WorldWideScience

Sample records for r2r3 myb genes

  1. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii

    Science.gov (United States)

    He, Qiuling; Jones, Don C.; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-01-01

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement. PMID:27009386

  2. Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco

    Directory of Open Access Journals (Sweden)

    Muhammad Anwar

    2018-03-01

    Full Text Available R2R3 MYB transcription factors play key functions in the regulation of secondary metabolites. In the present study, a R2R3 MYB transcriptional factor NtMYB2 was identified from Chinese narcissus (Narcissus tazetta L. var. Chinensis Roem and functionally characterized. NtMYB2 belongs to subgroup 4 of the R2R3 MYB transcription factor family that are related to repressor MYBs involved in the regulation of anthocyanin and flavonoids. Transient expression confirmed that NtMYB2 strongly reduced the red pigmentation induced by MYB- anthocyanin activators in agro-infiltrated tobacco leaves. Ectopic expression of NtMYB2 in tobacco significantly reduced the pigmentation and altered the floral phenotypes in transgenic tobacco flowers. Gene expression analysis suggested that NtMYB2 repressed the transcript levels of structural genes involved in anthocyanin biosynthesis pathway, especially the UFGT gene. NtMYB2 gene is expressed in all examined narcissus tissues; the levels of transcription in petals and corona is higher than other tissues and the transcription level at the bud stage was highest. These results show that NtMYB2 is involved in the regulation of anthocyanin biosynthesis pathway and may act as a repressor by down regulating the transcripts of key enzyme genes in Chinese narcissus.

  3. Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco.

    Science.gov (United States)

    Anwar, Muhammad; Wang, Guiqing; Wu, Jiacheng; Waheed, Saquib; Allan, Andrew C; Zeng, Lihui

    2018-03-28

    R2R3 MYB transcription factors play key functions in the regulation of secondary metabolites. In the present study, a R2R3 MYB transcriptional factor NtMYB2 was identified from Chinese narcissus ( Narcissus tazetta L. var. Chinensis Roem) and functionally characterized. NtMYB2 belongs to subgroup 4 of the R2R3 MYB transcription factor family that are related to repressor MYBs involved in the regulation of anthocyanin and flavonoids. Transient expression confirmed that NtMYB2 strongly reduced the red pigmentation induced by MYB- anthocyanin activators in agro-infiltrated tobacco leaves. Ectopic expression of NtMYB2 in tobacco significantly reduced the pigmentation and altered the floral phenotypes in transgenic tobacco flowers. Gene expression analysis suggested that NtMYB2 repressed the transcript levels of structural genes involved in anthocyanin biosynthesis pathway, especially the UFGT gene. NtMYB2 gene is expressed in all examined narcissus tissues; the levels of transcription in petals and corona is higher than other tissues and the transcription level at the bud stage was highest. These results show that NtMYB2 is involved in the regulation of anthocyanin biosynthesis pathway and may act as a repressor by down regulating the transcripts of key enzyme genes in Chinese narcissus.

  4. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica.

    Science.gov (United States)

    Feng, Kai; Xu, Zhi-Sheng; Que, Feng; Liu, Jie-Xia; Wang, Feng; Xiong, Ai-Sheng

    2018-02-01

    This study showed that an R2R3-MYB transcription factor, OjMYB1, is involved in anthocyanin biosynthesis and accumulation in Oenanthe javanica. Anthocyanins can be used as safe natural food colorants, obtained from many plants. R2R3-MYB transcription factors (TFs) play important roles in anthocyanins biosynthesis during plant development. Oenanthe javanica is a popular vegetable with high nutritional values and numerous medical functions. O. javanica has purple petioles that are mainly due to anthocyanins accumulation. In the present study, the gene encoding an R2R3-MYB TF, OjMYB1, was isolated from purple O. javanica. Sequencing results showed that OjMYB1 contained a 912-bp open reading frame encoding 303 amino acids. Sequence alignments revealed that OjMYB1 contained bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and ANDV motif ([A/G]NDV). Phylogenetic analysis indicated that the OjMYB1 classified into the anthocyanins biosynthesis clade. Subcellular localization assay showed that OjMYB1 was a nuclear protein in vivo. The heterologous expression of OjMYB1 in Arabidopsis could enhance the anthocyanins content and up-regulate the expression levels of the structural genes-related anthocyanins biosynthesis. Yeast two-hybrid assay indicated that OjMYB1 could interact with AtTT8 and AtEGL3 proteins. Enzymatic analysis revealed that overexpression of OjMYB1 gene up-regulated the enzyme activity of 3-O-glycosyltransferase encoded by AtUGT78D2 in transgenic Arabidopsis. Our results provided a comprehensive understanding of the structure and function of OjMYB1 TF in O. javanica.

  5. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus.

    Science.gov (United States)

    Hajiebrahimi, Ali; Owji, Hajar; Hemmati, Shiva

    2017-10-01

    R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. K n /K s values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.

  6. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca

    Directory of Open Access Journals (Sweden)

    Grima-Pettenati Jacqueline

    2007-03-01

    Full Text Available Abstract Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences, and loblolly pine, Pinus taeda L. (five sequences. Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco.

  7. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis

    Science.gov (United States)

    Schwinn, Kathy E.; Ngo, Hanh; Kenel, Fernand; Brummell, David A.; Albert, Nick W.; McCallum, John A.; Pither-Joyce, Meeghan; Crowhurst, Ross N.; Eady, Colin; Davies, Kevin M.

    2016-01-01

    Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species. PMID:28018399

  8. The onion (Allium cepa L. R2R3-MYB gene MYB1 regulates anthocyanin biosynthesis

    Directory of Open Access Journals (Sweden)

    Kathy Schwinn

    2016-12-01

    Full Text Available Bulb colour is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales. The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red, flavonols (pale yellow and chalcones (bright yellow. Flavonoid regulation is poorly characterised in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs that commonly activate anthocyanin (SG6, MYB1 or flavonol (SG7, MYB29 production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5. MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressd and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (A. sativum L. plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  9. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis.

    Science.gov (United States)

    Schwinn, Kathy E; Ngo, Hanh; Kenel, Fernand; Brummell, David A; Albert, Nick W; McCallum, John A; Pither-Joyce, Meeghan; Crowhurst, Ross N; Eady, Colin; Davies, Kevin M

    2016-01-01

    Bulb color is an important consumer trait for onion ( Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic ( Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum maju s of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  10. A R2R3-MYB Gene LfMYB113 is Responsible for Autumn Leaf Coloration in Formosan sweet gum (Liquidambar formosana Hance).

    Science.gov (United States)

    Wen, Chi-Hsiang; Chu, Fang-Hua

    2017-03-01

    The regulation of autumn leaf coloration in deciduous trees has long been an enigma. Due to the fact that different coloration phenotypes may be considered when planting, more understanding of the regulation mechanism is needed. In this study, a R2R3-MYB transcription factor gene LfMYB113 was identified from a subtropical deciduous tree species Formosan sweet gum (Liquidambar formosana Hance). The expression patterns of LfMYB113 in four selected phenotypes were different and were positively correlated with leaf anthocyanin content. In a 35S::LfMYB113 transgenic Nicotiana tabacum plant, both the early and late genes in the anthocyanin biosynthetic pathway were shown to be up-regulated. It was also shown that LfMYB113 can activate the promoter sequence of LfDFR1 and LfDFR2. Transient overexpression of LfMYB113 in Nicotiana benthamiana showed strong anthocyanin accumulation and pre-senescence; the latter was confirmed by up-regulation of senescence-associated genes. In addition, the activation of proLfSGR::YFP by LfMYB113 in transient experiments indicated that LfMYB113 may have a role in regulation of Chl degradation. To our knowledge, this is the first time a R2R3-MYB transcription factor has been functionally identified as one of the key regulators of autumn leaf coloration and autumn leaf senescence. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2016-10-01

    Full Text Available Anthocyanin accumulation is responsible for flower coloration in peach. Here, we report the identification and functional characterization of eight flavonoid-related R2R3-MYB transcription factors, designated PpMYB10.2, PpMYB9, PpMYBPA1, Peace, PpMYB17, PpMYB18, PpMYB19 and PpMYB20, respectively, in peach flower transcriptome. PpMYB10.2 and PpMYB9 are able to activate transcription of anthocyanin biosynthetic genes, whilst PpMYBPA1 and Peace have a strong activation on the promoters of proanthocyanin (PA biosynthetic genes. PpMYB17-20 show a strong repressive effect on transcription of flavonoid pathway genes such as DFR. These results indicate that anthocyanin accumulation in peach flower is coordinately regulated by a set of R2R3-MYB genes. In addition, PpMYB9 and PpMYB10.2 are closely related but separated into two groups, designated MYB9 and MYB10, respectively. PpMYB9 shows a strong activation on the PpUGT78A2 promoter, but with no effect on the promoter of PpUGT78B (commonly called PpUFGT in previous studies. In contrast, PpMYB10.2 is able to activate the PpUFGT promoter, but not for the PpUGT78A2 promoter. Unlike the MYB10 gene that is universally present in plants, the MYB9 gene is lost in most dicot species. Therefore, the PpMYB9 gene represents a novel group of anthocyanin-related MYB activators, which may have diverged in function from the MYB10 genes. Our study will aid in understanding the complex mechanism regulating floral pigmentation in peach and functional divergence of the R2R3-MYB gene family in plants.

  12. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Chu, Hyosub; Jeong, Jae Cheol; Kim, Wook-Jin; Chung, Dong Min; Jeon, Hyo Kon; Ahn, Young Ock; Kim, Sun Ha; Lee, Haeng-Soon; Kwak, Sang-Soo; Kim, Cha Young

    2013-06-01

    R2R3-type MYB transcription factors (TFs) play important roles in transcriptional regulation of anthocyanins. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that transient expression of IbMYB1a led to anthocyanin pigmentation in tobacco leaves. In this article, we generated transgenic Arabidopsis plants expressing the IbMYB1a gene under the control of CaMV 35S promoter, and the sweetpotato SPO and SWPA2 promoters. Overexpression of IbMYBa in transgenic Arabidopsis produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems and seeds. Reverse transcription-polymerase chain reaction analysis showed that IbMYB1a expression induced upregulation of several structural genes in the anthocyanin biosynthetic pathway, including 4CL, CHI, F3'H, DFR, AGT, AAT and GST. Furthermore, overexpression of IbMYB1a led to enhanced expression of the AtTT8 (bHLH) and PAP1/AtMYB75 genes. high-performance liquid chromatography analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in Arabidopsis, as occurs in the purple leaves of sweetpotato (cv. Sinzami). This result shows that the IbMYB1a TF is sufficient to induce anthocyanin accumulation in seedlings, leaves, stems and seeds of Arabidopsis plants. Copyright © Physiologia Plantarum 2012.

  13. Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Qinlong Zhu

    Full Text Available Proanthocyanidins (PAs play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides, to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1 and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR and late anthocyanin structural genes (NtDFR and NtANS, but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering.

  14. Genome-wide identification and characterization of R2R3MYB family in Rosaceae.

    Science.gov (United States)

    González, Máximo; Carrasco, Basilio; Salazar, Erika

    2016-09-01

    Transcription factors R2R3MYB family have been associated with the control of secondary metabolites, development of structures, cold tolerance and response to biotic and abiotic stress, among others. In recent years, genomes of Rosaceae botanical family are available. Although this information has been used to study the karyotype evolution of these species from an ancestral genome, there are no studies that treat the evolution and diversity of gene families present in these species or in the botanical family. Here we present the first comparative study of the R2R3MYB subfamily of transcription factors in three species of Rosaceae family (Malus domestica, Prunus persica and Fragaria vesca). We described 186, 98 and 86 non-redundant gene models for apple, peach and strawberry, respectively. In this research, we analyzed the intron-exon structure and genomic distribution of R2R3MYB families mentioned above. The phylogenetic comparisons revealed putative functions of some R2R3MYB transcription factors. This analysis found 44 functional subgroups, seven of which were unique for Rosaceae. In addition, our results showed a highly collinearity among some genes revealing the existence of conserved gene models between the three species studied. Although some gene models in these species have been validated under several approaches, more research in the Rosaceae family is necessary to determine gene expression patterns in specific tissues and development stages to facilitate understanding of the regulatory and biochemical mechanism in this botanical family.

  15. Interactions between the R2R3-MYB transcription factor, AtMYB61, and target DNA binding sites.

    Directory of Open Access Journals (Sweden)

    Michael B Prouse

    Full Text Available Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing. The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators.

  16. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1.

    Science.gov (United States)

    Lim, Sun-Hyung; Song, Ji-Hye; Kim, Da-Hye; Kim, Jae Kwang; Lee, Jong-Yeol; Kim, Young-Mi; Ha, Sun-Hwa

    2016-03-01

    RsMYB1, a MYB TF of red radish origin, was characterized as a positive regulator to transcriptionally activate the anthocyanin biosynthetic machinery by itself in Arabidopsis and tobacco plants. Anthocyanins, providing the bright red-orange to blue-violet colors, are flavonoid-derived pigments with strong antioxidant activity that have benefits for human health. We isolated RsMYB1, which encodes an R2R3-MYB transcription factor (TF), from red radish plants (Raphanus sativus L.) that accumulate high levels of anthocyanins. RsMYB1 shows higher expression in red radish than in common white radish, in both leaves and roots, at different growth stages. Consistent with RsMYB1 function as an anthocyanin-promoting TF, red radishes showed higher expression of all six anthocyanin biosynthetic and two anthocyanin regulatory genes. Transient expression of RsMYB1 in tobacco showed that RsMYB1 is a positive regulator of anthocyanin production with better efficiency than the basic helix-loop-helix (bHLH) TF gene B-Peru. Also, the synergistic effect of RsMYB1 with B-Peru was larger than the effect of the MYB TF gene mPAP1D with B-peru. Arabidopsis plants stably expressing RsMYB1 produced red pigmentation throughout the plant, accompanied by up-regulation of the six structural and two regulatory genes for anthocyanin production. This broad transcriptional activation of anthocyanin biosynthetic machinery in Arabidopsis included up-regulation of TRANSPARENT TESTA8, which encodes a bHLH TF. These results suggest that overexpression of RsMYB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1. In addition, RsMYB1-overexpressing Arabidopsis plants had a higher antioxidant capacity than did non-transgenic control plants. Taken together, RsMYB1 is an actively positive regulator for anthocyanins biosynthesis in radish plants and it might be one of the best targets for anthocyanin production by single gene

  17. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean.

    Directory of Open Access Journals (Sweden)

    Shanshan Chu

    2017-05-01

    Full Text Available Isoflavones comprise a group of secondary metabolites produced almost exclusively by plants in the legume family, including soybean [Glycine max (L. Merr.]. They play vital roles in plant defense and have many beneficial effects on human health. Isoflavone content is a complex quantitative trait controlled by multiple genes, and the genetic mechanisms underlying isoflavone biosynthesis remain largely unknown. Via a genome-wide association study (GWAS, we identified 28 single nucleotide polymorphisms (SNPs that are significantly associated with isoflavone concentrations in soybean. One of these 28 SNPs was located in the 5'-untranslated region (5'-UTR of an R2R3-type MYB transcription factor, GmMYB29, and this gene was thus selected as a candidate gene for further analyses. A subcellular localization study confirmed that GmMYB29 was located in the nucleus. Transient reporter gene assays demonstrated that GmMYB29 activated the IFS2 (isoflavone synthase 2 and CHS8 (chalcone synthase 8 gene promoters. Overexpression and RNAi-mediated silencing of GmMYB29 in soybean hairy roots resulted in increased and decreased isoflavone content, respectively. Moreover, a candidate-gene association analysis revealed that 11 natural GmMYB29 polymorphisms were significantly associated with isoflavone contents, and regulation of GmMYB29 expression could partially contribute to the observed phenotypic variation. Taken together, these results provide important genetic insights into the molecular mechanisms underlying isoflavone biosynthesis in soybean.

  18. Multiple Copies of a Simple MYB-Binding Site Confers Trans-regulation by Specific Flavonoid-Related R2R3 MYBs in Diverse Species

    Directory of Open Access Journals (Sweden)

    Cyril Brendolise

    2017-10-01

    Full Text Available In apple, the MYB transcription factor MYB10 controls the accumulation of anthocyanins. MYB10 is able to auto-activate its expression by binding its own promoter at a specific motif, the R1 motif. In some apple accessions a natural mutation, termed R6, has more copies of this motif within the MYB10 promoter resulting in stronger auto-activation and elevated anthocyanins. Here we show that other anthocyanin-related MYBs selected from apple, pear, strawberry, petunia, kiwifruit and Arabidopsis are able to activate promoters containing the R6 motif. To examine the specificity of this motif, members of the R2R3 MYB family were screened against a promoter harboring the R6 mutation. Only MYBs from subgroups 5 and 6 activate expression by binding the R6 motif, with these MYBs sharing conserved residues in their R2R3 DNA binding domains. Insertion of the apple R6 motif into orthologous promoters of MYB10 in pear (PcMYB10 and Arabidopsis (AtMY75 elevated anthocyanin levels. Introduction of the R6 motif into the promoter region of an anthocyanin biosynthetic enzyme F3′5′H of kiwifruit imparts regulation by MYB10. This results in elevated levels of delphinidin in both tobacco and kiwifruit. Finally, an R6 motif inserted into the promoter the vitamin C biosynthesis gene GDP-L-Gal phosphorylase increases vitamin C content in a MYB10-dependent manner. This motif therefore provides a tool to re-engineer novel MYB-regulated responses in plants.

  19. Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hamama Islam Butt

    Full Text Available Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.

  20. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates.

    Directory of Open Access Journals (Sweden)

    Ida Elken Sønderby

    Full Text Available BACKGROUND: Glucosinolates are natural metabolites in the order Brassicales that defend plants against both herbivores and pathogens and can attract specialized insects. Knowledge about the genes controlling glucosinolate regulation is limited. Here, we identify three R2R3 MYB transcription factors regulating aliphatic glucosinolate biosynthesis in Arabidopsis by combining several systems biology tools. METHODOLOGY/PRINCIPAL FINDINGS: MYB28 was identified as a candidate regulator of aliphatic glucosinolates based on its co-localization within a genomic region controlling variation both in aliphatic glucosinolate content (metabolite QTL and in transcript level for genes involved in the biosynthesis of aliphatic glucosinolates (expression QTL, as well as its co-expression with genes in aliphatic glucosinolate biosynthesis. A phylogenetic analysis with the R2R3 motif of MYB28 showed that it and two homologues, MYB29 and MYB76, were members of an Arabidopsis-specific clade that included three characterized regulators of indole glucosinolates. Over-expression of the individual MYB genes showed that they all had the capacity to increase the production of aliphatic glucosinolates in leaves and seeds and induce gene expression of aliphatic biosynthetic genes within leaves. Analysis of leaves and seeds of single knockout mutants showed that mutants of MYB29 and MYB76 have reductions in only short-chained aliphatic glucosinolates whereas a mutant in MYB28 has reductions in both short- and long-chained aliphatic glucosinolates. Furthermore, analysis of a double knockout in MYB28 and MYB29 identified an emergent property of the system since the absence of aliphatic glucosinolates in these plants could not be predicted by the chemotype of the single knockouts. CONCLUSIONS/SIGNIFICANCE: It seems that these cruciferous-specific MYB regulatory genes have evolved both overlapping and specific regulatory capacities. This provides a unique system within which to

  1. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10.

    Science.gov (United States)

    Feng, Shouqian; Wang, Yanling; Yang, Song; Xu, Yuting; Chen, Xuesen

    2010-06-01

    Skin color is an important factor in pear breeding programs. The degree of red coloration is determined by the content and composition of anthocyanins. In plants, many MYB transcriptional factors are involved in regulating anthocyanin biosynthesis. In this study, a R2R3-MYB transcription factor gene, PyMYB10, was isolated from Asian pear (Pyrus pyrifolia) cv. 'Aoguan'. Sequence analysis suggested that the PyMYB10 gene was an ortholog of MdMYB10 gene, which regulates anthocyanin biosynthesis in red fleshed apple (Malus x domestica) cv. 'Red Field'. PyMYB10 was identified at the genomic level and had three exons, with its upstream sequence containing core sequences of cis-acting regulatory elements involved in light responsiveness. Fruit bagging showed that light could induce expression of PyMYB10 and anthocyanin biosynthesis. Quantitative real-time PCR revealed that PyMYB10 was predominantly expressed in pear skins, buds, and young leaves, and the level of transcription in buds was higher than in skin and young leaves. In ripening fruits, the transcription of PyMYB10 in the skin was positively correlated with genes in the anthocyanin pathway and with anthocyanin biosynthesis. In addition, the transcription of PyMYB10 and genes of anthocyanin biosynthesis were more abundant in red-skinned pear cultivars compared to blushed cultivars. Transgenic Arabidopsis plants overexpressing PyMYB10 exhibited ectopic pigmentation in immature seeds. The study suggested that PyMYB10 plays a role in regulating anthocyanin biosynthesis and the overexpression of PyMYB10 was sufficient to induce anthocyanin accumulation.

  2. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae.

    Science.gov (United States)

    Lin-Wang, Kui; Bolitho, Karen; Grafton, Karryn; Kortstee, Anne; Karunairetnam, Sakuntala; McGhie, Tony K; Espley, Richard V; Hellens, Roger P; Allan, Andrew C

    2010-03-21

    The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  3. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae

    Directory of Open Access Journals (Sweden)

    McGhie Tony K

    2010-03-01

    Full Text Available Abstract Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry. Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  4. Functional Characterization of a Novel R2R3-MYB Transcription Factor Modulating the Flavonoid Biosynthetic Pathway from Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2017-07-01

    Full Text Available Epimedium species have been widely used both as traditional Chinese medicinal plants and ornamental perennials. Both flavonols, acting as the major bioactive components (BCs and anthocyanins, predominantly contributing to the color diversity of Epimedium flowers belong to different classes of flavonoids. It is well-acknowledged that flavonoid biosynthetic pathway is predominantly regulated by R2R3-MYB transcription factor (TF as well as bHLH TF and WD40 protein at the transcriptional level. MYB TFs specifically regulating anthocyanin or flavonol biosynthetic pathway have been already isolated and functionally characterized from Epimedium sagittatum, but a R2R3-MYB TF involved in regulating both these two pathways has not been functionally characterized to date in Epimedium plants. In this study, we report the functional characterization of EsMYB9, a R2R3-MYB TF previously isolated from E. sagittatum. The previous study indicated that EsMYB9 belongs to a small subfamily of R2R3-MYB TFs containing grape VvMYB5a and VvMYB5b TFs, which regulate flavonoid biosynthetic pathway. The present studies show that overexpression of EsMYB9 in tobacco leads to increased transcript levels of flavonoid pathway genes and increased contents of anthocyanins and flavonols. Yeast two-hybrid assay indicates that the C-terminal region of EsMYB9 contributes to the autoactivation activity, and EsMYB9 interacts with EsTT8 or AtTT8 bHLH regulator. Transient reporter assay shows that EsMYB9 slightly activates the expression of EsCHS (chalcone synthase promoter in transiently transformed leaves of Nicotiana benthamiana, but the addition of AtTT8 or EsTT8 bHLH regulator strongly enhances the transcriptional activation of EsMYB9 against five promoters of the flavonoid pathway genes except EsFLS (flavonol synthase. In addition, co-transformation of EsMYB9 and EsTT8 in transiently transfected tobacco leaves strongly induces the expressions of flavonoid biosynthetic genes. The

  5. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    Full Text Available Herba epimedii (Epimedium, a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1 from Epimedium sagittatum (Sieb. Et Zucc. Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR and anthocyanidin synthase (ANS. In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.

  6. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway.

    Science.gov (United States)

    Huang, Wenjun; Sun, Wei; Lv, Haiyan; Luo, Ming; Zeng, Shaohua; Pattanaik, Sitakanta; Yuan, Ling; Wang, Ying

    2013-01-01

    Herba epimedii (Epimedium), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs) have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1) from Epimedium sagittatum (Sieb. Et Zucc.) Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade) of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.

  7. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function.

    Science.gov (United States)

    Soler, Marçal; Camargo, Eduardo Leal Oliveira; Carocha, Victor; Cassan-Wang, Hua; San Clemente, Hélène; Savelli, Bruno; Hefer, Charles A; Paiva, Jorge A Pinto; Myburg, Alexander A; Grima-Pettenati, Jacqueline

    2015-06-01

    The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  8. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus).

    Science.gov (United States)

    Liu, Chaoyang; Xie, Tao; Chen, Chenjie; Luan, Aiping; Long, Jianmei; Li, Chuhao; Ding, Yaqi; He, Yehua

    2017-07-01

    The MYB proteins comprise one of the largest families of plant transcription factors, which are involved in various plant physiological and biochemical processes. Pineapple (Ananas comosus) is one of three most important tropical fruits worldwide. The completion of pineapple genome sequencing provides a great opportunity to investigate the organization and evolutionary traits of pineapple MYB genes at the genome-wide level. In the present study, a total of 94 pineapple R2R3-MYB genes were identified and further phylogenetically classified into 26 subfamilies, as supported by the conserved gene structures and motif composition. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of pineapple MYB gene family. Further comparative phylogenetic analysis suggested that there have been functional divergences of MYB gene family during plant evolution. RNA-seq data from different tissues and developmental stages revealed distinct temporal and spatial expression profiles of the AcMYB genes. Further quantitative expression analysis showed the specific expression patterns of the selected putative stress-related AcMYB genes in response to distinct abiotic stress and hormonal treatments. The comprehensive expression analysis of the pineapple MYB genes, especially the tissue-preferential and stress-responsive genes, could provide valuable clues for further function characterization. In this work, we systematically identified AcMYB genes by analyzing the pineapple genome sequence using a set of bioinformatics approaches. Our findings provide a global insight into the organization, phylogeny and expression patterns of the pineapple R2R3-MYB genes, and hence contribute to the greater understanding of their biological roles in pineapple.

  9. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    OpenAIRE

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all th...

  10. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    NARCIS (Netherlands)

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the

  11. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Science.gov (United States)

    Matus, José Tomás; Aquea, Felipe; Arce-Johnson, Patricio

    2008-01-01

    Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions. PMID:18647406

  12. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Directory of Open Access Journals (Sweden)

    Arce-Johnson Patricio

    2008-07-01

    Full Text Available Abstract Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions.

  13. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast.

    Directory of Open Access Journals (Sweden)

    Zsolt Kelemen

    Full Text Available The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs. Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences.

  14. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU).

    Science.gov (United States)

    Reddy, Vaishnavi Amarr; Wang, Qian; Dhar, Niha; Kumar, Nadimuthu; Venkatesh, Prasanna Nori; Rajan, Chakravarthy; Panicker, Deepa; Sridhar, Vishweshwaran; Mao, Hui-Zhu; Sarojam, Rajani

    2017-09-01

    Many aromatic plants, such as spearmint, produce valuable essential oils in specialized structures called peltate glandular trichomes (PGTs). Understanding the regulatory mechanisms behind the production of these important secondary metabolites will help design new approaches to engineer them. Here, we identified a PGT-specific R2R3-MYB gene, MsMYB, from comparative RNA-Seq data of spearmint and functionally characterized it. Analysis of MsMYB-RNAi transgenic lines showed increased levels of monoterpenes, and MsMYB-overexpressing lines exhibited decreased levels of monoterpenes. These results suggest that MsMYB is a novel negative regulator of monoterpene biosynthesis. Ectopic expression of MsMYB, in sweet basil and tobacco, perturbed sesquiterpene- and diterpene-derived metabolite production. In addition, we found that MsMYB binds to cis-elements of MsGPPS.LSU and suppresses its expression. Phylogenetic analysis placed MsMYB in subgroup 7 of R2R3-MYBs whose members govern phenylpropanoid pathway and are regulated by miR858. Analysis of transgenic lines showed that MsMYB is more specific to terpene biosynthesis as it did not affect metabolites derived from phenylpropanoid pathway. Further, our results indicate that MsMYB is probably not regulated by miR858, like other members of subgroup 7. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Molecular characterization of the Jatropha curcas JcR1MYB1 gene encoding a putative R1-MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Hui-Liang Li

    2014-09-01

    Full Text Available The cDNA encoding the R1-MYB transcription factor, designated as JcR1MYB1, was isolated from Jatropha curcas using rapid amplification of cDNA ends. JcR1MYB1 contains a 951 bp open reading frame that encodes 316 amino acids. The deduced JcR1MYB1 protein was predicted to possess the conserved, 56-amino acid-long DNA-binding domain, which consists of a single helix-turn-helix module and usually occurs in R1-MYBs. JcR1MYB1 is a member of the R1-MYB transcription factor subfamily. A subcellular localization study confirmed the nuclear localization of JcR1MYB1. Expression analysis showed that JcR1MYB1 transcripts accumulated in various examined tissues, with high expression levels in the root and low levels in the stem. JcR1MYB1 transcription was up-regulated by polyethylene glycol, NaCl, and cold treatments, as well as by abscisic acid, jasmonic acid, and ethylene treatment. Analysis of transgenic tobacco plants over-expressing JcR1MYB1 indicates an inportant function for this gene in salt stress.

  16. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa).

    Science.gov (United States)

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun; Roh, Kyung-Hee

    2008-06-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches.

  17. A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional Chinese medicinal plant, Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2016-07-01

    Full Text Available Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from E. sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase and EsFLS (flavonol synthase, but not the promoters of EsDFRs (dihydroflavonol 4-reductase and EsANS (anthocyanidin synthase in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase, NtCHI (chalcone isomerase, NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived bioactive components in E

  18. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease.

    Science.gov (United States)

    Liu, Xin; Yang, Lihua; Zhou, Xianyao; Zhou, Miaoping; Lu, Yan; Ma, Lingjian; Ma, Hongxiang; Zhang, Zengyan

    2013-05-01

    The disease take-all, caused by the fungus Gaeumannomyces graminis, is one of the most destructive root diseases of wheat worldwide. Breeding resistant cultivars is an effective way to protect wheat from take-all. However, little progress has been made in improving the disease resistance level in commercial wheat cultivars. MYB transcription factors play important roles in plant responses to environmental stresses. In this study, an R2R3-MYB gene in Thinopyrum intermedium, TiMYB2R-1, was cloned and characterized. The gene sequence includes two exons and an intron. The expression of TiMYB2R-1 was significantly induced following G. graminis infection. An in vitro DNA binding assay proved that TiMYB2R-1 protein could bind to the MYB-binding site cis-element ACI. Subcellular localization assays revealed that TiMYB2R-1 was localized in the nucleus. TiMYB2R-1 transgenic wheat plants were generated, characterized molecularly, and evaluated for take-all resistance. PCR and Southern blot analyses confirmed that TiMYB2R-1 was integrated into the genomes of three independent transgenic wheat lines by distinct patterns and the transgene was heritable. Reverse transcription-PCR and western blot analyses revealed that TiMYB2R-1 was highly expressed in the transgenic wheat lines. Based on disease response assessments for three successive generations, the significantly enhanced resistance to take-all was observed in the three TiMYB2R-1-overexpressing transgenic wheat lines. Furthermore, the transcript levels of at least six wheat defence-related genes were significantly elevated in the TiMYB2R-1 transgenic wheat lines. These results suggest that engineering and overexpression of TiMYB2R-1 may be used for improving take-all resistance of wheat and other cereal crops.

  19. dsRNA silencing of an R2R3-MYB transcription factor affects flower cell shape in a Dendrobium hybrid.

    Science.gov (United States)

    Lau, Su-Ee; Schwarzacher, Trude; Othman, Rofina Yasmin; Harikrishna, Jennifer Ann

    2015-08-11

    The R2R3-MYB genes regulate pigmentation and morphogenesis of flowers, including flower and cell shape, and therefore have importance in the development of new varieties of orchids. However, new variety development is limited by the long breeding time required in orchids. In this study, we identified a cDNA, DhMYB1, that is expressed during flower development in a hybrid orchid, Dendrobium hybrida (Dendrobium bobby messina X Dendrobium chao phraya) then used the direct application of dsRNA to observe the effect of gene silencing on flower phenotype and floral epidermal cell shape. Flower bud development in the Dendrobium hybrid was characterised into seven stages and the time of meiosis was determined as between stages 3 to 5 when the bud is approximately half of the mature size. Scanning electron microscopy characterisation of adaxial epidermal cells of the flower perianth, showed that the petals and sepals each are divided into two distinct domains based on cell shape and size, while the labellum comprises seven domains. Thirty-two partial cDNA fragments representing R2R3-MYB gene sequences were isolated from D. hybrida. Phylogenetic analysis revealed that nine of the translated sequences were clustered with MYB sequences that are known to be involved in cell shape development and from these, DhMYB1 was selected for full length cDNA cloning and functional study. Direct application of a 430 bp dsRNA from the 3' region of DhMYB1 to emerging orchid flower buds reduced expression of DhMYB1 RNA compared with untreated control. Scanning electron microscopy of adaxial epidermal cells within domain one of the labellum of flowers treated with DhMYB1 dsRNA showed flattened epidermal cells whilst those of control flowers were conical. DhMYB1 is expressed throughout flower bud development and is involved in the development of the conical cell shape of the epidermal cells of the Dendrobium hybrida flower labellum. The direct application of dsRNA changed the phenotype of

  20. Ectopic Expression of the Grape Hyacinth (Muscari armeniacum R2R3-MYB Transcription Factor Gene, MaAN2, Induces Anthocyanin Accumulation in Tobacco

    Directory of Open Access Journals (Sweden)

    Kaili Chen

    2017-06-01

    Full Text Available Anthocyanins are responsible for the different colors of ornamental plants. Grape hyacinth (Muscari armeniacum, a monocot plant with bulbous flowers, is popular for its fascinating blue color. In the present study, we functionally characterized an R2R3-MYB transcription factor gene MaAN2 from M. armeniacum. Our results indicated that MaAN2 participates in controlling anthocyanin biosynthesis. Sequence alignment and phylogenetic analysis suggested that MaAN2 belonged to the R2R3-MYB family AN2 subgroup. The anthocyanin accumulation of grape hyacinth flowers was positively correlated with the expression of MaAN2. And the transcriptional expression of MaAN2 was also consistent with that of M. armeniacum dihydroflavonol 4-reductase (MaDFR and M. armeniacum anthocyanidin synthase (MaANS in flowers. A dual luciferase transient expression assay indicated that when MaAN2 was co-inflitrated with Arabidopsis thaliana TRANSPARENT TESTA8 (AtTT8, it strongly activated the promoters of MaDFR and MaANS, but not the promoters of M. armeniacum chalcone synthase (MaCHS, M. armeniacum chalcone isomerase (MaCHI, and M. armeniacum flavanone 3-hydroxylase (MaF3H. Bimolecular fluorescence complementation assay confirmed that MaAN2 interacted with AtTT8 in vivo. The ectopic expression of MaAN2 in Nicotiana tabacum resulted in obvious red coloration of the leaves and much redder flowers. Almost all anthocyanin biosynthetic genes were remarkably upregulated in the leaves and flowers of the transgenic tobacco, and NtAn1a and NtAn1b (two basic helix–loop–helix anthocyanin regulatory genes were highly expressed in the transformed leaves, compared to the empty vector transformants. Collectively, our results suggest that MaAN2 plays a role in anthocyanin biosynthesis.

  1. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor.

    Science.gov (United States)

    Niu, Shan-Shan; Xu, Chang-Jie; Zhang, Wang-Shu; Zhang, Bo; Li, Xian; Lin-Wang, Kui; Ferguson, Ian B; Allan, Andrew C; Chen, Kun-Song

    2010-03-01

    Chinese bayberry (Myrica rubra) is a fruit crop with cultivars producing fruit ranging from white (Shuijing, SJ) to red (Dongkui, DK) and dark red-purple (Biqi, BQ), as a result of different levels of anthocyanin accumulation. Genes encoding the anthocyanin biosynthesis enzymes chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDPglucose: flavonoid 3-O-glucosyltransferase (UFGT), as well as MrMYB1, a R2R3 MYB transcription factor homologous to known activators of anthocyanin biosynthesis, were isolated from ripe fruit of BQ. Differences in mRNA abundance of MrF3H, MrF3'H, MrDFR1, MrANS and MrUFGT were highly correlated with differential accumulation of anthocyanins between cultivars, suggesting coordinated regulation by transcription factors. The transcript level of MrMYB1 was strongly associated with the anthocyanin content in ripe fruit of the three cultivars, as well as different anthocyanin containing tissues of BQ fruit. Fruit bagging strongly inhibited anthocyanin accumulation in fruit as well as the expression of all anthocyanin biosynthetic genes and MrMYB1. Overexpression of MrMYB1 stimulated both anthocyanin accumulation and activated an Arabidopsis-DFR promoter in tobacco (Nicotiana tabacum). MrMYB1d, an allele with a 1 bp deletion at nucleotide 30 of coding sequence, was observed in SJ and DK fruit, suggesting that a nonsense mutation of the MYB1 protein may be responsible for no or low expression of MYB1 in the white and red fruit. These results show that coordinated expression of multiple biosynthetic genes is involved in anthocyanin accumulation in Chinese bayberry fruit, and this is regulated by MrMYB1.

  2. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato.

    Science.gov (United States)

    Meng, Xia; Wang, Jie-Ru; Wang, Guo-Dong; Liang, Xiao-Qing; Li, Xiao-Dong; Meng, Qing-Wei

    2015-03-01

    LeAN2 is an anthocyanin-associated R2R3-MYB transcription factor, but little is known about its function in imparting thermo-tolerance to higher plants. To examine the function of LeAN2 in the regulation of heat stress in tomato, LeAN2 was isolated and transgenic tomato plants were obtained. Overexpression of LeAN2 under the control of the CaMV35S promoter in tomato induced the up-regulation of several structural genes in the anthocyanin biosynthetic pathway as well as anthocyanin accumulation in transgenic tomato plants. Transgenic tomato plants showed enhanced tolerance to heat stress by maintaining higher fresh weight (FW), net photosynthetic rate (Pn) and maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with wild-type (WT) plants. Furthermore, transgenic plants showed higher non-enzymatic antioxidant activity, lower levels of reactive oxygen species (ROS), and higher contents of D1 protein than that in WT plants under heat stress. These results indicate that LeAN2 had an important function in heat stress resistance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok; Hyun, Wooyoung; Nguyen, Hoai Nguyen; Jeong, Chanyoung; Xiong, Liming; Hong, Sukwhan; Lee, Hojoung

    2014-01-01

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  4. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok

    2014-08-27

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  5. Metabolic and molecular analyses of white mutant Vaccinium berries show down-regulation of MYBPA1-type R2R3 MYB regulatory factor.

    Science.gov (United States)

    Primetta, Anja K; Karppinen, Katja; Riihinen, Kaisu R; Jaakola, Laura

    2015-09-01

    MYBPA1-type R2R3 MYB transcription factor shows down-regulation in white mutant berries of Vaccinium uliginosum deficient in anthocyanins but not proanthocyanidins suggesting a role in the regulation of anthocyanin biosynthesis. Berries of the genus Vaccinium are among the best natural sources of flavonoids. In this study, the expression of structural and regulatory flavonoid biosynthetic genes and the accumulation of flavonoids in white mutant and blue-colored wild-type bog bilberry (V. uliginosum) fruits were measured at different stages of berry development. In contrast to high contents of anthocyanins in ripe blue-colored berries, only traces were detected by HPLC-ESI-MS in ripe white mutant berries. However, similar profile and high levels of flavonol glycosides and proanthocyanidins were quantified in both ripe white and ripe wild-type berries. Analysis with qRT-PCR showed strong down-regulation of structural genes chalcone synthase (VuCHS), dihydroflavonol 4-reductase (VuDFR) and anthocyanidin synthase (VuANS) as well as MYBPA1-type transcription factor VuMYBPA1 in white berries during ripening compared to wild-type berries. The profiles of transcript accumulation of chalcone isomerase (VuCHI), anthocyanidin reductase (VuANR), leucoanthocyanidin reductase (VuLAR) and flavonoid 3'5' hydroxylase (VuF3'5'H) were more similar between the white and the wild-type berries during fruit development, while expression of UDP-glucose: flavonoid 3-O-glucosyltransferase (VuUFGT) showed similar trend but fourfold lower level in white mutant. VuMYBPA1, the R2R3 MYB family member, is a homologue of VmMYB2 of V. myrtillus and VcMYBPA1 of V. corymbosum and belongs to MYBPA1-type MYB family which members are shown in some species to be related with proanthocyanidin biosynthesis in fruits. Our results combined with earlier data of the role of VmMYB2 in white mutant berries of V. myrtillus suggest that the regulation of anthocyanin biosynthesis in Vaccinium species could differ

  6. The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine1

    Science.gov (United States)

    Cavallini, Erika; Matus, José Tomás; Finezzo, Laura; Zenoni, Sara; Loyola, Rodrigo; Guzzo, Flavia; Schlechter, Rudolf; Ageorges, Agnès; Arce-Johnson, Patricio

    2015-01-01

    Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of

  7. A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Li, Meng-Jun; Qiao, Yu; Li, Ya-Qing; Shi, Zhan-Liang; Zhang, Nan; Bi, Cai-Li; Guo, Jin-Kao

    2016-11-01

    We isolated the TaMYBsm1 genes, encoding R2R3-type MYB proteins in common wheat, aimed to uncover the possible molecular mechanisms related to drought response. The TaMYBsm1 genes, TaMYBsm1-A, TaMYBsm1-B and TaMYBsm1-D, were isolated and analyzed from the common wheat cultivar Shimai 15. Their expression patterns under PEG 6000 and mannitol were monitored by semi-quantitative RT-PCR and β-glucuronidase (Gus) assay. The function of TaMYBsm1-D under drought stress in transgenic Arabidopsis plants was investigated, and the germination rate, water loss rate, as well as the proline and malondialdehyde (MDA) content were compared with that in wild type (WT) plants. The expression of three downstream genes (DREB2A, P5CS1 and RD29A) in TaMYBsm1-D transgenic plants was analyzed. The R2R3-MYB domains of the MYBsm1 proteins were highly conserved in plants. In addition, the TaMYBsm1 proteins were targeted to the nucleus and contained transcriptional activation domains (TADs). Gus assay and semi-quantitative RT-PCR analysis demonstrated that the TaMYBsm1 genes were up-regulated when the wheat was treated by PEG and mannitol. Compared with WT plants, the germination rates were much higher, but the water loss rates were much lower in TaMYBsm1-D overexpression plants. TaMYBsm1-D transgenic plants showed distinct higher proline contents but a lower MDA content than the WT plants. The three downstream genes were highly expressed in TaMYBsm1-D transgenic plants. We concluded from these results that TaMYBsm1 genes play an important role in plant drought stress tolerance through up-regulation of DREB2A, P5CS1 and RD29A. The increase of proline content and decrease of MDA content may also be involved in the drought response.

  8. Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia.

    Science.gov (United States)

    Boase, Murray R; Brendolise, Cyril; Wang, Lei; Ngo, Hahn; Espley, Richard V; Hellens, Roger P; Schwinn, Kathy E; Davies, Kevin M; Albert, Nick W

    2015-10-01

    The Md - MYB10 R6 gene from apple is capable of self-regulating in heterologous host species and enhancing anthocyanin pigmentation, but the activity of MYB10 is dependent on endogenous protein partners. Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10 R6 , are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10 R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10 R6 transgene (MYB10-R6 pro :MYB10:MYB10 term ) activated anthocyanin synthesis when transiently expressed in Antirrhinum rosea (dorsea) petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10 R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of 'Mitchell' petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10 R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10 R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.

  9. Heterologous expression of gentian MYB1R transcription factors suppresses anthocyanin pigmentation in tobacco flowers.

    Science.gov (United States)

    Nakatsuka, Takashi; Yamada, Eri; Saito, Misa; Fujita, Kohei; Nishihara, Masahiro

    2013-12-01

    Single-repeat MYB transcription factors, GtMYB1R1 and GtMYB1R9 , were isolated from gentian. Overexpression of these genes reduced anthocyanin accumulation in tobacco flowers, demonstrating their applicability to modification of flower color. RNA interference (RNAi) has recently been used to successfully modify flower color intensity in several plant species. In most floricultural plants, this technique requires prior isolation of target flavonoid biosynthetic genes from the same or closely related species. To overcome this limitation, we developed a simple and efficient method for reducing floral anthocyanin accumulation based on genetic engineering using novel transcription factor genes isolated from Japanese gentians. We identified two single-repeat MYB genes--GtMYB1R and GtMYB1R9--predominantly expressed in gentian petals. Transgenic tobacco plants expressing these genes were produced, and their flowers were analyzed for flavonoid components and expression of flavonoid biosynthetic genes. Transgenic tobacco plants expressing GtMYB1R1 or GtMYB1R9 exhibited significant reductions in floral anthocyanin accumulation, resulting in white-flowered phenotypes. Expression levels of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) genes were preferentially suppressed in these transgenic tobacco flowers. A yeast two-hybrid assay demonstrated that both GtMYB1R1 and GtMYB1R9 proteins interacted with the GtbHLH1 protein, previously identified as an anthocyanin biosynthesis regulator in gentian flowers. In addition, a transient expression assay indicated that activation of the gentian GtDFR promoter by the GtMYB3-GtbHLH1 complex was partly canceled by addition of GtMYB1R1 or GtMYB1R9. These results suggest that GtMYB1R1 and GtMYB1R9 act as antagonistic transcription factors of anthocyanin biosynthesis in gentian flowers. These genes should consequently be useful for manipulating anthocyanin accumulation via genetic engineering in

  10. Comparative transcriptome analysis of oil palm flowers reveals an EAR-motif-containing R2R3-MYB that modulates phenylpropene biosynthesis.

    Science.gov (United States)

    Li, Ran; Reddy, Vaishnavi Amarr; Jin, Jingjing; Rajan, Chakaravarthy; Wang, Qian; Yue, Genhua; Lim, Chin Huat; Chua, Nam-Hai; Ye, Jian; Sarojam, Rajani

    2017-11-23

    Oil palm is the most productive oil crop and the efficiency of pollination has a direct impact on the yield of oil. Pollination by wind can occur but maximal pollination is mediated by the weevil E. kamerunicus. These weevils complete their life cycle by feeding on male flowers. Attraction of weevils to oil palm flowers is due to the emission of methylchavicol by both male and female flowers. In search for male flowers, the weevils visit female flowers by accident due to methylchavicol fragrance and deposit pollen. Given the importance of methylchavicol emission on pollination, we performed comparative transcriptome analysis of oil palm flowers and leaves to identify candidate genes involved in methylchavicol production in flowers. RNA sequencing (RNA-Seq) of male open flowers, female open flowers and leaves was performed using Illumina HiSeq 2000 platform. Analysis of the transcriptome data revealed that the transcripts of methylchavicol biosynthesis genes were strongly up-regulated whereas transcripts encoding genes involved in lignin production such as, caffeic acid O-methyltransferase (COMT) and Ferulate-5-hydroxylase (F5H) were found to be suppressed in oil palm flowers. Among the transcripts encoding transcription factors, an EAR-motif-containing R2R3-MYB transcription factor (EgMYB4) was found to be enriched in oil palm flowers. We determined that EgMYB4 can suppress the expression of a monolignol pathway gene, EgCOMT, in vivo by binding to the AC elements present in the promoter region. EgMYB4 was further functionally characterized in sweet basil which also produces phenylpropenes like oil palm. Transgenic sweet basil plants showed significant reduction in lignin content but produced more phenylpropenes. Our results suggest that EgMYB4 possibly restrains lignin biosynthesis in oil palm flowers thus allowing enhanced carbon flux into the phenylpropene pathway. This study augments our understanding of the diverse roles that EAR-motif-containing MYBs play to

  11. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis.

    Science.gov (United States)

    Zhu, Hui-Fen; Fitzsimmons, Karen; Khandelwal, Abha; Kranz, Robert G

    2009-07-01

    Single-repeat R3 MYB transcription factors like CPC (CAPRICE) are known to play roles in developmental processes such as root hair differentiation and trichome initiation. However, none of the six Arabidopsis single-repeat R3 MYB members has been reported to regulate flavonoid biosynthesis. We show here that CPC is a negative regulator of anthocyanin biosynthesis. In the process of using CPC to test GAL4-dependent driver lines, we observed a repression of anthocyanin synthesis upon GAL4-mediated CPC overexpression. We demonstrated that this is not due to an increase in nutrient uptake because of more root hairs. Rather, CPC expression level tightly controls anthocyanin accumulation. Microarray analysis on the whole genome showed that, of 37 000 features tested, 85 genes are repressed greater than three-fold by CPC overexpression. Of these 85, seven are late anthocyanin biosynthesis genes. Also, anthocyanin synthesis genes were shown to be down-regulated in 35S::CPC overexpression plants. Transient expression results suggest that CPC competes with the R2R3-MYB transcription factor PAP1/2, which is an activator of anthocyanin biosynthesis genes. This report adds anthocyanin biosynthesis to the set of programs that are under CPC control, indicating that this regulator is not only for developmental programs (e.g. root hairs, trichomes), but can influence anthocyanin pigment synthesis.

  12. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar.

    Science.gov (United States)

    Cho, Jin-Seong; Nguyen, Van Phap; Jeon, Hyung-Woo; Kim, Min-Ha; Eom, Seok Hyun; Lim, You Jin; Kim, Won-Chan; Park, Eung-Jun; Choi, Young-Im; Ko, Jae-Heung

    2016-09-01

    Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120

  14. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning.

    Science.gov (United States)

    Albert, Nick W; Lewis, David H; Zhang, Huaibi; Schwinn, Kathy E; Jameson, Paula E; Davies, Kevin M

    2011-03-01

    We present an investigation of anthocyanin regulation over the entire petunia plant, determining the mechanisms governing complex floral pigmentation patterning and environmentally induced vegetative anthocyanin synthesis. DEEP PURPLE (DPL) and PURPLE HAZE (PHZ) encode members of the R2R3-MYB transcription factor family that regulate anthocyanin synthesis in petunia, and control anthocyanin production in vegetative tissues and contribute to floral pigmentation. In addition to these two MYB factors, the basic helix-loop-helix (bHLH) factor ANTHOCYANIN1 (AN1) and WD-repeat protein AN11, are also essential for vegetative pigmentation. The induction of anthocyanins in vegetative tissues by high light was tightly correlated to the induction of transcripts for PHZ and AN1. Interestingly, transcripts for PhMYB27, a putative R2R3-MYB active repressor, were highly expressed during non-inductive shade conditions and repressed during high light. The competitive inhibitor PhMYBx (R3-MYB) was expressed under high light, which may provide feedback repression. In floral tissues DPL regulates vein-associated anthocyanin pigmentation in the flower tube, while PHZ determines light-induced anthocyanin accumulation on exposed petal surfaces (bud-blush). A model is presented suggesting how complex floral and vegetative pigmentation patterns are derived in petunia in terms of MYB, bHLH and WDR co-regulators. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  15. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development.

    Science.gov (United States)

    Vimolmangkang, Sornkanok; Han, Yuepeng; Wei, Guochao; Korban, Schuyler S

    2013-11-07

    Red coloration of fruit is an important trait in apple, and it is mainly attributed to the accumulation of anthocyanins, a class of plant flavonoid metabolites. Anthocyanin biosynthesis is genetically determined by structural and regulatory genes. Plant tissue pigmentation patterns are mainly controlled by expression profiles of regulatory genes. Among these regulatory genes are MYB transcription factors (TFs), wherein the class of two-repeats (R2R3) is deemed the largest, and these are associated with the anthocyanin biosynthesis pathway. Although three MdMYB genes, almost identical in nucleotide sequences, have been identified in apple, it is likely that there are other R2R3 MYB TFs that are present in the apple genome that are also involved in the regulation of coloration of red color pigmentation of the skin of apple fruits. In this study, a novel R2R3 MYB gene has been isolated and characterized in apple. This MYB gene is closely related to the Arabidopsis thaliana AtMYB3, and has been designated as MdMYB3. This TF belongs to the subgroup 4 R2R3 family of plant MYB transcription factors. This apple MdMYB3 gene is mapped onto linkage group 15 of the integrated apple genetic map. Transcripts of MdMYB3 are detected in all analyzed tissues including leaves, flowers, and fruits. However, transcripts of MdMYB3 are higher in excocarp of red-skinned apple cultivars than that in yellowish-green skinned apple cultivars. When this gene is ectopically expressed in Nicotiana tabacum cv. Petite Havana SR1, flowers of transgenic tobacco lines carrying MdMYB3 have exhibited increased pigmentation and accumulate higher levels of anthocyanins and flavonols than wild-type flowers. Overexpression of MdMYB3 has resulted in transcriptional activation of several flavonoid pathway genes, including CHS, CHI, UFGT, and FLS. Moreover, peduncles of flowers and styles of pistils of transgenic plants overexpressing MdMYB3 are longer than those of wild-type plants, thus suggesting that this

  16. A Wheat R2R3-type MYB Transcription Factor TaODORANT1 Positively Regulates Drought and Salt Stress Responses in Transgenic Tobacco Plants

    Directory of Open Access Journals (Sweden)

    Qiuhui Wei

    2017-08-01

    Full Text Available MYB transcription factors play important roles in plant responses to biotic and abiotic stress. In this study, TaODORANT1, a R2R3-MYB gene, was cloned from wheat (Triticum aestivum L.. TaODORANT1 was localized in the nucleus and functioned as a transcriptional activator. TaODORANT1 was up-regulated in wheat under PEG6000, NaCl, ABA, and H2O2 treatments. TaODORANT1-overexpressing transgenic tobacco plants exhibited higher relative water content and lower water loss rate under drought stress, as well as lower Na+ accumulation in leaves under salt stress. The transgenic plants showed higher CAT activity but lower ion leakage, H2O2 and malondialdehyde contents under drought and salt stresses. Besides, the transgenic plants also exhibited higher SOD activity under drought stress. Our results also revealed that TaODORANT1 overexpression up-regulated the expression of several ROS- and stress-related genes in response to both drought and salt stresses, thus enhancing transgenic tobacco plants tolerance. Our studies demonstrate that TaODORANT1 positively regulates plant tolerance to drought and salt stresses.

  17. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia.

    Science.gov (United States)

    Spitzer-Rimon, Ben; Farhi, Moran; Albo, Boaz; Cna'ani, Alon; Ben Zvi, Michal Moyal; Masci, Tania; Edelbaum, Orit; Yu, Yixun; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander

    2012-12-01

    Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB-like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI's wide-ranging involvement in the production of floral volatiles.

  18. Genomic Survey and Expression Profiling of the MYB Gene Family in Watermelon

    Directory of Open Access Journals (Sweden)

    Qing XU

    2018-01-01

    Full Text Available Myeloblastosis (MYB proteins constitute one of the largest transcription factor (TF families in plants. They are functionally diverse in regulating plant development, metabolism, and multiple stress responses. However, the function of watermelon MYB proteins remains elusive to date. Here, a genome-wide identification of watermelon MYB TFs was performed by bioinformatics analysis. A total of 162 MYB genes were identified from watermelon (ClaMYB. A comprehensive overview of the ClaMYB genes was undertaken, including the gene structures, chromosomal distribution, gene duplication, conserved protein motif, and phylogenetic relationship. According to the analyses, the watermelon MYB genes were categorized into three groups (R1R2R3-MYB, R2R3-MYB, and MYB-related. Amino acid alignments for all MYB motifs of ClaMYBs demonstrated high conservation. Investigation of their chromosomal localization revealed that these ClaMYB genes distributed across the 11 watermelon chromosomes. Gene duplication analyses showed that tandem duplication events contributed predominantly to the expansion of the MYB gene family in the watermelon genome. Phylogenetic comparison of the ClaMYB proteins with Arabidopsis MYB proteins revealed that watermelon MYB proteins underwent a more diverse evolution after divergence from Arabidopsis. Some watermelon MYBs were found to cluster into the functional clades of Arabidopsis MYB proteins. Expression analysis under different stress conditions identified a group of watermelon MYB proteins implicated in the plant stress responses. The comprehensive investigation of watermelon MYB genes in this study provides a useful reference for future cloning and functional analysis of watermelon MYB proteins. Keywords: watermelon, MYB transcription factor, abiotic stress, phylogenetic analysis

  19. Genome-wide analysis of the MYB gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Zhou, Changpin; Chen, Yanbo; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2015-11-01

    The MYB proteins comprise one of the largest transcription factor families in plants, and play key roles in regulatory networks controlling development, metabolism, and stress responses. A total of 125 MYB genes (JcMYB) have been identified in the physic nut (Jatropha curcas L.) genome, including 120 2R-type MYB, 4 3R-MYB, and 1 4R-MYB genes. Based on exon-intron arrangement of MYBs from both lower (Physcomitrella patens) and higher (physic nut, Arabidopsis, and rice) plants, we can classify plant MYB genes into ten groups (MI-X), except for MIX genes which are nonexistent in higher plants. We also observed that MVIII genes may be one of the most ancient MYB types which consist of both R2R3- and 3R-MYB genes. Most MYB genes (76.8% in physic nut) belong to the MI group which can be divided into 34 subgroups. The JcMYB genes were nonrandomly distributed on its 11 linkage groups (LGs). The expansion of MYB genes across several subgroups was observed and resulted from genome triplication of ancient dicotyledons and from both ancient and recent tandem duplication events in the physic nut genome. The expression patterns of several MYB duplicates in the physic nut showed differences in four tissues (root, stem, leaf, and seed), and 34 MYB genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots based on the data analysis of digital gene expression tags. Overexpression of the JcMYB001 gene in Arabidopsis increased its sensitivity to drought and salinity stresses. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A chimeric repressor of petunia PH4 R2R3-MYB family transcription factor generates margined flowers in torenia.

    Science.gov (United States)

    Kasajima, Ichiro; Sasaki, Katsutomo

    2016-05-03

    The development of new phenotypes is key to the commercial development of the main floricultural species and cultivars. Important new phenotypes include features such as multiple-flowers, color variations, increased flower size, new petal shapes, variegation and distinctive petal margin colourations. Although their commercial use is not yet common, the transgenic technologies provide a potentially rapid means of generating interesting new phenotypes. In this report, we construct 5 vectors which we expected to change the color of the flower anthocyanins, from purple to blue, regulating vacuolar pH. When these constructs were transformed into purple torenia, we unexpectedly recovered some genotypes having slightly margined petals. These transgenic lines expressed a chimeric repressor of the petunia PhPH4 gene under the control of Cauliflower mosaic virus 35 S RNA promoter. PhPH4 is an R2R3-type MYB transcription factor. The transgenic lines lacked pigmentation in the petal margin cells both on the adaxial and abaxial surfaces. Expressions of Flavanone 3-hydroxylase (F3H), Flavonoid 3'-hydroxylase (F3'H) and Flavonoid 3'5'-hydroxylase (F3'5'H) genes were reduced in the margins of these transgenic lines, suggesting an inhibitory effect of PhPH4 repressor on anthocyanin synthesis.

  1. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.

    Directory of Open Access Journals (Sweden)

    Matoušek Jaroslav

    2012-02-01

    chs_H1 gene that depends on variable activation by combinations of R2R3Myb, bHLH and WDR TF homologues and inhibition by a Myb repressor.

  2. A single amino acid change within the R2 domain of the VvMYB5b transcription factor modulates affinity for protein partners and target promoters selectivity

    Directory of Open Access Journals (Sweden)

    Granier Thierry

    2011-08-01

    Full Text Available Abstract Background Flavonoid pathway is spatially and temporally controlled during plant development and the transcriptional regulation of the structural genes is mostly orchestrated by a ternary protein complex that involves three classes of transcription factors (R2-R3-MYB, bHLH and WDR. In grapevine (Vitis vinifera L., several MYB transcription factors have been identified but the interactions with their putative bHLH partners to regulate specific branches of the flavonoid pathway are still poorly understood. Results In this work, we describe the effects of a single amino acid substitution (R69L located in the R2 domain of VvMYB5b and predicted to affect the formation of a salt bridge within the protein. The activity of the mutated protein (name VvMYB5bL, the native protein being referred as VvMYB5bR was assessed in different in vivo systems: yeast, grape cell suspensions, and tobacco. In the first two systems, VvMYB5bL exhibited a modified trans-activation capability. Moreover, using yeast two-hybrid assay, we demonstrated that modification of VvMYB5b transcriptional properties impaired its ability to correctly interact with VvMYC1, a grape bHLH protein. These results were further substantiated by overexpression of VvMYB5bR and VvMYB5bL genes in tobacco. Flowers from 35S::VvMYB5bL transgenic plants showed a distinct phenotype in comparison with 35S::VvMYB5bR and the control plants. Finally, significant differences in transcript abundance of flavonoid metabolism genes were observed along with variations in pigments accumulation. Conclusions Taken together, our findings indicate that VvMYB5bL is still able to bind DNA but the structural consequences linked to the mutation affect the capacity of the protein to activate the transcription of some flavonoid genes by modifying the interaction with its co-partner(s. In addition, this study underlines the importance of an internal salt bridge for protein conformation and thus for the establishment

  3. Three R2R3 MYB transcription factor genes from Capsicum annuum ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... between plants and microbes, and in male fertility of some species .... (Gerbera hybrid, CAD87010), AmROSEA1 (Antirrhinum majus,ABB83826), ..... MYB26 results in male sterility due to non-dehiscent anthers. Plant J.

  4. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    International Nuclear Information System (INIS)

    Zhai, Hong; Bai, Xi; Zhu, Yanming; Li, Yong; Cai, Hua; Ji, Wei; Ji, Zuojun; Liu, Xiaofei; Liu, Xin; Li, Jing

    2010-01-01

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven β-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  5. Identification of transcription factors ZmMYB111and ZmMYB148 involved in phenylpropanoid metabolism

    Directory of Open Access Journals (Sweden)

    Junjie eZhang

    2016-02-01

    Full Text Available Maize is the leading crop worldwide in terms of both planting area and total yields, but environmental stresses cause significant losses in productivity. Phenylpropanoid compounds play an important role in plant stress resistance; however, the mechanism of their synthesis is not fully understood, especially in regard to the expression and regulation of key genes. Phenylalanine ammonia-lyase (PAL is the first key enzyme involved in phenylpropanoid metabolism, and it has a significant effect on the synthesis of important phenylpropanoid compounds. According to the results of sequence alignments and functional prediction, we selected two conserved R2R3-MYB transcription factors as candidate genes for the regulation of phenylpropanoid metabolism. The two candidate R2R3-MYB genes, which we named ZmMYB111and ZmMYB148, were cloned, and then their structural characteristics and phylogenetic placement were predicted and analyzed. In addition, a series of evaluations were performed, including expression profiles, subcellular localization, transcription activation, protein-DNA interaction, and transient expression in maize endosperm. Our results indicated that both ZmMYB111 and ZmMYB148 are indeed R2R3-MYB transcription factors and that they may play a regulatory role in PAL gene expression.

  6. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    Science.gov (United States)

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers. © 2014 Scandinavian Plant Physiology Society.

  7. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.

    Directory of Open Access Journals (Sweden)

    Shan-Shan Sun

    2016-09-01

    Full Text Available The lotus (Nelumbonaceae: Nelumbo Adans. is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten. with red flowers and the American lotus (N. lutea Willd. with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1 were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus.

  8. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  9. TaMYB13-1, a R2R3 MYB transcription factor, regulates the fructan synthetic pathway and contributes to enhanced fructan accumulation in bread wheat

    Science.gov (United States)

    Kooiker, Maarten; Drenth, Janneke; Glassop, Donna; McIntyre, C. Lynne; Xue, Gang-Ping

    2013-01-01

    Fructans are the major component of temporary carbon reserve in the stem of temperate cereals, which is used for grain filling. Three families of fructosyltransferases are directly involved in fructan synthesis in the vacuole of Triticum aestivum. The regulatory network of the fructan synthetic pathway is largely unknown. Recently, a sucrose-upregulated wheat MYB transcription factor (TaMYB13-1) was shown to be capable of activating the promoter activities of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in transient transactivation assays. This work investigated TaMYB13-1 target genes and their influence on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression resulted in upregulation of all three families of fructosyltransferases including fructan:fructan 1-fructosyltransferase (1-FFT). A γ-vacuolar processing enzyme (γ-VPE1), potentially involved in processing the maturation of fructosyltransferases in the vacuole, was also upregulated by TaMYB13-1 overexpression. Multiple TaMYB13 DNA-binding motifs were identified in the Ta1-FFT1 and Taγ-VPE1 promoters and were bound strongly by TaMYB13-1. The expression profiles of these target genes and TaMYB13-1 were highly correlated in recombinant inbred lines and during stem development as well as the transgenic and non-transgenic wheat dataset, further supporting a direct regulation of these genes by TaMYB13-1. TaMYB13-1 overexpression in wheat led to enhanced fructan accumulation in the leaves and stems and also increased spike weight and grain weight per spike in transgenic plants under water-limited conditions. These data suggest that TaMYB13-1 plays an important role in coordinated upregulation of genes necessary for fructan synthesis and can be used as a molecular tool to improve the high fructan trait. PMID:23873993

  10. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2017-09-01

    Full Text Available MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit.

  11. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.

    Science.gov (United States)

    Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An

    2017-02-01

    Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling

  12. Primary root growth in Arabidopsis thaliana is inhibited by the miR159 mediated repression of MYB33, MYB65 and MYB101.

    Science.gov (United States)

    Xue, Tao; Liu, Zhenhua; Dai, Xuehuan; Xiang, Fengning

    2017-09-01

    Organ growth is a fundamental developmental process basing on cell proliferation and differentiation. The growth of the plant root is sustained by the activity of the root meristem, a process controlled in part by various transcription factors. Here, the miR159 has been identified as a post transcriptional repressor of root growth, on the basis that the mir159ab double mutant developed a larger meristem than did the wild type, and that it formed longer roots. In the mutant, the abundance of MYB33, MYB65 and MYB101 transcript was substantially increased. When MYB33, MYB65 and MYB101 were replaced by the miR159-resistant forms mMYB33, mMYB65 and mMYB101 respectively, the root meristem was similarly enlarged and the growth of the primary root enhanced. MYB65 activity promoted cell division in the root meristem by accelerating the cell cycle. The data suggest that miR159 acts as a key repressor of the primary root's growth, acting through its repression of MYB65 and consequent blocking of the cell cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Gan Lijun

    2011-12-01

    Full Text Available Abstract Background Single-repeat R3 MYB transcription factors (single-repeat MYBs play important roles in controlling trichome patterning in Arabidopsis. It was proposed that single-repeat MYBs negatively regulate trichome formation by competing with GLABRA1 (GL1 for binding GLABRA3/ENHANCER OF GLABRA3 (GL3/EGL3, thus inhibiting the formation of activator complex TTG1(TRANSPARENT TESTA GLABRA1-GL3/EGL3-GL1 that is required for the activation of GLABRA2 (GL2, whose product is a positive regulator of trichome formation. Previously we identified a novel single-repeat MYB transcription factor, TRICHOMELESS1 (TCL1, which negatively regulates trichome formation on the inflorescence stems and pedicels by directly suppressing the expression of GL1. Results We analyzed here the role of TRICHOMELESS2 (TCL2, a previously-uncharacterized single-repeat MYB transcription factor in trichome patterning in Arabidopsis. We showed that TCL2 is closely related to TCL1, and like TCL1 and other single-repeat MYBs, TCL2 interacts with GL3. Overexpression of TCL2 conferred glabrous phenotype while knockdown of TCL2 via RNAi induced ectopic trichome formation on the inflorescence stems and pedicels, a phenotype that was previously observed in tcl1 mutants. These results suggested that TCL2 may have overlapping function with TCL1 in controlling trichome formation on inflorescences. On the other hand, although the transcription of TCL2, like TCL1, is not controlled by the activator complex formed by GL1 and GL3, and TCL2 and TCL1 proteins are more than 80% identical at the amino acid level, the expression of TCL2 under the control of TCL1 promoter only partially recovered the mutant phenotype of tcl1, implying that TCL2 and TCL1 are not fully functional equivalent. Conclusions TCL2 function redundantly with TCL1 in controlling trichome formation on inflorescences, but they are not fully functional equivalent. Transcription of TCL2 is not controlled by activator complex

  14. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in Chili pepper leaves

    Directory of Open Access Journals (Sweden)

    zhen ezhang

    2015-07-01

    Full Text Available The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3’5’H, DFR, ANS, UFGT, ANP and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

  15. Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans.

