Sample records for r112h f113l n215s

  1. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno


    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  2. Urinary biomarker investigation in children with Fabry disease using tandem mass spectrometry. (United States)

    Auray-Blais, Christiane; Blais, Catherine-Marie; Ramaswami, Uma; Boutin, Michel; Germain, Dominique P; Dyack, Sarah; Bodamer, Olaf; Pintos-Morell, Guillem; Clarke, Joe T R; Bichet, Daniel G; Warnock, David G; Echevarria, Lucia; West, Michael L; Lavoie, Pamela


    Fabry disease is an X-linked lysosomal storage disorder affecting both males and females with tremendous genotypic/phenotypic variability. Concentrations of globotriaosylceramide (Gb3), globotriaosylsphingosine (lyso-Gb3)/related analogues were investigated in pediatric and adult Fabry cohorts. The aims of this study were to transfer and validate an HPLC-MS/MS methodology on a UPLC-MS/MS new generation platform, using an HPLC column, for urine analysis of treated and untreated pediatric and adult Fabry patients, to establish correlations between the excretion of Fabry biomarkers with gender, treatment, types of mutations, and to evaluate the biomarker reliability for early detection of pediatric Fabry patients. A UPLC-MS/MS was used for biomarker analysis. Reference values are presented for all biomarkers. Results show that gender strongly influences the excretion of each biomarker in the pediatric Fabry cohort, with females having lower urinary levels of all biomarkers. Urinary distribution of lyso-Gb3/related analogues in treated Fabry males was similar to the untreated and treated Fabry female groups in both children and adult cohorts. Children with the late-onset p.N215S mutation had normal urinary levels of Gb3, and lyso-Gb3 but abnormal levels of related analogues. In this study, Fabry males and most Fabry females would have been diagnosed using the urinary lyso-Gb3/related analogue profile. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Functional analysis of variant lysosomal acid glycosidases of Anderson-Fabry and Pompe disease in a human embryonic kidney epithelial cell line (HEK 293 T). (United States)

    Ebrahim, Hatim Y; Baker, Robert J; Mehta, Atul B; Hughes, Derralynn A


    The functional significance of missense mutations in genes encoding acid glycosidases of lysosomal storage disorders (LSDs) is not always clear. Here we describe a method of investigating functional properties of variant enzymes in vitro using a human embryonic kidney epithelial cell line. Site-directed mutagenesis was performed on the parental plasmids containing cDNA encoding for alpha-galactosidase A (α-Gal A) and acid maltase (α-Glu) to prepare plasmids encoding relevant point mutations. Mutant plasmids were transfected into HEK 293 T cells, and transient over-expression of variant enzymes was measured after 3 days. We have illustrated the method by examining enzymatic activities of four unknown α-Gal A and one α-Glu variants identified in our patients with Anderson-Fabry disease and Pompe diseases respectively. Comparison with control variants known to be either pathogenic or non-pathogenic together with over-expression of wild-type enzyme allowed determination of the pathogenicity of the mutation. One leader sequence novel variant of α-Gal A (p.A15T) was shown not to significantly reduce enzyme activity, whereas three other novel α-Gal A variants (p.D93Y, p.L372P and p.T410I) were shown to be pathogenic as they resulted in significant reduction of enzyme activity. A novel α-Glu variant (p.L72R) was shown to be pathogenic as this significantly reduced enzyme activity. Certain acid glycosidase variants that have been described in association with late-onset LSDs and which are known to have variable residual plasma and leukocyte enzyme activity in patients appear to show intermediate to low enzyme activity (p.N215S and p.Q279E α-Gal A respectively) in the over-expression system.