01

    structures. METHODS: R2* mapping was performed in 81 healthy subjects in seven centers using different 3 T systems. R2* was calculated from a dual-echo gradient echo sequence and was assessed in several deep gray matter structures. The inter-scanner and inter-subject variability of R2* was calculated...

  19. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  20. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  1. Synthesis of 2-(2-R1-Hydrazino-5-(R2-benzyl-2-thiazolines on the Basis of Meerweins Arylation Products of Allyl Isothiocyanate

    Directory of Open Access Journals (Sweden)

    Mykola I. Ganushchak

    2003-02-01

    Full Text Available 3-Aryl-2-chloropropylisothiocyanates (1 are formed by interaction of arenediazonium chlorides with allyl isothiocyanate. Adducts 1 react with monoacylhydrazines to form 1-acyl-4-(3-aryl-2-chloropropylthiosemicarbazides (2a–d. Thiosemicarbazides 2a–d in the presence of bases selectively transform into 2-(2-R1-hydrazino-5-(R2-benzyl-2-thiazolines (3a–d.

  2. Synthesis, physical-chemical properties of 2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioacetohydrazides

    Directory of Open Access Journals (Sweden)

    O. A. Suhak

    2017-04-01

    Full Text Available Aim. Analysis of the scientific literature over the past decade has shown that large synthetic possibilities towards creating new and effective drug substances have heterocyclic compounds, in particular the derivatives of 1,2,4-triazole. 1,2,4-Triazole is a structural fragment of many synthetic drugs. The special interest cause ylidene hydrazides of 2-(5-R-1,2,4-triazole-3-ylthioacetic acids as potential biologically active compounds, among which highly effective medicines can be found. With the aim of finding new biologically active compounds the derivatives of 2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazides have been synthesized, their physical-chemical properties have been studied with the use of modern methods, namely elemental analysis, IR,1H-NMR spectroscopy, and their individuality by HPLC-MS. Materials and methods. N'-R1-еden-2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazides were received by adding aromatic (2-BrC6H4, 2,3-(OCH32C6H3, 3,5-(OCH32C6H3, 4-N(CH32C6H4, 3,4-F2C6H3, 2-NO2C6H4,4-NO2C6H4, 4-OHC6H4, 2-OHC6H4, 4-FC6H4, 2-CI-6-FC6H3 or heterocyclic (2-SC4H3, 5-NO2-2-C4H2O aldehyde to an equivalent amount of the appropriate 2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazide in the acetic acid medium. The study of physical-chemical properties of obtained compounds was carried out according to the methods outlined in SPU. Chromato-mass-spectral studies were performed on hazarding chromatograph Agilent 1260 Infinity HPLC equipped with mass spectrometer Agilent 6120 with ionization in electro-spray (ESI. Conclusion. This suggests the possibility for further study of biological action of the synthesized compounds. As a result of studies the N'-R1-eden-2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazides have been synthesized and their physical-chemical properties have been studied.

  3. R3-R4 deletion in the PRNP gene is associated with Creutzfeldt-Jakob disease (CJD)

    Energy Technology Data Exchange (ETDEWEB)

    Cervenakova, L.; Brown, P.; Nagle, J. [and others

    1994-09-01

    There are conflicting reports on the association of deletions in the PRNP gene on chromosome 20 with CJD, a rapidly progressive fatal spongiform encephalopathy. We accumulated data suggesting that a deletion of R3-R4 type (parts of the third and fourth repeats are deleted from the area of four repeating 24 bp sequences in the 5{prime} region of the gene) is causing CJD. Screening of 129 unaffected control individuals demonstrated presence of a deletion of R2 type in four (1.55% of the studied chromosomes), but none of them had the R3-R4 type. Of 181 screened patients with spongiform encephalopathies, two had a deletion of R3-R4 type with no other mutations in the coding sequence. Both patients had a classical rapidly progressive dementing disease and diffuse spongiform degeneration, and both cases were apparently sporadic. The same R3-R4 type of deletion was detected in three additional neuropathologically confirmed spongiform encephalopathy patients, of which two had other known pathogenic mutations in the PRNP gene: at codon 178 on the methionine allele exhibiting the phenotype of fatal familial insomnia, and codon 200 causing CJD with severe dementia; the third was a patient with iatrogenic CJD who developed the disease after treatment with growth hormone extracted from cadaveric human pituitary glands. In all cases the deletion coincided with a variant sequence at position 129 coding for methionine.

  4. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca.

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    Full Text Available Fragaria vesca (2n = 2x = 14, the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb. It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW and red (Ruegen, RG fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2% had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs, including MYB (putative MYB86 and MYB39, WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca.

  5. Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus.

    Science.gov (United States)

    Risbud, Rashmi M; Lee, Carolyn; Porter, Brenda E

    2011-11-18

    Status epilepticus induces a cascade of protein expression changes contributing to the subsequent development of epilepsy. By identifying the cascade of molecular changes that contribute to the development of epilepsy we hope to be able to design therapeutics for preventing epilepsy. MicroRNAs influence gene expression by altering mRNA stability and/or translation and have been implicated in the pathology of multiple diseases. MiR21 and its co-transcript miR21, microRNAs produced from either the 5' or 3' ends of the same precursor RNA strand, are increased in the hippocampus following status epilepticus. We have identified a miR21 binding site, in the 3' UTR of neurotrophin-3 that inhibits translation. Neurotrophin-3 mRNA levels decrease in the hippocampus following SE concurrent with the increase in miR21. MiR21 levels in cultured hippocampal neurons inversely correlate with neurotrophin-3 mRNA levels. Treatment of hippocampal neuronal cultures with excess K(+)Cl(-), a depolarizing agent mimicking the episode of status epilepticus, also results in an increase in miR21 and a decrease in neurotrophin-3 mRNA. MiR21 is a candidate for regulating neurotrophin-3 signaling in the hippocampus following status epilepticus. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Differentiation of 5-hydroxytryptamine2 receptor subtypes using 125I-R-(-)2,5-dimethoxy-4-iodo-phenylisopropylamine and 3H-ketanserin

    International Nuclear Information System (INIS)

    McKenna, D.J.; Peroutka, S.J.

    1989-01-01

    The radioligand binding characteristics of 125I-R-(-)4-iodo-2,5-dimethoxyphenylisopropylamine [125I-R-(-)DOI] and 3H-ketanserin were compared in rat and bovine cortical membranes. In rat cortex, 125I-R-(-)DOI labels a relatively low density of binding sites (Bmax = 2.5 +/- 0.2 pmol/gm tissue) with high affinity (KD = 0.63 +/- 0.09 nM). In bovine cortex, specific binding of 125I-R-(-)DOI represents less than 20% of total binding at radioligand concentrations above 0.6 nM, and, therefore, the data cannot be analyzed adequately by Scatchard transformation. By contrast, 3H-ketanserin displays saturable, specific high-affinity binding in both rat cortex (KD = 1.0 +/- 0.1 nM; Bmax = 11 +/- 0.4 pmol/gm tissue) and bovine cortex (KD = 1.2 +/- 0.2 nM; Bmax = 5.3 +/- 0.4 pmol/gm tissue). Ki values for 30 drugs were determined for 125I-R-(-)DOI-labeled sites in rat cortex and 3H-ketanserin-labeled sites in bovine cortex. 5-Hydroxytryptamine (5-HT) displays 250-fold higher selectivity for the 125I-R-(-)DOI-labeled sites (Ki = 3.0 +/- 0.7 nM) than for the 3H-ketanserin-labeled sites (Ki = 750 +/- 50 nM). Structural congeners of R-(-)DOI display 80- to 160-fold higher affinity for the 125I-R-(-)DOI binding site than for the 3H-ketanserin-labeled binding site. d-LSD and putative 5-HT2 antagonists are approximately equipotent at both sites. Significant correlations were found between drug affinities for 125I-R-(-)DOI-labeled sites in rat cortex and putative 5-HT2A sites labeled previously by 77Br-R-(-)DOB (r = 0.93, p less than 0.01), putative 5-HT2B sites labeled by 3H-ketanserin in bovine cortex (r = 0.63, p less than 0.01), and 5-HT1C binding sites that have been characterized by other investigators (r = 0.78, p less than 0.01). No significant correlations were found between drug affinities for 125I-R-(-)DOI-labeled sites in rat cortex and 5-HT1A, 5-HT1B, 5-HT1D, or 5-HT3 sites, as determined by previous investigators

  7. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200.

    Science.gov (United States)

    Fu, Junsheng; Rodova, Mariana; Nanta, Rajesh; Meeker, Daniel; Van Veldhuizen, Peter J; Srivastava, Rakesh K; Shankar, Sharmila

    2013-06-01

    Glioblastoma multiforme is the most common form of primary brain tumor, often characterized by poor survival. Glioblastoma initiating cells (GICs) regulate self-renewal, differentiation, and tumor initiation properties and are involved in tumor growth, recurrence, and resistance to conventional treatments. The sonic hedgehog (SHH) signaling pathway is essential for normal development and embryonic morphogenesis. The objectives of this study were to examine the molecular mechanisms by which GIC characteristics are regulated by NPV-LDE-225 (Smoothened inhibitor; (2,2'-[[dihydro-2-(4-pyridinyl)-1,3(2H,4H)-pyrimidinediyl]bis(methylene)]bis[N,N-dimethylbenzenamine). Cell viability and apoptosis were measured by XTT and annexin V-propidium iodide assay, respectively. Gli translocation and transcriptional activities were measured by immunofluorescence and luciferase assay, respectively. Gene and protein expressions were measured by quantitative real-time PCR and Western blot analyses, respectively. NPV-LDE-225 inhibited cell viability, neurosphere formation, and Gli transcriptional activity and induced apoptosis by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase. NPV-LDE-225 increased the expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-R1/DR4, TRAIL-R2/DR5, and Fas and decreased the expression of platelet derived growth factor receptor-α and Bcl2, and these effects were abrogated by Gli1 plus Gli2 short hairpin RNAs. NPV-LDE-225 enhanced the therapeutic potential of FasL and TRAIL by upregulating Fas and DR4/5, respectively. Interestingly, NPV-LDE-225 induced expression of programmed cell death 4 and apoptosis and inhibited cell viability by suppressing micro RNA (miR)-21. Furthermore, NPV-LDE-225 inhibited pluripotency-maintaining factors Nanog, Oct4, Sox2, and cMyc. The inhibition of Bmi1 by NPV-LDE-225 was regulated by induction of miR-128. Finally, NPV-LDE-225 suppressed epithelial-mesenchymal transition by

  8. Anticonvulsant and reproductive toxicological studies of the imidazole-based histamine H3R antagonist 2-18 in mice

    Directory of Open Access Journals (Sweden)

    Bastaki SM

    2018-01-01

    Full Text Available Salim M Bastaki,1 Yousef M Abdulrazzaq,2 Mohamed Shafiullah,1 Małgorzata Więcek,3 Katarzyna Kieć-Kononowicz,3 Bassem Sadek1 1Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, 2Department of Medical Education, Dubai Health Authority, Dubai, UAE; 3Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna, Kraków, Poland Abstract: The imidazole-based H3R antagonist 2-18 with high in vitro H3R antagonist affinity, excellent in vitro selectivity profile, and high in vivo H3R antagonist potency was tested for its anticonvulsant effect in maximal electroshock (MES-induced convulsions in mice having valproic acid (VPA as a reference antiepileptic drug (AED. Additionally, H3R antagonist 2-18 was evaluated for its reproductive toxicity in the same animal species. The results show that acute systemic administration (intraperitoneal; i.p. of H3R antagonist 2-18 (7.5, 15, 30, and 60 mg/kg, i.p. significantly and dose dependently protected male as well as female mice against MES-induced convulsion. The protective action observed for H3R antagonist 2-18 in both mice sexes was comparable to that of VPA and was reversed when mice were pretreated with the selective H3R agonist (R-alpha-methylhistamine (RAMH, 10 mg/kg, i.p.. Moreover, the results show that acute systemic administration of single (7.5, 15, 30, or 60 mg/kg, i.p. or multiple doses (15×3 mg/kg, i.p. of H3R antagonist 2-18 on gestation day (GD 8 or 13 did not affect the maternal body weight of mice when compared with the control group. Furthermore, no significant differences were observed in the average number of implantations and resorptions between the control and H3R antagonist 2-18-treated group at the early stages of gestation and the organogenesis period. However, oral treatment with H3R antagonist 2-18 (15 mg/kg on GD 8 induced a reduced number of

  9. Rolling Deck to Repository (R2R): Technical Design - Experiences and Lessons (Invited)

    Science.gov (United States)

    Arko, R. A.; Carbotte, S. M.; Miller, S. P.; Chandler, C. L.; Ferrini, V.; Stocks, K.; Maffei, A. R.; Smith, S. R.; Bourassa, M. A.; McLean, S. J.; Alberts, J. C.