    Science.gov (United States)

    Xiang, Qijun; Judelson, Howard S

    2014-01-01

    Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision.

  16. Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans.

    Directory of Open Access Journals (Sweden)

    Qijun Xiang

    Full Text Available Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision.

  17. CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis.

    Science.gov (United States)

    Jiang, Xiaolan; Huang, Keyi; Zheng, Guangshun; Hou, Hua; Wang, Peiqiang; Jiang, Han; Zhao, Xuecheng; Li, Mingzhuo; Zhang, Shuxiang; Liu, Yajun; Gao, Liping; Zhao, Lei; Xia, Tao

    2018-05-01

    Tea is one of the most widely consumed nonalcoholic beverages worldwide. Polyphenols are nutritional compounds present in the leaves of tea plants. Although numerous genes are functionally characterized to encode enzymes that catalyze the formation of diverse polyphenolic metabolites, transcriptional regulation of those different pathways such as late steps of the proanthcoyanidin (PA) pathway remains unclear. In this study, using different tea transcriptome databases, we screened at least 140 R2R3-MYB transcription factors (TFs) and grouped them according to the basic function domains of the R2R3 MYB TF superfamily. Among 140 R2R3 TFs, CsMYB5a and CsMYB5e were chosen for analysis because they may be involved in PA biosynthesis regulation. CsMYB5a-overexpressing tobacco plants exhibited downregulated anthocyanin accumulation but a high polymeric PA content in the flowers. Overexpression of CsMYB5e in tobacco plants did not change the anthocyanin content but increased the dimethylaminocinnamaldehyde-stained PA content. RNA-seq and qRT-PCR analyses revealed that genes related to PA and anthocyanin biosynthesis pathways were markedly upregulated in both CsMYB5a- and CsMYB5e-overexpressing flowers. Three UGTs and four GSTs were identified as involved in PA and anthocyanin glycosylation and transportation in transgenic plants. These results provide new insights into the regulation of PA and anthocyanin biosynthesis in Camellia sinensis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R.

    Directory of Open Access Journals (Sweden)

    Lulu Farhana

    Full Text Available MicroRNAs have been implicated in many critical cellular processes including apoptosis. We have previously found that apoptosis in pancreatic cancer cells was induced by adamantyl retinoid-related (ARR molecule 3-Cl-AHPC. Here we report that 3-Cl-AHPC-dependent apoptosis involves regulating a number of microRNAs including miR-150* and miR-630. 3-Cl-AHPC stimulated miR-150* expression and caused decreased expression of c-Myb and IGF-1R in the pancreatic cancer cells. 3-Cl-AHPC-mediated reduction of c-Myb resulted in diminished binding of c-Myb with IGF-1R and Bcl-2 promoters, thereby causing repression of their transcription and protein expression. Over-expression of miR-150* also resulted in diminished levels of c-Myb and Bcl-2 proteins. Furthermore, the addition of the miRNA inhibitor 2'-O-methylated miR-150 blocked 3-Cl-AHPC-mediated increase in miR-150* levels and abrogated loss of c-Myb protein. Knockdown of c-Myb in PANC-1 cells resulted in enhanced apoptosis both in the presence or absence of 3-Cl-AHPC confirming the anti-apoptotic property of c-Myb. Overexpression of miR-630 also induced apoptosis in the pancreatic cancer cells and inhibited target protein IGF-1R mRNA and protein expression. Together these results implicate key roles for miR-150* and miR-630 and their targeting of IGF-1R to promote apoptosis in pancreatic cancer cells.

  19. Arabidopsis MYB68 in development and responses to environmental cues

    DEFF Research Database (Denmark)

    Feng, Caiping; Andreasson, E.; Maslak, A.

    2004-01-01

    The Arabidopsis MYB68 gene encodes a MYB family protein with N-terminal R2R3 DNA-binding domains. Analyses of MYB68 expression by RNA blot and a transposant gene-trap MYB68::GUS reporter indicated that MYB68 is expressed specifically in root pericycle cells. Root cultures of the myb68 mutant......, caused by the gene trap insertion in the first MYB68 exon, produced increased biomass and lignin levels compared to wild type. Under high temperature regimes, MYB68::GUS activity was elevated in roots, while vegetative growth of myb68 mutants was reduced compared to wild type. These data suggest that MYB...

  20. Genome-Wide Classification and Evolutionary and Expression Analyses of Citrus MYB Transcription Factor Families in Sweet Orange

    Science.gov (United States)

    Hou, Xiao-Jin; Li, Si-Bei; Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi

    2014-01-01

    MYB family genes are widely distributed in plants and comprise one of the largest transcription factors involved in various developmental processes and defense responses of plants. To date, few MYB genes and little expression profiling have been reported for citrus. Here, we describe and classify 177 members of the sweet orange MYB gene (CsMYB) family in terms of their genomic gene structures and similarity to their putative Arabidopsis orthologs. According to these analyses, these CsMYBs were categorized into four groups (4R-MYB, 3R-MYB, 2R-MYB and 1R-MYB). Gene structure analysis revealed that 1R-MYB genes possess relatively more introns as compared with 2R-MYB genes. Investigation of their chromosomal localizations revealed that these CsMYBs are distributed across nine chromosomes. Sweet orange includes a relatively small number of MYB genes compared with the 198 members in Arabidopsis, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative studies of CsMYBs and Arabidopsis showed that CsMYBs had fewer gene duplication events. Expression analysis revealed that the MYB gene family has a wide expression profile in sweet orange development and plays important roles in development and stress responses. In addition, 337 new putative microsatellites with flanking sequences sufficient for primer design were also identified from the 177 CsMYBs. These results provide a useful reference for the selection of candidate MYB genes for cloning and further functional analysis forcitrus. PMID:25375352

  1. The FOUR LIPS and MYB88 transcription factor genes are widely expressed in Arabidopsis thaliana during development.

    Science.gov (United States)

    Lei, Qin; Lee, EunKyoung; Keerthisinghe, Sandra; Lai, Lien; Li, Meng; Lucas, Jessica R; Wen, Xiaohong; Ren, Xiaolin; Sack, Fred D

    2015-09-01

    The FOUR LIPS (FLP) and MYB88 transcription factors, which are closely related in structure and function, control the development of stomata, as well as entry into megasporogenesis in Arabidopsis thaliana. However, other locations where these transcription factors are expressed are poorly described. Documenting additional locations where these genes are expressed might define new functions for these genes. Expression patterns were examined throughout vegetative and reproductive development. The expression from two transcriptional-reporter fusions were visualized with either β-glucuronidase (GUS) or green fluorescence protein (GFP). Both flp and myb88 genes were expressed in many, previously unreported locations, consistent with the possibility of additional functions for FLP and MYB88. Moreover, expression domains especially of FLP display sharp cutoffs or boundaries. In addition to stomatal and reproductive development, FLP and MYB88, which are R2R3 MYB transcription factor genes, are expressed in many locations in cells, tissues, and organs. © 2015 Botanical Society of America.

  2. Genome-Wide Identification, Evolution and Functional Divergence of MYB Transcription Factors in Chinese White Pear (Pyrus bretschneideri).

    Science.gov (United States)

    Li, Xiaolong; Xue, Cheng; Li, Jiaming; Qiao, Xin; Li, Leiting; Yu, Li'ang; Huang, Yuhua; Wu, Jun

    2016-04-01

    The MYB superfamily is large and functionally diverse in plants. To date, MYB family genes have not yet been identified in Chinese white pear (Pyrus bretschneideri), and their functions remain unclear. In this study, we identified 231 genes as candidate MYB genes and divided them into four subfamilies. The R2R3-MYB (PbrMYB) family shared an R2R3 domain with 104 amino acid residues, including five conserved tryptophan residues. The Pbr MYB family was divided into 37 functional subgroups including 33 subgroups which contained both MYB genes of Rosaceae plants and AtMYB genes, and four subgroups which included only Rosaceae MYB genes or AtMYB genes. PbrMYB genes with similar functions clustered into the same subgroup, indicating functional conservation. We also found that whole-genome duplication (WGD) and dispersed duplications played critical roles in the expansion of the MYB family. The 87 Pbr MYB duplicated gene pairs dated back to the two WGD events. Purifying selection was the primary force driving Pbr MYB gene evolution. The 15 gene pairs presented 1-7 codon sites under positive selection. A total of 147 expressed genes were identified from RNA-sequencing data of fruit, and six Pbr MYB members in subgroup C1 were identified as important candidate genes in the regulation of lignin synthesis by quantitative real-time PCR analysis. Further correlation analysis revealed that six PbrMYBs were significantly correlated with five structural gene families (F5H, HCT, CCR, POD and C3'H) in the lignin pathway. The phylogenetic, evolution and expression analyses of the MYB gene family in Chinese white pear establish a solid foundation for future comprehensive functional analysis of Pbr MYB genes. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots

    OpenAIRE

    Xu, Zhi-Sheng; Feng, Kai; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2017-01-01

    Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic an...

  4. Identification and Characterization of the Diverse Stress-Responsive R2R3-RMYB Transcription Factor from Hibiscus sabdariffa L.

    Science.gov (United States)

    Mohamed, Bahaeldeen Babikar; Aftab, Beenish; Sarwar, Muhammad Bilal; Ahmad, Zarnab; Hassan, Sameera; Husnain, Tayyab

    2017-01-01

    Various regulatory proteins play a fundamental role to manage the healthy plant growth under stress conditions. Differential display reverse transcriptase PCR and random amplification of cDNA ends (RACE) was used to explore the osmotic stress-responsive transcripts. We identified and characterized the salt stress-responsive R2R3 type RMYB transcription factor from Hibiscus sabdariffa which has an open reading frame of 690 bp, encoding 229 long chain amino acids. In silico analysis confirmed the conserved R2 and R3 domain as well as an NLS-1 localization site. The deduced amino acids of RMYB shared 83, 81, 80, 79, 72, 71, and 66% homology with Arabidopsis thaliana, Glycine max, Oryza sativa, Zea maize, Malus domestica, Populus tremula × Populus alba, and Medicago sativa specific MYB family, respectively. We observed the gene upregulation in stem, leaf, and root tissue in response to abiotic stress. Furthermore, RMYB gene was cloned into plant expression vector under CaMV35S promoter and transformed to Gossypium hirsutum: a local cotton cultivar. Overexpression of RMYB was observed in transgenic plants under abiotic stresses which further suggests its regulatory role in response to stressful conditions. The RMYB transcription factor-overexpressing in transgenic cotton plants may be used as potential agent for the development of stress tolerant crop cultivars. PMID:29181384

  5. The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system.

    Science.gov (United States)

    Kim, Cha Young; Ahn, Young Ock; Kim, Sun Ha; Kim, Yun-Hee; Lee, Haeng-Soon; Catanach, Andrew S; Jacobs, Jeanne M E; Conner, Anthony J; Kwak, Sang-Soo

    2010-07-01

    MYB transcription factors play important roles in transcriptional regulation of many secondary metabolites including anthocyanins. We cloned the R2R3-MYB type IbMYB1 complementary DNAs from the purple-fleshed sweet potato (Ipomoea batatas L. cv Sinzami) and investigated the expression patterns of IbMYB1 gene with IbMYB1a and IbMYB1b splice variants in leaf and root tissues of various sweet potato cultivars by reverse transcription-polymerase chain reaction. The transcripts of IbMYB1 were predominantly expressed in the purple-fleshed storage roots and they were also detectable in the leaf tissues accumulating anthocyanin pigments. In addition, transcript levels of IbMYB1 gene were up-regulated by treatment with methyl jasmonate or salicylic acid in leaf and root tissues of cv. White Star. To set up the intragenic vector system in sweet potato, we first evaluated the utilization of the IbMYB1 gene as a visible selectable marker. The IbMYB1a was transiently expressed in tobacco leaves under the control of a constitutive cauliflower mosaic virus 35S promoter, a root-specific and sucrose-inducible sporamin promoter, and an oxidative stress-inducible sweet potato anionic peroxidase2 promoter. We also showed that overexpression of IbMYB1a induced massive anthocyanin pigmentation in tobacco leaves and up-regulated the transcript levels of the structural genes in anthocyanin biosynthetic pathway. Furthermore, high-performance liquid chromatography analysis revealed that the expression of IbMYB1a led to production of cyanidin as a major core molecule of anthocyanidins in tobacco leaves. These results suggest that the IbMYB1 gene can be applicable to a visible marker for sweet potato transformation with intragenic vectors, as well as the production of anthocyanin as important nutritive value in other plant species.

  6. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots.

    Science.gov (United States)

    Xu, Zhi-Sheng; Feng, Kai; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2017-03-27

    Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic analysis, DcMYB6 was grouped into an anthocyanin biosynthesis-related MYB clade. Sequence analyses revealed that DcMYB6 contained the conserved bHLH-interaction motif and two atypical motifs of anthocyanin regulators. The expression pattern of DcMYB6 was correlated with anthocyanin production. DcMYB6 transcripts were detected at high levels in three purple carrot cultivars but at much lower levels in six non-purple carrot cultivars. Overexpression of DcMYB6 in Arabidopsis led to enhanced anthocyanin accumulation in both vegetative and reproductive tissues and upregulated transcript levels of all seven tested anthocyanin-related structural genes. Together, these results show that DcMYB6 is involved in regulating anthocyanin biosynthesis in purple carrots. Our results provide new insights into the regulation of anthocyanin synthesis in purple carrot cultivars.

  7. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding.

    Science.gov (United States)

    Lin, Jeng-Shane; Lin, Chih-Ching; Lin, Hsin-Hung; Chen, Yu-Chi; Jeng, Shih-Tong

    2012-10-01

    MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  8. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals.

    Science.gov (United States)

    Li, Chonghui; Qiu, Jian; Ding, Ling; Huang, Mingzhong; Huang, Surong; Yang, Guangsui; Yin, Junmei

    2017-03-01

    Dendrobium hybrids orchid are popular throughout the world. They have various floral color and pigmentation patterns that are mainly caused by anthocyanins. It is well established that anthocyanin biosynthesis is regulated by the interplay between MYB and bHLH transcription factors (TF) in most plants. In this study, we identified one R2R3-MYB gene, DhMYB2, and one bHLH gene, DhbHLH1, from a Dendrobium hybrid. Their expression profiles were related to anthocyanin pigmentation in Dendrobium petals. Transient over-expression of these two TF genes showed that both DhMYB2 and DhbHLH1 resulted in anthocyanin production in white petals. The interaction between the two TFs was observed in vitro. In different Dendrobium hybrids petals with various pigmentations, DhMYB2 and DhbHLH1 were co-expressed with DhDFR and DhANS, which are regarded as potential regulatory targets of the two TFs. In flowers with distinct purple lips but white or yellow petals/sepals, the expression of DhbHLH1 was only related to anthocyanin accumulation in the lips. Taken together, DhMYB2 interacted with DhbHLH1 to regulate anthocyanin production in Dendrobium hybrid petals. DhbHLH1 was also responsible for the distinct anthocyanin pigmentation in lip tissues. The functional characterization of DhMYB2 and DhbHLH1 will improve understanding of anthocyanin biosynthesis modulation in Dendrobium orchids. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes TRY and TCL1.

    Science.gov (United States)

    Tian, Hainan; Wang, Xianling; Guo, Hongyan; Cheng, Yuxin; Hou, Chunjiang; Chen, Jin-Gui; Wang, Shucai

    2017-08-01

    The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis ( Arabidopsis thaliana ). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant ( ntl8-1D ). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8 Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON ( TRY ) and TRICHOMELESS1 ( TCL1 ) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1 , in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1 . © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    Science.gov (United States)

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  11. Functional diversification of grapevine MYB5a and MYB5b in the control of flavonoid biosynthesis in a petunia anthocyanin regulatory mutant.

    Science.gov (United States)

    Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Guzzo, Flavia; Zamboni, Anita; Avesani, Linda; Tornielli, Giovanni Battista

    2014-03-01

    Flavonoids play a key role in grapevine physiology and also contribute substantially to the quality of berries and wines. VvMYB5a and VvMYB5b are R2R3-MYB transcription factors previously proposed to control the spatiotemporal expression of flavonoid structural genes during berry development. We investigated the functions of these two proteins in detail by heterologous expression in a petunia an2 mutant, which has negligible anthocyanin levels in the petals because it lacks the MYB protein PhAN2. We also expressed VvMYBA1, the grapevine ortholog of petunia PhAN2, in the same genetic background. The anthocyanin profiles induced by expressing these transgenes in the petals revealed that VvMYBA1 is the functional ortholog of PhAN2 and that, unlike VvMYB5a, VvMYB5b can partially complement the an2 mutation. Transcriptomic analysis of petals by microarray hybridization and quantitative PCR confirmed that VvMYB5b up-regulates a subset of anthocyanin structural genes, whereas VvMYB5a has a more limited impact on the expression of genes related to anthocyanin biosynthesis. Furthermore, we identified additional specific and common targets of these two regulators, related to vacuolar acidification and membrane remodeling. Taken together, these data provide insight into the role of VvMYB5a and VvMYB5b in flavonoid biosynthesis and provide evidence for additional regulatory roles in distinct pathways.

  12. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    Science.gov (United States)

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple

    OpenAIRE

    Tian, Ji; Zhang, Jie; Han, Zhen-yun; Song, Ting-ting; Li, Jin-yan; Wang, Ya-ru; Yao, Yun-cong

    2017-01-01

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to th...

  14. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes.

    Science.gov (United States)

    Yoshida, Kazuko; Ma, Dawei; Constabel, C Peter

    2015-03-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.

    Science.gov (United States)

    Qin, Yuxiang; Wang, Mengcheng; Tian, Yanchen; He, Wenxing; Han, Lu; Xia, Guangmin

    2012-06-01

    Salt and drought stresses often adversely affect plant growth and productivity, MYB transcription factors have been shown to participate in the response to these stresses. Here we identified a new R2R3-type MYB transcription factor gene TaMYB33 from wheat (Triticum aestivum). TaMYB33 was induced by NaCl, PEG and ABA treatments, and its promoter sequence contains putative ABRE, MYB and other abiotic stress related cis-elements. Ectopic over-expression of TaMYB33 in Arabidopsis thaliana remarkably enhanced its tolerance to drought and NaCl stresses, but not to LiCl and KCl treatments. The expressions of AtP5CS and AtZAT12 which mirror the activities of proline and ascorbate peroxidase synthesis respectively were induced in TaMYB33 over-expression lines, indicating TaMYB33 promotes the ability for osmotic pressure balance-reconstruction and reactive oxidative species (ROS) scavenging. The up-regulation of AtAAO3 along with down-regulation of AtABF3, AtABI1 in TaMYB33 over-expression lines indicated that ABA synthesis was elevated while its signaling was restricted. These results suggest that TaMYB33 enhances salt and drought tolerance partially through superior ability for osmotic balance reconstruction and ROS detoxification.

  16. The oncoprotein v-Myb activates transcription of Gremlin 2 during in vitro differentiation of the chicken neural crest to melanoblasts

    Czech Academy of Sciences Publication Activity Database

    Starostová, Michaela; Čermák, Vladimír; Dvořáková, Marta; Karafiát, Vít; Kosla, Jan; Dvořák, Michal

    2014-01-01

    Roč. 540, č. 1 (2014), s. 122-129 ISSN 0378-1119 R&D Projects: GA AV ČR KAN200520801 Institutional support: RVO:68378050 Keywords : Melanocyte development * Tamoxifen-inducible v-Myb * v-Myb-dependent genes * PRDC * KRT19 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.138, year: 2014

  17. Functional Characterization of Tea (Camellia sinensis MYB4a Transcription Factor Using an Integrative Approach

    Directory of Open Access Journals (Sweden)

    Mingzhuo Li

    2017-06-01

    Full Text Available Green tea (Camellia sinensis, Cs abundantly produces a diverse array of phenylpropanoid compounds benefiting human health. To date, the regulation of the phenylpropanoid biosynthesis in tea remains to be investigated. Here, we report a cDNA isolated from leaf tissues, which encodes a R2R3-MYB transcription factor. Amino acid sequence alignment and phylogenetic analysis indicate that it is a member of the MYB4-subgroup and named as CsMYB4a. Transcriptional and metabolic analyses show that the expression profile of CsMYB4a is negatively correlated to the accumulation of six flavan-3-ols and other phenolic acids. GFP fusion analysis shows CsMYB4a’s localization in the nucleus. Promoters of five tea phenylpropanoid pathway genes are isolated and characterized to contain four types of AC-elements, which are targets of MYB4 members. Interaction of CsMYB4a and five promoters shows that CsMYB4a decreases all five promoters’ activity. To further characterize its function, CsMYB4a is overexpressed in tobacco plants. The resulting transgenic plants show dwarf, shrinking and yellowish leaf, and early senescence phenotypes. A further genome-wide transcriptomic analysis reveals that the expression levels of 20 tobacco genes involved in the shikimate and the phenylpropanoid pathways are significantly downregulated in transgenic tobacco plants. UPLC-MS and HPLC based metabolic profiling reveals significant reduction of total lignin content, rutin, chlorogenic acid, and phenylalanine in CsMYB4a transgenic tobacco plants. Promoter sequence analysis of the 20 tobacco genes characterizes four types of AC-elements. Further CsMYB4a-AC element and CsMYB4a-promoter interaction analyses indicate that the negative regulation of CsMYB4a on the shikimate and phenylpropanoid pathways in tobacco is via reducing promoter activity. Taken together, all data indicate that CsMYB4a negatively regulates the phenylpropanoid and shikimate pathways.Highlight: A tea (Camellia

  18. A dominant negative mutant of an Arabidopsis R2R3 Myb (AtMyb90) blocks flower pigment production in tobacco

    Science.gov (United States)

    A spontaneous mutation converted a hyper-pigmented (anthocyanins), CaMV-35S-pro::AtMYB90 containing, transgenic tobacco line into one displaying wild-type pigmentation in all tissues except for flower petals, which, counter-intuitively, showed anthocyanin levels dramatically below wild-type in the p...

  19. The R2R3-MYB–Like Regulatory Factor EOBI, Acting Downstream of EOBII, Regulates Scent Production by Activating ODO1 and Structural Scent-Related Genes in Petunia[C][W

    Science.gov (United States)

    Spitzer-Rimon, Ben; Farhi, Moran; Albo, Boaz; Cna’ani, Alon; Ben Zvi, Michal Moyal; Masci, Tania; Edelbaum, Orit; Yu, Yixun; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander

    2012-01-01

    Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB–like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI’s wide-ranging involvement in the production of floral volatiles. PMID:23275577

  20. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple.

    Science.gov (United States)

    Tian, Ji; Zhang, Jie; Han, Zhen-Yun; Song, Ting-Ting; Li, Jin-Yan; Wang, Ya-Ru; Yao, Yun-Cong

    2017-03-03

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression.

  1. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity.

    Science.gov (United States)

    Park, Sung-Chul; Kim, Yun-Hee; Kim, Sun Ha; Jeong, Yu Jeong; Kim, Cha Young; Lee, Joon Seol; Bae, Ji-Yeong; Ahn, Mi-Jeong; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2015-04-01

    The R2R3-type protein IbMYB1 is a key regulator of anthocyanin biosynthesis in the storage roots of sweet potato [Ipomoea batatas (L.) Lam]. Previously, we demonstrated that IbMYB1 expression stimulated anthocyanin pigmentation in tobacco leaves and Arabidopsis. Here, we generated dual-pigmented transgenic sweet potato plants that accumulated high levels of both anthocyanins and carotenoids in a single sweet potato storage root. An orange-fleshed cultivar with high carotenoid levels was transformed with the IbMYB1 gene under the control of either the storage root-specific sporamin 1 (SPO1) promoter or the oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The SPO1-MYB transgenic lines exhibited higher anthocyanin levels in storage roots than empty vector control (EV) or SWPA2-MYB plants, but carotenoid content was unchanged. SWPA2-MYB transgenic lines exhibited higher levels of both anthocyanin and carotenoids than EV plants. Analysis of hydrolyzed anthocyanin extracts indicated that cyanidin and peonidin predominated in both overexpression lines. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that IbMYB1 expression in both IbMYB1 transgenic lines strongly induced the upregulation of several genes in the anthocyanin biosynthetic pathway, whereas the expression of carotenoid biosynthetic pathway genes varied between transgenic lines. Increased anthocyanin levels in transgenic plants also promoted the elevation of proanthocyanidin and total phenolic levels in fresh storage roots. Consequently, all IbMYB1 transgenic plants displayed much higher antioxidant activities than EV plants. In field cultivations, storage root yields varied between the transgenic lines. Taken together, our results indicate that overexpression of IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced antioxidant capacity. © 2014 Scandinavian Plant Physiology Society.

  2. PH4 of petunia is an R2R3-MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop transcription factors of the anthocyanin pathway.

    NARCIS (Netherlands)

    Quattrocchio, F.M.; Verweij, C.W.; Kroon, A.R.; Spelt, C.E.; Mol, J.N.M.; Koes, R.E.

    2006-01-01

    The Petunia hybrids genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color,

  3. An Investigation of the Relationship between PPP1R3 Gene Polymorphism and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Soyar Sari

    2017-07-01

    Full Text Available Background and Objectives: PPP1R3 is one of the genes confirmed to be associated with type 2 diabetes. This gene is located on the long arm of chromosome 7 and encodes protein phosphatase 1 (PP1, which has serine/threonine phosphatase activity. There is a polymorphic region in the 3'UTR region of this gene, which creates ARE1 and ARE2 alleles. The aim of this study was to determine the relationship between PPP1R3 gene polymorphism and type 2 diabetes. Methods: In this case-control study, 100 patients with type 2 diabetes and 100 healthy individuals, were randomly selected from the study population. PPP1R3 gene polymorphism was analyzed using PCR-RFLP method. Comparison of variables between healthy and patient groups, was performed by t-test, allele frequency by counting, and calculation of their ratio by chi-square test, and the population was confirmed to be in Hardy-Weinberg equilibrium. Distribution of genotypes and alleles was compared between healthy and patient groups. Results: In this study, there was no significant difference between the frequency of genotypes and frequency of alleles in subjects with type 2 diabetes and healthy control subjects. Conclusion: The findings of this study indicated that polymorphisms in the 3'UTR region of PPP1R3 gene is not associated with type 2 diabetes.

  4. R3-R4 deletion in the PRNP gene is associated with Creutzfeldt-Jakob disease (CJD)

    Energy Technology Data Exchange (ETDEWEB)

    Cervenakova, L.; Brown, P.; Nagle, J. [and others

    1994-09-01

    There are conflicting reports on the association of deletions in the PRNP gene on chromosome 20 with CJD, a rapidly progressive fatal spongiform encephalopathy. We accumulated data suggesting that a deletion of R3-R4 type (parts of the third and fourth repeats are deleted from the area of four repeating 24 bp sequences in the 5{prime} region of the gene) is causing CJD. Screening of 129 unaffected control individuals demonstrated presence of a deletion of R2 type in four (1.55% of the studied chromosomes), but none of them had the R3-R4 type. Of 181 screened patients with spongiform encephalopathies, two had a deletion of R3-R4 type with no other mutations in the coding sequence. Both patients had a classical rapidly progressive dementing disease and diffuse spongiform degeneration, and both cases were apparently sporadic. The same R3-R4 type of deletion was detected in three additional neuropathologically confirmed spongiform encephalopathy patients, of which two had other known pathogenic mutations in the PRNP gene: at codon 178 on the methionine allele exhibiting the phenotype of fatal familial insomnia, and codon 200 causing CJD with severe dementia; the third was a patient with iatrogenic CJD who developed the disease after treatment with growth hormone extracted from cadaveric human pituitary glands. In all cases the deletion coincided with a variant sequence at position 129 coding for methionine.

  5. [MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress].

    Science.gov (United States)

    Ding, Qing Qian; Wang, Xiao Ting; Hu, Li Qin; Qi, Xin; Ge, Lin Hao; Xu, Wei Ya; Xu, Zhao Shi; Zhou, Yong Bin; Jia, Guan Qing; Diao, Xian Min; Min, Dong Hong; Ma, You Zhi; Chen, Ming

    2018-04-20

    Myeloblastosis (MYB) transcription factors are one of the largest families of transcription factors in higher plants. They play an important role in plant development, defense response processes, and non-biological stresses, i.e., drought stress. Foxtail millet (Setaria italica L.), originated in China, is resistant to drought and low nutrition stresses and has been regarded as an ideal material for studying abiotic stress resistance in monocotyledon. In this study, we ran a transcription profile analysis of zheng 204 under low-nitrogen conditions and identified a MYB-like transcription factor SiMYB42, which was up-regulated under low-nitrogen stress. Phylogenetic tree analysis showed that SiMYB42 belongs to R2R3-MYB subfamily and has two MYB conserved domains. Expression pattern analysis showed that SiMYB42 was significantly up-regulated under various stress conditions, including low-nitrogen stress, high salt, drought and ABA conditions. The results of subcellular localization, quantitative real-time PCR and transcriptional activation analysis indicated that SiMYB42 protein localizes to the nucleus and cell membrane of plant cells, mainly expressed in the leaf or root of foxtail millet, and has transcription activation activity. Functional analysis showed that there was no significant difference between transgenic SiMYB42 Arabidopsis and wild-type (WT) Arabidopsis under normal conditions; however, under low-nitrogen condition, the root length, surface area and seedling fresh weight in transgenic SiMYB42 Arabidopsis, were significantly higher than their counterparts in WT. These results suggest that SiMYB42 transgenic plants exhibit higher tolerance to low-nitrogen stress. Expression levels of nitrate transporters genes NRT2.1, NRT2.4 and NRT2.5, which are the transcriptional targets of SiMYB42, were higher in transgenic SiMYB42 Arabidopsis plants than those in WT; the promoter regions of NRT2.1, NRT2.4 and NRT2.5 all have MYB binding sites. These results indicate

  6. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds.

    Science.gov (United States)

    Yan, Fan; Di, Shaokang; Takahashi, Ryoji

    2015-08-01

    The R gene of soybean, presumably encoding a MYB transcription factor, controls seed coat color. The gene consists of multiple alleles, R (black), r-m (black spots and (or) concentric streaks on brown seed), and r (brown seed). This study was conducted to determine the structure of the MYB transcription factor gene in a near-isogenic line (NIL) having r-m allele. PCR amplification of a fragment of the candidate gene Glyma.09G235100 generated a fragment of about 1 kb in the soybean cultivar Clark, whereas a fragment of about 14 kb in addition to fragments of 1 and 1.4 kb were produced in L72-2040, a Clark 63 NIL with the r-m allele. Clark 63 is a NIL of Clark with the rxp and Rps1 alleles. A DNA fragment of 13 060 bp was inserted in the intron of Glyma.09G235100 in L72-2040. The fragment had the CACTA motif at both ends, imperfect terminal inverted repeats (TIR), inverse repetition of short sequence motifs close to the 5' and 3' ends, and a duplication of three nucleotides at the site of integration, indicating that it belongs to a CACTA-superfamily transposable element. We designated the element as Tgm11. Overall nucleotide sequence, motifs of TIR, and subterminal repeats were similar to those of Tgm1 and Tgs1, suggesting that these elements comprise a family.

  7. PH4 of petunia is an R2R3-MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop-Helix transcription factors of the anthocyanin pathway.

    NARCIS (Netherlands)

    Quattrocchio, F.M.; Verweij, C.W.; Spelt, C.E.; Mol, J.N.M.; Koes, R.E.

    2007-01-01

    The Petunia hybrids genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color,

  8. Partial synthesis of (3R,6'R)-alpha-cryptoxanthin and (3R)-beta-cryptoxanthin from (3R,3'R,6'R)-lutein.

    Science.gov (United States)

    Khachik, Frederick; Chang, An-Ni; Gana, Audry; Mazzola, Eugene

    2007-02-01

    (3R,3'R,6'R)-Lutein (1), (3R,3'R)-zeaxanthin (2), (3R,6'R)-alpha-cryptoxanthin (3), and (3R)-beta-cryptoxanthin (4) are among dietary hydroxycarotenoids that have been identified in human serum, milk, and ocular tissues. While 1 containing 6% of 2 is commercially available, industrial production of optically active 3 and 4 has not yet been accomplished. Several processes have been developed that transform 1 into 3, 4, and minor quantities of (3R,5'RS,6'R)-3',4'-didehydro-5',6'-dihydro-beta,beta-caroten-3-ol (5) (a regioisomer of 3). In one process, lutein (1) was cleanly deoxygenated to 3 in the presence of trifluoroacetic acid (TFA) and Me3N.BH3 in CH2Cl2 at ambient temperature in nearly 90% yield. Reaction of lutein (1) with a Lewis acid (AlCl3, ZnBr2, ZnI2) and a hydride donor (Me3N.BH3, Na[BH3(OCOCF3)], NaCNBH3) in solvents such as CH2Cl2, THF, and TBME produced similar results. In a two-step process, high-temperature acid-catalyzed dehydration of 1 (propanol/water/acid, 90 degrees C) gave a mixture of anhydroluteins 6, 7, and 8 in 86% yield. In the second step, these dehydration products underwent ionic hydrogenation with TFA/Me3N.BH3 in CH2Cl2 to afford a mixture of 3 and 4 in nearly 80% yield that contained only 1% of 5.

  9. Over-expression of the transcription factor HlMYB3 in transgenic hop (Humulus lupulus L. cv. Tettnanger) modulates the expression of genes involved in the biosynthesis of flavonoids and phloroglucinols

    Czech Academy of Sciences Publication Activity Database

    Gatica-Arias, A.; Stanke, M.; Häntzschel, K.R.; Matoušek, Jaroslav; Weber, G.

    2013-01-01

    Roč. 113, č. 2 (2013), s. 279-289 ISSN 0167-6857 R&D Projects: GA ČR GA521/08/0740 Institutional support: RVO:60077344 Keywords : Hop * R2R3 MYB transcription factors * Genetic transformation * Flavonoid biosynthesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.612, year: 2013

  10. Introducing the "TCDD-inducible AhR-Nrf2 gene battery".

    Science.gov (United States)

    Yeager, Ronnie L; Reisman, Scott A; Aleksunes, Lauren M; Klaassen, Curtis D

    2009-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces genes via the transcription factor aryl hydrocarbon receptor (AhR), including Cyp1a1, NAD(P)H:quinone oxidoreductase 1 (Nqo1), UDP-glucuronosyltransferase 1a6 (Ugt1a6), and glutathione S-transferase a1 (Gsta1). These genes are referred to as the "AhR gene battery." However, Nqo1 is also considered a prototypical target gene of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). In mice, TCDD induction of Nrf2 and Nrf2 target, Nqo1, is dependent on AhR, and thus TCDD induction of drug-processing genes may be routed through an AhR-Nrf2 sequence. There has been speculation that Nrf2 may be involved in the TCDD induction of drug-processing genes; however, the data are not definitive. Therefore, to address whether TCDD induction of Nqo1, Ugts, and Gsts is dependent on Nrf2, we conducted the definitive experiment by administering TCDD (50 mug/kg, ip) to Nrf2-null and wild-type (WT) mice and collecting livers 24 h later to quantify the mRNA of drug-processing genes. TCDD induction of Cyp1a1 and Ugt1a1 was similar in WT and Nrf2-null mice, whereas TCDD induction of Ugt1a5 and 1a9 was blunted in Nrf2-null mice. TCDD induced Nqo1, Ugt1a6, 2b34, 2b35, 2b36, UDP-glucuronic acid-synthesizing gene UDP-glucose dehydrogenase, and Gsta1, m1, m2, m3, m6, p2, t2, and microsomal Gst1 in WT mice but not in Nrf2-null mice. Therefore, the present study demonstrates the novel finding that Nrf2 is required for TCDD induction of classical AhR battery genes Nqo1, Ugt1a6, and Gsta1, as well as most Ugt and Gst isoforms in livers of mice.

  11. The impact of R1and R3a genes on tuber resistance to late blight of the potato breeding clones

    Directory of Open Access Journals (Sweden)

    Zoteyeva Nadezhda

    2016-04-01

    Full Text Available Potato breeding clones were evaluated for resistance to late blight (agent Phytophthora infestans using tuber inoculation tests and for presence of the resistance alleles of R1 and R3a genes in polymerase chain reaction tests. Among clones tested those expressing high, moderate and low resistance were identified. The data were analysed for the impact of R1 and R3a genes on tuber resistance to late blight in tested plant material. In previous evaluations performed on smaller amount of clones the tuber resistance levels significantly depended on presence/absence of the resistance allele of R3a gene and did not depend on presence of R1 gene allele. In the current study the statistical analyses did not prove the significant difference in resistance levels depending on presence of the resistance alleles, neither of R1 gene, nor of R3a gene. Tuber resistant clones bearing R3a gene resistance alleles still noticeably prevailed over the clones bearing the alleles of R1 gene as well as over the clones bearing the no resistance alleles of both genes. In several cases the resistance of clones with detected resistance allele of R1 gene was higher compared to those derived from the same crosses and showing amplification of the allele of R3a gene or those with no resistance alleles. Clones accumulating the resistance alleles of both (R1 and R3a genes expressed high tuber resistance accompanied by necrotic reaction.

  12. An efficient conversion of (3R,3'R,6'R)-lutein to (3R,3'S,6'R)-lutein (3'-epilutein) and (3R,3'R)-zeaxanthin.

    Science.gov (United States)

    Khachik, Frederick

    2003-01-01

    Two dietary carotenoids, (3R,3'R,6'R)-lutein (1) and (3R,3'R)-zeaxanthin (2), and their metabolite (3R,3'S,6'R)-lutein (3'-epilutein) (3) accumulate in human serum, milk, and ocular tissues. There is increasing evidence that compounds 1 and 2 play an important role in the prevention of age-related macular degeneration. Therefore, the availability of these carotenoids for metabolic studies and clinical trials is essential. Compound 1 is isolated from extracts of marigold flowers (Tagete erecta) and is commercially available, whereas 2 is only accessible by a lengthy total synthesis, and a viable method for synthesis of 3 has not yet been developed. This report describes an efficient conversion of technical grade 1 to 2 via 3. Acid-catalyzed epimerization of 1 yields an equimolar mixture of diastereomers 1 and 3. The mixture was separated by enzyme-mediated acylation with lipase AK from Pseudomonas fluorescens that preferentially esterified 3 and after alkaline hydrolysis yielded this carotenoid in 90% diastereomeric excess (de). Compound 3 was also separated from 1 in 56-88% de by solvent extraction and low-temperature crystallization, Soxhlet extraction, or supercritical fluid extraction. Base-catalyzed isomerization of 3 gave 2 in excellent yield, providing a convenient alternative to the total synthesis of this important dietary carotenoid.

  13. (1R,2R,3R,4R,5S-2,3-Bis[(2S′-2-acetoxy-2-phenylacetoxy]-4-azido-1-[(2,4-dinitrophenylhydrazonomethyl]bicyclo[3.1.0]hexane

    Directory of Open Access Journals (Sweden)

    Robert McDonald

    2008-02-01

    Full Text Available In the title compound, C38H29N7O12, the five-membered ring adopts an envelope conformation in which the `flap' is cis to the cyclopropane group. This conformation is similar to those of other bicyclo[3.1.0]hexane analogues for which crystal structures have been reported. The absolute configuration of the stereogenic centers on the cyclopentane ring, as determined by comparison with the known configurations of the stereogenic centers in the (2S-2-acetoxy-2-phenylacetoxy groups, is 1(R, 2(R, 3(R, 4(R and 5(S. An intramolecular N—H...O hydrogen bond is present.

  14. Localisation of relaxin peptides in the brain: comparative mapping of relaxin-R2 and the novel relaxin-R3 gene expression

    International Nuclear Information System (INIS)

    Burazin, T.C.D.; Macris, M.; Gundlach, A.L.; Tregear, G.W.

    2002-01-01

    Full text: Relaxin is a peptide hormone with known actions in the female reproductive tract that has also been identified in brain. Until recently, only one relaxin gene has been described in the rat and mouse. However, we have recently identified a new member of the relaxin gene family, relaxin gene-3, expressed in human, mouse and rat. Using [ 35 S]-labelled oligonucleotide probes and in situ hybridisation histochemistry, the current studies describe the distribution of mRNA encoding rat relaxin gene-1 (R1) and rat relaxin gene-3 (R3) in the adult rat brain. R1 mRNA was detected in several regions including the anterior olfactory nucleus, tenia tecta, orbital, frontal and piriform cortices, and in lower abundance in the hippocampus. In contrast, highly abundant expression of R3 mRNA was more restricted being present in the pars ventromedialis subdivision of the dorsal tegmental nucleus (vmDTg), with some low level expression in the hippocampus. Autoradiographic visualisation of [ 33 P]-labelled human relaxin binding sites revealed the presence of putative relaxin receptors in the DTg centralis and vmDTg, as well as in several forebrain areas previously identified. Studies are currently underway to investigate the activity-dependent regulation and developmental expression of relaxin transcripts, including the possible co-localisation of R3 mRNA with neurotransmitters such as GABA and 5- HT, and other peptides. These studies are consistent with an important role for these novel relaxin peptides in the rat central nervous system. Copyright (2002) Australian Neuroscience Society

  15. DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter

    Directory of Open Access Journals (Sweden)

    Cominelli Eleonora

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated that the Arabidopsis thaliana AtMYB60 protein is an R2R3MYB transcription factor required for stomatal opening. AtMYB60 is specifically expressed in guard cells and down-regulated at the transcriptional levels by the phytohormone ABA. Results To investigate the molecular mechanisms governing AtMYB60 expression, its promoter was dissected through deletion and mutagenesis analyses. By studying different versions of AtMYB60 promoter::GUS reporter fusions in transgenic plants we were able to demonstrate a modular organization for the AtMYB60 promoter. Particularly we defined: a minimal promoter sufficient to confer guard cell-specific activity to the reporter gene; the distinct roles of different DOF-binding sites organised in a cluster in the minimal promoter in determining guard cell-specific expression; the promoter regions responsible for the enhancement of activity in guard cells; a promoter region responsible for the negative transcriptional regulation by ABA. Moreover from the analysis of single and multiple mutants we could rule out the involvement of a group of DOF proteins, known as CDFs, already characterised for their involvement in flowering time, in the regulation of AtMYB60 expression. Conclusions These findings shed light on the regulation of gene expression in guard cells and provide new promoter modules as useful tools for manipulating gene expression in guard cells, both for physiological studies and future biotechnological applications.

  16. Synthesis of carbasugars from aldonolactones, part III - A study on the allylic substitution of (1R,5R,8R)- and (1R,5R,8S)-8-hydroxy-2-oxabicyclo[3.3.0]oct-6-en-3-one derivatives - Preparation of (1S,2R,3R)-9-[2-hydroxy-3-(2-hydroxyethyl)cyclopent-4-en-1-yl]-9H-adenine

    DEFF Research Database (Denmark)

    Johansen, Steen Karsk; Lundt, Inge

    2001-01-01

    The palladium-catalyzed substitution of acylated (1R,5R,8R)- and (1R,SR,8S)-8-hydroxy-2-oxabicyclo[3.3.0] ones has been studied using a number of C- and N-nucleophiles, In all cases, the exo derivatives (8R) were found to be more reactive than the corresponding endo derivatives (8S). The reaction...... with these nucleophiles. Additionally, Mitsunobu substitution of (1R,5R,8R)-8-hydroxy-2-oxabicyclo[3.3.0]oct-B-en-3-one (3) with 6-chloropurine, followed by reduction of the lactone moiety and treatment with Liquid ammonia, gave the carbocyclic nucleoside (1S,2R,3R)-9-[2-hydroxy-3-(2-hydroxyethyl)cyclopent-4-en-1-yl]-9H...

  17. Tyms double (2R) and triple repeat (3R) confers risk for human oral squamous cell carcinoma.

    Science.gov (United States)

    Bezerra, Alexandre Medeiros; Sant'Ana, Thalita Araújo; Gomes, Adriana Vieira; de Lacerda Vidal, Aurora Karla; Muniz, Maria Tereza Cartaxo

    2014-12-01

    The oral cancer is responsible for approximately 3 % of cases of cancer in Brazil. Epidemiological studies have associated low folate intake with an increased risk of epithelial cancers, including oral cancer. Folic acid has a key role in DNA synthesis, repair, methylation and this is the basis of explanations for a putative role for folic acid in cancer prevention. The role of folic acid in carcinogenesis may be modulated by polymorphism C677T in MTHFR and tandem repeats 2R/3R in the promoter site of TYMS gene that are related to decreased enzymatic activity and quantity and availability of the enzyme, respectively. These events cause a decrease in the synthesis, repair and DNA methylation, which can lead to a disruption in the expression of tumor suppressor genes as TP53. The objective of this study was investigate the distribution of polymorphisms C677T and tandem repeats 2R/3R associated with the development of oral squamous cell carcinoma (OSCC). 53 paraffin-embedded samples from patients who underwent surgery but are no longer at the institution and 43 samples collected by method of oral exfoliation by cytobrush were selected. 132 healthy subjects were selected by specialists at the dental clinics of the Faculdade de Odontologia de Pernambuco-FOP. The MTHFR genotyping was performed by PCR-RFLP, and the TYMS genotyping was performed by conventional PCR. Fisher's Exact test at significant level of 5 %. Odds ratios (ORs) and 95 % confidence intervals (CIs) were used to measure the strength of association between genotype frequency and OSCC development. The results were statistically significant for the tandem repeats of the TYMS gene (p = 0.015). The TYMS 2R3R genotype was significantly associated with the development of OSCC (OR = 3.582; 95 % CI 1.240-10.348; p = 0.0262) and also the genotype 3R3R (OR = 3.553; 95 % CI 1.293-9.760; p = 0.0345). When analyzed together, the TYMS 2R3R + 3R3R genotypes also showed association (OR = 3.518; 95 % CI 11.188-10.348; p

  18. psygenet2r: a R/Bioconductor package for the analysis of psychiatric disease genes.

    Science.gov (United States)

    Gutiérrez-Sacristán, Alba; Hernández-Ferrer, Carles; González, Juan R; Furlong, Laura I

    2017-12-15

    Psychiatric disorders have a great impact on morbidity and mortality. Genotype-phenotype resources for psychiatric diseases are key to enable the translation of research findings to a better care of patients. PsyGeNET is a knowledge resource on psychiatric diseases and their genes, developed by text mining and curated by domain experts. We present psygenet2r, an R package that contains a variety of functions for leveraging PsyGeNET database and facilitating its analysis and interpretation. The package offers different types of queries to the database along with variety of analysis and visualization tools, including the study of the anatomical structures in which the genes are expressed and gaining insight of gene's molecular function. Psygenet2r is especially suited for network medicine analysis of psychiatric disorders. The package is implemented in R and is available under MIT license from Bioconductor (http://bioconductor.org/packages/release/bioc/html/psygenet2r.html). juanr.gonzalez@isglobal.org or laura.furlong@upf.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. PhMYB4 fine-tunes the floral volatile signature of Petunia x hybrida through PhC4H.

    Science.gov (United States)

    Colquhoun, Thomas A; Kim, Joo Young; Wedde, Ashlyn E; Levin, Laura A; Schmitt, Kyle C; Schuurink, Robert C; Clark, David G

    2011-01-01

    In Petunia × hybrida cv 'Mitchell Diploid' (MD), floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis is controlled spatially, developmentally, and daily at molecular, metabolic, and biochemical levels. Multiple genes have been shown to encode proteins that either directly catalyse a biochemical reaction yielding FVBP compounds or are involved in metabolite flux prior to the formation of FVBP compounds. It was hypothesized that multiple transcription factors are involved in the precise regulation of all necessary genes, resulting in the specific volatile signature of MD flowers. After acquiring all available petunia transcript sequences with homology to Arabidopsis thaliana R2R3-MYB transcription factors, PhMYB4 (named for its close identity to AtMYB4) was identified, cloned, and characterized. PhMYB4 transcripts accumulate to relatively high levels in floral tissues at anthesis and throughout open flower stages, which coincides with the spatial and developmental distribution of FVBP production and emission. Upon RNAi suppression of PhMYB4 (ir-PhMYB4) both petunia cinnamate-4-hydroxylase (PhC4H1 and PhC4H2) gene transcript levels were significantly increased. In addition, ir-PhMYB4 plants emit higher levels of FVBP compounds derived from p-coumaric acid (isoeugenol and eugenol) compared with MD. Together, these results indicate that PhMYB4 functions in the repression of C4H transcription, indirectly controlling the balance of FVBP production in petunia floral tissue (i.e. fine-tunes).

  20. LcMYB1 Is a Key Determinant of Differential Anthocyanin Accumulation among Genotypes, Tissues, Developmental Phases and ABA and Light Stimuli in Litchi chinensis

    OpenAIRE

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription level...

  1. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  2. A Myb transcription factor of Phytophthora sojae, regulated by MAP kinase PsSAK1, is required for zoospore development.

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    Full Text Available PsSAK1, a mitogen-activated protein (MAP kinase from Phytophthora sojae, plays an important role in host infection and zoospore viability. However, the downstream mechanism of PsSAK1 remains unclear. In this study, the 3'-tag digital gene expression (DGE profiling method was applied to sequence the global transcriptional sequence of PsSAK1-silenced mutants during the cysts stage and 1.5 h after inoculation onto susceptible soybean leaf tissues. Compared with the gene expression levels of the recipient P. sojae strain, several candidates of Myb family were differentially expressed (up or down in response to the loss of PsSAK1, including of a R2R3-type Myb transcription factor, PsMYB1. qRT-PCR indicated that the transcriptional level of PsMYB1 decreased due to PsSAK1 silencing. The transcriptional level of PsMYB1 increased during sporulating hyphae, in germinated cysts, and early infection. Silencing of PsMYB1 results in three phenotypes: a no cleavage of the cytoplasm into uninucleate zoospores or release of normal zoospores, b direct germination of sporangia, and c afunction in zoospore-mediated plant infection. Our data indicate that the PsMYB1 transcription factor functions downstream of MAP kinase PsSAK1 and is required for zoospore development of P. sojae.

  3. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3.

    Science.gov (United States)

    Qiu, Yu-Ying; Zhang, Ying-Wei; Qian, Xiu-Fen; Bian, Tao

    2017-01-01

    Asthma is tightly related to the imbalance of Th1/Th2 cells, and Runx3 plays a pivotal role in the differentiation of T helper cells. The present study aimed to investigate dysregulated microRNAs that may target Runx3 in CD4 + T cells from asthmatic patients and reveal Runx3 function in Th1/Th2 balance regulation. We detected the levels of Th1- and Th2-related cytokines by ELISA and analyzed the differentiation marker gene of T helper cells by qRT-PCR. Results indicated that an imbalance of Th1/Th2 cells was present in our asthmatic subject. Runx3 expression was reduced in the CD4 + T cells from asthmatic patients. Overexpression of Runx3 could restore the Th1/Th2 balance. After performing microRNA microarray assay, we found a series of microRNAs that were considerably altered in the CD4 + T cells from asthmatic patients. Among these upregulated microRNAs, eight microRNAs that may target Runx3 were selected by bioinformatics prediction. Five microRNAs, namely miR-371, miR-138, miR-544, miR-145, and miR-214, were confirmed by qRT-PCR and selected as candidate microRNAs. Luciferase reporter assay showed that these five microRNAs could directly target the 3'-UTR of Runx3. However, only simultaneous inhibition of these five microRNAs could alter the expression of Runx3. Most importantly, only simultaneous inhibition could improve the Th1/Th2 balance. Thus, we suggest that miR-371, miR-138, miR-544, miR-145, and miR-214 can modulate the Th1/Th2 balance in asthma by regulating Runx3 in a combinatorial manner.

  4. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey

    Directory of Open Access Journals (Sweden)

    Ling Yin

    2017-06-01

    Full Text Available Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28 was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey. Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate

  5. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju

    2017-01-01

    Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28 , the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology ( BoaMYB28 ) was identified in Chinese kale ( Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in

  6. Production of R,R-2,3-butanediol of ultra-high optical purity from Paenibacillus polymyxa ZJ-9 using homologous recombination.

    Science.gov (United States)

    Zhang, Li; Cao, Can; Jiang, Ruifan; Xu, Hong; Xue, Feng; Huang, Weiwei; Ni, Hao; Gao, Jian

    2018-08-01

    The present study describes the use of metabolic engineering to achieve the production of R,R-2,3-butanediol (R,R-2,3-BD) of ultra-high optical purity (>99.99%). To this end, the diacetyl reductase (DAR) gene (dud A) of Paenibacillus polymyxa ZJ-9 was knocked out via homologous recombination between the genome and the previously constructed targeting vector pRN5101-L'C in a process based on homologous single-crossover. PCR verification confirmed the successful isolation of the dud A gene disruption mutant P. polymyxa ZJ-9-△dud A. Moreover, fermentation results indicated that the optical purity of R,R-2,3-BD increased from about 98% to over 99.99%, with a titer of 21.62 g/L in Erlenmeyer flasks. The latter was further increased to 25.88 g/L by fed-batch fermentation in a 5-L bioreactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Directory of Open Access Journals (Sweden)

    Biao Lai

    Full Text Available The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  8. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Science.gov (United States)

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  9. Steviamine, a new class of indolizidine alkaloid [(1R,2S,3R,5R,8aR-3-hydroxymethyl-5-methyloctahydroindolizine-1,2-diol hydrobromide

    Directory of Open Access Journals (Sweden)

    Amber L. Thompson

    2009-11-01

    Full Text Available X-ray crystallographic analysis of the title hydrobromide salt, C10H20N+·Br−, of (1R,2S,3R,5R,8aR-3-hydroxymethyl-5-methyloctahydroindolizine-1,2-diol defines the absolute and relative stereochemistry at the five chiral centres in steviamine, a new class of polyhydroxylated indolizidine alkaloid isolated from Stevia rebaudiana (Asteraceae leaves. In the crystal structure, molecules are linked by intermolecular O—H...Br and N—H...Br hydrogen bonds, forming double chains around the twofold screw axes along the b-axis direction. Intramolecular O—H...O interactions occur.

  10. Resolution of 1-n-butyl-3-methyl-3-phospholene 1-oxide with TADDOL derivatives and calcium salts of O,O'-Dibenzoyl-(2R,3R)- or O,O'-di-p-toluoyl-(2R,3R)-tartaric acid.

    Science.gov (United States)

    Bagi, Péter; Fekete, András; Kállay, Mihály; Hessz, Dóra; Kubinyi, Miklós; Holczbauer, Tamás; Czugler, Mátyás; Fogassy, Elemér; Keglevich, György

    2014-03-01

    The resolution methods applying (-)-(4R,5R)-4,5-bis(diphenylhydroxymethyl)-2,2-dimethyldioxolane ("TADDOL"), (-)-(2R,3R)-α,α,α',α'-tetraphenyl-1,4-dioxaspiro[4.5]decan-2,3-dimethanol ("spiro-TADDOL"), as well as the acidic and neutral Ca(2+) salts of (-)-O,O'-dibenzoyl- and (-)-O,O'-di-p-toluoyl-(2R,3R)-tartaric acid were extended for the preparation of 1-n-butyl-3-methyl-3-phospholene 1-oxide in optically active form. In one case, the intermediate diastereomeric complex could be identified by single-crystal X-ray analysis. The absolute P-configuration of the enantiomers of the phospholene oxide was also determined by comparing the experimentally obtained and calculated CD spectra. © 2014 Wiley Periodicals, Inc.

  11. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Mets, E; Van der Meulen, J; Van Peer, G; Boice, M; Mestdagh, P; Van de Walle, I; Lammens, T; Goossens, S; De Moerloose, B; Benoit, Y; Van Roy, N; Clappier, E; Poppe, B; Vandesompele, J; Wendel, H-G; Taghon, T; Rondou, P; Soulier, J; Van Vlierberghe, P; Speleman, F

    2015-04-01

    The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3'untranslated region-microRNA (miRNA) library screen and identified 33 putative MYB-targeting miRNAs. Subsequently, transcriptome data from two independent T-ALL cohorts and different subsets of normal T-cells were used to select miRNAs with relevance in the context of normal and malignant T-cell transformation. Hereby, miR-193b-3p was identified as a novel bona fide tumor-suppressor miRNA that targets MYB during malignant T-cell transformation thereby offering an entry point for efficient MYB targeting-oriented therapies for human T-ALL.

  12. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries.

    Science.gov (United States)

    Deluc, Laurent; Bogs, Jochen; Walker, Amanda R; Ferrier, Thilia; Decendit, Alain; Merillon, Jean-Michel; Robinson, Simon P; Barrieu, François

    2008-08-01

    Among the dramatic changes occurring during grape berry (Vitis vinifera) development, those affecting the flavonoid pathway have provoked a number of investigations in the last 10 years. In addition to producing several compounds involved in the protection of the berry and the dissemination of the seeds, final products of this pathway also play a critical role in berry and wine quality. In this article, we describe the cloning and functional characterization of VvMYB5b, a cDNA isolated from a grape berry (V. vinifera 'Cabernet Sauvignon') library. VvMYB5b encodes a protein belonging to the R2R3-MYB family of transcription factors and displays significant similarity with VvMYB5a, another MYB factor recently shown to regulate flavonoid synthesis in grapevine. The ability of VvMYB5a and VvMYB5b to activate the grapevine promoters of several structural genes of the flavonoid pathway was confirmed by transient expression of the corresponding cDNAs in grape cells. Overexpression of VvMYB5b in tobacco (Nicotiana tabacum) leads to an up-regulation of genes encoding enzymes of the flavonoid pathway and results in the accumulation of anthocyanin- and proanthocyanidin-derived compounds. The ability of VvMYB5b to regulate particularly the anthocyanin and the proanthocyanidin pathways is discussed in relation to other recently characterized MYB transcription factors in grapevine. Taken together, data presented in this article give insight into the transcriptional mechanisms associated with the regulation of the flavonoid pathway throughout grape berry development.

  13. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6.

    Science.gov (United States)

    Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui

    2013-10-01

    (2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P222₁, with unit-cell parameters a=88.35, b=128.73, c=131.03 Å.

  14. Relocation of a rust resistance gene R 2 and its marker-assisted gene pyramiding in confection sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Qi, L L; Ma, G J; Long, Y M; Hulke, B S; Gong, L; Markell, S G

    2015-03-01

    The rust resistance gene R 2 was reassigned to linkage group 14 of the sunflower genome. DNA markers linked to R 2 were identified and used for marker-assisted gene pyramiding in a confection type genetic background. Due to the frequent evolution of new pathogen races, sunflower rust is a recurring threat to sunflower production worldwide. The inbred line Morden Cross 29 (MC29) carries the rust resistance gene, R 2 , conferring resistance to numerous races of rust fungus in the US, Canada, and Australia, and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments and SSR marker analyses on the 117 F2 individuals derived from a cross of HA 89 with MC29 (USDA), R 2 was mapped to linkage group (LG) 14 of the sunflower, and not to the previously reported location on LG9. The closest SSR marker HT567 was located at 4.3 cM distal to R 2 . Furthermore, 36 selected SNP markers from LG14 were used to saturate the R 2 region. Two SNP markers, NSA_002316 and SFW01272, flanked R 2 at a genetic distance of 2.8 and 1.8 cM, respectively. Of the three closely linked markers, SFW00211 amplified an allele specific for the presence of R 2 in a marker validation set of 46 breeding lines, and SFW01272 was also shown to be diagnostic for R 2 . These newly developed markers, together with the previously identified markers linked to the gene R 13a , were used to screen 524 F2 individuals from a cross of a confection R 2 line and HA-R6 carrying R 13a . Eleven homozygous double-resistant F2 plants with the gene combination of R 2 and R 13a were obtained. This double-resistant line will be extremely useful in confection sunflower, where few rust R genes are available, risking evolution of new virulence phenotypes and further disease epidemics.

  15. JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sihui Li

    2018-04-01

    Full Text Available Summary: The arginine methylation status of histones dynamically changes during many cellular processes, including hematopoietic stem/progenitor cell (HSPC development. The arginine methyltransferases and the readers that transduce the histone codes have been defined. However, whether arginine demethylation actively occurs in cells and what enzyme demethylates the methylarginine residues during various cellular processes are unknown. We report that JMJD1B, previously identified as a lysine demethylase for H3K9me2, mediates arginine demethylation of H4R3me2s and its intermediate, H4R3me1. We show that demethylation of H4R3me2s and H3K9me2s in promoter regions is correlated with active gene expression. Furthermore, knockout of JMJD1B blocks demethylation of H4R3me2s and/or H3K9me2 at distinct clusters of genes and impairs the activation of genes important for HSPC differentiation and development. Consequently, JMJD1B−/− mice show defects in hematopoiesis. Altogether, our study demonstrates that demethylase-mediated active arginine demethylation process exists in eukaryotes and that JMJD1B demethylates both H4R3me2s and H3K9me2 for epigenetic programming during hematopoiesis. : Li et al. identify the arginine demethylase (RDM activity of JMJD1B, a known lysine demethylase (KDM. They reveal that JMJD1B actively mediates demethylation of histone markers H4R3me2s and H3K9me2 in hematopoietic stem/progenitor cells (HSPCs. Keywords: JMJD1B, KDM3B, PRMT5, arginine demethylase, histone, epigenetic programming, gene expression, hematopoiesis

  16. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower.

    Science.gov (United States)

    Chiu, Li-Wei; Li, Li

    2012-10-01

    Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue-specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network of anthocyanin biosynthesis, we investigated the interaction among cauliflower MYB-bHLH-WD40 network proteins and examined the interplay of BoMYB2 with various bHLH transcription factors in planta. Yeast two-hybrid studies revealed that cauliflower BoMYBs along with the other regulators formed the MYB-bHLH-WD40 complexes and BobHLH1 acted as a bridge between BoMYB and BoWD40-1 proteins. Different BoMYBs exhibited different binding activity to BobHLH1. Examination of the BoMYB2 transgenic lines in Arabidopsis bHLH mutant backgrounds demonstrated that TT8, EGL3, and GL3 were all involved in the BoMYB2-mediated anthocyanin biosynthesis. Expression of BoMYB2 in Arabidopsis caused up-regulation of AtTT8 and AtEGL3 as well as a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase. Taken together, our results show that MYB-bHLH-WD40 network transcription factors regulated the bHLH gene expression, which may represent a critical feature in the control of anthocyanin biosynthesis. BoMYB2 together with various BobHLHs specifically regulated the late anthocyanin biosynthetic pathway genes for anthocyanin biosynthesis. Our findings provide additional information for the complicated regulatory network of anthocyanin biosynthesis and the transcriptional regulation of transcription factors in vegetable crops.

  17. Antiausterity activity of arctigenin enantiomers: importance of (2R,3R)-absolute configuration.

    Science.gov (United States)

    Awale, Suresh; Kato, Mamoru; Dibwe, Dya Fita; Li, Feng; Miyoshi, Chika; Esumi, Hiroyasu; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2014-01-01

    From a MeOH extract of powdered roots of Wikstroemia indica, six dibenzyl-gamma-butyrolactone-type lignans with (2S,3S)-absolute configuration [(+)-arctigenin (1), (+)-matairesinol (2), (+)-trachelogenin (3), (+)-nortrachelogenin (4), (+)-hinokinin (5), and (+)-kusunokinin (6)] were isolated, whereas three dibenzyl-gamma-butyrolactone-type lignans with (2R,3R)-absolute configuration [(-)-arctigenin (1*), (-)-matairesinol (2*), (-)-trachelogenin (3*)] were isolated from Trachelospermum asiaticum. The in vitro preferential cytotoxic activity of the nine compounds was evaluated against human pancreatic PANC-1 cancer cells in nutrient-deprived medium (NDM), but none of the six lignans (1-6) with (2S,3S)-absolute configuration showed preferential cytotoxicity. On the other hand, three lignans (1*-3*) with (2R,3R)-absolute configuration exhibited preferential cytotoxicity in a concentration-dependent manner with PC50 values of 0.54, 6.82, and 5.85 microM, respectively. Furthermore, the effect of (-)- and (+)-arctigenin was evaluated against the activation of Akt, which is a key process in the tolerance to nutrition starvation. Interestingly, only (-)-arctigenin (1*) strongly suppressed the activation of Akt. These results indicate that the (2R,3R)-absolute configuration of (-)-enantiomers should be required for the preferential cytotoxicity through the inhibition of Akt activation.

  18. TAL effectors and the executor R genes.

    Science.gov (United States)

    Zhang, Junli; Yin, Zhongchao; White, Frank

    2015-01-01

    Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized-recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

  19. TAL effectors and the executor R genes

    Directory of Open Access Journals (Sweden)

    Junli eZhang

    2015-08-01

    Full Text Available Transcription activation-like (TAL effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R genes have been characterized - recessive, dominant non-transcriptional and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

  20. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling.

    Science.gov (United States)

    Shim, Jae Sung; Jung, Choonkyun; Lee, Sangjoon; Min, Kyunghun; Lee, Yin-Won; Choi, Yeonhee; Lee, Jong Seob; Song, Jong Tae; Kim, Ju-Kon; Choi, Yang Do

    2013-02-01

    The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. β-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  1. Mybs in mouse hair follicle development

    Czech Academy of Sciences Publication Activity Database

    Veselá, Barbora; Švandová, Eva; Šmarda, J.; Matalová, Eva

    2014-01-01

    Roč. 46, č. 5 (2014), s. 352-355 ISSN 0040-8166 R&D Projects: GA ČR GCP302/12/J059 Institutional support: RVO:67985904 Keywords : hair follicle * stem cells * c-Myb * B-Myb * development Subject RIV: EA - Cell Biology Impact factor: 1.252, year: 2014

  2. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    O'Rourke John P

    2011-01-01

    Full Text Available Abstract Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer

  3. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    International Nuclear Information System (INIS)

    Quintana, Anita M; Liu, Fan; O'Rourke, John P; Ness, Scott A

    2011-01-01

    The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer cells

  4. Expression and distribution of PPP2R5C gene in leukemia

    Directory of Open Access Journals (Sweden)

    Li Bo

    2011-05-01

    Full Text Available Abstract Background Recently, we clarified at the molecular level novel chromosomal translocation t(14;14(q11;q32 in a case of Sézary syndrome, which caused a rearrangement from TRAJ7 to the PPP2R5C gene. PPP2R5C is one of the regulatory B subunits of protein phosphatase 2A (PP2A. It plays a crucial role in cell proliferation, differentiation, and transformation. To characterize the expression and distribution of five different transcript variants of the PPP2R5C gene in leukemia, we analyzed the expression level of PPP2R5C in peripheral blood mononuclear cells from 77 patients with de novo leukemia, 26 patients with leukemia in complete remission (CR, and 20 healthy individuals by real-time PCR and identified the different variants of PPP2R5C by RT-PCR. Findings Significantly higher expression of PPP2R5C was found in AML, CML, T-ALL, and B-CLL groups in comparison with healthy controls. High expression of PPP2R5C was detected in the B-ALL group; however, no significant difference was found compared with the healthy group. The expression level of PPP2R5C in the CML-CR group decreased significantly compared with that in the de novo CML group and was not significantly different from the level in the healthy group. By using different primer pairs that covered different exons, five transcript variants of PPP2R5C could be identified. All variants could be detected in healthy samples as well as in all the leukemia samples, and similar frequencies and distributions of PPP2R5C were indicated. Conclusions Overexpression of PPP2R5C in T-cell malignancy as well as in myeloid leukemia cells might relate to its proliferation and differentiation. Investigation of the effect of target inhibition of this gene might be beneficial to further characterization of molecular mechanisms and targeted therapy in leukemia.

  5. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor.

    Science.gov (United States)

    Cheng, Yu-Jie; Kim, Myoung-Duck; Deng, Xi-Ping; Kwak, Sang-Soo; Chen, Wei

    2013-12-01

    IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

  6. Study of rNIS as a reporter gene monitoring rBMSC transplanted to rat myocardium

    International Nuclear Information System (INIS)

    Hu Shou; Lan Xiaoli; Cao Wei; Cao Guoxiang; Zhang Guopeng; Zhang Binqing; Wu Tao; Chang Wei; Zhang Yongxue

    2010-01-01

    Objective: To investigate the feasibility of rat sodium/iodide symporter (rNIS) as a reporter gene monitoring rat bone marrow mesenchymal cells (rBMSC) transplanted to rat myocardium in vivo. Methods: Recombinated adenovirus vector was constructed by rNIS/enhanced green fluorescence protein (EGFP) (Ad-rNIS/EGFP). rBMSC transfected by Ad-rNIS/EGFP were studied using fluorescence microscope. Fifteen rats were transplanted with rBMSC and randomly divided into three groups: rNIS group (with rNIS transfection), blocked group (with rNIS transfection) by oral intake of perchloric sodium before planar imaging (GE Millennium MPR SPECT), and control group (without rNIS transfection). All rats underwent 99 Tc m -pertechnetate planar imaging. The biological distribution of 99 Tc m -pertechnetate was studied. The expressions of rNIS gene and protein in myocardium were measured by real time polymerase chain reaction (PCR) and western blot, respectively. The expressions of CD 29 , CD 44 , CD 90 , CD 11 b, CD 34 and CD 45 were measured by immunohistochemistry. Results: rBMSC transfected by Ad-rNIS/EGFP showed EGFP expression under fluorescence microscope. The transplanted rat myocardium could be visualized on 99 Tc m -pertechnetate planar imaging in rNIS group. The relative uptake ratio (R heart /R hmb , RUR) was 6.7 ±0.4. RUR in control group (3.0 ±0.2) was lower than that in rNIS group (t =2.78, P=0.03). The percentage injection dose per gram of tissue (% ID/g) of the transplanted myocardium was 60.2 ± 20.8 in rNIS group, which was higher than that (2.5 ± 0.4) % ID/g of control group ( t = 7.13, P 29 , CD 44 and CD 90 were positive, CD 45 and CD 45 negative CD 11 b mildly positive in the myocardium transplanted with infective rBMSC. Conclusion: rNIS can efficiently monitor rBMSC transplanted to rat myocardium. (authors)

  7. Association between NLPR1, NLPR3, and P2X7R Gene Polymorphisms with Partial Seizures

    Directory of Open Access Journals (Sweden)

    Haidong Wang

    2017-01-01

    Full Text Available Objectives. Clinical and experimental evidence has clarified that the inflammatory processes within the brain play a pivotal role in the pathophysiology of seizures and epilepsy. Inflammasomes and P2X7 purinergic receptor (P2X7R are important mediators during the inflammatory process. Therefore, we investigated the possible association between partial seizures and inflammasomes NLPR1, NLRP3, and P2X7R gene polymorphisms in the present study. Method. A total of 163 patients and 201 health controls were enrolled in this study and polymorphisms of NLPR1, NLRP3, and P2X7R genes were detected using polymerase chain reaction- (PCR- ligase detection reaction method. Result. The frequency of rs878329 (G>C genotype with C (CG + CC was significantly lower among patients with partial seizures relative to controls (OR = 2.033, 95% CI = 1.290–3.204, p=0.002 for GC + CC versus GG. Intriguingly, we found that the significant difference of rs878329 (G>C genotype and allele frequency only existed among males (OR = 2.542, 95% CI = 1.344–4.810, p=0.004 for GC + CC versus GG, while there was no statistically significant difference among females. However, no significant results were presented for the genotype distributions of rs8079034, rs4612666, rs10754558, rs2027432, rs3751143, and rs208294 polymorphisms between patients and controls. Conclusion. Our study demonstrated the potentially significant role of NLRP1 rs878329 (G>C in developing susceptibility to the partial seizures in a Chinese Han population.

  8. Crystal structure of (1S,3R,8R,9R-2,2-dichloro-3,7,7-trimethyl-10-methylenetricyclo[6.4.0.01,3]dodecan-9-ol

    Directory of Open Access Journals (Sweden)

    Ahmed Benzalim

    2016-08-01

    Full Text Available The title compound, C16H24Cl2O, was synthesized by treating (1S,3R,8S,9R,10S-2,2-dichloro-3,7,7,10-tetramethyl-9,10-epoxytricyclo[6.4.0.01,3]dodecane with a concentrated solution of hydrobromic acid. It is built up from three fused rings: a cycloheptane ring, a cyclohexyl ring bearing alkene and hydroxy substituents, and a cyclopropane ring bearing two chlorine atoms. The asymmetric unit contains two molecules linked by an O—H...O hydrogen bond. In the crystal, further O—H...O hydrogen bonds build up an R44(8 cyclic tetramer. One of the molecules presents disorder that affects the seven-membered ring. In both molecules, the six-membered rings display a chair conformation, whereas the seven-membered rings display conformations intermediate between boat and twist-boat for the non-disordered molecule and either a chair or boat and twist-boat for the disordered molecule owing to the disorder. The absolute configuration for both molecules is 1S,3R,8R,9R and was deduced from the chemical pathway and further confirmed by the X-ray structural analysis.

  9. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia

    OpenAIRE

    Mets, E; Van der Meulen, J; Van Peer, G; Boice, M; Mestdagh, P; Van de Walle, I; Lammens, T; Goossens, S; De Moerloose, B; Benoit, Y; Van Roy, N; Clappier, E; Poppe, B; Vandesompele, J; Wendel, H-G

    2014-01-01

    The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3′untranslated region–microRNA (miRNA) library screen and identified 33 p...

  10. QsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber.

    Science.gov (United States)

    Almeida, Tânia; Pinto, Glória; Correia, Barbara; Santos, Conceição; Gonçalves, Sónia

    2013-12-01

    Cork oak is an economically important forest species showing a great tolerance to high temperatures and shortage of water. However, the mechanisms underlying this plasticity are still poorly understood. Among the stress regulators, transcription factors (TFs) are especially important since they can control a wide range of stress-inducible genes, which make them powerful targets for genetic engineering of stress tolerance. Here we evaluated the influence of increasing temperatures (up to 55 °C) or drought (18% field capacity, FC) on the expression profile of an R2R3-MYB transcription factor of cork oak, the QsMYB1. QsMYB1 was previously identified as being preferentially expressed in cork tissues and as having an associated alternative splicing mechanism, which results in two different transcripts (QsMYB1.1 and QsMYB1.2). Expression analysis by reverse transcription quantitative PCR (RT-qPCR) revealed that increasing temperatures led to a gradual down-regulation of QsMYB1 transcripts with more effect on QsMYB1.1 abundance. On the other hand, under drought condition, expression of QsMYB1 variants, mainly the QsMYB1.2, was transiently up-regulated shortly after the stress imposition. Recovery from each stress has also resulted in a differential response by both QsMYB1 transcripts. Several physiological and biochemical parameters (plant water status, chlorophyll fluorescence, lipid peroxidation and proline content) were determined in order to monitor the plant performance under stress and recovery. In conclusion, this report provides the first evidence that QsMYB1 TF may have a putative function in the regulatory network of cork oak response to heat and drought stresses and during plant recovery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis.

    Science.gov (United States)

    Baskar, Venkidasamy; Park, Se Won

    2015-07-01

    Glucosinolates (GSL) are one of the major secondary metabolites of the Brassicaceae family. In the present study, we aim at characterizing the multiple paralogs of aliphatic GSL regulators, such as BrMYB28 and BrMYB29 genes in Brassica rapa ssp. pekinensis, by quantitative real-time PCR (qRT-PCR) analysis in different tissues and at various developmental stages. An overlapping gene expression pattern between the BrMYBs as well as their downstream genes (DSGs) was found at different developmental stages. Among the BrMYB28 and BrMYB29 paralogous genes, the BrMYB28.3 and BrMYB29.1 genes were dominantly expressed in most of the developmental stages, compared to the other paralogs of the BrMYB genes. Furthermore, the differential expression pattern of the BrMYBs was observed under various stress treatments. Interestingly, BrMYB28.2 showed the least expression in most developmental stages, while its expression was remarkably high in different stress conditions. More specifically, the BrMYB28.2, BrMYB28.3, and BrMYB29.1 genes were highly responsive to various abiotic and biotic stresses, further indicating their possible role in stress tolerance. Moreover, the in silico cis motif analysis in the upstream regulatory regions of BrMYBs showed the presence of various putative stress-specific motifs, which further indicated their responsiveness to biotic and abiotic stresses. These observations suggest that the dominantly expressed BrMYBs, both in different developmental stages and under various stress treatments (BrMYB28.3 and BrMYB29.1), may be potential candidate genes for altering the GSL level through genetic modification studies in B. rapa ssp. pekinensis. Copyright © 2015. Published by Elsevier SAS.

  12. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple.

    Science.gov (United States)

    Tian, Ji; Peng, Zhen; Zhang, Jie; Song, Tingting; Wan, Huihua; Zhang, Meiling; Yao, Yuncong

    2015-09-01

    The ever-red leaf trait, which is important for breeding ornamental and higher anthocyanin plants, rarely appears in Malus families, but little is known about the regulation of anthocyanin biosynthesis involved in the red leaves. In our study, HPLC analysis showed that the anthocyanin concentration in ever-red leaves, especially cyanidin, was significantly higher than that in evergreen leaves. The transcript level of McMYB10 was significantly correlated with anthocyanin synthesis between the 'Royalty' and evergreen leaf 'Flame' cultivars during leaf development. We also found the ever-red leaf colour cultivar 'Royalty' contained the known R6 : McMYB10 sequence, but was not in the evergreen leaf colour cultivar 'Flame', which have been reported in apple fruit. The distinction in promoter region maybe is the main reason why higher expression level of McMYB10 in red foliage crabapple cultivar. Furthermore, McMYB10 promoted anthocyanin biosynthesis in crabapple leaves and callus at low temperatures and during long-day treatments. Both heterologous expression in tobacco (Nicotiana tabacum) and Arabidopsis pap1 mutant, and homologous expression in crabapple and apple suggested that McMYB10 could promote anthocyanins synthesis and enhanced anthocyanin accumulation in plants. Interestingly, electrophoretic mobility shift assays, coupled with yeast one-hybrid analysis, revealed that McMYB10 positively regulates McF3'H via directly binding to AACCTAAC and TATCCAACC motifs in the promoter. To sum up, our results demonstrated that McMYB10 plays an important role in ever-red leaf coloration, by positively regulating McF3'H in crabapple. Therefore, our work provides new perspectives for ornamental fruit tree breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Allelic variants of melanocortin 3 receptor gene (MC3R) and weight loss in obesity

    DEFF Research Database (Denmark)

    L. Santos, José; De la Cruz, Rolando; Holst, Claus

    2011-01-01

    receptor gene (MC3R) have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets.......The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3...

  14. Amino methylation of 2-R-6-R_1-imidazo-[2.1-B]-1.3.4-thiadiazole

    International Nuclear Information System (INIS)

    Saidov, D.K.; Rakhmonov, R.O.; Khodzhiboev, Yu.; Kukaniev, M.A.; Bandaev, S.

    2015-01-01

    Present article is devoted to amino methylation of 2-R-6-R_1-imidazo-[2.1-B]-1.3.4-thiadiazole. The reaction of new modifications of derivatives of imidazo-[2.1-B]-1.3.4-thiadiazoles-2-bromine-6-p-bromophenyl and 2-alkyl alkylene sulfonyl-6-phenyl imidazo--[2.1-B]-1.3.4-thiadiazole on Mannich with secondary and heterocyclic amines was studied.

  15. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Science.gov (United States)

    Murovets, Vladimir O; Bachmanov, Alexander A; Zolotarev, Vasiliy A

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  16. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Directory of Open Access Journals (Sweden)

    Vladimir O Murovets

    Full Text Available The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+ inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-. Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  17. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  18. Association of MC3R gene polymorphisms with body weight in the red fox and comparative gene organization in four canids.

    Science.gov (United States)

    Skorczyk, A; Flisikowski, K; Szydlowski, M; Cieslak, J; Fries, R; Switonski, M

    2011-02-01

    There are five genes encoding melanocortin receptors. Among canids, the genes have mainly been studied in the dog (MC1R, MC2R and MC4R). The MC4R gene has also been analysed in the red fox. In this report, we present a study of chromosome localization, comparative sequence analysis and polymorphism of the MC3R gene in the dog, red fox, arctic fox and Chinese raccoon dog. The gene was localized by FISH to the following chromosome: 24q24-25 in the dog, 14p16 in the red fox, 18q13 in the arctic fox and NPP4p15 in the Chinese raccoon dog. A high identity level of the MC3R gene sequences was observed among the species, ranging from 96.0% (red fox--Chinese raccoon dog) to 99.5% (red fox--arctic fox). Altogether, eight polymorphic sites were found in the red fox, six in the Chinese raccoon dog and two in the dog, while the arctic fox appeared to be monomorphic. In addition, association of several polymorphisms with body weight was analysed in red foxes (the number of genotyped animals ranged from 319 to 379). Two polymorphisms in the red fox, i.e. a silent substitution c.957A>C and c.*185C>T in the 3'-flanking sequence, showed a significant association (P < 0.01) with body weight. © 2010 The Authors, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.

  19. A Novel TetR Family Transcriptional Regulator, CalR3, Negatively Controls Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882

    Directory of Open Access Journals (Sweden)

    Lixia Gou

    2017-11-01

    Full Text Available Calcimycin is a unique ionophoric antibiotic that is widely used in biochemical and pharmaceutical applications, but the genetic basis underlying the regulatory mechanisms of calcimycin biosynthesis are unclear. Here, we identified the calR3 gene, which encodes a novel TetR family transcriptional regulator and exerts a negative effect on calcimycin biosynthesis. Disruption of calR3 in Streptomyces chartreusis NRRL 3882 led to significantly increased calcimycin and its intermediate cezomycin. Gene expression analysis showed that the transcription of calR3 and its adjacent calT gene were dramatically enhanced (30- and 171-fold, respectively in GLX26 (ΔcalR3 mutants compared with the wild-type strains. Two CalR3-binding sites within the bidirectional calR3-calT promoter region were identified using a DNase I footprinting assay, indicating that CalR3 directly repressed the transcription of its own gene and the calT gene. In vitro electrophoretic mobility shift assays suggested that both calcimycin and cezomycin can act as CalR3 ligands to induce CalR3 to dissociate from its binding sites. These findings indicate negative feedback for the regulation of CalR3 in calcimycin biosynthesis and suggest that calcimycin production can be improved by manipulating its biosynthetic machinery.

  20. Alpha-Actinin-3 (ACTN3 R/X Gene Polymorphism and Physical Performance of Multi-Ethnic Malaysian Population

    Directory of Open Access Journals (Sweden)

    Hazwani Ahmad Yusof

    2016-09-01

    Full Text Available A disparity population data set in the current literature with limited reports among Asian samples and the inconsistent findings among different ethnic groups warrant further investigation on the association between alpha-actinin-3 (ACTN3 R/X gene polymorphism and human physical performance in Asian population. This study was designed to examine the association between ACTN3 R/X gene polymorphism and physical performance of multi-ethnic Malaysian population. One hundred eighty well-trained athletes (34 endurance, 41 strength, and 105 intermittent and 180 controls were drawn from four ethnic groups in Malaysia (Malay, Chinese, Indian, and Other Bumiputra. A sample of deoxyribonucleic acid (DNA was retrieved from a buccal swab from each participant and the ACTN3 R/X genotype was identified through polymerase chain reaction and restriction fragment length polymorphism analysis. The strength and endurance performances of the athletes were evaluated with maximal voluntary contraction and Yo-Yo intermittent recovery level 2 tests, respectively. The independent t-test, chi-square, multivariate, and one-way analysis of variance were used for data analysis. ACTN3 R/X alleles (p = 0.672 and genotype (p = 0.355 frequencies did not vary much between the multi-ethnic groups of Malaysian athletes. These small variations did not have any influence on handgrip strength (p = 0.334, leg strength (p = 0.256, and Yo-Yo intermittent recovery level 2 performance (p = 0.425 between these ethnic groups. The RR and XX genotypes were more frequent among strength and intermittent athletes, respectively. Athletes with the RR genotype had greater handgrip than those with the RX genotype (p = 0.031, but not different from athletes with the XX genotype (p = 0.228. Athletes with RR genotype also have a higher leg strength than those with the RX (p = 0.001 and XX genotype (p = 0.010. However, the endurance performance was similar among genotype groups (p = 0.385. The ACTN3 R

  1. Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3.

    Science.gov (United States)

    Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko

    2014-01-01

    The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.

  2. Total synthesis of (3S, 5R, 3'S, 5'R)-capsorubin

    International Nuclear Information System (INIS)

    Frederico, Daniel; Constantino, Mauricio G.; Donate, Paulo M.

    2009-01-01

    The total synthesis of enantiomerically enriched (3S, 5R, 3'S, 5'R)-capsorubin (1) by aldol condensation of (1R, 4S)-1-(4-hydroxy-1,2,2-trimethyl-cyclopentyl)ethanone (2a) and crocetindial (3) is described. An alternative, short eight-step synthesis of the optically active compound 2a (ee 89%) is also reported. (author)

  3. Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression

    Science.gov (United States)

    2010-01-01

    Background In the last decade, biochemical studies have revealed that epigenetic modifications including histone modifications, histone variants and DNA methylation form a complex network that regulate the state of chromatin and processes that depend on it including transcription and DNA replication. Currently, a large number of these epigenetic modifications are being mapped in a variety of cell lines at different stages of development using high throughput sequencing by members of the ENCODE consortium, the NIH Roadmap Epigenomics Program and the Human Epigenome Project. An extremely promising and underexplored area of research is the application of machine learning methods, which are designed to construct predictive network models, to these large-scale epigenomic data sets. Results Using a ChIP-Seq data set of 20 histone lysine and arginine methylations and histone variant H2A.Z in human CD4+ T-cells, we built predictive models of gene expression as a function of histone modification/variant levels using Multilinear (ML) Regression and Multivariate Adaptive Regression Splines (MARS). Along with extensive crosstalk among the 20 histone methylations, we found H4R3me2 was the most and second most globally repressive histone methylation among the 20 studied in the ML and MARS models, respectively. In support of our finding, a number of experimental studies show that PRMT5-catalyzed symmetric dimethylation of H4R3 is associated with repression of gene expression. This includes a recent study, which demonstrated that H4R3me2 is required for DNMT3A-mediated DNA methylation--a known global repressor of gene expression. Conclusion In stark contrast to univariate analysis of the relationship between H4R3me2 and gene expression levels, our study showed that the regulatory role of some modifications like H4R3me2 is masked by confounding variables, but can be elucidated by multivariate/systems-level approaches. PMID:20653935

  4. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    Science.gov (United States)

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae.

    Science.gov (United States)

    Noguchi, Yuji; Sano, Motoaki; Kanamaru, Kyoko; Ko, Taro; Takeuchi, Michio; Kato, Masashi; Kobayashi, Tetsuo

    2009-11-01

    XlnR is a Zn(II)2Cys6 transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus. Overexpression of the aoxlnR gene in Aspergillus oryzae (A. oryzae xlnR gene) resulted in elevated xylanolytic and cellulolytic activities in the culture supernatant, in which nearly 40 secreted proteins were detected by two-dimensional electrophoresis. DNA microarray analysis to identify the transcriptional targets of AoXlnR led to the identification of 75 genes that showed more than fivefold increase in their expression in the AoXlnR overproducer than in the disruptant. Of these, 32 genes were predicted to encode a glycoside hydrolase, highlighting the biotechnological importance of AoXlnR in biomass degradation. The 75 genes included the genes previously identified as AoXlnR targets (xynF1, xynF3, xynG2, xylA, celA, celB, celC, and celD). Thirty-six genes were predicted to be extracellular, which was consistent with the number of proteins secreted, and 61 genes possessed putative XlnR-binding sites (5'-GGCTAA-3', 5'-GGCTAG-3', and 5'-GGCTGA-3') in their promoter regions. Functional annotation of the genes revealed that AoXlnR regulated the expression of hydrolytic genes for degradation of beta-1,4-xylan, arabinoxylan, cellulose, and xyloglucan and of catabolic genes for the conversion of D-xylose to xylulose-5-phosphate. In addition, genes encoding glucose-6-phosphate 1-dehydrogenase and L-arabinitol-4- dehydrogenase involved in D-glucose and L-arabinose catabolism also appeared to be targets of AoXlnR.

  6. RFX2 is a candidate downstream amplifier of A-MYB regulation in mouse spermatogenesis

    Directory of Open Access Journals (Sweden)

    Kistler Malathi K

    2009-12-01

    Full Text Available Abstract Background Mammalian spermatogenesis involves formation of haploid cells from the male germline and then a complex morphological transformation to generate motile sperm. Focusing on meiotic prophase, some tissue-specific transcription factors are known (A-MYB or suspected (RFX2 to play important roles in modulating gene expression in pachytene spermatocytes. The current work was initiated to identify both downstream and upstream regulatory connections for Rfx2. Results Searches of pachytene up-regulated genes identified high affinity RFX binding sites (X boxes in promoter regions of several new genes: Adam5, Pdcl2, and Spag6. We confirmed a strong promoter-region X-box for Alf, a germ cell-specific variant of general transcription factor TFIIA. Using Alf as an example of a target gene, we showed that its promoter is stimulated by RFX2 in transfected cells and used ChIP analysis to show that the promoter is occupied by RFX2 in vivo. Turning to upstream regulation of the Rfx2 promoter, we identified a cluster of three binding sites (MBS for the MYB family of transcription factors. Because testis is one of the few sites of A-myb expression, and because spermatogenesis arrests in pachytene in A-myb knockout mice, the MBS cluster implicates Rfx2 as an A-myb target. Electrophoretic gel-shift, ChIP, and co-transfection assays all support a role for these MYB sites in Rfx2 expression. Further, Rfx2 expression was virtually eliminated in A-myb knockout testes. Immunohistology on testis sections showed that A-MYB expression is up-regulated only after pachytene spermatocytes have clearly moved away from the tubule wall, which correlates with onset of RFX2 expression, whereas B-MYB expression, by contrast, is prevalent only in earlier spermatocytes and spermatogonia. Conclusion With an expanding list of likely target genes, RFX2 is potentially an important transcriptional regulator in pachytene spermatocytes. Rfx2 itself is a good candidate to be

  7. miR-24 inhibits cell proliferation by suppressing expression of E2F2, MYC and other cell cycle regulatory genes by binding to “seedless” 3′UTR microRNA recognition elements

    Science.gov (United States)

    Lal, Ashish; Navarro, Francisco; Maher, Christopher; Maliszewski, Laura E.; Yan, Nan; O'Day, Elizabeth; Chowdhury, Dipanjan; Dykxhoorn, Derek M.; Tsai, Perry; Hofman, Oliver; Becker, Kevin G.; Gorospe, Myriam; Hide, Winston; Lieberman, Judy

    2009-01-01

    Summary miR-24, up-regulated during terminal differentiation of multiple lineages, inhibits cell cycle progression. Antagonizing miR-24 restores post-mitotic cell proliferation and enhances fibroblast proliferation, while over-expressing miR-24 increases the G1 compartment. The 248 mRNAs down-regulated upon miR-24 over-expression are highly enriched for DNA repair and cell cycle regulatory genes that form a direct interaction network with prominent nodes at genes that enhance (MYC, E2F2, CCNB1, CDC2) or inhibit (p27Kip1, VHL) cell cycle progression. miR-24 directly regulates MYC and E2F2 and some genes they transactivate. Enhanced proliferation from antagonizing miR-24 is abrogated by knocking down E2F2, but not MYC, and cell proliferation, inhibited by miR-24 over-expression, is rescued by miR-24-insensitive E2F2. Therefore, E2F2 is a critical miR-24 target. The E2F2 3′UTR lacks a predicted miR-24 recognition element. In fact, miR-24 regulates expression of E2F2, MYC, AURKB, CCNA2, CDC2, CDK4 and FEN1 by recognizing seedless, but highly complementary, sequences. PMID:19748357

  8. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development.

    Science.gov (United States)

    Dean, Derek M; Maroja, Luana S; Cottrill, Sarah; Bomkamp, Brent E; Westervelt, Kathleen A; Deitcher, David L

    2015-11-27

    Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling. Copyright © 2016 Dean et al.

  9. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2 Gene of Drosophila and Interacts with IP3R to Affect Wing Development

    Directory of Open Access Journals (Sweden)

    Derek M. Dean

    2016-02-01

    Full Text Available Inositol 1,4,5-trisphosphate (IP3 regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy, a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2, a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80ts indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.

  10. Expression and characterization of c-Myb in prenatal odontogenesis

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Buchtová, Marcela; Tucker, A. S.; Bender, T. P.; Janečková, Eva; Lungová, V.; Balková, Simona; Šmarda, J.

    2011-01-01

    Roč. 53, č. 6 (2011), s. 793-803 ISSN 0012-1592 R&D Projects: GA AV ČR KJB500450802; GA ČR GAP304/11/1418; GA ČR(CZ) GP304/08/P289; GA ČR GC524/08/J032 Institutional research plan: CEZ:AV0Z50450515 Keywords : morphogenesis * mouse * Myb Subject RIV: FF - HEENT, Dentistry Impact factor: 2.210, year: 2011

  11. miR-7 and miR-218 epigenetically control tumor suppressor genes RASSF1A and Claudin-6 by targeting HoxB3 in breast cancer

    International Nuclear Information System (INIS)

    Li, Qiaoyan; Zhu, Fufan; Chen, Puxiang

    2012-01-01

    Highlights: ► Both miR-7 and miR-218 down-regulates HoxB3 expression by targeting the 3′-UTR of HoxB3 mRNA. ► A reverse correlation between the levels of endogenous miR-7, miR218 and HoxB3 expression. ► Epigenetic changes involve in the reactivation of HoxB3. ► Both miRNAs inhibits the cell cycle and clone formation of breast cancer cells. -- Abstract: Many microRNAs have been implicated as key regulators of cellular growth and differentiation and have been found to dysregulate proliferation in human tumors, including breast cancer. Cancer-linked microRNAs also alter the epigenetic landscape by way of DNA methylation and post-translational modifications of histones. Aberrations in Hox gene expression are important for oncogene or tumor suppressor during abnormal development and malignancy. Although recent studies suggest that HoxB3 is critical in breast cancer, the putative role(s) of microRNAs impinging on HoxB3 is not yet fully understood. In this study, we found that the expression levels of miR-7 and miR-218 were strongly and reversely associated with HoxB3 expression. Stable overexpression of miR-7 and miR-218 was accompanied by reactivation of tumor suppressor genes including RASSF1A and Claudin-6 by means of epigenetic switches in DNA methylation and histone modification, giving rise to inhibition of the cell cycle and clone formation of breast cancer cells. The current study provides a novel link between overexpression of collinear Hox genes and multiple microRNAs in human breast malignancy.

  12. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    Full Text Available We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum.

  13. miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention.

    Science.gov (United States)

    Srivastava, Niloo; Manvati, Siddharth; Srivastava, Archita; Pal, Ranjana; Kalaiarasan, Ponnusamy; Chattopadhyay, Shilpi; Gochhait, Sailesh; Dua, Raina; Bamezai, Rameshwar N K

    2011-04-04

    New levels of gene regulation with microRNA (miR) and gene copy number alterations (CNAs) have been identified as playing a role in various cancers. We have previously reported that sporadic breast cancer tissues exhibit significant alteration in H2AX gene copy number. However, how CNA affects gene expression and what is the role of miR, miR-24-2, known to regulate H2AX expression, in the background of the change in copy number, are not known. Further, many miRs, including miR-24-2, are implicated as playing a role in cell proliferation and apoptosis, but their specific target genes and the pathways contributing to them remain unexplored. Changes in gene copy number and mRNA/miR expression were estimated using real-time polymerase chain reaction assays in two mammalian cell lines, MCF-7 and HeLa, and in a set of sporadic breast cancer tissues. In silico analysis was performed to find the putative target for miR-24-2. MCF-7 cells were transfected with precursor miR-24-2 oligonucleotides, and the gene expression levels of BRCA1, BRCA2, ATM, MDM2, TP53, CHEK2, CYT-C, BCL-2, H2AFX and P21 were examined using TaqMan gene expression assays. Apoptosis was measured by flow cytometric detection using annexin V dye. A luciferase assay was performed to confirm BCL-2 as a valid cellular target of miR-24-2. It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues. Further, the cells overexpressing miR-24-2 were observed to be hypersensitive to DNA damaging drugs, undergoing apoptotic cell death, suggesting the potentiating effect of mir-24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs. BCL-2 was identified as a novel cellular target of miR-24-2. mir-24-2 is capable of inducing apoptosis by modulating different apoptotic pathways and targeting BCL-2, an antiapoptotic gene. The study suggests

  14. Crystal structure of 2-amino-4-methyl-pyridin-1-ium (2R,3R)-3-carb-oxy-2,3-di-hydroxy-propano-ate monohydrate.

    Science.gov (United States)

    Jovita, J V; Sathya, S; Usha, G; Vasanthi, R; Ramanand, A

    2014-09-01

    The title mol-ecular salt, C6H9N2 (+)·C4H5O6 (-)·H2O, crystallized with two 2-amino-4-methyl-pyridin-1-ium cations, two l-(+)-tartaric acid monoanions [systematic name: (2R,3R)-3-carb-oxy-2,3-di-hydroxy-propano-ate] and two water mol-ecules in the asymmetric unit. In the crystal, the cations, anions and water mol-ecules are linked via a number of O-H⋯O and N-H⋯O hydrogen bonds, and a C-H⋯O hydrogen bond, forming a three-dimensional structure.

  15. -5p and -3p strands of miR-145 and miR-140 during mesenchymal stem cell chondrogenic differentiation.

    Science.gov (United States)

    Kenyon, Jonathan D; Sergeeva, Olga; Somoza, Rodrigo A; Li, Ming; Caplan, Arnold I; Khalil, Ahmad M; Lee, Zhenghong

    2018-04-20

    The chondrogenic differentiation of mesenchymal stem cells (MSCs) is mediated by transcription factors and small non-coding RNAs such as micro-RNAs (miRNAs). Each miRNA is initially transcribed as a long transcript, which matures to produce -5p and -3p strands. It is widely believed that the mature and functional miRNA from any given pre-miRNA, usually the -5p strand, is functional, while the opposing -3p strand is degraded. However, recent cartilage literature started to show functional -3p stands for a few miRNAs. This study aimed at examining both -5p and -3p strands of two key miRNAs miR-140 and miR-145 that are known to be involved in the chondrogenic differentiation of MSCs. The level (copy number) of both -5p and -3p strands of miR-145 and miR-140 along the timeline of MSC chondrogenic differentiation was determined by PCR. The gene expression profiles of several genes related to MSC chondrogenesis were compared with these miRNA profiles along the same timeline. While miR-145-3p is declining in step with miR-145-5p in pellet cultures during the process, the -3p strand is only 1% - 2% of the total miR-145 products. In contrast, the mature -3p and -5p products of miR-140 are found to increase with near equal molar expression throughout chondrogenic differentiation. Numerous genes are expressed by cartilage progenitor cells during development. One such target gene, Sox9 is a regulatory target of the dominant miR-145-5p, consistent with the data. Further experimental validations are warranted to confirm that ACAN, FOXO1 and RUNX3 as direct targets of miR-145-5p in the context of MSC chondrogenesis. Similarly, TRSP1 and ACAN are worth further validation as direct targets of miR-145-3p. For miR-140, SOX4 shall be further validated as a direct target of miR-140-5p while KLF4, PTHLH, and WNT5A can be validated as direct targets of miR-140-3p.

  16. The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Henning eFrerigmann

    2015-08-01

    Full Text Available The indolic phytoalexin camalexin is a crucial defence metabolite in the model plant Arabidopsis. Indolic phytoalexins and glucosinolates appear to have a common evolutionary origin and are interconnected on the biosynthetic level: a key intermediate in the biosynthesis of camalexin, indole-3-acetaldoxime (IAOx, is also required for the biosynthesis of indolic glucosinolates and is under tight control by the transcription factors MYB34, MYB51 and MYB122. The abundance of camalexin was strongly reduced in myb34/51 and myb51/122 double and in triple myb mutant, suggesting that these transcription factors are important in camalexin biosynthesis. Furthermore, expression of MYB51 and MYB122 was significantly increased by biotic and abiotic camalexin-inducing agents. Feeding of the triple myb34/51/122 mutant with IAOx or indole-3-acetonitrile largely restored camalexin biosynthesis. Conversely, tryptophan could not complement the low camalexin phenotype of this mutant, which supports a role for the three MYB factors in camalexin biosynthesis upstream of IAOx. Consistently expression of the camalexin biosynthesis genes CYP71B15/PAD3 and CYP71A13 was not negatively affected in the triple myb mutant and the MYBs could not activate pCYP71B15::uidA expression in trans-activation assays with cultured Arabidopsis cells. In conclusion, this study reveals the importance of MYB factors regulating the generation of IAOx as precursor of camalexin.

  17. A concise route to branched erythrono-gamma-lactones. Synthesis of the leaf-closing substance potassium (+/-)-(2R,3R)-2,3,4-trihydroxy-2-methylbutanoate

    DEFF Research Database (Denmark)

    Pedersen, Daniel Sejer; Robinson, Tony V; Taylor, Dennis K

    2009-01-01

    -94% yield), including the natural plant lactone (+/-)-2-C-d-methylerythrono-1,4-lactone 1. The latter compound was treated with aqueous potassium hydroxide to afford potassium (+/-)-(2R,3R)-2,3,4-trihydroxy-2-methylbutanoate 2, which is a leaf-closing substance of Leucaena leucocephalam....

  18. Antisense myb inhibition of purified erythroid progenitors in development and differentiation is linked to cycling activity and expression of DNA polymerase alpha

    International Nuclear Information System (INIS)

    Valtieri, M.; Venturelli, D.; Care, A.; Fossati, C.; Pelosi, E.; Labbaye, C.; Mattia, G.; Gewirtz, A.M.; Calabretta, B.; Peschle, C.

    1991-01-01

    These studies aimed to determine the expression and functional role of c-myb in erythroid progenitors with different cycling activities. In the first series of experiments the erythroid burst-forming unit (BFU-E) and colony-forming unit (CFU-E) populations from adult peripheral blood (PB), bone marrow (BM), and embryonic-fetal liver (FL) were treated with either c-myb antisense oligomers or 3H-thymidine (3H-TdR). A direct correlation was always observed between the inhibitory effect of anti-myb oligomers and the level of cycling activity. Thus, the inhibitory effect of antisense c-myb on the number of BFU-E colonies was 28.3% +/- 15.8% in PB, 53.4% +/- 9.3% in BM, and 68.2% +/- 24.5% in FL. Both adult and embryonic CFU-E were markedly inhibited. Using purified PB progenitors, we observed a similar pattern, although with slightly lower inhibitory effects. In the 3H-TdR suicide assay the killing index of BFU-E was 8.9% +/- 4.2% in PB, 29.4% +/- 6.5% in BM, and 40.1% +/- 9.6% in FL. The values for adult and embryonic CFU-E were 55.7% +/- 7.9% and 60.98% +/- 6.6%, respectively. We then investigated the kinetics of c-myb mRNA level during the erythroid differentiation of purified adult PB and FL BFU-E, as evaluated in liquid-phase culture by reverse transcription-polymerase chain reaction. Adult erythroid precursors showed a gradual increase of c-myb mRNA from day 4 through day 8 of culture and a sharp decrease at later times, whereas the expression of c-myb mRNA and protein in differentiation embryonic precursors peaked 2 days earlier. In both cases, c-myb mRNA level peaked at the CFU-E stage of differentiation. Finally, highly purified adult PB BFU-E were stimulated into cycling by a 3-day treatment with interleukin-3 in liquid phase: both the sensitivity to c-myb antisense oligomers and the 3H-TdR suicide index showed a gradual, strictly parallel increase

  19. Characterization of the Second LysR-Type Regulator in the Biphenyl-Catabolic Gene Cluster of Pseudomonas pseudoalcaligenes KF707

    OpenAIRE

    Watanabe, Takahito; Fujihara, Hidehiko; Furukawa, Kensuke

    2003-01-01

    Pseudomonas pseudoalcaligenes KF707 possesses a biphenyl-catabolic (bph) gene cluster consisting of bphR1A1A2-(orf3)-bphA3A4BCX0X1X2X3D. The bphR1 (formerly orf0) gene product, which belongs to the GntR family, is a positive regulator for itself and bphX0X1X2X3D. Further analysis in this study revealed that a second regulator belonging to the LysR family (designated bphR2) is involved in the regulation of the bph genes in KF707. The bphR2 gene was not located near the bph gene cluster, and it...

  20. Homoeologous Recombination of the V1r1-V1r2 Gene Cluster of Pheromone Receptors in an Allotetraploid Lineage of Teleosts

    Directory of Open Access Journals (Sweden)

    Lei Zhong

    2017-11-01

    Full Text Available In contrast to other olfactory receptor families that exhibit frequent lineage-specific expansions, the vomeronasal type 1 receptor (V1R family exhibits a canonical six-member repertoire in teleosts. V1r1 and V1r2 are present in no more than one copy in all examined teleosts, including salmons, which are ancient polyploids, implying strict evolutionary constraints. However, recent polyploids have not been examined. Here, we identified a young allotetraploid lineage of weatherfishes and investigated their V1r1-V1r2 cluster. We found a novel pattern that the parental V1r1-V1r2 clusters had recombined in the tetraploid genome and that the recombinant was nearly fixed in the tetraploid population. Subsequent analyses suggested strong selective pressure, for both a new combination of paralogs and homogeneity among gene duplicates, acting on the V1r1-V1r2 pair.

  1. Transcrition factor c-Myb is involved in the regulation of the epithelial-mesenchymal transition in the avian neural crest

    Czech Academy of Sciences Publication Activity Database

    Karafiát, Vít; Dvořáková, Marta; Krejčí, E.; Králová, Jarmila; Pajer, Petr; Šnajdr, P.; Mandíková, Sonja; Bartůněk, Petr; Grim, M.; Dvořák, Michal

    2005-01-01

    Roč. 62, č. 21 (2005), s. 2516-2525 ISSN 1420-682X R&D Projects: GA ČR GA304/03/0463; GA AV ČR IAA5052309 Institutional research plan: CEZ:AV0Z50520514 Keywords : c-myb gene * epithelial-mesenchymal transition * neural crest Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.582, year: 2005

  2. Aging and calorie restriction regulate the expression of miR-125a-5p and its target genes Stat3, Casp2 and Stard13.

    Science.gov (United States)

    Makwana, Kuldeep; Patel, Sonal Arvind; Velingkaar, Nikkhil; Ebron, Jey Sabith; Shukla, Girish C; Kondratov, Roman V Kondratov V

    2017-07-31

    Calorie restriction (CR) is a dietary intervention known to delay aging. In order, to understand molecular mechanisms of CR, we analyzed the expression of 983 MicroRNAs (miRNAs) in the liver of female mice after 2 years of 30% CR using micro-array. 16 miRNAs demonstrated significant changes in their expression upon CR in comparison with age-matched control. mmu-miR-125a-5p (miR-125a-5p) was significantly upregulated upon CR, and in agreement with this, the expression of mRNAs for its three predicted target genes: Stat3, Casp2, and Stard13 was significantly downregulated in the liver of CR animals. The expression of precursor miRNA for miR-125a-5p was also upregulated upon CR, which suggests its regulation at the level of transcription. Upon aging miR-125a-5p expression was downregulated while the expression of its target genes was upregulated. Thus, CR prevented age-associated changes in the expression of miR-125a-5p and its targets. We propose that miR-125a-5p dependent downregulation of Stat3, Casp2, and Stard13 contributes to the calorie restriction-mediated delay of aging.

  3. R229Q Polymorphism of NPHS2 Gene in Group of Iraqi Children with Steroid-Resistant Nephrotic Syndrome

    Directory of Open Access Journals (Sweden)

    Shatha Hussain Ali

    2017-01-01

    Full Text Available Background. The polymorphism R229Q is one of the most commonly reported podocin sequence variations among steroid-resistant nephrotic syndromes (SRNS. Aim of the Study. We investigated the frequency and risk of this polymorphism among a group of Iraqi children with SRNS and steroid-sensitive nephrotic syndrome (SSNS. Patients and Methods. A prospective case control study which was conducted in Al-Imamein Al-Kadhimein Medical City, spanning the period from the 1st of April 2015 to 30th of November 2015. Study sample consisted of 54 children having NS, divided into 2 groups: patients group consisted of 27 children with SRNS, and control group involved 27 children with SSNS. Both were screened by real time polymerase chain reaction for R229Q in exon 5 of NPHS2 gene. Results. Molecular study showed R229Q polymorphism in 96.3% of SRNS and 100% of SSNS. There were no phenotypic or histologic characteristics of patients bearing homozygous R229Q polymorphism and the patients with heterozygous R229Q polymorphism. Conclusion. Polymorphism R229Q of NPHS2 gene is prevalent in Iraqi children with SRNS and SSNS. Further study needs to be done, for other exons and polymorphism of NPHS2 gene in those patients.

  4. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Teresa eDocimo

    2016-01-01

    Full Text Available Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena fruits. Chlorogenic acid (CGA accounts for 70 to 90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena.Higher contents of CGA, Delphinidin 3-rutinoside and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group 6 MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties.In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation.Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9 resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of

  5. Diversity of 23S rRNA genes within individual prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anna Pei

    Full Text Available BACKGROUND: The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. METHODOLOGY/PRINCIPAL FINDINGS: Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4% genomes (mean 0.40%, range 0.01%-4.04%. Significant (1.17%-4.04% intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition. In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS, ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes. CONCLUSIONS/SIGNIFICANCE: These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

  6. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time.

    Science.gov (United States)

    Wu, Rongmei; Wang, Tianchi; McGie, Tony; Voogd, Charlotte; Allan, Andrew C; Hellens, Roger P; Varkonyi-Gasic, Erika

    2014-09-01

    SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development

    KAUST Repository

    Park, Myoungryoul

    2010-09-28

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  8. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development.

    Science.gov (United States)

    Park, Myoung-Ryoul; Yun, Kil-Young; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Wijaya, Edward; Bajic, Vladimir B; Yun, Song-Joong; De Los Reyes, Benildo G

    2010-12-01

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  9. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1

    International Nuclear Information System (INIS)

    Lerner, Mikael; Harada, Masako; Loven, Jakob; Castro, Juan; Davis, Zadie; Oscier, David; Henriksson, Marie; Sangfelt, Olle; Grander, Dan; Corcoran, Martin M.

    2009-01-01

    The microRNAs miR-15a and miR-16-1 are downregulated in multiple tumor types and are frequently deleted in chronic lymphocytic leukemia (CLL), myeloma and mantle cell lymphoma. Despite their abundance in most cells the transcriptional regulation of miR-15a/16-1 remains unclear. Here we demonstrate that the putative tumor suppressor DLEU2 acts as a host gene of these microRNAs. Mature miR-15a/miR-16-1 are produced in a Drosha-dependent process from DLEU2 and binding of the Myc oncoprotein to two alterative DLEU2 promoters represses both the host gene transcript and levels of mature miR-15a/miR-16-1. In line with a functional role for DLEU2 in the expression of the microRNAs, the miR-15a/miR-16-1 locus is retained in four CLL cases that delete both promoters of this gene and expression analysis indicates that this leads to functional loss of mature miR-15a/16-1. We additionally show that DLEU2 negatively regulates the G1 Cyclins E1 and D1 through miR-15a/miR-16-1 and provide evidence that these oncoproteins are subject to miR-15a/miR-16-1-mediated repression under normal conditions. We also demonstrate that DLEU2 overexpression blocks cellular proliferation and inhibits the colony-forming ability of tumor cell lines in a miR-15a/miR-16-1-dependent way. Together the data illuminate how inactivation of DLEU2 promotes cell proliferation and tumor progression through functional loss of miR-15a/miR-16-1.

  10. (E-2-((4R,5R-5-((Benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4-ylbut-2-ene-1,4-diol

    Directory of Open Access Journals (Sweden)

    Carlos R. Carreras

    2010-04-01

    Full Text Available The synthesis of (E-2-((4R,5R-5-((benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4-ylbut-2-ene-1,4-diol by a one-step reduction of the appropriate 2-substituted butenolide is reported. Product characterization was carried out by IR, 1H NMR, 13C NMR, MS, elemental analysis and optical rotation.

  11. Simple synthesis of graphene nanocomposites MgO-rGO and Fe2O3-rGO for multifunctional applications

    Science.gov (United States)

    Abdel-Aal, Seham K.; Ionov, Andrey; Mozhchil, R. N.; Naqvi, Alim H.

    2018-05-01

    Hummer's method was used to prepare graphene oxide (GO) by chemical exfoliation of graphite. Simple precipitation method was used for the preparation of hybrid nanocomposites MgO-rGO and Fe2O3-rGO. A 0.3 Molar of corresponding metal nitrate solution and GO solution are used for the preparation process. XRD, FT-IR, and XPS were used to characterize the prepared nanocomposites. The reduction of GO into reduced rGO in the formed nanocomposites was confirmed. Morphological characterization showed the formation of needle-shaped nanocrystals of MgO successfully grown on graphene nanosheet with average crystallite size 8.4 nm. Hematite nanocomposite Fe2O3-rGO forms rod-shaped crystals with average crystallite size 27.5 nm. The saturation magnetization observed for Fe2O3-rGO is less than reported value for the pure Fe2O3 nanoparticles. Thermal properties of as-prepared hybrid nanocomposites MgO-rGO and Fe2O3-rGO showed thermal stability of the prepared nanocomposite over long range of temperature.

  12. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng; Wu, Dingguo; You, Yu; Sun, Jing; Lu, Lele; Tan, Jiaxing; Bie, Ping, E-mail: bieping2010@163.com

    2015-08-15

    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment. - Highlights: • miR-208-3p was highly expressed and directly repressed the expression of ARID2 in HCC. • miR-208-3p contributed to HCC cell progression both in vitro and in vivo. • Over-expression of ARID2 inhibited the HCC cell proliferation and invasion. • Restoration of ARID2 partly reversed the the effect of miR-208-3p down-regulation on HCC cells. • Newly regulatory pathway: miR-208-3p mediated the repression of ARID2 by TGFβ1 in HCC cells.

  13. R102G polymorphism of the complement component 3 gene in Malaysian subjects with neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Nur Afiqah Mohamad

    2018-04-01

    Full Text Available Background: Genetic and environmental factors are known to be risk factors in development of neovascular age-related macular degeneration (nAMD. Genetic factors such as polymorphisms in the complement component pathway genes might play a role in pathogenesis of nAMD and has been studied in various populations excluding Malaysia. Aim of the study: To determine the association of the R102G polymorphism of the complement component (C3 gene in nAMD subjects. Patients and methods: A total of 301 Malaysian subjects (149 case and 152 controls were recruited and genotyped for the R102G (rs2230199 variant of the C3 gene. Genotyping was conducted using the PCR-RFLP method and association analysis was conducted using appropriate statistical tests. Results: From our findings, no significant association was observed in the allele distribution of C3 R102G between nAMD and controls (OR = 1.42, 95% CI = 0.77–2.62, P = 0.268. A further analysis that compared three genetic models (dominant, recessive and co-dominant also recorded no significant difference (P > 0.05. These findings could be due to the low frequency of the GG variant in the case (4.7% and control (1.3% groups, compared to the normal variant CC, which is present in 91.3% of case and 92.8% of control alleles. Conclusion: The present study showed no evidence of association between C3 R102G polymorphism and nAMD in Malaysian subjects. Keywords: Age-related macular degeneration, Complement component 3, C3 gene, R102G gene polymorphism

  14. The MIEL1 E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Stems.

    Science.gov (United States)

    Lee, Hong Gil; Kim, Juyoung; Suh, Mi Chung; Seo, Pil Joon

    2017-07-01

    Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Phase relations in the pseudobinary systems RAO3-R2Ti2O7 (R: rare earth element and Y, A: Fe, Ga, Al, Cr and Mn) and syntheses of new compounds R(A1-xTix)O3+x/2 (2/3≤x≤3/4) at elevated temperatures in air

    Science.gov (United States)

    Brown, Francisco; Jacobo-Herrera, Ivan; Alvarez-Montaño, Victor; Kimizuka, Noboru; Kurashina, Keiji; Michiue, Yuichi; Matsuo, Yoji; Mori, Shigeo; Ikeda, Naoshi; Medrano, Felipe

    2017-07-01

    Phase relations in the pseudo-binary systems RFeO3-R2Ti2O7 (R: Lu, Ho and Dy), RGaO3-R2Ti2O7 (R: Lu and Er), LuAlO3-Lu2Ti2O7 and RAO3-R2Ti2O7 (R: Lu and Yb. A: Cr and Mn) at elevated temperatures in air were determined by means of a classic quenching method. There exist Lu(Fe1-xTix)O3+x/2, R(Ga1-xTix)O3+x/2 (R: Lu and Er) and Lu(Al1-xTix)O3+x/2 (2/3≤ x≤3/4) having the Yb(Fe1-xTix)O3+x/2-type of crystal structure (x=0.72, space group: R3m, a(Å)=17.9773 and c(Å)=16.978 as a hexagonal setting) in these pseudo binary systems. Eighteen compounds R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) were newly synthesized and their lattice constants as a hexagonal setting were measured by means of the X-ray powder diffraction method. The R occupies the octahedral site and both A and Ti does the trigonalbipyramidal one in these compounds. Relation between lattice constants for the rhombic R(A1-xTix)O3+x/2 and the monoclinic In(A1-xTix)O3+x/2 are as follows, ah≈5 x bm, ch≈3 x cm x sin β and am=31/2 x bm, where ah and ch are the lattice constants as a hexagonal setting for R(A1-xTix)O3+x/2 and am, bm, cm and β are those of the monoclinic In(A1-xTix)O3+x/2. Crystal structural relationships among α-InGaO3 (hexagonal, high pressure form, space group: P63/mmc), InGaO3 (rhombic, hypothetical), (RAO3)n(BO)m and RAO3(ZnO)m (R: Lu-Ho, Y and In, A: Fe, Ga, and Al, B: divalent cation element, m, n: natural number), the orthorhombic-and monoclinic In(A1-xTix)O3+x/2 (A: Fe, Ga, Al, Cr and Mn) and the hexagonal-and rhombic R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) are schematically presented. We concluded that the crystal structures of both the α-InGaO3 (high pressure form, hexagonal, space group: P63/mmc) and the hypothetical InGaO3 (rhombic) are the key structures for constructing the crystal structures of these compounds having the cations with CN=5.

  16. Synthesis of (R,S)-[2,3-13C2]-1-(1'-methyl-2'-pyrrolidinyl)propan-2-one; {(R,S)-[2',3'-13C2]hygrinePound right bracePound

    International Nuclear Information System (INIS)

    Abraham, T.W.; Leete, Edward

    1996-01-01

    2-Ethoxy-1-methyl-5-pyrrolidinone (1) was reacted with ethyl [3,4- 13 C 2 ]-acetoacetate (2) in the presence of TiCl 4 to give ethyl [3,4- 13 C 2 ]-2-(1'-methyl-5'-oxo-2'-pyrrolidinyl)-3-oxobutanoate (3) in 85% yield. Decarboethoxylation of ethyl [3,4- 13 C 2 ]-2-(1'-methyl-5'-oxo-2'-pyrrolidinyl)-3-oxobutan-oate (3) was accomplished using NaCl and H 2 O in DMSO to give (R,S)-[2,3- 13 C 2 ]-1-(1'-methyl-5'-oxo-2'-pyrrolidinyl)propan-2-o ne (4) in 91% yield. Protection of the ketone as a ketal (ethylene glycol, H + ), followed by reduction of the amide to the amine using LiAlH 4 and subsequent deprotection of the ketal gave (R,S)-[2,3- 13 C 2 ]-1-(1'-methyl-2'-pyrrolidinyl)propan-2-one ((R,s)-[2', 3'- 13 C 2 ]Hygrine) (8) in 78% yield. (61% overall yield from ethyl [3,4- 13 C 2 ]acetoacetate). (Author)

  17. Neutron scattering study on R2PdSi3 (R=Ho,Er,Tm) compounds

    International Nuclear Information System (INIS)

    Tang, Fei

    2010-01-01

    Previous studies on the family of inter-metallic rare-earth compounds R 2 PdSi 3 revealed multifaceted magnetic properties, for instance, spin-glass like behavior. Experimental observations include: Signs of a crystallographic superstructure, complicated magnetic structures both in zero field and in applied magnetic fields as well as a generic phase in applied fields for compounds in the series with the heavy rare-earths R=Gd, Tb, Dy, Ho, Er and Tm. This thesis expands the studies on the magnetic properties of R 2 PdSi 3 employing mainly neutron scattering on single crystals with the focus on the compounds with R=Ho, Er and Tm. A detailed analysis of the crystallographic superstructure using modulation wave approach and group theory is presented. The resulting structure implies the existence of two different rare-earth sites with reduced symmetry and an arrangement of the different sites according to sequences as determined by the superstructure. It is shown that the reduced symmetry of the rare-earth sites is explicitly observed in the energy spectra of inelastic neutron scattering. The results on the magnetic structures and excitations are shown and discussed in the framework of the superstructure model. Specifically the generic phase in applied fields is interpreted as a direct consequence of the crystallographic superstructure. It is rather unusual that a crystallographic superstructure is playing such a decisive, and through the field dependence also tunable role in determining the magnetic properties as observed in R 2 PdSi 3 . The mediating interactions between the crystallographic part and the magnetic part of the system are discussed. (orig.)

  18. Census of solo LuxR genes in prokaryotic genomes.

    Science.gov (United States)

    Hudaiberdiev, Sanjarbek; Choudhary, Kumari S; Vera Alvarez, Roberto; Gelencsér, Zsolt; Ligeti, Balázs; Lamba, Doriano; Pongor, Sándor

    2015-01-01

    luxR genes encode transcriptional regulators that control acyl homoserine lactone-based quorum sensing (AHL QS) in Gram negative bacteria. On the bacterial chromosome, luxR genes are usually found next or near to a luxI gene encoding the AHL signal synthase. Recently, a number of luxR genes were described that have no luxI genes in their vicinity on the chromosome. These so-called solo luxR genes may either respond to internal AHL signals produced by a non-adjacent luxI in the chromosome, or can respond to exogenous signals. Here we present a survey of solo luxR genes found in complete and draft bacterial genomes in the NCBI databases using HMMs. We found that 2698 of the 3550 luxR genes found are solos, which is an unexpectedly high number even if some of the hits may be false positives. We also found that solo LuxR sequences form distinct clusters that are different from the clusters of LuxR sequences that are part of the known luxR-luxI topological arrangements. We also found a number of cases that we termed twin luxR topologies, in which two adjacent luxR genes were in tandem or divergent orientation. Many of the luxR solo clusters were devoid of the sequence motifs characteristic of AHL binding LuxR proteins so there is room to speculate that the solos may be involved in sensing hitherto unknown signals. It was noted that only some of the LuxR clades are rich in conserved cysteine residues. Molecular modeling suggests that some of the cysteines may be involved in disulfide formation, which makes us speculate that some LuxR proteins, including some of the solos may be involved in redox regulation.

  19. Research on the Solid State Fermentation of Jerusalem Artichoke Pomace for Producing R,R-2,3-Butanediol by Paenibacillus polymyxa ZJ-9.

    Science.gov (United States)

    Cao, Can; Zhang, Li; Gao, Jian; Xu, Hong; Xue, Feng; Huang, Weiwei; Li, Yan

    2017-06-01

    R,R-2,3-butanediol (R,R-2,3-BD) was produced by Paenibacillus polymyxa ZJ-9, which was capable of utilizing inulin without previous hydrolysis. The Jerusalem artichoke pomace (JAP) derived from the conversion of Jerusalem artichoke powder into inulin extract, which was usually used for biorefinery by submerged fermentation (SMF), was utilized in solid state fermentation (SSF) to produce R,R-2,3-BD. In this study, the fermentation parameters of SSF were optimized and determined in flasks. A novel bioreactor was designed and assembled for the laboratory scale-up of SSF, with a maximum yield of R,R-2,3-BD (67.90 g/kg (JAP)). This result is a 36.3% improvement compared with the flasks. Based on the same bath of Jerusalem artichoke powder, the total output of R,R-2,3-BD increased by 38.8% for the SSF of JAP combined with the SMF of inulin extraction. Overall, the utilization of JAP for R,R-2,3-BD production was beneficial to the comprehensive utilization of Jerusalem artichoke tuber.

  20. Inhibition of HBV replication by delivering the dual-gene expression vector pHsa-miR16-siRNA in HepG2.2.15 cells.

    Science.gov (United States)

    Wei, Wei; Wang, Su-Fei; Yu, Bing; Ni, Ming

    2017-12-01

    This study aimed to construct the dual-gene expression vector pHsa-miR16-siRNA which can express human miR-16 and HBV X siRNA, and examine its regulatory effect on HBV gene expression in the HepG2.2.15 cell line. The expression vectors siR-1583 and pHsa-miR16-siRNA were designed and constructed. HepG2.2.15 cells were transfected with the empty vector, siR-1583, pmiR-16 and pHsa-miR16-siRNA, respectively. ELISA was performed to measure the expression of HBsAg and HBeAg in the culture supernatant 48 and72 h post transfection. Fluorescence quantitative PCR was used to measure the HBV mRNA degradation efficiency and HBV DNA copy number. The results showed that the expression of HBV genes was significantly inhibited in HepG2.2.15 cells transfected with siR-1583, pmiR-16 and pHsa-miR16-siRNA, respectively, when compared with that in cells transfected with the empty vectors, with the inhibitory effect of pHsa-miR16-siRNA being the most significant. ELISA showed that the inhibitory rates of HBsAg and HBeAg in pHsa-miR16-siRNA transfected cells were correspondingly 87.3% and 85.0% at 48 h, and 88.6% and 86.5% at 72 h post transfection (PHBV mRNA decreased by 80.2% (t=-99.22, PHBV DNA by 92.8% (t=-73.06, PHBV DNA copy number by 89.8% (t=-47.13, PHBV more efficiently than a single-gene expression vector.

  1. MiR-29c regulates the expression of miR-34c and miR-449a by targeting DNA methyltransferase 3a and 3b in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Niu, Man; Gao, Dan; Wen, Qiuyuan; Wei, Pingpin; Pan, Suming; Shuai, Cijun; Ma, Huiling; Xiang, Juanjuan; Li, Zheng; Fan, Songqing; Li, Guiyuan; Peng, Shuping

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is prevalent in South East Asia and Southern China particularly, despite the reported 5-year survival ratio is relative higher than other deadly cancers such as liver, renal, pancreas cancer, the lethality is characterized by high metastatic potential in the early stage and high recurrence rate after radiation treatment. MicroRNA-29c was found to be down-regulated in the serum as well as in the tissue of nasopharyngeal carcinoma tissue. In this study, we found accidentally that the transfection of pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a but doesn’t affect that of miR-222 using real-time quantitative PCR in nasopharyngeal carcinoma cell lines. To explore the molecular mechanism of the regulatory role, the cells are treated with 5-Aza-2-deoxycytidine (5-Aza-CdR) treatment and the level of miR-34c and miR-449a but not miR-222 accumulated by the treatment. DNA methyltransferase 3a, 3b were down-regulated by the 5-Aza-CdR treatment with western blot and real-time quantitative PCR. We found that pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a. We further found DNA methyltransferase 3a and 3b are the target gene of miR-29c. Restoration of miR-29c in NPC cells down-regulated DNA methyltransferase 3a, 3b, but not DNA methyltransferase T1. The regulation of miR-29c/DNMTs/miR-34c/449a is an important molecular axis of NPC development and targeting DNMTs or restoring of miR-29c might be a promising therapy strategy for the prevention of NPC

  2. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela N; Payne, Mark J; Guiltinan, Mark J

    2015-06-25

    The flavan-3-ols catechin and epicatechin, and their polymerized oligomers, the proanthocyanidins (PAs, also called condensed tannins), accumulate to levels of up to 15 % of the total weight of dry seeds of Theobroma cacao L. These compounds have been associated with several health benefits in humans. They also play important roles in pest and disease defense throughout the plant. In Arabidopsis, the R2R3 type MYB transcription factor TT2 regulates the major genes leading to the synthesis of PA. To explore the transcriptional regulation of the PA synthesis pathway in cacao, we isolated and characterized an R2R3 type MYB transcription factor MYBPA from cacao. We examined the spatial and temporal gene expression patterns of the Tc-MYBPA gene and found it to be developmentally expressed in a manner consistent with its involvement in PAs and anthocyanin synthesis. Functional complementation of an Arabidopsis tt2 mutant with Tc-MYBPA suggested that it can functionally substitute the Arabidopsis TT2 gene. Interestingly, in addition to PA accumulation in seeds of the Tc-MYBPA expressing plants, we also observed an obvious increase of anthocyanidin accumulation in hypocotyls. We observed that overexpression of the Tc-MYBPA gene resulted in increased expression of several key genes encoding the major structural enzymes of the PA and anthocyanidin pathway, including DFR (dihydroflavanol reductase), LDOX (leucoanthocyanidin dioxygenase) and BAN (ANR, anthocyanidin reductase). We conclude that the Tc-MYBPA gene that encodes an R2R3 type MYB transcription factor is an Arabidopsis TT2 like transcription factor, and may be involved in the regulation of both anthocyanin and PA synthesis in cacao. This research may provide molecular tools for breeding of cacao varieties with improved disease resistance and enhanced flavonoid profiles for nutritional and pharmaceutical applications.

  3. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jia He

    2018-04-01

    Full Text Available Vegetative phase change is regulated by a decrease in the abundance of the miRNAs, miR156 and miR157, and the resulting increase in the expression of their targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL transcription factors. To determine how miR156/miR157 specify the quantitative and qualitative changes in leaf morphology that occur during vegetative phase change, we measured their abundance in successive leaves and characterized the phenotype of mutations in different MIR156 and MIR157 genes. miR156/miR157 decline rapidly between leaf 1&2 and leaf 3 and decrease more slowly after this point. The amount of miR156/miR157 in leaves 1&2 greatly exceeds the threshold required to specify their identity. Subsequent leaves have relatively low levels of miR156/miR157 and are sensitive to small changes in their abundance. In these later-formed leaves, the amount of miR156/miR157 is close to the threshold required to specify juvenile vs. adult identity; a relatively small decrease in the abundance of miR156/157 in these leaves produces a disproportionately large increase in SPL proteins and a significant change in leaf morphology. miR157 is more abundant than miR156 but has a smaller effect on shoot morphology and SPL gene expression than miR156. This may be attributable to the inefficiency with which miR157 is loaded onto AGO1, as well as to the presence of an extra nucleotide at the 5' end of miR157 that is mis-paired in the miR157:SPL13 duplex. miR156 represses different targets by different mechanisms: it regulates SPL9 by a combination of transcript cleavage and translational repression and regulates SPL13 primarily by translational repression. Our results offer a molecular explanation for the changes in leaf morphology that occur during shoot development in Arabidopsis and provide new insights into the mechanism by which miR156 and miR157 regulate gene expression.

  4. MicroRNA and cellular targets profiling reveal miR-217 and miR-576-3p as proviral factors during Oropouche infection.

    Directory of Open Access Journals (Sweden)

    Victor Emmanuel Viana Geddes

    2018-05-01

    Full Text Available Oropouche Virus is the etiological agent of an arbovirus febrile disease that affects thousands of people and is widespread throughout Central and South American countries. Although isolated in 1950's, still there is scarce information regarding the virus biology and its prevalence is likely underestimated. In order to identify and elucidate interactions with host cells factors and increase the understanding about the Oropouche Virus biology, we performed microRNA (miRNA and target genes screening in human hepatocarcinoma cell line HuH-7. Cellular miRNAs are short non-coding RNAs that regulates gene expression post-transcriptionally and play key roles in several steps of viral infections. The large scale RT-qPCR based screening found 13 differentially expressed miRNAs in Oropouche infected cells. Further validation confirmed that miR-217 and miR-576-3p were 5.5 fold up-regulated at early stages of virus infection (6 hours post-infection. Using bioinformatics and pathway enrichment analysis, we predicted the cellular targets genes for miR-217 and miR-576-3p. Differential expression analysis of RNA from 95 selected targets revealed genes involved in innate immunity modulation, viral release and neurological disorder outcomes. Further analysis revealed the gene of decapping protein 2 (DCP2, a previous known restriction factor for bunyaviruses transcription, as a miR-217 candidate target that is progressively down-regulated during Oropouche infection. Our analysis also showed that activators genes involved in innate immune response through IFN-β pathway, as STING (Stimulator of Interferon Genes and TRAF3 (TNF-Receptor Associated Factor 3, were down-regulated as the infection progress. Inhibition of miR-217 or miR-576-3p restricts OROV replication, decreasing viral RNA (up to 8.3 fold and virus titer (3 fold. Finally, we showed that virus escape IFN-β mediated immune response increasing the levels of cellular miR-576-3p resulting in a decreasing of

  5. Members of Bitter Taste Receptor Cluster Tas2r143/Tas2r135/Tas2r126 Are Expressed in the Epithelium of Murine Airways and Other Non-gustatory Tissues

    Directory of Open Access Journals (Sweden)

    Shuya Liu

    2017-10-01

    Full Text Available The mouse bitter taste receptors Tas2r143, Tas2r135, and Tas2r126 are encoded by genes that cluster on chromosome 6 and have been suggested to be expressed under common regulatory elements. Previous studies indicated that the Tas2r143/Tas2r135/Tas2r126 cluster is expressed in the heart, but other organs had not been systematically analyzed. In order to investigate the expression of this bitter taste receptor gene cluster in non-gustatory tissues, we generated a BAC (bacterial artificial chromosome based transgenic mouse line, expressing CreERT2 under the control of the Tas2r143 promoter. After crossing this line with a mouse line expressing EGFP after Cre-mediated recombination, we were able to validate the Tas2r143-CreERT2 transgenic mouse line and monitor the expression of Tas2r143. EGFP-positive cells, indicating expression of members of the cluster, were found in about 47% of taste buds, and could also be found in several other organs. A population of EGFP-positive cells was identified in thymic epithelial cells, in the lamina propria of the intestine and in vascular smooth muscle cells of cardiac blood vessels. EGFP-positive cells were also identified in the epithelium of organs readily exposed to pathogens including lower airways, the gastrointestinal tract, urethra, vagina, and cervix. With respect to the function of cells expressing this bitter taste receptor cluster, RNA-seq analysis in EGFP-positive cells isolated from the epithelium of trachea and stomach showed expression of genes related to innate immunity. These data further support the concept that bitter taste receptors serve functions outside the gustatory system.

  6. Electronic, elastic and optical properties of divalent (R+2X) and trivalent (R+3X) rare earth monochalcogenides

    Science.gov (United States)

    Kumar, V.; Chandra, S.; Singh, J. K.

    2017-08-01

    Based on plasma oscillations theory of solids, simple relations have been proposed for the calculation of bond length, specific gravity, homopolar energy gap, heteropolar energy gap, average energy gap, crystal ionicity, bulk modulus, electronic polarizability and dielectric constant of rare earth divalent R+2X and trivalent R+3X monochalcogenides. The specific gravity of nine R+2X, twenty R+3X, and bulk modulus of twenty R+3X monochalcogenides have been calculated for the first time. The calculated values of all parameters are compared with the available experimental and the reported values. A fairly good agreement has been obtained between them. The average percentage deviation of two parameters: bulk modulus and electronic polarizability for which experimental data are known, have also been calculated and found to be better than the earlier correlations.

  7. MethylMix 2.0: an R package for identifying DNA methylation genes.

    Science.gov (United States)

    Cedoz, Pierre-Louis; Prunello, Marcos; Brennan, Kevin; Gevaert, Olivier

    2018-04-14

    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: the automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. We show that the Differential Methylation Values created by MethylMix can be used for cancer subtyping. olivier.gevaert@stanford.edu. https://bioconductor.org/packages/release/bioc/manuals/MethylMix/man/MethylMix.pdf. MethylMix 2.0 was implemented as an R package and is available in bioconductor.

  8. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma.