    2009-12-01

    The NSF-funded Rolling Deck to Repository (R2R) project envisions the academic research fleet as an integrated global observing system, with routine “underway” sensor data flowing directly from research vessels to a central shore-side repository. It is a complex endeavor involving many stakeholders - technicians at sea, data managers on shore, ship schedulers, clearance officers, funding agencies, National Data Centers, data synthesis projects, the science community, and the public - working toward a common goal of acquiring, documenting, archiving, evaluating, and disseminating high-quality scientific data. The technical design for R2R is guided by several key principles: 1) The data pipeline is modular, so that initial stages (e.g. inventory and review of data shipments, posting of catalog records and track maps) may proceed routinely for every cruise, while later stages (e.g. quality assessment and production of file-level metadata) may proceed at different rates for different data types; 2) Cruise documentation (e.g. sailing orders, review/release of data inventories, vessel profiles) is gathered primarily via an authenticated Web portal, linked with the UNOLS scheduling database to synchronize vocabularies and eliminate redundancies; and 3) Every data set will be documented and delivered to the appropriate National Data Center for long-term archiving and dissemination after proprietary holds are cleared, while R2R maintains a master cruise catalog that links all the data sets together. This design accommodates the diversity of instrument types, data volumes, and shipment schedules among fleet operators. During its pilot development period, R2R has solicited feedback at community workshops, UNOLS meetings, and conference presentations, including fleet-wide surveys of current practices and instrument inventories. Several vessel operators began submitting cruise data and documentation during the pilot, providing a test bed for database development and Web

  10. The transcriptional activator LdtR from 'Candidatus Liberibacter asiaticus' mediates osmotic stress tolerance.

    Directory of Open Access Journals (Sweden)

    Fernando A Pagliai

    2014-04-01

    Full Text Available The causal agent of Huanglongbing disease, 'Candidatus Liberibacter asiaticus', is a non-culturable, gram negative, phloem-limited α-proteobacterium. Current methods to control the spread of this disease are still limited to the removal and destruction of infected trees. In this study, we identified and characterized a regulon from 'Ca. L. asiaticus' involved in cell wall remodeling, that contains a member of the MarR family of transcriptional regulators (ldtR, and a predicted L,D-transpeptidase (ldtP. In Sinorhizobium meliloti, mutation of ldtR resulted in morphological changes (shortened rod-type phenotype and reduced tolerance to osmotic stress. A biochemical approach was taken to identify small molecules that modulate LdtR activity. The LdtR ligands identified by thermal shift assays were validated using DNA binding methods. The biological impact of LdtR inactivation by the small molecules was then examined in Sinorhizobium meliloti and Liberibacter crescens, where a shortened-rod phenotype was induced by growth in presence of the ligands. A new method was also developed to examine the effects of small molecules on the viability of 'Ca. Liberibacter asiaticus', using shoots from HLB-infected orange trees. Decreased expression of ldtRLas and ldtPLas was observed in samples taken from HLB-infected shoots after 6 h of incubation with the LdtR ligands. These results provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease.

  11. Aging and calorie restriction regulate the expression of miR-125a-5p and its target genes Stat3, Casp2 and Stard13.

    Science.gov (United States)

    Makwana, Kuldeep; Patel, Sonal Arvind; Velingkaar, Nikkhil; Ebron, Jey Sabith; Shukla, Girish C; Kondratov, Roman V Kondratov V

    2017-07-31

    Calorie restriction (CR) is a dietary intervention known to delay aging. In order, to understand molecular mechanisms of CR, we analyzed the expression of 983 MicroRNAs (miRNAs) in the liver of female mice after 2 years of 30% CR using micro-array. 16 miRNAs demonstrated significant changes in their expression upon CR in comparison with age-matched control. mmu-miR-125a-5p (miR-125a-5p) was significantly upregulated upon CR, and in agreement with this, the expression of mRNAs for its three predicted target genes: Stat3, Casp2, and Stard13 was significantly downregulated in the liver of CR animals. The expression of precursor miRNA for miR-125a-5p was also upregulated upon CR, which suggests its regulation at the level of transcription. Upon aging miR-125a-5p expression was downregulated while the expression of its target genes was upregulated. Thus, CR prevented age-associated changes in the expression of miR-125a-5p and its targets. We propose that miR-125a-5p dependent downregulation of Stat3, Casp2, and Stard13 contributes to the calorie restriction-mediated delay of aging.

  12. 2C-R4WM Spectroscopy of Jet Cooled NO_3

    Science.gov (United States)

    Fukushima, Masaru; Ishiwata, Takashi; Hirota, Eizi

    2016-06-01

    We have generated NO_3 from pyrolysis of N_2O_5 following supersonic free jet expansion, and carried out two color resonant four wave mixing ( 2C-R4WM ) spectroscopy of the tilde{B} ^2E' - tilde{X} ^2A_2' electronic transition. One laser was fixed to pump NO_3 to a ro-vibronic level of the tilde{B} state, and the other laser ( probe ) was scanned across two levels of the tilde{X} ^2A_2' state lying at 1051 and 1492 cm-1, the ν_1 (a_1') and ν_3 (e') fundamentals, respectively. The 2C-R4WM spectra have unexpected back-ground signal of NO_3 ( stray signal due to experimental set-up is also detected ) similar to laser induced fluorescence ( LIF ) excitation spectrum of the 0-0 band, although the back-ground signal was not expected in considering the 2C-R4WM scheme. Despite the back-ground interference, we have observed two peaks at 1051.61 and 1055.29 cm-1 in the ν_1 region of the spectrum, and the frequencies agree with the two bands, 1051.2 and 1055.3 cm-1, of our relatively higher resolution dispersed fluorescence spectrum, the former of which has been assigned to the ν_1 fundamental. Band width of both peaks, ˜ 0.2 cm-1, is broader than twice the experimental spectral-resolution, 0.04 cm-1 ( because this experiment is double resonance spectroscopy ), and the 1051.61 cm-1 peak is attributed to a Q branch band head ( a line-like Q branch ) of the ν_1 fundamental. The other branches are suspected to be hidden in noise of the back-ground signal. The 1055.29 cm-1 peak is also attributed to a Q band head. The tilde{B} ^2E'1/2 ( J' = 3/2, K' = 1 ) - tilde{X} ^2A_2' ( N'' = 1, K'' = 0 ) ro-vibronic transition was used as the pump transition. The dump ( probe ) transition to both a_1' and e' vibronic levels are then allowed as perpendicular transition. Accordingly, it cannot be determined from present results whether the 1055.29 cm-1 band is attributed to a_1' or e' (ν_3), unfortunately. The 2C-R4WM spectrum of the 1492 cm-1 band region shows one Q head at 1499.79 cm

  13. Magnetic phase transitions in two-dimensional frustrated Cu3R(SeO3)2O2Cl. Spectroscopic study

    Science.gov (United States)

    Klimin, S. A.; Budkin, I. V.

    2017-01-01

    Using optical study of electronic spectra of rare-earth (RE) ions, magnetic phase transitions in the low-dimensional frustrated RE magnets Cu3R(SeO3)2O2Cl (R = Sm, Yb, Er, Nd, Pr, Eu) were investigated. Phase transitions were registered either by splittings of crystal-field (CF) doublets or by repulsion of CF levels of f-ions in a staggered magnetic field. Different scenarios of magnetic order in isostructural compounds of the francisite family are discussed.

  14. High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Jungwirth, Britta; Sala, Claudia; Kohl, Thomas A

    2013-01-01

    of the 6C non-coding RNA gene and to non-canonical DNA binding sites within protein-coding regions. The present study underlines the dynamics within the GlxR regulon by identifying in vivo targets during growth on glucose and contributes to the expansion of knowledge of this important transcriptional......The transcriptional regulator GlxR has been characterized as a global hub within the gene-regulatory network of Corynebacterium glutamicum. Chromatin immunoprecipitation with a specific anti-GlxR antibody and subsequent high-throughput sequencing (ChIP-seq) was applied to C. glutamicum to get new...... mapping of these data on the genome sequence of C. glutamicum, 107 enriched DNA fragments were detected from cells grown with glucose as carbon source. GlxR binding sites were identified in the sequence of 79 enriched DNA fragments, of which 21 sites were not previously reported. Electrophoretic mobility...

  15. R{sup 2} supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Physics Department, Theory Unit, CERN,CH 1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095-1547 (United States); Kehagias, Alex [Physics Division, National Technical University of Athens,15780 Zografou, Athens (Greece); Porrati, Massimo [Physics Department, Theory Unit, CERN,CH 1211, Geneva 23 (Switzerland); CCPP, Department of Physics,NYU 4 Washington Pl. New York NY 10003 (United States)

    2015-08-03

    We formulate R{sup 2} pure supergravity as a scale invariant theory built only in terms of superfields describing the geometry of curved superspace. The standard supergravity duals are obtained in both “old' and “new' minimal formulations of auxiliary fields. These theories have massless fields in de Sitter space as they do in their non supersymmetric counterpart. Remarkably, the dual theory of R{sup 2} supergravity in the new minimal formulation is an extension of the Freedman model, describing a massless gauge field and a massless chiral multiplet in de Sitter space, with inverse radius proportional to the Fayet-Iliopoulos term. This model can be interpreted as the “de-Higgsed' phase of the dual companion theory of R+R{sup 2} supergravity.

  16. nalyot, a mutation of the Drosophila myb-related Adf1 transcription factor, disrupts synapse formation and olfactory memory.

    Science.gov (United States)

    DeZazzo, J; Sandstrom, D; de Belle, S; Velinzon, K; Smith, P; Grady, L; DelVecchio, M; Ramaswami, M; Tully, T

    2000-07-01

    nalyot (nal) is a novel olfactory memory mutant of Drosophila, encoding Adf1, a myb-related transcription factor. Following extended training sessions, Adf1 mutants show normal early memory but defective longterm memory. Adf1 shows widespread spatiotemporal expression, yet mutant alleles reveal no discernible disruptions in gross morphology of the nervous system. Studies at the larval neuromuscular junction, however, reveal a role for Adf1 in the modulation of synaptic growth-in contrast to the role established for dCREB2 in the control of synaptic function (Davis et al., 1996). These findings suggest that Adf1 and dCREB2 regulate distinct transcriptional cascades involved in terminal stages of synapse maturation. More generally, Adf1 provides a novel link between molecular mechanisms of developmental and behavioral plasticity.

  17. Osteogenic Potential of the Transcription Factor c-MYB

    Czech Academy of Sciences Publication Activity Database

    Oralová, Veronika; Matalová, Eva; Killinger, Michael; Knopfová, L.; Šmarda, J.; Buchtová, Marcela

    2017-01-01

    Roč. 100, č. 3 (2017), s. 311-322 ISSN 0171-967X R&D Projects: GA ČR(CZ) GB14-37368G Institutional support: RVO:67985904 Keywords : mineralised matrix * micromass cultures * mouse limbs Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 3.124, year: 2016

  18. Transcription and translation of the rpsJ, rplN and rRNA operons of the tubercle bacillus.

    Science.gov (United States)

    Cortes, Teresa; Cox, Robert Ashley

    2015-04-01

    Several species of the genus Mycobacterium are human pathogens, notably the tubercle bacillus (Mycobacterium tuberculosis). The rate of proliferation of a bacterium is reflected in the rate of ribosome synthesis. This report describes a quantitative analysis of the early stages of the synthesis of ribosomes of M. tuberculosis. Specifically, the roles of three large operons, namely: the rrn operon (1.7 microns) encoding rrs (16S rRNA), rrl (23S rRNA) and rrf (5S rRNA); the rpsJ operon (1.93 microns), which encodes 11 ribosomal proteins; and the rplN operon (1.45 microns), which encodes 10 ribosomal proteins. A mathematical framework based on properties of population-average cells was developed to identify the number of transcripts of the rpsJ and rplN operons needed to maintain exponential growth. The values obtained were supported by RNaseq data. The motif 5'-gcagac-3' was found close to 5' end of transcripts of mycobacterial rplN operons, suggesting it may form part of the RpsH feedback binding site because the same motif is present in the ribosome within the region of rrs that forms the binding site for RpsH. Medical Research Council.