    Science.gov (United States)

    Komabayashi, Yuki; Kishibe, Kan; Nagato, Toshihiro; Ueda, Seigo; Takahara, Miki; Harabuchi, Yasuaki

    2014-01-01

    Nasal NK/T-cell lymphoma (NNKTL) is an Epstein-Barr virus (EBV)-associated malignancy and has distinct clinical and histological features. However, its genetic features are hitherto unclear. MicroRNAs (miRNAs) play a crucial role in the pathogenesis of several malignancies via regulating gene expression. In this study, we investigated whether the specific microRNAs were related to the tumor behaviors in NNKTL. MiRNA array and Quantitative RT-PCR analyses revealed that miR-15a was expressed at a much lower level in NNKTL cells (SNK-1, SNK-6, and SNT-8) than in normal peripheral NK cells and EBV-negative NK cell line KHYG-1. Quantitative PCR and western blot analyses showed that the expression of MYB and cyclin D1, which are validated targets of miR-15a, was higher in NNKTL cells. Transfection of NNKTL cells (SNK-6 and SNT-8) with a miR-15a precursor decreased MYB and cyclin D1 levels, thereby blocking G1/S transition and cell proliferation. Knockdown of EBV-encoded latent membrane protein 1 (LMP1) significantly increased miR-15a expression in SNK-6 cells. In NNKTL tissues, we found that reduced miR-15a expression, which correlated with MYB and cyclin D1 expression, was associated with poor prognosis of NNKTL patients. These data suggest that downregulation of miR-15a, possibly due to LMP1, implicates in the pathogenesis of NNKTL by inducing cell proliferation via MYB and cyclin D1. Thus, miR-15a could be a potential target for antitumor therapy and a prognostic predictor for NNKTL. Copyright © 2013 Wiley Periodicals, Inc.

  9. 2R and remodeling of vertebrate signal transduction engine

    Directory of Open Access Journals (Sweden)

    Huminiecki Lukasz

    2010-12-01

    Full Text Available Abstract Background Whole genome duplication (WGD is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed. Results We show that 2R-WGD affected an overwhelming majority (74% of signalling genes, in particular developmental pathways involving receptor tyrosine kinases, Wnt and transforming growth factor-β ligands, G protein-coupled receptors and the apoptosis pathway. 2R-retained genes, in contrast to tandem duplicates, were enriched in protein interaction domains and multifunctional signalling modules of Ras and mitogen-activated protein kinase cascades. 2R-WGD had a fundamental impact on the cell-cycle machinery, redefined molecular building blocks of the neuronal synapse, and was formative for vertebrate brains. We investigated 2R-associated nodes in the context of the human signalling network, as well as in an inferred ancestral pre-2R (AP2R network, and found that hubs (particularly involving negative regulation were preferentially retained, with high connectivity driving retention. Finally, microarrays and proteomics demonstrated a trend for gradual paralog expression divergence independent of the duplication mechanism, but inferred ancestral expression states suggested preferential subfunctionalisation among 2R-ohnologs (2ROs. Conclusions The 2R event left an indelible imprint on vertebrate signalling and the cell cycle. We show that 2R-WGD preferentially retained genes are associated with higher organismal complexity (for example, locomotion, nervous system, morphogenesis, while genes associated with basic cellular functions (for example, translation, replication, splicing, recombination; with the notable exception of cell cycle tended to be excluded. 2R

  10. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes.

    Science.gov (United States)

    Piscor, Diovani; Parise-Maltempi, Patricia Pasquali

    2016-03-01

    The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes.

  11. Control of sulfate concentration by miR395-targeted APS genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Qin Ai

    2016-04-01

    Full Text Available Sulfur nutrition is crucial for plant growth and development, as well as crop yield and quality. Inorganic sulfate in the soil is the major sulfur source for plants. After uptake, sulfate is activated by ATP sulfurylase, and then gets assimilated into sulfur-containing metabolites. However, the mechanism of regulation of sulfate levels by ATP sulfurylase is unclear. Here, we investigated the control of sulfate levels by miR395-mediated regulation of APS1/3/4. Sulfate was over-accumulated in the shoots of miR395 over-expression plants in which the expression of the APS1, APS3, and APS4 genes was suppressed. Accordingly, reduced expression of miR395 caused a decline of sulfate concentration. In agreement with these results, over-expression of the APS1, APS3, and APS4 genes led to the reduction of sulfate levels. Differential expression of these three APS genes in response to sulfate starvation implied that they have different functions. Further investigation revealed that the regulation of sulfate levels mediated by miR395 depends on the repression of its APS targets. Unlike the APS1, APS3, and APS4 genes, which encode plastid-localized ATP sulfurylases, the APS2 gene encodes a cytosolic version of ATP sulfurylase. Genetic analysis indicated that APS2 has no significant effect on sulfate levels. Our data suggest that miR395-targeted APS genes are key regulators of sulfate concentration in leaves.

  12. Energy transfer in LaF3: R3+, Pr3+ (where R = Nd, Dy)

    International Nuclear Information System (INIS)

    Reddy, B.R.; Venkateswarlu, P.

    1982-01-01

    Fluorescence is observed for 1 D 2 levels of Pr 3+ on exciting the higher lying level 3 P 0 in doubly doped systems LaF 3 : R 3+ , Pr 3+ (R = Nd or Dy) but not in LaF 3 :Pr 3+ . From the recorded excitation spectra, and the measured decay times, it has been found that the drain mechanism of population to 1 D 2 levels is caused in doubly doped systems by ion-pair relaxation between Pr 3+ ( 3 P 0 -- 1 D 2 ) and Nd 3+ (Z-X) or Dy 3+ (Z-Y) ions

  13. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8

    Czech Academy of Sciences Publication Activity Database

    Uličná, Lívia; Kalendová, Alžběta; Kalasová, Ilona; Vacík, Tomáš; Hozák, Pavel

    2018-01-01

    Roč. 1863, č. 3 (2018), s. 266-275 ISSN 1388-1981 R&D Projects: GA ČR GA15-08738S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LM2015062 Institutional support: RVO:68378050 Keywords : pip2 * phf8 * rDNA transcription * H3K9me2 * Nucleus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.547, year: 2016

  14. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis

    DEFF Research Database (Denmark)

    Kandasamy, Vijayalakshmi; Liu, Jianming; Dantoft, Shruti Harnal

    2016-01-01

    -BDO) and (2R,3R)-butanediol (R-BDO). Efficient production of (3R)-acetoin was accomplished using a strain where the competing lactate, acetate and ethanol forming pathways had been blocked. By introducing different alcohol dehydrogenases into this strain, either EcBDH from Enterobacter cloacae or SadB from......The potential that lies in harnessing the chemical synthesis capabilities inherent in living organisms is immense. Here we demonstrate how the biosynthetic machinery of Lactococcus lactis, can be diverted to make (3R)-acetoin and the derived 2,3-butanediol isomers meso-(2,3)-butanediol (m...... Achromobacter xylosooxidans, it was possible to achieve high-yield production of m-BDO or R-BDO respectively. To achieve biosustainable production of these chemicals from dairy waste, we transformed the above strains with the lactose plasmid pLP712. This enabled efficient production of (3R)-acetoin, m-BDO and R...

  15. Production of (R)-3-hydroxybutyric acid by Arxula adeninivorans.

    Science.gov (United States)

    Biernacki, Mateusz; Riechen, Jan; Hähnel, Urs; Roick, Thomas; Baronian, Kim; Bode, Rüdiger; Kunze, Gotthard

    2017-12-01

    (R)-3-hydroxybutyric acid can be used in industrial and health applications. The synthesis pathway comprises two enzymes, β-ketothiolase and acetoacetyl-CoA reductase which convert cytoplasmic acetyl-CoA to (R)-3-hydroxybutyric acid [(R)-3-HB] which is released into the culture medium. In the present study we used the non-conventional yeast, Arxula adeninivorans, for the synthesis enantiopure (R)-3-HB. To establish optimal production, we investigated three different endogenous yeast thiolases (Akat1p, Akat2p, Akat4p) and three bacterial thiolases (atoBp, thlp, phaAp) in combination with an enantiospecific reductase (phaBp) from Cupriavidus necator H16 and endogenous yeast reductases (Atpk2p, Afox2p). We found that Arxula is able to release (R)-3-HB used an existing secretion system negating the need to engineer membrane transport. Overexpression of thl and phaB genes in organisms cultured in a shaking flask resulted in 4.84 g L -1 (R)-3-HB, at a rate of 0.023 g L -1  h -1 over 214 h. Fed-batch culturing with glucose as a carbon source did not improve the yield, but a similar level was reached with a shorter incubation period [3.78 g L -1 of (R)-3-HB at 89 h] and the rate of production was doubled to 0.043 g L -1  h -1 which is higher than any levels in yeast reported to date. The secreted (R)-3-HB was 99.9% pure. This is the first evidence of enantiopure (R)-3-HB synthesis using yeast as a production host and glucose as a carbon source.

  16. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-05-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)-based SCF(COI1) complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation.

  17. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8

    Czech Academy of Sciences Publication Activity Database

    Uličná, Lívia; Kalendová, Alžběta; Kalasová, Ilona; Vacík, Tomáš; Hozák, Pavel

    2018-01-01

    Roč. 1863, č. 3 (2018), s. 266-275 ISSN 1388-1981 R&D Projects: GA ČR GA15-08738S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LM2015062 Institutional support: RVO:68378050 Keywords : PIP2 * PHF8 * rDNA transcription * H3K9me2 * Nucleus Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 5.547, year: 2016

  18. Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells.

    Science.gov (United States)

    Zhou, Yuanyuan; Zheng, Xia; Lu, Jiaojiao; Chen, Wei; Li, Xu; Zhao, Le

    2018-01-01

    The Warburg effect is one of the main energy metabolism features supporting cancer cell growth. 20(S)-Rg3 exerts anti-tumor effect on ovarian cancer partly by inhibiting the Warburg effect. microRNAs are important regulators of the Warburg effect. However, the microRNA regulatory network mediating the anti-Warburg effect of 20(S)-Rg3 was largely unknown. microRNA deep sequencing was performed to identify the 20(S)-Rg3-influenced microRNAs in SKOV3 ovarian cancer cells. miR-532-3p was overexpressed by mimic532-3p transfection in SKOV3 and A2780 cells or inhibited by inhibitor532-3p transfection in 20(S)-Rg3-treated cells to examine the changes in HK2 and PKM2 expression, glucose consumption, lactate production and cell growth. Dual-luciferase reporter assay was conducted to verify the direct binding of miR-532-3p to HK2. The methylation status in the promoter region of pre-miR-532-3p gene was examined by methylation-specific PCR. Expression changes of key molecules controlling DNA methylation including DNMT1, DNMT3A, DNMT3B, and TET1-3 were examined in 20(S)-Rg3-treated cells. DNMT3A was overexpressed in 20(S)-Rg3-treated cells to examine its influence on miR-532-3p level, HK2 and PKM2 expression, glucose consumption and lactate production. Deep sequencing results showed that 11 microRNAs were increased and 9 microRNAs were decreased by 20(S)-Rg3 in SKOV3 cells, which were verified by qPCR. More than 2-fold increase of miR-532-3p was found in 20(S)-Rg3-treated SKOV3 cells. Forced expression of miR-532-3p reduced HK2 and PKM2 expression, glucose consumption and lactate production in SKOV3 and A2780 ovarian cancer cells. Inhibition of miR-532-3p antagonized the suppressive effect of 20(S)-Rg3 on HK2 and PKM2 expression, glucose consumption and lactate production in ovarian cancer cells. Dual-luciferase reporter assay showed that miR-532-3p directly suppressed HK2 rather than PKM2. miR-532-3p level was controlled by the methylation in the promoter region of its host

  19. The Odorant ( R)-Citronellal Attenuates Caffeine Bitterness by Inhibiting the Bitter Receptors TAS2R43 and TAS2R46.

    Science.gov (United States)

    Suess, Barbara; Brockhoff, Anne; Meyerhof, Wolfgang; Hofmann, Thomas

    2018-03-14

    Sensory studies showed the volatile fraction of lemon grass and its main constituent, the odor-active citronellal, to significantly decrease the perceived bitterness of a black tea infusion as well as caffeine solutions. Seven citronellal-related derivatives were synthesized and shown to inhibit the perceived bitterness of caffeine in a structure-dependent manner. The aldehyde function at carbon 1, the ( R)-configuration of the methyl-branched carbon 3, and a hydrophobic carbon chain were found to favor the bitter inhibitory activity of citronellal; for example, even low concentrations of 25 ppm were observed to reduce bitterness perception of caffeine solution (6 mmol/L) by 32%, whereas ( R)-citronellic acid (100 pm) showed a reduction of only 21% and ( R)-citronellol (100 pm) was completely inactive. Cell-based functional experiments, conducted with the human bitter taste receptors TAS2R7, TAS2R10, TAS2R14, TAS2R43, and TAS2R46 reported to be sensitive to caffeine, revealed ( R)-citronellal to completely block caffeine-induced calcium signals in TAS2R43-expressing cells, and, to a lesser extent, in TAS2R46-expressing cells. Stimulation of TAS2R43-expressing cells with structurally different bitter agonists identified ( R)-citronellal as a general allosteric inhibitor of TAS2R43. Further structure/activity studies indicated 3-methyl-branched aliphatic aldehydes with a carbon chain of ≥4 C atoms as best TAS2R43 antagonists. Whereas odor-taste interactions have been mainly interpreted in the literature to be caused by a central neuronal integration of odors and tastes, rather than by peripheral events at the level of reception, the findings of this study open up a new dimension regarding the interaction of the two chemical senses.

  20. Syntheses of 24R,25-dihydroxy-[6,19,19-3H]vitamin D3 and 24R,25-dihydroxy-[6,19,19-2H]vitamin D3

    International Nuclear Information System (INIS)

    Yamada, S.; Shimizu, M.; Fukushima, K.; Niimura, K.; Maeda, Y.

    1989-01-01

    24R,25-Dihydroxy-[6,19,19-3H]vitamin D3 with a specific activity of 54 Ci/mmol and 24R,25-dihydroxy-[6,19,19-2H]vitamin D3 with 2.6 deuterium atoms/mol were synthesized in four steps starting from 24R,25-Dihydroxyvitamin D3 via its sulfur dioxide adduct

  1. Gastric cancer: the role of insulin-like growth factor 2 (IGF 2) and its receptors (IGF 1R and M6-P/IGF 2R).

    Science.gov (United States)

    Pavelić, Kresimir; Kolak, Toni; Kapitanović, Sanja; Radosević, Senka; Spaventi, Sime; Kruslin, Bozo; Pavelić, Jasminka

    2003-11-01

    Insulin-like growth factor 2 (IGF 2) appears to be involved in the progression of many tumours. It binds to at least two different types of receptor: IGF type 1 (IGF 1R) and mannose 6-phosphate/IGF type 2 (M6-P/IGF 2R). Ligand binding to IGF 1R provokes mitogenic and anti-apoptotic effects. M6-P/IGF 2R has a tumour suppressor function--it mediates IGF 2 degradation. Mutation of M6-P/IGF 2R causes both diminished growth suppression and augmented growth stimulation. The aim of this study was to investigate the role of IGF 2 and its receptors (IGF 1R and IGF 2R) in human gastric cancer. The expression of IGF 2 and its receptors was measured in order to analyse the possible correlation between the activity of these genes and cell proliferation in two different gastric tumour types: diffuse and intestinal. The effect of IGF 1 receptor blockage on cell proliferation and anchorage-independent cell growth was also examined. Increased expression of IGF 2 and IGF 1R genes (at the mRNA and protein level) was found in gastric cancer when compared with non-tumour tissue. Furthermore, there was a significant difference between IGF 2 expression in the more aggressive diffuse type and that in the intestinal type of gastric cancer. Moreover, the IGF 2 peptide level in the culture media obtained from the diffuse type of cancer cells was significantly higher when compared with the intestinal type. The level of IGF 2 peptide in the conditioned media strongly correlated with [3H]thymidine incorporation and cell proliferation. On the contrary, IGF 2R mRNA expression was much higher in the intestinal type of cancer than in the diffuse type. In addition, IGF 2R protein expression was substantially lower with progression of the diffuse cancer type to a higher stage. The alphaIR3 monoclonal antibody strongly inhibited [3H]thymidine incorporation and decreased the number of colonies in soft agar of cells overexpressing IGF 2. These findings suggest that members of the IGF family are involved

  2. [Over-expression of miR-151a-3p inhibits proliferation and migration of PC-3 prostate cancer cells].

    Science.gov (United States)

    Zhang, Yi; Hao, Tongtong; Zhang, Han; Wei, Pengtao; Li, Xiaohui

    2018-03-01

    Objective To observe the effect of microRNA-151a-3p (miR-151a-3p) up-regulation on the proliferation and migration of prostate cancer cells and explore the possible molecular mechanism. Methods The expression of miR-151a-3p in PC-3M, C4-2B, 22RV1, DU-145, PC-3, LNCap human prostate cancer cells and RWPE-1 human normal prostate epithelial cells was detected by real-time fluorescence quantitative PCR. PC-3 cells with the lowest expression of miR-151a-3p were used for subsequent experiments. Bioinformatics and dual-luciferase reporter assay were performed to predict and test potential target genes of miR-151a-3p. The miR-151a-3p mimics or negative control microRNAs (miR-NCs) were transfected into PC-3 cells. Real-time fluorescence quantitative PCR was used to detect the expression of miR-151a-3p and potential target gene mRNA. The protein expressions of target genes and downstream signaling pathway proteins were analyzed by Western blotting. The proliferation of PC-3 cells was examined by MTT assay, and the migration of PC-3 cells was detected by Transwell TM assay. Results The expression level of miR-151a-3p in the prostate cancer cells was significantly lower than that in RWPE-1 normal human prostate epithelial cells. PC-3 cells had the lowest expression level of miR-151a-3p. The bioinformatics and dual-luciferase reporter assay showed that NEK2 was the potential target gene for miR-151a-3p. After transfection with miR-151a-3p mimics, the expression of miR-151a-3p in PC-3 cells significantly increased and the expression of NEK2 mRNA significantly decreased. The protein expressions of PI3K-AKT-mTOR signaling pathway were also reduced. Up-regulation of miR-151a-3p significantly inhibited the proliferation and migration of PC-3 cells. Conclusion The expression of miR-151a-3p is reduced in prostate cancer cells. Up-regulation of miR-151a-3p can inhibit the proliferation and migration of P-3 in prostate cancer by decreasing the expression of NEK2 and PI3K

  3. An .I.ex vivo ./I.model to study v-Myb-induced leukemogenicity

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Marta; Králová, Jarmila; Karafiát, Vít; Bartůněk, Petr; Dvořák, Michal

    2001-01-01

    Roč. 27, č. 2 (2001), s. 437-445 ISSN 1079-9796 R&D Projects: GA ČR GV301/98/K042; GA ČR GA204/00/0554; GA AV ČR IPP2052002 Grant - others:HHMI(US) 75195-540401 Institutional research plan: CEZ:AV0Z5052915 Keywords : v-Myb oncoprotein * PEST domain * leucine zipper Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.703, year: 2001

  4. microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PIK3R2-PI3K/Akt signalling pathway.

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Zongqi; Zhang, David Y; Zhu, Jianbing; Zhang, Tiantian; Wang, Changqian

    2013-01-01

    Endothelial progenitor cells (EPCs) are capable of proliferating and differentiating into mature endothelial cells, and they have been considered as potential candidates for coronary heart disease therapy. However, the transition of EPCs to mesenchymal cells is not fully understood. This study aimed to explore the role of microRNA 126 (miR-126) in the endothelial-to-mesenchymal transition (EndMT) induced by transforming growth factor beta 1 (TGFβ1). EndMT of rat bone marrow-derived EPCs was induced by TGFβ1 (5 ng/mL) for 7 days. miR-126 expression was depressed in the process of EPC EndMT. The luciferase reporter assay showed that the PI3K regulatory subunit p85 beta (PIK3R2) was a direct target of miR-126 in EPCs. Overexpression of miR-126 by a lentiviral vector (lenti-miR-126) was found to downregulate the mRNA expression of mesenchymal cell markers (α-SMA, sm22-a, and myocardin) and to maintain the mRNA expression of progenitor cell markers (CD34, CD133). In the cellular process of EndMT, there was an increase in the protein expression of PIK3R2 and the nuclear transcription factors FoxO3 and Smad4; PI3K and phosphor-Akt expression decreased, a change that was reversed markedly by overexpression of miR-126. Furthermore, knockdown of PIK3R2 gene expression level showed reversed morphological changes of the EPCs treated with TGFβ1, thereby giving the evidence that PIK3R2 is the target gene of miR-126 during EndMT process. These results show that miR-126 targets PIK3R2 to inhibit EPC EndMT and that this process involves regulation of the PI3K/Akt signalling pathway. miR-126 has the potential to be used as a biomarker for the early diagnosis of intimal hyperplasia in cardiovascular disease and can even be a therapeutic tool for treating cardiovascular diseases mediated by the EndMT process.

  5. Anomalous magnetoresistance in antiferromagnetic polycrystalline materials R2Ni3Si5 (R=rare earth)

    International Nuclear Information System (INIS)

    Mazumdar, C.; Nigam, A.K.; Nagarajan, R.; Gupta, L.C.; Chandra, G.; Padalia, B.D.; Godart, C.; Vijayaraghaven, R.

    1997-01-01

    Magnetoresistance (MR) studies on polycrystalline R 2 Ni 3 Si 5 , (R=Y, rare earth) which order antiferromagnetically at low temperatures, are reported here. MR of the Nd, Sm, and Tb members of the series exhibit positive giant magnetoresistance, largest among polycrystalline materials (85%, 75%, and 58% for Tb 2 Ni 3 Si 5 , Sm 2 Ni 3 Si 5 , and Nd 2 Ni 3 Si 5 , respectively, at 4.4 K in a field of 45 kG). These materials have, to the best of our knowledge, the largest positive GMR reported ever for any bulk polycrystalline compounds. The magnitude of MR does not correlate with the rare earth magnetic moments. We believe that the structure of these materials, which can be considered as a naturally occurring multilayer of wavy planes of rare earth atoms separated by Ni endash Si network, plays a role. The isothermal MR of other members of this series (R=Pr,Dy,Ho) exhibits a maximum and a minimum, below their respective T N close-quote s. We interpret these in terms of a metamagnetic transition and short-range ferromagnetic correlations. The short-range ferromagnetic correlations seem to be dominant in the temperature region just above T N . copyright 1997 American Institute of Physics

  6. The Role of OmpR in the Expression of Genes of the KdgR Regulon Involved in the Uptake and Depolymerization of Oligogalacturonides in Yersinia enterocolitica

    Directory of Open Access Journals (Sweden)

    Marta Nieckarz

    2017-08-01

    Full Text Available Oligogalacturonide (OGA-specific porins of the KdgM family have previously been identified and characterized in enterobacterial plant pathogens. We found that deletion of the gene encoding response regulator OmpR causes the porin KdgM2 to become one of the most abundant proteins in the outer membrane of the human enteropathogen Yersinia enterocolitica. Reporter gene fusion and real-time PCR analysis confirmed that the expression of kdgM2 is repressed by OmpR. We also found that kdgM2 expression is subject to negative regulation by KdgR, a specific repressor of genes involved in the uptake and metabolism of pectin derivatives in plant pathogens. The additive effect of kdgR and ompR mutations suggested that KdgR and OmpR regulate kdgM2 expression independently. We confirmed that kdgM2 occurs in an operon with the pelP gene, encoding the periplasmic pectate lyase PelP. A pectinolytic assay showed strong upregulation of PelP production/activity in a Y. enterocolitica strain lacking OmpR and KdgR, which corroborates the repression exerted by these regulators on kdgM2. In addition, our data showed that OmpR is responsible for up regulation of the kdgM1 gene encoding the second specific oligogalacturonide porin KdgM1. This indicates the involvement of OmpR in the reciprocal regulation of both KdgM1 and KdgM2. Moreover, we demonstrated the negative impact of OmpR on kdgR transcription, which might positively affect the expression of genes of the KdgR regulon. Binding of OmpR to the promoter regions of the kdgM2-pelP-sghX operon, and kdgM1 and kdgR genes was confirmed using the electrophoretic mobility shift assay, suggesting that OmpR can directly regulate their transcription. We also found that the overexpression of porin KdgM2 increases outer membrane permeability. Thus, OmpR-mediated regulation of the KdgM porins may contribute to the fitness of Y. enterocolitica in particular local environments.

  7. miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect

    Directory of Open Access Journals (Sweden)

    Liu W

    2018-03-01

    Full Text Available Wenpeng Liu,1,* Lei Kang,2,* Juqiang Han,3 Yadong Wang,1 Chuan Shen,1 Zhifeng Yan,4 Yanhong Tai,5 Caiyan Zhao1 1Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China; 2Department of Nuclear Medicine, Peking University First Hospital, Beijing, China; 3Institute of Liver Disease, Beijing Military General Hospital, Beijing, China; 4Department of Gynecology and Obstetrics, PLA General Hospital, Beijing, China; 5Department of Pathology, Hospital of PLA, Beijing, China *These authors contributed equally to this work Background: Insulin-like growth factor-1 receptor (IGF-1R is a well-studied oncogenic factor that promotes cell proliferation and energy metabolism and is overexpressed in numerous cancers including hepatocellular carcinoma (HCC. Aerobic glycolysis is a hallmark of cancer, and drugs targeting its regulators, including IGF-1R, are being developed. However, the mechanisms of IGF-1R inhibition and the physiological significance of the IGF-1R inhibitors in cancer cells are unclear. Materials and methods: Cell proliferation was evaluated by cell counting Kit-8 and colony formation assay. Western blot and real-time PCR were accordingly used to detect the relevant proteins, miRNA and gene expression. Luciferase reporter assays were used to illustrate the interaction between miR-342-3p and IGF-1R. The effect of miR-342-3p on glycolysis was determined by glucose uptake, ATP concentration, lactate generation, extracellular acidification rate and oxygen consumption rate assays. In vivo, subcutaneous tumor formation assay and PET were performed in nude mice. Results: In this study, we demonstrate that by directly targeting the 3’-UTR (3’-untranslated regions of IGF-1R, microRNA-342-3p (miR-342-3p suppresses IGF-1R-mediated PI3K/AKT/GLUT1 signaling pathway both in vitro and in vivo. Through suppression of IGF-1R, miR-342-3p dampens glycolysis by decreasing glucose uptake, lactate generation

  8. DNA binding-independent transcriptional activation of the vascular endothelial growth factor gene (VEGF) by the Myb oncoprotein

    International Nuclear Information System (INIS)

    Lutwyche, Jodi K.; Keough, Rebecca A.; Hunter, Julie; Coles, Leeanne S.; Gonda, Thomas J.

    2006-01-01

    Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor

  9. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    Science.gov (United States)

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  10. Polymorphisms in TAS2R38 and the taste bud trophic factor, gustin gene co-operate in modulating PROP taste phenotype.

    Science.gov (United States)

    Calò, Carla; Padiglia, Alessandra; Zonza, Andrea; Corrias, Laura; Contu, Paolo; Tepper, Beverly J; Barbarossa, Iole Tomassini

    2011-10-24

    The PROP taste phenotype varies greatly among individuals, influencing eating behavior and therefore may play a role in body composition. This variation is associated with polymorphisms in the bitter receptor gene TAS2R38 and the taste-bud trophic factor gustin gene. The aim of this study was to examine the relationship between TAS2R38 haplotypes and the gustin gene polymorphism rs2274333 in modulating PROP taste phenotype. PROP phenotype was determined in seventy-six volunteers (29 males, 47 females, age 25±3 y) by scaling methods and threshold measurements. TAS2R38 and gustin gene genotyping was performed using PCR techniques. The lowest responsiveness in PROP nontasters is strongly associated with the AVI nontasting TAS2R38 variant and the highest responsiveness in supertasters is strongly associated to allele A and genotype AA of the gustin gene. These data support the hypothesis that the greater sensitivity of supertasters could be mediated by a greater taste-bud density. Polymorphisms in TAS2R38 and gustin gene, together, accounted for up to 60% of the phenotypic variance in PROP bitterness and to 40% in threshold values. These data, suggest that other unidentified factors may be more relevant for detecting low concentrations of PROP. Moreover, the presence of the PAV variant receptor may be important for detecting high concentrations of PROP, whereas the presence of allele A in gustin polymorphism may be relevant for perceiving low concentrations. These data show how the combination of the TAS2R38 and gustin gene genotypes modulate PROP phenotype, providing an additional tool for the evaluation of human eating behavior and nutritional status. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2.

    Science.gov (United States)

    Ran, M; Li, Z; Cao, R; Weng, B; Peng, F; He, C; Chen, B

    2018-05-14

    A large number of microRNAs (miRNAs) have been detected from porcine testicular tissues thanks to the development of high-throughput sequencing technology. However, the regulatory roles of most identified miRNAs in swine testicular development or spermatogenesis are poorly understood. In our previous study, ULK2 (uncoordinated-51-like kinase 2) was predicted as a target gene of miR-26a. In this study, we aimed to investigate the role of miR-26a in swine Sertoli cell autophagy. The relative expression of miR-26a and ULK2 levels has a significant negative correlation (R 2  = .5964, p ≤ .01) in nine developmental stages of swine testicular tissue. Dual-luciferase reporter assay results show that miR-26a directly targets the 3'UTR of the ULK2 gene (position 618-624). In addition, both the mRNA and protein expression of ULK2 were downregulated by miR-26a in swine Sertoli cells. These results indicate that miR-26a targets the ULK2 gene and downregulates its expression in swine Sertoli cells. Based on the expression of marker genes (LC3, p62 and Beclin-1), overexpression of miR-26a or knock-down of ULK2 inhibits swine Sertoli cell autophagy. Taken together, these findings demonstrate that miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2. © 2018 Blackwell Verlag GmbH.

  12. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway.

    Science.gov (United States)

    Yang, Weili; Wang, Junpei; Chen, Zhenzhen; Chen, Ji; Meng, Yuhong; Chen, Liming; Chang, Yongsheng; Geng, Bin; Sun, Libo; Dou, Lin; Li, Jian; Guan, Youfei; Cui, Qinghua; Yang, Jichun

    2017-07-01

    Hepatic FAM3A expression is repressed under obese conditions, but the underlying mechanism remains unknown. This study determined the role and mechanism of miR-423-5p in hepatic glucose and lipid metabolism by repressing FAM3A expression. miR-423-5p expression was increased in the livers of obese diabetic mice and in patients with nonalcoholic fatty liver disease (NAFLD) with decreased FAM3A expression. miR-423-5p directly targeted FAM3A mRNA to repress its expression and the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic miR-423-5p inhibition suppressed gluconeogenesis and improved insulin resistance, hyperglycemia, and fatty liver in obese diabetic mice. In contrast, hepatic miR-423-5p overexpression promoted gluconeogenesis and hyperglycemia and increased lipid deposition in normal mice. miR-423-5p inhibition activated the FAM3A-ATP-Akt pathway and repressed gluconeogenic and lipogenic gene expression in diabetic mouse livers. The miR-423 precursor gene was further shown to be a target gene of NFE2, which induced miR-423-5p expression to repress the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic NFE2 overexpression upregulated miR-423-5p to repress the FAM3A-ATP-Akt pathway, promoting gluconeogenesis and lipid deposition and causing hyperglycemia in normal mice. In conclusion, under the obese condition, activation of the hepatic NFE2/miR-423-5p axis plays important roles in the progression of type 2 diabetes and NAFLD by repressing the FAM3A-ATP-Akt signaling pathway. © 2017 by the American Diabetes Association.

  13. miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana.

    Science.gov (United States)

    Li, Lihong; Yi, Huilan; Xue, Meizhao; Yi, Min

    2017-11-01

    Sulfur dioxide (SO 2 ) is a common air pollutant that has adverse effects on plants. MicroRNAs (miRNAs) are small noncoding RNA that play critical roles in plant development and stress response. In this study, we found that two miRNAs, miR398 and miR395, were differentially expressed in Arabidopsis shoots under SO 2 stress. The expression of miR398 was down-regulated, and the transcript levels of its target genes, Cu/Zn superoxide dismutases (CSD1 and CSD2), were increased during SO 2 exposure. The activity of superoxide dismutase (SOD), one of the major antioxidant enzymes, was enhanced with the increase in the CSD transcript level, suggesting an important role of miR398 in response to SO 2 -induced oxidative stress. Meanwhile, the expression of miR395 was increased, and the transcript levels of its target genes, ATP sulfurylases (APS3 and APS4) and a low-affinity sulfate transporter (SULTR2;1), were decreased in Arabidopsis shoots, showing that miR395 played important roles in the regulation of sulfate assimilation and translocation during SO 2 exposure. The content of glutathione (GSH), an important sulfur-containing antioxidant, was enhanced with the changes in sulfur metabolism in Arabidopsis shoots under SO 2 stress. These results showed that both miR398 and miR395 were involved in protecting plants from oxidative damage during SO 2 exposure. Many stress-responsive cis-elements were found in the promoter regions of MIR398 and MIR395, suggesting that these miRNAs might respond to various environmental conditions, including SO 2 stress. Overall, our study provides an insight into the regulatory roles of miRNAs in response to SO 2 stress in plants, and highlights the molecular mechanisms of plant adaptation to environmental stress.

  14. Mouse Incisor Stem Cell Niche and Myb Transcription Factors

    Czech Academy of Sciences Publication Activity Database

    Švandová, Eva; Veselá, Barbora; Šmarda, J.; Hampl, A.; Radlanski, R.J.; Matalová, Eva

    2015-01-01

    Roč. 44, č. 5 (2015), s. 338-344 ISSN 0340-2096 R&D Projects: GA ČR GAP304/11/1418; GA ČR GCP302/12/J059 Institutional support: RVO:67985904 Keywords : c-Myb * stem cell niches Subject RIV: EA - Cell Biology Impact factor: 0.615, year: 2015

  15. Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella.

    Science.gov (United States)

    Etebari, K; Afrad, M H; Tang, B; Silva, R; Furlong, M J; Asgari, S

    2018-03-24

    The diamondback moth, Plutella xylostella, has developed extremely high levels of resistance to chlorantraniliprole and other classes of insecticides in the field. As microRNAs (miRNAs) play important roles in various biological processes through gene regulation, we examined the miRNA profile of P. xylostella in response to chlorantraniliprole exposure. RNA sequencing analysis showed that insecticide treatment caused significant changes in the abundance of some miRNAs. Increasing exposure time and insecticide concentration induced more dysregulated miRNAs in P. xylostella larvae. We also screened potential target genes for some of the differentially expressed miRNAs (such as miR-2b-3p, miR-14b-5p and let-7-5p), which may play important roles in insecticide resistance development. Exposure of P. xylostella larvae to chlorantraniliprole caused considerable overexpression in the transcript levels of potential target genes cytochrome P450 9f2 (CYP9F2) and 307a1 (CYP307a1). Application of miR-2b-3p and miR-14b-5p mimics significantly suppressed the relative transcript levels of CYP9F2 and CYP307a1, respectively, in a P. xylostella cell line. Furthermore, enrichment of P. xylostella diet with miR-2b-3p mimics significantly increased mortality in deltamethrin-resistant larvae when exposed to deltamethrin. The results suggest that miR-2b-3p may suppress CYP9F2 transcript levels in P. xylostella and consequently inhibit larval detoxification pathways. The findings provide an insight into possible role of miRNAs in regulation of metabolic resistance of insects to insecticides. © 2018 The Royal Entomological Society.

  16. miR-25-3p, Positively Regulated by Transcription Factor AP-2α, Regulates the Metabolism of C2C12 Cells by Targeting Akt1

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2018-03-01

    Full Text Available miR-25, a member of the miR-106b-25 cluster, has been reported as playing an important role in many biological processes by numerous studies, while the role of miR-25 in metabolism and its transcriptional regulation mechanism remain unclear. In this study, gain-of-function and loss-of-function assays demonstrated that miR-25-3p positively regulated the metabolism of C2C12 cells by attenuating phosphoinositide 3-kinase (PI3K gene expression and triglyceride (TG content, and enhancing the content of adenosine triphosphate (ATP and reactive oxygen species (ROS. Furthermore, the results from bioinformatics analysis, dual luciferase assay, site-directed mutagenesis, qRT-PCR, and Western blotting demonstrated that miR-25-3p directly targeted the AKT serine/threonine kinase 1 (Akt1 3′ untranslated region (3′UTR. The core promoter of miR-25-3p was identified, and the transcription factor activator protein-2α (AP-2α significantly increased the expression of mature miR-25-3p by binding to its core promoter in vivo, as indicated by the chromatin immunoprecipitation (ChIP assay, and AP-2α binding also downregulated the expression of Akt1. Taken together, our findings suggest that miR-25-3p, positively regulated by the transcription factor AP-2α, enhances C2C12 cell metabolism by targeting the Akt1 gene.

  17. Involvement of AMPA receptor GluR2 and GluR3 trafficking in trigeminal spinal subnucleus caudalis and C1/C2 neurons in acute-facial inflammatory pain.

    Directory of Open Access Journals (Sweden)

    Makiko Miyamoto

    Full Text Available To evaluate the involvement of trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR GluR2 and GluR3 subunits in an acute inflammatory orofacial pain, we analyzed nocifensive behavior, phosphorylated extracellular signal-regulated kinase (pERK and Fos expression in Vi/Vc, Vc and C1/C2 in GluR2 delta7 knock-in (KI, GluR3 delta7 KI mice and wild-type mice. We also studied Vc neuronal activity to address the hypothesis that trafficking of GluR2 and GluR3 subunits plays an important role in Vi/Vc, Vc and C1/C2 neuronal activity associated with orofacial inflammation in these mice. Late nocifensive behavior was significantly depressed in GluR2 delta7 KI and GluR3 delta7 KI mice. In addition, the number of pERK-immunoreactive (IR cells was significantly decreased bilaterally in the Vi/Vc, Vc and C1/C2 in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice at 40 min after formalin injection, and was also significantly smaller in GluR3 delta7 KI compared to GluR2 delta7 KI mice. The number of Fos protein-IR cells in the ipsilateral Vi/Vc, Vc and C1/C2 was also significantly smaller in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice 40 min after formalin injection. Nociceptive neurons functionally identified as wide dynamic range neurons in the Vc, where pERK- and Fos protein-IR cell expression was prominent, showed significantly lower spontaneous activity in GluR2 delta7 KI and GluR3 delta7 KI mice than wild-type mice following formalin injection. These findings suggest that GluR2 and GluR3 trafficking is involved in the enhancement of Vi/Vc, Vc and C1/C2 nociceptive neuronal excitabilities at 16-60 min following formalin injection, resulting in orofacial inflammatory pain.

  18. How many 5S rRNA genes and pseudogenes are there in ''Aspergillus nidulans''?

    International Nuclear Information System (INIS)

    Pelczar, P.; Fiett, J.; Bartnik, E.

    1994-01-01

    We have estimated the number of 5S rRNA genes in ''Aspergillus nidulans'' using two-dimensional agarose gel electrophoresis and hybridization to appropriate probes, representing the 5'-halves, the 3'-halves of the 5S rRNA sequence and a sequence found at the 3'-end of all known. ''A. nidulans'' pseudogenes (block C). We have found 23 5S rRNA genes, 15 pseudogenes consisting of the 5'-half of the 5S rRNA sequence (of which 3 are flanked by block C) and 12 copies of block C which do not seem to be in the vicinity of 5S rRNA sequences. This number of genes is much lower than our earlier estimates, and makes our previously analyzed sample of 9 sequenced genes and 3 pseudogenes much more representative. (author). 7 refs, 1 fig

  19. The purple cauliflower arises from activation of a MYB transcription factor.

    Science.gov (United States)

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L; Li, Li

    2010-11-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal.

  20. Activation of erythropoietin receptors by Friend viral gp55 and by erythropoietin and down-modulation by the murine Fv-2r resistance gene

    International Nuclear Information System (INIS)

    Hoatlin, M.E.; Kozak, S.L.; Kabat, D.; Lilly, F.; Chakraborti, A.; Kozak, C.A.

    1990-01-01

    The leukemogenic membrane glycoprotein (gp55) encoded by Friend spleen focus-forming virus appears to bind to erythropoietin receptors (EpoR) to stimulate erythroblastosis. To directly compare the effects of gp55 with erythropoietin (Epo), the authors produced retrovirions that encode either gp55, Epo, or EpoR. After infection with EpoR virus, interleukin 3-dependent DA-3 cells bound 125 I-labeled Epo and grew without interleukin 3 in the presence of Epo. These latter cells, but not parental DA-3 cells, became factor-independent after superinfection either with Epo virus or with Friend spleen focus-forming virus. In addition, Epo virus caused a disease in mice that mimicked Friend erythroleukemia. Although Fv-2 r homozygotes are susceptible to all other retroviral diseases, they are resistant to both Epo viral and Friend viral erythroleukemia. These results indicate that both gp55 and Epo stimulate EpoR and that the Fv-2 gene encodes a protein that controls response to these ligands. However, the Fv-2 protein is not EpoR because the corresponding genes map to opposite ends of mouse chromosome 9. These results have important implications for understanding signal transduction by EpoR and the role of host genetic variation in controlling susceptibility to an oncogenic protein

  1. MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3.

    Directory of Open Access Journals (Sweden)

    Noelia Sanchez

    Full Text Available MiR-7 acts as a tumour suppressor in many cancers and abrogates proliferation of CHO cells in culture. In this study we demonstrate that miR-7 targets key regulators of the G1 to S phase transition, including Skp2 and Psme3, to promote increased levels of p27(KIP and temporary growth arrest of CHO cells in the G1 phase. Simultaneously, the down-regulation of DNA repair-specific proteins via miR-7 including Rad54L, and pro-apoptotic regulators such as p53, combined with the up-regulation of anti-apoptotic factors like p-Akt, promoted cell survival while arrested in G1. Thus miR-7 can co-ordinate the levels of multiple genes and proteins to influence G1 to S phase transition and the apoptotic response in order to maintain cellular homeostasis. This work provides further mechanistic insight into the role of miR-7 as a regulator of cell growth in times of cellular stress.

  2. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  3. microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PIK3R2-PI3K/Akt signalling pathway.

    Directory of Open Access Journals (Sweden)

    Junfeng Zhang

    Full Text Available AIMS: Endothelial progenitor cells (EPCs are capable of proliferating and differentiating into mature endothelial cells, and they have been considered as potential candidates for coronary heart disease therapy. However, the transition of EPCs to mesenchymal cells is not fully understood. This study aimed to explore the role of microRNA 126 (miR-126 in the endothelial-to-mesenchymal transition (EndMT induced by transforming growth factor beta 1 (TGFβ1. METHODS AND RESULTS: EndMT of rat bone marrow-derived EPCs was induced by TGFβ1 (5 ng/mL for 7 days. miR-126 expression was depressed in the process of EPC EndMT. The luciferase reporter assay showed that the PI3K regulatory subunit p85 beta (PIK3R2 was a direct target of miR-126 in EPCs. Overexpression of miR-126 by a lentiviral vector (lenti-miR-126 was found to downregulate the mRNA expression of mesenchymal cell markers (α-SMA, sm22-a, and myocardin and to maintain the mRNA expression of progenitor cell markers (CD34, CD133. In the cellular process of EndMT, there was an increase in the protein expression of PIK3R2 and the nuclear transcription factors FoxO3 and Smad4; PI3K and phosphor-Akt expression decreased, a change that was reversed markedly by overexpression of miR-126. Furthermore, knockdown of PIK3R2 gene expression level showed reversed morphological changes of the EPCs treated with TGFβ1, thereby giving the evidence that PIK3R2 is the target gene of miR-126 during EndMT process. CONCLUSIONS: These results show that miR-126 targets PIK3R2 to inhibit EPC EndMT and that this process involves regulation of the PI3K/Akt signalling pathway. miR-126 has the potential to be used as a biomarker for the early diagnosis of intimal hyperplasia in cardiovascular disease and can even be a therapeutic tool for treating cardiovascular diseases mediated by the EndMT process.

  4. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation

    Czech Academy of Sciences Publication Activity Database

    Garcia, S.; Kovařík, Aleš

    2013-01-01

    Roč. 111, č. 1 (2013), s. 23-33 ISSN 0018-067X R&D Projects: GA ČR(CZ) GA13-10057S; GA ČR GBP501/12/G090 Institutional support: RVO:68081707 Keywords : rRNA gene organisation * intergenic spacer * Ginkgo Subject RIV: BO - Biophysics Impact factor: 3.804, year: 2013

  5. Neutron scattering study on R{sub 2}PdSi{sub 3} (R=Ho,Er,Tm) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fei

    2010-12-14

    Previous studies on the family of inter-metallic rare-earth compounds R{sub 2}PdSi{sub 3} revealed multifaceted magnetic properties, for instance, spin-glass like behavior. Experimental observations include: Signs of a crystallographic superstructure, complicated magnetic structures both in zero field and in applied magnetic fields as well as a generic phase in applied fields for compounds in the series with the heavy rare-earths R=Gd, Tb, Dy, Ho, Er and Tm. This thesis expands the studies on the magnetic properties of R{sub 2}PdSi{sub 3} employing mainly neutron scattering on single crystals with the focus on the compounds with R=Ho, Er and Tm. A detailed analysis of the crystallographic superstructure using modulation wave approach and group theory is presented. The resulting structure implies the existence of two different rare-earth sites with reduced symmetry and an arrangement of the different sites according to sequences as determined by the superstructure. It is shown that the reduced symmetry of the rare-earth sites is explicitly observed in the energy spectra of inelastic neutron scattering. The results on the magnetic structures and excitations are shown and discussed in the framework of the superstructure model. Specifically the generic phase in applied fields is interpreted as a direct consequence of the crystallographic superstructure. It is rather unusual that a crystallographic superstructure is playing such a decisive, and through the field dependence also tunable role in determining the magnetic properties as observed in R{sub 2}PdSi{sub 3}. The mediating interactions between the crystallographic part and the magnetic part of the system are discussed. (orig.)

  6. Plasma Triglyceride Levels May Be Modulated by Gene Expression of IQCJ, NXPH1, PHF17 and MYB in Humans

    Directory of Open Access Journals (Sweden)

    Bastien Vallée Marcotte

    2017-01-01

    Full Text Available A genome-wide association study (GWAS by our group identified loci associated with the plasma triglyceride (TG response to ω-3 fatty acid (FA supplementation in IQCJ, NXPH1, PHF17 and MYB. Our aim is to investigate potential mechanisms underlying the associations between single nucleotide polymorphisms (SNPs in the four genes and TG levels following ω-3 FA supplementation. 208 subjects received 3 g/day of ω-3 FA (1.9–2.2 g of EPA and 1.1 g of docosahexaenoic acid (DHA for six weeks. Plasma TG were measured before and after the intervention. 67 SNPs were selected to increase the density of markers near GWAS hits. Genome-wide expression and methylation analyses were conducted on respectively 30 and 35 participants’ blood sample together with in silico analyses. Two SNPs of IQCJ showed different affinities to splice sites depending on alleles. Expression levels were influenced by genotype for one SNP in NXPH1 and one in MYB. Associations between 12 tagged SNPs of IQCJ, 26 of NXPH1, seven of PHF17 and four of MYB and gene-specific CpG site methylation levels were found. The response of plasma TG to ω-3 FA supplementation may be modulated by the effect of DNA methylation on expression levels of genes revealed by GWAS.

  7. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation

    Directory of Open Access Journals (Sweden)

    Biao eLai

    2016-02-01

    Full Text Available Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2 and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, And this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

  8. The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana[C][W

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-01-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)–based SCFCOI1 complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation. PMID:21551388

  9. GATA-1 and c-myb crosstalk during red blood cell differentiation through GATA-1 binding sites in the c-myb promoter

    Czech Academy of Sciences Publication Activity Database

    Bartůněk, Petr; Králová, Jarmila; Blendiger, G.; Dvořák, Michal; Zenke, M.

    2003-01-01

    Roč. 22, č. 13 (2003), s. 1927-1935 ISSN 0950-9232 R&D Projects: GA ČR GV301/98/K042 Institutional research plan: CEZ:AV0Z5052915 Keywords : GATA-1 * c-myb * erythropoiesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.495, year: 2003

  10. A role of c-Myb in ossification

    Czech Academy of Sciences Publication Activity Database

    Oralová, Veronika; Matalová, Eva; Knopfová, L.; Švandová, Eva; Šmarda, J.; Buchtová, Marcela

    2015-01-01

    Roč. 159, Suppl 1 (2015), S30-S31 ISSN 1213-8118. [Morphology 2015. International Congress of the Czech Anatomical Society /49./. Lojda Symposium on Histochemistry /52./. 06.09.2015-08.09.2015, Olomouc] R&D Projects: GA ČR GB14-37368G Institutional support: RVO:67985904 Keywords : c-Myb Subject RIV: EA - Cell Biology

  11. Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7

    Science.gov (United States)

    Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim

    2016-12-01

    We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.

  12. Molecular tagging of a novel rust resistance gene R(12) in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Gong, L; Hulke, B S; Gulya, T J; Markell, S G; Qi, L L

    2013-01-01

    Sunflower production in North America has recently suffered economic losses in yield and seed quality from sunflower rust (Puccinia helianthi Schwein.) because of the increasing incidence and lack of resistance to new rust races. RHA 464, a newly released sunflower male fertility restorer line, is resistant to both of the most predominant and most virulent rust races identified in the Northern Great Plains of the USA. The gene conditioning rust resistance in RHA 464 originated from wild Helianthus annuus L., but has not been molecularly marked or determined to be independent from other rust loci. The objectives of this study are to identify molecular markers linked to the rust resistance gene and to investigate the allelism of this gene with the unmapped rust resistance genes present in HA-R6, HA-R8 and RHA 397. Virulence phenotypes of seedlings for the F(2) population and F(2:3) families suggested that a single dominant gene confers rust resistance in RHA 464, and this gene was designated as R(12). Bulked segregant analysis identified ten markers polymorphic between resistant and susceptible bulks. In subsequent genetic mapping, the ten markers covered 33.4 cM of genetic distance on linkage group 11 of sunflower. A co-dominant marker CRT275-11 is the closest marker distal to R(12) with a genetic distance of 1.0 cM, while ZVG53, a dominant marker linked in the repulsion phase, is proximal to R(12) with a genetic distance of 9.6 cM. The allelism test demonstrated that R(12) is not allelic to the rust resistance genes in HA-R6, HA-R8 and RHA 397, and it is also not linked to any previously mapped rust resistance genes. Discovery of the R(12) novel rust resistance locus in sunflower and associated markers will potentially support the molecular marker-assisted introgression and pyramiding of R(12) into sunflower breeding lines.

  13. An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Agnelli Luca

    2008-08-01

    Full Text Available Abstract Background The role of microRNAs (miRNAs in multiple myeloma (MM has yet to be fully elucidated. To identify miRNAs that are potentially deregulated in MM, we investigated those mapping within transcription units, based on evidence that intronic miRNAs are frequently coexpressed with their host genes. To this end, we monitored host transcript expression values in a panel of 20 human MM cell lines (HMCLs and focused on transcripts whose expression varied significantly across the dataset. Methods miRNA expression was quantified by Quantitative Real-Time PCR. Gene expression and genome profiling data were generated on Affymetrix oligonucleotide microarrays. Significant Analysis of Microarrays algorithm was used to investigate differentially expressed transcripts. Conventional statistics were used to test correlations for significance. Public libraries were queried to predict putative miRNA targets. Results We identified transcripts specific to six miRNA host genes (CCPG1, GULP1, EVL, TACSTD1, MEST, and TNIK whose average changes in expression varied at least 2-fold from the mean of the examined dataset. We evaluated the expression levels of the corresponding intronic miRNAs and identified a significant correlation between the expression levels of MEST, EVL, and GULP1 and those of the corresponding miRNAs miR-335, miR-342-3p, and miR-561, respectively. Genome-wide profiling of the 20 HMCLs indicated that the increased expression of the three host genes and their corresponding intronic miRNAs was not correlated with local copy number variations. Notably, miRNAs and their host genes were overexpressed in a fraction of primary tumors with respect to normal plasma cells; however, this finding was not correlated with known molecular myeloma groups. The predicted putative miRNA targets and the transcriptional profiles associated with the primary tumors suggest that MEST/miR-335 and EVL/miR-342-3p may play a role in plasma cell homing and

  14. Increasing of miR-148a 0061nd Decreasing of miR-146a Gene Expression in the Stomach with Ageing in Men

    Directory of Open Access Journals (Sweden)

    Shirin Abdolvand

    2017-06-01

    Full Text Available Abstract Background: The incidence of gastric cancer is different in two sexes with ratio 2 to 1 that it is more common in men. The most important biologically reason is sexual hormones between two sexes that lead to sexual dimorphism and in turn can cause a sex bias in incidence of disease between two sexes. Recently, studies have shown that microRNA is involved in sexual dimorphism in gene expression. Given the sexual dimorphism in the incidence of gastric cancer and sex hormones response elements in the regulatory regions of miR-146a and miR-148a genes, in this study, the expression of these two genes in the stomach of healthy men and women at different age groups were compared. Materials and Methods: Using endoscopy, gastric antrum tissues of 35 healthy women and 35 healthy men were collected. After RNA extraction and synthesis of cDNA, the expression of miR-146a and miR-148a genes were compared between sexes by Real time RT-PCR and data were analyzed using independent sample t and ANOVA tests. Results: There was no difference between men and women in genes expression of miR-146a and miR-148a. However, expression of miR-146a gene was significantly more in men under 45 years than men over 45 years (p= 0.017, df= 14, t= 1.47. Also, expression of miR-148a gene was significantly more in men over 45 years than men under 45 years (p=0.001, df= 12, t= 1.28. But the expression of both genes had no significant difference between women under 45 years and women over 45 years. Conclusion: Expression of miR-146a and miR-148a genes in the stomach is increased and decreased with aging in men, respectively.

  15. Laser-diode-excited blue upconversion in Tm3+/Yb3+ -codoped TeO2-Ga2O3-R2O (R=Li, Na, K) glasses.

    Science.gov (United States)

    Zhao, Chun; Zhang, Qinyuan; Yang, Gangfeng; Jiang, Zhonghong

    2008-01-01

    This paper reports on intense blue upconversion in Tm(3+)/Yb(3+) codoped TeO(2)-Ga(2)O(3)-R(2)O(R=Li, Na, K) glasses upon excitation with commercial available laser diode (LD). Effects of alkali ions on the Raman spectra, thermal stability and spectroscopic properties of the tellurite-gallium glasses have also been investigated. Energy transfer and the involved upconversion mechanisms have been discussed. Intense blue upconversion emission centered at 476 nm along with a weak red emission at 650 nm has been observed upon excitation of 977 nm LD, assigned to the transitions of 1G4-->3H6, and 1G4-->3H4 and/or 3F(2,3)-->3H6 of Tm(3+), respectively. The blue upconversion intensity has a cubelike dependence on incident pump laser power, indicating a three-photon process. However, a quadratic dependence of the 476 nm upconversion intensity on the incident pump laser power has been observed when samples under excitation of 808 nm LD due to a two-photon absorption process. Enhanced upconversion luminescence have been observed with replacing K(+) for Na(+) and Li(+).

  16. NEW DERIVATIVES OF 2-R1-N-(5-R-1,3,4-THIADIAZOL-2-YL-BENZOLSULFONAMIDES: SYNTHESIS, PHYSICOCHEMICAL PROPERTIES AND BIOLOGICAL ACTIVITY PREDICTION

    Directory of Open Access Journals (Sweden)

    Sych I.V.

    2015-12-01

    Full Text Available Introduction: The analysis of modern literature, including overseas one, showed that a lot of the scientific researches is devoted to finding and creating biologically active compounds on base 1,3,4-thiadiazole. Derivatives of 1,3,4-thiadiazole are the large group of heterocyclic compounds with high rates of antimicrobial, antituberculosis, antidiabetic, antineoplastic and anticonvulsant activity. Material and methods: The purpose of this study was the expansion of sulfone derivatives substituted nitrogen-containing heterocyclic systems through the synthesis of 2-R1-N (5-R-1,3,4-thiadiazol-2-ilbenzolsulfonamides and prediction their pharmacological activity for future planning pharmacological screening. Synthesis of semi-products 2-amino-5-R-1,3,4-thiadiazoles was carried out by cyclization thiosemicarbazide and substituted derivatives of carboxylic acids in the presence of concentrated sulfuric acid. The synthesis of target compounds 2-R1-N(5-R-1,3,4-thiadiazol-2-ylbenzolsulfon-amides was carried out by N-acylation of 2-amino-5R-1,3,4-thiadiazole substituted benzolsul-fochlorides in the presence of anhydrous pyridine. The reaction proceeds by the classic SN2-mechanism. The resulting compounds are white crystalline substances, soluble in alcohol, chloroform and acetone, difficult to dissolve in water. Yields of obtained compounds was satisfactory (76-84%. The purity of the obtained compounds was determined by TLC. The structure of the obtained compounds was proved by elemental analysis, IR methods and 1H NMR spectroscopy. NMR 1H spectra were recorded at Bruker WM spectrometer (200 MHz; solvent DMSO-d6; chemical shifts were in ppm, internal standard (TMS (tetramethylsilane was used. The prognosis of biological activity for obtained compounds were carried out using the program PASS (Prediction of Activity Spectra for Substances in order to plan the further pharmacological screening. The program PASS predicts more than 500 kinds of biological

  17. miR-99 inhibits cervical carcinoma cell proliferation by targeting TRIB2.

    Science.gov (United States)

    Xin, Jia-Xuan; Yue, Zhen; Zhang, Shuai; Jiang, Zhong-Hua; Wang, Ping-Yu; Li, You-Jie; Pang, Min; Xie, Shu-Yang

    2013-10-01

    MicroRNAs (miRNAs) have significant roles in cell processes, including proliferation, apoptosis and stress responses. To investigate the involvement of miR-99 in the inhibition of HeLa cell proliferation, an miR-99 gene expression vector (pU6.1/miR-99), which overexpressed miR-99 in HeLa cells after transient transfection, was constructed. The expression of miR-99 was detected by qPCR. Cell proliferation and apoptosis were analyzed by cell viability, proliferation and apoptosis assays, as well as by electron microscopy. The results showed that overexpression of miR-99 in HeLa cells increased the HeLa cell mortality rate. Moreover, miR-99 overexpression was able to markedly inhibit HeLa cell proliferation according to the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell apoptosis rate was significantly higher in pU6.1/miR-99-treated cells compared with that in the control cultures. Increases in intracellular electron density, as well as the proportion of nuclear plasma, blebbing phenomena and apoptotic bodies were observed in pU6.1/miR-99-treated cells compared with control cultures according to electron microscopy analysis. The Tribbles 2 (TRIB2) 3'-untranslated region was also observed to be targeted by miR-99 and the results further demonstrated that miR-99 was able to negatively regulate TRIB2 expression in HeLa cells The results indicate that miR-99 acts as a tumor suppressor gene in HeLa cells, establishing a theoretical basis for its application in cancer therapeutics.

  18. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function.

    Science.gov (United States)

    Kourelis, Jiorgos; van der Hoorn, Renier A L

    2018-02-01

    Plants have many, highly variable resistance ( R ) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize ( Zea mays ) Hm1 , was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes. © 2018 American Society of Plant Biologists. All rights reserved.

  19. Gemeinsame Gener Hören, Sehen und Tastsinn

    OpenAIRE

    Gross, M; Lewin, G; Frenzel, H

    2012-01-01

    Hintergrund: Hören und Tastsinn sind zwei distinkte sensorische Systeme, die auf der Transformation mechanischer Kräfte in elektrische Signale basieren. Während für Hörstörungen mehrere einzelne Genmutationen bekannt sind, ist für den eingeschränkten Tastsinn bisher keine Mutation beschrieben. Hypothesen: Es gibt gemeinsame Gener Hören und Tastsinn. Es lassen sich Hinweise auf einzelne Genmutationen konkretisieren.Material und Methoden: 3 prospektive Teilstudien: Zwillingsstudie zu Tas...

  20. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2

    Energy Technology Data Exchange (ETDEWEB)

    Simion, Alexandru; Laudadio, Ilaria; Prevot, Pierre-Paul; Raynaud, Peggy; Lemaigre, Frederic P. [Universite catholique de Louvain, de Duve Institute, 75 Avenue Hippocrate 7529, B-1200 Brussels (Belgium); Jacquemin, Patrick, E-mail: patrick.jacquemin@uclouvain.be [Universite catholique de Louvain, de Duve Institute, 75 Avenue Hippocrate 7529, B-1200 Brussels (Belgium)

    2010-01-01

    MicroRNAs are small, non-coding RNAs that posttranscriptionally regulate gene expression mainly by binding to the 3'UTR of their target mRNAs. Recent data revealed that microRNAs have an important role in pancreas and liver development and physiology. Using cloning and microarray profiling approaches, we show that a unique repertoire of microRNAs is expressed at the onset of liver and pancreas organogenesis, and in pancreas and liver at key stages of cell fate determination. Among the microRNAs that are expressed at these stages, miR-495 and miR-218 were predicted to, respectively, target the Onecut (OC) transcription factors Hepatocyte Nuclear Factor-6 (HNF-6/OC-1) and OC-2, two important regulators of liver and pancreas development. MiR-495 and miR-218 are dynamically expressed in developing liver and pancreas, and by transient transfection, we show that they target HNF-6 and OC-2 3'UTRs. Moreover, when overexpressed in cultured cells, miR-495 and miR-218 decrease the endogenous levels of HNF-6 and OC-2 mRNA. These results indicate that the expression of regulators of liver and pancreas development is modulated by microRNAs. They also suggest a developmental role for miR-495 and miR-218.

  1. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2

    International Nuclear Information System (INIS)

    Simion, Alexandru; Laudadio, Ilaria; Prevot, Pierre-Paul; Raynaud, Peggy; Lemaigre, Frederic P.; Jacquemin, Patrick

    2010-01-01

    MicroRNAs are small, non-coding RNAs that posttranscriptionally regulate gene expression mainly by binding to the 3'UTR of their target mRNAs. Recent data revealed that microRNAs have an important role in pancreas and liver development and physiology. Using cloning and microarray profiling approaches, we show that a unique repertoire of microRNAs is expressed at the onset of liver and pancreas organogenesis, and in pancreas and liver at key stages of cell fate determination. Among the microRNAs that are expressed at these stages, miR-495 and miR-218 were predicted to, respectively, target the Onecut (OC) transcription factors Hepatocyte Nuclear Factor-6 (HNF-6/OC-1) and OC-2, two important regulators of liver and pancreas development. MiR-495 and miR-218 are dynamically expressed in developing liver and pancreas, and by transient transfection, we show that they target HNF-6 and OC-2 3'UTRs. Moreover, when overexpressed in cultured cells, miR-495 and miR-218 decrease the endogenous levels of HNF-6 and OC-2 mRNA. These results indicate that the expression of regulators of liver and pancreas development is modulated by microRNAs. They also suggest a developmental role for miR-495 and miR-218.

  2. Clinical evaluation of R202Q alteration of MEFV genes in Turkish children.

    Science.gov (United States)

    Comak, Elif; Akman, Sema; Koyun, Mustafa; Dogan, Cagla Serpil; Gokceoglu, Arife Uslu; Arikan, Yunus; Keser, Ibrahim

    2014-12-01

    To date, over 200 alterations have been reported in Mediterranean fever (MEFV) genes, but it is not clear whether all these alterations are disease-causing mutations. This study aims to evaluate the clinical features of the children with R202Q alteration. The medical records of children with R202Q alteration were reviewed retrospectively. A total of 225 children, with 113 males, were included. Fifty-five patients were heterozygous, 30 patients were homozygous for R202Q, and 140 patients were compound heterozygous. Classical familial Mediterranean fever (FMF) phenotype was present in 113 patients: 2 heterozygous and 7 homozygous R202Q, 46 double homozygous R202Q and M694V, and 58 compound heterozygous. The main clinical characteristics of the patients were abdominal pain in 71.5 %, fever in 37.7 %, arthralgia/myalgia in 30.2 %, arthritis in 10.2 %, chest pain in 14.6 % and erysipelas-like erythema in 13.3 %. The frequency of abdominal pain was significantly lower in patients with homozygous R202Q alteration (p = 0.021), whereas patients with heterozygous R202Q mutations, though not statistically significant, had a higher frequency of arthralgia/myalgia (40.0 %, p = 0.05). R202Q alteration of the MEFV gene leads to symptoms consistent with FMF in some cases. This alteration may be associated with a mild phenotype and shows phenotypic differences other than the common MEFV mutations.

  3. Analysis of SNPs of MC4R , GNB3 and FTO gene polymorphism in ...

    African Journals Online (AJOL)

    Analysis of SNPs of MC4R , GNB3 and FTO gene polymorphism in obese Saudi subjects. Said Salama Moselhy, Yasmeen A Alhetari, Archana Iyer, Etimad A Huwait, Maryam A AL-Ghamdi, Shareefa AL-Ghamdi, Khadijah Saeed Balamash, Ashraf A Basuni, Mohamed N Alama, Taha A Kumosani, Soonham Sami Yaghmoor ...

  4. Regulation of Fanconi anemia protein FANCD2 monoubiquitination by miR-302

    International Nuclear Information System (INIS)

    Suresh, Bharathi; Kumar, A. Madhan; Jeong, Hoe-Su; Cho, Youl-Hee; Ramakrishna, Suresh; Kim, Kye-Seong

    2015-01-01

    Fanconi anemia (FA) is a recessively inherited multigene disease characterized by congenital defects, progressive bone marrow failure, and heightened cancer susceptibility. Monoubiquitination of the FA pathway member FANCD2 contributes to the repair of replication stalling DNA lesions. However, cellular regulation of FANCD2 monoubiquitination remains poorly understood. In the present study, we identified the miR-302 cluster as a potential regulator of FANCD2 by bioinformatics analysis. MicroRNAs (miRNAs) are the major posttranscriptional regulators of a wide variety of biological processes, and have been implicated in a number of diseases. Expression of the exogenous miR-302 cluster (without miR-367) reduced FANCD2 monoubiquitination and nuclear foci formation. Furthermore, miR-302 cells showed extensive chromosomal breakage upon MMC treatment when compared to mock control cells. Taken together, our results suggest that overexpression of miR-302 plays a critical role in the regulation of FANCD2 monoubiquitination, resulting in characteristic defects in DNA repair within cells. - Highlights: • miR-302 binds to the 3′UTR promoter of the FANCD2 gene to regulate gene expression. • miR-302 cluster down-regulates FANCD2 protein expression. • miR-302 cluster reduces FANCD2 monoubiquitination and nuclear foci formation. • miR-302 exhibits the characteristic defects in DNA repair in cells.

  5. Regulation of Fanconi anemia protein FANCD2 monoubiquitination by miR-302

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, Bharathi [Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); College of Medicine, Hanyang University, Seoul (Korea, Republic of); Kumar, A. Madhan [Center of Research Excellence in Corrosion, Research Institute King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Jeong, Hoe-Su [Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Cho, Youl-Hee [College of Medicine, Hanyang University, Seoul (Korea, Republic of); Ramakrishna, Suresh, E-mail: suresh.ramakris@gmail.com [Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); College of Medicine, Hanyang University, Seoul (Korea, Republic of); Kim, Kye-Seong, E-mail: ks66kim@hanyang.ac.kr [Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2015-10-16

    Fanconi anemia (FA) is a recessively inherited multigene disease characterized by congenital defects, progressive bone marrow failure, and heightened cancer susceptibility. Monoubiquitination of the FA pathway member FANCD2 contributes to the repair of replication stalling DNA lesions. However, cellular regulation of FANCD2 monoubiquitination remains poorly understood. In the present study, we identified the miR-302 cluster as a potential regulator of FANCD2 by bioinformatics analysis. MicroRNAs (miRNAs) are the major posttranscriptional regulators of a wide variety of biological processes, and have been implicated in a number of diseases. Expression of the exogenous miR-302 cluster (without miR-367) reduced FANCD2 monoubiquitination and nuclear foci formation. Furthermore, miR-302 cells showed extensive chromosomal breakage upon MMC treatment when compared to mock control cells. Taken together, our results suggest that overexpression of miR-302 plays a critical role in the regulation of FANCD2 monoubiquitination, resulting in characteristic defects in DNA repair within cells. - Highlights: • miR-302 binds to the 3′UTR promoter of the FANCD2 gene to regulate gene expression. • miR-302 cluster down-regulates FANCD2 protein expression. • miR-302 cluster reduces FANCD2 monoubiquitination and nuclear foci formation. • miR-302 exhibits the characteristic defects in DNA repair in cells.

  6. Regulation of the ald Gene Encoding Alanine Dehydrogenase by AldR in Mycobacterium smegmatis

    Science.gov (United States)

    Jeong, Ji-A; Baek, Eun-Young; Kim, Si Wouk; Choi, Jong-Soon

    2013-01-01

    The regulatory gene aldR was identified 95 bp upstream of the ald gene encoding l-alanine dehydrogenase in Mycobacterium smegmatis. The AldR protein shows sequence similarity to the regulatory proteins of the Lrp/AsnC family. Using an aldR deletion mutant, we demonstrated that AldR serves as both activator and repressor for the regulation of ald gene expression, depending on the presence or absence of l-alanine. The purified AldR protein exists as a homodimer in the absence of l-alanine, while it adopts the quaternary structure of a homohexamer in the presence of l-alanine. The binding affinity of AldR for the ald control region was shown to be increased significantly by l-alanine. Two AldR binding sites (O1 and O2) with the consensus sequence GA-N2-ATC-N2-TC and one putative AldR binding site with the sequence GA-N2-GTT-N2-TC were identified upstream of the ald gene. Alanine and cysteine were demonstrated to be the effector molecules directly involved in the induction of ald expression. The cellular level of l-alanine was shown to be increased in M. smegmatis cells grown under hypoxic conditions, and the hypoxic induction of ald expression appears to be mediated by AldR, which senses the intracellular level of alanine. PMID:23749971

  7. Primary amino acid derivatives: substitution of the 4'-N'-benzylamide site in (R)-N'-benzyl 2-amino-3-methylbutanamide, (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide, and (R)-N'-benzyl 2-amino-3-methoxypropionamide provides potent anticonvulsants with pain-attenuating properties.

    Science.gov (United States)

    King, Amber M; Salomé, Christophe; Salomé-Grosjean, Elise; De Ryck, Marc; Kaminski, Rafal; Valade, Anne; Stables, James P; Kohn, Harold

    2011-10-13

    Recently, we reported that select N'-benzyl 2-substituted 2-amino acetamides (primary amino acid derivatives (PAADs)) exhibited pronounced activities in established whole animal anticonvulsant (i.e., maximal electroshock seizure (MES)) and neuropathic pain (i.e., formalin) models. The anticonvulsant activities of C(2)-hydrocarbon N'-benzyl 2-amino acetamides (MES ED(50) = 13-21 mg/kg) exceeded those of phenobarbital (ED(50) = 22 mg/kg). Two additional studies defining the structure-activity relationship of PAADs are presented in this issue of the journal. In this study, we demonstrated that the anticonvulsant activities of (R)-N'-benzyl 2-amino-3-methylbutanamide and (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide were sensitive to substituents at the 4'-N'-benzylamide site; electron-withdrawing groups retained activity, electron-donating groups led to a loss of activity, and incorporating either a 3-fluorobenzyloxy or 3-fluorophenoxymethyl group using a rationally designed multiple ligand approach improved activity. Additionally, we showed that substituents at the 4'-N'-benzylamide site of (R)-N'-benzyl 2-amino-3-methoxypropionamide also improved anticonvulsant activity, with the 3-fluorophenoxymethyl group providing the largest (∼4-fold) increase in activity (ED(50) = 8.9 mg/kg), a value that surpassed phenytoin (ED(50) = 9.5 mg/kg). Collectively, the pharmacological findings provided new information that C(2)-hydrocarbon PAADs represent a novel class of anticonvulsants.

  8. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.

    Science.gov (United States)

    Gonzalez, Antonio; Zhao, Mingzhe; Leavitt, John M; Lloyd, Alan M

    2008-03-01

    In all higher plants studied to date, the anthocyanin pigment pathway is regulated by a suite of transcription factors that include Myb, bHLH and WD-repeat proteins. However, in Arabidopsis thaliana, the Myb regulators remain to be conclusively identified, and little is known about anthocyanin pathway regulation by TTG1-dependent transcriptional complexes. Previous overexpression of the PAP1 Myb suggested that genes from the entire phenylpropanoid pathway are targets of regulation by Myb/bHLH/WD-repeat complexes in Arabidopsis, in contrast to other plants. Here we demonstrate that overexpression of Myb113 or Myb114 results in substantial increases in pigment production similar to those previously seen as a result of over-expression of PAP1, and pigment production in these overexpressors remains TTG1- and bHLH-dependent. Also, plants harboring an RNAi construct targeting PAP1 and three Myb candidates (PAP2, Myb113 and Myb114) showed downregulated Myb gene expression and obvious anthocyanin deficiencies. Correlated with these anthocyanin deficiencies is downregulation of the same late anthocyanin structural genes that are downregulated in ttg1 and bHLH anthocyanin mutants. Expression studies using GL3:GR and TTG1:GR fusions revealed direct regulation of the late biosynthetic genes only. Functional diversification between GL3 and EGL3 with regard to activation of gene targets was revealed by GL3:GR studies in single and double bHLH mutant seedlings. Expression profiles for Myb and bHLH regulators are also presented in the context of pigment production in young seedlings.

  9. 78 FR 56921 - South Bay Salt Pond Restoration Project, Phase 2 (Ponds R3, R4, R5, S5, A1, A2W, A8, A8S, A19...

    Science.gov (United States)

    2013-09-16

    ...-F2013227943] South Bay Salt Pond Restoration Project, Phase 2 (Ponds R3, R4, R5, S5, A1, A2W, A8, A8S, A19... South Bay Salt Pond Restoration Project and consists of restoring and enhancing over 2,000 acres of... Pollution Control Plant located at 700 Los Esteros Road, San Jose, California. The details of the public...

  10. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy.

    Science.gov (United States)

    Lee, Hong Gil; Lee, Kyounghee; Seo, Pil Joon

    2015-03-01

    Seed dormancy facilitates to endure environmental disadvantages by confining embryonic growth until the seeds encounter favorable environmental conditions for germination. Abscisic acid (ABA) and gibberellic acid (GA) play a pivotal role in the determination of the seed dormancy state. ABA establishes seed dormancy, while GA triggers seed germination. Here, we demonstrate that MYB96 contributes to the fine-tuning of seed dormancy regulation through the coordination of ABA and GA metabolism. The MYB96-deficient myb96-1 seeds germinated earlier than wild-type seeds, whereas delayed germination was observed in the activation-tagging myb96-1D seeds. The differences in germination rate disappeared after stratification or after-ripening. The MYB96 transcription factor positively regulates ABA biosynthesis genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE 2 (NCED2), NCED5, NCED6, and NCED9, and also affects GA biosynthetic genes GA3ox1 and GA20ox1. Notably, MYB96 directly binds to the promoters of NCED2 and NCED6, primarily modulating ABA biosynthesis, which subsequently influences GA metabolism. In agreement with this, hyperdormancy of myb96-1D seeds was recovered by an ABA biosynthesis inhibitor fluridone, while hypodormancy of myb96-1 seeds was suppressed by a GA biosynthesis inhibitor paclobutrazol (PAC). Taken together, the metabolic balance of ABA and GA underlies MYB96 control of primary seed dormancy.

  11. The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes.

    Science.gov (United States)

    Atambayeva, Shara; Niyazova, Raigul; Ivashchenko, Anatoliy; Pyrkova, Anna; Pinsky, Ilya; Akimniyazova, Aigul; Labeit, Siegfried

    2017-06-01

    Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes. The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p

  12. Selection of housekeeping genes for normalization by real-time RT-PCR: analysis of Or-MYB1 gene expression in Orobanche ramosa development.

    Science.gov (United States)

    González-Verdejo, C I; Die, J V; Nadal, S; Jiménez-Marín, A; Moreno, M T; Román, B

    2008-08-15

    Real-time PCR has become the method of choice for accurate and in-depth expression studies of candidate genes. To avoid bias, real-time PCR is referred to one or several internal control genes that should not fluctuate among treatments. A need for reference genes in the parasitic plant Orobanche ramosa has emerged, and the studies in this area have not yet been evaluated. In this study, the genes 18S rRNA, Or-act1, Or-tub1, and Or-ubq1 were compared in terms of expression stability using the BestKeeper software program. Among the four common endogenous control genes, Or-act1 and Or-ubq1 were the most stable in O. ramosa samples. In parallel, a study was carried out studying the expression of the transcription factor Or-MYB1 that seemed to be implicated during preinfection stages. The normalization strategy presented here is a prerequisite to accurate real-time PCR expression profiling that, among other things, opens up the possibility of studying messenger RNA levels of low-copy-number-like transcription factors.

  13. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes.

    Science.gov (United States)

    He, Jie; Wu, Jiangbin; Xu, Naihan; Xie, Weidong; Li, Mengnan; Li, Jianna; Jiang, Yuyang; Yang, Burton B; Zhang, Yaou

    2013-01-07

    MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly mitosis. Hypoxia-induced up-regulation of miR-210 was highly correlated with the down-regulation of a group of mitosis-related genes, including Plk1, Cdc25B, Cyclin F, Bub1B and Fam83D. MiR-210 suppressed the expression of these genes by directly targeting their 3'-UTRs. Over-expression of exogenous miR-210 disturbed mitotic progression and caused aberrant mitosis. Furthermore, miR-210 mimic with pharmacological doses reduced tumor formation in a mouse metastatic tumor model. Taken together, these results implicate that miR-210 disturbs mitosis through targeting multi-genes involved in mitotic progression, which may contribute to its inhibitory role on tumor formation.

  14. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function[OPEN

    Science.gov (United States)

    2018-01-01

    Plants have many, highly variable resistance (R) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize (Zea mays) Hm1, was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes. PMID:29382771

  15. The Expression of c-Myb Correlates with the Levels of Rhabdomyosarcoma-specific Marker Myogenin

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Petr; Zíková, Martina; Bartůněk, Petr; Štěrba, J.; Strnad, Hynek; Křen, L.; Sedláček, Radislav

    2015-01-01

    Roč. 5, Oct 14 (2015) ISSN 2045-2322 R&D Projects: GA ČR GAP305/10/2133; GA ČR GAP301/12/1478; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : c-Myb * Rhabdomyosarcomas * C2C12 myoblast cell line * myogenin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2015

  16. Liquid viscosity of low-GWP refrigerant mixtures (R32 + R1234yf) and (R125 + R1234yf)

    International Nuclear Information System (INIS)

    Dang, Yagu; Kamiaka, Takumi; Dang, Chaobin; Hihara, Eiji

    2015-01-01

    Highlights: • We measured liquid viscosity of low GWP refrigerant R1234yf binary mixtures. • Viscosity of R1234yf mixtures were correlated with the roughness hard-sphere method. • Viscosity of R1234yf mixtures were correlated with the Grunberg and Nissan method. - Abstract: In this work, the viscosity of R1234yf, (R32 + R1234yf), and (R125 + R1234yf) in one-phase liquid was measured. The combined expanded uncertainty of viscosity measurement apparatus of confidence of 0.95 (k = 2) is about 2.0%. The measurements of mixtures containing (30.0, 50.0, and 70.0) wt% R32 or R125 were carried out between T = (283.0 and 323.0) K (at intervals of T = 5 K) and P = (1.58 and 2.74) MPa, with a moving piston viscometer (VISCOpro 1600, accuracy ±1.0%) and a Coriolis flowmeter (Ultramass MKII, accuracy ±0.001 g/ml). The measured data were correlated with a hard-sphere (RSH) method and the Grunberg and Nissan method. The average absolute deviations are (2.2 and 3.3)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by RSH method, (2.8 and 1.3)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by Grunberg and Nissan method, while (3.5 and 2.4)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by RefProp V9.1, respectively

  17. miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect.

    Science.gov (United States)

    Liu, Wenpeng; Kang, Lei; Han, Juqiang; Wang, Yadong; Shen, Chuan; Yan, Zhifeng; Tai, Yanhong; Zhao, Caiyan

    2018-01-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a well-studied oncogenic factor that promotes cell proliferation and energy metabolism and is overexpressed in numerous cancers including hepatocellular carcinoma (HCC). Aerobic glycolysis is a hallmark of cancer, and drugs targeting its regulators, including IGF-1R, are being developed. However, the mechanisms of IGF-1R inhibition and the physiological significance of the IGF-1R inhibitors in cancer cells are unclear. Cell proliferation was evaluated by cell counting Kit-8 and colony formation assay. Western blot and real-time PCR were accordingly used to detect the relevant proteins, miRNA and gene expression. Luciferase reporter assays were used to illustrate the interaction between miR-342-3p and IGF-1R. The effect of miR-342-3p on glycolysis was determined by glucose uptake, ATP concentration, lactate generation, extracellular acidification rate and oxygen consumption rate assays. In vivo, subcutaneous tumor formation assay and PET were performed in nude mice. In this study, we demonstrate that by directly targeting the 3'-UTR (3'-untranslated regions) of IGF-1R, microRNA-342-3p (miR-342-3p) suppresses IGF-1R-mediated PI3K/AKT/GLUT1 signaling pathway both in vitro and in vivo. Through suppression of IGF-1R, miR-342-3p dampens glycolysis by decreasing glucose uptake, lactate generation, ATP production, and extracellular acidification rate (ECAR), and increasing oxygen consumption rate (OCR) in hepatoma cells. Importantly, glycolysis regulated by miR-342-3p is critical for its regulating HCC growth both in vitro and in vivo. Our findings provide clues regarding the role of miR-342-3p as a tumor suppressor in liver cancer mainly through the inhibition of IGF-1R. Targeting IGF-1R by miR-342-3p could be a potential therapeutic strategy in liver cancer.

  18. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Directory of Open Access Journals (Sweden)

    McGuire John J

    2005-09-01

    Full Text Available Abstract Background The rTS gene (ENOSF1, first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis.

  19. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Science.gov (United States)

    Liang, Ping; Nair, Jayakumar R; Song, Lei; McGuire, John J; Dolnick, Bruce J

    2005-01-01

    Background The rTS gene (ENOSF1), first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS) mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis. PMID:16162288

  20. Effects of blue light on flavonoid accumulation linked to the expression of miR393, miR394 and miR395 in longan embryogenic calli.

    Science.gov (United States)

    Li, Hansheng; Lin, Yuling; Chen, Xiaohui; Bai, Yu; Wang, Congqiao; Xu, Xiaoping; Wang, Yun; Lai, Zhongxiong

    2018-01-01

    While flavonoid metabolism's regulation under light conditions by structural genes and transcription factors is understood, the roles of microRNAs (miRNAs) in this pathway have been rarely reported. In this paper, the accurate control of light was firstly enabled through the specially designed plant growth chamber which ensures consistency and accuracy of the cultivation of longan ECs and the repeatability of the experiments. Then, longan ECs were cultured in this chamber for 25 days. The change of growth rate of longan ECs was compared under different light qualities (dark, blue, green, white, green), intensities (16, 32, 64, 128, 256 μmol ·m-2 ·s-1), and durations (8 h, 12 h, 16 h, 20h, 24h). Results indicated that longan ECs had a high growth rate in the condition of blue or green light, at intensity ranged from 16 μmol·m-2·s-1 to 64 μmol·m-2·s-1, and duration from 8 h to 16 h. In addition, the contents of total flavonoids, rutin, and epicatechin were determined. Results indicated that flavonoid contents of longan ECs reached the highest value under blue light, at 32 μmol·m-2·s-1 and 12h/d. Blue light promoted the accumulation of epicatechin, but inhibited the synthesis of rutin. Finally, the expressions of flavonoid pathway genes, miRNAs and target genes were analyzed by qPCR. These results indicated that miR393 and its target gene DlTIR1-3, miR394 and its target gene DlAlMT12, and miR395 and its target gene DlAPS1 had a negative regulating relationship under blue light in longan ECs. Furthermore, miR393, miR394, and miR395 acted on target genes, which negatively regulated flavonoid key genes DlFLS and positively regulated key genes DlCHS, DlCHI, DlF3'H, DlDFR, DlLAR, and finally affected the accumulation of flavonoids. The treatment of longan ECs under the blue light at the intensity of 32 μmol·m-2·s-1 for 12 h/d inhibited the expression of miR393, miR394 and miR395, which promoted the expression of target genes and the accumulation of

  1. Lack of Antidepressant Effects of (2R,6R)-Hydroxynorketamine in a Rat Learned Helplessness Model: Comparison with (R)-Ketamine.

    Science.gov (United States)

    Shirayama, Yukihiko; Hashimoto, Kenji

    2018-01-01

    (R)-Ketamine exhibits rapid and sustained antidepressant effects in animal models of depression. It is stereoselectively metabolized to (R)-norketamine and subsequently to (2R,6R)-hydroxynorketamine in the liver. The metabolism of ketamine to hydroxynorketamine was recently demonstrated to be essential for ketamine's antidepressant actions. However, no study has compared the antidepressant effects of these 3 compounds in animal models of depression. The effects of a single i.p. injection of (R)-ketamine, (R)-norketamine, and (2R,6R)-hydroxynorketamine in a rat learned helplessness model were examined. A single dose of (R)-ketamine (20 mg/kg) showed an antidepressant effect in the rat learned helplessness model. In contrast, neither (R)-norketamine (20 mg/kg) nor (2R,6R)-hydroxynorketamine (20 and 40 mg/kg) did so. Unlike (R)-ketamine, its metabolite (2R,6R)-hydroxynorketamine did not show antidepressant actions in the rat learned helplessness model. Therefore, it is unlikely that the metabolism of ketamine to hydroxynorketamine is essential for ketamine's antidepressant actions. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  2. microRNA-mediated R gene regulation: molecular scabbards for double-edged swords.

    Science.gov (United States)

    Deng, Yingtian; Liu, Minglei; Li, Xiaofei; Li, Feng

    2018-02-01

    Plant resistance (R) proteins are immune receptors that recognize pathogen effectors and trigger rapid defense responses, namely effector-triggered immunity. R protein-mediated pathogen resistance is usually race specific. During plant-pathogen coevolution, plant genomes accumulated large numbers of R genes. Even though plant R genes provide important natural resources for breeding disease-resistant crops, their presence in the plant genome comes at a cost. Misregulation of R genes leads to developmental defects, such as stunted growth and reduced fertility. In the past decade, many microRNAs (miRNAs) have been identified to target various R genes in plant genomes. miRNAs reduce R gene levels under normal conditions and allow induction of R gene expression under various stresses. For these reasons, we consider R genes to be double-edged "swords" and miRNAs as molecular "scabbards". In the present review, we summarize the contributions and potential problems of these "swords" and discuss the features and production of the "scabbards", as well as the mechanisms used to pull the "sword" from the "scabbard" when needed.

  3. Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice.

    Science.gov (United States)

    Liu, Hui; French, Barbara A; Li, Jun; Tillman, Brittany; French, Samuel W

    2015-12-01

    MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Retinoic acid enhances differentiation of v-myb-transformed monoblasts induced by okadaic acid

    Czech Academy of Sciences Publication Activity Database

    Beneš, P.; Macečková, V.; Zatloukalová, Jiřina; Kovářová, L.; Šmardová, J.; Šmarda, J.

    2007-01-01

    Roč. 31, č. 10 (2007), s. 1421-1431 ISSN 0145-2126 Grant - others:GA ČR(CZ) GP301/03/D022; GA ČR(CZ) GA301/06/0036 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : v-myb * monoblast * macrophage Subject RIV: BO - Biophysics Impact factor: 2.561, year: 2007

  5. Isothermal (vapour + liquid) equilibrium for the binary {l_brace}1,1,2,2-tetrafluoroethane (R134) + propane (R290){r_brace} and {l_brace}1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xueqiang [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Gong Maoqiong, E-mail: gongmq@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Liu Junsheng [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Wu Jianfeng, E-mail: jfwu@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China)

    2010-09-15

    (Vapour + liquid) equilibrium (VLE) data for the binary systems of {l_brace}1,1,2,2-tetrafluoroethane (R134) + propane (R290){r_brace} and {l_brace}1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a){r_brace} were measured with a recirculation method at the temperatures ranging from (263.15 to 278.15) K and (268.15 to 288.15) K, respectively. All of the data were correlated by the Peng-Robinson (PR) equation of state (EoS) with the Huron-Vidal (HV) mixing rules utilizing the non-random two-liquid (NRTL) activity coefficient model. Good agreement can be found between the experimental data and the correlated results. Azeotropic behaviour can be found at the measured temperature ranges for these two mixtures.

  6. Synthesis of (R,S)-[2,3-{sup 13}C{sub 2}]-1-(1`-methyl-2`-pyrrolidinyl)propan-2-one; {l_brace}(R,S)-[2`,3`-{sup 13}C{sub 2}]hygrinePound right bracePound

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, T.W.; Leete, Edward [Minnesota Univ., Minneapolis, MN (United States). Dept. of Chemistry

    1996-05-01

    2-Ethoxy-1-methyl-5-pyrrolidinone (1) was reacted with ethyl [3,4-{sup 13}C{sub 2}]-acetoacetate (2) in the presence of TiCl{sub 4} to give ethyl [3,4-{sup 13}C{sub 2}]-2-(1`-methyl-5`-oxo-2`-pyrrolidinyl)-3-oxobutanoate (3) in 85% yield. Decarboethoxylation of ethyl [3,4-{sup 13}C{sub 2}]-2-(1`-methyl-5`-oxo-2`-pyrrolidinyl)-3-oxobutan-oate (3) was accomplished using NaCl and H{sub 2}O in DMSO to give (R,S)-[2,3-{sup 13}C{sub 2}]-1-(1`-methyl-5`-oxo-2`-pyrrolidinyl)propan-2-o ne (4) in 91% yield. Protection of the ketone as a ketal (ethylene glycol, H{sup +}), followed by reduction of the amide to the amine using LiAlH{sub 4} and subsequent deprotection of the ketal gave (R,S)-[2,3-{sup 13}C{sub 2}]-1-(1`-methyl-2`-pyrrolidinyl)propan-2-one ((R,s)-[2`, 3`-{sup 13}C{sub 2}]Hygrine) (8) in 78% yield. (61% overall yield from ethyl [3,4-{sup 13}C{sub 2}]acetoacetate). (Author).

  7. Detection of maltodextrin and its discrimination from sucrose are independent of the T1R2 + T1R3 heterodimer.

    Science.gov (United States)

    Smith, Kimberly R; Spector, Alan C

    2017-10-01

    Maltodextrins, such as Maltrin and Polycose, are glucose polymer mixtures of varying chain lengths that are palatable to rodents. Although glucose and other sugars activate the T1R2 + T1R3 "sweet" taste receptor, recent evidence from T1R2- or T1R3-knockout (KO) mice suggests that maltodextrins, despite their glucose polymer composition, activate a separate receptor mechanism to generate a taste percept qualitatively distinguishable from that of sweeteners. However, explicit discrimination of maltodextrins from prototypical sweeteners has not yet been psychophysically tested in any murine model. Therefore, mice lacking T1R2 + T1R3 and wild-type controls were tested in a two-response taste discrimination task to determine whether maltodextrins are 1 ) detectable when both receptor subunits are absent and 2 ) perceptually distinct from that of sucrose irrespective of viscosity, intensity, and hedonics. Most KO mice displayed similar Polycose sensitivity as controls. However, some KO mice were only sensitive to the higher Polycose concentrations, implicating potential allelic variation in the putative polysaccharide receptor or downstream pathways unmasked by the absence of T1R2 + T1R3. Varied Maltrin and sucrose concentrations of approximately matched viscosities were then presented to render the oral somatosensory features, intensity, and hedonic value of the solutions irrelevant. Although both genotypes competently discriminated Maltrin from sucrose, performance was apparently driven by the different orosensory percepts of the two stimuli in control mice and the presence of a Maltrin but not sucrose orosensory cue in KO mice. These data support the proposed presence of an orosensory receptor mechanism that gives rise to a qualitatively distinguishable sensation from that of sucrose. Copyright © 2017 the American Physiological Society.

  8. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    Directory of Open Access Journals (Sweden)

    Shu Wu

    Full Text Available Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9 within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%; and could aid in species-level analyses, but with some limitations; 2 nearly-whole-length sequences and some partial regions (around V2, V4, and V9 of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%; 3 compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%; and 4 V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  9. Ascorbate peroxidase-related (APx-R) is not a duplicable gene.

    Science.gov (United States)

    Dunand, Christophe; Mathé, Catherine; Lazzarotto, Fernanda; Margis, Rogério; Margis-Pinheiro, Marcia

    2011-12-01

    Phylogenetic, genomic and functional analyses have allowed the identification of a new class of putative heme peroxidases, so called APx-R (APx-Related). These new class, mainly present in the green lineage (including green algae and land plants), can also be detected in other unicellular chloroplastic organisms. Except for recent polyploid organisms, only single-copy of APx-R gene was detected in each genome, suggesting that the majority of the APx-R extra-copies were lost after chromosomal or segmental duplications. In a similar way, most APx-R co-expressed genes in Arabidopsis genome do not have conserved extra-copies after chromosomal duplications and are predicted to be localized in organelles, as are the APx-R. The member of this gene network can be considered as unique gene, well conserved through the evolution due to a strong negative selection pressure and a low evolution rate. © 2011 Landes Bioscience

  10. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Directory of Open Access Journals (Sweden)

    Paola Di Meglio

    2011-02-01

    Full Text Available IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A and common (G allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  11. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Science.gov (United States)

    Di Meglio, Paola; Di Cesare, Antonella; Laggner, Ute; Chu, Chung-Ching; Napolitano, Luca; Villanova, Federica; Tosi, Isabella; Capon, Francesca; Trembath, Richard C; Peris, Ketty; Nestle, Frank O

    2011-02-22

    IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A) and common (G) allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  12. p53 induces differentiation but not apoptosis of v-Myb-transformed monoblasts

    Czech Academy of Sciences Publication Activity Database

    Navrátilová, J.; Horváth, Viktor; Kozubík, Alois; Lojek, Antonín; Šmarda, J.

    2006-01-01

    Roč. 18, č. 1 (2006), S38-S38 ISSN 1107-3756. [The 11th World Congress on Advances in Oncology and 9th International Symposium on Molecular Medicine . 12.10.2006-14.10.2006, Hersonissos] R&D Projects: GA ČR(CZ) GA301/06/0036 Institutional research plan: CEZ:AV0Z50040507 Keywords : p53 * v-Myb * BM2 Subject RIV: BO - Biophysics

  13. MC1R gene variants involvement in human OCA phenotype

    OpenAIRE

    Saleha Shamim; Khan Taj Ali; Zafar Shaista

    2016-01-01

    Oculocutaneous albinism (OCA) is a genetic disorder of melanin synthesis that results in hypopigmentation in hair, skin and eyes. OCA has been reported in individuals from all ethnic backgrounds but it is more common among those with Europeans ancestry. OCA is heterogeneous group of disorders and seven types of OCA are caused by mutations in TYR (OCA1), OCA2 (OCA2), TYRP1 (OCA3), SLC45A2 (OCA4), SLC24A5 (OCA6) and C10oRF11 (OCA7) genes. However, MC1R gene variants have been reported that modi...

  14. miR-346 and miR-582-3p-regulated EG-VEGF expression and trophoblast invasion via matrix metalloproteinases 2 and 9.

    Science.gov (United States)

    Su, Mei-Tsz; Tsai, Pei-Yin; Tsai, Hui-Ling; Chen, Yi-Chi; Kuo, Pao-Lin

    2017-03-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an important regulator for embryo implantation and placental development, and is clinically associated with several obstetric disorders related to insufficient or inappropriate trophoblast invasion, such as recurrent abortion, preeclampsia, and intrauterine fetal growth restriction. This study was performed to identify the microRNAs targeting EG-VEGF, and evaluate the regulatory effect on trophoblast biology. miR-346 and miR-582-3p were initially identified via bioinformatic tools, and their specific binding sites on the EG-VEGF 3'UTR were further confirmed using dual luciferase and a co-transfection assays. miR-346 and miR-582-3p were demonstrated not only to suppress EG-VEGF expression, but also inhibit trophoblast invasion and migration in the JAR and HTR-8/SVneo cell lines. We further evaluated the effect of microRNAs in HTR-8/SVneo cells coexpressing EG-VEGF and miR-346 or miR-582-3p on matrix metalloproteinase (MMP 2 and MMP 9) and the tissue inhibitors of metalloproteinase (TIMP 1 and TIMP 2) using RT-PCR, western blotting and gelatin zymography. TIMP 1 and TIMP 2 were not affected by the two microRNAs, whereas the expressions and activities of MMP 2 and MMP 9 were significantly downregulated, which in turn inhibited the invasion ability of trophoblasts. In conclusion, miR-346 and miR-582-3p regulate EG-VEGF-induced trophoblast invasion through repressing MMP 2 and MMP 9, and may become novel diagnostic biomarkers or therapeutic targets for EG-VEGF-related obstetric disorders. © 2016 BioFactors, 43(2):210-219, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  15. Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function

    Directory of Open Access Journals (Sweden)

    Rossella Cannarella

    2017-09-01

    Full Text Available Insulin-like growth factor 1 receptor (IGF1R, mapping on the 15q26.3 chromosome, is required for normal embryonic and postnatal growth. The aim of the present study was to evaluate the IGF1R gene expression and function in three unrelated patients with chromosome 15 structural abnormalities. We report two male patients with the smallest 15q26.3 chromosome duplication described so far, and a female patient with ring chromosome 15 syndrome. Patient one, with a 568 kb pure duplication, had overgrowth, developmental delay, mental and psychomotor retardation, obesity, cryptorchidism, borderline low testis volume, severe oligoasthenoteratozoospermia and gynecomastia. We found a 1.8-fold increase in the IGF1R mRNA and a 1.3-fold increase in the IGF1R protein expression (P < 0.05. Patient two, with a 650 kb impure duplication, showed overgrowth, developmental delay, mild mental retardation, precocious puberty, low testicular volume and severe oligoasthenoteratozoospermia. The IGF1R mRNA and protein expression was similar to that of the control. Patient three, with a 46,XX r(15 (p10q26.2 karyotype, displayed intrauterine growth retardation, developmental delay, mental and psychomotor retardation. We found a <0.5-fold decrease in the IGF1R mRNA expression and an undetectable IGF1R activity. After reviewing the previously 96 published cases of chromosome 15q duplication, we found that neurological disorders, congenital cardiac defects, typical facial traits and gonadal abnormalities are the prominent features in patients with chromosome 15q duplication. Interestingly, patients with 15q deletion syndrome display similar features. We speculate that both the increased and decreased IGF1R gene expression may play a role in the etiology of neurological and gonadal disorders.

  16. Structure-activity relationship of daptomycin analogues with substitution at (2S, 3R) 3-methyl glutamic acid position.

    Science.gov (United States)

    Lin, Du'an; Lam, Hiu Yung; Han, Wenbo; Cotroneo, Nicole; Pandya, Bhaumik A; Li, Xuechen

    2017-02-01

    Daptomycin is a highly effective lipopeptide antibiotic against Gram-positive pathogens. The presence of (2S, 3R) 3-methyl glutamic acid (mGlu) in daptomycin has been found to be important to the antibacterial activity. However the role of (2S, 3R) mGlu is yet to be revealed. Herein, we reported the syntheses of three daptomycin analogues with (2S, 3R) mGlu substituted by (2S, 3R) methyl glutamine (mGln), dimethyl glutamic acid and (2S, 3R) ethyl glutamic acid (eGlu), respectively, and their antibacterial activities. The detailed synthesis of dimethyl glutamic acid was also reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. (2S,4R-2-[(1R-1-(4-Bromophenyl-2-nitroethyl]-4-ethylcyclohexanone

    Directory of Open Access Journals (Sweden)

    Chi-Xiao Zhang

    2013-02-01

    Full Text Available The crystal structure of the title compound, C16H20BrNO3, contains three chiral centers in the configuration 1R,2S,6R. The cyclohexane ring is in a chair conformation. In the crystal, molecules are linked by weak C—H...O interactions, forming chains along the a-axis direction.

  18. cfa-miR-143 Promotes Apoptosis via the p53 Pathway in Canine Influenza Virus H3N2-Infected Cells.

    Science.gov (United States)

    Zhou, Pei; Tu, Liqing; Lin, Xi; Hao, Xiangqi; Zheng, Qingxu; Zeng, Weijie; Zhang, Xin; Zheng, Yun; Wang, Lifang; Li, Shoujun

    2017-11-25

    MicroRNAs regulate multiple aspects of the host response to viral infection. This study verified that the expression of cfa-miR-143 was upregulated in vivo and in vitro by canine influenza virus (CIV) H3N2 infection. To understand the role of cfa-miR-143 in CIV-infected cells, the target gene of cfa-miR-143 was identified and assessed for correlations with proteins involved in the apoptosis pathway. A dual luciferase reporter assay showed that cfa-miR-143 targets insulin-like growth factor binding protein 5 (Igfbp5). Furthermore, a miRNA agomir and antagomir of cfa-miR-143 caused the downregulation and upregulation of Igfbp5, respectively, in CIV-infected madin-darby canine kidney (MDCK) cells. This study demonstrated that cfa-miR-143 stimulated p53 and caspase3 activation and induced apoptosis via the p53 pathway in CIV H3N2-infected cells. In conclusion, CIV H3N2 induced the upregulation of cfa-miR-143, which contributes to apoptosis via indirectly activating the p53-caspase3 pathway.

  19. Systematic study of photoluminescence upon band gap excitation in perovskite-type titanates R 1/2Na1/2TiO3:Pr (R=La, Gd, Lu, and Y)

    International Nuclear Information System (INIS)

    Inaguma, Yoshiyuki; Tsuchiya, Takeshi; Katsumata, Tetsuhiro

    2007-01-01

    Pr 3+ -doped perovskites R 1/2 Na 1/2 TiO 3 :Pr (R=La, Gd, Lu, and Y) were synthesized, and their structures, optical absorption and luminescent properties were investigated, and the relationship between structures and optical properties are discussed. Optical band gap of R 1/2 Na 1/2 TiO 3 increases in the order R=La, Gd, Y, and Lu, which is primarily due to a decrease in band width accompanied by a decrease in Ti-O-Ti bond angle. Intense red emission assigned to f-f transition of Pr 3+ from the excited 1 D 2 level to the ground 3 H 4 state upon the band gap photo-excitation (UV) was observed for all compounds. The wavelength of emission peaks was red-shifted in the order R=La, Gd, Y, and Lu, which originates from the increase in crystal field splitting of Pr 3+ . This is attributed to the decrease in inter-atomic distances of Pr-O together with the inter-atomic distances (R, Na)-O, i.e., increase in covalency between Pr and O. The results indicate that the luminescent properties in R 1/2 Na 1/2 TiO 3 :Pr are governed by the relative energy level between the ground and excited state of 4f 2 for Pr 3+ , and the conduction and valence band, which is primarily dependent on the structure, e.g., the tilt of TiO 6 octahedra and the Pr-Ti inter-atomic distance and the site symmetry of Pr ion. - Graphical abstract: The red intense emission assigned to f-f transition of Pr 3+ from the excited 1 D 2 level to the ground 3 H 4 state upon the band gap photo-excitation (UV) was observed upon the band gap photo-excitation in perovskites R 1/2 Na 1/2 TiO 3 :Pr(R=La, Gd, Lu, and Y). It was found that the systematic changes in their luminescent properties are strongly dependent on the structure

  20. The Purple Cauliflower Arises from Activation of a MYB Transcription Factor1[W][OA

    Science.gov (United States)

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L.; Li, Li

    2010-01-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3’-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal. PMID:20855520

  1. The Melanocyte Fate in Neural Crest is Triggered by Myb Proteins through Activation of c-kit

    Czech Academy of Sciences Publication Activity Database

    Karafiát, Vít; Dvořáková, Marta; Pajer, Petr; Čermák, Vladimír; Dvořák, Michal

    2007-01-01

    Roč. 64, č. 21 (2007), s. 2975-2984 ISSN 1420-682X R&D Projects: GA MŠk(CZ) LC06061; GA ČR GA204/06/1728 Institutional research plan: CEZ:AV0Z50520514 Keywords : c-myb proto-oncogene * v-mybAMV oncogene * neural crest * cell fate determination * melanocytes * c-kit signal Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.239, year: 2007

  2. 16S rRNA gene sequence and phylogenetic tree of lactobacillus ...

    African Journals Online (AJOL)

    ... processed by denaturing gradient gel electrophoresis (DGGE). Phylogenetic tree was constructed with the sequences of the V2-V3 region of 16S rRNA gene. Results show two distinct divisions among the Lactobacillus species. The study presents a new understanding of the nature of the Lactobacillus vaginal microbiota ...

  3. DIA1R is an X-linked gene related to Deleted In Autism-1.

    Directory of Open Access Journals (Sweden)

    Azhari Aziz

    Full Text Available BACKGROUND: Autism spectrum disorders (ASDS are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1 gene. METHODOLOGY/PRINCIPAL FINDINGS: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related. While DIA1 is autosomal (chromosome 3, position 3q24, DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical, and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. CONCLUSIONS/SIGNIFICANCE: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation.

  4. Polymorphisms of ST2-IL18R1-IL18RAP gene cluster: a new risk for autoimmune thyroid diseases.

    Science.gov (United States)

    Wang, X; Zhu, Y F; Li, D M; Qin, Q; Wang, Q; Muhali, F S; Jiang, W J; Zhang, J A

    2016-02-01

    Interleukin 33 (IL33) / ST2 pathway and ST2-interlukin18 receptor1-interlukin18 receptor accessory protein (ST2-IL18R1-IL18RAP) gene cluster have been involved in many autoimmune diseases but few report in autoimmune thyroid diseases (AITD). In this study, we investigated whether polymorphisms of IL33, ST2, IL18R1, and IL18RAP are associated with Graves' disease (GD) and Hashimoto's thyroiditis (HT), two major forms of AITD, among a Chinese population. A total of 11 SNPs were explored in a case-control study including 417 patients with GD, 250 HT patients and 301 controls, including rs1929992, rs10975519, rs10208293, rs6543116, rs1041973, rs3732127, rs11465597, rs1035130, rs2293225, rs1035127, rs917997 of IL 33, ST2-IL18R1-IL18RAP gene cluster. Genotyping of these SNPs was performed using matrix-assisted laser desorption / ionization-time-of-flight mass spectrometer (MALDI-TOF-MS) platform from Sequenom. The frequencies of allele A and AA+AG genotype of rs6543116 (ST2) in HT patients were significantly increased compared with those of the controls (P = 0.029/0.021, OR = 1.31/1.62). And in another SNP rs917997, AA+AG genotype presented an increased frequency in HT subjects compared with controls (P = 0.046, OR = 1.53). Furthermore, the haplotype GAGCCCG from ST2-IL18R1-IL18RAP gene cluster (rs6543116, rs1041973, rs1035130, rs3732127, rs1035127, rs2293225, rs917997) was associated with increased susceptibility to GD with an OR of 2.03 (P = 0.022, 95% CI = 1.07-3.86). Some SNPs of ST2-IL18R1-IL18RAP gene cluster might increase the risk of susceptibility of HT and GD in Chinese Han population. © 2015 John Wiley & Sons Ltd.

  5. miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA.

    Science.gov (United States)

    Fan, Hongxia; Lv, Ping; Lv, Jing; Zhao, Xiaopei; Liu, Min; Zhang, Guangling; Tang, Hua

    2017-05-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Synthesis, physical and chemical properties, antihypoxic activity of some 5-[((5-(adamantane-1-yl-4-R-4H-1,2,4-triazole-3-ylthiomethyl]-N-R1-1,3,4-thiadiazole-2-amines and 5-[((5-(adamantane-1-yl-4-R-4H-1,2,4-triazole-3-ylthiomethyl]-4-R1-4H-1,2,4-t

    Directory of Open Access Journals (Sweden)

    V. M. Odyntsova

    2018-03-01

    Full Text Available Today, an increase of natural and technogenic situations leads to the disorders of the central nervous system, functional-metabolic processes, vascular diseases, in particular, acute cerebral blood flow disorders. In addition, the changes occurring on the molecular and cellular levels are in the basis of the functional violations of individual systems and the organism as a whole. Hypoxia not only complicates the disease course, but in most cases, determines its outcome. The important role in the fight against hypoxia belongs to antioxidants, which improve the circulating oxygen utilization by the body, reduce its need for the organs and tissues, which is not only expedient but necessary for the treatment of many acute and chronic pathological processes. So, the frequency of the hypoxic states and a wide range of factors causing them determine the relevance of new ways and methods finding to overcome the oxygen deficiency. The aim of this work is the purposeful search of some 5-[((5-(adamantane-1-yl-4-R-4H-1,2,4-triazole-3-ylthiomethyl]-N-R1-1,3,4-thiadiazole-2-amines and 5-[((5-(adamantane-1-yl-4-R-4H-1,2,4-triazole-3-ylthiomethyl]-4-R1-4H-1,2,4-triazole-3-thiols, the study of their physical and chemical properties and pharmacological screening of the antihypoxic activity of the obtained compounds. Materials and methods. The study of physical and chemical properties was conducted on certified and licensed modern equipment. Antihypoxic activity was studied during the modeling process of hypoxia with hypercapnia. Mexidol was used as a comparison drug in studies at a dose of 100 mg/kg. Results. As the result of the study, it was found that the synthesized compounds and the comparison drug influenced on rats’ life span differently. Compounds, the antihypoxic activity of which exceeded control have been discovered, and others’ were at the level of Mexidol. A number of compounds showed a somewhat less activity in comparison with control, and two

  7. R2d2 Drives Selfish Sweeps in the House Mouse.

    Science.gov (United States)

    Didion, John P; Morgan, Andrew P; Yadgary, Liran; Bell, Timothy A; McMullan, Rachel C; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J; Campbell, Karl J; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J; Crowley, James J; Chesler, Elissa J; Förster, Daniel W; French, John E; Gabriel, Sofia I; Gatti, Daniel M; Garland, Theodore; Giagia-Athanasopoulou, Eva B; Giménez, Mabel D; Grize, Sofia A; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C; Herman, Jeremy S; Holt, James M; Hua, Kunjie; Jolley, Wesley J; Lindholm, Anna K; López-Fuster, María J; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P; Searle, Jeremy B; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L; Thomas-Laemont, Patricia; Threadgill, David W; Ventura, Jacint; Weinstock, George M; Pomp, Daniel; Churchill, Gary A; Pardo-Manuel de Villena, Fernando

    2016-06-01

    A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei Wei [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); College of Life Sciences and Agriculture & Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006 (China); Tong, Hui Li; Sun, Xiao Feng; Hu, Qian; Yang, Yu; Li, Shu Feng [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Yan, Yun Qin, E-mail: yanyunqin@sohu.com [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Li, Guang Peng [The Key Laboratory of Mammal Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021 (China)

    2015-08-07

    MicroRNAs play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. Previous study in our laboratory showed that the expression level of miR-2400, a novel and unique miRNA from bovine, had significantly changed in skeletal muscle-derived satellite cells (MDSCs) during differentiation, however, the function and expression pattern for miR-2400 in MDSCs has not been fully understood. In this report, we firstly identified that the expression levels of miR-2400 were down-regulated during MDSCs differentiation by stem-loop RT-PCR. Over-expression and inhibition studies demonstrated that miR-2400 promoted MDSCs proliferation by EdU (5-ethynyl-2′ deoxyuridine) incorporation assay and immunofluorescence staining of Proliferating cell nuclear antigen (PCNA). Luciferase reporter assays showed that miR-2400 directly targeted the 3′ untranslated regions (UTRs) of myogenin (MYOG) mRNA. These data suggested that miR-2400 could promote MDSCs proliferation through targeting MYOG. Furthermore, we found that miR-2400, which was located within the eighth intron of the Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) gene, was down-regulated in MDSCs in a direct correlation with the WHSC1L1 transcript by Clustered regularly interspaced palindromic repeats interference (CRISPRi). In addition, these observations not only provided supporting evidence for the codependent expression of intronic miRNAs and their host genes in vitro, but also gave insight into the role of miR-2400 in MDSCs proliferation. - Highlights: • miR-2400 is a novel and unique miRNA from bovine. • miR-2400 could promote skeletal muscle satellite cells proliferation. • miR-2400 directly targeted the 3′ untranslated regions of MYOG mRNA. • miR-2400 could be coexpressed together with its host gene WHSC1L1.

  9. Synthesis of carbon-14 labelled cis-malonato [(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane] platinum(II) (SKI 2053R)

    International Nuclear Information System (INIS)

    Kim, Dae-Kee; Kim, Youngseok; Rim, Jonggill; Kim, Ganghyeok; Gam, Jongsik; Song, Sungkun; Yoo, Kwanghee; Kim, Key H.

    1994-01-01

    The synthesis of 14 C-labelled cis-malonato[(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolan e]platinum(II) from [1,4- 14 C] D-tartaric acid is described. The overall radiochemical yield of the product in a eight-step sequence was 23.8% and radiochemical purity was 98.5%. (author)

  10. PamR, a new MarR-like regulator affecting prophages and metabolic genes expression in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Alba De San Eustaquio-Campillo

    Full Text Available B. subtilis adapts to changing environments by reprogramming its genetic expression through a variety of transcriptional regulators from the global transition state regulators that allow a complete resetting of the cell genetic expression, to stress specific regulators controlling only a limited number of key genes required for optimal adaptation. Among them, MarR-type transcriptional regulators are known to respond to a variety of stresses including antibiotics or oxidative stress, and to control catabolic or virulence gene expression. Here we report the characterization of the ydcFGH operon of B. subtilis, containing a putative MarR-type transcriptional regulator. Using a combination of molecular genetics and high-throughput approaches, we show that this regulator, renamed PamR, controls directly its own expression and influence the expression of large sets of prophage-related and metabolic genes. The extent of the regulon impacted by PamR suggests that this regulator reprograms the metabolic landscape of B. subtilis in response to a yet unknown signal.

  11. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking.

    Science.gov (United States)

    Pirastu, Nicola; Kooyman, Maarten; Traglia, Michela; Robino, Antonietta; Willems, Sara M; Pistis, Giorgio; d'Adamo, Pio; Amin, Najaf; d'Eustacchio, Angela; Navarini, Luciano; Sala, Cinzia; Karssen, Lennart C; van Duijn, Cornelia; Toniolo, Daniela; Gasparini, Paolo

    2014-01-01

    Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people's health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs) variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R) on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics.

  12. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking.

    Directory of Open Access Journals (Sweden)

    Nicola Pirastu

    Full Text Available Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people's health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics.

  13. A gene-wide investigation on polymorphisms in the taste receptor 2R14 (TAS2R14) and susceptibility to colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Campa, D.; Vodička, Pavel; Pardini, Barbara; Naccarati, Alessio; Carrai, M.; Vodičková, Ludmila; Novotný, J.; Hemminki, K.; Försti, A.; Barale, R.; Canzian, F.

    2010-01-01

    Roč. 11, č. 1 (2010), s. 88-93 ISSN 1471-2350 R&D Projects: GA ČR GA310/05/2626 Institutional research plan: CEZ:AV0Z50390512 Keywords : colorectal cancer * TAS2R14 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.439, year: 2010

  14. Quantification of expression and methylation of the Igf2r imprinted gene in segmental trisomic mouse model

    Czech Academy of Sciences Publication Activity Database

    Vacík, Tomáš; Forejt, Jiří

    2003-01-01

    Roč. 82, - (2003), s. 261-268 ISSN 0888-7543 R&D Projects: GA MŠk LN00A079; GA ČR GV204/98/K015 Grant - others:HHMI(US) 555000306 Institutional research plan: CEZ:AV0Z5052915 Keywords : Genomic imprinting * dosage-sensitive genes * Ts43H segmental trisomy of chromosome 17 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.488, year: 2003

  15. Some thermoelectric properties of the light rare earth sesquiselenides (R2Se/sub 3-x/)

    International Nuclear Information System (INIS)

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1981-01-01

    Rare earth sesquiselenides of the Th 3 P 4 structure show variable electric properties over their homogeneity range, i.e., ranging from metallic (R 3 Se 4 ) to semimetallic (R 2 Se/sub 3-x/, where 0.14 > x > 0) to semiconducting (R 2 Se 3 ). The composition change is due to the formation of metal vacancies in the Th 3 P 4 structure with no vacancies at R 3 Se 4 and 4.75 at. % vacancies at R 2 Se 3 . The rare earth sesquiselenides are also refractory materials and therefore are of interest for high temperature thermoelectric applications. Preliminary results of thermoelectric power and electrical resistivity measurements on the light lanthanide sesquiselenides (La through Sm) are presented

  16. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.

    Science.gov (United States)

    Zhang, Wenxiang; Wang, Peng; Chen, Siyu; Zhang, Zhao; Liang, Tingming; Liu, Chang

    2016-06-01

    Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. © FASEB.

  17. MiR-155 modulates the progression of neuropathic pain through targeting SGK3.

    Science.gov (United States)

    Liu, Shaoxing; Zhu, Bo; Sun, Yan; Xie, Xianfeng

    2015-01-01

    This study aimed to illustrate the potential effects of miR-155 in neuropathic pain and its potential mechanism. Spragure-Dawley (SD) rats were used for neuropathic pain model of bilateral chronic constriction injury (bCCI) construction. Effects of miR-155 expression on pain threshold of mechanical stimuli (MWT), paw withdrawal threshold latency (PMTL) and cold threshold were analyzed. Target for miR-155 was analyzed using bioinformatics methods. Moreover, effects of miR-155 target gene expression on pain thresholds were also assessed. Compared with the controls and sham group, miR-155 was overexpressed in neuropathic pain rats (P<0.05), but miR-155 slicing could significantly decreased the pain thresholds (P<0.05). Serum and glucocorticoid regulated protein kinase 3 (SGK3) was predicted as the target gene for miR-155, and miR-155 expression was negatively correlated to SGK3 expression. Furthermore, SGK3 overexpression could significantly decreased the pain thresholds which was the same as miR-155 (P<0.05). Moreover, miR-155 slicing and SGK3 overexpression could significantly decrease the painthreshold. The data presented in this study suggested that miR-155 slicing could excellently alleviate neuropathic pain in rats through targeting SGK3 expression. miR-155 may be a potential therapeutic target for neuropathic pain treatment.

  18. Association of miR-548c-5p, miR-7-5p, miR-210-3p, miR-128-3p with recurrence in systemically untreated breast cancer

    DEFF Research Database (Denmark)

    Block, Ines; Burton, Mark; Sørensen, Kristina Pilekær

    2018-01-01

    . To validate their prognostic potential, we analyzed microRNA expression in an independent cohort (n = 110) using a pairmatched study design minimizing dependence of classical markers. The expression of hsa-miR-548c-5p was significantly associated with abridged disease-free survival (hazard ratio [HR]:1.96, p...... = 0.027). Contradicting published results, high hsa-miR516-3p expression was associated with favorable outcome (HR:0.29, p = 0.0068). The association is probably time-dependent indicating later relapse. Additionally, re-analysis of previously published expression data of two matching cohorts (n = 100......, n = 255) supports an association of hsa-miR-128-3p with shortened diseasefree survival (HR:2.48, p = 0.0033) and an upregulation of miR-7-5p (p = 0.0038; p = 0.039) and miR-210-3p (p = 0.031) in primary tumors of patients who experienced metastases. Further analysis may verify the prognostic...

  19. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor).

    Science.gov (United States)

    Zhang, Bin; Hu, Zongli; Zhang, Yanjie; Li, Yali; Zhou, Shuang; Chen, Guoping

    2012-02-01

    The purple kale (Brassica Oleracea var. acephala f. tricolor) is a mutation in kales, giving the mutant phenotype of brilliant purple color in the interior. Total anthocyanin analysis showed that the amount of anthocyanins in the purple kale was up to 1.73 mg g(-1) while no anthocyanin was detected in the white kale. To elucidate the molecular mechanism of the anthocyanin biosynthesis in the purple kale, we analyzed the expression of structural genes and some transcription factors associated with anthocyanin biosynthesis in the purple cultivar "Red Dove" and the white cultivar "White Dove". The result showed that nearly all the anthocyanin biosynthetic genes showed higher expression levels in the purple cultivar than in the white cultivar, especially for DFR and ANS, they were barely detected in the white cultivar. Interestingly, the fact that a R2R3 MYB transcription factor named BoPAP1 was extremely up-regulated in the purple kale and induced by low temperature attracted our attention. Further sequence analysis showed that BoPAP1 shared high similarity with AtPAP1 and BoMYB1. In addition, the anthocyanin accumulation in the purple kale is strongly induced by the low temperature stress. The total anthocyanin contents in the purple kale under low temperature were about 50-fold higher than the plants grown in the greenhouse. The expression of anthocyanin biosynthetic genes C4H, F3H, DFR, ANS and UFGT were all enhanced under the low temperature. These evidences strongly suggest that BoPAP1 may play an important role in activating the anthocyanin structural genes for the abundant anthocyanin accumulation in the purple kale.

  20. Insilico study of the A(2A)R-D (2)R kinetics and interfacial contact surface for heteromerization.

    Science.gov (United States)

    Prakash, Amresh; Luthra, Pratibha Mehta

    2012-10-01

    G-protein-coupled receptors (GPCRs) are cell surface receptors. The dynamic property of receptor-receptor interactions in GPCRs modulates the kinetics of G-protein signaling and stability. In the present work, the structural and dynamic study of A(2A)R-D(2)R interactions was carried to acquire the understanding of the A(2A)R-D(2)R receptor activation and deactivation process, facilitating the design of novel drugs and therapeutic target for Parkinson's disease. The structure-based features (Alpha, Beta, SurfAlpha, and SurfBeta; GapIndex, Leakiness and Gap Volume) and slow mode model (ENM) facilitated the prediction of kinetics (K (off), K (on), and K (d)) of A(2A)R-D(2)R interactions. The results demonstrated the correlation coefficient 0.294 for K (d) and K (on) and the correlation coefficient 0.635 for K (d) and K (off), and indicated stable interfacial contacts in the formation of heterodimer. The coulombic interaction involving the C-terminal tails of the A(2A)R and intracellular loops (ICLs) of D(2)R led to the formation of interfacial contacts between A(2A)R-D(2)R. The properties of structural dynamics, ENM and KFC server-based hot-spot analysis illustrated the stoichiometry of A(2A)R-D(2)R contact interfaces as dimer. The propensity of amino acid residues involved in A(2A)R-D(2)R interaction revealed the presence of positively (R, H and K) and negatively (E and D) charged structural motif of TMs and ICL3 of A(2A)R and D(2)R at interface of dimer contact. Essentially, in silico structural and dynamic study of A(2A)R-D(2)R interactions will provide the basic understanding of the A(2A)R-D(2)R interfacial contact surface for activation and deactivation processes, and could be used as constructive model to recognize the protein-protein interactions in receptor assimilations.

  1. Superior thermoelectric response in the 3R phases of hydrated NaxRhO2

    KAUST Repository

    Saeed, Y.; Singh, Nirpendra; Schwingenschlö gl, Udo

    2014-01-01

    Density functional theory is used to investigate the thermoelectric properties of the 3R phases of NaxRhO2 for different Na vacancy configurations and concentrations. As compared to the analogous 2H phases, the modified stacking of the atomic layers in the 3R phases reduces the interlayer coupling. As a consequence, the 3R phases are found to be superior in the technologically relevant temperature range. The Rh d3z2-r2 orbitals still govern the valence band maxima and therefore determine the transport properties. A high figure of merit of 0.35 is achieved in hydrated Na0.83RhO2 at 580 K by water intercalation, which is 34% higher than in the non-hydrated phase.

  2. Superior thermoelectric response in the 3R phases of hydrated NaxRhO2

    KAUST Repository

    Saeed, Y.

    2014-03-17

    Density functional theory is used to investigate the thermoelectric properties of the 3R phases of NaxRhO2 for different Na vacancy configurations and concentrations. As compared to the analogous 2H phases, the modified stacking of the atomic layers in the 3R phases reduces the interlayer coupling. As a consequence, the 3R phases are found to be superior in the technologically relevant temperature range. The Rh d3z2-r2 orbitals still govern the valence band maxima and therefore determine the transport properties. A high figure of merit of 0.35 is achieved in hydrated Na0.83RhO2 at 580 K by water intercalation, which is 34% higher than in the non-hydrated phase.

  3. Initial mass function in R-associations CMaR1, Mon R1 and Mon R2 from radiodata

    International Nuclear Information System (INIS)

    Pyatunina, T.B.

    1985-01-01

    Results of search for compact radiosources in R-associations CMa R1 and Mon R1 carried out with the radiotelescope RATAN-600 at the 7.6-cm wavelength are given. The number of sources found in the association Mon R1 is approximately equal to the expected number of background extragalactic radiosources. In the association CMa R1 seven radiosources of small angular diameter with the flux greater than 30 mJy are found, two of which probably are background sources. A comparison of optical and radiodata on the association CMa R1 and previously published data on the association Mon R2 make it possible to estimate the initial mass function for associations under study: xi(M) infinity Msup(-2.7+-0.7) for stars with M approximately 10Msub(Sun)

  4. Elevated CO2 increases R gene-dependent resistance of Medicago truncatula against the pea aphid by up-regulating a heat shock gene.

    Science.gov (United States)

    Sun, Yucheng; Guo, Huijuan; Yuan, Erliang; Ge, Feng

    2018-03-01

    Resistance against pathogens and herbivorous insects in many plant results from the expression of resistance (R) genes. Few reports, however, have considered the effects of elevated CO 2 on R gene-based resistance in plants. The current study determined the responses of two near isogenic Medicago truncatula genotypes (Jester has an R gene and A17 does not) to the pea aphid and elevated CO 2 in open-top chambers in the field. Aphid abundance, mean relative growth rate and feeding efficiency were increased by elevated CO 2 on A17 plants but were reduced on Jester plants. According to proteomic and gene expression data, elevated CO 2 enhanced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) but decreased the effector-triggered immunity (ETI) in aphid-infested A17 plants. For aphid-infested Jester plants, by contrast, elevated CO 2 enhanced the ETI-related heat shock protein (HSP) 90 and its co-chaperones, the jasmonic acid (JA) signaling pathway, and ubiquitin-mediated proteolysis. In a loss-of-function experiment, silencing of the HSP90 gene in Jester plants impaired the JA signaling pathway and ubiquitin-mediated proteolysis against the aphid under ambient CO 2 , and negated the increased resistance against the aphid under elevated CO 2 . Our results suggest that increases in expression of HSP90 are responsible for the enhanced resistance against the aphid under elevated CO 2 . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Dufour Virginie

    2011-05-01

    Full Text Available Abstract Background Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. Results In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. Conclusions This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation.

  6. MicroRNA profiling in the dentate gyrus in epileptic rats: The role of miR-187-3p.

    Science.gov (United States)

    Zhang, Suya; Kou, Yubin; Hu, Chunmei; Han, Yan

    2017-06-01

    This study aimed to explore the role of aberrant miRNA expression in epilepsy and to identify more potential genes associated with epileptogenesis.The miRNA expression profile of GSE49850, which included 20 samples from the rat epileptic dentate gyrus at 7, 14, 30, and 90 days after electrical stimulation and 20 additional samples from sham time-matched controls, was downloaded from the Gene Expression Omnibus database. The significantly differentially expressed miRNAs were identified in stimulated samples at each time point compared to time-matched controls, respectively. The target genes of consistently differentially expressed miRNAs were screened from miRDB and microRNA.org databases, followed by Gene Ontology (GO) and pathway enrichment analysis and regulatory network construction. The overlapping target genes for consistently differentially expressed miRNAs were also identified from these 2 databases. Furthermore, the potential binding sites of miRNAs and their target genes were analyzed.Rno-miR-187-3p was consistently downregulated in stimulated groups compared with time-matched controls. The predicted target genes of rno-miR-187-3p were enriched in different GO terms and pathways. In addition, 7 overlapping target genes of rno-miR-187-3p were identified, including NFS1, PAQR4, CAND1, DCLK1, PRKAR2A, AKAP3, and KCNK10. These 7 overlapping target genes were determined to have a different number of matched binding sites with rno-miR-187-3p.Our study suggests that miR-187-3p may play an important role in epilepsy development and progression via regulating numerous target genes, such as NFS1, CAND1, DCLK1, AKAP3, and KCNK10. Determining the underlying mechanism of the role of miR-187-3p in epilepsy may make it a potential therapeutic option.

  7. TAS1R3 and UCN2 Transcript Levels in Blood Cells Are Associated With Sugary and Fatty Food Consumption in Children.

    Science.gov (United States)

    Priego, T; Sánchez, J; Picó, C; Ahrens, W; De Henauw, S; Kourides, Y; Lissner, L; Molnár, D; Moreno, L A; Russo, P; Siani, A; Veidebaum, T; Palou, A

    2015-09-01

    New types of dietary exposure biomarkers are needed to implement effective strategies for obesity prevention in children. Of special interest are biomarkers of consumption of food rich in simple sugars and fat because their intake has been associated with obesity development. Peripheral blood cells (PBCs) represent a promising new tool for identifying novel, transcript-based biomarkers. This study aimed to study potential associations between the transcripts of taste receptor type 1 member 3 (TAS1R3) and urocortin II (UCN2) genes in PBCs and the frequency of sugary and fatty food consumption in children. Four hundred sixty-three children from the IDEFICS cohort were selected to include a similar number of boys and girls, both normal-weight and overweight, belonging to eight European countries. Anthropometric parameters (measured at baseline and in a subset of 193 children after 2 years), food consumption frequency and transcript levels of TAS1R3 and UCN2 genes in PBCs were measured. Children with low-frequency consumption of sugary foods displayed higher TAS1R3 expression levels with respect to those with intermediate or high frequency. In turn, children with high-frequency consumption of fatty foods showed lower UCN2 expression levels with respect to those with low or intermediate frequency. Moreover, transcripts of TAS1R3 were related with body mass index and fat-mass changes after a 2-year follow-up period, with low expression levels of this gene being related with increased fat accumulation over time. The transcripts of TAS1R3 and UCN2 in PBCs may be considered potential biomarkers of consumption of sugary and fatty food, respectively, to complement data of food-intake questionnaires.

  8. Developmental regulation of ecdysone receptor (EcR and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Tathyana Rachel Palo Mello

    2014-12-01

    Full Text Available Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH, control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD of both EcR transcript variants we detected the differential expression of 234 poly-A+ transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1. EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g. miR-133 and miR-375, as well honeybee-specific ones (e.g. miR-3745 and miR-3761. Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect.

  9. Nonfunctionality of Aspergillus sojae aflR in a strain of Aspergillus parasiticus with a disrupted aflR gene.

    Science.gov (United States)

    Takahashi, Tadashi; Chang, Perng-Kuang; Matsushima, Kenichiro; Yu, Jiujiang; Abe, Keietsu; Bhatnagar, Deepak; Cleveland, Thomas E; Koyama, Yasuji

    2002-08-01

    Aspergillus sojae belongs to the Aspergillus section Flavi but does not produce aflatoxins. The functionality of the A. sojae aflR gene (aflRs) was examined by transforming it into an DeltaaflR strain of A. parasiticus, derived from a nitrate-nonutilizing, versicolorin A (VERA)-accumulating strain. The A. parasiticus aflR gene (aflRp) transformants produced VERA, but the aflRs transformants did not. Even when aflRs was placed under the control of the amylase gene (amyB) promoter of Aspergillus oryzae, the amy(p)::aflRs transformants did not produce VERA. A chimeric construct containing the aflRs promoter plus the aflRs N- and aflRp C-terminal coding regions could restore VERA production, but a construct containing the aflRp promoter plus the aflRp N- and aflRs C-terminal coding regions could not. These results show that the A. sojae aflR promoter is functional in A. parasiticus and that the HAHA motif does not affect the function of the resulting hybrid AflR. We conclude that the lack of aflatoxin production by A. sojae can be attributed, at least partially, to the premature termination defect in aflRs, which deletes the C-terminal transcription activation domain that is critical for the expression of aflatoxin biosynthetic genes.

  10. (R)-3-hydroxyhexan-2-one is a major pheromone component of Anelaphus inflaticollis (Coleoptera: Cerambycidae).

    Science.gov (United States)

    Ray, A M; Swift, I P; Moreira, J A; Millar, J G; Hanks, L M

    2009-10-01

    We report the identification and field bioassays of a major component of the male-produced aggregation pheromone of Anelaphus inflaticollis Chemsak, an uncommon desert cerambycine beetle. Male A. inflaticollis produced a sex-specific blend of components that included (R)-3-hydroxyhexan-2-one, (S)-2-hydroxyhexan-3-one, 2,3-hexanedione, and (2R,3R)- and (2R,3S)-2,3-hexanediols. Field trials with baited bucket traps determined that the reconstructed synthetic pheromone blend and (R)-3-hydroxyhexan-2-one alone attracted adult A. inflaticollis of both sexes, with significantly more beetles being attracted to the blend. We conclude that (R)-3-hydroxyhexan-2-one is a major pheromone component of A. inflaticollis, and our results suggest that one or more of the minor components may further increase attraction of conspecifics. Scanning electron microscopy showed that male A. inflaticollis have pores on the prothorax that are consistent in structure with sex-specific pheromone gland pores in related species. Males also displayed stereotyped calling behavior similar to that observed in other cerambycine species. This study represents the first report of volatile pheromones for a cerambycine species in the tribe Elaphidiini.

  11. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Kocábek, Tomáš; Patzak, J.; Füssy, Zoltán; Procházková, Jitka; Heyerick, A.

    2012-01-01

    Roč. 12, č. 27 (2012), s. 1471-2229 ISSN 1471-2229 R&D Projects: GA ČR GA521/08/0740; GA MZe QH81052 Institutional research plan: CEZ:AV0Z50510513 Keywords : transcription factor * protein complexes * transient expression assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.354, year: 2012

  12. Robertsonian translocation 13/14 associated with rRNA genes ...

    African Journals Online (AJOL)

    Robertsonian translocation 13/14 associated with rRNA genes overexpression and intellectual disability. Alexander A. Dolskiy, Natalya A. Lemskaya, Yulia V. Maksimova, Asia R. Shorina, Irina S. Kolesnikova, Dmitry V. Yudkin ...

  13. The inability of Bacillus licheniformis perR mutant to grow is mainly due to the lack of PerR-mediated fur repression.

    Science.gov (United States)

    Kim, Jung-Hoon; Yang, Yoon-Mo; Ji, Chang-Jun; Ryu, Su-Hyun; Won, Young-Bin; Ju, Shin-Yeong; Kwon, Yumi; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2017-06-01

    PerR, a member of Fur family protein, is a metal-dependent H 2 O 2 sensing transcription factor that regulates genes involved in peroxide stress response. Industrially important bacterium Bacillus licheniformis contains three PerR-like proteins (PerR BL , PerR2, and PerR3) compared to its close relative Bacillus subtilis. Interestingly, unlike other bacteria including B. subtilis, no authentic perR BL null mutant could be established for B. licheniformis. Thus, we constructed a conditional perR BL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerR BL . PerR BL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerR BS . However, there is some variation in the expression levels of fur and hemA genes between B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H 2 O 2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all catalase-positive. Instead, many of the suppressors showed increased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken together, our data suggest that in B. licheniformis, despite the similarity in PerR BL and PerR BS regulon genes, perR is an essential gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.