  19. Synthesis, characterization and crystal structure of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid

    Science.gov (United States)

    Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata

    2018-03-01

    The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.

  20. CRM1 and its ribosome export adaptor NMD3 localize to the nucleolus and affect rRNA synthesis.

    Science.gov (United States)

    Bai, Baoyan; Moore, Henna M; Laiho, Marikki

    2013-01-01

    CRM1 is an export factor that together with its adaptor NMD3 transports numerous cargo molecules from the nucleus to cytoplasm through the nuclear pore. Previous studies have suggested that CRM1 and NMD3 are detected in the nucleolus. However, their localization with subnucleolar domains or participation in the activities of the nucleolus are unclear. We demonstrate here biochemically and using imaging analyses that CRM1 and NMD3 co-localize with nucleolar marker proteins in the nucleolus. In particular, their nucleolar localization is markedly increased by inhibition of RNA polymerase I (Pol I) transcription by actinomycin D or by silencing Pol I catalytic subunit, RPA194. We show that CRM1 nucleolar localization is dependent on its activity and the expression of NMD3, whereas NMD3 nucleolar localization is independent of CRM1. This suggests that NMD3 provides nucleolar tethering of CRM1. While inhibition of CRM1 by leptomycin B inhibited processing of 28S ribosomal (r) RNA, depletion of NMD3 did not, suggesting that their effects on 28S rRNA processing are distinct. Markedly, depletion of NMD3 and inhibition of CRM1 reduced the rate of pre-47S rRNA synthesis. However, their inactivation did not lead to nucleolar disintegration, a hallmark of Pol I transcription stress, suggesting that they do not directly regulate transcription. These results indicate that CRM1 and NMD3 have complex functions in pathways that couple rRNA synthetic and processing engines and that the rRNA synthesis rate may be adjusted according to proficiency in rRNA processing and export.

  1. Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis

    Directory of Open Access Journals (Sweden)

    Saulnier Delphine MA

    2011-07-01

    Full Text Available Abstract Background Lactobacillus reuteri harbors the genes responsible for glycerol utilization and vitamin B12 synthesis within a genetic island phylogenetically related to gamma-Proteobacteria. Within this island, resides a gene (lreu_1750 that based on its genomic context has been suggested to encode the regulatory protein PocR and presumably control the expression of the neighboring loci. However, this functional assignment is not fully supported by sequence homology, and hitherto, completely lacks experimental confirmation. Results In this contribution, we have overexpressed and inactivated the gene encoding the putative PocR in L. reuteri. The comparison of these strains provided metabolic and transcriptional evidence that this regulatory protein controls the expression of the operons encoding glycerol utilization and vitamin B12 synthesis. Conclusions We provide clear experimental evidence for assigning Lreu_1750 as PocR in Lactobacillus reuteri. Our genome-wide transcriptional analysis further identifies the loci contained in the PocR regulon. The findings reported here could be used to improve the production-yield of vitamin B12, 1,3-propanediol and reuterin, all industrially relevant compounds.

  2. Comparative d2/d3 LSU–rDNA sequence study of some Iranian ...

    African Journals Online (AJOL)

    SERVER

    2007-11-05

    Nov 5, 2007 ... segments yielded one fragment at over all sequenced isolates as 787 bp in size. The DNA sequences were aligned .... expansion segments of the 28S rDNA subunit (D2/D3. LSU-rDNA) are the ... isolated from different geographical location from tea shrubs infested roots of Guilan province, Iran (Table 1).

  3. Composition and crystallization kinetics of R2O-Al2O3-SiO2 glass-ceramics

    International Nuclear Information System (INIS)

    Xiong, Dehua; Cheng, Jinshu; Li, Hong

    2010-01-01

    The crystallization behavior and microstructure of R 2 O-Al 2 O 3 -SiO 2 (R means K, Na and Li) glass were investigated by means of differential scanning calorimeter (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallization kinetic parameters including the crystallization apparent activation energy (E a ), the Avrami parameter (n), glass transition temperature (T g ) and the activity energy of glass transition (E t ) were also measured with different methods. The results have shown that: the DSC traces of composition A parent glass have two different precipitation crystallization peaks corresponding to E a1 (A) = 151.4 kJ/mol (Li 2 SiO 3 ) and E a2 (A) = 623.1 kJ/mol (Li 2 Si 2 O 5 ), the average value of n = 1.70 (Li 2 Si 2 O 5 ) for the surface crystallization and E t (A) = 202.8 kJ/mol. And E a (B) = 50.7 kJ/mol (Li 2 SiO 3 ), the average value of n = 3.89 (Li 2 SiO 3 ) for the bulk crystallization and E t (B) = 220.4 kJ/mol for the composition B parent glass. Because of the content of R 2 O is bigger than composition A, composition B parent glass has a lower E a , T g and a larger n, E t .

  4. The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype.

    Science.gov (United States)

    Tuan, Pham Anh; Bai, Songling; Yaegaki, Hideaki; Tamura, Takayuki; Hihara, Seisuke; Moriguchi, Takaya; Oda, Kenji

    2015-11-18

    accumulation in red-skinned peach and that it activates PpUFGT transcription. PpMYB10.2/3 may be involved in functions other than anthocyanin accumulation in peach. The peach cultivars having two MYB10.1-2 types resulted in the white skin color. By contrast, those with two MYB10.1-1 or MYB10.1-1/MYB10.1-2 types showed respective red or pale red skin color. These findings contribute to clarifying the molecular mechanisms of anthocyanin accumulation and generating gene-based markers linked to skin color phenotypes.

  5. HIPK1 interacts with c-Myb and modulates its activity through phosphorylation

    International Nuclear Information System (INIS)

    Matre, Vilborg; Nordgard, Oddmund; Alm-Kristiansen, Anne Hege; Ledsaak, Marit; Gabrielsen, Odd Stokke

    2009-01-01

    The transcription factor v-Myb is a potent inducer of myeloid leukaemias, and its cellular homologue c-Myb plays a crucial role in the regulation of haematopoiesis. In a yeast two-hybrid (Y2H) screening we identified the nuclear kinase HIPK1 as an interaction partner for human c-Myb. The interaction involves a C-terminal region of HIPK1, while a bipartite interaction surface was identified in c-Myb, including regions in its N-terminal DNA-binding domain as well as in its C-terminal region. HIPK1 and c-Myb co-localize in distinct nuclear foci upon co-transfection. c-Myb appears to be phosphorylated by HIPK1 in its negative regulatory domain as supported by both in vivo and in vitro data. A functional assay revealed that HIPK1 repressed the ability of c-Myb to activate a chromatin embedded target gene, mim-1, in haematopoetic cells. Our findings point to a novel link between an important kinase and a key regulator of haematopoiesis.

  6. Absorption and transport of deuterium-substituted 2R,4'R,8'R-alpha-tocopherol in human lipoproteins

    International Nuclear Information System (INIS)

    Traber, M.G.; Ingold, K.U.; Burton, G.W.; Kayden, H.J.

    1988-01-01

    Oral administration of a single dose of tri- or hexadeuterium substituted 2R,4'R,8'R-alpha-tocopheryl acetate (d3- or d6-alpha-T-Ac) to humans was used to follow the absorption and transport of vitamin E in plasma lipoproteins. Three hr after oral administration of d3-alpha-T-Ac (15 mg) to 2 subjects, plasma levels of d3-alpha-T were detectable; these increased up to 10 hr, reached a plateau at 24 hr, then decreased. Following administration of d6-alpha-T-Ac (15-16 mg) to 2 subjects, the percentage of deuterated tocopherol relative to the total tocopherol in chylomicrons increased more rapidly than the corresponding percentage in whole plasma. Chylomicrons and plasma lipoproteins were isolated from 2 additional subjects following administration of d3-alpha-T-Ac (140 or 60 mg). The percentage of deuterated tocopherol relative to the total tocopherol increased most rapidly in chylomicrons, then in very low density lipoproteins (VLDL), followed by essentially identical increases in low and high density lipoproteins (LDL and HDL, respectively) and lastly, in the red blood cells. This pattern of appearance of deuterated tocopherol is consistent with the concept that newly absorbed vitamin E is secreted by the intestine into chylomicrons; subsequently, chylomicron remnants are taken up by the liver from which the vitamin E is secreted in VLDL. The metabolism of VLDL in the circulation results in the simultaneous delivery of vitamin E into LDL and HDL

  7. Genetic versus Non-Genetic Regulation of miR-103, miR-143 and miR-483-3p Expression in Adipose Tissue and Their Metabolic Implications—A Twin Study

    Directory of Open Access Journals (Sweden)

    Jette Bork-Jensen

    2014-07-01

    Full Text Available Murine models suggest that the microRNAs miR-103 and miR-143 may play central roles in the regulation of subcutaneous adipose tissue (SAT and development of type 2 diabetes (T2D. The microRNA miR-483-3p may reduce adipose tissue expandability and cause ectopic lipid accumulation, insulin resistance and T2D. We aimed to explore the genetic and non-genetic factors that regulate these microRNAs in human SAT, and to investigate their impact on metabolism in humans. Levels of miR-103, miR-143 and miR-483-3p were measured in SAT biopsies from 244 elderly monozygotic and dizygotic twins using real-time PCR. Heritability estimates were calculated and multiple regression analyses were performed to study associations between these microRNAs and measures of metabolism, as well as between these microRNAs and possible regulating factors. We found that increased BMI was associated with increased miR-103 expression levels. In addition, the miR-103 levels were positively associated with 2 h plasma glucose levels and hemoglobin A1c independently of BMI. Heritability estimates for all three microRNAs were low. In conclusion, the expression levels of miR-103, miR-143 and miR-483-3p in adipose tissue are primarily influenced by non-genetic factors, and miR-103 may be involved in the development of adiposity and control of glucose metabolism in humans.

  8. Zebrafish Adar2 Edits the Q/R site of AMPA receptor Subunit gria2α transcript to ensure normal development of nervous system and cranial neural crest cells.

    Directory of Open Access Journals (Sweden)

    I-Chen Li

    Full Text Available BACKGROUND: Adar2 deaminates selective adenosines to inosines (A-to-I RNA editing in the double-stranded region of nuclear transcripts. Although the functions of mouse Adar2 and its biologically most important substrate gria2, encoding the GluA2 subunit of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, have been extensively studied, the substrates and functions of zebrafish Adar2 remain elusive. METHODS/PRINCIPAL FINDINGS: Expression of Adar2 was perturbed in the adar2 morphant (adar2MO, generated by antisense morpholio oligonucleotides. The Q/R editing of gria2α was reduced in the adar2MO and was enhanced by overexpression of Adar2, demonstrating an evolutionarily conserved activity between zebrafish and mammalian Adar2 in editing the Q/R site of gria2. To delineate the role of Q/R editing of gria2α in the developmental defects observed in the adar2MO, the Q/R editing of gria2α was specifically perturbed in the gria2αQRMO, generated by a morpholio oligonucleotide complementary to the exon complementary sequence (ECS required for the Q/R editing. Analogous to the adar2-deficient and Q/R-editing deficient mice displaying identical neurological defects, the gria2αQRMO and adar2MO displayed identical developmental defects in the nervous system and cranial cartilages. Knockdown p53 abolished apoptosis and partially suppressed the loss of spinal cord motor neurons in these morphants. However, reducing p53 activity neither replenished the brain neuronal populations nor rescued the developmental defects. The expressions of crestin and sox9b in the neural crest cells were reduced in the adar2MO and gria2αQRMO. Overexpressing the edited GluA2αR in the adar2MO restored normal expressions of cresting and sox9b. Moreover, overexpressing the unedited GluA2αQ in the wild type embryos resulted in reduction of crestin and sox9b expressions. These results argue that an elevated GluA2αQ level is sufficient for generating the

  9. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Szubin, Richard

    2015-01-01

    Three transcription factors (TFs), OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, an...

  10. Structure, magnetism, and transport of single-crystalline R NiSi3 (R = Y, Gd-Tm, Lu)

    Science.gov (United States)

    Arantes, Fabiana R.; Aristizábal-Giraldo, Deisy; Masunaga, Sueli H.; Costa, Fanny N.; Ferreira, Fabio F.; Takabatake, Toshiro; Mendonça-Ferreira, Leticie; Ribeiro, Raquel A.; Avila, Marcos A.

    2018-04-01

    We report on the physical properties of the intermetallic series R NiSi3 (R =Y , Gd-Tm, Lu). High quality single crystals with platelike morphology were grown using the Sn flux method. X-ray powder diffraction data show that this series crystallizes in the orthorhombic space group Cmmm, and Laue patterns indicate that the b axis remains perpendicular to the plane of the plates. Magnetization measurements show anisotropic antiferromagnetic ground states for R = Gd-Tm with Néel temperatures ranging from TN=2.6 K (TmNiSi3) up to 32.2 K (TbNiSi3), as well as metamagnetic transitions that in some cases appear together with hysteresis (TbNiSi3,DyNiSi3, and HoNiSi3). The easy axis changes from a axis to b axis on going from R = Gd-Ho to R = Er-Tm. All transitions from antiferromagnetic to paramagnetic states are clearly marked by sharp peaks in specific heat as well as in the derivative of resistivity measurements, which show metallic temperature dependence for all compounds and residual values in the range of 1 μ Ω cm . DyNiSi3 has two close phase transitions, while HoNiSi3 presents distinct critical temperatures for applied fields in the a or c directions (10.4 and 6.3 K, respectively), pointing to possible component-specific ordering of the local magnetic moments.

  11. An ODIP effort to map R2R ocean data terms to international vocabularies

    Science.gov (United States)

    Ferreira, Renata; Stocks, Karen; Arko, Robert

    2014-05-01

    The heterogeneity of terminology used in describing data creates a barrier to the efficient discovery and re-use of data, particularly across institutional, programmatic, and disciplinary boundaries. Here we explore the outcomes of a student project to crosswalk terms between the Rolling Deck to Repository (R2R) program and other international systems, as part of the Ocean Data Interoperability Platform (ODIP). R2R is a US program developing and implementing an information management system to preserve and provide access to routine underway data collected by U.S academic research vessels. R2R participates in ODIP, an international forum for improving the interoperability and effective sharing of marine data resources through technical workshops and joint prototypes. The vocabulary mapping effort lays a foundation for future ocean data portals through which users search and access international ocean data using familiar terms. R2R describes its data with a suite of controlled vocabularies (http://www.rvdata.us/voc) some of which were developed locally or are specific to the US. The goal of this student project is to crosswalk local/national vocabularies to authoritative international vocabularies, where they exist, or to vocabularies widely used by ODIP partners. Specifically, R2R developed the following crosswalks: R2R science party names to ORCID person identifiers, UNOLS ports to SeaDataNet Ports Gazetteer, R2R Device Models to NVS SeaVoX Device Catalog, and R2R Organizations to the European Directory of Marine Organizations (EDMO). Mappings were done in simple spreadsheets using synonymy relationships only, and will be published as part of the R2R Linked Data resources. The level of success in crosswalking was variable. The majority of ports were successfully mapped. Differences in the character sets (i.e. whether diacritic marks were used) caused automated matching to fail occasionally, but the number of ports was small enough that these could be manually

  12. Astrocyte IP3R2-dependent Ca2+ signaling is not a major modulator of neuronal pathways governing behavior.

    Directory of Open Access Journals (Sweden)

    Jeremy ePetravicz

    2014-11-01

    Full Text Available Calcium-dependent release of gliotransmitters by astrocytes is reported to play a critical role in synaptic transmission and be necessary for long-term potentiation (LTP, long-term depression (LTD and other forms of synaptic modulation that are correlates of learning and memory . Further, physiological processes reported to be dependent on Ca2+ fluxes in astrocytes include functional hyperemia, sleep, and regulation of breathing. The preponderance of findings indicate that most, if not all, receptor dependent Ca2+ fluxes within astrocytes are due to release of Ca2+ through IP3 receptor/channels in the endoplasmic reticulum. Findings from several laboratories indicate that astrocytes only express IP3 receptor type 2 (IP3R2 and that a knockout of IP3R2 obliterates the GPCR-dependent astrocytic Ca2+ responses. Assuming that astrocytic Ca2+ fluxes play a critical role in synaptic physiology, it would be predicted that eliminating of astrocytic Ca2+ fluxes would lead to marked changes in behavioral tests. Here, we tested this hypothesis by conducting a broad series of behavioral tests that recruited multiple brain regions, on an IP3R2 conditional knockout mouse model. We present the novel finding that behavioral processes are unaffected by lack of astrocyte IP3R-mediated Ca2+ signals. IP3R2 cKO animals display no change in anxiety or depressive behaviors, and no alteration to motor and sensory function. Morris water maze testing, a behavioral correlate of learning and memory, was unaffected by lack of astrocyte IP3R2-mediated Ca2+-signaling. Therefore, in contrast to the prevailing literature, we find that neither receptor-driven astrocyte Ca2+ fluxes nor, by extension, gliotransmission is likely to be a major modulating force on the physiological processes underlying behavior.

  13. Minimal $R+R^2$ Supergravity Models of Inflation Coupled to Matter

    CERN Document Server

    Ferrara, S

    2014-01-01

    The supersymmetric extension of "Starobinsky" $R+\\alpha R^2$ models of inflation is particularly simple in the "new minimal" formalism of supergravity, where the inflaton has no scalar superpartners. This paper is devoted to matter couplings in such supergravity models. We show how in the new minimal formalism matter coupling presents certain features absent in other formalisms. In particular, for the large class of matter couplings considered in this paper, matter must possess an R-symmetry, which is gauged by the vector field which becomes dynamical in the "new minimal" completion of the $R+\\alpha R^2$ theory. Thus, in the dual formulation of the theory, where the gauge vector is part of a massive vector multiplet, the inflaton is the superpartner of the massive vector of a nonlinearly realized R-symmetry. The F-term potential of this theory is of no-scale type, while the inflaton potential is given by the D-term of the gauged R-symmetry. The absolute minimum of the potential is always exactly supersymmetri...

  14. R2/R0-WTR decommissioning cost. Comparison and benchmarking analysis

    International Nuclear Information System (INIS)

    Varley, Geoff; Rusch, Chris

    2001-10-01

    the dismantling activities to determine if they are reasonable. The difference between the R2 estimated total decommissioning cost and the WTR actual total cost is the equivalent of approximately MSEK 85. The analyses presented in this report suggest that up to MSEK 30 of this difference could be related to the process equipment and other active component dismantling. In particular dismantling of the bioshield is singled out for detailed investigation. The final WTR cost turned out to be 25 per cent in excess of the WTR estimate. This may be attributed mainly to: 1. Loss of plant knowledge due to a period of 30 years between shutdown and start of decommissioning combined with the loss of key records concerning the condition of the plant. This was not a major factor but did contribute to additional costs. 2. Assumptions about the extent of concrete contamination and the ability to decontaminate concrete prior to dismantling turned out to be false (est. MSEK10 impact) 3. Unforeseen water treatment was required (est. MSEK12 impact) 4. Inefficiency due to restricted working space was not accounted for correctly (est. MSEK3 impact) 5. Required project management resources were underestimated (est. MSEK13 impact) 6. Health physics hours exceeded expected hours because of the broader requirements of the operations at the Waltz Mill site (est. MSEK5 impact) The items listed above account for close to 80 per cent of the cost overrun (MSEK43 of MSEK55). In principle most of these factors can be avoided in the case of R2 by taking appropriate action in advance. It would however be imprudent not to include some contingency in the R2 estimate to cover unforeseen conditions or implementation difficulties. Based on WTR experience, it would appear that a reasonable contingency for things about which R2 can do little to prepare for in advance, would be in the order of 5 to 10 per cent of the base cost estimate

  15. [Construction of Corynebacterium crenatum AS 1.542 δ argR and analysis of transcriptional levels of the related genes of arginine biosynthetic pathway].

    Science.gov (United States)

    Chen, Xuelan; Tang, Li; Jiao, Haitao; Xu, Feng; Xiong, Yonghua

    2013-01-04

    ArgR, coded by the argR gene from Corynebacterium crenatum AS 1.542, acts as a negative regulator in arginine biosynthetic pathway. However, the effect of argR on transcriptional levels of the related biosynthetic genes has not been reported. Here, we constructed a deletion mutant of argR gene: C. crenatum AS 1.542 Delta argR using marker-less knockout technology, and compared the changes of transcriptional levels of the arginine biosynthetic genes between the mutant strain and the wild-type strain. We used marker-less knockout technology to construct C. crenatum AS 1.542 Delta argR and analyzed the changes of the relate genes at the transcriptional level using real-time fluorescence quantitative PCR. C. crenatum AS 1.542 Delta argR was successfully obtained and the transcriptional level of arginine biosynthetic genes in this mutant increased significantly with an average of about 162.1 folds. The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR. However, the deletion of this regulator does not result in a clear change in arginine production in the bacteria.

  16. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation

  17. MiR-495-3p facilitates colon cancer cell proliferation via Wnt/β ...

    African Journals Online (AJOL)

    At present, molecular targets have been ... cells/well in six well ultra-low cluster plate and .... by spheroid formation assay after treatment with miR-495-3p simulations or inhibitor; *p < ..... subcellular dynamics and cyclin D1 mRNA transcription.

  18. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sitakanta ePattanaik

    2014-06-01

    Full Text Available Trichomes are specialized epidermal cells located on aerial parts of plants and are associated with a wide array of biological processes. Trichomes protect plants from adverse conditions including UV light and herbivore attack and are also an important source of a number of phytochemicals. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study molecular mechanism of cell differentiation and pattern formation in plants. The emerging picture suggests that the developmental process is controlled by a transcriptional network involving three major groups of transcription factors: the R2R3 MYB, basic helix-loop-helix (bHLH and WD40 repeat (WDR protein. These regulatory proteins form a trimeric activator complex that positively regulates trichome development. The single repeat R3 MYBs act as negative regulators of trichome development. They compete with the R2R3 MYBs to bind the bHLH factor and form a repressor complex. In addition to activator-repressor mechanism, a depletion mechanism may operate in parallel during trichome development. In this mechanism, the bHLH factor traps the WDR protein which results in depletion of WDR protein in neighboring cells. Consequently, the cells with high levels of bHLH and WDR proteins are developed into trichomes. A group of C2H2 zinc finger TFs has also been implicated in trichome development. Phytohormones, including gibberellins and jasmonic acid, play significant roles in this developmental process. Recently, microRNAs have been shown to be involved in trichome development. Furthermore, it has been demonstrated that the activities of the key regulatory proteins involved in trichome development are controlled by the 26S/ubiquitin proteasome system (UPS, highlighting the complexity of the regulatory network controlling this developmental process. To complement several excellent recent relevant reviews, this review focuses on the transcriptional network and hormonal interplay

  19. In Vivo Quantification of Cerebral R2FNx01-Response to Graded Hyperoxia at 3 Tesla

    Directory of Open Access Journals (Sweden)

    Grigorios Gotzamanis

    2015-01-01

    Full Text Available Objectives: This study aims to quantify the response of the transverse relaxation rate of the magnetic resonance (MR signal of the cerebral tissue in healthy volunteers to the administration of air with step-wise increasing percentage of oxygen. Materials and Methods: The transverse relaxation rate (R2FNx01 of the MR signal was quantified in seven volunteers under respiratory intake of normobaric gas mixtures containing 21, 50, 75, and 100% oxygen, respectively. End-tidal breath composition, arterial blood saturation (SaO 2 , and heart pulse rate were monitored during the challenge. R2FNx01 maps were computed from multi-echo, gradient-echo magnetic resonance imaging (MRI data, acquired at 3.0T. The average values in the segmented white matter (WM and gray matter (GM were tested by the analysis of variance (ANOVA, with Bonferroni post-hoc correction. The GM R2FNx01-reactivity to hyperoxia was modeled using the Hill′s equation. Results: Graded hyperoxia resulted in a progressive and significant (P < 0.05 decrease of the R2FNx01 in GM. Under normoxia the GM-R2FNx01 was 17.2 ± 1.1 s -1 . At 75% O 2 supply, the R2FNx01 had reached a saturation level, with 16.4 ± 0.7 s -1 (P = 0.02, without a significant further decrease for 100% O 2 . The R2FNx01-response of GM correlated positively with CO 2 partial pressure (R = 0.69 ± 0.19 and negatively with SaO 2 (R = -0.74 ± 0.17. The WM showed a similar progressive, but non-significant, decrease in the relaxation rates, with an increase in oxygen intake (P = 0.055. The Hill′s model predicted a maximum R2FNx01 response of the GM, of 3.5%, with half the maximum at 68% oxygen concentration. Conclusions: The GM-R2FNx01 responds to hyperoxia in a concentration-dependent manner, suggesting that monitoring and modeling of the R2FNx01-response may provide new oxygenation biomarkers for tumor therapy or assessment of cerebrovascular reactivity in patients.