  14. CASC2/miR-24/miR-221 modulates the TRAIL resistance of hepatocellular carcinoma cell through caspase-8/caspase-3.

    Science.gov (United States)

    Jin, Xiaoxin; Cai, Lifeng; Wang, Changfa; Deng, Xiaofeng; Yi, Shengen; Lei, Zhao; Xiao, Qiangsheng; Xu, Hongbo; Luo, Hongwu; Sun, Jichun

    2018-02-23

    Hepatocellular carcinoma is one of the most common solid tumors in the digestive system. The prognosis of patients with hepatocellular carcinoma is still poor due to the acquisition of multi-drug resistance. TNF Related Apoptosis Inducing Ligand (TRAIL), an attractive anticancer agent, exerts its effect of selectively inducing apoptosis in tumor cells through death receptors and the formation of the downstream death-inducing signaling complex, which activates apical caspases 3/8 and leads to apoptosis. However, hepatocellular carcinoma cells are resistant to TRAIL. Non-coding RNAs, including long non-coding RNAs (lncRNAs) and miRNAs have been regarded as major regulators of normal development and diseases, including cancers. Moreover, lncRNAs and miRNAs have been reported to be associated with multi-drug resistance. In the present study, we investigated the mechanism by which TRAIL resistance of hepatocellular carcinoma is affected from the view of non-coding RNA regulation. We selected and validated candidate miRNAs, miR-24 and miR-221, that regulated caspase 3/8 expression through direct targeting, and thereby affecting TRAIL-induced tumor cell apoptosis TRAIL resistance of hepatocellular carcinoma. In addition, we revealed that CASC2, a well-established tumor suppressive long non-coding RNA, could serve as a "Sponge" of miR-24 and miR-221, thus modulating TRAIL-induced tumor cell apoptosis TRAIL resistance of hepatocellular carcinoma. Taken together, we demonstrated a CASC2/miR-24/miR-221 axis, which can affect the TRAIL resistance of hepatocellular carcinoma through regulating caspase 3/8; through acting as a "Sponge" of miR-24 and miR-221, CASC2 may contribute to improving hepatocellular carcinoma TRAIL resistance, and finally promoting the treatment efficiency of TRAIL-based therapies.

  15. Role of Caspase-3 Cleaved IP3R1 on Ca2+ Homeostasis and Developmental Competence of Mouse Oocytes and Eggs

    Science.gov (United States)

    Zhang, Nan; Fissore, Rafael. A.

    2014-01-01

    Apoptosis in most cell types is accompanied by altered Ca2+ homeostasis. During apoptosis, caspase-3 mediated cleavage of the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) generates a 95-kDa C-terminal fragment (C-IP3R1), which represents the channel domain of the receptor. Aged mouse eggs display abnormal Ca2+ homeostasis and express C-IP3R1, although whether or not C-IP3R1 expression contributes to Ca2+ misregulation or a decrease in developmental competency is unknown. We sought to answer these questions by injecting in mouse oocytes and eggs cRNAs encoding CIP3R1. We found that: 1) expression of C-IP3R1 in eggs lowered the Ca2+ content of the endoplasmic reticulum (ER), although, as C-IP3R1 is quickly degraded at this stage, its expression did not impair pre-implantation embryo development; 2) expression of CIP3R1 in eggs enhanced fragmentation associated with aging; 3) endogenous IP3R1 is required for aging associated apoptosis, as its down-regulation prevented fragmentation, and expression of C-IP3R1 in eggs with downregulated IP3R1 partly restored fragmentation; 4) C-IP3R1 expression in GV oocytes resulted in persistent levels of protein, which abolished the increase in the ER releasable Ca2+ pool that occurs during maturation, undermined the Ca2+ oscillatory ability of matured eggs and their activation potential. Collectively, this study supports a role for IP3R1 and C-IP3R1 in regulating Ca2+ homeostasis and the ER Ca2+ content during oocyte maturation. Nevertheless, the role of C-IP3R1 on Ca2+ homeostasis in aged eggs seems minor, as in MII eggs the majority of endogenous IP3R1 remains intact and C-IP3R1 undergoes rapid turnover. PMID:24692207

  16. Evaluation of role 2 (R2) medical resources in the Afghanistan combat theater: Initial review of the joint trauma system R2 registry.

    Science.gov (United States)

    Mann-Salinas, Elizabeth A; Le, Tuan D; Shackelford, Stacy A; Bailey, Jeffrey A; Stockinger, Zsolt T; Spott, Mary Ann; Wirt, Michael D; Rickard, Rory; Lane, Ian B; Hodgetts, Timothy; Cardin, Sylvain; Remick, Kyle N; Gross, Kirby R

    2016-11-01

    A Role 2 registry (R2R) was developed in 2008 by the US Joint Trauma System (JTS). The purpose of this project was to undertake a preliminary review of the R2R to understand combat trauma epidemiology and related interventions at these facilities to guide training and optimal use of forward surgical capability in the future. A retrospective review of available JTS R2R records; the registry is a convenience sample entered voluntarily by members of the R2 units. Patients were classified according to basic demographics, affiliation, region where treatment was provided, mechanism of injury, type of injury, time and method of transport from point of injury (POI) to R2 facility, interventions at R2, and survival. Analysis included trauma patients aged ≥18 years or older wounded in year 2008 to 2014, and treated in Afghanistan. A total of 15,404 patients wounded and treated in R2 were included in the R2R from February 2008 to September 2014; 12,849 patients met inclusion criteria. The predominant patient affiliations included US Forces, 4,676 (36.4%); Afghan Forces, 4,549 (35.4%); and Afghan civilians, 2,178 (17.0%). Overall, battle injuries predominated (9,792 [76.2%]). Type of injury included penetrating, 7,665 (59.7%); blunt, 4,026 (31.3%); and other, 633 (4.9%). Primary mechanism of injury included explosion, 5,320 (41.4%); gunshot wounds, 3,082 (24.0%); and crash, 1,209 (9.4%). Of 12,849 patients who arrived at R2, 167 (1.3%) were dead; of 12,682 patients who were alive upon arrival, 342 (2.7%) died at R2. This evaluation of the R2R describes the patient profiles of and common injuries treated in a sample of R2 facilities in Afghanistan. Ongoing and detailed analysis of R2R information may provide evidence-based guidance to military planners and medical leaders to best prepare teams and allocate R2 resources in future operations. Given the limitations of the data set, conclusions must be interpreted in context of other available data and analyses, not in isolation

  17. The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype.

    Science.gov (United States)

    Tuan, Pham Anh; Bai, Songling; Yaegaki, Hideaki; Tamura, Takayuki; Hihara, Seisuke; Moriguchi, Takaya; Oda, Kenji

    2015-11-18

    Red coloration of fruit skin is one of the most important traits in peach (Prunus persica), and it is mainly due to the accumulation of anthocyanins. Three MYB10 genes, PpMYB10.1, PpMYB10.2, and PpMYB10.3, have been reported as important regulators of red coloration and anthocyanin biosynthesis in peach fruit. In this study, contribution of PpMYB10.1/2/3 to anthocyanin accumulation in the fruit skin was investigated in the Japanese peach cultivars, white-skinned 'Mochizuki' and red-skinned 'Akatsuki'. We then investigated the relationships between allelic type of PpMYB10.1 and skin color phenotype in 23 Japanese peach cultivars for future establishment of DNA-marker. During the fruit development of 'Mochizuki' and 'Akatsuki', anthocyanin accumulation was observed only in the skin of red 'Akatsuki' fruit in the late ripening stages concomitant with high mRNA levels of the last step gene leading to anthocyanin accumulation, UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT). This was also correlated with the expression level of PpMYB10.1. Unlike PpMYB10.1, expression levels of PpMYB10.2/3 were low in the skin of both 'Mochizuki' and 'Akatsuki' throughout fruit development. Moreover, only PpMYB10.1 revealed expression levels associated with total anthocyanin accumulation in the leaves and flowers of 'Mochizuki' and 'Akatsuki'. Introduction of PpMYB10.1 into tobacco increased the expression of tobacco UFGT, resulting in higher anthocyanin accumulation and deeper red transgenic tobacco flowers; however, overexpression of PpMYB10.2/3 did not alter anthocyanin content and color of transgenic tobacco flowers when compared with wild-type flowers. Dual-luciferase assay showed that the co-infiltration of PpMYB10.1 with PpbHLH3 significantly increased the activity of PpUFGT promoter. We also found close relationships of two PpMYB10.1 allelic types, MYB10.1-1/MYB10.1-2, with the intensity of red skin coloration. We showed that PpMYB10.1 is a major regulator of anthocyanin

  18. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    Science.gov (United States)

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  19. Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study.

    Science.gov (United States)

    Mirzaa, Ghayda M; Conti, Valerio; Timms, Andrew E; Smyser, Christopher D; Ahmed, Sarah; Carter, Melissa; Barnett, Sarah; Hufnagel, Robert B; Goldstein, Amy; Narumi-Kishimoto, Yoko; Olds, Carissa; Collins, Sarah; Johnston, Kathreen; Deleuze, Jean-François; Nitschké, Patrick; Friend, Kathryn; Harris, Catharine; Goetsch, Allison; Martin, Beth; Boyle, Evan August; Parrini, Elena; Mei, Davide; Tattini, Lorenzo; Slavotinek, Anne; Blair, Ed; Barnett, Christopher; Shendure, Jay; Chelly, Jamel; Dobyns, William B; Guerrini, Renzo

    2015-12-01

    Bilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment, and epilepsy. The causes of BPP are heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic causes of BPP and characterise their frequency in this population. Children (aged ≤18 years) with polymicrogyria were enrolled into our research programme from July, 1980, to October, 2015, at two centres (Florence, Italy, and Seattle, WA, USA). We obtained samples (blood and saliva) throughout this period at both centres and did whole-exome sequencing on DNA from eight trios (two parents and one affected child) with BPP in 2014. After the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 by two methods in a cohort of 118 children with BPP. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal to large head size. Second, we did amplicon sequencing of the recurrent PIK3R2 mutation (Gly373Arg) in 80 children with various types of polymicrogyria including BPP. One additional patient had clinical whole-exome sequencing done independently, and was included in this study because of the phenotypic similarity to our cohort. We identified a mosaic mutation (Gly373Arg) in a regulatory subunit of the PI3K-AKT-mTOR pathway, PIK3R2, in two children with BPP. Of the 38 patients with BPP and normal to large head size who underwent targeted next-generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient had the recurrent PIK3R2 mutation identified by clinical whole-exome sequencing. Seven of these 20 patients had BPP alone, and 13 had BPP in association with features of the

  20. R-ChIP Using Inactive RNase H Reveals Dynamic Coupling of R-loops with Transcriptional Pausing at Gene Promoters.

    Science.gov (United States)

    Chen, Liang; Chen, Jia-Yu; Zhang, Xuan; Gu, Ying; Xiao, Rui; Shao, Changwei; Tang, Peng; Qian, Hao; Luo, Daji; Li, Hairi; Zhou, Yu; Zhang, Dong-Er; Fu, Xiang-Dong

    2017-11-16

    R-loop, a three-stranded RNA/DNA structure, has been linked to induced genome instability and regulated gene expression. To enable precision analysis of R-loops in vivo, we develop an RNase-H-based approach; this reveals predominant R-loop formation near gene promoters with strong G/C skew and propensity to form G-quadruplex in non-template DNA, corroborating with all biochemically established properties of R-loops. Transcription perturbation experiments further indicate that R-loop induction correlates to transcriptional pausing. Interestingly, we note that most mapped R-loops are each linked to a nearby free RNA end; by using a ribozyme to co-transcriptionally cleave nascent RNA, we demonstrate that such a free RNA end coupled with a G/C-skewed sequence is necessary and sufficient to induce R-loop. These findings provide a topological solution for RNA invasion into duplex DNA and suggest an order for R-loop initiation and elongation in an opposite direction to that previously proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Building a SuAVE browse interface to R2R's Linked Data

    Science.gov (United States)

    Clark, D.; Stocks, K. I.; Arko, R. A.; Zaslavsky, I.; Whitenack, T.

    2017-12-01

    The Rolling Deck to Repository program (R2R) is creating and evaluating a new browse portal based on the SuAVE platform and the R2R linked data graph. R2R manages the underway sensor data collected by the fleet of US academic research vessels, and provides a discovery and access point to those data at its website, www.rvdata.us. R2R has a database-driven search interface, but seeks a more capable and extensible browse interface that could be built off of the substantial R2R linked data resources. R2R's Linked Data graph organizes its data holdings around key concepts (e.g. cruise, vessel, device type, operator, award, organization, publication), anchored by persistent identifiers where feasible. The "Survey Analysis via Visual Exploration" or SuAVE platform (suave.sdsc.edu) is a system for online publication, sharing, and analysis of images and metadata. It has been implemented as an interface to diverse data collections, but has not been driven off of linked data in the past. SuAVE supports several features of interest to R2R, including faceted searching, collaborative annotations, efficient subsetting, Google maps-like navigation over an image gallery, and several types of data analysis. Our initial SuAVE-based implementation was through a CSV export from the R2R PostGIS-enabled PostgreSQL database. This served to demonstrate the utility of SuAVE but was static and required reloading as R2R data holdings grew. We are now working to implement a SPARQL-based ("RDF Query Language") service that directly leverages the R2R Linked Data graph and offers the ability to subset and/or customize output.We will show examples of SuAVE faceted searches on R2R linked data concepts, and discuss our experience to date with this work in progress.

  2. Relationship between XspI Site Polymorphisms of LDL-R Gene and Serum IL-2 and IL-10 in Patients with Hypercholesterolemia.

    Science.gov (United States)

    Zhang, Mingming; Lu, Yamin; Liu, Xin; Zhang, Xiaobin; Zhang, Cuigai; Gao, Wei; Tie, Yanqing

    2016-11-01

    Relationship has been identified in sporadic reports between polymorphisms and hypercholesterolemia. However, the relationship between inflammatory cytokines and polymorphism of low-density lipoprotein receptor (LDL-R) gene in hypercholesterolemia is unclear. This study aimed to explore the relationship and significance between polymorphisms of LDL-R gene and serum Interleukin-2 (IL-2), IL-10 in patients with hypercholesterolemia. PCR-RFLP and direct DNA sequencing assay were employed to determine polymorphism of LDL-R gene in 900 patients with hypercholesterolemia and 400 healthy cases. ELISA was applied to assay serum concentration of IL-2 and IL-10. Blood lipid indexes were tested in all cases. Compared with the healthy controls, level of IL-2 increased significantly, while IL-10 decreased significantly (P hypercholesterolemia. © 2016 Wiley Periodicals, Inc.

  3. (1R,6R,13R,18R-(Z,Z-1,18-Bis[(4R-2,2-dimethyl-1,3-dioxolan-4-yl]-3,16-dimethylene-8,20-diazadispiro[5.6.5.6]tetracosa-7,19-diene

    Directory of Open Access Journals (Sweden)

    Stéphanie M. Guéret

    2010-07-01

    Full Text Available The crystal structure of the title compound, C34H54N2O4, has been solved in order to prove the relative and absolute chirality of the newly-formed stereocentres which were established using an asymmetric Diels–Alder reaction at an earlier stage in the synthesis. This unprecedented stable dialdimine contains a 14-membered ring and was obtained as the minor diastereoisomer in the Diels–Alder reaction. The absolute stereochemistry of the stereocentres of the acetal functionality was known to be R based on the use of a chiral (R-trisubstituted dienophile derived from enantiopure (S-glyceraldehyde. The assignment of the configuration in the dienophile and the title di-aldimine differs from (S-glyceraldehyde due to a change in the priority order of the substituents. The crystal structure establishes the presence of six stereocentres all attributed to be R. The 14-membered ring contains two aldimine bonds [C—N = 1.258 (2 and 1.259 (2 Å]. It adopts a similar conformation to that proposed for trans–trans-cyclotetradeca-1,8-dienes.

  4. R2R-printed inverted OPV modules - towards arbitrary patterned designs

    Science.gov (United States)

    Välimäki, M.; Apilo, P.; Po, R.; Jansson, E.; Bernardi, A.; Ylikunnari, M.; Vilkman, M.; Corso, G.; Puustinen, J.; Tuominen, J.; Hast, J.

    2015-05-01

    We describe the fabrication of roll-to-roll (R2R) printed organic photovoltaic (OPV) modules using gravure printing and rotary screen-printing processes. These two-dimensional printing techniques are differentiating factors from coated OPVs enabling the direct patterning of arbitrarily shaped and sized features into visual shapes and, increasing the freedom to connect the cells in modules. The inverted OPV structures comprise five layers that are either printed or patterned in an R2R printing process. We examined the rheological properties of the inks used and their relationship with the printability, the compatibility between the processed inks, and the morphology of the R2R-printed layers. We also evaluate the dimensional accuracy of the printed pattern, which is an important consideration in designing arbitrarily-shaped OPV structures. The photoactive layer and top electrode exhibited excellent cross-dimensional accuracy corresponding to the designed width. The transparent electron transport layer extended 300 µm beyond the designed values, whereas the hole transport layer shrank 100 µm. We also examined the repeatability of the R2R fabrication process when the active area of the module varied from 32.2 cm2 to 96.5 cm2. A thorough layer-by-layer optimization of the R2R printing processes resulted in realization of R2R-printed 96.5 cm2 sized modules with a maximum power conversion efficiency of 2.1% (mean 1.8%) processed with high functionality.

  5. Comparison of the aflR gene sequences of strains in Aspergillus section Flavi.

    Science.gov (United States)

    Lee, Chao-Zong; Liou, Guey-Yuh; Yuan, Gwo-Fang

    2006-01-01

    Aflatoxins are polyketide-derived secondary metabolites produced by Aspergillus parasiticus, Aspergillus flavus, Aspergillus nomius and a few other species. The toxic effects of aflatoxins have adverse consequences for human health and agricultural economics. The aflR gene, a regulatory gene for aflatoxin biosynthesis, encodes a protein containing a zinc-finger DNA-binding motif. Although Aspergillus oryzae and Aspergillus sojae, which are used in fermented foods and in ingredient manufacture, have no record of producing aflatoxin, they have been shown to possess an aflR gene. This study examined 34 strains of Aspergillus section Flavi. The aflR gene of 23 of these strains was successfully amplified and sequenced. No aflR PCR products were found in five A. sojae strains or six strains of A. oryzae. These PCR results suggested that the aflR gene is absent or significantly different in some A. sojae and A. oryzae strains. The sequenced aflR genes from the 23 positive strains had greater than 96.6 % similarity, which was particularly conserved in the zinc-finger DNA-binding domain. The aflR gene of A. sojae has two obvious characteristics: an extra CTCATG sequence fragment and a C to T transition that causes premature termination of AFLR protein synthesis. Differences between A. parasiticus/A. sojae and A. flavus/A. oryzae aflR genes were also identified. Some strains of A. flavus as well as A. flavus var. viridis, A. oryzae var. viridis and A. oryzae var. effuses have an A. oryzae-type aflR gene. For all strains with the A. oryzae-type aflR gene, there was no evidence of aflatoxin production. It is suggested that for safety reasons, the aflR gene could be examined to assess possible aflatoxin production by Aspergillus section Flavi strains.

  6. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells.

    Science.gov (United States)

    Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M; Yue, Junming

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.

  7. Reactions of R(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)]. A general and efficient entry to phosphanylphosphinidene complexes of platinum. Syntheses and structures of [(eta(2)-P=(i)Pr(2))Pt(p-Tol(3)P)(2)], [(eta(2)-P=(t)Bu(2))Pt(p-Tol(3)P)(2)], [{eta(2)-P=(N(i)Pr(2))(2)}Pt(p-Tol(3)P)(2)] and [{(Et(2)PhP)(2)Pt}(2)P(2)].

    Science.gov (United States)

    Domańska-Babul, Wioleta; Chojnacki, Jaroslaw; Matern, Eberhard; Pikies, Jerzy

    2009-01-07

    The reactions of lithium derivatives of diphosphanes R(2)P-P(SiMe(3))Li (R = (t)Bu, (i)Pr, Et(2)N and (i)Pr(2)N) with [(R'(3)P)(2)PtCl(2)] (R'(3)P = Et(3)P, Et(2)PhP, EtPh(2)P and p-Tol(3)P) proceed in a facile manner to afford side-on bonded phosphanylphosphinidene complexes of platinum [(eta(2)-P=R(2))Pt(PR'(3))(2)]. The related reactions of Ph(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)] did not yield [(eta(2)-P=PPh(2))Pt(PR'(3))(2)] and resulted mainly in the formation of [{(R'(3)P)(2)Pt}(2)P(2)], Ph(2)P-PLi-PPh(2), (Me(3)Si)(2)PLi and (Me(3)Si)(3)P. Crystallographic data are reported for the compounds [(eta(2)-P=R(2))Pt(p-Tol(3)P)(2)] (R = (t)Bu, (i)Pr, ((i)Pr(2)N)(2)P) and for [{(Et(2)PhP)(2)Pt}(2)P(2)].

  8. Development of the fast reactor group constant set JFS-3-J3.2R based on the JENDL-3.2

    CERN Document Server

    Chiba, G

    2002-01-01

    It is reported that the fast reactor group constant set JFS-3-J3.2 based on the newest evaluated nuclear data library JENDL3.2 has a serious error in the process of applying the weighting function. As the error affects greatly nuclear characteristics, and a corrected version of the reactor constant set, JFS-3-J3.2R, was developed, as well as lumped FP cross sections. The use of JFS-3-J3.2R improves the results of analyses especially on sample Doppler reactivity and reaction rate in the blanket region in comparison with those obtained using the JFS-3-J3.2.

  9. Characterization of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next generation sequencing study

    Science.gov (United States)

    Mirzaa, Ghayda; Conti, Valerio; Timms, Andrew E.; Smyser, Christopher D.; Ahmed, Sarah; Carter, Melissa; Barnett, Sarah; Hufnagel, Robert B.; Goldstein, Amy; Narumi-Kishimoto, Yoko; Olds, Carissa; Collins, Sarah; Johnston, Kathreen; Deleuze, Jean-François; Nitschké, Patrick; Friend, Kathryn; Harris, Catharine; Goetsch, Allison; Martin, Beth; Boyle, Evan August; Parrini, Elena; Mei, Davide; Tattini, Lorenzo; Slavotinek, Anne; Blair, Ed; Barnett, Christopher; Shendure, Jay; Chelly, Jamel; Dobyns, William B.; Guerrini, Renzo

    2015-01-01

    SUMMARY Background Bilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment and epilepsy. BPP is etiologically heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic etiologies of BPP and delineate their frequency in this patient population. Methods We performed child-parent (trio)-based whole exome sequencing (WES) on eight children with BPP. Following the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 in a cohort of 118 children with BPP who were ascertained from 1980 until 2015 using two methods. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal-large head size. Second, we performed amplicon sequencing of the recurrent PIK3R2 mutation (p.Gly373Arg) on 80 children with various types of polymicrogyria including BPP. One additional patient underwent clinical WES independently, and was included in this study given the phenotypic similarity to our cohort. All patients included in this study were children (BPP. Of the 38 patients with BPP and normal-large head size who underwent targeted next generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient was found to have the recurrent PIK3R2 mutation by clinical WES. Seven patients had BPP alone, and 13 had BPP in association with features of the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH). Nineteen patients had the same mutation (Gly373Arg), and one had a nearby missense mutation (p.Lys376Glu). Across the entire cohort, mutations were constitutional in 12 and mosaic in eight patients. Among mosaic patients, we observed substantial

  10. Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, a 250-Fold Selective Melanocortin-4 Receptor (MC4R) Antagonist over the Melanocortin-3 Receptor (MC3R), Affects Energy Homeostasis in Male and Female Mice Differently.

    Science.gov (United States)

    Lensing, Cody J; Adank, Danielle N; Doering, Skye R; Wilber, Stacey L; Andreasen, Amy; Schaub, Jay W; Xiang, Zhimin; Haskell-Luevano, Carrie

    2016-09-21

    The melanocortin-4 receptor (MC4R) has been indicated as a therapeutic target for metabolic disorders such as anorexia, cachexia, and obesity. The current study investigates the in vivo effects on energy homeostasis of a 15 nM MC4R antagonist SKY2-23-7, Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, that is a 3700 nM melanocortin-3 receptor (MC3R) antagonist with minimal MC3R and MC4R agonist activity. When monitoring both male and female mice in TSE metabolic cages, sex-specific responses were observed in food intake, respiratory exchange ratio (RER), and energy expenditure. A 7.5 nmol dose of SKY2-23-7 increased food intake, increased RER, and trended toward decreasing energy expenditure in male mice. However, this compound had minimal effect on female mice's food intake and RER at the 7.5 nmol dose. A 2.5 nmol dose of SKY2-23-7 significantly increased female food intake, RER, and energy expenditure while having a minimal effect on male mice at this dose. The observed sex differences of SKY2-23-7 administration result in the discovery of a novel chemical probe for elucidating the molecular mechanisms of the sexual dimorphism present within the melanocortin pathway. To further explore the melanocortin sexual dimorphism, hypothalamic gene expression was examined. The mRNA expression of the MC3R and proopiomelanocortin (POMC) were not significantly different between sexes. However, the expression of agouti-related peptide (AGRP) was significantly higher in female mice which may be a possible mechanism for the sex-specific effects observed with SKY2-23-7.

  11. Signatures of spin-orbital states of t2g 2 system in optical conductivity: R VO3 (R =Y and La)

    Science.gov (United States)

    Kim, Minjae

    2018-04-01

    We investigate signatures of the spin and orbital states of R VO3 (R =Y and La) in optical conductivity using density functional theory plus dynamical mean-field theory (DFT+DMFT). From the assignment of multiplet state configurations to optical transitions, the DFT+DMFT reproduces experimental temperature-dependent evolutions of optical conductivity for both YVO3 and LaVO3. We also show that the optical conductivity is a useful quantity to probe the evolution of the orbital state even in the absence of spin order. The result provides a reference to investigate the spin and orbital states of t2g 2 vanadate systems, which is an important issue for both fundamental physics on spin and orbital states and applications of vanadates by means of orbital state control.

  12. Coordinated transcriptional regulation of two key genes in the lignin branch pathway--CAD and CCR--is mediated through MYB- binding sites.

    Science.gov (United States)

    Rahantamalala, Anjanirina; Rech, Philippe; Martinez, Yves; Chaubet-Gigot, Nicole; Grima-Pettenati, Jacqueline; Pacquit, Valérie

    2010-06-28

    Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the final steps in the biosynthesis of monolignols, the monomeric units of the phenolic lignin polymers which confer rigidity, imperviousness and resistance to biodegradation to cell walls. We have previously shown that the Eucalyptus gunnii CCR and CAD2 promoters direct similar expression patterns in vascular tissues suggesting that monolignol production is controlled, at least in part, by the coordinated transcriptional regulation of these two genes. Although consensus motifs for MYB transcription factors occur in most gene promoters of the whole phenylpropanoid pathway, functional evidence for their contribution to promoter activity has only been demonstrated for a few of them. Here, in the lignin-specific branch, we studied the functional role of MYB elements as well as other cis-elements identified in the regulatory regions of EgCAD2 and EgCCR promoters, in the transcriptional activity of these gene promoters. By using promoter deletion analysis and in vivo footprinting, we identified an 80 bp regulatory region in the Eucalyptus gunnii EgCAD2 promoter that contains two MYB elements, each arranged in a distinct module with newly identified cis-elements. A directed mutagenesis approach was used to introduce block mutations in all putative cis-elements of the EgCAD2 promoter and in those of the 50 bp regulatory region previously delineated in the EgCCR promoter. We showed that the conserved MYB elements in EgCAD2 and EgCCR promoters are crucial both for the formation of DNA-protein complexes in EMSA experiments and for the transcriptional activation of EgCAD2 and EgCCR promoters in vascular tissues in planta. In addition, a new regulatory cis-element that modulates the balance between two DNA-protein complexes in vitro was found to be important for EgCAD2 expression in the cambial zone. Our assignment of functional roles to the identified cis-elements clearly demonstrates the

  13. lncRNA-Induced Nucleosome Repositioning Reinforces Transcriptional Repression of rRNA Genes upon Hypotonic Stress

    Directory of Open Access Journals (Sweden)

    Zhongliang Zhao

    2016-03-01

    Full Text Available The activity of rRNA genes (rDNA is regulated by pathways that target the transcription machinery or alter the epigenetic state of rDNA. Previous work has established that downregulation of rRNA synthesis in quiescent cells is accompanied by upregulation of PAPAS, a long noncoding RNA (lncRNA that recruits the histone methyltransferase Suv4-20h2 to rDNA, thus triggering trimethylation of H4K20 (H4K20me3 and chromatin compaction. Here, we show that upregulation of PAPAS in response to hypoosmotic stress does not increase H4K20me3 because of Nedd4-dependent ubiquitinylation and proteasomal degradation of Suv4-20h2. Loss of Suv4-20h2 enables PAPAS to interact with CHD4, a subunit of the chromatin remodeling complex NuRD, which shifts the promoter-bound nucleosome into the transcriptional “off” position. Thus, PAPAS exerts a “stress-tailored” dual function in rDNA silencing, facilitating either Suv4-20h2-dependent chromatin compaction or NuRD-dependent changes in nucleosome positioning.

  14. Synthesis of New Chiral Amines with a Cyclic 1,2-Diacetal Skeleton Derived from (2R, 3R-(+-Tartaric Acid

    Directory of Open Access Journals (Sweden)

    Ana Maria Faísca Phillips

    2006-03-01

    Full Text Available The syntheses of new chiral cyclic 1,2-diacetals from (2R, 3R-( -tartaric acidare described. C2-symmetrical diamines were prepared via direct amidation of the tartrate orfrom the corresponding bismesylate via reaction with sodium azide. For C1-symmetricalcompounds, the Appel reaction was used to form the key intermediate, amonochlorocarbinol, from the diol. Some of the new chiral compounds, produced in good tohigh yields, may be potentially useful as asymmetric organocatalysts or as nitrogen andsulfur chelating ligands for asymmetric metal catalyzed reactions. Thus, a bis-N-methyl-methanamine derivative, used in substoichiometric amounts, was found to catalyze theenantioselective addition of cyclohexanone to (E-β-nitrostyrene with highdiastereoselectivity (syn / anti = 92:8, albeit giving moderate optical purity (syn: 30 %.

  15. Data of expression status of miR- 29a and its putative target mitochondrial apoptosis regulatory gene DRP1 upon miR-15a and miR-214 inhibition

    Directory of Open Access Journals (Sweden)

    Muhammad Ishtiaq Jan

    2018-02-01

    Full Text Available Data is about the mitochondrial apoptosis regulatory framework genes PUMA, DRP1 (apoptotic, and ARC (anti-apoptotic analysis after the employment of their controlling miRNAs inhibitors. The data represents putative conserved targeting of seed regions of miR-15a, miR-29a, and miR-214 with respective target genes PUMA, DRP1, and ARC. Data is of cross interference in expression levels of one miRNA family, miR-29a and its putative target DRP1 upon the inhibitory treatment of other miRNAs 15a and 214. Keywords: DRP1, miR-15a, Apoptosis, miRNAs inhibition

  16. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes.

    Science.gov (United States)

    Luo, Chonglin; Tetteh, Paul W; Merz, Patrick R; Dickes, Elke; Abukiwan, Alia; Hotz-Wagenblatt, Agnes; Holland-Cunz, Stefan; Sinnberg, Tobias; Schittek, Birgit; Schadendorf, Dirk; Diederichs, Sven; Eichmüller, Stefan B

    2013-03-01

    MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We identified and validated two genes (c-Met and YB1) as direct targets of miR-137 and confirmed two previously known targets, namely enhancer of zeste homolog 2 (EZH2) and microphthalmia-associated transcription factor (MITF). Functional studies showed that miR-137 suppressed melanoma cell invasion through the downregulation of multiple target genes. The decreased invasion caused by miR-137 overexpression could be phenocopied by small interfering RNA knockdown of EZH2, c-Met, or Y box-binding protein 1 (YB1). Furthermore, miR-137 inhibited melanoma cell migration and proliferation. Finally, miR-137 induced apoptosis in melanoma cell lines and decreased BCL2 levels. In summary, our study confirms that miR-137 acts as a tumor suppressor in malignant melanoma and reveals that miR-137 regulates multiple targets including c-Met, YB1, EZH2, and MITF.

  17. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis.

    Directory of Open Access Journals (Sweden)

    Azusa Saika

    Full Text Available Mannosylerythritol lipids (MELs belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S-erythritol (R-form as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R-erythritol (S-form as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL.

  18. Crystallization and preliminary X-ray analysis of the TetR-like efflux pump regulator SimR

    International Nuclear Information System (INIS)

    Le, Tung B. K.; Stevenson, Clare E. M.; Buttner, Mark J.; Lawson, David M.

    2011-01-01

    Crystals of SimR, a TetR-like efflux pump repressor from S. antibioticus, were obtained and X-ray data were recorded to a resolution of 2.3 Å. Crystals of SimR were grown by vapour diffusion. The protein crystallized with trigonal symmetry and X-ray data were recorded to a resolution of 2.3 Å from a single crystal at the synchrotron. SimR belongs to the TetR family of bacterial transcriptional regulators. In the absence of the antibiotic simocyclinone, SimR represses the transcription of a divergently transcribed gene encoding the simocyclinone efflux pump SimX in Streptomyces antibioticus by binding to operators in the simR–simX intergenic region. Simocyclinone binding causes SimR to dissociate from its operators, leading to expression of the SimX efflux pump. Thus, SimR represents an intimate link between the biosynthesis of simocyclinone and its export, which may also provide the mechanism of self-resistance to the antibiotic in the producer strain

  19. SYNTHESIS AND CHARACTERIZATION OF (MU-5-C5ME5)2TI(R)CL (R = ME, ET, NORMAL-PR, CH=CH2, PH, O-NORMAL-PR) AND THEIR SALT METATHESIS REACTIONS - THERMAL-DECOMPOSITION PATHWAYS OF (MU-5-C5ME5)2TI(ME)R' (R' = ET, CH=CH2, PH, CH2PH)

    NARCIS (Netherlands)

    LUINSTRA, GA; TEUBEN, JH

    Complexes Cp*2Ti(R)Cl (Cp* = eta-5-C5Me5; R = Me (1), Et (2), n-Pr (3), CH=CH2 (4), Ph (5), O-n-Pr (6)) have been prepared by oxidation Of CP*2TiR with lead dichloride. Not every compound Cp*2Ti(R)Cl was accessible and for R = CH2CMe3 and CH2Ph reduction to Cp*2TiCl and R. was observed. Homolysis of

  20. Method of forming an oxide superconducting thin film having an R1A2C3 crystalline phase over an R2A1C1 crystalline phase

    International Nuclear Information System (INIS)

    Lelental, M.; Romanofsky, H.J.

    1992-01-01

    This patent describes a process which comprises forming a mixed rare earth alkaline earth copper oxide layer on a substrate and converting the mixed rare earth alkaline earth copper oxide layer to an electrically conductive layer. It comprises crystalline R 1 A 2 C 3 oxide phase by heating in the presence of oxygen, wherein rare earth and R is in each instance chosen from among yttrium, lanthanum, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium and alkaline earth and A is in each instance chosen from among calcium, strontium and barium, characterized in that a crystalline R 2 A 1 C 1 oxide phase is first formed as a layer on the substrate and the crystalline R 1 A 2 C 3 oxide phase is formed over the crystalline R 2 A 1 C 1 oxide phase by coating a mixed rare earth alkaline earth copper oxide on the crystalline R 2 A 1 C 1 oxide phase and heating the mixed rare earth alkaline earth copper oxide to a temperature of at least 1000 degrees C

  1. Lactobacillus reuteri-specific immunoregulatory gene rsiR modulates histamine production and immunomodulation by Lactobacillus reuteri.

    Science.gov (United States)

    Hemarajata, P; Gao, C; Pflughoeft, K J; Thomas, C M; Saulnier, D M; Spinler, J K; Versalovic, J

    2013-12-01

    Human microbiome-derived strains of Lactobacillus reuteri potently suppress proinflammatory cytokines like human tumor necrosis factor (TNF) by converting the amino acid l-histidine to the biogenic amine histamine. Histamine suppresses mitogen-activated protein (MAP) kinase activation and cytokine production by signaling via histamine receptor type 2 (H2) on myeloid cells. Investigations of the gene expression profiles of immunomodulatory L. reuteri ATCC PTA 6475 highlighted numerous genes that were highly expressed during the stationary phase of growth, when TNF suppression is most potent. One such gene was found to be a regulator of genes involved in histidine-histamine metabolism by this probiotic species. During the course of these studies, this gene was renamed the Lactobacillus reuteri-specific immunoregulatory (rsiR) gene. The rsiR gene is essential for human TNF suppression by L. reuteri and expression of the histidine decarboxylase (hdc) gene cluster on the L. reuteri chromosome. Inactivation of rsiR resulted in diminished TNF suppression in vitro and reduced anti-inflammatory effects in vivo in a trinitrobenzene sulfonic acid (TNBS)-induced mouse model of acute colitis. A L. reuteri strain lacking an intact rsiR gene was unable to suppress colitis and resulted in greater concentrations of serum amyloid A (SAA) in the bloodstream of affected animals. The PhdcAB promoter region targeted by rsiR was defined by reporter gene experiments. These studies support the presence of a regulatory gene, rsiR, which modulates the expression of a gene cluster known to mediate immunoregulation by probiotics at the transcriptional level. These findings may point the way toward new strategies for controlling gene expression in probiotics by dietary interventions or microbiome manipulation.

  2. The pKR+ values of coordinated propargyl cations [Cp2Mo2(CO)4(μ-η2, η3-HC≡CCR1R2)]+

    International Nuclear Information System (INIS)

    Barinov, I.V.

    1998-01-01

    The pK R + values metal-stabilised carbocations [Cp 2 Mo 2 (CO) 4 (μ-η 2 , η 3 -HC≡CCR 1 R 2 )] + (R 1 = R 2 H, R 1 = H, R 2 = Me and R 1 = R 2 = Me) are measured in 50 % aqueous MeCN. Stability of the cations is increased on going from tertiary to primary carbocations [ru

  3. N-Heterocyclic Carbene Coinage Metal Complexes of the Germanium-Rich Metalloid Clusters [Ge9R3]− and [Ge9RI2]2− with R = Si(iPr3 and RI = Si(TMS3

    Directory of Open Access Journals (Sweden)

    Felix S. Geitner

    2017-07-01

    Full Text Available We report on the synthesis of novel coinage metal NHC (N-heterocyclic carbene compounds of the germanium-rich metalloid clusters [Ge9R3]− and [Ge9RI2]2− with R = Si(iPr3 and RI = Si(TMS3. NHCDippCu{η3Ge9R3} with R = Si(iPr3 (1 represents a less bulky silyl group-substituted derivative of the known analogous compounds with R = Si(iBu3 or Si(TMS3. The coordination of the [NHCDippCu]+ moiety to the cluster unit occurs via one triangular face of the tri-capped trigonal prismatic [Ge9] cluster. Furthermore, a series of novel Zintl cluster coinage metal NHC compounds of the type (NHCM23Ge9RI2} (RI = Si(TMS3 M = Cu, Ag and Au; NHC = NHCDipp or NHCMes is presented. These novel compounds represent a new class of neutral dinuclear Zintl cluster coinage metal NHC compounds, which are obtained either by the stepwise reaction of a suspension of K12Ge17 with Si(TMS3Cl and the coinage metal carbene complexes NHCMCl (M = Cu, Ag, Au, or via a homogenous reaction using the preformed bis-silylated cluster K2[Ge9(Si(TMS32] and the corresponding NHCMCl (M = Cu, Ag, Au complex. The molecular structures of NHCDippCu{η3Ge9(Si(iPr33} (1 and (NHCDippCu23-Ge9(Si(TMS32} (2 were determined by single crystal X-ray diffraction methods. In 2, the coordination of the [NHCDippCu]+ moieties to the cluster unit takes place via both open triangular faces of the [Ge9] entity. Furthermore, all compounds were characterized by means of NMR spectroscopy (1H, 13C, 29Si and ESI-MS.

  4. Synthesis of new chiral amines with a cyclic 1,2-diacetal skeleton derived from (2R, 3R)-(+)-tartaric acid.

    Science.gov (United States)

    Barros, M Teresa; Phillips, Ana Maria Faísca

    2006-03-17

    The syntheses of new chiral cyclic 1,2-diacetals from (2R, 3R)-( )-tartaric acid are described. C(2)-symmetrical diamines were prepared via direct amidation of the tartrate or from the corresponding bismesylate via reaction with sodium azide. For C1-symmetrical compounds, the Appel reaction was used to form the key intermediate, a monochlorocarbinol, from the diol. Some of the new chiral compounds, produced in good to high yields, may be potentially useful as asymmetric organocatalysts or as nitrogen and sulfur chelating ligands for asymmetric metal catalyzed reactions. Thus, a bis-N-methyl-methanamine derivative, used in substoichiometric amounts, was found to catalyze the enantioselective addition of cyclohexanone to (E)-beta-nitrostyrene with high diastereoselectivity (syn / anti = 92:8), albeit giving moderate optical purity (syn: 30 %).

  5. The β-1,3-glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ha, Cheol Woong; Kim, Kwantae; Chang, Yeon Ji; Kim, Bongkeun; Huh, Won-Ki

    2014-07-01

    In Saccharomyces cerevisiae, the stability of highly repetitive rDNA array is maintained through transcriptional silencing. Recently, a β-1,3-glucanosyltransferase Gas1 has been shown to play a significant role in the regulation of transcriptional silencing in S. cerevisiae. Here, we show that the gas1Δ mutation increases rDNA silencing in a Sir2-dependent manner. Remarkably, the gas1Δ mutation induces nuclear localization of Msn2/4 and stimulates the expression of PNC1, a gene encoding a nicotinamidase that functions as a Sir2 activator. The lack of enzymatic activity of Gas1 or treatment with a cell wall-damaging agent, Congo red, exhibits effects similar to those of the gas1Δ mutation. Furthermore, the loss of Gas1 or Congo red treatment lowers the cAMP-dependent protein kinase (PKA) activity in a cell wall integrity MAP kinase Slt2-dependent manner. Collectively, our results suggest that the dysfunction of Gas1 plays a positive role in the maintenance of rDNA integrity by decreasing PKA activity and inducing the accumulation of Msn2/4 in the nucleus. It seems that nuclear-localized Msn2/4 stimulate the expression of Pnc1, thereby enhancing the association of Sir2 with rDNA and promoting rDNA stability. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd): Crystal structures with nets of Ir atoms

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Maksym [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str, 6, UA-79005 Lviv (Ukraine); Swiss Federal Laboratories for Materials Science and Technology (EMPA), Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Zaremba, Oksana; Gladyshevskii, Roman [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str, 6, UA-79005 Lviv (Ukraine); Hlukhyy, Viktor, E-mail: viktor.hlukhyy@lrz.tu-muenchen.de [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85747 Garching (Germany); Faessler, Thomas F. [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85747 Garching (Germany)

    2012-12-15

    The crystal structures of the new ternary compounds Sm{sub 4}Ir{sub 13}Ge{sub 9} and LaIr{sub 3}Ge{sub 2} were determined and refined on the basis of single-crystal X-ray diffraction data. They belong to the Ho{sub 4}Ir{sub 13}Ge{sub 9} (oP52, Pmmn) and CeCo{sub 3}B{sub 2} (hP5, P6/mmm) structure types, respectively. The formation of isotypic compounds R{sub 4}Ir{sub 13}Ge{sub 9} with R=La, Ce, Pr, Nd, and RIr{sub 3}Ge{sub 2} with R=Ce, Pr, Nd, was established by powder X-ray diffraction. The RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) compounds exist only in as-cast samples and decompose during annealing at 800 Degree-Sign C with the formation of R{sub 4}Ir{sub 13}Ge{sub 9}. The structure of Sm{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting, slightly puckered nets of Ir atoms (4{sup 4})(4{sup 3}.6){sub 2}(4.6{sup 2}){sub 2} and (4{sup 4}){sub 2}(4{sup 3}.6){sub 4}(4.6{sup 2}){sub 2} that are perpendicular to [0 1 1] as well as to [0 -1 1] and [0 0 1]. The Ir atoms are surrounded by Ge atoms that form tetrahedra or square pyramids (where the layers intersect). The Sm and additional Ir atoms (in trigonal-planar coordination) are situated in channels along [1 0 0] (short translation vector). In the structure of LaIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets (3.6.3.6) perpendicular to [0 0 1]. These nets alternate along the short translation vector with layers of La and Ge atoms. - Graphical abstract: The crystal structures contain the nets of Ir atoms as main structural motif: R{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting slightly puckered nets of Ir atoms, whereas in the structure of RIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets. Highlights: Black-Right-Pointing-Pointer The Ir-rich ternary germanides R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) have been synthesized. Black-Right-Pointing-Pointer The RIr{sub 3}Ge{sub 2} compounds exist only in as-cast samples and decompose during annealing at 800

  7. Anti-tumor effects of Egr-IFN γ gene therapy combined with 125I-UdR radionuclide therapy

    International Nuclear Information System (INIS)

    Zhao Jingguo; Ni Yanjun; Song Xiangfu; Li Yanyi; Yang Wei; Sun Ting; Ma Qingjie; Gao Fengtong

    2008-01-01

    Objective: To explore the anti-tumor effects of Egr-IFNγ gene therapy combined with 125 I-UdR radionuclide therapy in mice bearing H22 hepatocarcinoma and its mechanism. Methods: The recombinant plasmid pcDNAEgr-IFNγ mixed with liposome was injected into tumor. 48 h later, 370 kBq 125 I-UdR was injected into tumor. The tumor growth rates at different times were observed. After 3 d gene-radionuclide therapy, the concentration of IFNγ in cytoplasm of H22 cells and cytotoxic activities of splenic CTL of the mice in different groups were examined. Results: The tumor growth rates of pcDNAEgr-IFNγ + 125 I-UdR group were obviously lower than those of control group, 125 I-UdR group and pcDNAEgr-1 + 125 I-UdR group 6-15 d after gene-radionuclide therapy. IFNγ protein was found in cytoplasm of H22 cells in pcDNAEgr-IFNγ + 125 I-UdR group after 3 d gene-radionuclide therapy. Cytotoxic activity of splenic CTL in pcDNAEgr-IFNγ + 125 I-UdR group was significantly higher than that in the other groups (P 125 I-UdR radionuclide therapy are better than those of 125 I-UdR therapy. (authors)

  8. Synthesis and biological characterization of (3R,4R)-4-(2-(benzhydryloxy)ethyl)-1-((R)-2-hydroxy-2-phenylethyl)-piperidin-3-ol and its stereoisomers for activity toward monoamine transporters.

    Science.gov (United States)

    Kharkar, Prashant S; Batman, Angela M; Zhen, Juan; Beardsley, Patrick M; Reith, Maarten E A; Dutta, Aloke K

    2009-07-01

    A novel series of optically active molecules based on a 4-(2-(benzhydryloxy)ethyl)-1-((R)-2-hydroxy-2-phenylethyl)-piperidin-3-ol template were developed. Depending on stereochemistry, the compounds exhibit various degrees of affinity for three dopamine, serotonin, and norepinephrine transporters. These molecules have the potential for treating several neurological disorders such as drug abuse, depression, and attention deficit hyperactivity disorder.Herein we describe the synthesis and biological evaluation of a series of asymmetric 4-(2-(benzhydryloxy)ethyl)-1-((R)-2-hydroxy-2-phenylethyl)-piperidin-3-ol-based dihydroxy compounds in which the hydroxy groups are located on both the piperidine ring and the N-phenylethyl side chain. In vitro uptake inhibition data of these molecules indicate high affinity for the dopamine transporter (DAT) in addition to moderate to high affinity for the norepinephrine transporter (NET). Interestingly, compounds 9 b and 9 d exhibit affinities for all three monoamine transporters, with highest potency at DAT and NET, and moderate potency at the serotonin transporter (SERT) (K(i): 2.29, 78.4, and 155 nM for 9 b and 1.55, 14.1, and 259 nM for 9 d, respectively). Selected compounds 9 a, 9 d, and 9 d' were tested for their locomotor activity effects in mice and for their ability to occasion the cocaine-discriminative stimulus in rats. These test compounds generally exhibit a much longer duration of action than cocaine for elevating locomotor activity, and completely generalize the cocaine-discriminative stimulus in a dose-dependent manner.

  9. IGF2BP3 functions as a potential oncogene and is a crucial target of miR-34a in gastric carcinogenesis.

    Science.gov (United States)

    Zhou, Yuhang; Huang, Tingting; Siu, Ho Lam; Wong, Chi Chun; Dong, Yujuan; Wu, Feng; Zhang, Bin; Wu, William K K; Cheng, Alfred S L; Yu, Jun; To, Ka Fai; Kang, Wei

    2017-04-11

    Gastric cancer (GC) is one of the frequent causes of cancer-related death in eastern Asian population. IGF2BP2 lists in the top rank up-regulated genes in GC, but its functional role is unclear. The expression of IGF2BP3 in GC cell lines and primary samples was examined by qRT-PCR and Western blot. The biological role of IGF2BP3 was revealed by a series of functional in vitro studies. Its regulation by microRNAs (miRNAs) was predicted by TargetScan and confirmed by luciferase assays and rescue experiments. IGF2BP3 ranked the No.1 of the up-regulated genes by expression microarray analysis in GC cell lines. The expression level of IGF2BP3 was observed in GC tissues comparing with non-tumorous gastric epitheliums. The up-regulated IGF2BP3 expression was associated with poor disease specific survival. IGF2BP3 knockdown significantly inhibited cell proliferation and invasion. Apart from copy number gain, IGF2BP3 has been confirmed to be negatively regulated by tumor-suppressive miRNA, namely miR-34a. The expression of miR-34a showed negative correlation with IGF2BP3 mRNA expression in primary GC samples and more importantly, re-overexpression of IGF2BP3 rescued the inhibitory effect of miR-34a. We compressively revealed the oncogenic role of IGF2BP3 in gastric tumorigenesis and confirmed its activation is partly due to the silence of miR-34a. Our findings identified useful prognostic biomarker and provided clinical translational potential.

  10. Uranium metalla-allenes with carbene imido R_2C=U"I"V=NR' units (R=Ph_2PNSiMe_3; R'=CPh_3): alkali-metal-mediated push-pull effects with an amido auxiliary

    International Nuclear Information System (INIS)

    Lu, Erli; Tuna, Floriana; Kaltsoyannis, Nikolas; Liddle, Stephen T.; Lewis, William

    2016-01-01

    We report uranium(IV)-carbene-imido-amide metalla-allene complexes [U(BIPM"T"M"S)(NCPh_3)(NHCPh_3)(M)] (BIPM"T"M"S=C(PPh_2NSiMe_3)_2; M=Li or K) that can be described as R_2C=U=NR' push-pull metalla-allene units, as organometallic counterparts of the well-known push-pull organic allenes. The solid-state structures reveal that the R_2C=U=NR' units adopt highly unusual cis-arrangements, which are also reproduced by gas-phase theoretical studies conducted without the alkali metals to remove their potential structure-directing roles. Computational studies confirm the double-bond nature of the U=NR' and U=CR_2 interactions, the latter increasingly attenuated by potassium then lithium when compared to the hypothetical alkali-metal-free anion. Combined experimental and theoretical data show that the push-pull effect induced by the alkali metal cations and amide auxiliary gives a fundamental and tunable structural influence over the C=U"I"V=N units. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r......RNA gene amplicon sequencing can be used to reveal factors of importance for the operation of full-scale nutrient removal plants related to settling problems and floc properties. Using optimized DNA extraction protocols, indexed primers and our in-house Illumina platform, we prepared multiple samples...... be correlated to the presence of the species that are regarded as “strong” and “weak” floc formers. In conclusion, 16S rRNA gene amplicon sequencing provides a high throughput approach for a rapid and cheap community profiling of activated sludge that in combination with multivariate statistics can be used...

  12. Characterization of Hydrocortisone Biometabolites and 18S rRNA Gene in Chlamydomonas reinhardtii Cultures

    Directory of Open Access Journals (Sweden)

    Seyed Bagher Mosavi-Azam

    2008-10-01

    Full Text Available A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1. This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25ºC for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17b-Dihydroxyandrost-4-en-3-one (2, 11b-hydroxyandrost-4-en-3,17-dione (3, 11b,17a,20b,21-tetrahydroxypregn-4-en-3-one (4 and prednisolone (5 were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  13. Characterization of hydrocortisone biometabolites and 18S rRNA gene in Chlamydomonas reinhardtii cultures.

    Science.gov (United States)

    Ghasemi, Younes; Rasoul-Amini, Sara; Morowvat, Mohammad Hossein; Raee, Mohammad Javad; Ghoshoon, Mohammad Bagher; Nouri, Fatemeh; Negintaji, Narges; Parvizi, Rezvan; Mosavi-Azam, Seyed Bagher

    2008-10-31

    A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17 beta-Dihydroxyandrost-4-en-3-one (2), 11 beta-hydroxyandrost-4-en-3,17-dione (3), 11 beta,17 alpha,20 beta,21-tetrahydroxypregn-4-en-3-one (4) and prednisolone (5) were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  14. The Effect of Common Inversion Polymorphisms In(2L)t and In(3R)Mo on Patterns of Transcriptional Variation in Drosophila melanogaster.

    Science.gov (United States)

    Lavington, Erik; Kern, Andrew D

    2017-11-06

    Chromosomal inversions are a ubiquitous feature of genetic variation. Theoretical models describe several mechanisms by which inversions can drive adaptation and be maintained as polymorphisms. While inversions have been shown previously to be under selection, or contain genetic variation under selection, the specific phenotypic consequences of inversions leading to their maintenance remain unclear. Here we use genomic sequence and expression data from the Drosophila Genetic Reference Panel (DGRP) to explore the effects of two cosmopolitan inversions, In ( 2L ) t and In ( 3R ) Mo , on patterns of transcriptional variation. We demonstrate that each inversion has a significant effect on transcript abundance for hundreds of genes across the genome. Inversion-affected loci (IAL) appear both within inversions as well as on unlinked chromosomes. Importantly, IAL do not appear to be influenced by the previously reported genome-wide expression correlation structure. We found that five genes involved with sterol uptake, four of which are Niemann-Pick Type 2 orthologs, are upregulated in flies with In ( 3R ) Mo but do not have SNPs in linkage disequilibrium (LD) with the inversion. We speculate that this upregulation is driven by genetic variation in mod ( mdg4 ) that is in LD with In ( 3R ) Mo We find that there is little evidence for a regional or position effect of inversions on gene expression at the chromosomal level, but do find evidence for the distal breakpoint of In ( 3R ) Mo interrupting one gene and possibly disassociating the two flanking genes from regulatory elements. Copyright © 2017 Lavington and Kern.

  15. Synthesis of (3R)-3-(4-fluorophenylsulfonamido)-1,2,3,4-tetra-hydro-9-[4-3H] carbazolepropanoic acid

    International Nuclear Information System (INIS)

    Pleiss, Ulrich; Radtke, Martin; Schmitt, Peter

    1990-01-01

    (3R)-3-(4-Fluorophenylsulfonamido)-1,2,3,4-tetrahydro-9-[4- 3 H]carbazolepropanoic acid ( [ 3 H]BAY u 3405) (5) was synthesized by catalytic reduction of (3R)-3-(4-fluorophenylsulfonamido)-4-oxo-1,2,3,4-tetrahydro-9-carbazolepropanoic acid (4) with tritium. The precursor (4) was prepared by esterification and following oxidation of BAY u 3405 with 2,3-dichloro-5,6-dicyano-p-benzoquinone. 3 H NMR analysis of the final product showed the formation of [4α- 3 H]BAY us 3405 and [4β- 3 H]BAY u 3405 in a ratio of 1:1. (author)

  16. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice.

    Science.gov (United States)

    Glendinning, John I; Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F; Vasselli, Joseph R; Sclafani, Anthony

    2015-09-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. Copyright © 2015 the American Physiological Society.

  17. miR-92a family and their target genes in tumorigenesis and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Molin, E-mail: molin_li@hotmail.com [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Guan, Xingfang; Sun, Yuqiang [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Mi, Jun [Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Shu, Xiaohong [College of Pharmacy, Dalian Medical University Cancer Center, Dalian 116044 (China); Liu, Fang [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China); Li, Chuangang, E-mail: li_chuangang@sina.com [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China)

    2014-04-15

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.

  18. miR-92a family and their target genes in tumorigenesis and metastasis

    International Nuclear Information System (INIS)

    Li, Molin; Guan, Xingfang; Sun, Yuqiang; Mi, Jun; Shu, Xiaohong; Liu, Fang; Li, Chuangang

    2014-01-01

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis

  19. Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults.

    Science.gov (United States)

    Han, Pengfei; Keast, Russell S J; Roura, Eugeni

    2017-11-01

    The influence of sweet taste sensitivity on food intake is not well understood. We investigated the involvement of salivary leptin and SNP of the sweet taste receptor genes (TAS1R2/TAS1R3) on sweet taste sensitivity, sensory-specific satiety (SSS) and macronutrient intake in healthy human adults. In all, nineteen high sweet sensitivity (HS) and eleven low sweet sensitivity (LS) subjects were classified based on the sweetness perception of one solution (9 mm sucrose) forced-choice triangle test. All participants completed a randomised crossover design experiment where they consumed one of three iso-energetic soup preloads differing in primary taste quality (sweet, non-sweet taste-control or no-taste energy-control). A period of 1 h after the preload, participants were offered a buffet meal consisting of foods varying in taste (sweet or non-sweet) and fat content. Subjective measures included hunger/fullness and SSS for sweetness. Saliva and buccal cells were collected to measure leptin level and to study the TAS1R2/TAS1R3 specific SNP, respectively. Salivary leptin concentrations were significantly higher in LS than HS participants (P<0·05). In addition, HS showed stronger sweet SSS compared with LH participants (P<0·05), and consumed less carbohydrate (% energy) and more non-sweet foods than LS (P<0·01 and P<0·05, respectively). Alleles from each TAS1R2 locus (GG compared with AA alleles of rs12033832, and CT/CC compared with TT alleles of rs35874116) were related to higher consumption of carbohydrates (% energy) and higher amount of sweet foods, respectively (P<0·05). In contrast, no associations were found for the TAS1R3 alleles. These results contribute to understand the links between taste sensitivity, macronutrient appetite and food consumption.

  20. Radio evidence for the initial stellar mass function in the R associations CMa R1, Mon R1, Mon R2

    International Nuclear Information System (INIS)

    Pyatunina, T.B.

    1985-01-01

    The R associations CMa R1 and Mon R1 have been searched for compact 7.6-cm sources with the RATAN-600 radio telescope. The Mon R1 region shows only about the expected number of background radio galaxies; in CMa R1 seven sources of small angular size with S> or =30 mJy have been found, two of them probably background objects. Comparison with optical data for CMa R1, together with previous RATAN-600 data for Mon R2, yields an initial mass function xi(M)proportionalM/sup -2.7plus-or-minus0.7/ for the rather massive (Mroughly-equal10 M/sub sun/) stars in these associations

  1. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Hwang, Pyoung-Han [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Yi, Ho-Keun [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Nam, Sang-Yun [Department of Alternative Therapy, School of Alternative Medicine and Health Science, Jeonju University, Jeonju 561-712 (Korea, Republic of); Lee, Dae-Yeol, E-mail: leedy@chonbuk.ac.kr [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of)

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  2. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    International Nuclear Information System (INIS)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh; Hwang, Pyoung-Han; Yi, Ho-Keun; Nam, Sang-Yun; Lee, Dae-Yeol

    2009-01-01

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  3. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p.

    Science.gov (United States)

    Cao, Jiaqing; Han, Xinyou; Qi, Xin; Jin, Xiangyun; Li, Xiaolin

    2017-10-01

    lncRNA-TUG1 (Taurine upregulated 1) is up-regulated and highly correlated with poor prognosis and disease status in osteosarcoma. TUG1 knockdown inhibits osteosarcoma cell proliferation, migration and invasion, and promotes apoptosis. However, its mechanism of action has not been well addressed. Growing evidence documented that lncRNA works as competing endogenous (ce)RNAs to modulate the expression and biological functions of miRNA. As a putative combining target of TUG1, miR-144-3p has been associated with the progress of osteosarcoma. To verify whether TUG1 functions through regulating miR-144-3p, the expression levels of TUG1 and miR-144-3p in osteosarcoma tissues and cell lines were determined. TUG1 was upregulated in osteosarcoma tissues and cell lines, and negatively correlated with miR-144-3p. TUG1 knockdown induced miR-144-3p expression in MG63 and U2OS cell lines. Results from dual luciferase reporter assay, RNA-binding protein immuno-precipitation (RIP) and applied biotin-avidin pull-down system confirmed TUG1 regulated miR-144-3p expression through direct binding. EZH2, a verified target of miR-144-3p was upregulated in osteosarcoma tissues and negatively correlated with miR-144-3p. EZH2 was negatively regulated by miR-144-3p and positively regulated by TUG1. Gain-and loss-of-function experiments were performed to analyze the role of TUG1, miR-144-3p and EZH2 in the migration and EMT of osteosarcoma cells. EZH2 over-expression partly abolished TUG1 knockdown or miR-144-3p overexpression induced inhibition of migration and EMT in osteosarcoma cells. In addition, TUG1 knockdown represses the activation of Wnt/β-catenin pathway, which was reversed by EZH2 over-expression. The activator of Wnt/β-catenin pathway LiCl could partially block the TUG1-knockdown induced osteosarcoma cell migration and EMT inhibition. In conclusion, our results showed that TUG1 plays an important role in osteosarcoma development through miRNA-144-3p/EZH2/Wnt/β-catenin pathway.

  4. Optically active antifungal azoles. XII. Synthesis and antifungal activity of the water-soluble prodrugs of 1-[(1R,2R)-2-(2,4-difluorophenyl)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-yl)propyl]-3-[4-(1H-1-tetrazolyl)phenyl]-2-imidazolidinone.

    Science.gov (United States)

    Ichikawa, T; Kitazaki, T; Matsushita, Y; Yamada, M; Hayashi, R; Yamaguchi, M; Kiyota, Y; Okonogi, K; Itoh, K

    2001-09-01

    1-[(1R,2R)-2-(2,4-Difluorophenyl)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-yl)propyl]-3-[4-(1H-1-tetrazolyl)phenyl]-2-imidazolidinone (1: TAK-456) was selected as a candidate for clinical trials, but since its water-solubility was insufficient for an injectable formulation, the quaternary triazolium salts 2 were designed as water-soluble prodrugs. Among the prodrugs prepared, 4-acetoxymethyl-1-[(2R,3R)-2-(2,4-difluorophenyl)-2-hydroxy-3-[2-oxo-3-[4-(1H-1-terazolyl)phenyl]-1-imidazolidinyl]butyl]-1H-1,2,4-triazolium chloride (2a: TAK-457) was selected as an injectable candidate for clinical trials based on the results of evaluations on solubility, stability, hemolytic effect and in vivo antifungal activities.

  5. Synthesis and Characterization of (η5-C5Me5)2Ti(R)Cl (R = Me, Et, n-Pr, CH=CH2, Ph, O-n-Pr) and Their Salt Metathesis Reactions. Thermal Decomposition Pathways of (η5-C5Me5)2Ti(Me)R' (R' = Et, CH=CH2, Ph, CH2Ph)

    NARCIS (Netherlands)

    Luinstra, Gerrit A.; Teuben, Jan H.

    1992-01-01

    Complexes Cp*2Ti(R)Cl (Cp* = η5-C5Me5; R = Me (1), Et (2), n-Pr (3), CH=CH2 (41, Ph (5), O-n-Pr (6)) have been prepared by oxidation of Cp*2TiR with lead dichloride. Not every compound Cp*2Ti(R)Cl was accessible and for R = CH2CMe3 and CH2Ph reduction to Cp*2TiCl and R· was observed. Homolysis of

  6. Total Synthesis of (R, R, R)-gamma-Tocopherol through Cu-Catalyzed Asymmetric 1,2-Addition

    NARCIS (Netherlands)

    Wu, Zhongtao; Harutyunyan, Syuzanna R.; Minnaard, Adriaan J.

    2014-01-01

    Based on the asymmetric copper-catalyzed 1,2-addition of Grignard reagents to ketones, (R,R,R)--tocopherol has been synthesized in 36% yield over 12 steps (longest linear sequence). The chiral center in the chroman ring was constructed with 73% ee by the 1,2-addition of a phytol-derived Grignard

  7. The miR-599 promotes non-small cell lung cancer cell invasion via SATB2

    International Nuclear Information System (INIS)

    Tian, Wenjun; Wang, Guanghai; Liu, Yiqing; Huang, Zhenglan; Zhang, Caiqing; Ning, Kang; Yu, Cuixiang; Shen, Yajuan; Wang, Minghui; Li, Yuantang; Wang, Yong; Zhang, Bingchang; Zhao, Yaoran

    2017-01-01

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. Here, we identified that miR-599 is up-regulated in non-small cell lung cancer (NSCLC) patients. It promoted NSCLC cell proliferation by negatively regulating SATB2. In NSCLC cell lines, CCK-8 proliferation assay indicated that the cell proliferation is promoted by miR-599 mimics. Transwell assay showed that miR-599 mimics promoted the invasion and migration of NSCLC cells. Luciferase assays confirmed that miR-599 directly binds to the 3'untranslated region of SATB2, and western blotting showed that miR-599 suppresses the expression of SATB2 at the protein level. This study indicates that miR-599 promotes proliferation and invasion of NSCLC cell lines via SATB2. The miR-599 may represent a potential therapeutic target for NSCLC treatment. - Highlights: • miR-599 is up-regulated in NSCLC. • miR-599 promotes the proliferation and invasion of NSCLC cells. • miR-599 inhibitors inhibits the proliferation and invasion of NSCLC cells. • miR-599 targets 3′ UTR of SATB2 in NSCLC cells. • miR-599 inhibits SATB2 in NSCLC cells.

  8. Role of c-Myb in chondrogenesis.

    Science.gov (United States)

    Oralová, V; Matalová, E; Janečková, E; Drobná Krejčí, E; Knopfová, L; Šnajdr, P; Tucker, A S; Veselá, I; Šmarda, J; Buchtová, M

    2015-07-01

    The Myb locus encodes the c-Myb transcription factor involved in controlling a broad variety of cellular processes. Recently, it has been shown that c-Myb may play a specific role in hard tissue formation; however, all of these results were gathered from an analysis of intramembranous ossification. To investigate a possible role of c-Myb in endochondral ossification, we carried out our study on the long bones of mouse limbs during embryonic development. Firstly, the c-myb expression pattern was analyzed by in situ hybridization during endochondral ossification of long bones. c-myb positive areas were found in proliferating as well as hypertrophic zones of the growth plate. At early embryonic stages, localized expression was also observed in the perichondrium and interdigital areas. The c-Myb protein was found in proliferating chondrocytes and in the perichondrium of the forelimb bones (E14.5-E17.5). Furthermore, protein was detected in pre-hypertrophic as well as hypertrophic chondrocytes. Gain-of-function and loss-of-function approaches were used to test the effect of altered c-myb expression on chondrogenesis in micromass cultures established from forelimb buds of mouse embryos. A loss-of-function approach using c-myb specific siRNA decreased nodule formation, as well as downregulated the level of Sox9 expression, a major marker of chondrogenesis. Transient c-myb overexpression markedly increased the formation of cartilage nodules and the production of extracellular matrix as detected by intense staining with Alcian blue. Moreover, the expression of early chondrogenic genes such as Sox9, Col2a1 and activity of a Col2-LUC reporter were increased in the cells overexpressing c-myb while late chondrogenic markers such as Col10a1 and Mmp13 were not significantly changed or were downregulated. Taken together, the results of this study demonstrate that the c-Myb transcription factor is involved in the regulation and promotion of endochondral bone formation. Copyright

  9. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    Science.gov (United States)

    Vega-Arreguín, Julio C; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici . Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici . VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1 , also enhanced susceptibility to P. capsici in N. edwardsonii , as well as in the susceptible plants N. benthamiana and N. clevelandii . The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.