  20. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jia He

    2018-04-01

    Full Text Available Vegetative phase change is regulated by a decrease in the abundance of the miRNAs, miR156 and miR157, and the resulting increase in the expression of their targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL transcription factors. To determine how miR156/miR157 specify the quantitative and qualitative changes in leaf morphology that occur during vegetative phase change, we measured their abundance in successive leaves and characterized the phenotype of mutations in different MIR156 and MIR157 genes. miR156/miR157 decline rapidly between leaf 1&2 and leaf 3 and decrease more slowly after this point. The amount of miR156/miR157 in leaves 1&2 greatly exceeds the threshold required to specify their identity. Subsequent leaves have relatively low levels of miR156/miR157 and are sensitive to small changes in their abundance. In these later-formed leaves, the amount of miR156/miR157 is close to the threshold required to specify juvenile vs. adult identity; a relatively small decrease in the abundance of miR156/157 in these leaves produces a disproportionately large increase in SPL proteins and a significant change in leaf morphology. miR157 is more abundant than miR156 but has a smaller effect on shoot morphology and SPL gene expression than miR156. This may be attributable to the inefficiency with which miR157 is loaded onto AGO1, as well as to the presence of an extra nucleotide at the 5' end of miR157 that is mis-paired in the miR157:SPL13 duplex. miR156 represses different targets by different mechanisms: it regulates SPL9 by a combination of transcript cleavage and translational repression and regulates SPL13 primarily by translational repression. Our results offer a molecular explanation for the changes in leaf morphology that occur during shoot development in Arabidopsis and provide new insights into the mechanism by which miR156 and miR157 regulate gene expression.

  1. A facile stereospecific synthesis of the ( sup 2 H sub 6 )-isopropyl-labelled metoprolol enantiomers from (2R)- and (2S)-glycidyl 3-nitrobenzenesulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, S.S.; Nelson, W.L. (Washington Univ., Seattle, WA (USA). Dept. of Medicinal Chemistry)

    1990-12-01

    Enantiomers of metoprolol containing six deuterium atoms in the isopropyl methyl groups were prepared in two steps from the sodium salt of 4-(2-methoxyethyl)phenol (3) and the commercially available (2R)-and (2S)-glycidyl 3-nitrobenzenesulfonates ((2R)-2 and (2S)-2). The resulting (2R)- and (2S)-epoxides were opened using ({sup 2}H{sub 6})-isopropylamine. The enantiomeric excesses were 93 and 95% for the deuterated (2R)- and (2S)-enantiomers of metoprolol ((2R)-1 and (2S)-1), respectively, as determined by chiral column HPLC. (author).

  2. R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Weinberg Zasha

    2011-01-01

    Full Text Available Abstract Background With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. Results We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. Conclusions R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file.

  3. R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Science.gov (United States)

    2011-01-01

    Background With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. Results We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. Conclusions R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file. PMID:21205310

  4. R2R--software to speed the depiction of aesthetic consensus RNA secondary structures.

    Science.gov (United States)

    Weinberg, Zasha; Breaker, Ronald R

    2011-01-04

    With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file.

  5. Location of rRNA transcription to the nucleolar components: disappearance of the fibrillar centers in nucleoli of regenerating rat hepatocytes.

    Science.gov (United States)

    Montanaro, Lorenzo; Govoni, Marzia; Orrico, Catia; Treré, Davide; Derenzini, Massimo

    2011-01-01

    The precise location of rDNA transcription to the components of mammalian cell nucleolus is still debated. This was due to the fact that all the molecules necessary for rRNA synthesis are located in two of the three components, the fibrillar centers (FCs) and the dense fibrillar component (DFC), which together with the granular component (GC) are considered to be constantly present in mammalian cell nucleoli. In the present study we demonstrated that in nucleoli of many regenerating rat hepatocytes at 15 h after partial hepatectomy the FCs were no longer present, only the DFC and the GC being detected. At this time of regeneration the rRNA transcriptional activity was three fold that of resting hepatocytes, while the synthesis of DNA was not yet significantly increased, indicating that these nucleolar changes were due to the rRNA synthesis up-regulation. The DFC appeared to be organized in numerous, small, roundish tufts of fibrils. The silver staining procedure for AgNOR proteins, which are associated with the ribosomal genes, selectively and homogeneously stained these fibrillar tufts. Immuno-gold visualization of the Upstream Binding Factor (UBF), which is associated with the promoter region and the transcribed portion of the rRNA 45S gene, demonstrated that UBF was selectively located in the fibrillar tufts. We concluded that in proliferating rat hepatocytes the increased synthesis of rRNA induced an activation of the rRNA transcription machinery located in the fibrillar centers which, by becoming associated with the ribonucleoprotein transcripts, assumed the morphological pattern of the DFC.

  6. Synthesis and physical-chemical properties of 6-(5-(1Н-tetrazole-1-ylmethyl-4-R-1,2,4-triazole-3-ylthiopyridin-3-amines and 6-((5-(1Н-tetrazole-1-ylmethil-4-R-1,2,4-triazole-3-ylthiopyridin-3-yl-(alk,ar,heterylmethanimines

    Directory of Open Access Journals (Sweden)

    Yu. S. Hulina

    2017-02-01

    Full Text Available Over the past decade the number of publications, that contain different aspects of chemistry and use of triazoles and tetrazoles have been doubled and continues to grow. Puplications of recent years show that heterocycles with 1,2,3,4-teterazoles and 1,2,4-triazoles are biologically active compounds with a broad spectrum of action. This fact indicates the interest to these compounds as potential objects of modern pharmaceutical market, namely to those compounds which contain both heterocycles. Purpose – synthesis and establishment of physical-chemical properties of 6-(5-(1Н-tetrazole-1-ylmethyl-4-R-1,2,4-triazole-3-ylthiopyridin-3-amines and 6-((5-(1Н-tetrazole-1-ylmethil-4-R-1,2,4-triazole-3-ylthiopyridin-3-yl-(alk,ar,heterylmethanimines. Materials and methods. The melting point has been determined by capillary method. The elemental composition of compounds has been set with the help of elemental analyzer Elementar Vario L cube (CHNS. 1H NMR spectra of obtained compounds has been set with the help of Varian Mercury VX-200, solvent – DMSO-d6, internal standart – Tetramethylsilane. Chromatography-mass spectrometry studies have been conducted on gas-liquid chromatograph Agilent 1260 Infinity HPLC equipped with a mass spectrometer Agilent 6120. 5-(1H-Tetrazole-1-ylmethyl-4-R-1,2,4-triazole-3-thioles were used as starting materials for 6-(5-(1Н-tetrazole-1-ylmethyl-4-R-1,2,4-triazole-3-ylthiopyridin-3-amines. Synthesis of the compounds was carried out in a medium of propyl alcohol in the presence of 5-amino-2-chloropyridine. 6-((5-(1Н-tetrazole-1-ylmethil-4-R-1,2,4-triazole-3-ylthiopyridin-3-yl-(alk,ar,heterylmethanimines were obtained reacting 6-(5-(1Н-tetrazole-1-ylmethyl-4-R-1,2,4-triazole-3-ylthiopyridin-3-amines with the appropriate aldehydes (acetaldehyde, m-anisaldehyde, 2-hydroxybenzaldehyde, 3-fluorobenzaldehyde, 4-fluorobenzaldehyde, 4-diethylaminobenzaldehyd, hydroxynaphthalene in the acetic acid medium. Results. 11 New

  7. Developmental regulation of ecdysone receptor (EcR and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Tathyana Rachel Palo Mello

    2014-12-01

    Full Text Available Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH, control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD of both EcR transcript variants we detected the differential expression of 234 poly-A+ transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1. EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g. miR-133 and miR-375, as well honeybee-specific ones (e.g. miR-3745 and miR-3761. Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect.

  8. R2R Eventlogger: Community-wide Recording of Oceanographic Cruise Science Events

    Science.gov (United States)

    Maffei, A. R.; Chandler, C. L.; Stolp, L.; Lerner, S.; Avery, J.; Thiel, T.

    2012-12-01

    Methods used by researchers to track science events during a science research cruise - and to note when and where these occur - varies widely. Handwritten notebooks, printed forms, watch-keeper logbooks, data-logging software, and customized software have all been employed. The quality of scientific results is affected by the consistency and care with which such events are recorded and integration of multi-cruise results is hampered because recording methods vary widely from cruise to cruise. The Rolling Deck to Repository (R2R) program has developed an Eventlogger system that will eventually be deployed on most vessels in the academic research fleet. It is based on the open software package called ELOG (http://midas.psi.ch/elog/) originally authored by Stefan Ritt and enhanced by our team. Lessons have been learned in its development and use on several research cruises. We have worked hard to find approaches that encourage cruise participants to use tools like the eventlogger. We examine these lessons and several eventlogger datasets from past cruises. We further describe how the R2R Science Eventlogger works in concert with the other R2R program elements to help coordinate research vessels into a coordinated mobile observing fleet. Making use of data collected on different research cruises is enabled by adopting common ways of describing science events, the science instruments employed, the data collected, etc. The use of controlled vocabularies and the practice of mapping these local vocabularies to accepted oceanographic community vocabularies helps to bind shipboard research events from different cruises into a more cohesive set of fleet-wide events that can be queried and examined in a cross-cruise manner. Examples of the use of the eventlogger during multi-cruise oceanographic research programs along with examples of resultant eventlogger data will be presented. Additionally we will highlight the importance of vocabulary use strategies to the success of the

  9. A comparison of R-22, R-134a, R-410a, and R-407c condensation performance in smooth and enhanced tubes: Part 2, Pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Eckels, S J; Tesene, B A

    1999-07-01

    This paper reports pressure drops during condensation for R-22, R-134a, R-410a, and R-407c in three enhanced tubes and one smooth tube. The test tubes were a 3/8 inch outer diameter smooth tube, a 3/8 inch outer diameter microfin tube, a 5/16 inch outer diameter microfin tube, and a 5/8 inch outer diameter microfin tube. Pressure drops are reported at four mass fluxes, at two saturation temperatures, and over a range of average qualities in the test tubes. The pressure drops for R-410a were approximately 40% lower than those of R-22 in both tubes. R-407c had 10% to 20% lower pressure drops than R-22, while 134-a had slightly larger pressure drops than R-22. The microfin tube pressure drops were, on average, 40% to 80% higher than those for the smooth tube for all refrigerants. The pressure drop penalty of the microfin tube was shown to decrease with increased quality.

  10. Formation of closo-rhodacarboranes with the η23-(CH2=CHC5H6) ligand in the reaction of μ-dichloro-bis[(η4-norbornadiene)rhodium] with nido-dicarbaundecaborates [K][nido-7-R1-8-R2-7,8-C2B9H10

    International Nuclear Information System (INIS)

    Safronov, A.V.; Sokolova, M.N.; Vorontsov, E.V.; Petrovskij, P.V.; Barakovskaya, I.G.; Chizhevskij, I.T.

    2004-01-01

    New closo-(η 23 -(4-vinylcyclopentene-3-yl)rhodacarboranes were prepared by reaction of the complex [(η 4 -C 7 H 8 )RhCl] 2 (C 7 H 8 -norbornadiene) with salts of substituted nido-dicarbaundecaborates [K][nido-7-R 1 -8-R 2 -7,8-C 2 B 9 H 10 ] (R 1 =R 2 =H (a); R = R 2 =Me (b); R 1 , R 2 =1',2'-(CH 2 ) 2 C 6 H 4 (c); R 1 =Me, R 2 =Ph (d) in CH 2 Cl 2 . The structure of the compounds prepared in solution was studied by the method of multinuclear NMR spectroscopy. A probable mechanism of the norbornadiene ligand regrouping was suggested [ru

  11. Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Takehiro Ichikawa

    Full Text Available OBJECTIVE: Trastuzumab has been used for the treatment of HER2-positive breast cancer (BC. However, a subset of BC patients exhibited resistance to trastuzumab therapy. Thus, clarifying the molecular mechanism of trastuzumab treatment will be beneficial to improve the treatment of HER2-positive BC patients. In this study, we identified trastuzumab-responsive microRNAs that are involved in the therapeutic effects of trastuzumab. METHODS AND RESULTS: RNA samples were obtained from HER2-positive (SKBR3 and BT474 and HER2-negetive (MCF7 and MDA-MB-231 cells with and without trastuzumab treatment for 6 days. Next, we conducted a microRNA profiling analysis using these samples to screen those microRNAs that were up- or down-regulated only in HER2-positive cells. This analysis identified miR-26a and miR-30b as trastuzumab-inducible microRNAs. Transfecting miR-26a and miR-30b induced cell growth suppression in the BC cells by 40% and 32%, respectively. A cell cycle analysis showed that these microRNAs induced G1 arrest in HER2-positive BC cells as trastuzumab did. An Annexin-V assay revealed that miR-26a but not miR-30b induced apoptosis in HER2-positive BC cells. Using the prediction algorithms for microRNA targets, we identified cyclin E2 (CCNE2 as a target gene of miR-30b. A luciferase-based reporter assay demonstrated that miR-30b post-transcriptionally reduced 27% (p = 0.005 of the gene expression by interacting with two binding sites in the 3'-UTR of CCNE2. CONCLUSION: In BC cells, trastuzumab modulated the expression of a subset of microRNAs, including miR-26a and miR-30b. The upregulation of miR-30b by trastuzumab may play a biological role in trastuzumab-induced cell growth inhibition by targeting CCNE2.

  12. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction.

    Science.gov (United States)

    Hudson, Jennifer; Gardiner, Melissa; Deshpande, Nandan; Egan, Suhelen

    2018-04-01

    Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae. © 2017 John Wiley & Sons Ltd.

  13. Configurational Reassignment and Improved Preparation of the Competitive IL-6 Receptor Antagonist 20R,21R-Epoxyresibufogenin-3-formate

    Science.gov (United States)

    Boos, Terrence L.; Cheng, Kejun; Greiner, Elisabeth; Deschamps, Jeffrey R.; Jacobson, Arthur E.; Rice, Kenner C.

    2012-01-01

    20R,21R-Epoxyresibufogenin-3-formate (1) and 20S,21S-epoxyresibufogenin-3-formate (2) were synthesized from commercial resibufogenin (3) using known procedures. The major product (1) was dextrorotatory, as was the major product from the reported synthesis of epoxyresibufogenin-3-formate; however, the literature (+)-compound was assigned the 20S,21S-configuration based on NMR data. We have now unequivocally determined, using single-crystal X-ray structure analyses of the major and minor products of the synthesis and of their derivatives, that the major product from the synthesis was (+)-20R,21R-epoxyresibufogenin-3-formate (1). Our minor synthetic product was determined to have the (-)-20S,21S-configuration (2). The (+)-20R,21R-compound 1 has been found to have high affinity for the IL-6 receptor and to act as an IL-6 antagonist. A greatly improved synthesis of 1 was achieved through oxidation of preformed resibufogenin-3-formate. This has enabled us to prepare, from the very expensive commercial resibufogenin, considerably larger quantities of 1, the only known non-peptide small molecule IL-6 antagonist. PMID:22360661

  14. miR-21-3p is a positive regulator of L1CAM in several human carcinomas.

    Science.gov (United States)

    Doberstein, Kai; Bretz, Niko P; Schirmer, Uwe; Fiegl, Heidi; Blaheta, Roman; Breunig, Christian; Müller-Holzner, Elisabeth; Reimer, Dan; Zeimet, Alain G; Altevogt, Peter

    2014-11-28

    Expression of L1 cell adhesion molecule (L1CAM) occurs frequently in human cancers and is associated with poor prognosis in cancers such as ovarian, endometrial, breast, renal cell carcinoma and pancreatic ductal adenocarcinoma. L1CAM promotes cell motility, invasion, chemoresistance and metastasis formation. Elucidating genetic processes involved in the expression of L1CAM in cancers is of considerable importance. Transcription factors such as SLUG, β-catenin/TCF-LEF, PAX8 and VHL have been implicated in the re-activation of L1CAM in various types of cancers. There is increasing evidence that micro-RNAs can also have strong effects on gene expression. Here we have identified miR-21-3p as a positive regulator of L1CAM expression. Over-expression of miR-21-3p (miR-21*) but not the complementary sequence miR-21-5p (miR-21) could strongly augment L1CAM expression in renal, endometrial and ovarian carcinoma derived cell lines by an unknown mechanism involving transcriptional activation of the L1CAM gene. In patient cohorts from renal, endometrial and ovarian cancers we observed a strong positive correlation of L1CAM and miR-21-3p expressions. Although L1CAM alone was a reliable marker for overall and disease free survival, the combination of L1CAM and miR-21-3p expressions strongly enhanced the predictive power. Our findings shed new light on the complex regulation of L1CAM in cancers and advocate the use of L1CAM/miR-21-3p for diagnostic application. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Crystal electric field splitting of R{sup 3+}-ions in pure and Co- and Cu-doped RNi{sub 2}B{sub 2}C (R=Ho, Er, Tm)

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, U.; Allenspach, P.; Henggeler, W.; Zolliker, M.; Furrer, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    From the crystal-electric-field (CEF) splitting of the R{sup 3+}-ions, the CEF parameters of RNi{sub 2}B{sub 2}C (R=Ho, Er, Tm) were deduced. In order to get information about the influence of the variation of the density of states (DOS) at the Fermi level (E{sub F}), CEF spectroscopy measurements with Co- and Cu-doped ErNi{sub 2}B{sub 2}C-samples were performed. (author) 1 fig., 1 tab., 1 ref.

  16. Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA

    DEFF Research Database (Denmark)

    Ostergaard, P; Phan, H; Johansen, L B

    1998-01-01

    The six major structural domains of 23 S rRNA from Escherichia coli, and all combinations thereof, were synthesized as separate T7 transcripts and reconstituted with total 50 S subunit proteins. Analysis by one and two-dimensional gel electrophoresis demonstrated the presence of at least one prim...... approach was used to map the putative binding regions on domain V of protein L9 and the 5 S RNA-L5-L18 complex....

  17. Hydrologic Tests at Characterization Wells R-9i, R-13, R-19, R-22, and R-31, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    S.G.McLin; W.J. Stone

    2004-06-01

    Hydrologic information is essential for environmental efforts at Los Alamos National Laboratory. Testing at new characterization wells being drilled to the regional aquifer (''R wells'') to improve the conceptual hydrogeologic model of the Pajarito Plateau is providing such information. Field tests were conducted on various zones of saturation penetrated by the R wells to collect data needed for determining hydraulic properties. This document provides details of the design and execution of testing as well as an analysis of data for five new wells: R-9i, R-13, R-19, R-22, and R-31. One well (R-13) was evaluated by a pumping test and the rest (R-9i, R-19, R-22, and R-31) were evaluated by injection tests. Characterization well R-9i is located in Los Alamos Canyon approximately 0.3 mi west of the Route 4/Route 502 intersection. It was completed at a depth of 322 ft below ground surface (bgs) in March 2000. This well was constructed with two screens positioned below the regional water table. Both screens were tested. Screen 1 is completed at about 189-200 ft bgs in fractured basalt, and screen 2 is completed at about 270-280 ft bgs in massive basalt. Specific capacity analysis of the screen 1 data suggests that the fractured basalt has a transmissivity (T) of 589 ft{sup 2}/day and corresponds to a hydraulic conductivity (K) of 7.1 ft/day based on a saturated thickness of 83 ft. The injection test data from the massive basalt near screen 2 were analyzed by the Bouwer-Rice slug test methodology and suggest that K is 0.11 ft/day, corresponding to a T of about 2.8 ft{sup 2}/day based on a saturated thickness of 25 ft. Characterization well R-13 is located in Mortandad Canyon just west of the eastern Laboratory boundary. It was completed at a depth of 1029 ft bgs in February 2002. This well was constructed with one 60-ft long screen positioned about 125 ft below the regional water table. This screen is completed at about 958-1019 ft bgs and straddles the

  18. The Vibrio cholerae var regulon encodes a metallo-β-lactamase and an antibiotic efflux pump, which are regulated by VarR, a LysR-type transcription factor.

    Directory of Open Access Journals (Sweden)

    Hong-Ting Victor Lin

    Full Text Available The genome sequence of V. cholerae O1 Biovar Eltor strain N16961 has revealed a putative antibiotic resistance (var regulon that is predicted to encode a transcriptional activator (VarR, which is divergently transcribed relative to the putative resistance genes for both a metallo-β-lactamase (VarG and an antibiotic efflux-pump (VarABCDEF. We sought to test whether these genes could confer antibiotic resistance and are organised as a regulon under the control of VarR. VarG was overexpressed and purified and shown to have β-lactamase activity against penicillins, cephalosporins and carbapenems, having the highest activity against meropenem. The expression of VarABCDEF in the Escherichia coli (ΔacrAB strain KAM3 conferred resistance to a range of drugs, but most significant resistance was to the macrolide spiramycin. A gel-shift analysis was used to determine if VarR bound to the promoter regions of the resistance genes. Consistent with the regulation of these resistance genes, VarR binds to three distinct intergenic regions, varRG, varGA and varBC located upstream and adjacent to varG, varA and varC, respectively. VarR can act as a repressor at the varRG promoter region; whilst this repression was relieved upon addition of β-lactams, these did not dissociate the VarR/varRG-DNA complex, indicating that the de-repression of varR by β-lactams is indirect. Considering that the genomic arrangement of VarR-VarG is strikingly similar to that of AmpR-AmpC system, it is possible that V. cholerae has evolved a system for resistance to the newer β-lactams that would prove more beneficial to the bacterium in light of current selective pressures.

  19. Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory.

    Science.gov (United States)

    Vetere, Gisella; Barbato, Christian; Pezzola, Silvia; Frisone, Paola; Aceti, Massimiliano; Ciotti, MariaTeresa; Cogoni, Carlo; Ammassari-Teule, Martine; Ruberti, Francesca

    2014-12-01

    Post-transcriptional gene regulation mediated by microRNAs (miRNAs) is implicated in memory formation; however, the function of miR-92 in this regulation is uncharacterized. The present study shows that training mice in contextual fear conditioning produces a transient increase in miR-92 levels in the hippocampus and decreases several miR-92 gene targets, including: (i) the neuronal Cl(-) extruding K(+) Cl(-) co-transporter 2 (KCC2) protein; (ii) the cytoplasmic polyadenylation protein (CPEB3), an RNA-binding protein regulator of protein synthesis in neurons; and (iii) the transcription factor myocyte enhancer factor 2D (MEF2D), one of the MEF2 genes which negatively regulates memory-induced structural plasticity. Selective inhibition of endogenous miR-92 in CA1 hippocampal neurons, by a sponge lentiviral vector expressing multiple sequences imperfectly complementary to mature miR-92 under the control of the neuronal specific synapsin promoter, leads to up-regulation of KCC2, CPEB3 and MEF2D, impairs contextual fear conditioning, and prevents a memory-induced increase in the spine density. Taken together, the results indicate that neuronal-expressed miR-92 is an endogenous fine regulator of contextual fear memory in mice. © 2014 Wiley Periodicals, Inc.