  10. The Involvement of miR-29b-3p in Arterial Calcification by Targeting Matrix Metalloproteinase-2

    Directory of Open Access Journals (Sweden)

    Wenhong Jiang

    2017-01-01

    Full Text Available Vascular calcification is a risk predictor and common pathological change in cardiovascular diseases that are associated with elastin degradation and phenotypic transformation of vascular smooth muscle cells via gelatinase matrix metalloproteinase-2 (MMP2. However, the mechanisms involved in this process remain unclear. In this study, we investigated the relationships between miR-29b-3p and MMP2, to confirm miR-29b-3p-mediated MMP2 expression at the posttranscriptional level in arterial calcification. In male Sprague Dawley rats, arterial calcification was induced by subcutaneous injection of a toxic dose of cholecalciferol. In vivo, the quantitative real-time polymerase chain reaction (qRT-PCR showed that MMP2 expression was upregulated in calcified arterial tissues, and miR-29b-3p expression was downregulated. There was a negative correlation between MMP2 mRNA expression and miR-29b-3p levels (P=0.0014, R2=0.481. Western blotting showed that MMP2 expression was significantly increased in rats treated with cholecalciferol. In vitro, overexpression of miR-29b-3p led to decreased MMP2 expression in rat vascular smooth muscle cells, while downregulation of miR-29b-3p expression led to increased MMP2 expression. Moreover, the luciferase reporter assay confirmed that MMP2 is the direct target of miR-29b-3p. Together, our results demonstrated that a role of miR-29b-3p in vascular calcification involves targeting MMP2.

  11. Crystal structure of (1S,3R,8R,10S-2,2-dichloro-10-hydroxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecan-9-one

    Directory of Open Access Journals (Sweden)

    Ahmed Benzalim

    2016-05-01

    Full Text Available The asymmetric unit of the title compound, C16H24Cl2O2, contains two independent molecules (A and B which are built from three fused rings, viz. a seven-membered heptane ring, a six-membered cyclohexyl ring bearing a ketone and an alcohol group, and a cyclopropane ring bearing two Cl atoms. In the crystal, the two molecules are linked via two O—H...O hydrogen bonds, forming an A–B dimer with an R22(10 ring motif. The A molecules of these dimers are linked via a C—H...O hydrogen bond, forming chains propagating along the a-axis direction. Both molecules have the same absolute configuration, i.e. 1S,3R,8R,10S, which is based on the synthetic pathway and further confirmed by resonant scattering [Flack parameter = 0.03 (5].

  12. Pharmacokinetics and metabolism of (R,R)-methoxyfenoterol in rat.

    Science.gov (United States)

    Siluk, D; Mager, D E; Kim, H S; Wang, Y; Furimsky, A M; Ta, A; Iyer, L V; Green, C E; Wainer, I W

    2010-03-01

    (R,R)-fenoterol (Fen), a beta(2)-adrenoceptor agonist, is under clinical investigation in the treatment of congestive heart disease. The pharmacokinetics and metabolism of the 4-methoxyphenyl derivative of (R,R)-Fen, (R,R)-MFen, have been determined following intravenous and oral administration to the rat and compared with corresponding results obtained with (R,R)-Fen. Results from the study suggest that (R,R)-MFen can offer pharmacokinetic and metabolic advantages in comparison to an earlier (R,R)-Fen. The oral administration revealed that the net exposure of (R,R)-MFen was about three-fold higher than that of (R,R)-Fen (7.2 versus 2.3 min x nmol ml(-1)), while intravenous administration proved that the clearance was significantly reduced, 48 versus 146 ml min(-1) kg(-1), the T(1/2) was significantly longer, 152.9 versus 108.9 min, and the area under the curve (AUC) was significantly increased, 300 versus 119 min x nmol ml(-1). (R,R)-MFen was primarily cleared by glucuronidation associated with significant presystemic glucuronidation of the compound. After intravenous and oral administration of (R,R)-MFen, (R,R)-Fen and (R,R)-Fen-G were detected in the urine samples indicating that (R,R)-MFen was O-demethylated and subsequently conjugated to (R,R)-Fen-G. The total (R,R)-Fen and (R,R)-Fen-G as a percentage of the dose after intravenous administration was 3.6%, while after oral administration was 0.3%, indicating that only a small fraction of the drug escaped presystemic glucuronidation and was available for O-demethylation. The glucuronidation pattern was confirmed by the results from in vitro studies where incubation of (R,R)-MFen with rat hepatocytes produced (R,R)-MFen-G, (R,R)-Fen and (R,R)-Fen-G, while incubation with rat intestinal microsomes only resulted in the formation of (R,R)-MFen-G.

  13. miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Kinya Okamoto

    Full Text Available BACKGROUND AND AIMS: Cholangiocarcinoma (CCA is highly resistant to chemotherapy, including gemcitabine (Gem treatment. MicroRNAs (miRNAs are endogenous, non-coding, short RNAs that can regulate multiple genes expression. Some miRNAs play important roles in the chemosensitivity of tumors. Here, we examined the relationship between miRNA expression and the sensitivity of CCA cells to Gem. METHODS: Microarray analysis was used to determine the miRNA expression profiles of two CCA cell lines, HuH28 and HuCCT1. To determine the effect of candidate miRNAs on Gem sensitivity, expression of each candidate miRNA was modified via either transfection of a miRNA mimic or transfection of an anti-oligonucleotide. Ontology-based programs were used to identify potential target genes of candidate miRNAs that were confirmed to affect the Gem sensitivity of CCA cells. RESULTS: HuCCT1 cells were more sensitive to Gem than were HuH28 cells, and 18 miRNAs were differentially expressed whose ratios over ± 2log2 between HuH28 and HuCCT1. Among these 18 miRNAs, ectopic overexpression of each of three downregulated miRNAs in HuH28 (miR-29b, miR-205, miR-221 restored Gem sensitivity to HuH28. Suppression of one upregulated miRNA in HuH28, miR-125a-5p, inhibited HuH28 cell proliferation independently to Gem treatment. Selective siRNA-mediated downregulation of either of two software-predicted targets, PIK3R1 (target of miR-29b and miR-221 or MMP-2 (target of miR-29b, also conferred Gem sensitivity to HuH28. CONCLUSIONS: miRNA expression profiling was used to identify key miRNAs that regulate Gem sensitivity in CCA cells, and software that predicts miRNA targets was used to identify promising target genes for anti-tumor therapies.

  14. Rolling Deck to Repository (R2R): Standards and Semantics for Open Access to Research Data

    Science.gov (United States)

    Arko, Robert; Carbotte, Suzanne; Chandler, Cynthia; Smith, Shawn; Stocks, Karen

    2015-04-01

    In recent years, a growing number of funding agencies and professional societies have issued policies calling for open access to research data. The Rolling Deck to Repository (R2R) program is working to ensure open access to the environmental sensor data routinely acquired by the U.S. academic research fleet. Currently 25 vessels deliver 7 terabytes of data to R2R each year, acquired from a suite of geophysical, oceanographic, meteorological, and navigational sensors on over 400 cruises worldwide. R2R is working to ensure these data are preserved in trusted repositories, discoverable via standard protocols, and adequately documented for reuse. R2R maintains a master catalog of cruises for the U.S. academic research fleet, currently holding essential documentation for over 3,800 expeditions including vessel and cruise identifiers, start/end dates and ports, project titles and funding awards, science parties, dataset inventories with instrument types and file formats, data quality assessments, and links to related content at other repositories. A Digital Object Identifier (DOI) is published for 1) each cruise, 2) each original field sensor dataset, 3) each post-field data product such as quality-controlled shiptrack navigation produced by the R2R program, and 4) each document such as a cruise report submitted by the science party. Scientists are linked to personal identifiers, such as the Open Researcher and Contributor ID (ORCID), where known. Using standard global identifiers such as DOIs and ORCIDs facilitates linking with journal publications and generation of citation metrics. Since its inception, the R2R program has worked in close collaboration with other data repositories in the development of shared semantics for oceanographic research. The R2R cruise catalog uses community-standard terms and definitions hosted by the NERC Vocabulary Server, and publishes ISO metadata records for each cruise that use community-standard profiles developed with the NOAA Data

  15. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation.

    Science.gov (United States)

    Garcia, S; Kovařík, A

    2013-07-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.

  16. IGF-1R and ErbB3/HER3 contribute to enhanced proliferation and carcinogenesis in trastuzumab-resistant ovarian cancer model

    International Nuclear Information System (INIS)

    Jia, Yanhan; Zhang, Yan; Qiao, Chunxia; Liu, Guijun; Zhao, Qing; Zhou, Tingting; Chen, Guojiang; Li, Yali; Feng, Jiannan; Li, Yan; Zhang, Qiuping; Peng, Hui

    2013-01-01

    Highlights: •We established trastuzumab-resistant cell line SKOV3/T. •SKOV3/T enhances proliferation and in vivo carcinogenesis. •IGF-1R and HER3 genes were up-regulated in SKOV3/T based on microarray analysis. •Targeting IGF-1R and/or HER3 inhibited the proliferation of SKOV3/T. •Therapies targeting IGF-1R and HER3 might be effective in ovarian cancer. -- Abstract: Trastuzumab (Herceptin®) has demonstrated clinical potential in several types of HER2-overexpressing human cancers. However, primary and acquired resistance occurs in many HER2-positive patients with regimens. To investigate the possible mechanism of acquired therapeutic resistance to trastuzumab, we have developed a preclinical model of human ovarian cancer cells, SKOV3/T, with the distinctive feature of stronger carcinogenesis. The differences in gene expression between parental and the resistant cells were explored by microarray analysis, of which IGF-1R and HER3 were detected to be key molecules in action. Their correctness was validated by follow-up experiments of RT-PCR, shRNA-mediated knockdown, downstream signal activation, cell cycle distribution and survival. These results suggest that IGF-1R and HER3 differentially regulate trastuzumab resistance and could be promising targets for trastuzumab therapy in ovarian cancer

  17. IGF-1R and ErbB3/HER3 contribute to enhanced proliferation and carcinogenesis in trastuzumab-resistant ovarian cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yanhan [Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071 (China); Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Zhang, Yan [Department of Gynaecology and Obstetrics, PLA General Hospital, Beijing 100853 (China); Qiao, Chunxia; Liu, Guijun [Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Zhao, Qing [Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Department of Gynaecology and Obstetrics, PLA General Hospital, Beijing 100853 (China); Zhou, Tingting; Chen, Guojiang [Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Li, Yali [Department of Gynaecology and Obstetrics, PLA General Hospital, Beijing 100853 (China); Feng, Jiannan; Li, Yan [Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Zhang, Qiuping, E-mail: qpzhang@whu.edu.cn [Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071 (China); Peng, Hui, E-mail: p_h2002@hotmail.com [Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Cardiovascular Drug Research Center, Institute of Health and Environmental Medicine, Beijing 100850 (China)

    2013-07-12

    Highlights: •We established trastuzumab-resistant cell line SKOV3/T. •SKOV3/T enhances proliferation and in vivo carcinogenesis. •IGF-1R and HER3 genes were up-regulated in SKOV3/T based on microarray analysis. •Targeting IGF-1R and/or HER3 inhibited the proliferation of SKOV3/T. •Therapies targeting IGF-1R and HER3 might be effective in ovarian cancer. -- Abstract: Trastuzumab (Herceptin®) has demonstrated clinical potential in several types of HER2-overexpressing human cancers. However, primary and acquired resistance occurs in many HER2-positive patients with regimens. To investigate the possible mechanism of acquired therapeutic resistance to trastuzumab, we have developed a preclinical model of human ovarian cancer cells, SKOV3/T, with the distinctive feature of stronger carcinogenesis. The differences in gene expression between parental and the resistant cells were explored by microarray analysis, of which IGF-1R and HER3 were detected to be key molecules in action. Their correctness was validated by follow-up experiments of RT-PCR, shRNA-mediated knockdown, downstream signal activation, cell cycle distribution and survival. These results suggest that IGF-1R and HER3 differentially regulate trastuzumab resistance and could be promising targets for trastuzumab therapy in ovarian cancer.

  18. Global regulation of gene expression by the MafR protein of Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Sofía eRuiz-Cruz

    2016-01-01

    Full Text Available Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. However, as an opportunistic pathogen, it is able to colonize other host niches and cause life-threatening infections. Its adaptation to new environments involves global changes in gene expression. The EF3013 gene (here named mafR of E. faecalis strain V583 encodes a protein (MafR, 482 residues that has sequence similarity to global response regulators of the Mga/AtxA family. The enterococcal OG1RF genome also encodes the MafR protein (gene OG1RF_12293. In this work, we have identified the promoter of the mafR gene using several in vivo approaches. Moreover, we show that MafR influences positively the transcription of many genes on a genome-wide scale. The most significant target genes encode components of PTS-type membrane transporters, components of ABC-type membrane transporters, and proteins involved in the metabolism of carbon sources. Some of these genes were previously reported to be up-regulated during the growth of E. faecalis in blood and/or in human urine. Furthermore, we show that a mafR deletion mutant strain induces a significant lower degree of inflammation in the peritoneal cavity of mice, suggesting that enterococcal cells deficient in MafR are less virulent. Our work indicates that MafR is a global transcriptional regulator. It might facilitate the adaptation of E. faecalis to particular host niches and, therefore, contribute to its potential virulence.

  19. Global regulator SoxR is a negative regulator of efflux pump gene expression and affects antibiotic resistance and fitness in Acinetobacter baumannii.

    Science.gov (United States)

    Li, Henan; Wang, Qi; Wang, Ruobing; Zhang, Yawei; Wang, Xiaojuan; Wang, Hui

    2017-06-01

    SoxR is a global regulator contributing to multidrug resistance in Enterobacteriaceae. However, the contribution of SoxR to antibiotic resistance and fitness in Acinetobacter baumannii has not yet been studied. Comparisons of molecular characteristics were performed between 32 multidrug-resistant A. baumannii isolates and 11 susceptible isolates. A soxR overexpression mutant was constructed, and its resistance phenotype was analyzed. The impact of SoxR on efflux pump gene expression was measured at the transcription level. The effect of SoxR on the growth and fitness of A. baumannii was analyzed using a growth rate assay and an in vitro competition assay. The frequency of the Gly39Ser mutation in soxR was higher in multidrug-resistant A. baumannii, whereas the soxS gene was absent in all strains analyzed. SoxR overexpression led to increased susceptibility to chloramphenicol (4-fold), tetracycline (2-fold), tigecycline (2-fold), ciprofloxacin (2-fold), amikacin (2-fold), and trimethoprim (2-fold), but it did not influence imipenem susceptibility. Decreased expression of abeS (3.8-fold), abeM (1.3-fold), adeJ (2.4-fold), and adeG (2.5-fold) were correlated with soxR overexpression (P baumannii.

  20. CYP2R1 mutations causing vitamin D-deficiency rickets.

    Science.gov (United States)

    Thacher, Tom D; Levine, Michael A

    2017-10-01

    CYP2R1 is the principal hepatic 25-hydroxylase responsible for the hydroxylation of parent vitamin D to 25-hydroxyvitamin D [25(OH)D]. Serum concentrations of 25(OH)D reflect vitamin D status, because 25(OH)D is the major circulating metabolite of vitamin D. The 1α-hydroxylation of 25(OH)D in the kidney by CYP27B1 generates the fully active vitamin D metabolite, 1,25-dihydroxyvitamin D (1,25(OH) 2 D). The human CYP2R1 gene, located at 11p15.2, has five exons, coding for an enzyme with 501 amino acids. In Cyp2r1-/- knockout mice, serum 25(OH)D levels were reduced by more than 50% compared wild-type mice. Genetic polymorphisms of CYP2R1 account for some of the individual variability of circulating 25(OH)D values in the population. We review the evidence that inactivating mutations in CYP2R1 can lead to a novel form of vitamin D-deficiency rickets resulting from impaired 25-hydroxylation of vitamin D. We sequenced the promoter, exons and intron-exon flanking regions of the CYP2R1 gene in members of 12 Nigerian families with rickets in more than one family member. We found missense mutations (L99P and K242N) in affected members of 2 of 12 families. The L99P mutation had previously been reported as a homozygous defect in an unrelated child of Nigerian origin with rickets. In silico analyses predicted impaired CYP2R1 folding or reduced interaction with substrate vitamin D by L99P and K242N mutations, respectively. In vitro studies of the mutant CYP2R1 proteins in HEK293 cells confirmed normal expression levels but completely absent or markedly reduced 25-hydroxylase activity by the L99P and K242N mutations, respectively. Heterozygous subjects had more moderate biochemical and clinical features of vitamin D deficiency than homozygous subjects. After an oral bolus dose of 50,000 IU of vitamin D 2 or vitamin D 3 , heterozygous subjects had lower increases in serum 25(OH)D than control subjects, and homozygous subjects had minimal increases, supporting a semidominant

  1. The distinct role of strand-specific miR-514b-3p and miR-514b-5p in colorectal cancer metastasis.

    Science.gov (United States)

    Ren, Lin-Lin; Yan, Ting-Ting; Shen, Chao-Qin; Tang, Jia-Yin; Kong, Xuan; Wang, Ying-Chao; Chen, Jinxian; Liu, Qiang; He, Jie; Zhong, Ming; Chen, Hao-Yan; Hong, Jie; Fang, Jing-Yuan

    2018-06-07

    The abnormal expression of microRNAs (miRNAs) in colorectal cancer (CRC) progression has been widely investigated. It was reported that the same hairpin RNA structure could generate mature products from each strand, termed 5p and 3p, which binds different target mRNAs. Here, we explored the expression, functions, and mechanisms of miR-514b-3p and miR-514b-5p in CRC cells and tissues. We found that miR-514b-3p was significantly down-regulated in CRC samples, and the ratio of miR-514b-3p/miR-514b-5p increased from advanced CRC, early CRC to matched normal colorectal tissues. Follow-up functional experiments illustrated that miR-514b-3p and miR-514b-5p had distinct effects through interacting with different target genes: MiR-514b-3p reduced CRC cell migration, invasion and drug resistance through increasing epithelial marker and decreasing mesenchymal marker expressions, conversely, miR-514b-5p exerted its pro-metastatic properties in CRC by promoting EMT progression. MiR-514b-3p overexpressing CRC cells developed tumors more slowly in mice compared with control cells, however, miR-514b-5p accelerated tumor metastasis. Overall, our data indicated that though miR-514b-3p and miR-514b-5p were transcribed from the same RNA hairpin, each microRNA has distinct effect on CRC metastasis.

  2. Neuroprotective properties of cannabigerol in Huntington's disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice.

    Science.gov (United States)

    Valdeolivas, Sara; Navarrete, Carmen; Cantarero, Irene; Bellido, María L; Muñoz, Eduardo; Sagredo, Onintza

    2015-01-01

    Different plant-derived and synthetic cannabinoids have shown to be neuroprotective in experimental models of Huntington's disease (HD) through cannabinoid receptor-dependent and/or independent mechanisms. Herein, we studied the effects of cannabigerol (CBG), a nonpsychotropic phytocannabinoid, in 2 different in vivo models of HD. CBG was extremely active as neuroprotectant in mice intoxicated with 3-nitropropionate (3NP), improving motor deficits and preserving striatal neurons against 3NP toxicity. In addition, CBG attenuated the reactive microgliosis and the upregulation of proinflammatory markers induced by 3NP, and improved the levels of antioxidant defenses that were also significantly reduced by 3NP. We also investigated the neuroprotective properties of CBG in R6/2 mice. Treatment with this phytocannabinoid produced a much lower, but significant, recovery in the deteriorated rotarod performance typical of R6/2 mice. Using HD array analysis, we were able to identify a series of genes linked to this disease (e.g., symplekin, Sin3a, Rcor1, histone deacetylase 2, huntingtin-associated protein 1, δ subunit of the gamma-aminobutyric acid-A receptor (GABA-A), and hippocalcin), whose expression was altered in R6/2 mice but partially normalized by CBG treatment. We also observed a modest improvement in the gene expression for brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and peroxisome proliferator-activated receptor-γ (PPARγ), which is altered in these mice, as well as a small, but significant, reduction in the aggregation of mutant huntingtin in the striatal parenchyma in CBG-treated animals. In conclusion, our results open new research avenues for the use of CBG, alone or in combination with other phytocannabinoids or therapies, for the treatment of neurodegenerative diseases such as HD.

  3. Enhanced fullerene–Au(111 coupling in (23 × 23R30° superstructures with intermolecular interactions

    Directory of Open Access Journals (Sweden)

    Michael Paßens

    2015-06-01

    Full Text Available Disordered and uniform (23 × 23R30° superstructures of fullerenes on the Au(111 surface have been studied using scanning tunneling microscopy and spectroscopy. It is shown that the deposition and growth process of a fullerene monolayer on the Au(111 surface determine the resulting superstructure. The supply of thermal energy is of importance for the activation of a Au vacancy forming process and thus, one criterion for the selection of the respective superstructure. However, here it is depicted that a vacancy–adatom pair can be formed even at room temperature. This latter process results in C60 molecules that appear slightly more bright in scanning tunnelling microscopy images and are identified in disordered (23 x 23R30° superstructures based on a detailed structure analysis. In addition, these slightly more bright C60 molecules form uniform (23 x 23R30° superstructures, which exhibit intermolecular interactions, likely mediated by Au adatoms. Thus, vacancy–adatom pairs forming at room temperature directly affect the resulting C60 superstructure. Differential conductivity spectra reveal a lifting of the degeneracy of the LUMO and LUMO+1 orbitals in the uniform (23 x 23R30° superstructure and in addition, hybrid fullerene–Au(111 surface states suggest partly covalent interactions.

  4. SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization.

    Science.gov (United States)

    Gougat, Jean; Ferrari, Bernard; Sarran, Lionel; Planchenault, Claudine; Poncelet, Martine; Maruani, Jeanne; Alonso, Richard; Cudennec, Annie; Croci, Tiziano; Guagnini, Fabio; Urban-Szabo, Katalin; Martinolle, Jean-Pierre; Soubrié, Philippe; Finance, Olivier; Le Fur, Gérard

    2004-05-01

    The biochemical and pharmacological properties of a novel non-peptide antagonist of the bradykinin (BK) B(1) receptor, SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride] were evaluated. SSR240612 inhibited the binding of [(3)H]Lys(0)-des-Arg(9)-BK to the B(1) receptor in human fibroblast MRC5 and to recombinant human B(1) receptor expressed in human embryonic kidney cells with inhibition constants (K(i)) of 0.48 and 0.73 nM, respectively. The compound selectivity for B(1) versus B(2) receptors was in the range of 500- to 1000-fold. SSR240612 inhibited Lys(0)-desAr(9)-BK (10 nM)-induced inositol monophosphate formation in human fibroblast MRC5, with an IC(50) of 1.9 nM. It also antagonized des-Arg(9)-BK-induced contractions of isolated rabbit aorta and mesenteric plexus of rat ileum with a pA(2) of 8.9 and 9.4, respectively. Antagonistic properties of SSR240612 were also demonstrated in vivo. SSR240612 inhibited des-Arg(9)-BK-induced paw edema in mice (3 and 10 mg/kg p.o. and 0.3 and 1 mg/kg i.p.). Moreover, SSR240612 reduced capsaicin-induced ear edema in mice (0.3, 3 and 30 mg/kg p.o.) and tissue destruction and neutrophil accumulation in the rat intestine following splanchnic artery occlusion/reperfusion (0.3 mg/kg i.v.). The compound also inhibited thermal hyperalgesia induced by UV irradiation (1 and 3 mg/kg p.o.) and the late phase of nociceptive response to formalin in rats (10 and 30 mg/kg p.o.). Finally, SSR240612 (20 and 30 mg/kg p.o.) prevented neuropathic thermal pain induced by sciatic nerve constriction in the rat. In conclusion, SSR240612 is a new, potent, and orally active specific non-peptide bradykinin B(1) receptor antagonist.

  5. Anti-tumor effects of Egr-IFN gamma gene therapy combined with {sup 125}I-UdR radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jingguo, Zhao [No.403 Hospital of PLA, Dalian (China); Yanjun, Ni; Xiangfu, Song; Yanyi, Li; Wei, Yang; Ting, Sun; Qingjie, Ma; Fengtong, Gao

    2008-12-15

    Objective: To explore the anti-tumor effects of Egr-IFNgamma gene therapy combined with {sup 125}I-UdR radionuclide therapy in mice bearing H22 hepatocarcinoma and its mechanism. Methods: The recombinant plasmid pcDNAEgr-IFNgamma mixed with liposome was injected into tumor. 48 h later, 370 kBq {sup 125}I-UdR was injected into tumor. The tumor growth rates at different times were observed. After 3 d gene-radionuclide therapy, the concentration of IFNgamma in cytoplasm of H22 cells and cytotoxic activities of splenic CTL of the mice in different groups were examined. Results: The tumor growth rates of pcDNAEgr-IFNgamma + {sup 125}I-UdR group were obviously lower than those of control group, {sup 125}I-UdR group and pcDNAEgr-1 + {sup 125}I-UdR group 6-15 d after gene-radionuclide therapy. IFNgamma protein was found in cytoplasm of H22 cells in pcDNAEgr-IFNgamma + {sup 125}I-UdR group after 3 d gene-radionuclide therapy. Cytotoxic activity of splenic CTL in pcDNAEgr-IFNgamma + {sup 125}I-UdR group was significantly higher than that in the other groups (P<0.01). Conclusions: The anti-tumor effects in vivo of pcDNAEgr-IFNgamma gene therapy combined with {sup 125}I-UdR radionuclide therapy are better than those of {sup 125}I-UdR therapy. (authors)

  6. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro

    International Nuclear Information System (INIS)

    Lyu, Zhongshi; Mao, Zhaomin; Wang, Honglian; Fang, Yin; Chen, Tielin; Wan, Qianya; Wang, Ming; Wang, Nian; Xiao, Jiangming; Wei, Hongyuan; Li, Xun; Liu, Yi; Zhou, Qin

    2013-01-01

    Highlights: •We do bio-informatics websites to analysis of Six2 3′UTR. •MiR181b is a putative miRNA which can targets Six2 3′UTR. •MiR-181b binding site in the 3′UTR of Six2 is functional. •MiR-181b suppresses MK3 cells cell proliferation by targeting Six2. -- Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is to identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development. We initially analyzed the 3′UTR of Six2 and found 37 binding sites targeted by 50 putative miRNAs in the 3′UTR of Six2. Among the 50 miRNAs, miR-181b is the miRNAs predicted by the three used websites. In our study, the results of luciferase reporter assay, realtime-PCR and Western blot demonstrated that miR-181b directly targeted on the 3′UTR of Six2 and down-regulate the expression of Six2 at mRNA and protein levels. Furthermore, EdU proliferation assay along with the Six2 rescue strategy showed that miR-181b suppresses the proliferation of metanephric mesenchymal by targeting Six2 in part. In our research, we concluded that by targeting the transcription factor gene Six2, miR-181b inhibits the proliferation of metanephric mesenchymal cells in vitro and might play an important role in the formation of nephrons

  7. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Zhongshi; Mao, Zhaomin; Wang, Honglian; Fang, Yin; Chen, Tielin [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Wan, Qianya [The Undergraduates Class of 2011 entry, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Wang, Ming; Wang, Nian; Xiao, Jiangming; Wei, Hongyuan; Li, Xun; Liu, Yi [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Zhou, Qin, E-mail: zhouqin@cqmu.edu.cn [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2013-11-01

    Highlights: •We do bio-informatics websites to analysis of Six2 3′UTR. •MiR181b is a putative miRNA which can targets Six2 3′UTR. •MiR-181b binding site in the 3′UTR of Six2 is functional. •MiR-181b suppresses MK3 cells cell proliferation by targeting Six2. -- Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is to identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development. We initially analyzed the 3′UTR of Six2 and found 37 binding sites targeted by 50 putative miRNAs in the 3′UTR of Six2. Among the 50 miRNAs, miR-181b is the miRNAs predicted by the three used websites. In our study, the results of luciferase reporter assay, realtime-PCR and Western blot demonstrated that miR-181b directly targeted on the 3′UTR of Six2 and down-regulate the expression of Six2 at mRNA and protein levels. Furthermore, EdU proliferation assay along with the Six2 rescue strategy showed that miR-181b suppresses the proliferation of metanephric mesenchymal by targeting Six2 in part. In our research, we concluded that by targeting the transcription factor gene Six2, miR-181b inhibits the proliferation of metanephric mesenchymal cells in vitro and might play an important role in the formation of nephrons.

  8. Evolutionary conservation and expression of miR-10a-3p in olive flounder and rock bream.

    Science.gov (United States)

    Jo, Ara; Im, Jennifer; Lee, Hee-Eun; Jang, Dongmin; Nam, Gyu-Hwi; Mishra, Anshuman; Kim, Woo-Jin; Kim, Won; Cha, Hee-Jae; Kim, Heui-Soo

    2017-09-10

    MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that mainly bind to the seed sequences located within the 3' untranslated region (3' UTR) of target genes. They perform an important biological function as regulators of gene expression. Different genes can be regulated by the same miRNA, whilst different miRNAs can be regulated by the same genes. Here, the evolutionary conservation and expression pattern of miR-10a-3p in olive flounder and rock bream was examined. Binding sites (AAAUUC) to seed region of the 3' UTR of target genes were highly conserved in various species. The expression pattern of miR-10a-3p was ubiquitous in the examined tissues, whilst its expression level was decreased in gill tissues infected by viral hemorrhagic septicemia virus (VHSV) compared to the normal control. In the case of rock bream, the spleen, kidney, and liver tissues showed dominant expression levels of miR-10a-3p. Only the liver tissues in the rock bream samples infected by the iridovirus indicated a dominant miR-10a-3p expression. The gene ontology (GO) analysis of predicted target genes for miR-10a-3p revealed that multiple genes are related to binding activity, catalytic activity, cell components as well as cellular and metabolic process. Overall the results imply that the miR-10a-3p could be used as a biomarker to detect VHSV infection in olive flounder and iridovirus infection in rock bream. In addition, the data provides fundamental information for further study of the complex interaction between miR-10a-3p and gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Analytical computation of thermodynamic performance parameters of actual vapour compression refrigeration system with R22, R32, R134a, R152a, R290 and R1270

    Directory of Open Access Journals (Sweden)

    Vali Shaik Sharmas

    2018-01-01

    Full Text Available The present work focuses on analytical computation of thermodynamic performance of actual vapour compression refrigeration system by using six pure refrigerants. The refrigerants are namely R22, R32, R134a, R152a, R290 and R1270 respectively. A MATLAB code is developed to compute the thermodynamic performance parameters of actual vapour compression system such as refrigeration effect, compressor work, COP, power per ton of refrigeration, compressor discharge temperature and volumetric refrigeration capacity at condensing and evaporating temperatures of 54.4oC and 7.2oC respectively. Analytical results exhibited that COP of both R32 and R134a are 15.95% and 11.71% higher among the six investigated refrigerants. However R32 and R134a cannot be replaced directly into R22 system. This is due to their higher compressor discharge temperature and poor volumetric capacity respectively. The discharge temperature of both R1270 and R290 are lower than R22 by 20-26oC. Volumetric refrigeration capacity of R1270 (3197 kJ/m3 is very close to that of volumetric capacity of R22 (3251 kJ/m3. Both R1270 and R290 shows good miscibility with R22 mineral oil. Overall R1270 would be a suitable ecofriendly refrigerant to replace R22 from the stand point of ODP, GWP, volumetric capacity, discharge temperature and miscibility with mineral oil although its COP is lower.

  10. Some remarks on the space R2(E

    Directory of Open Access Journals (Sweden)

    Claes Fernström

    1983-01-01

    Full Text Available Let E be a compact subset of the complex plane. We denote by R(E the algebra consisting of the rational functions with poles off E. The closure of R(E in Lp(E, 1≤p1, as a necessary and sufficient condition for R2(E≠L2(E. We also construct a compact set E such that R2(E has an isolated bounded point evaluation. In section 3 we examine the smoothness properties of functions in R2(E at those points which admit bounded point evaluations.

  11. Transcriptional Mechanisms Controlling miR-375 Gene Expression in the Pancreas

    Directory of Open Access Journals (Sweden)

    Tali Avnit-Sagi

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that play an important role in mediating a broad and expanding range of biological activities. miR-375 is expressed selectively in the pancreas. We have previously shown that selective expression of miR-375 in pancreatic beta cells is controlled by transcriptional mechanisms operating through a TATA box-containing promoter. Expression of miR-375 has been reported in non-beta cells within the endocrine pancreas, and indeed inactivation of miR-375 leads to perturbation in cell mass and number of both alpha and beta cells. Consistent with its expression throughout the endocrine pancreas, we now show that the promoter of the miR-375 gene shows selective activity in pancreatic endocrine alpha cells, comparable to that observed in beta cells. We previously identified a novel negative regulatory element located downstream of the miR-375 gene transcription start site. By generating luciferase reporter genes, we now show that the sequence is functional also when positioned upstream of a heterologous promoter, thus proving that the repressor effect is mediated at least in part at the level of transcription. Further characterization of the transcriptional control mechanism regulating expression of miR-375 and other pancreatic miRNAs will contribute to a better understanding of pancreas development and function.

  12. Aryl hydrocarbon receptor (AhR-mediated perturbations in gene expression during early stages of CD4+ T-cell differentiation

    Directory of Open Access Journals (Sweden)

    Diana eRohlman

    2012-08-01

    Full Text Available Activation of the aryl hydrocarbon receptor (AhR by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, mediates potent suppression of T-cell dependent immune responses. The suppressive effects of TCDD occur early during CD4+ T-cell differentiation in the absence of effects on proliferation and have recently been associated with the induction of AhR-dependent regulatory T-cells (Treg. Since AhR functions as a ligand-activated transcription factor, changes in gene expression induced by TCDD during the early stages of CD4+ T-cell differentiation are likely to reflect fundamental mechanisms of AhR action. A custom panel of genes associated with T-cell differentiation was used to query changes in gene expression induced by exposure to 1 nM TCDD. CD4+ T-cells from AhR+/+ and AhR-/- mice were cultured with cytokines known to polarize the differentiation of T-cells to various effector lineages. Treatment with TCDD induced expression of Cyp1a1, Cyp1b1 and Ahrr in CD4+ T-cells from AhR+/+ mice under all culture conditions, validating the presence and activation of AhR in these cells. The highest levels of AhR activation occurred under Th17 conditions at 24 hours and Tr1 conditions at 48 hours. Unexpectedly, expression levels of most genes associated with early T-cell differentiation were unaltered by AhR activation, including lineage-specific genes that drive CD4+ T-cell polarization. The major exception was AhR-dependent up-regulation of Il22 that was seen under all culture conditions. Independent of TCDD, AhR down-regulated the expression of Il17a and Rorc based on increased expression of these genes in AhR-deficient cells across culture conditions. These findings are consistent with a role for AhR in down-regulation of inflammatory immune responses and implicate IL-22 as a potential contributor to the immunosuppressive effects of TCDD.

  13. Differential effects of v-Jun and c-Jun proteins on v-myb-transformed monoblasts

    Czech Academy of Sciences Publication Activity Database

    Ševčíková, S.; Souček, Karel; Kubala, Lukáš; Bryja, Vítězslav; Šmarda, J.

    2002-01-01

    Roč. 59, č. 10 (2002), s. 1690-1705 ISSN 1420-682X R&D Projects: GA ČR GA301/01/0040 Institutional research plan: CEZ:AV0Z5004920 Keywords : v-myb * Jun * differentiation Subject RIV: BO - Biophysics Impact factor: 5.259, year: 2002

  14. Localization of c-MYB in differentiated cells during postnatal molar and alveolar bone development

    Czech Academy of Sciences Publication Activity Database

    Lungová, Vlasta; Buchtová, Marcela; Janečková, Eva; Tucker, A.S.; Knopfová, L.; Šmarda, J.; Matalová, Eva

    2012-01-01

    Roč. 120, č. 6 (2012), 495-504 ISSN 0909-8836 R&D Projects: GA ČR GCP302/12/J059 Institutional research plan: CEZ:AV0Z50450515 Keywords : c-myb * tooth * postnatal Subject RIV: FF - HEENT, Dentistry Impact factor: 1.420, year: 2012

  15. Mainstream Smoke Chemistry and in Vitro and In Vivo Toxicity of the Reference Cigarettes 3R4F and 2R4F

    Directory of Open Access Journals (Sweden)

    Roemer E

    2014-12-01

    Full Text Available A new reference cigarette, the 3R4F, has been developed to replace the depleting supply of the 2R4F cigarette. The present study was designed to compare mainstream smoke chemistry and toxicity of the two reference cigarettes under the International Organization for Standardization (ISO machine smoking conditions, and to further compare mainstream smoke chemistry and toxicological activity of the 3R4F cigarette by two different smoking regimens, i.e., the machine smoking conditions specified by ISO and the Health Canada intensive (HCI smoking conditions.

  16. nilR is necessary for co-ordinate repression of Xenorhabdus nematophila mutualism genes.

    Science.gov (United States)

    Cowles, Charles E; Goodrich-Blair, Heidi

    2006-11-01

    The bacterial mutualist Xenorhabdus nematophila colonizes a specific region of its nematode host Steinernema carpocapsae. We previously reported the identification of a chromosomal locus encoding three X. nematophila genes of unknown function, nilA, B and C, that are each necessary for colonization. Subsequent work indicated the global regulator Lrp is a repressor of nilC: nilC transcription is elevated in an lrp mutant and Lrp interacts directly with the nilC promoter. In this manuscript, we report the identification of an additional gene, nilR, required for repression of nilC transcription. We show that nilR and lrp mutants also have elevated expression of nilA and nilB, demonstrating that nilA, B and C are co-ordinately regulated. nil gene expression is derepressed most strongly when both nilR and lrp are lacking, suggesting NilR and Lrp synergistically repress nil transcription. NilR contains a helix-turn-helix-type DNA binding domain and likely acts directly at promoters. A comparison of the wild type and nilR proteomes indicates that NilR, unlike Lrp, regulates a small number of genes. Finally, X. nematophila carrying an ectopic copy of nilR colonizes at approximately 60-fold lower levels than the control strain, suggesting that derepression of nil gene expression is necessary for nematode colonization.

  17. MiR-519d-3p suppresses invasion and migration of trophoblast cells via targeting MMP-2.

    Directory of Open Access Journals (Sweden)

    Jie Ding

    Full Text Available Our study was approved by the Medical Ethics Committee of Tang Du Hospital, Fourth Military Medical University and complied strictly with national ethical guidelines. Preeclampsia (PE is a specific clinical disorder characterized by gestational hypertension and proteinuria and is a leading cause of maternal and perinatal mortality worldwide. The miR-519d-3p is upregulated in the maternal plasma of patients with PE which indicates a possible association between this microRNA and the pathogenesis of PE. No studies to date have addressed the effect of miR-519d-3p on the invasion and migration of trophoblast cells. In our study, we found that miR-519d-3p expression was elevated in placental samples from patients with PE. In vitro, overexpression of miR-519d-3p significantly inhibited trophoblast cell migration and invasion, whereas transfection of a miR-519d-3p inhibitor enhanced trophoblast cell migration and invasion. Luciferase assays confirmed that matrix metalloproteinase-2 (MMP-2 is a direct target of miR-519d-3p. Quantitative real-time PCR and western blot assays showed that overexpression of miR-519d-3p downregulated MMP-2 mRNA and protein expression. Knockdown of MMP-2 using a siRNA attenuated the increased trophoblast migration and invasion promoted by the miR-519d-3p inhibitor. In placentas from patients with PE or normal pregnancies, a negative correlation between the expression of MMP-2 and miR-519d-3p was observed using the Pearson correlation and linear regression analysis. Our present findings suggest that upregulation of miR-519d-3p may contribute to the development of PE by inhibiting trophoblast cell migration and invasion via targeting MMP-2; miR-519d-3p may represent a potential predictive and therapeutic target for PE.

  18. Prediction of target genes for miR-140-5p in pulmonary arterial hypertension using bioinformatics methods.

    Science.gov (United States)

    Li, Fangwei; Shi, Wenhua; Wan, Yixin; Wang, Qingting; Feng, Wei; Yan, Xin; Wang, Jian; Chai, Limin; Zhang, Qianqian; Li, Manxiang

    2017-12-01

    The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro .

  19. The nucleotide sequence and organization of nuclear 5S rRNA genes in yellow lupine

    International Nuclear Information System (INIS)

    Nuc, K.; Nuc, P.; Pawelkiewicz, J.

    1993-01-01

    We have isolated a genomic clone containing 'Lupinus luteus' 5S ribosomal RNA genes by screening with 5S rDNA probe clones that were hybridized previously with the initiator methionine tRNA preparation (contaminated) with traces of rRNA or its degradation products). The clone isolated contains ten repeat units of 342 bp with 119 bp fragment showing 100% homology to the 5S rRNA from yellow lupine. Sequence analysis indicates only point heterogeneities among the flanking regions of the genes. (author). 6 refs, 3 figs

  20. MicroRNA, miR-374b, directly targets Myf6 and negatively regulates C2C12 myoblasts differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan; Sun, Xiaorui; Xu, Dequan; Xiong, Yuanzhu; Zuo, Bo, E-mail: zuobo@mail.hzau.edu.cn

    2015-11-27

    Myogenesis is a complex process including myoblast proliferation, differentiation and myotube formation and is controlled by myogenic regulatory factors (MRFs), MyoD, MyoG, Myf5 and Myf6 (also known as MRF4). MicroRNA is a kind of ∼22 nt-long non-coding small RNAs, and act as key transcriptional or post-transcriptional regulators of gene expression. Identification of miRNAs involved in the regulation of muscle genes could improve our understanding of myogenesis process. In this study, we investigated the regulation of Myf6 gene by miRNAs. We showed that miR-374b specifically bound to the 3'untranslated region (UTR) of Myf6 and down-regulated the expression of Myf6 gene at both mRNA and protein level. Furthermore, miR-374b is ubiquitously expressed in the tissues of adult C57BL6 mouse, and the mRNA abundance increases first and then decreases during C2C12 myoblasts differentiation. Over-expression of miR-374b impaired C2C12 cell differentiation, while inhibiting miR-374b expression by 2′-O-methyl antisense oligonucleotides promoted C2C12 cell differentiation. Taken together, our findings identified miR-374b directly targets Myf6 and negatively regulates myogenesis. - Highlights: • MiR-374b directly targets 3′UTR of Myf6. • MiR-374b negatively regulates Myf6 in C2C12 cells. • MiR-374b abundance significiently changes during C2C12 cells differentiation. • MiR-374b negatively regulates C2C12 cells differentiation.

  1. Systematic analysis of gene expression pattern in has-miR-197 over-expressed human uterine leiomyoma cells.

    Science.gov (United States)

    Ling, Jing; Wu, Xiaoli; Fu, Ziyi; Tan, Jie; Xu, Qing

    2015-10-01

    Our previous study showed that the expression of miR-197 in leiomyoma was down-regulated compared with myometrium. Further, miR-197 has been identified to affect uterine leiomyoma cell proliferation, apoptosis, and metastasis ability, though the responsible molecular mechanism has not been well elucidated. In this study, we sought to determine the expression patterns of miR-197 targeted genes and to explore their potential functions, participating Pathways and the networks that are involved in the biological behavior of human uterine leiomyoma. After transfection of human uterine leiomyoma cells with miR-197, we confirmed the expression level of miR-197 using quantitative real-time PCR (qRT-PCR), and we detected the gene expression profiles after miR-197 over-expression through DNA microarray analysis. Further, we performed GO and Pathway analysis. The dominantly dys-regulated genes, which were up- or down-regulated by more than 10-fold, compared with parental cells, were confirmed using qRT-PCR technology. Compared with the control group, miR-197 was up-regulated by 30-fold after miR-197 lentiviral transfection. The microarray data showed that 872 genes were dys-regulated by more than 2-fold in human uterine leiomyoma cells after miR-197 overexpression, including 537 up-regulated and 335 down-regulated genes. The GO analysis indicated that the dys-regulated genes were primarily involved in response to stimuli, multicellular organ processes, and the signaling of biological progression. Further, Pathway analysis data showed that these genes participated in regulating several signaling Pathways, including the JAK/STAT signaling Pathway, the Toll-like receptor signaling Pathway, and cytokine-cytokine receptor interaction. The qRT-PCR results confirmed that 17 of the 66 selected genes, which were up- or down-regulated more than 10-fold by miR-197, were consistent with the microarray results, including tumorigenesis-related genes, such as DRT7, SLC549, SFMBT2, FLJ37956

  2. The Ia-2β intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice.

    Science.gov (United States)

    Xu, Huanyu; Abuhatzira, Liron; Carmona, Gilberto N; Vadrevu, Suryakiran; Satin, Leslie S; Notkins, Abner L

    2015-10-01

    miR-153 is an intronic miRNA embedded in the genes that encode IA-2 (also known as PTPRN) and IA-2β (also known as PTPRN2). Islet antigen (IA)-2 and IA-2β are major autoantigens in type 1 diabetes and are important transmembrane proteins in dense core and synaptic vesicles. miR-153 and its host genes are co-regulated in pancreas and brain. The present experiments were initiated to decipher the regulatory network between miR-153 and its host gene Ia-2β (also known as Ptprn2). Insulin secretion was determined by ELISA. Identification of miRNA targets was assessed using luciferase assays and by quantitative real-time PCR and western blots in vitro and in vivo. Target protector was also employed to evaluate miRNA target function. Functional studies revealed that miR-153 mimic suppresses both glucose- and potassium-induced insulin secretion (GSIS and PSIS, respectively), whereas miR-153 inhibitor enhances both GSIS and PSIS. A similar effect on dopamine secretion also was observed. Using miRNA target prediction software, we found that miR-153 is predicted to target the 3'UTR region of the calcium channel gene, Cacna1c. Further studies confirmed that Cacna1c mRNA and protein are downregulated by miR-153 mimics and upregulated by miR-153 inhibitors in insulin-secreting freshly isolated mouse islets, in the insulin-secreting mouse cell line MIN6 and in the dopamine-secreting cell line PC12. miR-153 is a negative regulator of both insulin and dopamine secretion through its effect on Cacna1c expression, which suggests that IA-2β and miR-153 have opposite functional effects on the secretory pathway.

  3. Synthesis of (R)-5-(Di[2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one-([3H]U-86170) and (R)-5-([2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo(4,5,1-ij) quinolin-2(1H)-one ([3H]U-91356)

    International Nuclear Information System (INIS)

    Moon, M.W.; Hsi, R.S.P.

    1992-01-01

    (R)-5-(diallylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (12b) was prepared in 9% overall yield from 3-aminoquinoline. Reaction of 12b in ethyl acetate with tritium gas in presence of a 5% platinum on carbon catalyst afforded a mixture of (R)-5-(di[2,3- 3 H 2 ]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]-quinolin-2(1H)-one ([ 3 H]U-86170, 69 Ci/mmol) and (R)-5-([2,3- 3 H 2 ]-propylamino)5,6-dihydro-4H-imidazo-[4,5,1-ij]quinolin-2(1H)-one ( [ 3 H]U-91356, 34 Ci/mmol) which was separated by preparative reverse-phase chromatography. U-86170 and U-91356 are potent dopamine D2 agonists. The labelled compounds are useful for drug disposition studies. [ 3 H]U-86170 is also useful as a dopamine D2 agonist radioligand for receptor binding studies. (author)

  4. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses.

    Science.gov (United States)

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3-100%. However, the inter-species similarities were

  5. Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia.

    Science.gov (United States)

    Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M

    2017-01-15

    Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since

  6. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa).

    Science.gov (United States)

    Yue, Erkui; Li, Chao; Li, Yu; Liu, Zhen; Xu, Jian-Hong

    2017-07-01

    MiR529a affects rice panicle architecture by targeting OsSPL2,OsSPL14 and OsSPL17 genes that could regulate their downstream panicle related genes. The panicle architecture determines the grain yield and quality of rice, which could be regulated by many transcriptional factors. The SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors are involved in the regulation of panicle development, which are targeted by miR156 and miR529. The expression profile demonstrated that miR529a is preferentially expressed in the early panicle of rice and it might regulate panicle development in rice. However, the regulation mechanism of miR529-SPL is still not clear. In this study, we predicted five miR529a putative target genes, OsSPL2, OsSPL14, OsSPL16, OsSPL17 and OsSPL18, while only the expression of OsSPL2, OsSPL14, and OsSPL17 was regulated by miR529a in the rice panicle. Overexpression of miR529a dramatically affected panicle architecture, which was regulated by OsSPL2, OsSPL14, and OsSPL17. Furthermore, the 117, 35, and 25 pathway genes associated with OsSPL2, OsSPL14 and OsSPL17, respectively, were predicted, and they shared 20 putative pathway genes. Our results revealed that miR529a could play a vital role in the regulation of panicle architecture through regulating OsSPL2, OsSPL14, OsSPL17 and the complex networks formed by their pathway and downstream genes. These findings will provide new genetic resources for reshaping ideal plant architecture and breeding high yield rice varieties.

  7. Spin reorientation phenomena in (R{sub 1-x}R`{sub x}){sub 2}Co{sub 14}B (R = La, R` = Dy and Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Myojin, T. [Takamatsu Nat. Coll. of Technol. (Japan); Ohno, T. [Tokushima Univ. (Japan). Faculty of Engineering; Mizuno, K. [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Tsujimura, A. [Faculty of Engineering, Tokushima Bunri Univ., Kagawa Shido (Japan); Kojima, K. [Hiroshima Univ. (Japan). Faculty of Integrated Arts and Sciences

    1997-07-01

    The variations of magnetization with temperature in (La{sub 1-x}R`{sub x}){sub 2}Co{sub 14}B (R` = Dy and Ho) have been measured to determine spin reorientation temperature T{sub SR} of these compounds. The phase diagrams of spin arrangement thus obtained indicate monotonous increase in T{sub SR} with R` concentration x. Also, T{sub SR}`s of R{sub 2}Co{sub 14}B(R = Tb, Dy and Ho) are found to vary linearly with the Stevens factor {alpha} of R. (orig.). 4 refs.

  8. Multicenter R2* mapping in the healthy brain

    DEFF Research Database (Denmark)

    Ropele, Stefan; Wattjes, Mike P; Langkammer, Christian

    2014-01-01

    structures. METHODS: R2* mapping was performed in 81 healthy subjects in seven centers using different 3 T systems. R2* was calculated from a dual-echo gradient echo sequence and was assessed in several deep gray matter structures. The inter-scanner and inter-subject variability of R2* was calculated...

  9. Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence

    Directory of Open Access Journals (Sweden)

    Garcia Sònia

    2012-06-01

    Full Text Available Abstract Background In plants, the 5 S rRNA genes usually occur as separate tandems (S-type arrangement or, less commonly, linked to 35 S rDNA units (L-type. The activity of linked genes remains unknown so far. We studied the homogeneity and expression of 5 S genes in several species from family Asteraceae known to contain linked 35 S-5 S units. Additionally, their methylation status was determined using bisulfite sequencing. Fluorescence in situ hybridization was applied to reveal the sub-nuclear positions of rDNA arrays. Results We found that homogenization of L-type units went to completion in most (4/6 but not all species. Two species contained major L-type and minor S-type units (termed Ls-type. The linked genes dominate 5 S rDNA expression while the separate tandems do not seem to be expressed. Members of tribe Anthemideae evolved functional variants of the polymerase III promoter in which a residing C-box element differs from the canonical angiosperm motif by as much as 30%. On this basis, a more relaxed consensus sequence of a plant C-box: (5’-RGSWTGGGTG-3’ is proposed. The 5 S paralogs display heavy DNA methylation similarly as to their unlinked counterparts. FISH revealed the close association of 35 S-5 S arrays with nucleolar periphery indicating that transcription of 5 S genes may occur in this territory. Conclusions We show that the unusual linked arrangement of 5 S genes, occurring in several plant species, is fully compatible with their expression and functionality. This extraordinary 5 S gene dynamics is manifested at different levels, such as variation in intrachromosomal positions, unit structure, epigenetic modification and considerable divergence of regulatory motifs.

  10. Prevalence of 16S rRNA methylase genes among β-lactamase ...

    African Journals Online (AJOL)

    Background: Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods: To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and ...

  11. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation.

    Directory of Open Access Journals (Sweden)

    Ruiqin Zhong

    Full Text Available Wood is mainly composed of secondary walls, which constitute the most abundant stored carbon produced by vascular plants. Understanding the molecular mechanisms controlling secondary wall deposition during wood formation is not only an important issue in plant biology but also critical for providing molecular tools to custom-design wood composition suited for diverse end uses. Past molecular and genetic studies have revealed a transcriptional network encompassing a group of wood-associated NAC and MYB transcription factors that are involved in the regulation of the secondary wall biosynthetic program during wood formation in poplar trees. Here, we report the functional characterization of poplar orthologs of MYB46 and MYB83 that are known to be master switches of secondary wall biosynthesis in Arabidopsis. In addition to the two previously-described PtrMYB3 and PtrMYB20, two other MYBs, PtrMYB2 and PtrMYB21, were shown to be MYB46/MYB83 orthologs by complementation and overexpression studies in Arabidopsis. The functional roles of these PtrMYBs in regulating secondary wall biosynthesis were further demonstrated in transgenic poplar plants showing an ectopic deposition of secondary walls in PtrMYB overexpressors and a reduction of secondary wall thickening in their dominant repressors. Furthermore, PtrMYB2/3/20/21 together with two other tree MYBs, the Eucalyptus EgMYB2 and the pine PtMYB4, were shown to differentially bind to and activate the eight variants of the 7-bp SMRE consensus sequence, composed of ACC(A/TA(A/C(T/C. Together, our results indicate that the tree MYBs, PtrMYB2/3/20/21, EgMYB2 and PtMYB4, are master transcriptional switches that activate the SMRE sites in the promoters of target genes and thereby regulate secondary wall biosynthesis during wood formation.

  12. Synthesis of 2-(2-R1-Hydrazino-5-(R2-benzyl-2-thiazolines on the Basis of Meerweins Arylation Products of Allyl Isothiocyanate

    Directory of Open Access Journals (Sweden)

    Mykola I. Ganushchak

    2003-02-01

    Full Text Available 3-Aryl-2-chloropropylisothiocyanates (1 are formed by interaction of arenediazonium chlorides with allyl isothiocyanate. Adducts 1 react with monoacylhydrazines to form 1-acyl-4-(3-aryl-2-chloropropylthiosemicarbazides (2a–d. Thiosemicarbazides 2a–d in the presence of bases selectively transform into 2-(2-R1-hydrazino-5-(R2-benzyl-2-thiazolines (3a–d.

  13. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    Science.gov (United States)

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  14. Synthesis, physical-chemical properties of 2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioacetohydrazides

    Directory of Open Access Journals (Sweden)

    O. A. Suhak

    2017-04-01

    Full Text Available Aim. Analysis of the scientific literature over the past decade has shown that large synthetic possibilities towards creating new and effective drug substances have heterocyclic compounds, in particular the derivatives of 1,2,4-triazole. 1,2,4-Triazole is a structural fragment of many synthetic drugs. The special interest cause ylidene hydrazides of 2-(5-R-1,2,4-triazole-3-ylthioacetic acids as potential biologically active compounds, among which highly effective medicines can be found. With the aim of finding new biologically active compounds the derivatives of 2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazides have been synthesized, their physical-chemical properties have been studied with the use of modern methods, namely elemental analysis, IR,1H-NMR spectroscopy, and their individuality by HPLC-MS. Materials and methods. N'-R1-еden-2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazides were received by adding aromatic (2-BrC6H4, 2,3-(OCH32C6H3, 3,5-(OCH32C6H3, 4-N(CH32C6H4, 3,4-F2C6H3, 2-NO2C6H4,4-NO2C6H4, 4-OHC6H4, 2-OHC6H4, 4-FC6H4, 2-CI-6-FC6H3 or heterocyclic (2-SC4H3, 5-NO2-2-C4H2O aldehyde to an equivalent amount of the appropriate 2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazide in the acetic acid medium. The study of physical-chemical properties of obtained compounds was carried out according to the methods outlined in SPU. Chromato-mass-spectral studies were performed on hazarding chromatograph Agilent 1260 Infinity HPLC equipped with mass spectrometer Agilent 6120 with ionization in electro-spray (ESI. Conclusion. This suggests the possibility for further study of biological action of the synthesized compounds. As a result of studies the N'-R1-eden-2-((4-R-5-(thiophene-2-ylmethyl-4H-1,2,4-triazole-3-ylthioaceticohydrazides have been synthesized and their physical-chemical properties have been studied.

  15. The Copper Homeostasis Transcription Factor CopR Is Involved in H2O2 Stress in Lactobacillus plantarum CAUH2

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Transcriptional factors (TFs play important roles in the responses to oxidative, acid, and other environmental stresses in Gram-positive bacteria, but the regulatory mechanism of TFs involved in oxidative stress remains unknown in lactic acid bacteria. In the present work, homologous overexpression strains with 43 TFs were constructed in the Lactobacillus plantarum CAUH2 parent strain. The strain overexpressing CopR displayed the highest sensitivity and a 110-fold decrease in survival rate under H2O2 challenge. The importance of CopR in the response to H2O2 stress was further confirmed by a 10.8-fold increase in the survival of a copR insertion mutant. In silico analysis of the genes flanking copR revealed putative CopR-binding “cop box” sequences in the promoter region of the adjacent gene copB encoding a Cu2+-exporting ATPase. Electrophoretic mobility shift assay (EMSA analysis demonstrated the specific binding of CopR with copB in vitro, suggesting copB is a target gene of CopR in L. plantarum. The role of CopB involved in oxidative stress was verified by the significantly decreased survival in the copB mutant. Furthermore, a growth defect in copper-containing medium demonstrated that CopB functions as an export ATPase for copper ions. Furthermore, EMSAs revealed that CopR functions as a regulator that negatively regulates copB gene and Cu2+ serves as inducer of CopR to activate the expression of CopB in response to H2O2 stress in L. plantarum CAUH2. Our findings indicated that CopR plays an important role in enhancing oxidative resistance by regulating copB to modulate copper homeostasis.

  16. Avirulence (AVR) Gene-Based Diagnosis Complements Existing Pathogen Surveillance Tools for Effective Deployment of Resistance (R) Genes Against Rice Blast Disease.

    Science.gov (United States)

    Selisana, S M; Yanoria, M J; Quime, B; Chaipanya, C; Lu, G; Opulencia, R; Wang, G-L; Mitchell, T; Correll, J; Talbot, N J; Leung, H; Zhou, B

    2017-06-01

    Avirulence (AVR) genes in Magnaporthe oryzae, the fungal pathogen that causes the devastating rice blast disease, have been documented to be major targets subject to mutations to avoid recognition by resistance (R) genes. In this study, an AVR-gene-based diagnosis tool for determining the virulence spectrum of a rice blast pathogen population was developed and validated. A set of 77 single-spore field isolates was subjected to pathotype analysis using differential lines, each containing a single R gene, and classified into 20 virulent pathotypes, except for 4 isolates that lost pathogenicity. In all, 10 differential lines showed low frequency (95%), inferring the effectiveness of R genes present in the respective differential lines. In addition, the haplotypes of seven AVR genes were determined by polymerase chain reaction amplification and sequencing, if applicable. The calculated frequency of different AVR genes displayed significant variations in the population. AVRPiz-t and AVR-Pii were detected in 100 and 84.9% of the isolates, respectively. Five AVR genes such as AVR-Pik-D (20.5%) and AVR-Pik-E (1.4%), AVRPiz-t (2.7%), AVR-Pita (0%), AVR-Pia (0%), and AVR1-CO39 (0%) displayed low or even zero frequency. The frequency of AVR genes correlated almost perfectly with the resistance frequency of the cognate R genes in differential lines, except for International Rice Research Institute-bred blast-resistant lines IRBLzt-T, IRBLta-K1, and IRBLkp-K60. Both genetic analysis and molecular marker validation revealed an additional R gene, most likely Pi19 or its allele, in these three differential lines. This can explain the spuriously higher resistance frequency of each target R gene based on conventional pathotyping. This study demonstrates that AVR-gene-based diagnosis provides a precise, R-gene-specific, and differential line-free assessment method that can be used for determining the virulence spectrum of a rice blast pathogen population and for predicting the

  17. Characterization of V1R receptor (ora) genes in Lake Victoria cichlids.

    Science.gov (United States)

    Ota, Tomoki; Nikaido, Masato; Suzuki, Hikoyu; Hagino-Yamagishi, Kimiko; Okada, Norihiro

    2012-05-15

    Although olfaction could play a crucial role in underwater habitats by allowing fish to sense a variety of nonvolatile chemical signals, the importance of olfaction in species-rich cichlids is still controversial. In particular, examining whether cichlids rely on olfaction for reproduction is of primary interest to understand the mechanisms of speciation. In the present study, we explored the V1R (also known as ora) genes, which are believed to encode reproductive pheromone receptors in fish, in the genomes of Lake Victoria cichlids. By screening a bacterial artificial chromosome library, we identified all six intact V1R genes (V1R1 to V1R6) that have been reported in other teleost fish. Furthermore, RT-PCR and in situ hybridization analyses showed that all of the V1R genes were expressed in the olfactory epithelium, indicating that these receptors are functional in cichlids. These observations indicate that cichlids use V1R-mediated olfaction in some ways for their social behaviors. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Characterization of TsaR, an Oxygen-Sensitive LysR-Type Regulator for the Degradation of p-Toluenesulfonate in Comamonas testosteroni T-2

    OpenAIRE

    Tralau, Tewes; Mampel, Jörg; Cook, Alasdair M.; Ruff, Jürgen

    2003-01-01

    TsaR is the putative LysR-type regulator of the tsa operon (tsaMBCD) which encodes the first steps in the degradation of p-toluenesulfonate (TSA) in Comamonas testosteroni T-2. Transposon mutagenesis was used to knock out tsaR. The resulting mutant lacked the ability to grow with TSA and p-toluenecarboxylate (TCA). Reintroduction of tsaR in trans on an expression vector reconstituted growth with TSA and TCA. The tsaR gene was cloned into Escherichia coli with a C-terminal His tag and overexpr...

  19. Differentiation of 5-hydroxytryptamine2 receptor subtypes using 125I-R-(-)2,5-dimethoxy-4-iodo-phenylisopropylamine and 3H-ketanserin

    International Nuclear Information System (INIS)

    McKenna, D.J.; Peroutka, S.J.

    1989-01-01

    The radioligand binding characteristics of 125I-R-(-)4-iodo-2,5-dimethoxyphenylisopropylamine [125I-R-(-)DOI] and 3H-ketanserin were compared in rat and bovine cortical membranes. In rat cortex, 125I-R-(-)DOI labels a relatively low density of binding sites (Bmax = 2.5 +/- 0.2 pmol/gm tissue) with high affinity (KD = 0.63 +/- 0.09 nM). In bovine cortex, specific binding of 125I-R-(-)DOI represents less than 20% of total binding at radioligand concentrations above 0.6 nM, and, therefore, the data cannot be analyzed adequately by Scatchard transformation. By contrast, 3H-ketanserin displays saturable, specific high-affinity binding in both rat cortex (KD = 1.0 +/- 0.1 nM; Bmax = 11 +/- 0.4 pmol/gm tissue) and bovine cortex (KD = 1.2 +/- 0.2 nM; Bmax = 5.3 +/- 0.4 pmol/gm tissue). Ki values for 30 drugs were determined for 125I-R-(-)DOI-labeled sites in rat cortex and 3H-ketanserin-labeled sites in bovine cortex. 5-Hydroxytryptamine (5-HT) displays 250-fold higher selectivity for the 125I-R-(-)DOI-labeled sites (Ki = 3.0 +/- 0.7 nM) than for the 3H-ketanserin-labeled sites (Ki = 750 +/- 50 nM). Structural congeners of R-(-)DOI display 80- to 160-fold higher affinity for the 125I-R-(-)DOI binding site than for the 3H-ketanserin-labeled binding site. d-LSD and putative 5-HT2 antagonists are approximately equipotent at both sites. Significant correlations were found between drug affinities for 125I-R-(-)DOI-labeled sites in rat cortex and putative 5-HT2A sites labeled previously by 77Br-R-(-)DOB (r = 0.93, p less than 0.01), putative 5-HT2B sites labeled by 3H-ketanserin in bovine cortex (r = 0.63, p less than 0.01), and 5-HT1C binding sites that have been characterized by other investigators (r = 0.78, p less than 0.01). No significant correlations were found between drug affinities for 125I-R-(-)DOI-labeled sites in rat cortex and 5-HT1A, 5-HT1B, 5-HT1D, or 5-HT3 sites, as determined by previous investigators

  20. Distinct regulation of c-myb gene expression by HoxA9, Meis1 and Pbx proteins in normal hematopoietic progenitors and transformed myeloid cells

    International Nuclear Information System (INIS)

    Dassé, E; Volpe, G; Walton, D S; Wilson, N; Del Pozzo, W; O'Neill, L P; Slany, R K; Frampton, J; Dumon, S

    2012-01-01

    The proto-oncogenic protein c-Myb is an essential regulator of hematopoiesis and is frequently deregulated in hematological diseases such as lymphoma and leukemia. To gain insight into the mechanisms underlying the aberrant expression of c-Myb in myeloid leukemia, we analyzed and compared c-myb gene transcriptional regulation using two cell lines modeling normal hematopoietic progenitor cells (HPCs) and transformed myelomonocytic blasts. We report that the transcription factors HoxA9, Meis1, Pbx1 and Pbx2 bind in vivo to the c-myb locus and maintain its expression through different mechanisms in HPCs and leukemic cells. Our analysis also points to a critical role for Pbx2 in deregulating c-myb expression in murine myeloid cells cotransformed by the cooperative activity of HoxA9 and Meis1. This effect is associated with an intronic positioning of epigenetic marks and RNA polymerase II binding in the orthologous region of a previously described alternative promoter for c-myb. Taken together, our results could provide a first hint to explain the abnormal expression of c-myb in leukemic cells

  1. Anticonvulsant and reproductive toxicological studies of the imidazole-based histamine H3R antagonist 2-18 in mice

    Directory of Open Access Journals (Sweden)

    Bastaki SM

    2018-01-01

    Full Text Available Salim M Bastaki,1 Yousef M Abdulrazzaq,2 Mohamed Shafiullah,1 Małgorzata Więcek,3 Katarzyna Kieć-Kononowicz,3 Bassem Sadek1 1Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, 2Department of Medical Education, Dubai Health Authority, Dubai, UAE; 3Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna, Kraków, Poland Abstract: The imidazole-based H3R antagonist 2-18 with high in vitro H3R antagonist affinity, excellent in vitro selectivity profile, and high in vivo H3R antagonist potency was tested for its anticonvulsant effect in maximal electroshock (MES-induced convulsions in mice having valproic acid (VPA as a reference antiepileptic drug (AED. Additionally, H3R antagonist 2-18 was evaluated for its reproductive toxicity in the same animal species. The results show that acute systemic administration (intraperitoneal; i.p. of H3R antagonist 2-18 (7.5, 15, 30, and 60 mg/kg, i.p. significantly and dose dependently protected male as well as female mice against MES-induced convulsion. The protective action observed for H3R antagonist 2-18 in both mice sexes was comparable to that of VPA and was reversed when mice were pretreated with the selective H3R agonist (R-alpha-methylhistamine (RAMH, 10 mg/kg, i.p.. Moreover, the results show that acute systemic administration of single (7.5, 15, 30, or 60 mg/kg, i.p. or multiple doses (15×3 mg/kg, i.p. of H3R antagonist 2-18 on gestation day (GD 8 or 13 did not affect the maternal body weight of mice when compared with the control group. Furthermore, no significant differences were observed in the average number of implantations and resorptions between the control and H3R antagonist 2-18-treated group at the early stages of gestation and the organogenesis period. However, oral treatment with H3R antagonist 2-18 (15 mg/kg on GD 8 induced a reduced number of

  2. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; Zhao, Jianfei; Park, Mee-Yeon; Earley, Keith W; Wu, Gang; Yang, Li; Poethig, R Scott

    2016-08-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.