  20. A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions.

    Science.gov (United States)

    Lee, Daniel Y; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W; Deng, Zhaoqun; Yang, Burton B

    2009-01-01

    Mature microRNAs (miRNAs) are single-stranded RNAs of 18-24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3'UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3'UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3'UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3'UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3'UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3'UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3'UTR may be an approach in the development of gene therapy.

  1. Magnetic moment and magnetocrystalline anisotropy of 3d-ion subsystem in R2T14B

    International Nuclear Information System (INIS)

    Bartashevich, M.I.; Kudrevatykh, N.V.; Andreev, A.V.; Rejmer, V.A.

    1990-01-01

    The effect of substituting cobalt for iron on the magnetic moment, magneto-crystalline anisotropy and thermal expansion of R 2 (Fe 1-x Co x ) 14 B single crystals (R=Y, Gd, 0≤x≤0.3) is investigated. The uniaxial magnetic anisotropy constant K 1 for the 3d-subsystem passes through a maximum at T=4.2 K with increasing Co concentration. For T c the temperature dependence of K 1 does not possess a positive slope. The magnetic moment of the 3d-subsystem at 4.2 K does not exhibit the maximum at intermediate concentrations observed for most R(Fe, Co)-intermetallics. An explanation is presented of the changes in the magnetic properties. It is shown that the variation of the interatomic distances on thermal expansion should not affect the magnitude of the anisotropy constant of the 3d- and R-subsystems

  2. Fabrication of TiO2 nanorod assembly grafted rGO (rGO@TiO2-NR) hybridized flake-like photocatalyst

    Science.gov (United States)

    Lv, Kangle; Fang, Shun; Si, Lingling; Xia, Yang; Ho, Wingkei; Li, Mei

    2017-01-01

    To efficiently separate the photo-generated electron-hole pairs of TiO2 hybrid, anatase TiO2 nanorod assembly grafted reduced graphene oxides (rGO@TiO2-NR) hybrid was successfully fabricated using potassium titanium oxalate (PTO) and graphene oxides (GO) as starting materials and diethylene glycol (DEG) as reductant. The effect of GO content on the structure and photocatalytic activity of rGO@TiO2-NR composite was systematically studied. Results show that, in the absence of GO, only TiO2 microsphere assembly is obtained from TiO2 nanorods. The presence of GO results in the formation of a flake-like TiO2-nanorod-assembled grafted rGO hybrid. The photocatalytic activity of rGO@TiO2-NR composite increases first and then decreases with increase in the amount of GO from 0 wt.% to 10 wt.%. The hybridized S4 sample prepared with 4 wt.% GO possesses the highest photocatalytic activity with a constant rate of 0.039 min-1 in the photocataytic degradation of Brilliant X-3B dye (X3B); this sample was enhanced more than three times when compared with pure TiO2 sample (0.012 min-1). The enhanced photocatalytic activity of the rGO@TiO2-NR hybrid was attributed to the strong interaction between TiO2 nanorods and rGO. The unique hierarchical structure of 1D nanorod assembly TiO2-rGO flakes facilitates the injection and transfer of photo-generated electrons from TiO2 to graphene, thus retarding the recombination of electron-hole pairs and enhancing the photocatalytic activity. The enlarged BET surface areas, not only increasing the number of active sites, but also facilitating the adsorption of the dye, and improved light-harvesting ability also contribute to the enhanced photoreactivity of rGO@TiO2-NR hybrid.

  3. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Sunghan [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Shin, Yun-jeong [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Woo-Young [College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Koh, Hee-Jong, E-mail: heejkoh@snu.ac.kr [Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  4. Sirt2 suppresses glioma cell growth through targeting NF-κB–miR-21 axis

    International Nuclear Information System (INIS)

    Li, Ya’nan; Dai, Dongwei; Lu, Qiong; Fei, Mingyu; Li, Mengmeng; Wu, Xi

    2013-01-01

    Highlights: •Sirt2 expression is down-regulated in human glioma tissues and cell lines. •Sirt2 regresses glioma cell growth and colony formation via inducing apoptosis. •miR-21 is essential for the functions of Sirt2 in glioma cells. •Sirt2 deacetylates p65 to decrease miR-21 expression. -- Abstract: Sirtuins are NAD + -dependent deacetylases that regulate numerous cellular processes including aging, DNA repair, cell cycle, metabolism, and survival under stress conditions. The roles of sirtuin family members are widely studied in carcinogenesis. However, their roles in glioma remain unclear. Here we report that Sir2 was under expressed in human glioma tissues and cell lines. We found that Sirt2 overexpression decreased cell proliferation and colony formation capacity. In addition, Sirt2 overexpression induced cellular apoptosis via up-regulating cleaved caspase 3 and Bax, and down-regulating anti-apoptotic protein Bcl-2. Sirt2 knockdown obtained opposing results. We showed that Sirt2 overexpression inhibited miR-21 expression, and Sirt2 was not sufficient to reduce cell proliferation and colony formation as well as to induce apoptosis when miR-21 was knocked down in glioma cells. Mechanically, we demonstrated that Sirt2 deacetylated p65 at K310 and blocked p65 binding to the promoter region of miR-21, thus regressing the transcription of miR-21. In summary, Sirt2 is critical in human glioma via NF-κB–miR-21 pathway and Sirt2 activator may serve as candidate drug for glioma therapy

  5. Preparation of rT3 in human serum ria kit

    International Nuclear Information System (INIS)

    Zhang Peixuan; Han Shiquan; Zhang Liling

    1991-02-01

    A method for the measurement of rT 3 in serum by radioimmunoassay is presented. The double antibody plus polyethylene glycol was used as separating reagent. The method is simple, precise and sensitive. Serum rT 3 values of normal (n = 61) were 47.7 ± 11.34 x 10 -8 g/L (X-bar ± SD). Patients with hyperthyroidism (n = 8) serum rT 3 values were 272.2 ± 91.1 x 10 -8 g/L (X-bar ± SD) and patients with hypothyroidism (n = 2) serum rT 3 values were 11.4 ± 8.3 x 10 -8 g/L (X-bar ± SD). It appears to be a useful diagnostic procedure for thyroid diseases

  6. Planarity of substituted pyrrole and furan rings in (3R*, 1'S*, 3'R*)-3-(1'-tert-butylamino-1'H, 3'H-benzo[c] furan-3'- yl)-2-tert-butyl-2,3-dihydro-1H-benzo[c] pyrrol-1-one

    Czech Academy of Sciences Publication Activity Database

    Donkeng Dazie, Joel; Liška, Alan; Ludvík, Jiří; Fábry, Jan; Dušek, Michal; Eigner, Václav

    2017-01-01

    Roč. 232, č. 6 (2017), s. 441-452 ISSN 2194-4946 R&D Projects: GA ČR GA13-21704S; GA MŠk(CZ) LO1603 EU Projects: European Commission(CZ) CZ.2.16/3.1.00/24510 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : crystal structure analysis * isobenzofuran * isoindolinone Subject RIV: CF - Physical ; Theoretical Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Physical chemistry; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 3.179, year: 2016

  7. An improved slow neutron spectrometer at nuclear research reactor et-r r-1. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abu El-Ela, M A [Reactor and Neutron Physics, Nuclear Research Center, AEA, Cairo (Egypt)

    1996-03-01

    An improved slow neutron selector has been aligned at channel number 6 of the nuclear research reactor ET-R R-1 Inshas. The flight path is 4 meter. The collimator-rotor-collimator system has the dimensions 0.3 x 2.5 x 70 cm with the rotor diameter 16 cm and 3 slits of 0.3 x 2.5 cm cross section. The rotor rotation rate varies between 600 r.p.m. the counting system has one of the best modern high electronic advanced technology time analyzer with minimum dwell time 2 sec, 8192 channels and a double detector inputs of TTL and NEG NIM standard pulses. The analyzer external triggering signals are of TTL standard type. A special design {sup 3} He detector for time of flight spectrometry has been used in the SNS. The reactor bare thermal neutron spectrum has been successfully measured, to show good agreement with the previous data. 6 figs.

  8. Reduced miR-659-3p levels correlate with progranulin increase in hypoxic conditions: implications for frontotemporal dementia.

    Directory of Open Access Journals (Sweden)

    Paola ePiscopo

    2016-05-01

    Full Text Available Progranulin (PGRN is a secreted protein expressed ubiquitously throughout the body, including the brain, where it localizes in neurons and activated microglia. Loss-of-function mutations in the GRN gene are an important cause of familial Frontotemporal Lobar Degeneration (FTLD. PGRN has a neurotrophic and anti-inflammatory activity, and it is neuroprotective in several injury conditions, such as oxygen or glucose deprivation, oxidative injury, and hypoxic stress. Indeed, we have previously demonstrated that hypoxia induces the up-regulation of GRN transcripts. Several studies have shown microRNAs involvement in hypoxia. Moreover, in FTLD patients with a genetic variant of GRN (rs5848, the reinforcement of miR-659-3p binding site has been suggested to be a risk factor. Here, we report that miR-659-3p interacts directly with GRN 3’UTR as shown by luciferase assay in HeLa cells and ELISA and Western Blot analysis in HeLa and Kelly cells. Moreover, we demonstrate the physical binding between GRN mRNA and miR-659-3p employing a miRNA capture-affinity technology in SK-N-BE and Kelly cells. In order to study miRNAs involvement in hypoxia-mediated up-regulation of GRN, we evaluated miR-659-3p levels in SK-N-BE cells after 24h of hypoxic treatment, finding them inversely correlated to GRN transcripts. Furthermore, we analyzed an animal model of asphyxia, finding that GRN mRNA levels increased at post-natal day (pnd 1 and pnd 4 in rat cortices subjected to asphyxia in comparison to control rats and miR-659-3p decreased at pnd 4 just when GRN reached the highest levels. Our results demonstrate the interaction between miR-659-3p and GRN transcript and the involvement of miR-659-3p in GRN up-regulation mediated by hypoxic/ischemic insults.

  9. Dielectric properties of thin C r2O3 films grown on elemental and oxide metallic substrates

    Science.gov (United States)

    Mahmood, Ather; Street, Michael; Echtenkamp, Will; Kwan, Chun Pui; Bird, Jonathan P.; Binek, Christian

    2018-04-01

    In an attempt to optimize leakage characteristics of α-C r2O3 thin films, its dielectric properties were investigated at local and macroscopic scale. The films were grown on Pd(111), Pt(111), and V2O3 (0001), supported on A l2O3 substrate. The local conductivity was measured by conductive atomic force microscopy mapping of C r2O3 surfaces, which revealed the nature of defects that formed conducting paths with the bottom Pd or Pt layer. A strong correlation was found between these electrical defects and the grain boundaries revealed in the corresponding topographic scans. In comparison, the C r2O3 film on V2O3 exhibited no leakage paths at similar tip bias value. Electrical resistance measurements through e-beam patterned top electrodes confirmed the resistivity mismatch between the films grown on different electrodes. The x-ray analysis attributes this difference to the twin free C r2O3 growth on V2O3 seeding.

  10. Effects of radiation on the R/sub 1/ and R/sub 2/ progenies of Pennisetum typhoides S. and H

    Energy Technology Data Exchange (ETDEWEB)

    Das, L D.V. [Tamil Nadu Agricultural Univ., Coimbatore (India)

    1978-05-01

    Dry seeds of cumbu strains HB3 and MS7625 were irradiated with different doses of X- and gamma rays. The survival, growth reduction and pollen sterility of R/sub 1/ plants were estimated. The seeds from each R/sub 1/ plant were sown in the field and all clearly deviating plants were scored as morphological mutants. Gamma rays were found to be more effective than X-rays with respect to R/sub 1/ lethality, growth reduction, pollen sterility, and R/sub 2/ mutant frequency. In addition, the survival frequency of the R/sub 1/ plants was reduced to zero per cent when the exposure was increased to 30 and 40 kR of gamma rays. The response of the two strains clearly deviated in X-rays and gamma rays. HB3 showed a lower percentage of lethality, lesser growth reduction and lower pollen sterility. While the relation between R/sub 1/ pollen sterility and the R/sub 2/ mutant frequency was established, it was found that HB3 segregates greater number of mutants than MS7625. The possibility for this might be due to the hybrid parentage of HB3.

  11. Chemistry of the oxophosphinidene ligand. 2. Reactivity of the anionic complexes [MCp{P(O)R*}(CO)(2)](-) (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3)) toward electrophiles based on elements different from carbon.

    Science.gov (United States)

    Alonso, María; Alvarez, M Angeles; García, M Esther; Ruiz, Miguel A; Hamidov, Hayrullo; Jeffery, John C

    2010-12-20

    The anionic oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) displayed multisite reactivity when faced with different electrophilic reagents. The reactions with the group 14 organochloride compounds ER(4-x)Cl(x) (E = Si, Ge, Sn, Pb) led to either phosphide-like, oxophosphinidene-bridged derivatives [MCp{P(OE')R*}(CO)(2)] (E' = SiMe(3), SiPh(3), GePh(3), GeMe(2)Cl) or to terminal oxophosphinidene complexes [MCp{P(O)R*}(CO)(2)(E')] (E' = SnPh(3), SnPh(2)Cl, PbPh(3); Mo-Pb = 2.8845(4) Å for the MoPb compound). A particular situation was found in the reaction with SnMe(3)Cl, this giving a product existing in both tautomeric forms, with the phosphide-like complex [MCp{P(OSnMe(3))R*}(CO)(2)] prevailing at room temperature and the tautomer [MCp{P(O)R*}(CO)(2)(SnMe(3))] being the unique species present below 203 K in dichloromethane solution. The title anions also showed a multisite behavior when reacting with transition-metal based electrophiles. Thus, the reactions with the complexes [M'Cp(2)Cl(2)] (M' = Ti, Zr) gave phosphide-like derivatives [MCp{P(OM')R*}(CO)(2)] (M = Mo, M' = TiCp(2)Cl, ZrCp(2)Cl; M = W, M' = ZrCp(2)Cl), displaying a bridging κ(1),κ(1)-P,O- oxophosphinidene ligand connecting MCp(CO)(2) and M'Cp(2)Cl metal fragments (W-P = 2.233(1) Å, O-Zr = 2.016(4) Å for the WZr compound]. In contrast, the reactions with the complex [AuCl{P(p-tol)(3)}] gave the metal-metal bonded derivatives trans-[MCp{P(O)R*}(CO)(2){AuP(p-tol)(3)}] (M = Mo, W; Mo-Au = 2.7071(7) Å). From all the above results it was concluded that the terminal oxophosphinidene complexes are preferentially formed under conditions of orbital control, while charge-controlled reactions tend to give derivatives with the electrophilic fragment bound to the oxygen atom of the oxophosphinidene ligand (phosphide-like, oxophosphinidene-bridged derivatives).

  12. Expression of a splice variant of the platelet-activating factor receptor transcript 2 in various human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ibtissam Youlyouz

    2002-01-01

    Full Text Available Platelet-activating factor receptor (PAF-R transcripts were analysed by reverse transcriptase-polymerase chain reaction in five human cancer cell lines derived from the breast (BT20, SKBR3 and T47D cells, the pancreas (Miapaca cells and the bladder (5637 cells in order to confirm the existence of a splice variant of the PAF-R transcript 2. After cloning and sequencing, we confirmed its existence in all cell lines. It consisted of the PAF-R transcript 2 lengthening with 82 nucleotides from the 3' end of exon 1 of the PAF-R gene. The role of this elongated form of the tissue-type PAF-R transcript in cell physiology remains to be elucidated.

  13. Structure-Activity Relationship Study of Ionotropic Glutamate Receptor Antagonist (2S,3R)-3-(3-Carboxyphenyl)pyrrolidine-2-carboxylic Acid

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte

    2015-01-01

    Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal...... carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD...... and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate...

  14. Purification, crystallization and preliminary X-ray diffraction analysis of the IL-20-IL-20R1-IL-20R2 complex

    Energy Technology Data Exchange (ETDEWEB)

    Logsdon, Naomi J.; Allen, Christopher E.; Rajashankar, Kanagalaghatta R.; Walter, Mark R. (Cornell); (UAB)

    2012-02-08

    Interleukin-20 (IL-20) is an IL-10-family cytokine that regulates innate and adaptive immunity in skin and other tissues. In addition to protecting the host from various external pathogens, dysregulated IL-20 signaling has been shown to contribute to the pathogenesis of human psoriasis. IL-20 signals through two cell-surface receptor heterodimers, IL-20R1-IL-20R2 and IL-22R1-IL-20R2. In this report, crystals of the IL-20-IL-20R1-IL-20R2 ternary complex have been grown from polyethylene glycol solutions. The crystals belonged to space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = 111, c = 135 {angstrom}, and diffracted X-rays to 3 {angstrom} resolution. The crystallographic asymmetric unit contains one IL-20-IL-20R1-IL-20R2 complex, corresponding to a solvent content of approximately 54%.

  15. Single molecule analysis of c-myb alternative splicing reveals novel classifiers for precursor B-ALL.

    Directory of Open Access Journals (Sweden)

    Ye E Zhou

    Full Text Available The c-Myb transcription factor, a key regulator of proliferation and differentiation in hematopoietic and other cell types, has an N-terminal DNA binding domain and a large C-terminal domain responsible for transcriptional activation, negative regulation and determining target gene specificity. Overexpression and rearrangement of the c-myb gene (MYB has been reported in some patients with leukemias and other types of cancers, implicating activated alleles of c-myb in the development of human tumors. Alternative RNA splicing can produce variants of c-myb with qualitatively distinct transcriptional activities that may be involved in transformation and leukemogenesis. Here, by performing a detailed, single molecule assay we found that c-myb alternative RNA splicing was elevated and much more complex in leukemia samples than in cell lines or CD34+ hematopoietic progenitor cells from normal donors. The results revealed that leukemia samples express more than 60 different c-myb splice variants, most of which have multiple alternative splicing events and were not detectable by conventional microarray or PCR approaches. For example, the single molecule assay detected 21 and 22 splice variants containing the 9B and 9S exons, respectively, most of which encoded unexpected variant forms of c-Myb protein. Furthermore, the detailed analysis identified some splice variants whose expression correlated with poor survival in a small cohort of precursor B-ALL samples. Our findings indicate that single molecule assays can reveal complexities in c-myb alternative splicing that have potential as novel biomarkers and could help explain the role of c-Myb variants in the development of human leukemia.

  16. Evaluation of the gait performance of above-knee amputees while walking with 3R20 and 3R15 knee joints

    Directory of Open Access Journals (Sweden)

    AliReza Taheri

    2012-01-01

    Full Text Available Background: The performance of the subjects with above-knee amputation is noticeably poorer than normal subjects. Various types of components have been designed to compensate their performance. Among various prosthetic components, the knee joint has great influence on the function. Two types of knee joints (3R15, 3R20 have been used broadly for above-knee prostheses. However, there is not enough research to highlight the influence of these joints on the gait performance of the subjects. Therefore, an aim of this research was to investigate the performance of the above-knee amputees while walking with 3R15 and 3R20 knee joints. Materials and Methods: 7 above-knee amputees were recruited in this research study. They were asked to walk with a comfortable speed to investigate the gait function of the subjects with 3 cameras 3D motion analysis system (Kinematrix system. The difference between the performances of the subjects with these joints was compared by use of paired t-test. Results: The results of this study showed that, the performances of the subjects with 3R20 were better than that with 3R15. The walking speed of the subjects with 3R20 was 66.7 m/min compared to 30.4 m/min (P-value = 0.045. Moreover; the symmetry of walking with 3R20 was more than that with 3R15, based on the spatio- temporal gait parameters values (P-value <0.05. Conclusion: The difference between the performances of the subjects with 3R20 and 3R15 knee joints was related to the walking speed, which improved while walking with 3R20 joint.

  17. [Enhanced electro-chemical oxidation of Acid Red 3R solution with phosphotungstic acid supported on gamma-Al2O3].

    Science.gov (United States)

    Yue, Lin; Wang, Kai-Hong; Guo, Jian-Bo; Yang, Jing-Liang; Liu, Bao-You; Lian, Jing; Wang, Tao

    2013-03-01

    Supported phosphotungstic acid catalysts on gamma-Al2O3 (HPW/gamma-Al2O3) were prepared by solution impregnation and characterized by FTIR, XRD, TG-DTA and SEM. The heteropolyanion shows a Keggin structure. Electro-chemical oxidation of Acid Red 3R was investigated in the presence of HPW supported on gamma-Al2O3 as packing materials in the reactor. The results show that HPW/gamma-Al2O3 has a good catalytic activity for decolorization of Acid Red 3R. When HPW loading was 4.6%, pH value of Acid Red 3R was 3, the voltage was 25.0 V, air-flow was 0.04 m3 x h(-1), and electrode span was 3.0 cm, the decolorization efficiency of Acid Red 3R can reach 97.6%. The removal rate of color had still about 80% in this electro-chemical oxidation system, after HPW/gamma-Al2O3 was used for 10 times, but active component loss existed. The interim product was analyzed by means of Vis-UV absorption spectrum. It shows that the conjugated structure of dye is destroyed primarily.

  18. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  19. Evaluation of the association between the TAS1R2 and TAS1R3 variants and food intake and nutritional status in children.

    Science.gov (United States)

    Melo, Silvia V; Agnes, Grasiela; Vitolo, Márcia R; Mattevi, Vanessa S; Campagnolo, Paula D B; Almeida, Silvana

    2017-01-01

    Taste perception plays a key role in determining individual food preferences and dietary habits and may influence nutritional status. This study aimed to investigate the association of TAS1R2 (Ile191Val - rs35874116) and TAS1R3 (-1266 C/T - rs35744813) variants with food intake and nutritional status in children followed from birth until 7.7 years old. The nutritional status and food intake data of 312 children were collected at three developmental stages (1, 3.9 and 7.7 years old). DNA was extracted from blood samples and the polymorphisms were analyzed by real-time polymerase chain reactions (qPCR) using hydrolysis probes as the detection method. Food intake and nutritional status were compared among individuals with different single nucleotide polymorphism (SNP) genotypes. At 3.9 years old, children homozygous (Val/Val) for the TAS1R2 Ile191Val polymorphism ingested less sugar and sugar-dense foods than children who were *Ile carriers. This finding demonstrated that a genetic variant of the T1R2 taste receptor is associated with the intake of different amounts of high sugar-content foods in childhood. This association may provide new perspectives for studying dietary patterns and nutritional status in childhood.

  20. Rolling Deck to Repository (R2R): Collaborative Development of Linked Data for Oceanographic Research

    Science.gov (United States)

    Arko, Robert; Chandler, Cynthia; Stocks, Karen; Smith, Shawn; Clark, Paul; Shepherd, Adam; Moore, Carla; Beaulieu, Stace

    2013-04-01

    The Rolling Deck to Repository (R2R) program is developing infrastructure to ensure the underway sensor data from U.S. academic oceanographic research vessels are routinely and consistently documented, preserved in long-term archives, and disseminated to the science community. The entire R2R Catalog is published online as a Linked Data collection, making it easily accessible to encourage discovery and integration with data at other repositories. We are developing the R2R Linked Data collection with specific goals in mind: 1.) We facilitate data access and reuse by publishing the richest possible collection of resources to describe vessels, cruises, instruments, and datasets from the U.S. academic fleet, including data quality assessment results and clean trackline navigation; 2.) We facilitate data citation through the entire lifecycle from field acquisition to shoreside archiving to journal articles and global syntheses, by publishing Digital Object Identifiers (DOIs) for datasets and encoding them directly into our Linked Data resources; and 3.) We facilitate federation with other repositories such as the Biological and Chemical Oceanography Data Management Office (BCO-DMO), InterRidge Vents Database, and Index to Marine and Lacustrine Geological Samples (IMLGS), by reciprocal linking between RDF resources and supporting the RDF Query Language. R2R participates in the Ocean Data Interoperability Platform (ODIP), a joint European-U.S.-Australian partnership to facilitate the sharing of data and documentation across international borders. We publish our controlled vocabularies as a Simple Knowledge Organization System (SKOS) concept collection, and are working toward alignment with SeaDataNet and other community-standard terms using the NERC Vocabulary Server (NVS). http://rvdata.us/