  3. The silencing effect of miR-30a on ITGA4 gene expression in vitro: an approach for gene therapy.

    Science.gov (United States)

    Darzi, Leila; Boshtam, Maryam; Shariati, Laleh; Kouhpayeh, Shirin; Gheibi, Azam; Mirian, Mina; Rahimmanesh, Ilnaz; Khanahmad, Hossein; Tabatabaiefar, Mohammad Amin

    2017-12-01

    Integrins are adhesion molecules which play crucial roles in cell-cell and cell-extracellular matrix interactions. Very late antigen-4 or α4β1 and lymphocyte Peyer's patch adhesion molecule-1 or α4β7, are key factors in the invasion of tumor cells and metastasis. Based on the previous reports, integrin α4 ( ITGA4 ) is overexpressed in some immune disorders and cancers. Thus, inhibition of ITGA4 could be a therapeutic strategy. In the present study, miR-30a was selected in order to suppress ITGA4 expression. The ITGA4 3' UTR was amplified, cloned in the Z2827-M67-( ITGA4 ) plasmid and named as Z2827-M67/3'UTR. HeLa cells were divided into five groups; (1) untreated without any transfection, (2) mock with Z2827-M67/3'UTR transfection and X-tremeGENE reagent, (3) negative control with Z2827-M67/3'UTR transfection alone, (4) test with miR-30a mimic and Z2827-M67/3'UTR transfection and (5) scramble with miR-30a scramble and Z2827-M67/3'UTR transfection. The MTT assay was performed to evaluate cell survival and cytotoxicity in each group. Real-time RT-PCR was applied for the ITGA4 expression analysis. The findings of this study showed that miR-30a downregulated ITGA4 expression and had no effect on the cell survival. Due to the silencing effect of miR-30a on the ITGA4 gene expression, this agent could be considered as a potential tool for cancer and immune disorders therapy.

  4. Rolling Deck to Repository (R2R): Technical Design - Experiences and Lessons (Invited)

    Science.gov (United States)

    Arko, R. A.; Carbotte, S. M.; Miller, S. P.; Chandler, C. L.; Ferrini, V.; Stocks, K.; Maffei, A. R.; Smith, S. R.; Bourassa, M. A.; McLean, S. J.; Alberts, J. C.

    2009-12-01

    The NSF-funded Rolling Deck to Repository (R2R) project envisions the academic research fleet as an integrated global observing system, with routine “underway” sensor data flowing directly from research vessels to a central shore-side repository. It is a complex endeavor involving many stakeholders - technicians at sea, data managers on shore, ship schedulers, clearance officers, funding agencies, National Data Centers, data synthesis projects, the science community, and the public - working toward a common goal of acquiring, documenting, archiving, evaluating, and disseminating high-quality scientific data. The technical design for R2R is guided by several key principles: 1) The data pipeline is modular, so that initial stages (e.g. inventory and review of data shipments, posting of catalog records and track maps) may proceed routinely for every cruise, while later stages (e.g. quality assessment and production of file-level metadata) may proceed at different rates for different data types; 2) Cruise documentation (e.g. sailing orders, review/release of data inventories, vessel profiles) is gathered primarily via an authenticated Web portal, linked with the UNOLS scheduling database to synchronize vocabularies and eliminate redundancies; and 3) Every data set will be documented and delivered to the appropriate National Data Center for long-term archiving and dissemination after proprietary holds are cleared, while R2R maintains a master cruise catalog that links all the data sets together. This design accommodates the diversity of instrument types, data volumes, and shipment schedules among fleet operators. During its pilot development period, R2R has solicited feedback at community workshops, UNOLS meetings, and conference presentations, including fleet-wide surveys of current practices and instrument inventories. Several vessel operators began submitting cruise data and documentation during the pilot, providing a test bed for database development and Web

  5. 2C-R4WM Spectroscopy of Jet Cooled NO_3

    Science.gov (United States)

    Fukushima, Masaru; Ishiwata, Takashi; Hirota, Eizi

    2016-06-01

    We have generated NO_3 from pyrolysis of N_2O_5 following supersonic free jet expansion, and carried out two color resonant four wave mixing ( 2C-R4WM ) spectroscopy of the tilde{B} ^2E' - tilde{X} ^2A_2' electronic transition. One laser was fixed to pump NO_3 to a ro-vibronic level of the tilde{B} state, and the other laser ( probe ) was scanned across two levels of the tilde{X} ^2A_2' state lying at 1051 and 1492 cm-1, the ν_1 (a_1') and ν_3 (e') fundamentals, respectively. The 2C-R4WM spectra have unexpected back-ground signal of NO_3 ( stray signal due to experimental set-up is also detected ) similar to laser induced fluorescence ( LIF ) excitation spectrum of the 0-0 band, although the back-ground signal was not expected in considering the 2C-R4WM scheme. Despite the back-ground interference, we have observed two peaks at 1051.61 and 1055.29 cm-1 in the ν_1 region of the spectrum, and the frequencies agree with the two bands, 1051.2 and 1055.3 cm-1, of our relatively higher resolution dispersed fluorescence spectrum, the former of which has been assigned to the ν_1 fundamental. Band width of both peaks, ˜ 0.2 cm-1, is broader than twice the experimental spectral-resolution, 0.04 cm-1 ( because this experiment is double resonance spectroscopy ), and the 1051.61 cm-1 peak is attributed to a Q branch band head ( a line-like Q branch ) of the ν_1 fundamental. The other branches are suspected to be hidden in noise of the back-ground signal. The 1055.29 cm-1 peak is also attributed to a Q band head. The tilde{B} ^2E'1/2 ( J' = 3/2, K' = 1 ) - tilde{X} ^2A_2' ( N'' = 1, K'' = 0 ) ro-vibronic transition was used as the pump transition. The dump ( probe ) transition to both a_1' and e' vibronic levels are then allowed as perpendicular transition. Accordingly, it cannot be determined from present results whether the 1055.29 cm-1 band is attributed to a_1' or e' (ν_3), unfortunately. The 2C-R4WM spectrum of the 1492 cm-1 band region shows one Q head at 1499.79 cm

  6. Magnetic phase transitions in two-dimensional frustrated Cu3R(SeO3)2O2Cl. Spectroscopic study

    Science.gov (United States)

    Klimin, S. A.; Budkin, I. V.

    2017-01-01

    Using optical study of electronic spectra of rare-earth (RE) ions, magnetic phase transitions in the low-dimensional frustrated RE magnets Cu3R(SeO3)2O2Cl (R = Sm, Yb, Er, Nd, Pr, Eu) were investigated. Phase transitions were registered either by splittings of crystal-field (CF) doublets or by repulsion of CF levels of f-ions in a staggered magnetic field. Different scenarios of magnetic order in isostructural compounds of the francisite family are discussed.

  7. R{sup 2} supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Physics Department, Theory Unit, CERN,CH 1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095-1547 (United States); Kehagias, Alex [Physics Division, National Technical University of Athens,15780 Zografou, Athens (Greece); Porrati, Massimo [Physics Department, Theory Unit, CERN,CH 1211, Geneva 23 (Switzerland); CCPP, Department of Physics,NYU 4 Washington Pl. New York NY 10003 (United States)

    2015-08-03

    We formulate R{sup 2} pure supergravity as a scale invariant theory built only in terms of superfields describing the geometry of curved superspace. The standard supergravity duals are obtained in both “old' and “new' minimal formulations of auxiliary fields. These theories have massless fields in de Sitter space as they do in their non supersymmetric counterpart. Remarkably, the dual theory of R{sup 2} supergravity in the new minimal formulation is an extension of the Freedman model, describing a massless gauge field and a massless chiral multiplet in de Sitter space, with inverse radius proportional to the Fayet-Iliopoulos term. This model can be interpreted as the “de-Higgsed' phase of the dual companion theory of R+R{sup 2} supergravity.

  8. Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Takehiro Ichikawa

    Full Text Available OBJECTIVE: Trastuzumab has been used for the treatment of HER2-positive breast cancer (BC. However, a subset of BC patients exhibited resistance to trastuzumab therapy. Thus, clarifying the molecular mechanism of trastuzumab treatment will be beneficial to improve the treatment of HER2-positive BC patients. In this study, we identified trastuzumab-responsive microRNAs that are involved in the therapeutic effects of trastuzumab. METHODS AND RESULTS: RNA samples were obtained from HER2-positive (SKBR3 and BT474 and HER2-negetive (MCF7 and MDA-MB-231 cells with and without trastuzumab treatment for 6 days. Next, we conducted a microRNA profiling analysis using these samples to screen those microRNAs that were up- or down-regulated only in HER2-positive cells. This analysis identified miR-26a and miR-30b as trastuzumab-inducible microRNAs. Transfecting miR-26a and miR-30b induced cell growth suppression in the BC cells by 40% and 32%, respectively. A cell cycle analysis showed that these microRNAs induced G1 arrest in HER2-positive BC cells as trastuzumab did. An Annexin-V assay revealed that miR-26a but not miR-30b induced apoptosis in HER2-positive BC cells. Using the prediction algorithms for microRNA targets, we identified cyclin E2 (CCNE2 as a target gene of miR-30b. A luciferase-based reporter assay demonstrated that miR-30b post-transcriptionally reduced 27% (p = 0.005 of the gene expression by interacting with two binding sites in the 3'-UTR of CCNE2. CONCLUSION: In BC cells, trastuzumab modulated the expression of a subset of microRNAs, including miR-26a and miR-30b. The upregulation of miR-30b by trastuzumab may play a biological role in trastuzumab-induced cell growth inhibition by targeting CCNE2.

  9. Animal-specific C-terminal domain links myeloblastosis oncoprotein (Myb) to an ancient repressor complex

    Science.gov (United States)

    Andrejka, Laura; Wen, Hong; Ashton, Jonathan; Grant, Megan; Iori, Kevin; Wang, Amy; Manak, J. Robert; Lipsick, Joseph S.

    2011-01-01

    Members of the Myb oncoprotein and E2F-Rb tumor suppressor protein families are present within the same highly conserved multiprotein transcriptional repressor complex, named either as Myb and synthetic multivuval class B (Myb-MuvB) or as Drosophila Rb E2F and Myb-interacting proteins (dREAM). We now report that the animal-specific C terminus of Drosophila Myb but not the more highly conserved N-terminal DNA-binding domain is necessary and sufficient for (i) adult viability, (ii) proper localization to chromosomes in vivo, (iii) regulation of gene expression in vivo, and (iv) interaction with the highly conserved core of the MuvB/dREAM transcriptional repressor complex. In addition, we have identified a conserved peptide motif that is required for this interaction. Our results imply that an ancient function of Myb in regulating G2/M genes in both plants and animals appears to have been transferred from the DNA-binding domain to the animal-specific C-terminal domain. Increased expression of B-MYB/MYBL2, the human ortholog of Drosophila Myb, correlates with poor prognosis in human patients with breast cancer. Therefore, our results imply that the specific interaction of the C terminus of Myb with the MuvB/dREAM core complex may provide an attractive target for the development of cancer therapeutics. PMID:21969598

  10. The ITS1-5.8S rRNA gene -ITS2 sequence variability during the divergence of sweet-grass species (gen us Glyceria R. Br.

    Directory of Open Access Journals (Sweden)

    Alexander V Rodionov

    2011-12-01

    Full Text Available Comparative analysis of the sequence ITS1-5.8S rRNA gene-ITS2 of the nuclear genome of 13 species of genus Glyceria, 4 species of Melica and a species of monotypic genus Pleuropogon showed that the species of the genus Glyceria have 3 haplotypes: 1 Haplotype A was found only in species of the subgenus Glyceria section Glyceria (G. septentrionalis, G. fluitans, G. declinata, G. occidentalis, G. notata, G. borealis, G. leptostachya and in Pleuropogon sabinii; 2 Haplotype C is characteristic of the subgenus Hydropoa, section Hydropoa (G. grandis, G. х amurensis, G. triflora, G. maxima and sect. Lithuanicae (G. leptolepis; 3 Haplotype B is found in the species of the subgenus Hydropoa sections Striatae (G. elata, G. striata, G. neogaea, G. canadensis, Scolochloiformes (G. alnasteretum, G. spiculosa and G. lithuanica of sect. Lithuanicae. Species carring haplotype B are located at the base of the phylogenetic tree of the genus Glyceria and/or clustered with low bootstrap indices. On the phylogenetic trees inferred by the analysis of the sequences ITS and 5.8S rDNA both sect. Glyceria and sect. Hydropoa represented two sister monophyly branches. The species Pleuropogon sabinii belong to the branch of subgenus Glyceria as a sister monotypic branch to the branch of the sect. Glyceria.

  11. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    Science.gov (United States)

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  12. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Science.gov (United States)

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  13. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Directory of Open Access Journals (Sweden)

    Nathan D. Olson

    2015-03-01

    Full Text Available This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1 identity of biologically conserved position, (2 ratio of 16S rRNA gene copies featuring identified variants, and (3 the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies.

  14. Synthesis, characterization and crystal structure of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid

    Science.gov (United States)

    Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata

    2018-03-01

    The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.

  15. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Science.gov (United States)

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  16. Retrospective analysis in oculocutaneous albinism patients for the 2.7 kb deletion in the OCA2 gene revealed a co-segregation of the controversial variant, p.R305W.

    Science.gov (United States)

    Gao, Jackson; D'Souza, Leera; Wetherby, Keith; Antolik, Christian; Reeves, Melissa; Adams, David R; Tumminia, Santa; Wang, Xinjing

    2017-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder. A significant portion of OCA patients has been found with a single pathogenic variant either in the TYR or the OCA2 gene. Diagnostic sequencing of the TYR and OCA2 genes is routinely used for molecular diagnosis of OCA subtypes. To study the possibility that genomic abnormalities with single or multiple exon involvement may account for a portion of the potential missing pathogenic variants (the second), we retrospectively analyzed the TYR gene by long range PCR and analyzed the target 2.7 kb deletion in the OCA2 gene spanning exon 7 in OCA patients with a single pathogenic variant in the target genes. In the 108 patients analyzed, we found that one patient was heterozygous for the 2.7 kb OCA2 gene deletion and this patient was positive with one pathogenic variant and one possibly pathogenic variant [c.1103C>T (p.Ala368Val) + c.913C>T (p.R305W)]. Further analysis of maternal DNA, and two additional OCA DNA homozygous for the 2.7 kb deletion, revealed that the phenotypically normal mother is heterozygous of the 2.7 kb deletion and homozygous of the p.R305W. The two previously reported patients with homozygous of the 2.7 kb deletion are also homozygous of p.R305W. Among the reported pathogenic variants, the pathogenicity of the p.R305W has been discussed intensively in literature. Our results indicate that p.R305W is unlikely a pathogenic variant. The possibility of linkage disequilibrium between p.R305W with the 2.7 kb deletion in OCA2 gene is also suggested.

  17. Cloning, expression and structural stability of a cold-adapted ß-Galactosidase from Rahnella sp.R3

    Science.gov (United States)

    A novel gene was isolated for the first time from a psychrophilic gram-negative bacterium Rahnella sp.R3. It encoded a cold-adapted ß-galactosidase (R-ß-Gal). Recombinant R-ß-Gal was expressed in Escherichia coli BL21 (DE3), purified, and characterized. R-ß-Gal belongs to the glycosyl hydrolase fami...

  18. Comparative d2/d3 LSU–rDNA sequence study of some Iranian ...

    African Journals Online (AJOL)

    SERVER

    2007-11-05

    Nov 5, 2007 ... segments yielded one fragment at over all sequenced isolates as 787 bp in size. The DNA sequences were aligned .... expansion segments of the 28S rDNA subunit (D2/D3. LSU-rDNA) are the ... isolated from different geographical location from tea shrubs infested roots of Guilan province, Iran (Table 1).

  19. Composition and crystallization kinetics of R2O-Al2O3-SiO2 glass-ceramics

    International Nuclear Information System (INIS)

    Xiong, Dehua; Cheng, Jinshu; Li, Hong

    2010-01-01

    The crystallization behavior and microstructure of R 2 O-Al 2 O 3 -SiO 2 (R means K, Na and Li) glass were investigated by means of differential scanning calorimeter (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallization kinetic parameters including the crystallization apparent activation energy (E a ), the Avrami parameter (n), glass transition temperature (T g ) and the activity energy of glass transition (E t ) were also measured with different methods. The results have shown that: the DSC traces of composition A parent glass have two different precipitation crystallization peaks corresponding to E a1 (A) = 151.4 kJ/mol (Li 2 SiO 3 ) and E a2 (A) = 623.1 kJ/mol (Li 2 Si 2 O 5 ), the average value of n = 1.70 (Li 2 Si 2 O 5 ) for the surface crystallization and E t (A) = 202.8 kJ/mol. And E a (B) = 50.7 kJ/mol (Li 2 SiO 3 ), the average value of n = 3.89 (Li 2 SiO 3 ) for the bulk crystallization and E t (B) = 220.4 kJ/mol for the composition B parent glass. Because of the content of R 2 O is bigger than composition A, composition B parent glass has a lower E a , T g and a larger n, E t .

  20. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5.

    Science.gov (United States)

    Du, Bin; Dai, Xiao-Meng; Li, Shuang; Qi, Guo-Long; Cao, Guang-Xu; Zhong, Ying; Yin, Pei-di; Yang, Xue-Song

    2017-08-10

    As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity.

  1. Effect of tcdR Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291.

    Science.gov (United States)

    Girinathan, Brintha P; Monot, Marc; Boyle, Daniel; McAllister, Kathleen N; Sorg, Joseph A; Dupuy, Bruno; Govind, Revathi

    2017-01-01

    Clostridium difficile is an important nosocomial pathogen and the leading cause of hospital-acquired diarrhea. Antibiotic use is the primary risk factor for the development of C. difficile -associated disease because it disrupts normally protective gut flora and enables C. difficile to colonize the colon. C. difficile damages host tissue by secreting toxins and disseminates by forming spores. The toxin-encoding genes, tcdA and tcdB , are part of a pathogenicity locus, which also includes the tcdR gene that codes for TcdR, an alternate sigma factor that initiates transcription of tcdA and tcdB genes. We created a tcdR mutant in epidemic-type C. difficile strain R20291 in an attempt to identify the global role of tcdR . A site-directed mutation in tcdR affected both toxin production and sporulation in C. difficile R20291. Spores of the tcdR mutant were more heat sensitive than the wild type (WT). Nearly 3-fold more taurocholate was needed to germinate spores from the tcdR mutant than to germinate the spores prepared from the WT strain. Transmission electron microscopic analysis of the spores also revealed a weakly assembled exosporium on the tcdR mutant spores. Accordingly, comparative transcriptome analysis showed many differentially expressed sporulation genes in the tcdR mutant compared to the WT strain. These data suggest that regulatory networks of toxin production and sporulation in C. difficile strain R20291 a re linked with each other. IMPORTANCE C. difficile infects thousands of hospitalized patients every year, causing significant morbidity and mortality. C. difficile spores play a pivotal role in the transmission of the pathogen in the hospital environment. During infection, the spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. Thus, sporulation and toxin production are two important traits of C. difficile . In this study, we showed that a mutation in tcdR , the toxin gene regulator, affects both toxin

  2. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Angela M Liu

    Full Text Available In contrast to normal differentiated cells that depend on mitochondrial oxidative phosphorylation for energy production, cancer cells have evolved to utilize aerobic glycolysis (Warburg's effect, with benefit of providing intermediates for biomass production. MicroRNA-122 (miR-122 is highly expressed in normal liver tissue regulating a wide variety of biological processes including cellular metabolism, but is reduced in hepatocellular carcinoma (HCC. Overexpression of miR-122 was shown to inhibit cancer cell proliferation, metastasis, and increase chemosensitivity, but its functions in cancer metabolism remains unknown. The present study aims to identify the miR-122 targeted genes and to investigate the associated regulatory mechanisms in HCC metabolism. We found the ectopic overexpression of miR-122 affected metabolic activities of HCC cells, evidenced by the reduced lactate production and increased oxygen consumption. Integrated gene expression analysis in a cohort of 94 HCC tissues revealed miR-122 level tightly associated with a battery of glycolytic genes, in which pyruvate kinase (PK gene showed the strongest anti-correlation coefficient (Pearson r = -0.6938, p = <0.0001. In addition, reduced PK level was significantly associated with poor clinical outcomes of HCC patients. We found isoform M2 (PKM2 is the dominant form highly expressed in HCC and is a direct target of miR-122, as overexpression of miR-122 reduced both the mRNA and protein levels of PKM2, whereas PKM2 re-expression abrogated the miR-122-mediated glycolytic activities. The present study demonstrated the regulatory role of miR-122 on PKM2 in HCC, having an implication of therapeutic intervention targeting cancer metabolic pathways.

  3. Identification of miR-508-3p and miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma

    International Nuclear Information System (INIS)

    Zhai, Qingna; Zhou, Liang; Zhao, Chunjuan; Wan, Jun; Yu, Zhendong; Guo, Xin; Qin, Jie; Chen, Jing; Lu, Ruijing

    2012-01-01

    Highlights: ► Previous method was the second-generation sequencing technology. ► miR-508-3p and miR-509-3p were significantly down-regulated in RCC tissues. ► They can inhibit cell proliferation and migration and promote cell apoptosis. ► The expression of miR-508-3p was significantly decreased in RCC patients plasma. ► miR-508-3p may be a novel diagnostic marker of RCC. -- Abstract: MicroRNAs (miRNAs) have emerged as powerful regulators of multiple processes linked to human cancer, including cell apoptosis, proliferation and migration, suggesting that the regulation of miRNA function could play a critical role in cancer progression. Recent studies have found that human serum/plasma contains stably expressed miRNAs. If they prove indicative of disease states, miRNAs measured from peripheral blood samples may be a source for routine clinical detection of cancer. Our studies showed that both miR-508-3p and miR-509-3p were down-regulated in renal cancer tissues. The level of miR-508-3p but not miR-509-3p in renal cell carcinoma (RCC) patient plasma demonstrated significant differences from that in control plasma. In addition, the overexpression of miR-508-3p and miR-509-3p suppressed the proliferation of RCC cells (786-0), induced cell apoptosis and inhibited cell migration in vitro. Our data demonstrated that miR-508-3p and miR-509-3p played an important role as tumor suppressor genes during tumor formation and that they may serve as novel diagnostic markers for RCC.

  4. Absorption and transport of deuterium-substituted 2R,4'R,8'R-alpha-tocopherol in human lipoproteins

    International Nuclear Information System (INIS)

    Traber, M.G.; Ingold, K.U.; Burton, G.W.; Kayden, H.J.

    1988-01-01

    Oral administration of a single dose of tri- or hexadeuterium substituted 2R,4'R,8'R-alpha-tocopheryl acetate (d3- or d6-alpha-T-Ac) to humans was used to follow the absorption and transport of vitamin E in plasma lipoproteins. Three hr after oral administration of d3-alpha-T-Ac (15 mg) to 2 subjects, plasma levels of d3-alpha-T were detectable; these increased up to 10 hr, reached a plateau at 24 hr, then decreased. Following administration of d6-alpha-T-Ac (15-16 mg) to 2 subjects, the percentage of deuterated tocopherol relative to the total tocopherol in chylomicrons increased more rapidly than the corresponding percentage in whole plasma. Chylomicrons and plasma lipoproteins were isolated from 2 additional subjects following administration of d3-alpha-T-Ac (140 or 60 mg). The percentage of deuterated tocopherol relative to the total tocopherol increased most rapidly in chylomicrons, then in very low density lipoproteins (VLDL), followed by essentially identical increases in low and high density lipoproteins (LDL and HDL, respectively) and lastly, in the red blood cells. This pattern of appearance of deuterated tocopherol is consistent with the concept that newly absorbed vitamin E is secreted by the intestine into chylomicrons; subsequently, chylomicron remnants are taken up by the liver from which the vitamin E is secreted in VLDL. The metabolism of VLDL in the circulation results in the simultaneous delivery of vitamin E into LDL and HDL

  5. Effects of MiR-375-BMPR2 as a Key Factor Downstream of BMP15/GDF9 on the Smad1/5/8 and Smad2/3 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2018-03-01

    Full Text Available Background/Aims: Bone morphogenetic protein 15 (BMP15 and growth differentiation factor 9 (GDF9, which are secreted by oocytes, are important regulators of follicular growth and development and ovarian function. These two factors can regulate the proliferation and apoptosis of cumulus cells via modulation of the Smad signaling pathway. Studies have shown that BMP15 and GDF9 can affect the level of miR-375, whereas the target gene of miR-375 is BMPR2, the type II receptor of BMP15 and GDF9. However, whether or how the BMP15/ GDF9-miR-375-BMPR2 pathway affects the proliferation and apoptosis of bovine cumulus cells through regulation of the Smad signaling pathway remains unclear. Methods: In this study, cumulus cells were first obtained from cumulus-oocyte complexes (COCs. Appropriate concentrations of BMP15 and GDF9 were added during the in vitro culture process. Cell Counting Kit-8 (CCK-8 analyses and flow cytometry were used to determine the effects of BMP15/GDF9 on bovine cumulus cells proliferation and apoptosis. Subsequently, miR-375 mimics, miR-375 inhibitor and BMPR2 siRNA were synthesized and used for transfection experiments. Western Blot analysis was used to detect changes before and after transfection in the expression levels of the BMP15/GDF9 type I receptors ALK4, ALK5 and ALK6; the phosphorylation levels of Smad2/3 and Smad1/5/8, which are key signaling pathway proteins downstream of BMP15/GDF9; the expression levels of PTX3, HAS2 and PTGS2, which are key genes involved in cumulus cells proliferation; and Bcl2/Bax, which are genes involved in apoptosis. Results: The addition of 100 ng/mL BMP15 or 200 ng/mL GDF9 or the combined addition of 50 ng/mL BMP15 and 100 ng/mL GDF9 effectively inhibited bovine cumulus cell apoptosis and promoted cell proliferation. BMP15/GDF9 negatively regulated miR-375 expression and positively regulated BMPR2 expression. High levels of miR-375 and inhibition of BMPR2 resulted in increased expression of ALK

  6. Genetic versus Non-Genetic Regulation of miR-103, miR-143 and miR-483-3p Expression in Adipose Tissue and Their Metabolic Implications—A Twin Study

    Directory of Open Access Journals (Sweden)

    Jette Bork-Jensen

    2014-07-01

    Full Text Available Murine models suggest that the microRNAs miR-103 and miR-143 may play central roles in the regulation of subcutaneous adipose tissue (SAT and development of type 2 diabetes (T2D. The microRNA miR-483-3p may reduce adipose tissue expandability and cause ectopic lipid accumulation, insulin resistance and T2D. We aimed to explore the genetic and non-genetic factors that regulate these microRNAs in human SAT, and to investigate their impact on metabolism in humans. Levels of miR-103, miR-143 and miR-483-3p were measured in SAT biopsies from 244 elderly monozygotic and dizygotic twins using real-time PCR. Heritability estimates were calculated and multiple regression analyses were performed to study associations between these microRNAs and measures of metabolism, as well as between these microRNAs and possible regulating factors. We found that increased BMI was associated with increased miR-103 expression levels. In addition, the miR-103 levels were positively associated with 2 h plasma glucose levels and hemoglobin A1c independently of BMI. Heritability estimates for all three microRNAs were low. In conclusion, the expression levels of miR-103, miR-143 and miR-483-3p in adipose tissue are primarily influenced by non-genetic factors, and miR-103 may be involved in the development of adiposity and control of glucose metabolism in humans.

  7. Structure, magnetism, and transport of single-crystalline R NiSi3 (R = Y, Gd-Tm, Lu)

    Science.gov (United States)

    Arantes, Fabiana R.; Aristizábal-Giraldo, Deisy; Masunaga, Sueli H.; Costa, Fanny N.; Ferreira, Fabio F.; Takabatake, Toshiro; Mendonça-Ferreira, Leticie; Ribeiro, Raquel A.; Avila, Marcos A.

    2018-04-01

    We report on the physical properties of the intermetallic series R NiSi3 (R =Y , Gd-Tm, Lu). High quality single crystals with platelike morphology were grown using the Sn flux method. X-ray powder diffraction data show that this series crystallizes in the orthorhombic space group Cmmm, and Laue patterns indicate that the b axis remains perpendicular to the plane of the plates. Magnetization measurements show anisotropic antiferromagnetic ground states for R = Gd-Tm with Néel temperatures ranging from TN=2.6 K (TmNiSi3) up to 32.2 K (TbNiSi3), as well as metamagnetic transitions that in some cases appear together with hysteresis (TbNiSi3,DyNiSi3, and HoNiSi3). The easy axis changes from a axis to b axis on going from R = Gd-Ho to R = Er-Tm. All transitions from antiferromagnetic to paramagnetic states are clearly marked by sharp peaks in specific heat as well as in the derivative of resistivity measurements, which show metallic temperature dependence for all compounds and residual values in the range of 1 μ Ω cm . DyNiSi3 has two close phase transitions, while HoNiSi3 presents distinct critical temperatures for applied fields in the a or c directions (10.4 and 6.3 K, respectively), pointing to possible component-specific ordering of the local magnetic moments.

  8. An ODIP effort to map R2R ocean data terms to international vocabularies

    Science.gov (United States)

    Ferreira, Renata; Stocks, Karen; Arko, Robert

    2014-05-01

    The heterogeneity of terminology used in describing data creates a barrier to the efficient discovery and re-use of data, particularly across institutional, programmatic, and disciplinary boundaries. Here we explore the outcomes of a student project to crosswalk terms between the Rolling Deck to Repository (R2R) program and other international systems, as part of the Ocean Data Interoperability Platform (ODIP). R2R is a US program developing and implementing an information management system to preserve and provide access to routine underway data collected by U.S academic research vessels. R2R participates in ODIP, an international forum for improving the interoperability and effective sharing of marine data resources through technical workshops and joint prototypes. The vocabulary mapping effort lays a foundation for future ocean data portals through which users search and access international ocean data using familiar terms. R2R describes its data with a suite of controlled vocabularies (http://www.rvdata.us/voc) some of which were developed locally or are specific to the US. The goal of this student project is to crosswalk local/national vocabularies to authoritative international vocabularies, where they exist, or to vocabularies widely used by ODIP partners. Specifically, R2R developed the following crosswalks: R2R science party names to ORCID person identifiers, UNOLS ports to SeaDataNet Ports Gazetteer, R2R Device Models to NVS SeaVoX Device Catalog, and R2R Organizations to the European Directory of Marine Organizations (EDMO). Mappings were done in simple spreadsheets using synonymy relationships only, and will be published as part of the R2R Linked Data resources. The level of success in crosswalking was variable. The majority of ports were successfully mapped. Differences in the character sets (i.e. whether diacritic marks were used) caused automated matching to fail occasionally, but the number of ports was small enough that these could be manually

  9. A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions.

    Science.gov (United States)

    Lee, Daniel Y; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W; Deng, Zhaoqun; Yang, Burton B

    2009-01-01

    Mature microRNAs (miRNAs) are single-stranded RNAs of 18-24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3'UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3'UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3'UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3'UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3'UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3'UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3'UTR may be an approach in the development of gene therapy.

  10. Astrocyte IP3R2-dependent Ca2+ signaling is not a major modulator of neuronal pathways governing behavior.

    Directory of Open Access Journals (Sweden)

    Jeremy ePetravicz

    2014-11-01

    Full Text Available Calcium-dependent release of gliotransmitters by astrocytes is reported to play a critical role in synaptic transmission and be necessary for long-term potentiation (LTP, long-term depression (LTD and other forms of synaptic modulation that are correlates of learning and memory . Further, physiological processes reported to be dependent on Ca2+ fluxes in astrocytes include functional hyperemia, sleep, and regulation of breathing. The preponderance of findings indicate that most, if not all, receptor dependent Ca2+ fluxes within astrocytes are due to release of Ca2+ through IP3 receptor/channels in the endoplasmic reticulum. Findings from several laboratories indicate that astrocytes only express IP3 receptor type 2 (IP3R2 and that a knockout of IP3R2 obliterates the GPCR-dependent astrocytic Ca2+ responses. Assuming that astrocytic Ca2+ fluxes play a critical role in synaptic physiology, it would be predicted that eliminating of astrocytic Ca2+ fluxes would lead to marked changes in behavioral tests. Here, we tested this hypothesis by conducting a broad series of behavioral tests that recruited multiple brain regions, on an IP3R2 conditional knockout mouse model. We present the novel finding that behavioral processes are unaffected by lack of astrocyte IP3R-mediated Ca2+ signals. IP3R2 cKO animals display no change in anxiety or depressive behaviors, and no alteration to motor and sensory function. Morris water maze testing, a behavioral correlate of learning and memory, was unaffected by lack of astrocyte IP3R2-mediated Ca2+-signaling. Therefore, in contrast to the prevailing literature, we find that neither receptor-driven astrocyte Ca2+ fluxes nor, by extension, gliotransmission is likely to be a major modulating force on the physiological processes underlying behavior.

  11. Minimal $R+R^2$ Supergravity Models of Inflation Coupled to Matter

    CERN Document Server

    Ferrara, S

    2014-01-01

    The supersymmetric extension of "Starobinsky" $R+\\alpha R^2$ models of inflation is particularly simple in the "new minimal" formalism of supergravity, where the inflaton has no scalar superpartners. This paper is devoted to matter couplings in such supergravity models. We show how in the new minimal formalism matter coupling presents certain features absent in other formalisms. In particular, for the large class of matter couplings considered in this paper, matter must possess an R-symmetry, which is gauged by the vector field which becomes dynamical in the "new minimal" completion of the $R+\\alpha R^2$ theory. Thus, in the dual formulation of the theory, where the gauge vector is part of a massive vector multiplet, the inflaton is the superpartner of the massive vector of a nonlinearly realized R-symmetry. The F-term potential of this theory is of no-scale type, while the inflaton potential is given by the D-term of the gauged R-symmetry. The absolute minimum of the potential is always exactly supersymmetri...

  12. R2/R0-WTR decommissioning cost. Comparison and benchmarking analysis

    International Nuclear Information System (INIS)

    Varley, Geoff; Rusch, Chris

    2001-10-01

    the dismantling activities to determine if they are reasonable. The difference between the R2 estimated total decommissioning cost and the WTR actual total cost is the equivalent of approximately MSEK 85. The analyses presented in this report suggest that up to MSEK 30 of this difference could be related to the process equipment and other active component dismantling. In particular dismantling of the bioshield is singled out for detailed investigation. The final WTR cost turned out to be 25 per cent in excess of the WTR estimate. This may be attributed mainly to: 1. Loss of plant knowledge due to a period of 30 years between shutdown and start of decommissioning combined with the loss of key records concerning the condition of the plant. This was not a major factor but did contribute to additional costs. 2. Assumptions about the extent of concrete contamination and the ability to decontaminate concrete prior to dismantling turned out to be false (est. MSEK10 impact) 3. Unforeseen water treatment was required (est. MSEK12 impact) 4. Inefficiency due to restricted working space was not accounted for correctly (est. MSEK3 impact) 5. Required project management resources were underestimated (est. MSEK13 impact) 6. Health physics hours exceeded expected hours because of the broader requirements of the operations at the Waltz Mill site (est. MSEK5 impact) The items listed above account for close to 80 per cent of the cost overrun (MSEK43 of MSEK55). In principle most of these factors can be avoided in the case of R2 by taking appropriate action in advance. It would however be imprudent not to include some contingency in the R2 estimate to cover unforeseen conditions or implementation difficulties. Based on WTR experience, it would appear that a reasonable contingency for things about which R2 can do little to prepare for in advance, would be in the order of 5 to 10 per cent of the base cost estimate

  13. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  14. Allelic variants of melanocortin 3 receptor gene (MC3R and weight loss in obesity: a randomised trial of hypo-energetic high- versus low-fat diets.

    Directory of Open Access Journals (Sweden)

    José L Santos

    Full Text Available INTRODUCTION: The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3 receptor gene (MC3R have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets. SUBJECTS AND METHODS: This research is based on the NUGENOB study, a trial conducted to assess weight loss during a 10-week dietary intervention involving two different hypo-energetic (high-fat and low-fat diets. A total of 760 obese patients were genotyped for 10 single nucleotide polymorphisms covering the single exon of MC3R gene and its flanking regions, including the missense variants Thr6Lys and Val81Ile. Linear mixed models and haplotype-based analysis were carried out to assess the potential association between genetic polymorphisms and differential weight loss, fat mass loss, waist change and resting energy expenditure changes. RESULTS: No differences in drop-out rate were found by MC3R genotypes. The rs6014646 polymorphism was significantly associated with weight loss using co-dominant (p = 0.04 and dominant models (p = 0.03. These p-values were not statistically significant after strict control for multiple testing. Haplotype-based multivariate analysis using permutations showed that rs3827103-rs1543873 (p = 0.06, rs6014646-rs6024730 (p = 0.05 and rs3746619-rs3827103 (p = 0.10 displayed near-statistical significant results in relation to weight loss. No other significant associations or gene*diet interactions were detected for weight loss, fat mass loss, waist change and resting energy expenditure changes. CONCLUSION: The study

  15. Identification of Arabidopsis MYB56 as a novel substrate for CRL3(BPM) E3 ligases.

    Science.gov (United States)

    Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo

    2015-02-01

    Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work, MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies have indicated that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling flowering time in plants. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  16. An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes.

    Science.gov (United States)

    Kang, W; Wang, L; Harrell, H; Liu, J; Thomas, D L; Mayfield, T L; Scotti, M M; Ye, G J; Veres, G; Knop, D R

    2009-02-01

    Recombinant herpes simplex virus type 1 (rHSV)-assisted recombinant adeno-associated virus (rAAV) vector production provides a highly efficient and scalable method for manufacture of clinical grade rAAV vectors. Here, we present an rHSV co-infection system for rAAV production, which uses two ICP27-deficient rHSV constructs, one bearing the rep2 and cap (1, 2 or 9) genes of rAAV, and the second bearing an AAV2 ITR-gene of interest (GOI) cassette. The optimum rAAV production parameters were defined by producing rAAV2/GFP in HEK293 cells, yielding greater than 9000 infectious particles per cell with a 14:1 DNase resistance particle to infectious particle (DRP/ip) ratio. The optimized co-infection parameters were then used to generate large-scale stocks of rAAV1/AAT, which encode the human alpha-1-antitrypsin (hAAT) protein, and purified by column chromatography. The purified vector was extensively characterized by rAAV- and rHSV-specific assays and compared to transfection-made vector for in vivo efficacy in mice through intramuscular injection. The co-infection method was also used to produce rAAV9/AAT for comparison to rAAV1/AAT in vivo. Intramuscular administration of 1 x 10(11) DRP per animal of rHSV-produced rAAV1/AAT and rAAV9/AAT resulted in hAAT protein expression of 5.4 x 10(4) and 9.4 x 10(5) ng ml(-1) serum respectively, the latter being clinically relevant.

  17. Introduction of hsa-miR-103a and hsa-miR-1827 and hsa-miR-137 as new regulators of Wnt signaling pathway and their relation to colorectal carcinoma.

    Science.gov (United States)

    Fasihi, Ali; M Soltani, Bahram; Atashi, Amir; Nasiri, Shirzad

    2018-07-01

    Wnt signaling is hyper-activated in most of human cancers including colorectal carcinoma (CRC). Therefore, the introduction of new regulators for Wnt pathway possesses promising diagnostic and therapeutic applications in cancer medicine. Bioinformatics analysis introduced hsa-miR-103a, hsa-miR-1827, and hsa-miR-137 as potential regulators of Wnt signaling pathway. Here, we intended to examine the effect of these human miRNAs on Wnt signaling pathway components, on the cell cycle progression in CRC originated cell lines and their expression in CRC tissues. RT-qPCR results indicated upregulation of hsa-miR-103a, hsa-miR-1827, and downregulation of hsa-miR-137 in CRC tissues. Overexpression of hsa-miR-103a and hsa-miR-1827 in SW480 cells resulted in elevated Wnt activity, detected by both Top/Flash assay and RT-qPCR analysis. Inhibition of Wnt signaling by using PNU-74654 or IWP-2 small molecules suggested that these miRNAs exerts their effect at the β-catenin degradation complex level. Then, RT-qPCR, dual luciferase assay, and western blotting analysis indicated that APC and APC2 transcripts were targeted by hsa-miR-103a, hsa-miR-1827 while, Wnt3a and β-catenin genes were upregulated. However, hsa-miR-137 downregulated Wnt3a and β-catenin genes. Further, hsa-miR-103a and hsa-miR-1827 overexpression resulted in cell cycle progression and reduced apoptotic rate in SW480 cells, unlike hsa-miR-137 overexpression which resulted in cell cycle suppression, detected by flowcytometry and Anexin analysis. Overall, our data introduced hsa-miR-103a, hsa-miR-1827 as onco-miRNAs and hsa-miR-137 as tumor suppressor which exert their effect through regulation of Wnt signaling pathway in CRC and introduced them as potential target for therapy. © 2017 Wiley Periodicals, Inc.

  18. LRRK2 G2385R and R1628P Mutations Are Associated with an Increased Risk of Parkinson's Disease in the Malaysian Population

    Science.gov (United States)

    Chua, Jing Yi; Lim, Thien Thien; Mohamed Ibrahim, Norlinah; Tan, Ai Huey; Eow, Gaik Bee; Abdul Aziz, Zariah; Puvanarajah, Santhi Datuk; Viswanathan, Shanthi; Lim, Soo Kun; Tan, Li Ping; Chong, Yip Boon; Tan, Chong Tin; Zhao, Yi; Tan, E. K.

    2014-01-01

    The LRRK2 gene has been associated with both familial and sporadic forms of Parkinson's disease (PD). The G2019S variant is commonly found in North African Arab and Caucasian PD patients, but this locus is monomorphic in Asians. The G2385R and R1628P variants are associated with a higher risk of developing PD in certain Asian populations but have not been studied in the Malaysian population. Therefore, we screened the G2385R and R1628P variants in 1,202 Malaysian subjects consisting of 695 cases and 507 controls. The G2385R and R1628P variants were associated with a 2.2-fold (P = 0.019) and 1.2-fold (P = 0.054) increased risk of PD, respectively. Our data concur with other reported findings in Chinese, Taiwanese, Singaporean, and Korean studies. PMID:25243190

  19. Effects of quorum sensing system lasR/rhlR gene on the expression of Foxp3, TGF-β1 and IL-10 of lung tissue in tracheal intubation model rat with Pseudomonas aeruginosa biofilm infection

    Directory of Open Access Journals (Sweden)

    Qing-qing XIANG

    2016-03-01

    Full Text Available Objective  To investigate the effects of lasR/rhlR gene on Foxp3, TGF-β1 and IL-10 of lung tissue in rat tracheal intubation model with biofilm infection of Pseudomonas aeruginosa (Ps. aer wild strain (PAO1 and quorum sensing (QS deficient strain (ΔlasRΔrhlR. Methods  Twenty-one SD rats were randomly assigned into 3 groups (7 each: ΔlasRΔrhlR-treated group, PAO1-treated group and sterile control group. Biofilms (BF were cultured in vitro, and the BF coated tube (infected respectively with Ps. aer PAO1 strain, ΔlasRΔrhlR strain, or with asepsis was inserted into the trachea to establish the rat model. The rats were sacrificed on the 7th day after intubation. Colony count of lung tissue homogenate (cfu and lung HE staining were performed, and IL-10 content in bronchoalveolar lavage fluid (BALF, TGF-β1 in lung tissue, and the expression of Foxp3 mRNA in lung cells were determined. Results  The bacterial counts were significantly higher in PAO1 and ΔlasRΔrhlR groups than that in sterile control group, and the counts were obviously higher in PAO1 group (10 400.00±6313.70/g lung tissue than that in ΔlasRΔrhlR group (975.00±559.97/g lung tissue, P<0.05. There was no significant pathological changes in lung tissue in sterile control group, while the bronchi and blood vessels in PAO1 group were infiltrated by a large number of inflammatory cells and complicated with alveolar septum thickening and local abscess and necrosis. The pathological changes were milder in ΔlasRΔrhlR group than in PAO1 group; the expression of Foxp3 mRNA was higher in the two Ps. aer infected groups than that in sterile control group (0.65±0.32, and it was significantly higher in PAO1 group (4.62±1.07 than in ΔlasRΔrhlR group (2.15±1.43, P<0.05. The accumulated optical density value of TGF-β1 was significantly higher in the two Ps. aer infected groups than in sterile control group (3721.66±1412.95, and significantly higher in PAO1 group (65 090.56±33

  20. Identification of pathogenic Nocardia species by reverse line blot hybridization targeting the 16S rRNA and 16S-23S rRNA gene spacer regions.

    Science.gov (United States)

    Xiao, Meng; Kong, Fanrong; Sorrell, Tania C; Cao, Yongyan; Lee, Ok Cha; Liu, Ying; Sintchenko, Vitali; Chen, Sharon C A

    2010-02-01

    Although 16S rRNA gene sequence analysis is employed most often for the definitive identification of Nocardia species, alternate molecular methods and polymorphisms in other gene targets have also enabled species determinations. We evaluated a combined Nocardia PCR-based reverse line blot (RLB) hybridization assay based on 16S and 16S-23S rRNA gene spacer region polymorphisms to identify 12 American Type Culture Collection and 123 clinical Nocardia isolates representing 14 species; results were compared with results from 16S rRNA gene sequencing. Thirteen 16S rRNA gene-based (two group-specific and 11 species-specific) and five 16S-23S spacer-targeted (two taxon-specific and three species-specific) probes were utilized. 16S rRNA gene-based probes correctly identified 124 of 135 isolates (sensitivity, 92%) but were unable to identify Nocardia paucivorans strains (n = 10 strains) and a Nocardia asteroides isolate with a novel 16S rRNA gene sequence. Nocardia farcinica and Nocardia cyriacigeorgica strains were identified by the sequential use of an N. farcinica-"negative" probe and a combined N. farcinica/N. cyriacigeorgica probe. The assay specificity was high (99%) except for weak cross-reactivity between the Nocardia brasiliensis probe with the Nocardia thailandica DNA product; however, cross-hybridization with closely related nontarget species may occur. The incorporation of 16S-23S rRNA gene spacer-based probes enabled the identification of all N. paucivorans strains. The overall sensitivity using both probe sets was >99%. Both N. farcinica-specific 16S-23S rRNA gene spacer-directed probes were required to identify all N. farcinica stains by using this probe set. The study demonstrates the utility of a combined PCR/RLB assay for the identification of clinically relevant Nocardia species and its potential for studying subtypes of N. farcinica. Where species assignment is ambiguous or not possible, 16S rRNA gene sequencing is recommended.

  1. In Vivo Quantification of Cerebral R2FNx01-Response to Graded Hyperoxia at 3 Tesla

    Directory of Open Access Journals (Sweden)

    Grigorios Gotzamanis

    2015-01-01

    Full Text Available Objectives: This study aims to quantify the response of the transverse relaxation rate of the magnetic resonance (MR signal of the cerebral tissue in healthy volunteers to the administration of air with step-wise increasing percentage of oxygen. Materials and Methods: The transverse relaxation rate (R2FNx01 of the MR signal was quantified in seven volunteers under respiratory intake of normobaric gas mixtures containing 21, 50, 75, and 100% oxygen, respectively. End-tidal breath composition, arterial blood saturation (SaO 2 , and heart pulse rate were monitored during the challenge. R2FNx01 maps were computed from multi-echo, gradient-echo magnetic resonance imaging (MRI data, acquired at 3.0T. The average values in the segmented white matter (WM and gray matter (GM were tested by the analysis of variance (ANOVA, with Bonferroni post-hoc correction. The GM R2FNx01-reactivity to hyperoxia was modeled using the Hill′s equation. Results: Graded hyperoxia resulted in a progressive and significant (P < 0.05 decrease of the R2FNx01 in GM. Under normoxia the GM-R2FNx01 was 17.2 ± 1.1 s -1 . At 75% O 2 supply, the R2FNx01 had reached a saturation level, with 16.4 ± 0.7 s -1 (P = 0.02, without a significant further decrease for 100% O 2 . The R2FNx01-response of GM correlated positively with CO 2 partial pressure (R = 0.69 ± 0.19 and negatively with SaO 2 (R = -0.74 ± 0.17. The WM showed a similar progressive, but non-significant, decrease in the relaxation rates, with an increase in oxygen intake (P = 0.055. The Hill′s model predicted a maximum R2FNx01 response of the GM, of 3.5%, with half the maximum at 68% oxygen concentration. Conclusions: The GM-R2FNx01 responds to hyperoxia in a concentration-dependent manner, suggesting that monitoring and modeling of the R2FNx01-response may provide new oxygenation biomarkers for tumor therapy or assessment of cerebrovascular reactivity in patients.

  2. A facile stereospecific synthesis of the ( sup 2 H sub 6 )-isopropyl-labelled metoprolol enantiomers from (2R)- and (2S)-glycidyl 3-nitrobenzenesulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, S.S.; Nelson, W.L. (Washington Univ., Seattle, WA (USA). Dept. of Medicinal Chemistry)

    1990-12-01

    Enantiomers of metoprolol containing six deuterium atoms in the isopropyl methyl groups were prepared in two steps from the sodium salt of 4-(2-methoxyethyl)phenol (3) and the commercially available (2R)-and (2S)-glycidyl 3-nitrobenzenesulfonates ((2R)-2 and (2S)-2). The resulting (2R)- and (2S)-epoxides were opened using ({sup 2}H{sub 6})-isopropylamine. The enantiomeric excesses were 93 and 95% for the deuterated (2R)- and (2S)-enantiomers of metoprolol ((2R)-1 and (2S)-1), respectively, as determined by chiral column HPLC. (author).

  3. Upregulation of miR-375 level ameliorates morphine analgesic tolerance in mouse dorsal root ganglia by inhibiting the JAK2/STAT3 pathway

    Directory of Open Access Journals (Sweden)

    Li HQ

    2017-05-01

    Full Text Available Haiqin Li, Rong Tao, Jing Wang, Lingjie Xia Department of Clinical Pain, The People’s Hospital of Henan Province, Zhengzhou, People’s Republic of China Abstract: Several lines of evidence indicate that microRNAs (miRNAs modulate tolerance to the analgesic effects of morphine via regulation of pain-related genes, making dysregulation of miRNA levels a clinical target for controlling opioid tolerance. However, the precise mechanisms by which miRNAs regulate opioid tolerance are unclear. In the present study, we noted that the miR-375 level was downregulated but the expression of Janus kinase 2 (JAK2 was upregulated in mouse dorsal root ganglia (DRG following chronic morphine treatment. The miR-375 levels and JAK2 expression were correlated with the progression of morphine tolerance, and upregulation of miR-375 level could significantly hinder morphine tolerance. This was ameliorated by JAK2 knockdown. Prolonged morphine exposure induced the expression of brain-derived neurotrophic factor (BDNF in a time-dependent manner in the DRG. This was regulated by the miR-375 and JAK2–signal transducer and activator of transcription 3 (STAT3 pathway, and inhibition of this pathway decreased BDNF production, and thus, attenuated morphine tolerance. More importantly, we found that miR-375 could target JAK2 and increase BDNF expression in a JAK2/STAT3 pathway-dependent manner. Keywords: morphine tolerance, miR-375, JAK2, BDNF

  4. Alteration of rRNA gene copy number and expression in patients ...

    African Journals Online (AJOL)

    Irina S. Kolesnikova

    2017-09-01

    Sep 1, 2017 ... Asia R. Shorina d, Alexander S. Graphodatsky a, Ekaterina M. Galanina b, Dmitry V. Yudkin a,b,* ... rRNA gene copy numbers on affected acrocentric chromosomes in .... estimated using MS Excel software (Microsoft, USA).

  5. ACTN3 R577X POLYMORPHISM AND NEUROMUSCULAR RESPONSE TO RESISTANCE TRAINING

    Directory of Open Access Journals (Sweden)

    Paulo Gentil

    2011-06-01

    Full Text Available The R577X polymorphism at the ACTN3 gene has been associated with muscle strength, hypertrophy and athletic status. The X allele, which is associated with the absence of ACTN3 protein is supposed to impair performance of high force/velocity muscle contractions. The purpose of the present study was to investigate the association of the R577X polymorphism with the muscle response to resistance training in young men. One hundred forty one men performed two resistance training sessions per week for 11 weeks. Participants were tested for 1RM bench press, knee extensors peak torque, and knee extensors muscle thickness at baseline and after the training period. Genotyping was conducted using de DdeI restriction enzyme. Genotype distribution was 34.4% for RR, 47% for RX and 18.6% for the XX genotype. According to the results, the R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. However, only carriers of the R allele showed increases in muscle thickness in response to training

  6. MiR-338-3p regulates neuronal maturation and suppresses glioblastoma proliferation.

    Directory of Open Access Journals (Sweden)

    James R Howe

    Full Text Available Neurogenesis is a highly-regulated process occurring in the dentate gyrus that has been linked to learning, memory, and antidepressant efficacy. MicroRNAs (miRNAs have been previously shown to play an important role in the regulation of neuronal development and neurogenesis in the dentate gyrus via modulation of gene expression. However, this mode of regulation is both incompletely described in the literature thus far and highly multifactorial. In this study, we designed sensors and detected relative levels of expression of 10 different miRNAs and found miR-338-3p was most highly expressed in the dentate gyrus. Comparison of miR-338-3p expression with neuronal markers of maturity indicates miR-338-3p is expressed most highly in the mature neuron. We also designed a viral "sponge" to knock down in vivo expression of miR-338-3p. When miR-338-3p is knocked down, neurons sprout multiple primary dendrites that branch off of the soma in a disorganized manner, cellular proliferation is upregulated, and neoplasms form spontaneously in vivo. Additionally, miR-338-3p overexpression in glioblastoma cell lines slows their proliferation in vitro. Further, low miR-338-3p expression is associated with increased mortality and disease progression in patients with glioblastoma. These data identify miR-338-3p as a clinically relevant tumor suppressor in glioblastoma.

  7. Regulation of anthocyanin biosynthesis in peach fruits.

    Science.gov (United States)

    Rahim, Md Abdur; Busatto, Nicola; Trainotti, Livio

    2014-11-01

    MYB10.1 and MYB10.3, with bHLH3, are the likely regulators of anthocyanin biosynthesis in peach fruit. MYB10.1/2/3 forms a cluster on the same genomic fragment where the Anther color ( Ag ) trait is located. Anthocyanins are bioactive compounds responsible for the pigmentation of many plant parts such as leaves, flowers, fruits and roots, and have potential benefits to human health. In peach [Prunus persica (L.) Batsch], peel color is a key determinant for fruit quality and is regulated by flavonoids including anthocyanins. The R2R3 MYB transcription factors (TFs) control the expression of anthocyanin biosynthetic genes with the help of co-activators belonging to the basic-helix-loop-helix (bHLH) and WD40 repeat families. In the peach genome six MYB10-like and three bHLH-like TFs were identified as candidates to be the regulators of the anthocyanin accumulation, which, in yellow flesh fruits, is highest in the peel, abundant in the part of the mesocarp surrounding the stone and lowest in the mesocarp. The expression of MYB10.1 and MYB10.3 correlates with anthocyanin levels of different peach parts. They also have positive correlation with the expression of key structural genes of the anthocyanin pathway, such as CHS, F3H, and UFGT. Functions of peach MYB10s were tested in tobacco and shown to activate key genes in the anthocyanin pathway when bHLHs were co-expressed as partners. Overexpression of MYB10.1/bHLH3 and MYB10.3/bHLH3 activated anthocyanin production by up-regulating NtCHS, NtDFR and NtUFGT while other combinations were not, or much less, effective. As three MYB10 genes are localized in a genomic region where the Ag trait, responsible for anther pigmentation, is localized, it is proposed they are key determinant to introduce new peach cultivars with higher antioxidant level and pigmented fruit.

  8. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun, E-mail: xuejunshao@hotmail.com

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  9. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Kui eLin-Wang

    2014-11-01

    Full Text Available The woodland strawberry, Fragaria vesca is a model fruit for a number of rosaceous crops. We have engineered altered concentrations of anthocyanin in F. vesca, to determine the impact on plant growth and fruit quality. Anthocyanin concentrations were significantly increased by over-expression or decreased by knock-down of the R2R3 MYB activator, MYB10. In contrast, a potential bHLH partner for MYB10 (bHLH33 did not affect the anthocyanin pathway when knocked down using RNAi constructs. Metabolic analysis of fruits revealed that, of all the polyphenolics surveyed, only cyanidin and pelargonidin glucoside, and coumaryl hexose were significantly affected by over-expression and knock down of MYB10. Using the F. vesca genome sequence, members of the MYB, bHLH and WD40 families were examined. Global analysis of gene expression and targeted qPCR analysis of biosynthetic genes and regulators confirmed the effects of altering MYB10 expression, as well as the knock-down of bHLH33. Other members of the MYB transcription factor family were affected by the transgenes. Transient expression of strawberry genes in Nicotiana benthamiana revealed that MYB10 can auto-regulate itself, and potential repressors of MYB10. In tobacco, MYB10’s activation of biosynthetic steps is inhibited by the strawberry repressor MYB1.

  10. Two showy traits, scent emission and pigmentation, are finely coregulated by the MYB transcription factor PH4 in petunia flowers.

    Science.gov (United States)

    Cna'ani, Alon; Spitzer-Rimon, Ben; Ravid, Jasmin; Farhi, Moran; Masci, Tania; Aravena-Calvo, Javiera; Ovadis, Marianna; Vainstein, Alexander

    2015-11-01

    The mechanism underlying the emission of phenylpropanoid volatiles is poorly understood. Here, we reveal the involvement of PH4, a petunia MYB-R2R3 transcription factor previously studied for its role in vacuolar acidification, in floral volatile emission. We used the virus-induced gene silencing (VIGS) approach to knock down PH4 expression in petunia, measured volatile emission and internal pool sizes by GC-MS, and analyzed transcript abundances of scent-related phenylpropanoid genes in flowers. Silencing of PH4 resulted in a marked decrease in floral phenylpropanoid volatile emission, with a concurrent increase in internal pool levels. Expression of scent-related phenylpropanoid genes was not affected. To identify putative scent-related targets of PH4, we silenced PH5, a tonoplast-localized H(+) -ATPase that maintains vacuolar pH homeostasis. Suppression of PH5 did not yield the reduced-emission phenotype, suggesting that PH4 does not operate in the context of floral scent through regulation of vacuolar pH. We conclude that PH4 is a key floral regulator that integrates volatile production and emission processes and interconnects two essential floral traits - color and scent. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Weinberg Zasha

    2011-01-01

    Full Text Available Abstract Background With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. Results We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. Conclusions R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file.

  12. R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Science.gov (United States)

    2011-01-01

    Background With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. Results We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. Conclusions R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file. PMID:21205310

  13. R2R--software to speed the depiction of aesthetic consensus RNA secondary structures.

    Science.gov (United States)

    Weinberg, Zasha; Breaker, Ronald R

    2011-01-04

    With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file.

  14. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    Science.gov (United States)

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Synthesis and physical-chemical properties of 6-(5-(1Н-tetrazole-1-ylmethyl-4-R-1,2,4-triazole-3-ylthiopyridin-3-amines and 6-((5-(1Н-tetrazole-1-ylmethil-4-R-1,2,4-triazole-3-ylthiopyridin-3-yl-(alk,ar,heterylmethanimines

    Directory of Open Access Journals (Sweden)

    Yu. S. Hulina

    2017-02-01

    Full Text Available Over the past decade the number of publications, that contain different aspects of chemistry and use of triazoles and tetrazoles have been doubled and continues to grow. Puplications of recent years show that heterocycles with 1,2,3,4-teterazoles and 1,2,4-triazoles are biologically active compounds with a broad spectrum of action. This fact indicates the interest to these compounds as potential objects of modern pharmaceutical market, namely to those compounds which contain both heterocycles. Purpose – synthesis and establishment of physical-chemical properties of 6-(5-(1Н-tetrazole-1-ylmethyl-4-R-1,2,4-triazole-3-ylthiopyridin-3-amines and 6-((5-(1Н-tetrazole-1-ylmethil-4-R-1,2,4-triazole-3-ylthiopyridin-3-yl-(alk,ar,heterylmethanimines. Materials and methods. The melting point has been determined by capillary method. The elemental composition of compounds has been set with the help of elemental analyzer Elementar Vario L cube (CHNS. 1H NMR spectra of obtained compounds has been set with the help of Varian Mercury VX-200, solvent – DMSO-d6, internal standart – Tetramethylsilane. Chromatography-mass spectrometry studies have been conducted on gas-liquid chromatograph Agilent 1260 Infinity HPLC equipped with a mass spectrometer Agilent 6120. 5-(1H-Tetrazole-1-ylmethyl-4-R-1,2,4-triazole-3-thioles were used as starting materials for 6-(5-(1Н-tetrazole-1-ylmethyl-4-R-1,2,4-triazole-3-ylthiopyridin-3-amines. Synthesis of the compounds was carried out in a medium of propyl alcohol in the presence of 5-amino-2-chloropyridine. 6-((5-(1Н-tetrazole-1-ylmethil-4-R-1,2,4-triazole-3-ylthiopyridin-3-yl-(alk,ar,heterylmethanimines were obtained reacting 6-(5-(1Н-tetrazole-1-ylmethyl-4-R-1,2,4-triazole-3-ylthiopyridin-3-amines with the appropriate aldehydes (acetaldehyde, m-anisaldehyde, 2-hydroxybenzaldehyde, 3-fluorobenzaldehyde, 4-fluorobenzaldehyde, 4-diethylaminobenzaldehyd, hydroxynaphthalene in the acetic acid medium. Results. 11 New

  16. Mutant Runx2 regulates amelogenesis and osteogenesis through a miR-185-5p-Dlx2 axis.

    Science.gov (United States)

    Chang, Huaiguang; Wang, Yue; Liu, Haochen; Nan, Xu; Wong, Singwai; Peng, Saihui; Gu, Yajuan; Zhao, Hongshan; Feng, Hailan

    2017-12-14

    Regulation of microRNAs (miRNA) has been extensively investigated in diseases; however, little is known about the roles of miRNAs in cleidocranial dysplasia (CCD). The aim of the present study was to investigate the potential involvement of miRNAs in CCD. In vitro site-directed mutagenesis was performed to construct three mutant Runx2 expression vectors, which were then transfected into LS8 cells and MC3T3-E1 cells, to determine the impact on amelogenesis and osteogenesis, respectively. miRCURY LNA miRNA microarray identify miR-185-5p as a miRNA target commonly induced by all three Runx2 mutants. Real-time quantitative PCR was applied to determine the expression of miR-185-5p and Dlx2 in samples. Dual-luciferase reporter assays were conducted to confirm Dlx2 as a legitimate target of miR-185-5p. The suppressive effect of miR-185-5p on amelogenesis and osteogenesis of miR-185-5p was evaluated by RT-PCR and western blot examination of Amelx, Enam, Klk4, and Mmp20 gene and protein expression, and by Alizarin Red stain. We found that mutant Runx2 suppressed amelogenesis and osteogenesis. miR-185-5p, induced by Runx2, suppressed amelogenesis and osteogenesis. Furthermore, we identified Dlx2 as direct target of miR-185-5p. Consistently, Dlx2 expression was inversely correlated with miR-185-5p levels. This study highlights the molecular etiology and significance of miR-185-5p in CCD, and suggests that targeting miR-185-5p may represent a new therapeutic strategy in prevention or intervention of CCD.

  17. Clinical Value of miR-101-3p and Biological Analysis of its Prospective Targets in Breast Cancer: A Study Based on The Cancer Genome Atlas (TCGA) and Bioinformatics.

    Science.gov (United States)

    Li, Chun-Yao; Xiong, Dan-Dan; Huang, Chun-Qin; He, Rong-Quan; Liang, Hai-Wei; Pan, Deng-Hua; Wang, Han-Lin; Wang, Yi-Wen; Zhu, Hua-Wei; Chen, Gang

    2017-04-18

    BACKGROUND MiR-101-3p can promote apoptosis and inhibit proliferation, invasion, and metastasis in breast cancer (BC) cells. However, its mechanisms in BC are not fully understood. Therefore, a comprehensive analysis of the target genes, pathways, and networks of miR-101-3p in BC is necessary. MATERIAL AND METHODS The miR-101 profiles for 781 patients with BC from The Cancer Genome Atlas (TCGA) were analyzed. Gene expression profiling of GSE31397 with miR-101-3p transfected MCF-7 cells and scramble control cells was downloaded from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified. The potential genes targeted by miR-101-3p were also predicted. Gene Ontology (GO) and pathway and network analyses were constructed for the DEGs and predicted genes. RESULTS In the TCGA data, a low level of miR-101-2 expression might represent a diagnostic (AUC: 0.63) marker, and the miR-101-1 was a prognostic (HR=1.79) marker. MiR-101-1 was linked to the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), and miR-101-2 was associated with the tumor (T), lymph node (N), and metastasis (M) stages of BC. Moreover, 427 genes were selected from the 921 DEGs in GEO and the 7924 potential target genes from the prediction databases. These genes were related to transcription, metabolism, biosynthesis, and proliferation. The results were also significantly enriched in the VEGF, mTOR, focal adhesion, Wnt, and chemokine signaling pathways. CONCLUSIONS MiR-101-1 and miR-101-2 may be prospective biomarkers for the prognosis and diagnosis of BC, respectively, and are associated with diverse clinical parameters. The target genes of miR-101-3p regulate the development and progression of BC. These results provide insight into the pathogenic mechanism and potential therapies for BC.

  18. R2R Eventlogger: Community-wide Recording of Oceanographic Cruise Science Events

    Science.gov (United States)

    Maffei, A. R.; Chandler, C. L.; Stolp, L.; Lerner, S.; Avery, J.; Thiel, T.

    2012-12-01

    Methods used by researchers to track science events during a science research cruise - and to note when and where these occur - varies widely. Handwritten notebooks, printed forms, watch-keeper logbooks, data-logging software, and customized software have all been employed. The quality of scientific results is affected by the consistency and care with which such events are recorded and integration of multi-cruise results is hampered because recording methods vary widely from cruise to cruise. The Rolling Deck to Repository (R2R) program has developed an Eventlogger system that will eventually be deployed on most vessels in the academic research fleet. It is based on the open software package called ELOG (http://midas.psi.ch/elog/) originally authored by Stefan Ritt and enhanced by our team. Lessons have been learned in its development and use on several research cruises. We have worked hard to find approaches that encourage cruise participants to use tools like the eventlogger. We examine these lessons and several eventlogger datasets from past cruises. We further describe how the R2R Science Eventlogger works in concert with the other R2R program elements to help coordinate research vessels into a coordinated mobile observing fleet. Making use of data collected on different research cruises is enabled by adopting common ways of describing science events, the science instruments employed, the data collected, etc. The use of controlled vocabularies and the practice of mapping these local vocabularies to accepted oceanographic community vocabularies helps to bind shipboard research events from different cruises into a more cohesive set of fleet-wide events that can be queried and examined in a cross-cruise manner. Examples of the use of the eventlogger during multi-cruise oceanographic research programs along with examples of resultant eventlogger data will be presented. Additionally we will highlight the importance of vocabulary use strategies to the success of the

  19. Activation of pur Gene Expression by a Homologue of the Bacillus subtilis PurR repressor:

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Martinussen, Jan

    1998-01-01

    R encoded repressor from Bacillus subtilis. The wildtype purR gene complements the purine auxotrophy of a purR::Iss1mutant, and it was shown that the purR::Iss1 mutation lowers transcription from the purine regulated L. lactis purD promoter. In a parallel study on the regulation of purC and purD expression....... We have identified a PurBox sequence overlapping the -35 region of the L. lactis purR promoter and found, by studies of a purR-lacLM fusion plasmid, that purR is autoregulated. Because of the high similarity of the PurR proteins from B. subtilis and L. lactis, we looked for PurBox sequences...... in the promoter regions of the PurR regulated genes in B. subtilis, and identified a perfectly matching PurBox in the purA promoter region, and slightly degenerate PurBox like sequences in the promoter regions for the pur operon and the purR gene....

  20. A comparison of R-22, R-134a, R-410a, and R-407c condensation performance in smooth and enhanced tubes: Part 2, Pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Eckels, S J; Tesene, B A

    1999-07-01

    This paper reports pressure drops during condensation for R-22, R-134a, R-410a, and R-407c in three enhanced tubes and one smooth tube. The test tubes were a 3/8 inch outer diameter smooth tube, a 3/8 inch outer diameter microfin tube, a 5/16 inch outer diameter microfin tube, and a 5/8 inch outer diameter microfin tube. Pressure drops are reported at four mass fluxes, at two saturation temperatures, and over a range of average qualities in the test tubes. The pressure drops for R-410a were approximately 40% lower than those of R-22 in both tubes. R-407c had 10% to 20% lower pressure drops than R-22, while 134-a had slightly larger pressure drops than R-22. The microfin tube pressure drops were, on average, 40% to 80% higher than those for the smooth tube for all refrigerants. The pressure drop penalty of the microfin tube was shown to decrease with increased quality.